Lparse 1.0
User’s Manual

Tommi Syrjanen

ii

Contents

0.1 Licence @ . i i e e e
0.2 Recent Changes
0.3 Notation
Introduction

1.1 Short Primer on Logic Programming
1.2 Stable Model Basics,
1.3 A Practical Example L.
1.4 Different Smodels Front-Ends
Installation

2.1 Installation on Windows systems

Invoking Lparse

3.1 Lparse Options
3.2 Smodels Options
Theoretical Stuff
4.1 Basic Terminology
4.2 Stable Model Semantics oL o000
43 Grounding
4.4 Domain Predicates
441 What’s New? o
4.4.2 Informal Domains
4.4.3 Constructing Domains
444 Formal Domains
4.5 Domain-Restricted Programs
4.6 Weight Constraints
4.7 Classical Negation
4.8 Partial Models and Disjunctive Programs
4.8.1 Disjunctive Programs
4.8.2 PartialModels
4.9 Computational Complexity

iii

5 Language

5.1 Comments oL e e e e
9.2 Terms e
5.3 Atoms and Literals L.
54 Rule Types
5.5 Declarations
5.6 Statements Lo
5.7 Functions e
5.7.1 Numerical Functions
5.7.2 Imternal Functions
5.7.3 User-Defined Functions
5.74 Lparse API
5.8 Keywords
6 Examples
6.1 Node Coloring
6.2 Logical Puzzles oo
6.3 Planning L
7 Writing Smodels Programs
7.1 Editing Smodels Programs with Emacs
7.2 Debugging Smodels Programs
7.3 Parser Warningso Lo
7.4 Handling BIG programs
7.4.1 Altering the Compute Statement
7.4.2 Restricting the Extensions of Domain Predicates
7.4.3 Enlarging the Extensions of the Domain Predicates
7.4.4 Hacking Bits and Pieces Together by Hand
7.5 Miscellanous Tips oo

8 Future Development

A Smodels API
A1 Installing and Using the APT
A2 Header Files
A21 defines.h
A22 api.h
A23 atomrule.h,
A24 smodels.h
A25 stable.ho
A26 Example.

B Smodels Internal Format
B.1 Rule Types

iv

38
38
38
40
43
44
48
49
49
a0
51
33
35

56
36
26
29

62
62
63
65
68
68
70
71
71
73

74

75
75
76
76
77
81
81
84
84

86

0.1 Licence

Copyright (©1998-2000 Tommi Syrjanen tommi.syrjanen@hut.fi

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.

0.2 Recent Changes

This section gives quick overview on recent changes that are made in the ac-
cepted language. The more detailed version notes are contained in file NEWS
in the distribution directory.

Lparse-1.0.3
contains several changes. The most important is that the definition of
domain predicates extended to cover stratified rules. See Section 4.4 for
details. Second, there’s now an alternative syntax for declarations where
the keywords are preceded by the character #. Two new declarations,
#option and #domain were added (see Section 5.5).

Lparse-1.0.1
added a new internal function. The call ‘weight (a (X))’ returns the weight
of the literal a(X).

Lparse-0.99.61
adjusted the weight declarations a little bit so that now negative liter-
als are defaulted to positive ones if there are no explicit declarations for
them. This behavior can be turned off with the command line argument
‘-—separate-weight-definitions’.

Lparse-0.99.60
changed the behavior of weight declarations so that now positive and
negative literals are differentiated. For example,

weight a = 5.
weight not a = 10.
assigns different weights for a and not a.

The default behavior of quoted strings also changed and now quotes are
always retained and a and ”a” are different atoms. The old behavior can
be accessed with the ‘~-drop-quotes’ command line argument.

Lparse-0.99.58
allows expressions to be used in a more intuitive way inside constraint and
weight literals. For example, in a rule

a(X,Y) (-1 X+Y==0, Y<X 1,
foo(X,Y).

the atom a(X,Y) is true when exactly one of the expressions evaluate to
true.

Additionally, an empty conditional literal is now treated as an unsatisfied
literal in all cases.

0.3 Notation

The parts of this manual that are changed in the current manual version are
denoted by putting a continous black line in the left margin, as in this paragraph.

