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0.1 Li
en
eCopyright 

1998-2000 Tommi Syrj�anen tommi.syrjanen�hut.�This program is free software; you 
an redistribute it and/or modify it underthe terms of the GNU General Publi
 Li
ense as published by the Free SoftwareFoundation; either version 2 of the Li
ense, or (at your option) any later version.This program is distributed in the hope that it will be useful, but WITHOUTANY WARRANTY; without even the implied warranty of MERCHANTABIL-ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU GeneralPubli
 Li
ense for more details.You should have re
eived a 
opy of the GNU General Publi
 Li
ense alongwith this program; if not, write to the Free Software Foundation, In
., 59 TemplePla
e - Suite 330, Boston, MA 02111-1307, USA.
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0.2 Re
ent ChangesThis se
tion gives qui
k overview on re
ent 
hanges that are made in the a
-
epted language. The more detailed version notes are 
ontained in �le NEWSin the distribution dire
tory.Lparse-1.0.3
ontains several 
hanges. The most important is that the de�nition ofdomain predi
ates extended to 
over strati�ed rules. See Se
tion 4.4 fordetails. Se
ond, there's now an alternative syntax for de
larations wherethe keywords are pre
eded by the 
hara
ter #. Two new de
larations,#option and #domain were added (see Se
tion 5.5).Lparse-1.0.1added a new internal fun
tion. The 
all `weight(a(X))' returns the weightof the literal a(X).Lparse-0.99.61adjusted the weight de
larations a little bit so that now negative liter-als are defaulted to positive ones if there are no expli
it de
larations forthem. This behavior 
an be turned o� with the 
ommand line argument`--separate-weight-definitions'.Lparse-0.99.60
hanged the behavior of weight de
larations so that now positive andnegative literals are di�erentiated. For example,weight a = 5.weight not a = 10.assigns di�erent weights for a and not a.The default behavior of quoted strings also 
hanged and now quotes arealways retained and a and "a" are di�erent atoms. The old behavior 
anbe a

essed with the `--drop-quotes' 
ommand line argument.Lparse-0.99.58allows expressions to be used in a more intuitive way inside 
onstraint andweight literals. For example, in a rulea(X,Y) :- 1 X + Y == 0, Y < X 1,foo(X,Y).the atom a(X,Y) is true when exa
tly one of the expressions evaluate totrue.Additionally, an empty 
onditional literal is now treated as an unsatis�edliteral in all 
ases.
2



0.3 NotationThe parts of this manual that are 
hanged in the 
urrent manual version aredenoted by putting a 
ontinous bla
k line in the left margin, as in this paragraph.Similarily, 
hanges that have happened re
ently are denoted by a dashed linein the left margin.Similarily, 
hanges that have happened re
ently are denotedby a dashed line in the left margin.
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Chapter 1Introdu
tionSmodels is a system for answer set programming. It 
onsists of smodels, an ef-�
ient implementation of the stable model semanti
s for normal logi
 programs,and lparse, a front-end that transforms user programs into form that smodelsunderstands.Answer set programming [6, 10℄ is a programming paradigm 
ompletely dif-ferent from traditional pro
edural programming. Instead of writing algorithmsto solve a problem in hand, the programmer des
ribes the problem using aformal language and an underlying engine �nds a solution to the problem.Smodels programs are written using standard (though extended) logi
 pro-gramming notation. That is, the programs are 
omposed of atoms and inferen
erules. An atom represents a 
laim about the problem universe and it may betrue or false. Inferen
e rules are used to en
ode relationships between atoms.An answer to a problem is a set of atoms, 
alled a stable model, that tell whi
hatoms are true.A Smodels program may have one, none, or many stable models. Thestable models of a program may be seen as a set of rational beliefs about theprogram. That is, if we think that a program is a knowledge base en
odingthe relationships between obje
ts and a stable model is a set of those thingsin our universe that we believe to be true, then our beliefs are 
onsistent andwell-founded. Consisten
y means that we don't believe in two 
ontradi
tionarythings and well-foundedness means that we have some reason for our belief. Wedon't want to believe that the Moon is made of green 
heese unless somebodygives a 
oherent theory that explains why Moon is a
tually a big dairy produ
t.For formal de�nition of the stable model semanti
s see Se
tion 4.2.Smodels has two parts, smodels and lparse1. The �rst part, smodels, isthe a
tual logi
 programming engine doing all the hard work and lparse justadds a layer of synta
ti
 sugar on top of it. The smodels has been developedin the Laboratory for Theoreti
al Computer S
ien
e in Helsinki University ofTe
hnology by Patrik Simons [13, 8, 11, 14, 12, 15, 9, 10℄ and the lparse has1A
tually, in Se
tion 1.4 we see that there are also other front-ends in addition to lparse.4



been developed by Tommi Syrj�anen [19℄.The newest versions of smodels, lparse, and this do
ument are availableat http://www.t
s.hut.fi/Software/smodels.1.1 Short Primer on Logi
 ProgrammingThis se
tion has a really short primer on the subje
t of logi
 programming ingeneral. It is aimed for readers who have no prior experien
e on logi
 pro-gramming. For an extensive treatment on the traditional logi
 programmingte
hniques, you should 
onsult The Art of Prolog by Sterling and Shapiro [18℄.There are basi
ally four kinds of things in logi
 programming languages:atoms, 
onstants, variables, and rules. They are presented here rather infor-mally. For formal stu�, see Chapter 4.ConstantConstants are the individual things that exists in the universe of theproblem domain. Constants are either numbers or symboli
 
onstants. Inmost logi
 programming languages the initial letter of a 
onstant is writtenin lower 
ase.Few examples of 
onstants: a, 10, foo, bar.VariableVariables are used to generalize things. Unlike traditional programminglanguage, you don't usually assign a value to a variable dire
tly. Instead,the underlying engine �nds the 
orre
t values (or substitutes 
onstants inpla
e of the variables) for them.Variables start with a 
apital letter, like in: X, Foo, Bar.AtomAn atom 
onsists of a predi
ate symbol that is followed by a parenthesizedlist of 
onstants or variables. Atoms are used to express relationshipsbetween 
onstants. For example, an atom parent(john; jill) might tell usthat John is Jill's parent. An atom has two possible truth values, true andfalse.Rule Rules allow us to make inferen
es based on the predi
ates. For example,a rule: sibling(X,Y) :- parent(Z,X), parent(Z,Y).would tell us that if X and Y both have the same parent Z, then theyare siblings. Rules are 
omposed of two parts: the head (part to the leftof `:-') and the body (right to `:-').5



The idea here is that if every atom in the body (or tail as it is alsooften 
alled) is true, the head must also be true. So if there is someway to substitute 
onstants for the variables X , Y , and Z su
h that bothparent(Z;X) and parent(Z; Y ) are true, we 
an infer that sibling(X;Y )is also true.In 
lassi
 logi
 programming languages (like Prolog), the inferen
es are usu-ally made top-down. That is, we give some atom as a query string, and thesystem tries to �nd a way to make it true.For example, if we were interested in �nding out whether Ja
k is Jill's sibling,we would issue a query (
alled a goal) sibling(ja
k; jill)? The system wouldthen s
an through the rules until it �nds some rule whi
h has the predi
atesibling as its head. After �nding the rule presented above, the system wouldsubstitute ja
k for the variable X (denoted: X=ja
k) and jill for Y (Y=jill).Now the system has established that Ja
k and Jill are siblings if there existssome Z that is parent of both of them. Next, the system would issue a new query(
alled a subgoal) parent(Z; ja
k) in order to �nd the parent of Ja
k. Supposethat Joan is Ja
k's mother. Then the subgoal su

eeds and the systems �ndsthe substitution Z=joan.The system will then 
he
k whether Joan is also Jill's mother by issuing thequery parent(joan; jill). If the query su

eeds, the system answers yes to ouroriginal question (sibling(ja
k; jill)?). If Joan is not Jill's mother, the queryfails and the logi
 programming engine ba
ktra
ks and tries to �nd anothersubstitution for Z. If no su
h substitutions 
an be found, the systems answersno to our question. If there are more than one rule for a predi
ate, the rules aretried in order. If one fails, the next one is 
he
ked.Quite often the logi
 programs 
an be divided into two parts: a set of infer-en
e rules and a database of fa
ts for the rules to make inferen
es with.For example, the following program en
odes a simple family database.Program 1.1sibling(X,Y) :- parent(Z,X), parent(Z,Y).mother(X,Y) :- parent(X,Y), female(X).un
le(X,Y) :- parent(Z, Y), sibling(Z,X), male(X).female(joan). female(jill). male(ja
k).parent(joan, ja
k). parent(joan, jill).1.2 Stable Model Basi
sTraditional logi
 programming systems are query-driven. That is, you enter aquestion and the system then tries to �nd an answer to it. At any point onlythose variables that are somehow involved in the query have values binded tothem.Smodels works in a di�erent way. In the �rst phase all variables are removedfrom the program by substituting all possible values for them in all rules. This6



phase is 
alled grounding (see Se
tion 4.3) and it's the lparse's job. In the nextphase smodels 
omputes the stable models of the program.A model is a set of atoms that satis�es every rule in the program. A rule issatis�ed if either its head is true in the model or some literal in the rule bodyis false. A model is stable when it meets some other requirements, that areformalized in Se
tion 4.2. Informally, a model is stable if every atom in it hassome \reason" to be there: for ea
h atom in the model there has to be somerule that has the atom as a head su
h that the rule body is true in the model.As a simple example of what stable models are about, 
onsider the followingprogram segment that 
ould represent a part of a PC 
on�guration system:Program 1.2ide drive :- hard drive, not s
si drive.s
si drive :- hard drive, not ide drive.s
si 
ontroller :- s
si drive.hard drive.Here the �rst rule says that if we have a hard drive in our 
omputer and wedon't have a s
si drive, we must have an ide drive in it. The next rule says thesame thing about s
si drive: if we have a hard drive that is not an ide drive,it has to be a s
si drive. The third rule states that if we have a s
si drive inthe 
omputer, we must also in
lude a s
si 
ontroller in it. The last rule is afa
t that tells that our 
omputer has a hard drive in it.This program has two stable models. The �rst one is:M1 = fhard drive; ide drivegand the se
ond one is:M2 = fhard drive; s
si drive; s
si 
ontrollerg:The �rst two rules of the program represent a 
hoi
e point: if we have a harddrive in the 
omputer, we must 
hoose between an ide-drive and a s
si-drive.If we add s
si 
ontroller to the �rst stable model the resulting set of atomsis still a model of the program in the propositional sense but it is no longer astable model. That is be
ause s
si 
ontroller is needed only when s
si drive ispresent, and when it is missing there is no reason to add s
si 
ontroller in themodel.The semanti
s of ordinary rules mat
hes that of logi
al impli
ation: if thebody is true, the head must also be true. In the program above, we used re-
ursive not-atoms to model a 
hoi
e. The following program segment illustratesfurther this pra
ti
e:a :- not b.b :- not a.If b is not true, then amust be true and vi
e versa. However, this 
onstru
tionis not ex
lusive or of the atoms, sin
e it is possible that some other part of theprogram for
es both a and b to be true. To get XOR one should add a rule ofthe form: 7



UserProgram lparse
Answer smodels

a:-not b.b:-not a 1 1 1 1 21 2 1 1 101 b1 aAnswer: 1Stable model: aAnswer: 2Stable model: bFigure 1.1: The way of a logi
 program:- a, b.to the program. Rules without heads a
t as integrity 
onstraints; if a bodyof su
h a rule is satis�ed, the model 
andidate is reje
ted.1.3 A Pra
ti
al ExampleThe basi
 
on
epts are introdu
ed here by using the node 
oloring problemas an example. In a node 
oloring instan
e we are given a set of nodes and aset of edges that 
onne
t the nodes. The problem is to use some �xed numberof 
olors to 
olor ea
h node so that two adja
ent nodes don't have same 
olor.In this example we use three 
olors: red, blue, and yellow.As this example uses only basi
 rules, it is quite long. In Chapter 6 we seehow the extended rules 
an be used to en
ode this problem using only two rules.The node 
oloring 
an be implemented with the following program.Program 1.3
olor(red). 
olor(blue). 
olor(yellow).
ol(X,red) :- node(X), not 
ol(X, blue), not 
ol(X,yellow).
ol(X,blue) :- node(X), not 
ol(X, red), not 
ol(X,yellow).
ol(X,yellow) :- node(X), not 
ol(X, blue), not 
ol(X,red).fail :- edge(X,Y), 
olor(C), 
ol(X,C), 
ol(Y,C).node(a). node(b).node(
). node(d).edge(a,b). edge(b,
).edge(
,d). edge(d,a).
ompute 1 f not fail g. 8



a b
dFigure 1.2: The graph of Program 1.3The �rst line:
olor(red). 
olor(blue). 
olor(yellow).de�nes the 
olors we are allowed to use. The predi
ate 
olor is de�ned insu
h way that it 
an be used as a domain predi
ate (see Se
tion 4.4) later inthe program.The rule,
ol(X,red) :- node(X), not 
ol(X, blue), not 
ol(X,yellow).states that if a node is not blue and it is not yellow, then the node has to bered. The next two rules are otherwise identi
al but they are for 
olors blue andyellow. Here the predi
ate node(X) a
ts as a domain predi
ate that enumeratesthe possible values of the variable X .The rulefail :- edge(X,Y), 
olor(C), 
ol(X,C), 
ol(Y,C).ensures that neighbouring nodes have di�erent 
olors. The atom fail is trueexa
tly when two 
onne
ted nodes have the same 
olor. Later we for
e smodelsto sear
h for only models where fail is not true. Here the predi
ate node isnot needed to give domain for node variables X and Y be
ause edge is also adomain predi
ate.The next part of the program:node(a). node(b).node(
). node(d).edge(a,b). edge(b,
).edge(
,d). edge(d,a).de�nes a simple graph with four nodes and four edges. This graph is shownin Figure 1.2. Usually, the graph is stored in another �le so that we don't haveto dupli
ate the inferen
e rules for ea
h graph.The last line of the program:
ompute 1 f not fail g.tells smodels that we want only one model and that the atom fail may notbe in the model. This rules out all models where two adja
ent nodes have thesame 
olor.The atom fail is used to signal that something is wrong with the model,namely that two adja
ent nodes have the same 
olor. Later in the program wedemand that fail may not be true in any stable model of the program.The same e�e
t 
ould be a
hieved by using 
onstru
tion:9



a b
dyellow blue
blue redFigure 1.3: An answer of Program 1.3:- edge(X,Y), 
olor(C), 
ol(X,C), 
ol(Y,C).Rules with empty heads work as 
onstraints on the models of the program. Ifa variable binding makes the the body of the rule true, the binding is dis
ardedas there's no way to satisfy its head.The 
ode of the node 
oloring example is stored in dire
tory examplesas 
olor1.lp of the lparse distriburion. The example graph is in the samedire
tory as graph1.The pro
ess of running this program through smodels would look like:% lparse 
olor1.lp graph1 | smodelssmodels version 2.10. Reading...doneAnswer: 1Stable Model: edge(d,a) edge(
,d) edge(a,b) edge(b,
)node(a) node(d) node(
) node(b) 
ol(a,yellow) 
ol(
,red)
ol(d,blue) 
ol(b,blue) 
olor(yellow) 
olor(red) 
olor(blue)TrueDuration: 0.030Number of 
hoi
e points: 3Number of wrong 
hoi
es: 0Number of atoms: 24Number of rules: 35Number of pi
ked atoms: 45Number of for
ed atoms: 0Number of truth assignments: 152Size of sear
hspa
e (removed): 12 (0)As the �rst line of output, smodels prints its version information. The nextlines give the �rst model found. In the model nodes d and b are 
olored blue,node a is yellow and node 
 is red. The answer is also shown in Figure 1.3.The word true below the model tells that there may be also other models,but smodels didn't 
ompute them2. If there are no models left, the line readsfalse. The same message is also displayed when the program has no models atall. The rest of the lines give some statisti
s about your program. The duration2It's possible that there are no more models, but smodels reports true always when thewhole sear
h spa
e is not explored. 10



tells how long the sear
h took in se
onds.The number of 
hoi
e points tell how many times smodels had to guess atruth value for a ground atom. This time smodels guessed the 
orre
t valuefor ea
h atom (number of wrong 
hoi
es is zero) and thus it didn't have toba
ktra
k.The next lines tell that there were a total of 24 atoms and 35 rules in thegrounded program (the original had four non-ground rules, 11 fa
ts, and 12atoms). In general, the number of 
hoi
e points is more important than thenumber of rules or atoms when we want to 
ompare 
omplexities of problems.The rest of the lines show how the smodels heuristi
s worked for this pro-gram. The number of pi
ked atoms tell how many times smodels lookaheadheuristi
s managed to pi
k a truth value to an atom. The number of for
edatoms tell how many atoms were added to the model be
ause their negationwould have 
aused a 
ontradi
tion. The number of truth assignments tells howmany times smodels assigned a truth value to an atom.The size of sear
hspa
e tells the maximum number of 
hoi
es we may haveto do before we 
an be 
ertain whether a model exists or not. In this examplethe size of the sear
h spa
e is half the number of atoms, sin
e the eleven domainpredi
ates are always true and the truth value of fail depends dire
tly on thevalues of the 
olor predi
ates.It is often useful to be able to see what exa
tly is output from lparse. This
an be a

omplished by using the -t 
ommand line argument:% lparse -t 
olor1.lp graph1edge(d,a).edge(
,d).edge(a,b).edge(b,
).node(a).node(d).node(
).node(b).fail :- 
ol(d,yellow), 
ol(a,yellow).fail :- 
ol(
,yellow), 
ol(d,yellow).fail :- 
ol(a,yellow), 
ol(b,yellow).[24 further output lines snipped℄
ompute 1 f not fail gAt the beginning of this program the domain predi
ates are output just likethey were entered in the input program. The next three lines de�ne three ofthe 
ases where the 
onstraints of the problem instan
e are broken be
ause twoneighboring nodes have the same 
olor.1.4 Di�erent Smodels Front-EndsCurrently, there is a host of di�erent front-ends to smodels:11



1. lparse is the most feature-ri
h of the di�erent parsers and front endsand it is the default one you should use when you are writing Smodelsprograms.2. smodels API is a library interfa
e that allows you to 
all the smodelspro
edure from any C++ program. Currently, there is no single do
u-ment that explains the API but the example dire
tory of the smodelsdistribution 
ontains four examples on using it.3. parse is the original parser of smodels. It produ
es only smodels 1.xoutput, and is now outdated.4. pparse (\primitive parser") is a simple parser that produ
es smodels 2.xoutput but it a

epts only ground programs. Its syntax for extended rulesis di�erent from lparse's syntax.5. m
smodels (\model 
he
king smodels") is a deadlo
k and rea
hability
he
ker that 
an be used to verify 1-safe Petri nets [4℄. It is writtenby Keijo Heljanko and it is available athttp://www.t
s.hut.fi/ kepa/tools/6. dlsmodels is an older version of m
smodels whi
h only dete
ts deadlo
ks.It is available at same pla
e as m
smodels.

