
T-79.1001/1002 Autumn 2005
Introduction to Theoretical Computer Science T/Y
Tutorial 5, 18–19 October
Problems

Homework problems:

1. Consider the following context-free grammars:

(a) A → aAcc | B

B → bBc | ε

(b) S → +S− | SS | ε

Give a derivation for the sentence abccc according to grammar (a), and a derivation for the
sentence + + − + −− +− according to grammar (b). Describe the language generated by each
grammar verbally as simply as you can.

2. A palindrome is a string w such that w = wR. (E.g. “MADAMIMADAM”, “ABLEWASIEREI-
SAWELBA,” cf. http://www.palindromes.org/.) Consider the set of palindromes over the
alphabet {a, b}:

PAL = {w ∈ {a, b}∗ | w = wR}.

Design a context-free grammar generating the language. (Hint: Note that a string w ∈ PAL, if
and only if it is of the form w = uXuR, where X = a, b or ε.)

3. Consider the following grammar generating a certain type of list structures:

S → (S) | S, S | a.

(a) Based on the above grammar, give a leftmost and rightmost derivation and a parse tree for
the sentence “(a, (a))”.

(b) Prove that the grammar is ambiguous.

(c) Design an unambiguous grammar generating the same language.

Demonstration problems:

4. Prove that the class of context-free languages is closed under unions, concatenations, and the
Kleene star operation, i.e. if the languages L1, L2 ⊆ Σ∗ are context-free, then so are the languages
L1 ∪ L2, L1L2 and L∗

1
.

5. Design a context-free grammar describing the syntax of simple “programs” of the following form:
a program consists of nested for loops, compound statements enclosed by begin-end pairs and
elementary operations a. Thus, a “program” in this language looks something like this:

a;

for 3 times do

begin

for 5 times do a;

a; a

end.

For simplicity, you may assume that the loop counters are always integer constants in the range
0, . . . , 9.

6. (a) Prove that the following context-free grammar is ambiguous:

S → if b then S

S → if b then S else S

S → s.

(b) Design an unambiguous grammar that is equivalent to the grammar in item (a), i.e. that
generates the same language. (Hint: Introduce new nonterminals B and U that generate,
respectively, only “balanced” and “unbalanced” if-then-else-sequences.)