Similarily, changes that have happened recently are denoted by a dashed line
in the left margin.Similarily, changes that have happened recently are denoted
by a dashed line in the left margin.

Chapter 1

Introduction

SMODELS is a system for answer set programming. It consists of smodels, an ef-
ficient implementation of the stable model semantics for normal logic programs,
and lparse, a front-end that transforms user programs into form that smodels
understands.

Answer set programming [6, 10] is a programming paradigm completely dif-
ferent from traditional procedural programming. Instead of writing algorithms
to solve a problem in hand, the programmer describes the problem using a
formal language and an underlying engine finds a solution to the problem.

SMODELS programs are written using standard (though extended) logic pro-
gramming notation. That is, the programs are composed of atoms and inference
rules. An atom represents a claim about the problem universe and it may be
true or false. Inference rules are used to encode relationships between atoms.
An answer to a problem is a set of atoms, called a stable model, that tell which
atoms are true.

A SMODELS program may have one, none, or many stable models. The
stable models of a program may be seen as a set of rational beliefs about the
program. That is, if we think that a program is a knowledge base encoding
the relationships between objects and a stable model is a set of those things
in our universe that we believe to be true, then our beliefs are consistent and
well-founded. Consistency means that we don’t believe in two contradictionary
things and well-foundedness means that we have some reason for our belief. We
don’t want to believe that the Moon is made of green cheese unless somebody
gives a coherent theory that explains why Moon is actually a big dairy product.
For formal definition of the stable model semantics see Section 4.2.

SMODELS has two parts, smodels and lparse!. The first part, smodels, is
the actual logic programming engine doing all the hard work and lparse just
adds a layer of syntactic sugar on top of it. The smodels has been developed
in the Laboratory for Theoretical Computer Science in Helsinki University of
Technology by Patrik Simons [13, 8, 11, 14, 12, 15, 9, 10] and the lparse has

L Actually, in Section 1.4 we see that there are also other front-ends in addition to lparse.

been developed by Tommi Syrjdnen [19].
The newest versions of smodels, lparse, and this document are available
at

http://www.tcs.hut.fi/Software/smodels.

1.1 Short Primer on Logic Programming

This section has a really short primer on the subject of logic programming in
general. It is aimed for readers who have no prior experience on logic pro-
gramming. For an extensive treatment on the traditional logic programming
techniques, you should consult The Art of Prolog by Sterling and Shapiro [18].

There are basically four kinds of things in logic programming languages:
atoms, constants, variables, and rules. They are presented here rather infor-
mally. For formal stuff, see Chapter 4.

Constant
Constants are the individual things that exists in the universe of the
problem domain. Constants are either numbers or symbolic constants. In
most logic programming languages the initial letter of a constant is written
in lower case.

Few examples of constants: a, 10, foo, bar.

Variable
Variables are used to generalize things. Unlike traditional programming
language, you don’t usually assign a value to a variable directly. Instead,
the underlying engine finds the correct values (or substitutes constants in
place of the variables) for them.

Variables start with a capital letter, like in: X, Foo, Bar.

Atom
An atom consists of a predicate symbol that is followed by a parenthesized
list of constants or variables. Atoms are used to express relationships
between constants. For example, an atom parent(john, jill) might tell us
that John is Jill’s parent. An atom has two possible truth values, true and
false.

Rule
Rules allow us to make inferences based on the predicates. For example,
a rule:

sibling(X,Y) :- parent(Z,X), parent(Z,Y).
would tell us that if X and Y both have the same parent Z, then they

are siblings. Rules are composed of two parts: the head (part to the left
of ‘:-’) and the body (right to ‘:-’).

The idea here is that if every atom in the body (or tail as it is also
often called) is true, the head must also be true. So if there is some
way to substitute constants for the variables X, Y, and Z such that both
parent(Z,X) and parent(Z,Y") are true, we can infer that sibling(X,Y)
is also true.

In classic logic programming languages (like Prolog), the inferences are usu-
ally made top-down. That is, we give some atom as a query string, and the
system tries to find a way to make it true.

For example, if we were interested in finding out whether Jack is Jill’s sibling,
we would issue a query (called a goal) sibling(jack,jill)? The system would
then scan through the rules until it finds some rule which has the predicate
sibling as its head. After finding the rule presented above, the system would
substitute jack for the variable X (denoted: X/jack) and jill for Y (Y/jill).