12



Chapter 2InstallationLparse 
omes now with an installation s
ript 
onfigure that should make theinstallation easier. The pro
edure to follow is:1. 
d to the dire
tory 
ontaining lparse sour
e 
ode and type ./
onfigureto 
on�gure lparse for your system.2. Type make to 
ompile the binaries.3. Type make install to install lparse.4. If you want to remove the obje
t �les from the sour
e 
ode dire
tory youmay type make 
lean to do it.By default, lparse is installed to the dire
tory /usr/lo
al/bin. You may
hange the dire
tory by giving 
onfigure the option --prefix=path .There is a suite of Smodels programs that 
an be used to 
he
k that lparseis fun
tioning 
orre
tly. Currently, it is not yet 
omplete, but I'll expand itsfun
tionality in forth
oming lparse releases.The test programs are stored in dire
tory tests and the expe
ted resultsare in dire
tory tests/results. There is a perl s
ript test all that performsall tests and reports any errors. The tests 
an be also run with make 
he
k
ommand.As a se
urity issue, you should never run lparse with setuid bit set. Itis possible to 
all user-de�ned C/C++-fun
tions from Smodels programs (seeSe
tion 5.7.3) and if the setuid bit is on, a mali
ious adversary 
an run basi
allyanything with the permissions of the owner of lparse.2.1 Installation on Windows systemsLparse has been su

esfully 
ompiled on the Mi
rosoft Windows 95/98 systemswith Borland C++ version 5.5. It may 
ompile also with other 
ompilers andother Windows versions but that hasn't been tested. If you have the GNU13



programming tools installed on the system, you 
an follow the dire
tions in theprevious se
tion, otherwise ensure that your 
ompiler is 
orre
tly installed and
on�gured and issue the following 
ommands to the 
ommand prompt:1. setup.bat2. 
d sr
3. makeThe 
ommand setup.bat 
opies the Windows 
on�guration �le to the 
or-re
t pla
e and 
reates the make�le. The 
ommand make 
reates the a
tualexe
utable lparse.exe in the sr
 dire
tory of the distribution and it may thenbe 
opied to the desired pla
e. A pre
ompiled Windows 98 binary is available atthe lparse homepage http://www.t
s.hut.fi/Software/smodels/lparse.
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Chapter 3Invoking LparseThe 
ommand line synopsis of lparse is as follows:Usage: lparse [-1℄ [-
 
onst=number℄[-d all | fa
ts | positive | none℄[-D℄ [-g file℄ [-i℄ [-n number℄[-r [1 | 2 | 3℄℄ [-t℄ [-v℄ [-w n ℄[-W warning℄ [--dlp℄ [--atom-file file℄[--allow-in
onsistent-answers℄[--drop-quotes℄ [--partial℄[--separate-weight-definitions℄[--true-negation℄ [--version℄�le1 �le2 : : :The meanings of the options will be detailed in Se
tion 3.1. Meanwhile, therest of this se
tion shows how lparse is most often used in pra
tise.Lparse is used as a front end to smodels. The usual way to do this is topipe the output of lparse dire
tly to smodels:% lparse input file1 input file2 | smodelsIt is also possible to output the ground program in plain text, using theoption -t:% lparse-t input fileIf the logi
 program has some varying integer parameter, its value 
an beentered from 
ommand line with the option -
:% lparse -
 parameter=value input fileBy default the output �le format is for smodels 2.x, but it is also possibleto output smodels 1.x format by using the option -1. Note that there are onlyfew (if any) reasons to use smodels version 1.x as smodels 2.x 
an do anythingthat version 1.x 
an do and it's mu
h better doing it.
15



3.1 Lparse OptionsThe available options are:-1 Use smodels 1.x output format.-
 
onst=nDe�ne the identi�er 
onst to be a numeri
 
onstant with the value n. Thisde�nition overrides any 
onst statements for n in the program.-d all | fa
ts | positive | noneControl whi
h domain predi
ates are emitted. The default is fa
ts.� all: All domain literals are emitted. Rules with unsatis�able nega-tive literals in their bodies are not removed.� fa
ts: All domain predi
ates in the rule bodies are dropped fromoutput.� none: All domain literals are dropped.� positive: Negative domain literals in the rule bodies are dropped.-D Debug lparse data stru
tures. With this option lparse 
reates reallysmall internal storage tables so that their behavior 
an be tested moreeasily. Not re
ommended for normal use.-g fileRead a previously grounded �le to memory before grounding the program.This is useful when you don't want to ground the full program ea
h time.See Se
tion 7.4 for more details.-i Disable the internal fun
tions.-n n Set the desired number of models to n. This overrides any 
ompute-statements in the program.-r [1|2|3℄Enable the regular model extension (see Se
tion 4.8.2 for details). Theoptional numeri
 parameter is used to 
ontrol what integrity 
onstraintsare emitted.-t Print output as text.-v Print lparse version information16



-w n Set the default weight of literals to n. If this option is not given, thedefault weight will be 1.-W warningControl the warnings emitted by lparse. Possible values are: all, arity,extended, library, unsat, weight, syntax, typo, and error. For adetailed explanation, see Se
tion 7.3.--atom-file fileOutput the symbol table of the grounded program to �le. See Se
tion 7.4.4for more details.--allow-in
onsistent-answersEnables the 
lassi
al negation extension and additionally reports also in-
onsistent answer sets. See Se
tion 4.7 for details.--dlpUse disjun
tive logi
 programming semanti
s with 
hoi
e rules. For de-tails, see Se
tion 4.8.1.--drop-quotesRemove quotation marks from strings when possible. For example "a"be
omes a but "123" doesn't 
hange.--partialEnables the partial model extension. This swit
h is identi
al in behaviorto -r 2.--separate-weight-definitionsDo not default the weight of a negative literal to the weight of a positiveone.--true-negationEnables the 
lassi
al negation extension. See Se
tion 4.7 for details.3.2 Smodels OptionsThese options are 
urrent for smodels version 2.25.Usage: smodels [number℄ [-w℄ [-nolookahead℄ [-ba
kjump℄[-randomize℄ [-internal℄ [-tries number℄[-
onfli
ts number℄ [-seed number℄The �rst number determines the number of stable models to be 
omputed.A zero indi
ates all.-ba
kjumpAllow ba
ktra
k to jump over several 
hoi
e points.17



-nolookaheadDo not use lookahead at all.-sloppy heuristi
Use redu
ed lookahead heuristi
s. This may speed smodels if the programhas an "easy" stru
ture.-randomizeMake a randomized but 
omplete sear
h.-internalSimplify the program and print it out in an internal form.-w Compute only the well-founded model of the program.-tries numberDo a sto
hasti
 random sear
h for number times. This method is not
omplete.-
onfli
ts numberWhen doing a sto
hasti
 sear
h, stop when number 
on
i
ts are found.-seed numberUse number as the seed for random parts of 
omputation.

18



Chapter 4Theoreti
al Stu�This 
hapter dis
usses the theoreti
al foundation of Smodels so it shouldn'tsurprise anybody that the material in this 
hapter is quite theoreti
al. The onlythings that are really ne
essary to know while using lparse are the informalparts of Se
tion 4.4 (pages 25{27).If the presentation seems to be too heavy on �rst reading, feel free to skipto the start of next 
hapter on page 381.4.1 Basi
 TerminologyAn atom is of the form p(a1; : : : ; an) where p is a n-ary predi
ate symbol anda1, : : : , an (n � 0) are terms. A term may be either a variable, a 
onstant, ora fun
tion f(t1; : : : ; tm) where t1, : : : , tm are terms. An atom (or a fun
tion)with no variables is 
alled a ground atom (fun
tion).A literal is either an atom a or its negation not a. Literals of the form not aare 
alled not-atoms or negative literals .A rule is of the form h l1; : : : ; ln : (4.1)where the rule head h is an atom and literals l1, : : : , ln (n � 0) form the rulebody2 If the rule body is empty (n = 0), the rule is 
alled a fa
t. A rule is 
alleda Horn rule if it doesn't have any negative literals. A normal logi
 program isa set of rules.The rules of the form (4.1) are 
alled basi
 rules . Lparse also supports anumber of extended rule types. However, for a while we 
onsider only basi
rules and the extensions are presented in Se
tion 4.6.The Herbrand universe of a logi
 program is the set of all ground terms that
an be 
onstru
ted using fun
tion symbols and 
onstants in that program. TheHerbrand base HB of a logi
 program is the set of all ground atoms that 
an1Of 
ourse, after reading the informal parts.2also 
alled the rule tail. 19



be 
onstru
ted using the predi
ates in the program and terms in the Herbranduniverse.For example, in a programProgram 4.1d(a). d(b).foo(X) :- not bar(X).bar(X) :- not foo(X).the Herbrand universe is fa; bg (these two 
onstants are the only ground termsof the program), and the Herbrand base is ffoo(a); foo(b); bar(a); bar(b)g.An instan
e of an atom, a literal, a rule, or a fun
tion is 
onstru
ted byrepla
ing all variables in it by ground terms. The Herbrand instantiation of aprogram is the set of all ground instan
es of the rules of the program that maybe 
onstru
ted using terms in the Herbrand universe of the program.For example, the Herbrand instantiation of the Program 4.1 is:Program 4.2d(a). d(b).foo(a) :- not bar(a).foo(b) :- not bar(b).bar(a) :- not foo(a).bar(b) :- not foo(b).An interpretation I of a logi
 program is a subset of its Herbrand base. Aninterpretation assigns a truth valuation V(a) to ea
h element of the base. If anatom a is in the interpretation, its valuation V(a) = true in the interpretation,otherwise V(a) = false. An extension Ep of a predi
ate p is the setEp = fa j V(a) = true and the predi
ate symbol of a is pg : (4.2)An atom a is satis�ed by an interpretation if its valuation is true. A not-atom not a is satis�ed if the valuation of a is false. A basi
 rule is satis�ed ifeither at least one of its body literals is not satis�ed by the interpretation or ifits head is satis�ed.If an interpretation satis�es every rule in the Herbrand instantiation of aprogram, it is a (Herbrand) model of the program.Example 4.1An interpretation I = fd(a); d(b); foo(a); bar(b)g is a model of Program 4.1be
ause all rules of Program 4.2 are satis�ed:Rules d(a); d(b); foo(a) :- not bar(a); and bar(b) :- not foo(b)are satis�ed be
ause their heads are in the model. The rule foo(b) :-not bar(b) is satis�ed be
ause not bar(b) is not satis�ed. �A model is minimal if no proper subset of it is also a model. An old theoremby M.H. van Emden and R.A. Kowalski [20℄ states that a logi
 program without20



negative literals has a unique minimal Herbrand model that is 
alled themeaningof the program. The minimal model M of a program P 
an be found by usingthe Knaster-Tarski operator TP whereTP (M) = fh j h l1; : : : ; ln is a rule in theprogram and l1; : : : ; ln 2Mg (4.3)We 
an 
onstru
t the minimal model by starting with an empty set and applyingthe TP operator until a �xed point is found.Example 4.2Suppose that the Herbrand instantiation of a program isa. b.
 :- a.d :- 
, b.e :- f.Then the minimal model is found in following steps:1. Initially, M = ;. Now 
, d, and e 
annot be added to the model sin
etheir bodies are not in the partial model. However, sin
e the bodiesof �rst two rules are empty, they may be added to it to get a partialmodel M = fa; bg.2. Now the body of the rule for 
 is in the partial model, so 
 is addedto the partial model and the resulting partial model M = fa; b; 
g.3. Be
ause both 
 and b are in the partial model, d must be added toit also, and M = fa; b; 
; dg.4. There are no more rules with true bodies that 
an be added to themodel, so the meaning of this program is M = fa; b; 
; dg. �4.2 Stable Model Semanti
sThe 
on
ept of meaning that was de�ned above doesn't generalize ni
ely tologi
 programs with negations and something else is needed. The stable modelsemanti
s [2℄ for a ground logi
 program P is de�ned in the following way:Let M be any set of atoms from P . The redu
t PM of the program withrespe
t to M is obtained by deleting from P1. ea
h rule that has a negative literal not a in its body when a belongs toM ; and2. all negative literals in the bodies of remaining rules.21



As PM is negation-free, it has a unique minimal Herbrand model. If thismodel 
oin
ides with M , then M is a stable model of the program P .The intuitive explanation of the redu
t is that if we believe that M is theset of all true ground atoms of the program, then any rule that depends on aliteral not b when b is true 
annot be used in dedu
tion and may be dis
arded.Also, every literal not b is trivially satis�ed if b is false and 
an be dis
arded. IfM is the set of atoms that follow logi
ally from PM , we 
an say that our beliefwas 
onsistent and \rational".Example 4.3Consider the program P :a :- not b.b :- not a.The program has two stable models, M1 = fag andM2 = fbg. We 
an seethat M1 is a stable model by �rst taking the redu
t to get the programPM : a.As the only remaining rule has an empty body, the minimal model of theprogram is fag that is the same set that we started with. The other stablemodel 
omes similarly.In propositional logi
 this program has also third model, fa; bg but thismodel is not stable, as its redu
t is empty so the minimal model of theredu
t is also empty, not fa; bg. �All stable models are justi�ed in the sense that every atom in a model has tohave some reason to be in there; if an atom is in a model, there has to be a rulesu
h that the atom o

urs at the head of it and all body literals are satis�ed.The third model in the above example was not justi�ed be
ause both rules hadunsatis�ed bodies.The set of stable models for a non-ground logi
 program is de�ned to be theset of stable models of the Herbrand instantiation of the program.4.3 GroundingA grounding transforms a normal logi
 program into an equivalent ground logi
programwhere the equivalen
e is de�ned as having the same set of stable models.A grounding is lo
al if it is possible to do the grounding one rule at a time. Avariable binding is a substitution that maps a subset of variables of a rule intoground terms.In the previous se
tion we de�ned the set of stable models of a generalprogram to be the set of stable models of its Herbrand instantiation. Why not22



use it dire
tly? The answer is that in pra
ti
e it is not possible to generate allHerbrand instan
es of a given logi
 program be
ause the size of the Herbrandinstantiation is pra
ti
ally always exponential with respe
t to the size of theoriginal problem.Usually most of the rules in the Herbrand instantiation have unsatis�ablebodies and they may be dis
arded without a�e
ting the set of stable models.Consider the following program:Program 4.3d(a). e(b). e(
).foo(X) :- d(X), not bar(X).bar(X) :- d(X), not foo(X).In the Herbrand instantiation of the program, the last two rules are both instan-tiated for ea
h of the three 
onstants of the program. The 
omplete instantiationis:Program 4.4d(a). e(b). e(
).foo(a) :- d(a), not bar(a).foo(b) :- d(b), not bar(b).foo(
) :- d(
), not bar(
).bar(a) :- d(a), not foo(a).bar(b) :- d(b), not foo(b).bar(
) :- d(
), not foo(
).It is not possible to dedu
e atoms d(b) and d(
) in the Program 4.4 and anyrule that depends on either of them 
annot have its body true. Those rules
an be dis
arded without a�e
ting stable models. In e�e
t, the program 
an beshortened to:Program 4.5d(a). e(b). e(
).foo(a) :- d(a), not bar(a).bar(a) :- d(a), not foo(a).The 
ru
ial question now is, how do we know whi
h rules 
an be droppedout? Lparse does the job by dividing the predi
ates into two 
lasses, domain andnon-domain predi
ates. The intuition is su
h that the non-domain predi
atesare the ones that we are interested in and domain predi
ates just give all possiblevariable bindings.Informally domain predi
ates are the predi
ates that are not de�ned usingnegative re
ursion.In Program 4.3 predi
ates d and e are domain predi
ates, while foo and barare not sin
e they depend re
ursively on ea
h other. The re
ursion is negativesin
e there are the two nots in the rules. There is a longer dis
ussion on domainpredi
ates in the next se
tion. 23



