Autumn 2005

Remember to enroll for the course using the TOPI registration system by 23 September. Registration is compulsory.

Homework problems:

- 1. Let $\Sigma = \{a, b\}$. Give some examples of strings from each of the following languages (at least three strings per language):
 - (a) $\{w \in \Sigma^* \mid w \text{ the number of } a$'s in w is even and the number of b's is divisible of three};
 - (b) $\{a^{2n}b^{3m} \mid n, m \ge 0\};$
 - (c) $\{uvu^Rv^R \mid u, v \in \Sigma^*\};^1$
 - (d) $\{w \in \Sigma^* \mid \exists u, v \in \Sigma^* \text{ s.t. } w = uu = vvv\}.$
- 2. The reversal of a string $w \in \Sigma^*$, denoted w^R , is defined inductively by the rules:
 - (i) $\varepsilon^R = \varepsilon$;
 - (ii) if w = ua, where $u \in \Sigma^*$ and $a \in \Sigma$, then $w^R = au^R$.

It was proved in class (cf. also Lewis & Papadimitriou, p. 43) that for any strings $u, v \in \Sigma^*$ it is the case that $(uv)^R = v^R u^R$. Prove in a similar manner, by induction based on the above definition of reversal, the following facts:

(a)
$$(w^R)^R = w$$

(b) $(w^k)^R = (w^R)^k$, for any $k \ge 0$.

3. Design finite automata that recognise the following languages:

- (a) $\{w \in \{a, b\}^* \mid w \text{ contains } ab \text{ as a substring}\};$
- (b) $\{w \in \{a, b\}^* \mid w \text{ contains } abb \text{ as a substring}\};$
- (c) $\{w \in \{a, b\}^* \mid w \text{ does not contain } abb \text{ as a substring}\};$
- (d) $\{w \in \{a, b\}^* \mid ab \text{ occurs exactly twice as a substring in } w\};$
- (e) $\{w \in \{0,1\}^* \mid w \text{ contains an even number (possibly zero) of 0's}\};$
- (f) $\{w \in \{0,1\}^* \mid \text{the number of 1's in } w \text{ is divisible by three (or possibly zero)}\};$
- (g) $\{w \in \{0,1\}^* \mid w \text{ begins and ends with different symbols}\}$.

PLEASE TURN OVER

¹For a definition of the notation w^R see Problem 2.

Demonstration problems:

- 4. Show that any alphabet Σ with at least two symbols is comparable to the binary alphabet $\Gamma = \{0, 1\}$, in the sense that strings over Σ can be easily encoded into strings over Γ and vice versa. How much can the length of a string change in your encoding? (I.e., if the length of a string $w \in \Sigma^*$ is |w| = n symbols, what is the length of the corresponding string $w' \in \Gamma^*$?) Could you design a similar encoding if the target alphabet consisted of only *one* symbol, e.g. $\Gamma = \{1\}$?
- 5. Design finite automata that recognise the following languages:
 - (a) $\{a^m b^n \mid m = n \mod 3\};$
 - (b) $\{w \in \{a, b\}^* \mid w \text{ contains equally many } a$'s and b's, modulo 3 $\}$.

(The notation " $m = n \mod 3$ " means that the numbers m and n yield the same remainder when divided by three.)

6. Design a finite automaton that recognises sequences of integers separated by plus and minus signs (e.g. 11+20-9, -5+8). Implement your automaton as a computer program that also calculates the numerical value of the input expression.