Now the system has established that Jack and Jill are siblings if there exists
some Z that is parent of both of them. Next, the system would issue a new query
(called a subgoal) parent(Z, jack) in order to find the parent of Jack. Suppose
that Joan is Jack’s mother. Then the subgoal succeeds and the systems finds
the substitution Z/joan.

The system will then check whether Joan is also Jill’s mother by issuing the
query parent(joan, jill). If the query succeeds, the system answers yes to our
original question (sibling(jack,jill)?). If Joan is not Jill’s mother, the query
fails and the logic programming engine backtracks and tries to find another
substitution for Z. If no such substitutions can be found, the systems answers
no to our question. If there are more than one rule for a predicate, the rules are
tried in order. If one fails, the next one is checked.

Quite often the logic programs can be divided into two parts: a set of infer-
ence rules and a database of facts for the rules to make inferences with.

For example, the following program encodes a simple family database.

Program 1.1
sibling(X,Y) :- parent(Z,X), parent(Z,Y).
mother (X,Y) :- parent(X,Y), female(X).
uncle(X,Y) :- parent(Z, Y), sibling(Z,X), male(X).
female(joan). female(jill). male(jack).
parent(joan, jack). parent(joan, jill).

1.2 Stable Model Basics

Traditional logic programming systems are query-driven. That is, you enter a
question and the system then tries to find an answer to it. At any point only
those variables that are somehow involved in the query have values binded to
them.

SMODELS works in a different way. In the first phase all variables are removed
from the program by substituting all possible values for them in all rules. This

phase is called grounding (see Section 4.3) and it’s the 1parse’s job. In the next
phase smodels computes the stable models of the program.

A model is a set of atoms that satisfies every rule in the program. A rule is
satisfied if either its head is true in the model or some literal in the rule body
is false. A model is stable when it meets some other requirements, that are
formalized in Section 4.2. Informally, a model is stable if every atom in it has
some “reason” to be there: for each atom in the model there has to be some
rule that has the atom as a head such that the rule body is true in the model.

As a simple example of what stable models are about, consider the following
program segment that could represent a part of a PC configuration system:

Program 1.2
ide_drive :- hard.drive, not scsi_drive.
scsi_drive :- hard_drive, not ide_drive.
scsi_controller :- scsi._drive.

hard_drive.

Here the first rule says that if we have a hard_drive in our computer and we
don’t have a scsi_drive, we must have an ide_drive in it. The next rule says the
same thing about scsi_drive: if we have a hard_drive that is not an ide_drive,
it has to be a scsi_drive. The third rule states that if we have a scsi_drive in
the computer, we must also include a scsi_controller in it. The last rule is a
fact that tells that our computer has a hard_drive in it.

This program has two stable models. The first one is:

M, = {hard_drive,ide_drive}
and the second one is:
Ms = {hard_drive, scsi_drive, scsi_controller}.

The first two rules of the program represent a choice point: if we have a hard
drive in the computer, we must choose between an ide-drive and a scsi-drive.

If we add scsi_controller to the first stable model the resulting set of atoms
is still a model of the program in the propositional sense but it is no longer a
stable model. That is because scsi_controller is needed only when scsi_drive is
present, and when it is missing there is no reason to add scsi_controller in the
model.

The semantics of ordinary rules matches that of logical implication: if the
body is true, the head must also be true. In the program above, we used re-
cursive not-atoms to model a choice. The following program segment illustrates
further this practice:

a :- not b.
b :- not a.

If b is not true, then a must be true and vice versa. However, this construction
is not exclusive or of the atoms, since it is possible that some other part of the
program forces both a and b to be true. To get XOR one should add a rule of
the form:

a:-not b.
b:-not a

User | ——| lparse

Program

RO ke
IR O
IR
I

Answer ~._ - smodels

Answer: 1
Stable model: a
Answer: 2
Stable model: b

Figure 1.1: The way of a logic program

- a, b.

to the program. Rules without heads act as integrity constraints; if a body

of such a rule is satisfied, the model candidate is rejected.

