## Homework problems:

- 1. Give regular expressions describing the following languages:
  - (a)  $\{w \in \{a, b\}^* \mid w \text{ contains } abb \text{ as a substring}\};$
  - (b)  $\{w \in \{a, b\}^* \mid w \text{ contains either } abb \text{ or } bba \text{ (or both) as a substring}\};$
  - (c)  $\{w \in \{0,1\}^* \mid w \text{ contains exactly two 0's}\};$
  - (d)  $\{w \in \{0,1\}^* \mid w \text{ contains at least two 0's}\};$
  - (e)  $\{w \in \{0,1\}^* \mid w \text{ contains an even number (possibly zero) of 0's}\};$
  - (f)  $\{w \in \{0,1\}^* \mid w \text{ begins and ends with different symbols}\};$
  - (g)  $\{w \in \{0,1\}^* \mid |w| = 1 \pmod{3}\}.$
- 2. (a) Construct in a systematic way (as described in your textbook) a nondeterministic finite automaton corresponding to the regular expression  $((\varepsilon \cup 0)1)^*011^*$ .
  - (b) Make your automaton deterministic.
  - (c) Describe the language in part (a) in English as simply as you can.
- 3. Give regular expressions describing the following languages:
  - (a)  $\{w \in \{a, b\}^* \mid w \text{ does not contain } abb \text{ as a substring}\};$
  - (b)  $\{w \in \{0,1\}^* \mid w \text{ contains an even number of both 0's and 1's}\}$ .

(*Hint:* Design first a finite automaton for each of the languages, cf. problems 2/3(c) & 3/1, and convert these automata then in a systematic manner, as described in your textbook, into the corresponding regular expressions.)

## **Demonstration problems:**

- 4. Simplify the following regular expressions (i.e., design simpler expressions describing the same languages):
  - (a)  $(\emptyset^* \cup a)(a^*)^*(b \cup a)b^*$
  - (b)  $(a \cup b)^* \cup \emptyset \cup (a \cup b)b^*a^*$
  - (c)  $a(b^* \cup a^*)(a^*b^*)^*$
- 5. Determine whether the regular expressions  $r_1 = b^* a (a^* b^*)^*$  and  $r_2 = (a \cup b)^* a (a \cup b)^*$  describe the same language, by constructing the minimal deterministic finite automata corresponding to them.
- 6. Prove that if L is a regular language, then so is  $L' = \{xy \mid x \in L, y \notin L\}$ .