4.4 Domain Predi
atesIn beginning of this se
tion the notion of domain predi
ates is introdu
ed quiteinformally and the formal de�nitions are in Se
tion 4.4.4. There are also sometips on how to 
onstru
t domains using relational algebra in Se
tion 4.4.3.4.4.1 What's New?NOTE THAT THEDEFINITION OF DOMAIN PREDICATES HASCHANGED IN LPARSE-1.0.3. I HAVEN'T HAD TIME TO DOCU-MENT THE NEW FORMAL DEFINITION BUT IT WILL COMESOON. MEANWHILE, HERE IS A BRIEF AND HIGHLY INFOR-MAL DESCRIPTION ABOUT THENEWDOMAIN PREDICATES.In lparse the grounding is done using domain predi
ates. Previously, apredi
ate was a domain predi
ate exa
tly when it didn't have re
ursion in itsde�nition. Now a domain predi
ate 
an be de�ned via positive re
ursion.The main idea is that a hierar
hy is 
reated from the predi
ate symbolswhere a predi
ate P is on higher level than the predi
ate Q if P depends on Q.The a
tual de�nition is a little quirkier sin
e we want that two predi
ates thatdepend positively on ea
h other may be in the same level. If two predi
atesdepend negatively on ea
h other, they will be assigned to the highest level ofthe hierar
hy, as well as all predi
ates that depend on them.A predi
ate that is not on the highest layer (
alled !-layer is a domainpredi
ate). The extended domain restri
tion 
ondition states that all variablesthat o

ur in a rule have to o

ur in some positive literal that is on lower levelthan the rule head.For example, 
onsider the program:Program 4.6number(0..n).odd(X+1) :- number(X), even(X).even(X+1) :- number(X), odd(X).even(0).two divides(X) :- odd(X).interesting(X) :- number(X), not dull(X).dull(X) :- number(X), not interesting(X).interesting odd(X) :- odd(X), interesting(X).In this program all predi
ates ex
ept dull, interesting, and interesting oddare domain predi
ates. The predi
ates dull and interesting depend on ea
hother negatively and interesting odd depends on interesting. The dependen
ygraph of the program is shown in Figure 4.1 and its strati�
ation in Figure 4.2.The predi
ate hierar
hy is 
onstru
ted using the following rules:1. If P depends on Q and Q doesn't depend on P , then P > Q;2. If P depends positively on Q and Q depends positively on P , then P = Q;24



two dividesoddeven
interesting oddinterestingnumber dull positivenegative

Figure 4.1: The dependen
y graph of the program (4.6).numbereven oddtwo dividesinteresting dullinteresting odd
012!Figure 4.2: The predi
ate hierar
hy of Program 4.63. If P and Q depend on ea
h other and there is a negative edge in theirdependen
y 
y
le, then P = Q = !.A more formal de�nition will 
ome in this manual pretty soon.4.4.2 Informal DomainsLparse divides the predi
ate symbols of a logi
 program into two 
lasses, domainand non-domain predi
ates. The domain predi
ates are used to �nd all possiblevariable bindings of rules during the grounding.For example, in the programProgram 4.7d(a,b). d(b,
). d(
,a).foo(X,Y,Z) :- d(X,Y), d(Y,Z), not bar(X,Y,Z).bar(X,Y,Z) :- d(X,Y), d(Y,Z), not foo(X,Y,Z).the predi
ate d=2 is the only domain predi
ate. When grounding the rules forfoo and bar, lparse gets the possible variable bindings from literals d(X;Y )and d(Y; Z). 25



In this program there are three possible variable bindings for the two non-ground rules:1. fX=a; Y=b; Z=
g, from d(a; b) and d(b; 
).2. fX=b; Y=
; Z=ag, from d(b; 
) and d(
; a).3. fX=
; Y=a; Z=bg, from d(
; a) and d(a; b).Thus, the resulting ground program will be:Program 4.8d(a,b). d(b,
). d(
,a).foo(a,b,
) :- d(a,b), d(b,
), not bar(a,b,
).foo(b,
,a) :- d(b,
), d(
,a), not bar(b,
,a).foo(b,
,a) :- d(b,
), d(
,a), not bar(
,a,b).bar(a,b,
) :- d(a,b), d(b,
), not foo(a,b,
).bar(b,
,a) :- d(b,
), d(
,a), not foo(b,
,a).bar(b,
,a) :- d(b,
), d(
,a), not foo(
,a,b).In pra
ti
e, the non-domain predi
ates are the \interesting" predi
ates, and thedomain predi
ates are just programmer's way to tell pre
isely what instan
es ofthe \interesting" predi
ates we want to 
onsider.After the grounding is done it is often possible to drop all domain literalsfrom the program. After all, we already know that they will be true in everystable model of the program. Lparse 
ommand-line argument -d none (seeSe
tion 3.1) drops all domain literals from the program.We 
an use as a domain predi
ate (nearly) any predi
ate that has a �xedextension in all stable models of the program. That is, if we know all trueground instan
es of the predi
ate even before we ask smodels to 
ompute them,the predi
ate is a domain predi
ate.For example, in the program:Program 4.9p(X,Y) :- d1(X,Y), not q(X,Y).q(X,Y) :- d1(X,Y), not p(X,Y).d1(X,Y) :- d2(X), d3(Y), not d4(X).d2(a). d2(b). d3(
). d4(a).predi
ates d1, d2, d3, and d4 are domain predi
ates. All rules with d2, d3, or d4as heads are fa
ts so the extensions of those predi
ates are given dire
tly in theprogram (fd2(a); d2(b)g for d2 and fd3(
)g and fd4(a)g for d3 and d4).As the only rule for d1 has only domain literals in its body, we also 
an
ompute its extension with relational algebra by taking a natural join over theextensions of d2, d3, and d4. The resulting extension is simply fd1(b; 
)g (d1(a; 
)is not in the extension be
ause d4(a) is always true and thus the variable bindingdoesn't satisfy the literal not d4(X).The extensions of predi
ates p and q 
an't be 
omputed beforehand, sin
ethey depend on ea
h other re
ursively. The program has one 
hoi
e point where26



either p(b; 
) is added to the model or q(b; 
) is added to model, but not both.Thus the extension of p will be either fp(b; 
)g or it will be empty, dependingon whi
h atom got in
luded in the model. Similarily for q.Here should be an example that details the transitive 
losure in domain pred-i
ates.There is one more 
ompli
ation about domain predi
ates: If a predi
ateo

urs as a head in an extended rule (see Se
tion 5.4) it may not be a domainpredi
ate. The reason why 
hoi
e rules are ex
luded is 
lear as they impli
itlyadd a 
hoi
e point to the program. The reason why other rules are also ex
ludedis implementation spe
i�
, as extended rules are pro
essed after the domaingeneration. This will probably 
hange in a future release, but for the time beingyou 
annot use a predi
ate as a domain predi
ate if it o

urs as a head in anextended rule.4.4.3 Constru
ting DomainsAll basi
 relational algebra operations 
an be done on the extensions of domainpredi
ates and the result will still be a domain predi
ate. The operations are:1. Union P [ R of the extensions of P and R:U(X) :- P(X).U(X) :- R(X).2. Interse
tion P \ R of the extensions:I(X) :- P(X), R(X).3. Set di�eren
e P nR of the extensions:D(X) :- P(X), not R(X).4. Cartesian produ
t P �R:C(X,Y) :- P(X), R(Y).5. Natural join P ./ R:J(X,Y,Z) :- P(X,Y), R(Y,Z).6. Symmetri
 di�eren
e P M R:S(X) :- P(X), not R(X).S(X) :- R(X), not P(X).4.4.4 Formal DomainsThe dependen
y graph GP = (VP ; EP ) of a logi
 program P is 
onstru
ted asfollows:1. VP = fp j p is a predi
ate symbol in Pg.27



male femaleparentson daughteran
estorFigure 4.3: The dependen
y graph of family relationships2. (a; b) 2 EP if and only if there exists a rule in P where a is the predi
atesymbol in the head and b is a predi
ate symbol in the rule body.A predi
ate a depends on a predi
ate b if and only if there exists a pathfrom a to b in the dependen
y graph. A predi
ate p of a logi
 program P is adomain predi
ate if and only if it holds that every path starting from node p inthe dependen
y graph is 
y
le free.Example 4.4Consider the following program:Program 4.10an
estor(X,Y) :- an
estor(X,Z), parent(Z,Y).an
estor(X,Y) :- parent(X,Y).son(X,Y) :- parent(Y,X), male(X).daughter(X,Y) :- parent(Y,X), female(X).The dependen
y graph of this program is shown in Figure 4.3. We 
an seefrom the graph that an
estor depends on itself and on parent. Likewise,daughter depends on parent and female. Here all predi
ates but an
estorare domain predi
ates. �4.5 Domain-Restri
ted ProgramsA rule is domain-restri
ted if it holds that if a variable appears in the rule italso appears in a positive domain literal in the body.A logi
 program is domain-restri
ted program if and only if every rule in itis domain-restri
ted.Example 4.5Suppose that d is a domain predi
ate and there are two rules:p(X,Y) :- d(X,Y), not q(X,Y).q(X,Y) :- not d(X,Y), not q(X,Y).Now the �rst rule is domain-restri
ted sin
e both X and Y o

ur in thedomain literal d(X;Y ). The se
ond rule is not domain-restri
ted, sin
ethe domain literal is negative, and not positive. �28



The reason for having domain restri
tion is that during grounding we haveto know exa
tly what ground instan
es of rules are needed.For example, if we tried to use rules of the following form:a(X) :- not b(X,Y).we would have to generate a ground instan
e for ea
h imaginable binding ofY . In e�e
t, we would have to use every single 
onstant that appears somewherein the program as a possible binding for Y and there may be thousands of them.So the domain predi
ates are used to \restri
t the domain" of variables.Example 4.6The Program 4.10 is otherwise domain-restri
ted but the variableX in the�rst rule doesn't o

ur in a domain predi
ate. We 
an �x the situation byde�ning a new predi
ate, person, and rulesan
estor(X,Y) :- an
estor(X,Z), parent(Z,Y), person(X).person(X) :- female(X).person(X) :- male(X). �The earlier smodels front-end, parse, allowed rules of the form:p(X,Y) :- q(X,Y), not r(X,Y).where q was any predi
ate symbol. Parse 
omputed the needed ground in-stan
es by dropping all negative literals and then 
omputing a dedu
tive 
losureof the rules. This method had the weakness that the whole program had to bekept in memory during grounding, whi
h severely a�e
ted the performan
e ofthe system.4.6 Weight ConstraintsThe Smodels versions 2.0 and later have three extended rule types in additionto basi
 rules that were de�ned in Se
tion 4.2: 
hoi
e, 
onstraint, and weightrules. The formal semanti
s of all three 
an be de�ned through use of weight
onstraints and weight 
onstraint rules . In lparse the weight 
onstraints areimplemented as spe
ial literal types.Basi
ally, a weight 
onstraint is something of the formL � fa1 = w1; : : : ; an = wn; not b1 = wn+1; : : : ; not bm = wm+ng � U (4.4)where a1; : : : ; an; b1; : : : ; bm are atoms, L and U are the integral lower and upperbounds, and w1, : : : , wm+n are weights of the literals. Later on, we denote theweight of a literal l with w(l). Here we 
onsider only positive weights as thenegative weights 
an be removed from a program as by negating the weight andinverting the literal.The intuitional semanti
s of a weight 
onstraint is that it is satis�ed exa
tlywhen the sum of weights of satis�ed literals l1, : : : , ln is between L and U , in-
lusive. The stable model semanti
s for weight 
onstraint rules was �rst de�nedin [12℄. 29



Example 4.7Let M = fa; bg andC1 = 2 � fa = 1; not b = 1; not 
 = 1g � 3C2 = 1 � fa = 1; b = 1; 
 = 1g � 1Now M satis�es C1 be
ause literals a and not 
 are satis�ed and theirtotal weight is greater than the lower bound and lower than the upperbound. However, C2 is not satis�ed as the sum of the weights of a and bis greater than the upper bound. �A weight 
onstraint rule is of the formC0  C1; : : : Cn (4.5)where C0, : : : , Cn are weight 
onstraints. We also have to restri
t C0 so thatmay not have any negative literals in it.A weight 
onstraint rule is satis�ed if C0 is satis�ed whenever C1, : : : , Cnare satis�ed.. Analogously to the de�nition of normal logi
 programs, a weight
onstraint program is a set of weight rules.A redu
t CM of a weight 
onstraint C with respe
t to a set M of atomsis obtained by removing the upper bound and all negative literals from it, andsubtra
ting the weights of satis�ed not-atoms from the lower bound:CM = L0 � fai = wi j ai 2Mg (4.6)where L0 = L� Xbi =2M w(bi) (4.7)The redu
t of a weight rule RM of a weight rule R with respe
t to a set Mof atoms is the set of rulesRM = 8<:; ; if 9Ci�1 :M 2 Cifh CM1 ; : : : CMn jh 2 M and h is an atom in C0g ; otherwise (4.8)where M 2 C denotes that M doesn't satisfy the weight 
onstraint C. Theabove de�nition looks quite ugly but basi
ally it just says that a rule withan unsatis�ed body is dropped out of the redu
t and the negative literals aredropped from the remaining rules.I guess that most of the readers 
an guess by now how the redu
t is de�nedfor weight 
onstraint programs. It is formed by taking union over redu
ts ofindividual rules. PM = fRM j R 2 Pg (4.9)30



The rules in the redu
t have all same form: they have a single atom as headand there are no negative literals in the weight 
onstraints of the rule body. We
all these rules Horn weight rules analogously to the de�nition for basi
 rules.We 
an de�ne the Knaster-Tarski operator TP for Horn weight rules in asimilar way that it was de�ned for basi
 Horn rules.TP (M) = fh j h C1; : : : Cn is a rule in the programand C1; : : : ; Cn are all satis�ed by Mg (4.10)Example 4.8Consider the following program3 P :Program 4.11a :- 1 [ a = 1 ℄.b :- 0 [ b = 100 ℄.
 :- 6 [ b = 5, d = 1℄, 2 [ b = 2, a = 2℄.d :- 1 [ a = 1, b = 1, 
 = 1 ℄.We start iterating the TP from the empty set.1. TP (;) = fbg, be
ause the empty set satis�es the body of the se
ondrule.2. TP (fbg) = fb; dg, be
ause b = 1 is enough to satisfy the 
onstraint ofthe last rule.3. TP (fb; dg) = fb; 
; dg, as w(fb; dg) = 6 � 6 in the �rst 
onstraint ofthe rule for 
 and w(fbg) = 2 � 2 in the se
ond 
onstraint.4. TP (fb; 
; dg) = fb; 
; dg and the �xed point is found. �Unfortunately we 
an't de�ne the stable models of a weight rule programusing only redu
ts. The problem is that we threw out all upper bounds of weight
onstraints while 
omputing the redu
t and we have to ensure that the modelsatis�es also the upper bounds.A set M of atoms is a stable model of a weight 
onstraint program P if andonly if the following two 
onditions are met:1. M satis�es all rules in P ; and2. M is the least �xpoint of TPM (;).Example 4.9Let a program P be simply:3Here we use the lparse syntax. Namely, the � symbol is left out and the square bra
ketsdenote weight 
onstraints. 31



Program 4.121 [ a = 1, b = 1 ℄ 1.Now M1 = fag is a stable model of P as M1 satis�es the only rule andthe redu
t PM of the program isa.Similarily for M2 = fbg. On the other hand, fa; bg is not a stable modeleven though the redu
t of the program isa.b.sin
e the 
ombined weights of a and b are more than the upper bound ofthe rule. �Example 4.10Let's now look at a slightly more 
omplex example program P :Program 4.131 [ a=1, b=1, 
=1 ℄ 2 :- 2 [ d=1, not b=1, not e=3 ℄ 4.1 [ d=3, e=2 ℄ 5.Now M1 = fa; d; eg is one stable model of the program. The redu
t PM1is nowa :- 1 [ d =1 ℄.d.e.and the least �xpoint of TPM1 = M1 and the model satis�es all rules.However, M2 = fd; ag is not a stable model be
ause the 
onstraint in the�rst rule body is not satis�ed (w(M) = 5 � 4) so it is dropped out fromthe redu
t and there is no longer any way to dedu
e a. �In the beginning of this se
tion I 
laimed that negative weights 
an be re-moved. This is proven in [12℄ and I only present here the translation. A weight
onstraint L � fa = �wa; not b = �wbg � U (4.11)
an be transformed to an equal formL+ wa + wb � fnot a = wa; b = wbg � U + wa + wb (4.12)The idea here is that instead of subtra
ting wa from the total weight when a istrue, we add wa if a is not true and we raise the bounds with the same amount,the net result being the same. 32



4.7 Classi
al NegationThe basi
 version of the stable model semanti
s has only negation as failure.That is, we 
on
lude not a if we 
an't prove that a is true. Sometimes this isnot desirable. For example, suppose that we want to 
he
k whether it is safe to
ross railroad tra
ks. This 
ould be expressed with a rule:safe not train :The problem here is that we 
onsider the 
rossing to be safe if we 
an't provethat a train is 
oming. A more safe approa
h would be to de
lare the 
rossingsafe only if we 
an prove that train is, indeed, not 
oming:safe :train :This stronger negation is 
alled the 
lassi
al negation and programs utilizingit are usually 
alled extended logi
 programs . The extended logi
 programs wereproposed in [3℄.The semanti
s of the extended logi
 programs di�ers a bit from the stablemodel semanti
s of oridinary programs. The answer set S of an extended pro-gram P is a minimal subset of the Herbrand base HB(P ) of the program su
hthat:1. for any rule lo  l1; : : : ; ln in P , if l1, : : : , ln 2 S, then lo 2 S; and2. if S 
ontains a pair of 
omplementary literals, then S = HB(P ).There are two di�erent ways how an extended program 
an fail to havean useful answer set. Either there is no answer at all or the only answer isin
onsistent.Example 4.11Consider the following program P :a not b b not ad not 
 
 not d:e not a e not 
f  not f; b; dThis program has three answer sets:S1 = fa; d;:egS2 = fb; 
; egS3 = fa; b; 
; d; e;:e; fgThe �rst two answer sets, S1 and S2 are 
onsistent and S3 is in
onsistent.It is not possible to have an answer set where both b and d are true be
auseit will 
ause the last rule to �re 
ausing a 
ontradi
tion. �33