1.3 A Practical Example

The basic concepts are introduced here by using the NODE COLORING problem
as an example. In a NODE COLORING instance we are given a set of nodes and a
set of edges that connect the nodes. The problem is to use some fixed number
of colors to color each node so that two adjacent nodes don’t have same color.

In this example we use three colors: red, blue, and yellow.

As this example uses only basic rules, it is quite long. In Chapter 6 we see
how the extended rules can be used to encode this problem using only two rules.
The NODE COLORING can be implemented with the following program.

Program 1.3
color(red). color(blue). color(yellow).

col(X,red) :- node(X), not col(X, blue), not col(X,yellow).
col(X,blue) :- node(X), not col(X, red), not col(X,yellow).
col(X,yellow) :- node(X), not col(X, blue), not col(X,red).

fail :- edge(X,Y), color(C), col(X,C), col(Y,C).
node(a). mnode(b).

node(c). mnode(d).

edge(a,b). edge(b,c).

edge(c,d). edge(d,a).

compute 1 { not fail }.

=N

Figure 1.2: The graph of Program 1.3

The first line:

color(red). color(blue). color(yellow).
defines the colors we are allowed to use. The predicate color is defined in
such way that it can be used as a domain predicate (see Section 4.4) later in
the program.
The rule,
col(X,red) :- node(X), not col(X, blue), not col(X,yellow).
states that if a node is not blue and it is not yellow, then the node has to be
red. The next two rules are otherwise identical but they are for colors blue and
yellow. Here the predicate node(X) acts as a domain predicate that enumerates
the possible values of the variable X.
The rule

fail :- edge(X,Y), color(C), col(X,C), col(Y,C).

ensures that neighbouring nodes have different colors. The atom fail is true
exactly when two connected nodes have the same color. Later we force smodels
to search for only models where fail is not true. Here the predicate node is
not needed to give domain for node variables X and Y because edge is also a
domain predicate.

The next part of the program:

node(a). mnode(b).
node(c). mnode(d).
edge(a,b). edge(b,c).
edge(c,d). edge(d,a).

defines a simple graph with four nodes and four edges. This graph is shown
in Figure 1.2. Usually, the graph is stored in another file so that we don’t have
to duplicate the inference rules for each graph.

The last line of the program:

compute 1 { not fail }.

tells smodels that we want only one model and that the atom fail may not
be in the model. This rules out all models where two adjacent nodes have the
same color.

The atom fail is used to signal that something is wrong with the model,
namely that two adjacent nodes have the same color. Later in the program we
demand that fail may not be true in any stable model of the program.

The same effect could be achieved by using construction:

yellow blue

blue red

Figure 1.3: An answer of Program 1.3

;- edge(X,Y), color(C), col(X,C), col(Y,C).

Rules with empty heads work as constraints on the models of the program. If
a variable binding makes the the body of the rule true, the binding is discarded
as there’s no way to satisfy its head.

The code of the NODE COLORING example is stored in directory examples
as colorl.lp of the 1parse distriburion. The example graph is in the same
directory as graphl.

The process of running this program through smodels would look like:

% lparse colorl.lp graphl | smodels

smodels version 2.10. Reading...done

Answer: 1

Stable Model: edge(d,a) edge(c,d) edge(a,b) edge(b,c)
node(a) node(d) node(c) node(b) col(a,yellow) col(c,red)
col(d,blue) col(b,blue) color(yellow) color(red) color(blue)
True

Duration: 0.030

Number of choice points: 3

Number of wrong choices: 0

Number of atoms: 24

Number of rules: 35

Number of picked atoms: 45

Number of forced atoms: O

Number of truth assignments: 152

Size of searchspace (removed): 12 (0)

As the first line of output, smodels prints its version information. The next
lines give the first model found. In the model nodes d and b are colored blue,
node a is yellow and node c is red. The answer is also shown in Figure 1.3.

The word true below the model tells that there may be also other models,
but smodels didn’t compute them?. If there are no models left, the line reads
false. The same message is also displayed when the program has no models at
all.

The rest of the lines give some statistics about your program. The duration

2It’s possible that there are no more models, but smodels reports true always when the
whole search space is not explored.

10

tells how long the search took in seconds.

The number of choice points tell how many times smodels had to guess a
truth value for a ground atom. This time smodels guessed the correct value
for each atom (number of wrong choices is zero) and thus it didn’t have to
backtrack.