Lparse handles extended programs by transforming the programs into nor-mal logi
 programs. The rules are otherwise una�e
ted but for ea
h negativeatom :a that o

urs in the program, the rule: a;:a (4.13)is added. Note that this approa
h di�ers from the semanti
s des
ribed above inthat the in
onsistent answer sets are automati
ally reje
ted. As this informationis sometimes useful, lparse has a variant behavior that 
an be initialized withthe 
ommand line option --allow-in
onsistent-answers. With it, a spe
ialatom INCONSISTENT is added to the program that is true whenever the stablemodel 
ontains 
omplementary literals:INCONSISTENT a;:a : (4.14)4.8 Partial Models and Disjun
tive ProgramsSmodels and lparse now in
lude fa
ilities to 
ompute stable and partial mod-els for disjun
tive logi
 programs. However, this fun
tionality is still quite prim-itive. Disjun
tive logi
 programs are dis
ussed in detail in [1℄ and the theoreti
albasis for the partial model expansion is introdu
ed in [5℄.The disjun
tive model semanti
s is enabled by sele
ting the 
ommand lineoption --dlp and the partial model expansion by the option --partial. Theexa
t output of the partial model expansion 
an be altered with the -r 
ommandline option.4.8.1 Disjun
tive ProgramsA disjuntive rule is of the forma1 j a2 j � � � j an  body (4.15)If the body of a disjun
tive rule is true, at least one of the head atomsa1, : : : , an has to be true. A disjun
tive logi
 program is a set of disjun
tiverules.The redu
t PMD of a disjun
tive program PD is obtained using the pro
edurethat was used with normal logi
 programs. That is, all rules with unsatis�ablenegative literals in the body are dropped as well as all remaining negative lit-erals. A set M of atoms is a disjun
tive stable model of PD i� M is a minimalmodel of PMD . Note that PMD may have more than one minimal model.It was easy to �nd the minimal model of the redu
t of a normal logi
 program.However, this is not the 
ase with disjun
tive programs. In fa
t, after we havefound a model for the redu
t it is still a NP-
omplete problem to �nd outwhether it is minimal or not.Be
ause of this 
omplexity, pure smodels doesn't handle disjun
tive pro-grams 
orre
tly. However, you 
an still solve disjun
tive queries by using twointerleaved smodels pro
esses. The �le example4.

 in the smodels/examplesdire
tory shows how it is done. 34



Example 4.12Consider a disjun
tive program PD:Program 4.14a | b :- 
.
 :- not d.d :- not 
.This program has three disjun
tive stable models. Either 
 or d has to bein a model and if 
 is 
hosen, we have to add a or b in the model. Thus,the models are: M1 = fdg, M2 = f
; ag, and M3 = fb; 
g. The fourthpossibility, M 0 = f
; a; bg is not a disjun
tive model sin
e M2 is a modeland M2 �M 0 so that M 0 is not minimal. �A disjun
tive rule of the form (4.15) is very similar to a weight 
onstraintrule of the form 1 � fa1; a2; : : : ; ang  body (4.16)but there is one subtle di�eren
e: disjun
tive stable models are always minimalwhile there may be non-minimal stable models of weight 
onstraint programs.For example, if we repla
e the �rst rule of Program 4.14 with1 f a, b g :- 
.then fa; b; 
g is a stable model of the program.4.8.2 Partial ModelsAs we saw in Se
tion 4.1, an interpretation of a logi
 program assigns a truthvalue to atoms in the Herbrand base of the program. Ea
h atom is either trueor false in the interpretation. A partial interpretation is an interpretation thatassigns a de�nite truth value only to some atoms of the base and the rest of theatoms are said to have unknown truth value. Formally, a partial interpretationI of a program P is a pair hT; F i of subsets of the Herbrand base HB(P ) ofthe program su
h that T \ F = ;. The atoms in sets It = T , If = F , andIu = HB(P ) � (T [ F ) are 
onsidered to be true, false, and unknown in theinterpretation.A partial model is a partial interpretation that satis�es all rules of the pro-gram. However, the 
on
ept of satisfa
tion has to be re�ned to take into a

ordthe fa
t that there are now three di�erent truth values. We impose an order <on truth values so that false < unknown < trueThe truth value I(B) of the body of a rule is obtained by taking minimumof the truth values of the literals in the body and the truth value I(H) of thehead is the maximum of the truth values of the head atoms. A rule is satis�edwhen I(H) � I(B). 35



Example 4.13Suppose that we have a partial interpretationI(H) = hfbg; fdgiSuppose further that we have two rules:a | d :- b, not 
.d :- a.Now the �rst rule is satis�ed sin
e I(a) = unknown � I(
) = unknown.The se
ond rule is not satis�ed as I(d) = false < I(a) = unknown. �A partial model I that assigns a de�nite truth value to all atoms (Iu = ;)is 
alled a total model or alternatively a regular model . A total stable model Mof P is a total model that is additionally a minimal model of the redu
t PM . Apartial stable model M of P is a minimal partial model of PM .We 
an 
ompute the partial stable models of a disjun
tive or normal logi
program P by using a translation that maps it into another program Tr(P ) thathas the property that M is a stable model model of Tr(P ) if and only if M is apartial stable model of P .We start the translation by adding a new atom a0 for ea
h atom a 2 HB(P ).The intuitive meaning of a0 is that it is potentially true. A rule of the form:a1 j � � � j an  b1; : : : ; bm; not 
1; : : : ; not 
l (4.17)is repla
ed with the rules:a1 j � � � j an  b1; : : : ; bm; not 
01; : : : ; not 
0la01 j � � � j a0n  b01; : : : ; b0m; not 
1; : : : ; not 
l : (4.18)Additionally, Tr(P ) in
ludes the rule:a0  a (4.19)for all a 2 HB(P ) so an atom is always potentially true if we know that it istrue.Let M be a stable model of Tr(P ). Then, there exists a partial stableinterpretation N of P that 
orresponds to M . The truth value of an atom a inN is obtained by the following three rules:1. If both a; a0 2M , then I(a) = true;2. If a0 2M and a =2M , then I(a) = unknown; and3. Otherwise, I(a) = false.The formal proof that this translation works is presented in [5℄.Example 4.14 36



Consider a disjun
tive program P :a | b :- not 
.b :- not b.
 :- not 
.The translated program Tr(P ) is:a | b :- not 
'.a' | b' :- not 
.b :- not b'.b' :- not b.
 :- not 
'.
' :- not 
.a' :- a.b' :- b.
' :- 
.The only stable model of Tr(P ) is fb0; 
0g and it 
orrespond to the partialinterpretation of P where b and 
 are both unknown and a is false. �Be
ause the partial model translation introdu
es a dependen
y loop for ea
hpredi
ate, it is not done for domain predi
ates. Instead, the ruled'(X) :- d(X).is added for ea
h domain predi
ate d.The behavior of the partial model translation 
an be altered with the -r 
om-mand line swit
h. In the �rst alternative (-r 1) the rules of the form (4.19) areleft out. This option is useful when one wants to �nd all possible �xpoints ofthe program.The se
ond alternative (-r 3) adds 
onstraints of the forma a0 (4.20)for all a 2 HB(P ) to the program. These ensure that an atom is true alwayswhen it is possibly true.4.9 Computational ComplexityThis se
tion will appear here when I have time to write it.
37



Chapter 5LanguageThis 
hapter des
ribes the Smodels language. Ea
h di�erent language featurehas its own se
tion here.5.1 CommentsYou 
an have 
omments in Smodels programs. The 
omment 
hara
ter is `%'.A 
omment then lasts util the end of the row.5.2 TermsThere are four di�erent types of terms: 
onstants, variables, fun
tions, andranges.ConstantA 
onstant is either a symboli
 
onstant or a numeri
 
onstant. A sym-boli
 
onstant is a string of letters and numbers whi
h may also 
ontainunders
ores ( ) starting with a lower 
ase letter, or a sequen
e of 
hara
tersthat is en
losed within double quotes (").The quote 
hara
ters are retained in the quoted strings by default, evenif unne
essary, and a is di�erent from "a". This behavior 
an be alteredwith the --drop-quotes 
ommand line argument.A numeri
 
onstant is an integer. Currently the allowed range for numbersgoes only from�230 to 230. This is due to seriously limited implementationof 
onstants and will be removed in some later release (see Se
tion 8).Sample 
onstants: 0, 1020, 
ons tant, "quoted 
onstant".It is also possible to de�ne a symboli
 
onstant to a
t as an numeri
 
on-stant by adding a 
onstant de
laration (see Se
tion 5.5). If you add the38



line 
onst foo = number to your program, from that point on every o
-
urren
e of the 
onstant foo will be substituted by number . Alternatively,you 
an use the -
 
ommand line option.In general, you may use an expression that evaluates to a 
onstant valueeverywhere where you 
an use 
onstants, that is, it is legal to use 
on-stru
ts like:
onst double = 2 * foo.VariableA variable is a string of letters and numbers that may also 
ontain un-ders
ores starting with an upper 
ase letterSample variables: X, Time 1.Fun
tionA fun
tion is either a fun
tion symbol followed by a parenthesised argu-ment list or an builtin arithmeti
al expression. A fun
tion may be eithera numeri
al fun
tion that is a
tually used to 
ompute something or it is asymboli
 fun
tion of the form foo(a), whi
h basi
ally just de�nes a new
onstant that gets the name foo(a).A numeri
al fun
tion may be either built-in internal fun
tion or a userspe
i�ed C or C++ fun
tion that is linked to lparse dynami
ally (seeSe
tion 5.7.3).The internal 
omparison fun
tions (eq, neq, lt, le, gt, and ge) 
an beused with both numeri
 and symboli
 
onstants but the rest of internalfun
tions allow only numeri
 arguments.The use of fun
tions is explained more fully in Se
tion 5.7.Sample fun
tions: X+1, times(X, 5, plus(Y, 1)).RangeA range is of the form:start .. endwhere start and end are 
onstant valued arithmeti
 expressions. A rangeis a notational short
ut that is mainly used to de�ne numeri
al domains ina 
ompa
t way. A range is expanded by de�ning a new domain predi
ateand adding all elements of the range to its extension. The range is thenrepla
ed by a variable that gets its domain from the new domain predi
ate.For example, a fa
t a(1..3). is a short
ut fora(X) :- int1(X).int1(1).int1(2).int1(3).Ranges 
an also be used in rule bodies with the same semanti
s.39



b :- a(1..3).expands tob :- a(X), int1(X).int1(1).int1(2).int1(3).Now b is true if any of a(1), a(2), or a(3) is true.5.3 Atoms and LiteralsStarting from version 2.0 smodels has o�ered support for three extended ruletypes: 
hoi
e, 
onstraint, and weight. Lparse further enhan
es this by allowinga rule have an arbitary number of 
onstraint and weight literals in a rule body.Constraint and weight literals are both 
alled extended literals. In additionto basi
 and extended literals, lparse has one further literal type, namely,
onditional literal.AtomAn atom is a predi
ate symbol that is optionally followed by a parenthe-sized list of terms.Sample atoms: foo(X), a, foo.It is possible to give multiple argument lists to an atom. These 
onstru
tsare of the form:a(arguments1; arguments2; � � � ; argumentsn)When multiple argument lists appear in a rule body or in a 
hoi
e rulehead (see Se
tion 5.4 on page 43), a new literal is 
onstru
ted for ea
h list.That is, a rulef a(X;Y+1) g :- d(X;Y).is expanded tof a(X), a(Y+1) g :- d(X), d(Y).In a basi
 rule head a new rule is 
onstru
ted for ea
h argument list sothat foo(a ; b; 
).be
omesfoo(a).foo(b).foo(
).Basi
 literalA basi
 literal is either an atom a or its negation not a.40



Beginning with lparse-0.99.57 you have been able to use 
lassi
al nega-tions in your programs. The 
lassi
al negation :a of an atom a is de-noted by a minus sign that is immedietely before the atom name: -a.The 
lassi
al negation extension is enabled by the 
ommand line option--true-negation.Sample literals: a(X), not b(X).Constraint literalA 
onstraint literal is of the formlower f l 1, l 2, : : : , l n g upperwhere lower and upper are arithmeti
 expressions and l1, : : : , ln are basi
or 
onditional literals.A 
onstraint literal is satis�ed if the number of satis�ed literals in thebody of the 
onstraint is between lower and upper (in
lusive). If thelower bound is missing, zero is substituted in its pla
e and if the upperbound is missing, any number of literals may be true.It is possible to have variables in the rule bounds. For example, thefollowing rule 
ould be used to 
ount the length of a path in a graph:length(N) :- N f in path(X,Y) : edge(X,Y) g N,possible length(I).During grounding a 
onstraint literal is repla
ed by two basi
 literals andtwo new rules are added to the program. For example, a rule:h(a) :- 2 f d 1(a), d 2(a), d 3(a), d 4(a) g 3is transformed toh(a) :- int1(a), not int2(a).int1(a) :- 2 f d1(a), d2(a), d3(a), d4(a) g.int2(a) :- 4 f d1(a), d2(a), d3(a), d4(a) g.Here int1 and int2 are new internal predi
ates. The transformation isdone be
ause smodels allows only one 
onstraint per rule and only lowerbounds are examined.Weight literalA weight literal is of the formlower [ l 1=w 1, : : : , l n=w n ℄ upperA weight literal behaves otherwise just like a 
onstraint literal but ea
hliteral may be given a di�erent integral weight.The weight literal is satis�ed if the sum of the weights of satis�ed literals inthe rule body is between lower and upper (in
lusive). If the lower boundis missing, �1 is substituted.The weights w1, : : : , wn may be any expressions. If there are variables inweight expressions, they must be domain restri
ted.41



The weights may be given in the weight literal body, or they may bede�ned earlier by global weight de
larations. The lo
al values overridethe global values. If there is neither a global or a lo
al value, the defaultvalue is used. The default is normally 1 but you 
an 
hange it with the
ommand line argument -w (see Se
tion 3.1).Negative weights are handled by inverting the literal (a be
omes not aand not a be
omes a), 
hanging the sign of the weight, and adding theabsolute value of the weight to the bounds.For example,lower [ a 1=-w 1, not a 2=-w 2 ℄be
omeslower+w 1+w 2 [ not a 1=w 1, a 2=w 2 ℄.Conditional literalA 
onditional literal is of the form:p(X) : q(X)where p(X) is any basi
 literal and q(X) is a domain predi
ate. If the ex-tension of q is fq(a1); q(a2); : : : ; q(an)g, the above 
ondition is semanti
allyequivalent to writing p(a1), p(a2), : : : , p(an) in the pla
e of 
ondition.For example,q(1..2).a :- 1 f p(X):q(X) g.will be grounded to giveq(1). q(2).a :- 1 f p(1), p(2) g.Semanti
ally the expansion of 
onditions takes pla
e after the variablesthat o

ur also in another part of the rule are instantiated. For examplein the programd(1..2).a(X) :- 1 f p(X,Y) : d(Y) g, d(X).the variable X will be �rst instantiated to give the programd(1). d(2).a(1) :- 1 f p(1, Y) : d(Y) g, d(1).a(2) :- 1 f p(2, Y) : d(Y) g, d(2).In the next step the 
onditions are expanded to gived(1). d(2).a(1) :- 1 f p(1, 1), p(1, 2) g, d(1).a(2) :- 1 f p(2, 1), p(2, 2) g, d(2).42



In pra
ti
e, the 
onditions are expanded as early as possible and if noneof the variables in a 
ondition o

ur in other parts of a rule, the 
onditionwill be expanded before anything else is done.It is also possible add many 
onditions to one literal. For example in the
onditional literal:p(X,Y) : q 1(X) : q 2(Y)domain predi
ate q1 gives values to X and q2 gives values to Y .5.4 Rule TypesThe version 2.0 of smodels added support for three new rule types: 
hoi
e,
onstraint, and weight rules. In lparse the 
onstraint and weight rules arehandled by more general 
onstraint and weight literals that were introdu
ed inthe se
tion above.Basi
 ruleA basi
 rule is of the form:h(X) :- a 1(X), : : : , a n(X), not b 1(X), : : : , not b m(X).If a1(X), : : : , an(X) are in a stable model and b1(X), : : : , bn(X) are not,the head atom h(X) is put also in the model.If the rule has no head, all model 
andidates that satisfy the rule bodyare dis
arded.Choi
e ruleA 
hoi
e rule has one of the following two forms:lower f h 1, : : :, h n g upper :- body.lower [ h 1=w 1, : : : , h n=w n ℄ upper :- body.If the body of a 
hoi
e rule is satis�ed, the number (or total weight) ofh1, : : : , hn that are true in the model will be between lower and upper ,in
lusive.If both bounds are missing, any number of head literals may be in
ludedin a model. It is then said that the body gives the head atoms a reason tobe in a model, but it doesn't for
e them to be in it.For example, the program1 f a, b g .has three stable models, M1 = fag, M2 = fbg, and M3 = fa; bg.It is also possible to use a weight literal as a head. In that 
ase, the totalweight of the satis�ed literals in it has to be between the bounds.There exists also a spe
ial notation43



h 1 | : : : | h n :- body.that is a shorthand for1 f h 1, : : : , h n g 1 :- body.That is, using |-notation you ge an ex
lusive or of the head atoms. Also,the notation is used with disjun
tive semanti
s that are explained in Se
-tion 4.8.1.Internally, a 
hoi
e rule with non-zero bounds will be translated into threerules:f h 1, : : :, h n g :- body.:- upper + 1 f h 1, : : : , h n g, body.:- n � lower + 1 f not h 1, : : : , not h n g, body.This transformation is done be
ause smodels doesn't allow bounds in
hoi
e rules.5.5 De
larationsThere are eight kinds of de
larations in the language: 
onstant, domain, ex-ternal, hide, fun
tion, option, show and weight de
larations. The de
larationsmay o

ur anywhere in the sour
e 
ode. The only restri
tion is that you haveto de
lare a 
onstant or a fun
tion before you use it.All de
larations start with a `#' symbol. The old pra
ti
e of writing themwithout it is still supported but it is re
ommended to ex
lusively use the new
onvention sin
e some future version will drop the support.Constant de
larationA 
onstant de
laration is of the form#
onst bar = expr.This de
lares the identi�er bar as being a numeri
 
onstant with the valueexpr that may be any 
onstant valued expression. It is also possible tode�ne 
onstants from the 
ommand line by using the option -
. Thereare more about numeri
 
onstants in Se
tion 5.2.Domain de
larationA domain de
laration is of the form#domain a(X).The domain de
laration above asserts that the variable X should alwaysget its domain from the literal a(X). In pra
ti
e, this is implemented byadding a(X) into the tails of all rules where X o

urs. The literal is addedto all su
h rules, no matter whether X would be otherwise restri
ted ornot. 44



Example 5.1Consider the following program:#domain a(X, Y), b(Z).foo(X, Y) :- not bar(X, Y).bar(X, Z) :- not foo(X, Z).Before the grounding a
tually takes pla
e, this program is trans-formed in the form:foo(X, Y) :- a(X,Y), not bar(X, Y).bar(X, Z) :- a(X,Y), b(Z), not foo(X, Z).Note that both a(X,Y) and b(Z) are added to the body of the se
ondrule. �External de
larationAn external de
laration has the form#external p(X).where p is a domain predi
ate. External predi
ates are used duringgrounding to �nd out possible instantiations of rules depending on thembut they are left out of the a
tual output.Example 5.2The program P :#external a(X).a(1..2).b(X) :- a(X).is grounded to the following program:b(1) :- a(1).b(2) :- a(2). �External predi
ates are useful when the program is large and it has to begrounded many times with slightly di�erent extensions for domain pred-i
ates. The solution is to ground the program on
e with all possible val-ues for the domain predi
ates using external de
larations and reading thegrounded program in with -g 
ommand line argument when the 
orre
textension is known.Example 5.3Suppose that the program in Example 5.2 is stored in foo.lp andbar.lp 
ontains only the fa
t:a(1).Then, you 
ould 
ompute the stable models of foo.lp using bar.lpas the sour
e for extension of a with the following 
ommand lines:45



% lparse foo.lp > full grounding% lparse -g full grounding bar.lp | smodelsAnswer: 1Stable Model: b(1) a(1)True �For a more thorough explanation on external and its possible uses, seeSe
tion 7.4 on page 68.Fun
tion de
larationA fun
tion de
laration is of the form:#fun
tion foo.This de
lares the identi�er foo to be used as a numeri
 fun
tion throughoutthe program. The user de�ned fun
tions are des
ribed in more detail inSe
tion 5.7.3.Hide de
larationA hide de
laration has two possible forms:#hide.#hide p(X,Y).The smodels 2.x o�ers a feature where some atoms may be hidden fromthe output. The atoms still a�e
t the 
omputation in the usual way butthey are not printed. The internal predi
ates generated by lparse areautomati
ally hidden. A hide de
laration without arguments marks allpredi
ates as hidden by default and the show de
laration 
an then beused to tell what atoms are in
luded in the output.The se
ond hide de
laration above marks all ground instan
es of the 2-arypredi
ate p to be hidden. The arguments of p are used only to distin
tpredi
ates with di�erent arities from ea
h other.For example, if the program#hide p(X).p(1..2).p(X,Y) :- p(X), p(Y).is given to smodels as input, the output will be:smodels version 2.16. Reading...doneAnswer: 1Stable Model: p(1,1) p(2,1) p(1,2) p(2,2)TrueOption de
laration 46



An option de
laration is of the form#option 
ommand-line-option.This de
laration 
an be used to set lparse 
ommand line arguments inthe sour
e 
ode. This is mainly useful if your program uses some of thesupported translations, for example --true-negation or --partial.Show de
larationA show de
laration has the form#show p(X,Y).This de
laration is the opposite of a hide de
laration. It tells lparse thatthe 2-ary predi
ate p should be shown in the model. This is only usefulwhen all predi
ates are hidden using an empty hide de
laration.Weight de
larationA weight de
laration has two possible forms:#weight literal = expr.#weight literal1 = literal2.The �rst one de
lares the default weight of a literal literal to be expr .Any variables o

uring in expr must also o

ur in literal . The weights willbe instantiated during grounding. The se
ond one de
lares the weight ofliteral1 to be the same as the weight of literal2 that may be de�ned inother part of the program.When a weight is needed for a literal a that doesn't have an expli
it weightassigned to it, lparse starts looking for weight de�nitions that it has seenbefore the line in question. Lparse tries to unify a with ea
h de�nitionand when a mat
h is found, it uses that weight. If no weight de�nitionmat
hes a, the global default weight (1, if not set with the -w option) isused.For example, in a program#weight p(X,Y) = 1.#weight p(a,Y) = 2.#weight p(a,b) = 3.a :- 2 [ p(a,b)=1, p(a,a), p(b,b) ℄.the weight of p(a; b) is 1 be
ause the expli
it de�nition overrides all globalde�nitions. Lparse then starts looking for weight of p(a; a). It �rst triesto unify p(a; a) and p(a; b), but fails be
ause a 6= b. Unifying with p(a; Y )su

eeds when the variable Y is binded to the value a. Thus, the weightof p(a; a) is 2. Using a similar pro
ess, lparse determines that the weightof p(b; b) is 1.If the weight of a literal is de�ned more than on
e, only the latest de�nitionis used. For example: 47



#weight p(X) = X.#weight p(2) = 10.a :- 2 [ p(1), p(2) ℄. % weights: p(1) = 1, p(2) = 10#weight p(Y) = Y+5.b :- 2 [ p(1), p(2) ℄. % weights: p(1) = 6, p(2) = 7The weights may be de�ned separately for positive and negative literals. Ifa negative literal doesn't have a mat
hing negative weight de
laration, ituses a 
orresponding positive one by default. This behavior 
an be 
hangedwith the option `--separate-weight-definitions'. For example, after:#weight a = 2.#weight not a = 3.#weight b = 5the weight of a is 2, of not a is 3, and both b and not b have weights 5.However, with the above 
ommand line argument the weight of not b isthe default 1.5.6 StatementsThe statements are used to spe
ify desired properties of the models. There aretwo kinds of statements, 
ompute and optimize statements.Compute statementA 
ompute statement is of the form:
ompute number f a 1, : : : , a n, not b 1, : : :, not b m g.Only stable models 
ontaining a1, : : : , an and not 
ontaining b1, : : : , 1bmare 
omputed. The number of generated models is 
ontrolled by number .If number is 0 or the identi�er all, all models are 
omputed. The defaultnumber of models is 1.Optimize statementAn optimize statement has four possible forms:maximize f a 1, : : : , a n, not b 1, : : :, not b m g.maximize [ l 1 = w 1, : : : , l n =w n ℄.minimize f a 1, : : : , a n, not b 1, : : :, not b m g.minimize [ l 1 = w 1, : : : , l n = w n ℄.When an optimize statement is given, smodels tries to �nd models withas many (or as few) of the given literals as possible. You may also useweights with these literals and then the model with maximal (or minimal)weight is returned. The optimize statements use bra
es analogously to
onstraint and weight literals; with 
urly bra
es the number of true literalsis maximized (or minimized) and with square bra
kets the weight of trueliterals is maximized. 48



However, the behavior of smodels is not the one that would 
ome to mind�rst. Namely, smodels �rst sear
hes a single model and prints it. Afterthat, smodels prints only \better" models. For example, if in the �rstmodel in
ludes three optimized atoms, only those with four or more arereturned afterwards.If there are many optimize statements, they are 
onsidered in �xed order,the last one being the strongest. When 
omparing two modelsM1 andM2the last optimize statement is 
onsidered �rst. If it gives di�erent valuesfor both models, the rest of the statements are not evaluated at all. Onlyif M1 and M2 tie with respe
t to the last optimize statement the next onebefore it is used, and so on.5.7 Fun
tionsThere are two kinds of fun
tions in lparse, numeri
al fun
tions and symboli
fun
tions. The di�eren
e is that a numeri
al fun
tion is used to 
omputesome 
on
rete numeri
 value but a symboli
 fun
tion basi
ally just de�nes anew 
onstant that is the value of the fun
tion.For example, in a program:d(1..2). e(a ; b).q(X+1) :- d(X).p(f(X)) :- e(X).there are two fun
tions, X+1 and f(X). Here X+1 is a numeri
al fun
tionand its value is 
omputed during grounding. On the other hand, f(X) is asymboli
 fun
tion and only thing that grounding does to it is to instantiate X .The grounded program is:d(1). d(2). e(a). e(b).q(2) :- d(1).q(3) :- d(2).p(f(a)) :- e(a).p(f(b)) :- e(b).The fun
tions f(a) and f(b) are treated just like 
onstants by smodels.A numeri
al fun
tion has to be de
lared with a fun
tion de
laration beforethey 
an be used.5.7.1 Numeri
al Fun
tionsNumeri
al fun
tions 
an o

ur in two di�erent roles in rules, either as a termor as a test in a rule body.As a term, a numeri
al fun
tion gives a value to an argument of a predi
ate.During grounding the rule the fun
tion is 
alled and the return value is usedas the argument. Internally the fun
tion is repla
ed by a new variable and anassign fun
tion in the rule body.For example, 49



Table 5.1: Lparse internal fun
tionsFun
tion Operator Fun
tion Operatorplus(X,Y) X + Y lt(X,Y) X < Yminus(X,Y) X � Y gt(X,Y) X > Ytimes(X,Y) X � Y le(X,Y) X <= Ydiv(X,Y) X / Y ge(X,Y) X >= Ymod(X,Y) X mod Y eq(X,Y) X == Yassign(X,Y) X = Y neq(X,Y) X != Yand(X,Y) X & Y xor(X,Y) X ^ Yor(X,Y) X j Y bnot(X) ~Xabs(X) j X j weight(a(X))p(X, Y, X+Y) :- d(X,Y).be
omesp(X, Y, Z) :- d(X,Y), Z = X+Y.If we ground the above rule with a variable binding fX=1; Y=2g, the groundrule be
omesp(1,2,3) :- d(1,2).As a test, a fun
tion works as a 
onstraint for possible variable values. Ifthe fun
tion returns false, i.e. 0, when 
alled with a given variable binding, thebinding is dis
arded. If it returns true, i.e. any value other than 0, the groundrule 
orresponding to the binding is printed. After the test has been performedsu

esfully, the fun
tion is removed before printing the ground rule.For example, the program:d(1). d(2).q(X,Y) :- d(X), d(Y), X < Y.is grounded to gived(1). d(2).q(1,2) :- d(1), d(2).A numeri
al fun
tion has to be de
lared (see Se
tion 5.5) before it 
an beused.5.7.2 Internal Fun
tionsThere are 17 di�erent arithmeti
al fun
tions built in lparse. The internalfun
tions are automati
ally de
lared unless the -i 
ommand line option is given.The lparse interal fun
tions are shown in Table 5.1.There is an in�x operator de�ned for ea
h internal fun
tion1. The notationsf(X;Y ) and X Æf Y are inter
hangeable. In fa
t, the latter is 
onverted inter-nally to the former. All internal fun
tions a

ept many arguments, so you 
an
all for example plus(X;Y; Z; 2). The operator pre
eden
e is shown in Table 5.2.1With the ex
eption of weight(a(X)). 50



Table 5.2: Lparse operator pre
eden
e� (unary), ~�, =, mod+, �==, !=, <, >, <=, >=&, j, ^=Only 
omparison fun
tions allow symboli
 
onstants as their arguments andthe others work only for numbers. The symboli
 
onstants are 
ompared usinglexi
ographi
, that is phonebook, ordering.The fun
tions and, or, xor, and b not implement the bitwise logi
al opera-tions.The assign-fun
tion returns always 1 when the assignment su

eeds, so the
onstru
ts like X = Y = 5 don't work like they do in some other languages.The weight fun
tion is a spe
ial 
ase that takes a basi
 literal as its argumentand returns its weight.Example 5.4Consider the program:weight a(X) = X.b(1..4).
(X) :- b(X), weight(a(X)) <= 2.d(X,Y) :- b(X), b(Y), weight(a(X)) + weigh(a(Y)) > 4.The extension of 
 will be f
(1); 
(2)g and the extension of d will befd(1; 4); d(2; 3); d(3; 2); d(4; 1)g. �5.7.3 User-De�ned Fun
tionsIt is possible to add a user-de�ned C or C++ fun
tion to lparse. In earlierversions of lparse you had to use the perl s
ript register to link the fun
tionsstati
ally to lparse binaries. The 
urrent method allows dynami
 linking ofshared library �les to lparse.Just about every C/C++-fun
tion 
an be linked with lparse, but those fun
-tions that meant to be dire
tly 
alled from logi
 programs should have theprototype:long foo(int num args, long *args)That is, lparse passes the arguments in an array of long integers with aninteger parameter telling the lenght of the array. The symboli
 
onstants areen
oded as indi
es to a symbol table where the a
tual strings are stored. The51



numeri
 
onstants 
an be handled using normal fun
tions and operators butthe only way to handle symboli
 
onstants is to use the lparse API that isintrodu
ed in the next se
tion.Lparse uses the normal C 
onvention of treating value 0 as false and everyother value as true.Before you 
an use your own fun
tion, you have to add it to a shared libraryand tell lparse where the library 
an be found. Lparse sear
hes for librariesfrom the following dire
tories:1. A path stored in an environmental variable LPARSE LIBRARY PATH.2. Dire
tories spe
i�ed in the �le ~/.lparser
.3. A path stored in an environmental variable LD LIBRARY PATH.Lparse library de�nitions may be pla
ed either in the environmental variableLPARSE LIBRARIES or in the �le .lparser
.An example .lparser
 is:LPARSE LIBRARY PATH = /home/tss/lparse-libsLPARSE LIBRARIES = libfoobar.soIf you have �les foo.
 and bar.
 that you want to use with lparse, you 
an
reate the shared library with following steps. (These steps work with g

 on aLinux system; if you use some other system they may or may not work.)1. Compile the �les into obje
t �les using the option-fPIC:% g

 -fPIC -Wall -
 foo.
2. Create the shared library. If your fun
tions 
all some library fun
tions,it will be safest to link these to the library. Here we suppose that foo.
uses some fun
tions de�ned in standard math library:% g