The next lines tell that there were a total of 24 atoms and 35 rules in the
grounded program (the original had four non-ground rules, 11 facts, and 12
atoms). In general, the number of choice points is more important than the
number of rules or atoms when we want to compare complexities of problems.

The rest of the lines show how the smodels heuristics worked for this pro-
gram. The number of picked atoms tell how many times smodels lookahead
heuristics managed to pick a truth value to an atom. The number of forced
atoms tell how many atoms were added to the model because their negation
would have caused a contradiction. The number of truth assignments tells how
many times smodels assigned a truth value to an atom.

The size of searchspace tells the maximum number of choices we may have
to do before we can be certain whether a model exists or not. In this example
the size of the search space is half the number of atoms, since the eleven domain
predicates are always true and the truth value of fail depends directly on the
values of the color predicates.

It is often useful to be able to see what exactly is output from lparse. This
can be accomplished by using the -t command line argument:

% lparse -t colorl.lp graphl
edge(d,a).

edge(c,d).

edge(a,b).

edge(b,c).

node(a).

node(d) .

node(c).

node(b) .

fail :- col(d,yellow), col(a,yellow).
fail :- col(c,yellow), col(d,yellow).
fail :- col(a,yellow), col(b,yellow).
[24 further output lines snipped]

compute 1 { not fail }

At the beginning of this program the domain predicates are output just like
they were entered in the input program. The next three lines define three of
the cases where the constraints of the problem instance are broken because two
neighboring nodes have the same color.

1.4 Different Smodels Front-Ends

Currently, there is a host of different front-ends to smodels:

11

. lparse is the most feature-rich of the different parsers and front ends
and it is the default one you should use when you are writing SMODELS
programs.

. smodels API is a library interface that allows you to call the smodels
procedure from any C++ program. Currently, there is no single docu-
ment that explains the API but the example directory of the smodels
distribution contains four examples on using it.

. parse is the original parser of smodels. It produces only smodels 1.x
output, and is now outdated.

. pparse (“primitive parser”) is a simple parser that produces smodels 2.x
output but it accepts only ground programs. Its syntax for extended rules
is different from lparse’s syntax.

. mesmodels (“model checking smodels”) is a deadlock and reachability
checker that can be used to verify 1-safe Petri nets [4]. It is written
by Keijo Heljanko and it is available at

http://www.tcs.hut.fi/ kepa/tools/

. dlsmodels is an older version of mcsmodels which only detects deadlocks.
It is available at same place as mcsmodels.

12

Chapter 2

Installation

Lparse comes now with an installation script configure that should make the
installation easier. The procedure to follow is:

1. cd to the directory containing lparse source code and type ./configure
to configure Iparse for your system.

2. Type make to compile the binaries.
3. Type make install to install Iparse.

4. If you want to remove the object files from the source code directory you
may type make clean to do it.

By default, 1parse is installed to the directory /usr/local/bin. You may
change the directory by giving configure the option --prefix=path.

There is a suite of SMODELS programs that can be used to check that 1parse
is functioning correctly. Currently, it is not yet complete, but I'll expand its
functionality in forthcoming lparse releases.

The test programs are stored in directory tests and the expected results
are in directory tests/results. There is a perl script test_all that performs
all tests and reports any errors. The tests can be also run with make check
command.

As a security issue, you should never run lparse with setuid bit set. It
is possible to call user-defined C/C++-functions from SMODELS programs (see
Section 5.7.3) and if the setuid bit is on, a malicious adversary can run basically
anything with the permissions of the owner of lparse.

2.1 Installation on Windows systems
Lparse has been succesfully compiled on the Microsoft Windows 95/98 systems

with Borland C++ version 5.5. It may compile also with other compilers and
other Windows versions but that hasn’t been tested. If you have the GNU

13

programming tools installed on the system, you can follow the directions in the
previous section, otherwise ensure that your compiler is correctly installed and
configured and issue the following commands to the command prompt:

1. setup.bat
2. cd src

3. make

The command setup.bat copies the Windows configuration file to the cor-
rect place and creates the makefile. The command make creates the actual
executable lparse.exe in the src directory of the distribution and it may then
be copied to the desired place. A precompiled Windows 98 binary is available at
the 1parse homepage http://www.tcs.hut.fi/Software/smodels/lparse.