 -shared -Wl,-soname,libfoobar.so -o libfoobar.sofoo.o bar.o -lm3. Move libfoobar.so to a suitable pla
e and put a pointer to it into.lparser
.There is an example make�le in the lib dire
tory of the lparse distributionthat 
an be used as a model for generating your own libraries.The �nal step is to tell lparse that you want to use your own fun
tions.This is done by adding a fun
tion de
larationfun
tion foo.to the program. When a fun
tion is de
lared, lparse goes on and tries to�nd the fun
tion symbol from the libraries. It will pi
k the �rst mat
h thatit �nds and display an error if no mat
hes are found. If lparse founds someother external symbol with the same name, su
h as a 
hara
ter array, it will diehorribly trying to jump at the symbol. If you get a lot of segmentation faultswhile using your own fun
tions, this may be one reason.52



lparse 
onstant t lparse 
onstant type(long 
onstant)int lparse is numeri
(long 
onstant)int lparse is symboli
(long 
onstant)
har *lparse get symboli
 
onstant name(long symboli
 
onstant)long lparse get symboli
 
onstant index(
har *symboli
 
onstant)int lparse symbol exists(
har *symboli
 
onstant)long lparse 
reate new symboli
 
onstant(
har *arg)Figure 5.1: Lparse API fun
tions5.7.4 Lparse APIThe lparse version 0.99.47 added a programming API that allows user-de�nedfun
tions to manipulate symboli
 
onstants. The API fun
tions are de�ned inthe �le lparse.h that is lo
ated in the lib dire
tory of lparse distribution.The lparse.h 
ontains de
larations of seven fun
tions that provide the basi

onstant handling 
apabilities. The fun
tions are listed in Figure 5.1 and theirdes
riptions are below. The 
urrent version of the API doesn't di�erentiate be-tween symboli
 
onstants and symboli
 fun
tions. That is, a symboli
 fun
tionis internally treated as a oridinary 
onstant that just happens to have a spe
i�
form.The header �le de�nes an enumeration lparse 
onstant t to hold the pos-sible types of lparse 
onstants:typedef enum f LP NUMERIC, LP SYMBOLIC g lparse 
onstant t;The following fun
tions are available:lparse 
onstant t lparse 
onstant type(long 
onstant)The fun
tion lparse 
onstant type returns the type (LP NUMERIC orLP SYMBOLIC) of the argument 
onstant .int lparse is numeri
(long 
onstant)Returns true if 
onstant is a numeri
 
onstant, false otherwise.int lparse is symboli
(long 
onstant)Returns true if 
onstant is a symboli
 
onstant, false otherwise.
har *lparse get symboli
 
onstant name(long symboli
 
onstant)Returns a pointer to the symbol table entry of symboli
 
onstant or NULLif it is not de�ned. As the pointer is to the a
tual symbol table, don'tmess with it.long lparse get symboli
 
onstant index(
har *symboli
 
onstant)Returns the lparse symboli
 
onstant that 
orresponds to the 
hara
terstring symboli
 
onstant or a spe
ial value LP INVALID CONSTANT if thesymboli
 
onstant is not de�ned.53



int lparse symbol exists(
har *symboli
 
onstant)Returns true if symboli
 
onstant is de�ned as a symboli
 
onstant andfalse otherwise.long lparse 
reate new symboli
 
onstant(
har *new string)The fun
tion stores its argument into the symbol table and returns itssymboli
 
onstant index value. It is safe to add same 
onstant many timesto the table and all 
alls will return the same value.Example 5.5The following 
ode 
an be used to identify whether a 
onstant is a symboli
fun
tion (this example 
an also be found in the lib dire
tory of lparsedistribution):/� ap i t e s t . 
 �� a smal l example onhow the l par se API 
an be used �/#in
lude " lpar s e . h"#in
lude < s t r ing . h>/� This fun
t ion re turns the 
onstant ' true ' i fi t s f i r s t argument i s a symbol i
 fun
t ion ,and ' f a l s e ' o therwise �/long i s s ymbo l i 
 f un 
 t i on ( int nargs , long � args )f 
har � st = 0;i f ( l p a r s e i s s ymbo l i 
 ( args [ 0 ℄ ) ) fst = lpar s e ge t symbo l i 
 
ons tant name ( args [ 0 ℄ ) ;/� supposes that there i s a ' ( ' in a 
onstant onlyi f i t a 
 t ua l l y i s a symbol i
 fun
t ion �/i f ( s t r s t r ( st , "(" ) ) freturn l pa r s e 
 r ea t e new symbo l i 
 
ons tant ( " true " ) ;ggreturn l pa r s e 
 r ea t e new symbo l i 
 
ons tant ( " f a l s e " ) ;gSupposing that the above fun
tion was 
ompiled and linked to liblparse.so.Then, the following programProgram 5.1fun
tion is symboli
 fun
tion.a(is symboli
 fun
tion(1)).b(is symboli
 fun
tion(foo(1))).
(is symboli
 fun
tion(bar)).54



Table 5.3: Lparse keywords
ompute 
onstexternal fun
tionhide maximizeminimize modnot showweightgives the following output:smodels version 2.23. Reading...doneAnswer: 1Stable Model: 
(false) b(true) a(false)True �5.8 KeywordsLparse has a set of keywords that may not be used for other purposes. Thekeywords are shown in Table 5.3. In addition to keywords lparse uses internalatoms, predi
ates, and variables. The names of the internal predi
ates andatoms start with an unders
ore ( ). The names of internal variables start withI . You should avoid using the internal symbols in your programs, or strangebehavior may result.
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Chapter 6ExamplesThe sour
e 
ode of all examples in this 
hapter is in
luded in the examplesdire
tory of lparse tarball. More examples 
an be found from lparse-demo.tgzwhi
h is available athttp://www.t
s.hut.fi/pub/smodels/lparse/.6.1 Node ColoringProgram 6.1% Node 
oloring problem by Tommi Syrj�anen.% Given a graph given as a set of nodes and edges% find a way to 
olor the nodes with 'n' 
olors su
h that% two adja
ent nodes are not 
olored with the same 
olor.
onst n=3. % this 
an be 
hanged with the%
ommand line argument '-
'.
olor(1..n).% Ea
h node should have exa
tly one 
olor:1 f node 
olor(N, C) : 
olor(C) g 1 :- node(N).% Two adja
ent nodes have to have different 
olors::- node 
olor(X, C), node 
olor(Y,C), edge(X,Y), 
olor(C).% Typi
al 
ommand line% lparse -d none -
 n=3 
olor2.lp graph | smodels6.2 Logi
al PuzzlesThe example/puzzle dire
tory 
ontains a 
ouple Smodels programs that solvelogi
al puzzles that are taken from Raymond Smullyan's ex
ellent Forever Un-de
ided [17℄. All following programs should be run with the 
ommand line% lparse file | smodels 0so that all possible answers are generated.56



Knights and KnavesThe Island of Knights and Knaves has two types of inhabitants: knights,who always tell the truth, and knaves, who always lie.One day, three inhabitants (A, B, and C) of the island met a foreigntourist and gave the following information about themselves:1. A said that B and C are both knights.2. B said that A is a knave and C is a knight.What types are A, B, and C?This logi
al puzzle 
an be solved with the following program:Program 6.2% Ea
h person is either a knight or a knave1 f knight(P), knave(P) g 1 :- person(P).% There are three persons in this puzzle:person(a ; b ; 
).% Rest of this program models the two hints.% Hint 1:% If A tells the truth, B and C are both knights2 f knight(b), knight(
) g 2 :- knight(a).% If A lies, both 
annot be knights.:- knave(a), knight(b), knight(
).% Hint 2:% If B tells the truth, A is a knave and B is a knight2 f knave(a), knight(
) g 2 :- knight(b).% If B lies, one of the 
laims has to be false:- knave(b), knave(a), knight(
).Martian-Venusian Club, part 1On Ganymede | a satellite of Jupiter | there is a 
lub known as theMartian-Venusian Club. All members are either from Mars or from Venus,although visitors are sometimes allowed. An earthling is unable to dis-tinguish Martians from Venetians by their appearan
e. Also, earthlings
annot distinguish either Martian or Venusian males from females, sin
ethey dress alike. Logi
ians, however, have an advantage, sin
e the Venu-sian women always tell the truth and the Venusian men always lie. Themartians are the opposite; the Martian men tell the truth and the Martianwomen always lie.One day a visitor met two Club members, Ork and Bog, who made thefollowing statements: 57



1. Ork: Bog is from Venus.2. Bog: Ork is from Mars.3. Ork: Bog is male.4. Bog: Ork is female.Where are Ork and Bog from, and are they male or female?Program 6.3% All persons are from Mars or Venus1 f martian(P), venetian(P) g 1 :- person(P).% All persons are male or female1 f female(P), male(P) g 1 :- person(P).% All persons either lie or tell the truth depending on% their origins and sex.lies(P) :- person(P), martian(P), female(P).lies(P) :- person(P), venetian(P), male(P).truthful(P) :- person(P), martian(P), male(P).truthful(P) :- person(P), venetian(P), female(P).% A person may not tell the truth and lie at the% same time:- person(P), lies(P), truthful(P).% Persons:person( ork; bog ).% Hints% 1.venetian(bog) :- truthful(ork).:- lies(ork), venetian(bog).% 2.martian(ork) :- truthful(bog).:- lies(bog), martian(ork).% 3.male(bog) :- truthful(ork).:- lies(ork), male(bog).% 4.female(ork) :- truthful(bog).:- lies(bog), female(ork).58



Martian-Venusian Club, part 2The Martians and the Venetians often intermarry, and there are severalmixed 
ouples in the 
lub. One 
ouple approa
hed the visitor and thefollowing 
onversation ensued:1. Visitor: Where are you from?2. A: From Mars.3. B: That's not true!Was the 
ouple mixed or not?The program to solve this one uses the same basi
 foundations as thepuzzle above and below only the 
hanged parts are shown.Program 6.4% Persons:person( a; b ).% The persons in this puzzle are married so they 
an't% have the same sex.:- male(a), male(b).:- female(a), female(b).% The hints.% 1.martian(a) :- truthful(a).:- martian(a), lies(a).% 2.lies(a) :- truthful(b).:- lies(a), lies(b).6.3 PlanningThe largest example program in the example dire
tory is logisti
s.lp whi
hshows a way to en
ode planning problems as Smodels programs. The programis too big to be in
luded in this manual entirely but here are some sele
ted bits.In a planning problem, we are given a des
riptions of the initial state of theworld and the desired goal state. In addition, we are given a set of a
tions that
an be used to 
hange the state of world.In logisti
s domain, we have an a
tion load tru
k(Obje
t, Tru
k) that isused, naturally enough, to load pa
kages into tru
ks. The pre
ondition for thisoperation is that the obje
t and tru
k are at the same pla
e and the e�e
t isthat the pa
kage will be inside the tru
k.59



The �rst step in 
onverting the a
tion to smodels rules is to add a third ar-gument to it, namely time, to it. Thus we'll use predi
ate load tru
k(Obje
t,Tru
k, Time) to model the loading.A natural way to en
ode a
tions is to use 
hoi
e rules, in form:f a
tion g :- pre
onditions.If the body of a 
hoi
e rule is true in a model, the head may be true in it,but it doesn't have to. Thus, when the pre
onditions are ful�lled we 
an eitherperform the a
tion or de
ide to do some other a
tion.The e�e
ts of an a
tion are implied by the a
tion:effe
ts :- a
tion.The blo
king of 
on
i
ting a
tions is done by adding a 
onstraint that saysthat if an a
tion doesn't 
hange its own pre
ondition, then the pre
ondition hasto hold also at the next instant:pre
ondition(I+1) :- a
tion, pre
ondition(I).Using these guidelines we 
an en
ode load tru
k with following rules:Program 6.5f load tru
k(Obj, Tr, I) g :-at(Obj, Lo
, I),at(Tr, Lo
, I),obje
t(Obj),tru
k(Tr),lo
ation(Lo
),time(I).%Effe
ts:in(Obj, Tr, I+1) :-load tru
k(Obj, Tr, I),tru
k(Tr),obje
t(Obj),time(I).
hanges(Obj, I) :-load tru
k(Obj, Tr, I),tru
k(Tr),obje
t(Obj),time(I).% As one of the pre
onditions for load tru
k(Obj, Tr, I) is% at(Tr, Lo
, I) and the operator doesn't 
hange it, the% tru
k has to be at the same pla
e at the next instant.at(Tr, Lo
, I+1) :-load tru
k(Obj, Tr, I),at(Tr, Lo
, I),lo
ation(Lo
),tru
k(Tr),obje
t(Obj),time(I). 60



In addition to the operators we also need a set of frame axioms that take 
areof those parts of the world that doesn't 
hange at an time step and that keepthe system in 
onsistent state:Program 6.6% FRAME AXIOMS% Everything stays at the same pla
e where it is unless% some a
tion moves it.at(Obj, Lo
, I+1) :-at(Obj, Lo
, I),not 
hanges(Obj, I),obje
t(Obj),lo
ation(Lo
),time(I).% An obje
t may not be in two pla
es at the same time:- 2 f at(Obj, Lo
, I) : lo
ation(Lo
),in(Obj, Cont, I) : 
ontainer(Cont) g,obje
t(Obj),time(I).
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Chapter 7Writing Smodels ProgramsThis 
hapter 
ontains some mis
ellaneous topi
s on writing programs for Smod-els. The �rst se
tion detains the operation of an Ema
s major-mode for writingSmodels 
ode. The two following se
tions 
ontain some tips for debugging logi
programs and using parser warnings.7.1 Editing Smodels Programs with Ema
sThere is a major-mode for writing Smodels programs with Ema
s. It is de-�ned in �le smodels-mode.el whi
h is lo
ated int the lib dire
tory of lparsedistribution.To use the mode you have to 
opy smodels-mode.el into some dire
torythat is mentioned in your load-path Ema
s variable and add a 
ommand toload the mode when needed.For example, suppose that you want to use the dire
tory ~/.elisp for allyour Ema
s Lisp �les. Then you 
ould 
opy smodels-mode.el to that dire
toryand add the following 
ommands to your .ema
s startup �le:;; First set the load path(setq load-path (
ons "~/.elisp" load-path));; Load smodels-mode automati
ally when needed.(autoload 'smodels-mode "smodels-mode" "Smodels Editing Mode" t);; Use smodels-mode for all files that end with `.lp'.(setq auto-mode-alist (
ons '("\\.lp$" . smodels-mode)auto-mode-alist));; Turn syntax highlighting on automati
ally(add-hook 'smodels-mode-hook 'turn-on-font-lo
k)Smodels-mode knows how to indent Smodels programs and performs some syn-tax highlighting. All keywords are printed with font-lo
k-keyword-fa
e font,62



built-in fun
tions with font-lo
k-builtin-fa
e, and variables with font-lo
k-variable-fa
e.You 
an also run lparse and smodels pro
esses under Ema
s with smodels-mode. You 
an 
hoose what parser you want to use with the 
ommand M-xsmodels-set-parser. By default lparse is used. The a
tual smodels versionthat is used to 
ompute the models 
an be set with M-x smodels-set-program.By default, smodels is used. You 
an set 
ommand line arguments with M-xsmodels-set-parser-arguments and M-x smodels-set-program-arguments.There are four di�erent 
ommands that 
an be used to start smodels pro-
esses:� M-x smodels-
ompute-buffer grounds the 
urrent bu�er with 
hosenparser, sends the results to a smodels pro
ess, and prints the stable modelsin bu�er *smodels*.� M-x smodels-
ompute-files works like smodels-
ompute-buffer butit allows you to pro
ess programs that are stored in multiple �les. Whenyou use this fun
tion the �rst time it asks what �les you want to in
ludewith the run. If you want to 
hange the �le list later, you 
an do it with
ommand M-x smodels-set-file-list.� M-x smodels-parse-buffer sends the 
urrent bu�er to the parser anddisplays the output in the bu�er *smodels*. By default, the 
ommanddisplays its output in plain text format but if you in
lude an argument(i.e. if you invoke it with C-u M-x smodels-parse-buffer), the outputis in smodels internal format.� M-x smodels-parse-files grounds many �les.The smodels-mode keymap binds above fun
tions to following keys:� C-
 C-b is binded to smodels-parse-buffer� C-
 C-f is binded to smodels-parse-files� C-t C-b is binded to smodels-
ompute-buffer� C-t C-f is binded to smodels-
ompute-files7.2 Debugging Smodels ProgramsSo now you have written a large logi
 program, but only thing that smodelswants to answer is False. Finding problems within logi
 programs may betedious and frustrating sin
e a small typo may ruin the whole program. It isnot possible to give a debugging pro
edure that works every time, but here aresome things that I have found helpful.63



� Make sure that all 
onstants begin with a lower 
ase letter and thatall variables begin with an upper 
ase letter. I on
e spent a 
ouple ofhours sear
hing for a mysterious bug in a planning model that seemed to
ome and go. The 
ause for the bug was that in one rule I had writtenat(tr, Lo
, I) instead of at(Tr, Lo
, I). When there was only onetru
k (namely, tr) in the model, everything worked well, but when therewere more tru
ks a plan 
ouldn't be found be
ause only one of the tru
ks
ould move.� Comment rules out one at a time to see whi
h rule 
auses the 
ontradi
-tion. Of 
ourse, if the problem is that some ne
essary rule is missing, you
annot �nd it this way. It is also possible that the rule 
ommented outworks 
orre
tly, but some other in
orre
t rule 
on
i
ts with it.� Make the domains as small as possible. If your program works well whenthere is only one item of some type and it fails when there are more ofthem, it is quite likely that some rule demands that if something is true forone item, it is true for all of them. For example, I on
e tried to split thepredi
ate drive tru
k(Tr, From, To, I) into three smaller predi
ates:drives(Tr, I), moves from(Tr, From, I), and moves to(Tr, To, I).The rule that I wrote for moves to was of the form:moves to(Tr, To, I) :-tru
k(Tr),lo
ation(To),time(I),drives(Tr, I).Grounding transformed this rule into form:moves to(tr, a, 1) :- drives(tr, 1).moves to(tr, b, 1) :- drives(tr, 1).That is, the rule demanded that if a tru
k drives somewhere at all, it mustat the same time drive to ea
h possible lo
ation.� Use 
ompute statements to test what 
ombination of atoms 
ause 
ontra-di
tions. Start with an empty 
ompute statement and if smodels �nds amodel, 
ontinue by adding some atoms that should be in the model to seewhere the things go wrong.For example, when debugging my planning en
oding, I used 
ompute state-ments of the form
ompute 1 f load tru
k(p
t,tr,1), drive tru
k(tr,a,b,2),unload tru
k(p
t,tr,3), at(p
t,b,4) g.after adding ea
h operator to 
he
k that the program 
ould �nd at leastsome legal plan.� Use the -t option to see what exa
tly lparse does to your program.Be
ause the ground programs are often quite big you should 
omment outeverything that in your opinion is not related to the bug.64



� Use the parser warnings. The warnings are detailed in the next se
tion.� You 
an also try to 
ompute the partial models of the program using theopition --partial. This may sometimes give some hints on where theproblem is lo
ated.For example, a programa :- b.b :- not a.doesn't have any models sin
e not a implies a, whi
h 
auses a 
ontradi
-tion. The problem here is that a not was forgotten from the �rst rule.Using the option --partial we get the following result:% lparse --partial foo | smodelssmodels version 2.25. Reading...doneAnswer: 1Stable Model: a' b'TrueThe atoms a0 and b0 are true in the partial model but a and b are not,suggesting that the problem is somehow related to a and b atoms, sin
ethey are only possibly true.7.3 Parser WarningsLparse 
an dete
t some possible errors from its input. The 
he
ks are mostlyaimed to dete
t 
onstru
ts that have 
aused trouble earlier1. Most of the 
on-stru
ts are sometimes useful, but in wrong pla
es they have 
aused a lot ofdebugging. If you want to use the warnings e�e
tively, you should know what
auses warnings and why.-W arityArity dete
ts 
ases when a predi
ate symbol has two di�erent arities insame program. This warning is mainly intended for 
at
hing bugs whereyou forgot an argument from a predi
ate. For examplep(a).p(a,a).
auses the warning2: Warning: predi
ate 'p' is used with 2 arguments at line 2,while it is also used with 1 argument at line 1.There are 
ases when when it is useful to have many di�erent arities forsame predi
ate. For example, you 
ould want to say something like1If you are sometimes bitten badly by something you think lparse should dete
t automat-i
ally, please send me an email about it and I'll try to in
orporate a new warning for it inlater releases. 65



goal :- goal(I), time(I).to say that it doesn't matter when the goal is found. Of 
ourse, in manyof these 
ases it would be better to use di�erent predi
ate symbols.-W extendedExtended dete
ts general problems with extended rules. This is a warn-ing that should be enabled nearly always. At least I haven't found anylegitimate use for the 
onstru
ts that trigger this warning.Currently, extended warns about 
ases where you have expli
itly de�nedweights in pla
es where they don't have any e�e
t. Most often this happensbe
ause you have used 
urly bra
es instead of bra
kets.For example,a :- 2 f b = 3, not 
 = 2 g.gives the warning1: Warning: weight defined for literal 'b' in a 
onstraintrule.1: Warning: weight defined for literal 'not 
' in a 
onstraintrule.Here the �x is to repla
e `f' and `g' with `[' and `℄ '.-W libraryLibrary 
auses a warning in two 
ases: if you have de�ned a library �lethat doesn't exist in .lparser
 or if you de
lare a fun
tion two times.-W similarSimilar dete
ts 
ases where you might have misspelled the initial letterof a 
onstant or variable. For example, in the programa(1..5).b(3..7).
(I) :- a(I), b(i).the variable I was misspelled in the literal b(i) so the domain of thepredi
ate 
(X) is empty instead of 
(3..5) as intended. If the warningsimilar is enabled, lparse prints:3: Warning: 
onstant 'i' is similar to variable 'I'(other o

urren
es of 'i' are not 
he
ked)Lparse warns only the �rst possible typo that it sees.This warning is quite often a false alarm, sin
e there are many reasonswhy a program would have similar names for 
onstants and variables.However, enabling this warning 
ath
es some of the most annoying bugsin logi
 programs. 66



-W unsatUnsat is another option that 
an 
at
h hard-to-�nd typos. Given thisoption lparse warns if there is some predi
ate symbol that 
an't be satis�edbe
ause it doesn't o

ur in a head of any rule. This option is mainlyintended to �nd out 
ases where you have misspelled a predi
ate. Forexample, in the program
onst max time = 10.time(1 .. max time).f a
tion(I) g :- pre
onition(I), time(I).pre
ondition(I) :- time(I).the �rst non-trivial rule is probably trying to say that an a
tion is pos-sible only if its pre
ondition is true, but the predi
ate was misspelled.Sometimes these errors are a pain to �nd and 
orre
t. Using warningunsat lparse prints:3: Warning: predi
ate 'pre
onition/1' doesn't o

ur in any rulehead.This option is similar to the one above in that there are many 
ases whereit is not an error to have some unsatis�able predi
ate in the program. Forexample, in the program,a :- not b, enable a.b :- not a.we want that a is not in any model unless we spe
i�
ally allow it by addingenable a as a fa
t into the program.-W weightWeight prints a warning if you use the default weight of a literal in someweight rule. Default weights are very often useful but if you want to de�neweight expli
itly for ea
h literal, you 
an set this option to 
at
h typos inglobal weight de�nitions. For example, you might have programe(1..3).weight 
(1) = 10.weight 
(2) = 15.weight d(3) = 20.a :- 30 [ 
(X) : e(X) ℄.Here the idea is, that a should be true if the total weight of true 
(X)atoms is more than 30. However, the last weight de�nition was misspelledso that the weight of 
(3) is the default 1 instead of 20.Given the option -W weight lparse warns:5: Warning: default weight used for literal '
(3)'-W errorError 
auses lparse to treat all warnings as errors.67



There are three options that 
an be used to set more than one warning 
agat a time:� -W all enables all warnings.� -W syntax sets arity, extended, and weight.� -W typo sets similar and unsat.7.4 Handling BIG programsYou sometimes meet problems where the smodels �nds the stable models in fewse
onds but lparse takes 20{30 se
onds (or even more) to ground the problem.If these are isolated 
ases, the problem is not severe. On the other hand, if youwant to alter the 
ompute statements just a bit or tweak the domain predi
ates,having to ground the whole program every time 
an be quite a nuisan
e.This problem 
an be partially solved using external de
larations and the
ommand line option -g. The option allows you to read in a previously groundedprogam and add new rules to it.In this se
tion we 
onsider three 
ases that o

ur in pra
ti
e:1. we don't have to 
hange the a
tual grounded program but we want to
hange the 
ompute statement;2. there's a domain predi
ate whose extension is not available during ground-ing but we know what is the largest possible extension; and3. we have an existing program and we want to enlarge the extensions ofdomain predi
ates to get more rules.The se
ond 
ase o

urs for example in the 
on�guration management problem;we know that there's a set of 
omponents that the user 
an 
hoose but we don'tknow what the a
tual 
hoi
es will be for ea
h 
on�guration task beforehand.An example of the third 
ase o

urs in planning problems where we may wantto in
rease the number of time steps if a plan 
an't be found.For the rest of this se
tion we will examine the program test.lp:Program 7.1a(1 .. max a).b(X) :- a(X), not 
(X).
(X) :- a(X), not b(X).7.4.1 Altering the Compute StatementSo, you have now written test.lp and you want to test it out with severaldi�erent 
ompute statements without having to ground the program again ea
htime.First step is to ground the program the �rst time:68



% lparse -
 max_a=2 test.lp > test\_outputThis 
ommand grounds test.lp and stores the output in the �le test output.The argument -
 max a=2 sets the extension of a to fa(1); a(2)g.Next step is to write a sour
e �le 
ompute.lp that 
ontains the 
omputestatement:
ompute f b(1) g.Now you 
an �nd all models of Program 7.1 with the 
ommand line:$ lparse -g test output 
ompute.lp | smodels 0The output of the 
ommand is:smodels version 2.25. Reading...doneAnswer: 1Stable Model: b(1) 
(2) a(1) a(2)Answer: 2Stable Model: b(1) b(2) a(1) a(2)FalseChanging the 
ompute.lp to
ompute f b(1), b(2) g.you will get only one model, as expe
ted:smodels version 2.25. Reading...doneAnswer: 1Stable Model: b(1) b(2) a(1) a(2)FalseNow, with all this su

ess you might want to simplify the 
ompute statement abit and 
hange it to the form:
ompute f b(X) : a(X) g.However, quite surprisingly the answer is not the same as it was to the earlierquery! Instead of having only one model 
ontaining b(1) and b(2), you will getall four models of Program 7.1:smodels version 2.25. Reading...doneAnswer: 1Stable Model: b(1) 
(2) a(1) a(2)Answer: 2Stable Model: b(1) b(2) a(1) a(2)Answer: 3Stable Model: 
(1) b(2) a(1) a(2)Answer: 4Stable Model: 
(1) 
(2) a(1) a(2)FalseWhat happened here? The explanation lies in the fa
t that on
e a rule isgrounded its stru
ture is lost. There is no 
onne
tion from the grounded rule69



to the original non-ground rule that generated it. Similarily, the knowledge ofdomain predi
ates and their extensions is lost.Lparse �rst read the ground program in, re
ognizing and storing the atomnames in the pro
ess. Then it simply passed the rules, unmodi�ed, to smodelsand started to read in 
ompute.lp and pro
ess. As it didn't give any de�nitionsto the predi
ate a=1, the 
ondition in the 
ompute statement was expanded tothe empty set of literals that didn't 
onstraint the models in any way.In theory it would be possible to 
onstru
t the domains from the groundedprogram but this would 
ause other problems:1. it is possible that the program was originally grounded with -d none andthere are a
tually no domain predi
ates left at all; and2. 
omputing domains would make it impossible to in
rementally ground aprogram as all rules would need to be grounded for the old domains aswell as the new ones.7.4.2 Restri
ting the Extensions of Domain Predi
atesIn the se
ond s
enario you want to alter the domains of domain predi
ates andyou have the advantage of knowing the maximal extensions for ea
h predi
ate.In terms of Program 7.1, you would know that there were at most max a in-stan
es of a(X) but you didn't know whi
h ones are ne
essary.These situations 
an be handled with the external de
larations. We startby modifying test.lp a bit:Program 7.2external a(X).a(1 .. max a).b(X) :- a(X), not 
(X).
(X) :- a(X), not b(X).We 
an now 
he
k with the -t option what happens to the program:% lparse -t -
 max_a=2 test.lp
(1) :- a(1), not b(1).
(2) :- a(2), not b(2).b(1) :- a(1), not 
(1).b(2) :- a(2), not 
(2).As we see, lparse 
reated a rule for ea
h possible binding of a(X) didn't in
ludethem as fa
ts in the program. Now we 
an spe
ify the extension of a in a separateprogram a def.lp:a(1).We 
an now 
ombine a def.lp with the test output generated as in theprevious se
tion to get: 70



% lparse -g test_output a_def.lp | smodels 0smodels version 2.25. Reading...doneAnswer: 1Stable Model: b(1) a(1)Answer: 2Stable Model: 
(1) a(1)FalseNote that you 
annot use a hide de
laration on a predi
ate that is de
laredto be external. The reason for this is that on
e you have thrown the nameaway, only thing that is left is the numeri
al index of the atom and it isn'tpossible to asso
iate it to its original representation.If you really wish, you 
an read more than one grounded program in with-g swit
hes. However, this will probably 
ause problems as di�erent programsmay have used the same numeri
al index for di�erent atoms. Lparse noti
esand gives an error message for many of these 
ases but if there are hidden orinternal atoms, it is very likely that the programs will mix together in
orre
tly.So use multiple -g options only if you are absolutely sure that the atom listsare identi
al for both programs.7.4.3 Enlarging the Extensions of the Domain Predi
atesIn the third s
enario we have grounded the program but we want to add moreinstan
es of domain predi
ates to it. This 
an be done most 
onveniently whenusing numeri
 domains but the same prin
iples hold also for symboli
 domains.Again, we start by modifying test.lp:Program 7.3a(min a .. max a).b(X) :- a(X), not 
(X).
(X) :- a(X), not b(X).First we ground the program with the initial values of domain predi
ates:% lparse -
 min_a=1 -
 max_a=2 test.lp > test_outputSuppose that we now want to in
rease the maximum value for a to 3. We 
an dothat by reading in the grounded program, setting the minimum and maximumvalues to 3 and grounding the original program again:% lparse -g test_output -
 min_a=3 -
 max_a=3 test.lp > new_output% smodels 0 < new_output7.4.4 Ha
king Bits and Pie
es Together by HandIf the grounded program is suÆ
iently big, just running it through lparse 
antake too mu
h time as ea
h atom has to be individually pro
essed. In those
ases you may have to roll up your sleeves and do some manipulation dire
tly71



to the grounded program. When doing this, you may �nd it helpful to readSe
tion B where the internal smodels 2.x format is explained.There is one 
ommand line option, --atom-file that 
an be used to dividethe lparse output into two parts: the rules and the rest stu�. Given the
ommand line% lparse --atom-file atoms program.lplparse prints the ground rules of program.lp to standard output and sendsthe symbol table and 
ompute statement to the �le atoms.For example, we 
an extra
t the symbol table of Program 7.1 with the 
om-mand line:% lparse --atom-file atoms -
 max_a=2 test.lp1 1 1 1 21 3 1 1 41 2 1 1 11 4 1 1 31 5 0 01 6 0 0The rules are in smodels internal format. The most interesting rules for ha
kingaround are the last two rules. Rules of the form:1 n 0 0denote that the atom number n is a fa
t in the program (i.e., there's a basi
rule with n as the head and an empty body in the program).After the pre
eeding 
ommand line the atoms �le looks like this:1 
(1)2 b(1)3 
(2)4 b(2)5 a(1)6 a(2)0B+0B-01The �rst part is the symbol table giving the representation for ea
h atom. Thepart after B+ 
ontains the atoms that have to be in a model (the zero designatesthe end of this part), part after B- 
ontains the negative 
ompute statementand the �nal line gives the desired number of models.The easiest way to modify grounded programs by hands is to ground it withexternal de
larations, read in the symbol table and 
ompute statement, andadd some of the external atoms as fa
ts to the program.72



7.5 Mis
ellanous TipsThis se
tion 
ontains a few mis
ellanous tips that 
an help in writing Smodelsprograms. Most of this stu� is also mentioned elsewhere in the manual, but Ithought that it would be ni
e to 
olle
t them to one pla
e. This se
tion willprobably in
rease in size in the future revisions when more things 
ome to mymind.The -t optionThe -t is probably the most important lparse 
ommand line option asyou 
an use it to see what a
tually happened to your program when itwent through lparse.The -d optionThe se
ond most important option is -d none that simpli�es the outputby leaving out the domain predi
ates. It also speeds smodels a little.Hide de
larationsAnother way how you 
an get simpler models is to use hide de
larationsliberally. Postpro
essing the answer is mu
h easier when you don't haveto worry about some hundreds of uninteresting atoms.Using a predi
ate as its own 
onditionYou may use a domain predi
ate as its own 
ondition in 
onstraint andweight literals. For example, you might want to say that a graph is big ifthere are more than 100 edges:big graph :- 101 f edge(X,Y) : edge(X,Y) g.
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Chapter 8Future DevelopmentI have a 
ouple of ideas that will probably be in
luded in lparse some day.They in
lude:� Extended support for data types. I vision system like one that is used inthe programming language S
heme, that is, the user may freely mix normalintegers, 
oating point numbers, and bignums and the system takes 
areof rest. However, as this requires rewriting of quite large parts of lparse
ode this will not happen very soon.� Some sort of uni�ed method for setting attributes for predi
ates, like mark-ing them hidden, setting weights, and like. This feature would prevent\keyword-pollution" that has been threatening lparse lately. The featurewill be implemented in su
h way that it will be easy to 
onvert 
urrentprograms into new format automati
ally.� Possibility of using predi
ates that o

ur as head of a spe
ial rule as do-main predi
ates.If you have some suggestions or if you found a bug in lparse, please sendemail it for me (tommi. syrjanen�hut.�).
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Appendix ASmodels APIThis se
tion 
ontains a brief overview of the smodels programming API. TheAPI is a library interfa
e that allows a C++ program to 
onstru
t logi
 programsand 
ompute their stable models. Unfortunately, the 
urrent interfa
e is quiteunintuitive and there's no easy way of using the fun
tionality of lparse withit, so in pra
ti
e only ground programs 
an be handled 
onveniently. However,the integration of these fun
tionalities will be added in a future version and thelibrary interfa
e will be 
leaned.A.1 Installing and Using the APIBefore you 
an use smodels as a library you have to 
ompile it as su
h. This
an be a
hieved by typing:% make libin the smodels sour
e dire
tory. The library build pro
ess uses GNU libtoolthat should be installed on the system. The 
ommand:% make libinstallwill then install the libraries to a path that is spe
i�ed in the Makefile.The default path is /usr/lo
al/lib. The 
ommand doesn't install the header�les anywhere, so they should either be 
opied to a suitable lo
ation by handor the programs should be 
ompiled with the `-I' 
ompiler option. The mostimportant header �les are listed in Figure A.1.If the 
ompiler and linker 
an �nd the header �les and the libsmodels.la�le, respe
tively, you 
an link the library to your programs in the usual way,using the `-lsmodels' argument to instru
t the linker:% g

 -o foo -I/smodels/header/path foo.

 -lsmodelsThe smodels example dire
tory 
ontains several examples on API use.
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A.2 Header FilesThis se
tion goes through the �ve most important header �les and presentsimportant 
lasses and methods that are de�ned in them. However, this is notintended to be a 
omplete referen
e but it is more like a 
ookbook of usefulstu�.A.2.1 defines.hThe most important thing in the header �le defines.h is the de�nition ofdi�erent rule types:typedef enum fENDRULE,BASICRULE,CONSTRAINTRULE,CHOICERULE,GENERATERULE,WEIGHTRULE,OPTIMIZERULEg RuleType ;The meaning of di�erent rule types 
an be best explained by showing the
orresponding logi
 program segments.ENDRULEAn ENDRULE is not a 
on
rete rule but it is used as a pla
eholder beforethe a
tual rule type is de
ided. You don't have to worry about it.BASICRULEA basi
 rule is a normal logi
 programming rule that doesn't 
ontain any
onstraint or weight literals. For example, a rulea :- b1, b2, b3, not 
1, not 
2, not 
3.is a basi
 rule.CONSTRAINTRULEA 
onstraint rule has a basi
 literal as its head and its tail is one 
onstraintliteral with only a lower bound. For example, the ruleapi.h Fun
tions for 
reating logi
 programsatomrule.h De�nitions of atoms and rulesdefines.h General de�nitionsstable.h Fun
tions for reading programs from �lessmodels.h Fun
tions for 
omputing stable modelsFigure A.1: Important smodels header �les76



a :- 2 f b1, b2, b3, not 
1, not 
2, not 
3 g.is a 
onstraint rule.CHOICERULEA 
hoi
e rule has a 
onstraint literal with no bounds as its head and thebody has only basi
 literals:f a1, a2, a3 g :- b1, b2, b3, not 
1, not 
2, not 
3.GENERATERULEGenerate rules are not used anymore sin
e their semanti
s 
ouldn't bede�ned in a ni
e way.WEIGHTRULEA weight rule is otherwise similar to a 
onstraint rule but every literal inthe tail should have an expli
it weight de�ned for it. For example,a :- 2 [ b1=1,b2=2,b3=3,not 
1=1,not 
2=2,not 
3=3 ℄.OPTIMIZERULEAn optimize rule handles minimize and maximize statements. However,only minimization is expli
itly modeled and maximization has to be doneby negating all literals in the rule body. Also, every literal in the rulebody needs a weight de�nition for it.A.2.2 api.hThe header �le api.h 
ontains the 
lass Api that 
an be used to 
reate andmanipulate logi
 programs. The 
lass has the following methods:Constru
torThe 
onstru
tor of the Api 
lass is:Api ( Program � pr ) ;The 
lass Program is de�ned in the header program.h and it is not ne
-essary to know about its internal details to be able to use the API. Theonly thing that you need to ensure is that an Api has a valid pointer touse. In pra
ti
e, most often you want to use a program that is tied to aninstan
e of the Smodels 
lass that will be presented below. So an Api isusually 
reated using the following 
ommands:Smodels smodels ;Api api (&smodels . program ) ;You'll get a segmentation fault if the pointer is not valid, so it is not oneof those hard-to-dete
t bugs.Destru
torThe destru
tor of the 
lass is simply:virtual ~ Api ( ) ; 77



and it doesn't do anything spe
ial.Creating RulesThe rules are 
reated using the following three methods:void beg in ru l e ( RuleType type ) ;void add head ( Atom � a ) ;void add body ( Atom � a , bool pos ) ;void add body ( Atom � a , bool pos , Weight w) ;void end ru le ( ) ;The possible rule types are des
ribed in the above se
tion. When usingall other rule types but CHOICERULE you may add only one head to arule. The pos argument to an add body 
all de
ides whether the literal ispositive or negative.Example A.1The rulea :- b, not 
.
ould be 
reated withapi . beg in ru l e (BASICRULE) ;api . add head ( a ) ;api . add body ( b , true ) ;api . add body ( 
 , false ) ;api . end ru le ( ) ;supposing that the Atoms a, b, and 
 have been de�ned a

ordingly.�Setting boundsThe bounds for 
onstraint and weight rules 
an be de�ned using the fol-lowing two fun
tions:void s e t a t l e a s t body ( long ) ;void s e t a t l e a s t w e i g h t ( Weight ) ;Currently the type Weight is de�ned with a typedef:typedef unsigned long Weight ;Note that both of these fun
tions have to be 
alled before end rule().Creating and Manipulating AtomsThere are �ve fun
tions that 
an be used to 
reate and manipulate atoms.virtual Atom � new atom ( ) ;void set name ( Atom � a , 
onst 
har � name ) ;Atom � get atom ( 
onst 
har � name ) ;void set 
ompute ( Atom � a , bool in model ) ;void reset 
ompute ( Atom � a , bool in model ) ;78



The new atom() fun
tion 
reates a new atom and returns a pointer to it.The atom doesn't have a name assigned to it and it has to be set with theset name() fun
tion. Note that you have to 
all the remember() fun
tionbefore you 
an de�ne names. If you know a textual representation of anatom, you 
an get a pointer to it with the get atom fun
tion. Note thatget atom returns NULL if no su
h atom is de�ned.The two last fun
tions are used to de�ne the 
ompute statement. A state-ment set 
ompute ( a , true ) ;asserts that the atom a has to be true in the models. Correspondingly,set 
ompute ( a , false ) ;asserts that it must be false. If neither statement is given, the atom maybe true or false. If both are given, the result is an immediate 
ontradi
tion.The last fun
tion 
an be used to remove an atom from the 
ompute state-ment. The boolean argument is used to indi
ate whether the atom isremoved from the positive or the negative 
ompute list.Example A.2Suppose that you want to de�ne an atom a and demand that it has tobe true in all models. Then you 
an do it with the program snippet:api . remember ( ) ;Atom � a = api . new atom ( ) ;api . set name ( a , "a" ) ;api . set 
ompute ( a , true ) ; �Handling Atom NamesThere are two fun
tions that 
ontrol whether atom names are allowed ornot: void remember ( ) ;void f o rge t ( ) ;You 
an 
all remember() when you want to use names for atoms andforget() when you want to get rid of them.Mis
ellanous Fun
tionsvoid 
opy ( Api � ap ) ;void done ( ) ;The fun
tion 
opy() generates a new 
opy of the Api that is given as theargument. The fun
tion done() is 
alled when all rules of the programhave been 
onstru
ted. This is used to signal the Api 
lass that it 
annow 
reate the internal data stru
tures for the program. You 
an't addnew rules or atoms to an Api after the done() 
all.79



The following 
ode example is based on the �le example.

 that is in theexamples dire
tory of the smodels distribution.Example A.3We will 
reate the Api representation of the simple program:a :- not b. b :- not a. 
ompute a .The resulting C++ 
ode is:#in
 lude " smodels . h"#in
 lude " api . h"int main ( )f Smodels smodels ;Api api (& smodels . program ) ;// Keep tra
k of atom namesapi . remember ( ) ;// Define the atomsAtom � a = api . new atom ( ) ;Atom � b = api . new atom ( ) ;api . set name ( a , "a" ) ;api . set name ( b , "b" ) ;// de f ine the ru le a :� not bapi . beg in ru l e ( BASICRULE) ;api . add head ( a ) ;api . add body ( b , false ) ;api . end ru le ( ) ;// and b :� not a .api . beg in ru l e ( BASICRULE) ;api . add head ( b ) ;api . add body ( a , false ) ;api . end ru le ( ) ;// 
ompute statementapi . set 
ompute ( a , true ) ;// s i gna l the endapi . done ( ) ;g �
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A.2.3 atomrule.hThe header �le atomrule.h 
ontains the de�nitions of the 
lasses Atom andRule. Both 
ontain lots of internal stu� that is not ne
essary for using the API.However, the Atom 
lass 
ontains few useful methods and attributes:Constru
torThe 
onstru
tor is de�ned as:Atom ( Program � p ) ;The argument p is a pointer to the program where the atom o

urs. Youshouldn't have to 
reate atoms dire
tly as it is better to use the new atommethod of the Api 
lass.NameThe name of an atom (if de�ned) 
an be obtained with the method:
onst 
har � atom name ( ) ;Truth valueThe truth value of an atom in a stable model is stored in two attributes:bool Bpos : 1 ;bool Bneg : 1 ;The variable Bpos is true when the atom is in a stable model and Bneg istrue when the atom is not in the model. If both are false, then the atomis neither true or false. Note that this may not o

ur in normal use.Compute statementThe following two attributes 
ontrol whether an atom is in the 
omputestatement: bool 
omputeTrue : 1 ;bool 
omputeFalse : 1 ;You 
an also use the set 
ompute method of the Api 
lass to do this.A.2.4 smodels.hThe header �le smodels.h 
ontains the de�nition of the 
lass Smodels that im-plements the a
tual 
omputation of stable models. The most important methodsof the 
lass are:Constru
torSmodels ( ) ;The 
onstru
tor doesn't take any arguments.81



InitializationAfter the rules of a logi
 program have been generated using the Api 
lassthat is tied to a Smodels instan
e, the 
omputation has to be initializedwith the initialization fun
tion:void i n i t ( ) ;ComputationThe stable models are 
omputed with the model fun
tion.int model ( bool look = true , bool jump = false ) ;The fun
tion returns 1 if a model is found and 0 if there are no moremodels. Su

essive 
alls return all models of the program. For example,the 
ode snippet:while ( smodels . model ( ) ) f// do somethingg
an be used to generate all stable models.The arguments to the fun
tion 
ontrol whether lookahead heuristi
s isused and whether ba
kjumping te
hniques are enabled. Lookahead helpsin most programs so it is usually a good idea to leave it on. However,the algorithm is quadrati
 and with programs that have \easy" stru
turemay be slower with it. Ba
kjumping is sometimes worthwile but usuallyit 
osts more than it helps so it is o� by default.Examining ModelsAfter a model has been 
omputed, it 
an be printed with the fun
tionvoid printAnswer ( ) ;If you want to go through the atoms one at a time, you 
an do it by goingthrough the atom list of the Program 
omponent using the following 
odesnippet:Node � nd = smodels . program . atoms . head ( ) ;for ( ; nd ; nd = nd�>next ) fi f ( nd�>atom�>Bpos ) f // the atom is true// do somethingg else i f ( nd�>atom�>Bneg ) f // the atom is f a l s e// do somethingggResetting the ComputationThe fun
tion 82



void revert ( ) ;undoes all 
hanges that have been done after 
alling init(). In parti
ular,it will destroy all ba
ktra
k information so the next model() 
all will again�nd the �rst model. This 
all is useful when you want to use many 
omputestatements.Mis
ellanous BitsThe next fun
tions may be useful if you want to do something spe
ial withthe logi
 program. They are 
alled by the above fun
tions but sometimesit may be useful to 
all them independently.void setup ( ) ;void setup with lookahead ( ) ;These two fun
tions simplify the program by �rst 
omputing a dedu
tive
losure of the rules and then dropping all unsatis�able atoms and rulesfrom it. The latter fun
tion also does one round of lookahead examination.bool 
 o n f l i 
 t ( ) ;The 
onfli
t() fun
tion 
he
ks whether a 
ontradi
tion is found. Also,if optimize statements are used, this fun
tion 
he
ks whether the model
andidate is better than the 
urrently best found. Note that this fun
tion
lears the 
on
i
t 
ag so you'll have to be 
areful with it.void lookahead ( ) ;bool l o okahead no heu r i s t i 
 ( ) ;void h eu r i s t i 
 ( ) ;The two lookahead fun
tions 
hoose what literal should be added to themodel 
andidate. The index number of the 
hosen atom is stored intothe variable hi index. If the best 
hoi
e is a positive literal, the booleanvariable hi is positive is set to be true, otherwise it is set to false.void expand ( ) ;The fun
tion expand() 
omputes the dedu
tive 
losure of the atoms whosetruth value is known.int wel l founded ( ) ;This fun
tion 
omputes and prints the well-founded model of the program.void setToBTrue ( Atom � a ) ;void setToBFalse ( Atom � a ) ;These two fun
tions 
an be used to set truth values of atoms dire
tly.Note that usually it is better to set the 
ompute statement, instead.
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A.2.5 stable.hThe header �le stable.h 
ontains the 
lass Stable that 
an be used to readlogi
 programs from �les. The programs should be stored in smodels internalformat that is explained in Se
tion B. The important methods are:Constru
torThe 
onstru
tor is simplyStable ( ) ;Reading programsLogi
 programs 
an be read with the methodint read ( istream &f ) ;The argument f should be bound to the �le storing the program.A.2.6 ExampleThis se
tion 
ontains an example API fun
tion that 
an be used to 
omputepartial models of logi
 program, not in the sense of Se
tion 4.8, but in the sensethat it will �nd a partial model 
andidate that 
an possibly be extended to afull stable model. This kind of fun
tion may be useful when the program islarge and we want to 
onstru
t the model intera
tively.For 
onveniety, this fun
tion is added to the Smodels 
lass, but it might beused also outside it.bool Smodels : : pa r t i a l mode l ( )f // 
ontinue as long as there are po s s i b l e modelswhile ( ! f a i l )f // 
ompute the dedu
t ive 
 l o sure of// the 
urrent pa r t i a l modelexpand ( ) ;i f ( 
 o n f l i 
 t ( ) ) // is the s i t u a t i on 
ons i s t en t ?ba
ktra
k ( true ) ;else i f ( 
overed ( ) )return true ; // a f u l l modelelse i f ( ! l o okahead no heu r i s t i 
 ( ) )return true ; // a pa r t i a l modelgreturn false ; // no models l e f tgThis fun
tion would then be used like:84



while ( 1 ) fi f ( par t i a l mode l ( ) ) f// pro
ess the pa r t i a l model and po s s i b l y ask// the user how the model should be extended .// the s e l e 
 t i o n s 
an be expressed using// setToBTrue ( atom ) and setToBFalse ( atom)// 
 a l l s . A l t e rna t i v e l y , you 
an use the sequen
e// h e u r i s t i 
 ( ) ; 
hoose ( ) ;// to use smodels ' s h e u r i s t i 
 s .g else f// pr int some d i a gno s t i 
 sba
ktra
k ( true )gg

85



Appendix BSmodels Internal FormatThe language that smodels 2.x a

epts is mu
h simpler than the one a

eptedby lparse. During grounding lparse transforms the 
omplex rules to thosea

epted by smodels. There are four di�erent rule types: basi
 rules, 
onstraintrules, 
hoi
e rules, and weight rules.Additionally, the minimize statements are internally represented by theirown rule type. The maximize statements are 
hanged into minimize statementsby negating all literals in them.Basi
 rules are the normal rules that don't use any extended features. Con-straint rules 
orrespond to lparse rules of the forma :- 2 f b, 
, not d g.
hoi
e rules have the formf a, b, 
 g :- d, e, not f, not g.and weight rules have the forma :- 2 [ b=1, 
=2, not d=3 ℄.In all 
ases there may be only one spe
ial 
onstru
t in one rule and thereare only lower bounds for 
onstraint and weight rules.Internally smodels uses integers as atoms and the atom names are stored ina separate symbol table. The smodels expe
ts to read �rst the a
tual rules ofthe program, next the symbol table, and �nally the 
ompute statement. Thedi�erent parts are separated by a line that has only a `0'.The di�erent se
tions are best introdu
ed by an example. Consider thefollowing program:Program B.1a :- not b.b :- not a.:- b.
ompute f a g.The internal format for this program is:86



1 2 1 1 31 3 1 1 21 1 1 0 302 a3 b0B+20B-101The �rst part of the listing 
onsists of the the rules of the program:1 2 1 1 31 3 1 1 21 1 1 0 30The �rst number denotes the rule type. All of the rules are basi
 rules so thenumber is one in all 
ases. The next number identi�es the head of the atom. Inthis 
ase, the atom a is represented by 2 and the atom b by 3. The atom number1 is an internal atom named false that is true when a model 
andidate shouldbe reje
ted.Next 
omes the body de�nition. The �rst number is the total number ofliterals in the body and the se
ond one is the number of negative literals. Therest of the line 
ontains the numbers of the literals, with negative ones being infront. The line with just 0 signals the end of the rules.The se
ond part is the symbol table 
ontaining the atom de�nitions:2 a3 b0If an atom is left out the symbol table, it is 
onsidered to be a hidden atomand it is not printed in the model. In this example, the �rst atom is hidden.The third part 
ontains the 
ompute statementB+20B-101After B+ 
omes the positive 
ompute statement, that is, a list of atoms thatshould be true in the model. After B- 
omes a list of atoms that shouldn't be inthe model. The last 1 signi�es the number of models that should be 
al
ulated.87



Table B.1: The mapping of atoms that are used in the examplesatom numbera 1b 2
 3d 4e 5B.1 Rule TypesBasi
 RuleA basi
 rule has the form:1 head #literals #negative negative positiveWhere head is the atom that is the head of the rule, #literals is the totalnumber of literals in the rule body, #negative is the number of negativeliterals in the rule body, negative is the list of negative literals, and positiveis the list of positive literals.Example B.1Let the atoms be de�ned as in Table B.1. Then, the rule:a :- b, not 
, d, not e.is represented as:1 1 4 2 3 5 2 3 �Constraint RuleA 
onstraint rule has the form:2 head #literals #negative bound negative positivewhere head, #literals, #negative, negative, and positive are as withbasi
 rules and bound is the amount of literals in body that has to be trueso that the head is true.Example B.2Given the bindings in Table B.1, the rulea :- 2 f b, 
, not d g.is represented as2 1 3 1 2 4 2 3 �88



Choi
e RuleA 
hoi
e rule has the form3 #heads heads #literals #negative negative positiveMost of the entries are the same as with basi
 rules. The entry #headsdenotes the number of the atoms in a 
hoi
e rule head and heads is thelist of the atoms in the rule head.Example B.3Using the usual bindings for the atoms, the rulef a, b, 
 g :- e, not d.is represented as3 3 1 2 3 2 1 4 5 �Weight RuleA weight rule has the form5 head bound #lits #negative negative positive weightsMost of the entries are the same as in 
onstraint rules. The entry weightsis a list of the weights of the literals in the rule body.Example B.4The rule:a :- 3 [ b=1, not 
=2 ℄.is represented as:5 1 3 2 1 3 2 2 1 �Minimize RuleA minimize rule is of the form:6 0 #lits #negative negative positive weightsNote that ea
h literal has to have an expli
it weight assigned to it. Max-imization 
an be a
hieved by negating all literals in the statement body.Example B.5The statement:maximize [ a=5, not b = 10 ℄.is represented as:6 0 2 1 2 1 10 5 �In 
ase you wonder, the missing rule type 4 was originally used for generaterules that were essentially 
hoi
e rules with bounds. As they 
aused semanti
altroubles, they were removed from use.89
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