14

Chapter 3

Invoking Lparse

The command line synopsis of lparse is as follows:

Usage: 1lparse [-1] [-c const=number]
[-d all | facts | positive | none]
[-D] [-g filel [-i] [-n number]
-r [1 | 21 311 [-t] [-v] [-w n]
[-W warning] [--dlp] [--atom-file file]
[--allow-inconsistent-answers]
[--drop-quotes] [--partiall
[--separate-weight-definitions]
[--true-negation] [--version]

ﬁl(31 ﬁlez e

The meanings of the options will be detailed in Section 3.1. Meanwhile, the
rest of this section shows how lparse is most often used in practise.
Lparse is used as a front end to smodels. The usual way to do this is to
pipe the output of lparse directly to smodels:
% lparse input_file; input_files | smodels
It is also possible to output the ground program in plain text, using the
option -t:
% lparse-t <nput_file
If the logic program has some varying integer parameter, its value can be
entered from command line with the option -c:
% lparse -c parameter=value input_file
By default the output file format is for smodels 2.x, but it is also possible
to output smodels 1.x format by using the option -1. Note that there are only
few (if any) reasons to use smodels version 1.x as smodels 2.x can do anything
that version 1.x can do and it’s much better doing it.

15

3.1 Lparse Options
The available options are:

-1
Use smodels 1.x output format.
-c const=n

Define the identifier const to be a numeric constant with the value n. This
definition overrides any const statements for n in the program.

-d all | facts | positive | none
Control which domain predicates are emitted. The default is facts.

e all: All domain literals are emitted. Rules with unsatisfiable nega-
tive literals in their bodies are not removed.

e facts: All domain predicates in the rule bodies are dropped from
output.

e none: All domain literals are dropped.

e positive: Negative domain literals in the rule bodies are dropped.

-D
Debug lparse data structures. With this option lparse creates really
small internal storage tables so that their behavior can be tested more
easily. Not recommended for normal use.

-g file
Read a previously grounded file to memory before grounding the program.
This is useful when you don’t want to ground the full program each time.
See Section 7.4 for more details.

-i
Disable the internal functions.

-nn
Set the desired number of models to n. This overrides any compute-
statements in the program.

-r [1]2]3]
Enable the regular model extension (see Section 4.8.2 for details). The
optional numeric parameter is used to control what integrity constraints
are emitted.

-t
Print output as text.

-v

Print 1parse version information

16

-Wn
Set the default weight of literals to n. If this option is not given, the
default weight will be 1.

-W warning
Control the warnings emitted by lparse. Possible values are: all, arity,
extended, library, unsat, weight, syntax, typo, and error. For a
detailed explanation, see Section 7.3.

--atom-file file
Output the symbol table of the grounded program to file. See Section 7.4.4
for more details.

—-allow-inconsistent-answers
Enables the classical negation extension and additionally reports also in-
consistent answer sets. See Section 4.7 for details.

--dlp
Use disjunctive logic programming semantics with choice rules. For de-
tails, see Section 4.8.1.

-—drop-quotes
Remove quotation marks from strings when possible. For example ”a”
becomes a but ”123” doesn’t change.

--partial
Enables the partial model extension. This switch is identical in behavior
to -r 2.

--separate-weight-definitions
Do not default the weight of a negative literal to the weight of a positive
one.

--true-negation
Enables the classical negation extension. See Section 4.7 for details.

3.2 Smodels Options

These options are current for smodels version 2.25.

Usage: smodels [number] [-w] [-nolookahead] [-backjumpl
[-randomize] [-internal] [-tries number]
[-conflicts number] [-seed number]

The first number determines the number of stable models to be computed.
A zero indicates all.

-backjump
Allow backtrack to jump over several choice points.

17

-nolookahead
Do not use lookahead at all.

-sloppy-heuristic
Use reduced lookahead heuristics. This may speed smodels if the program
has an ”easy” structure.

-randomize
Make a randomized but complete search.

-internal

Simplify the program and print it out in an internal form.
-w

Compute only the well-founded model of the program.
-tries number

Do a stochastic random search for number times. This method is not
complete.

-conflicts number
When doing a stochastic search, stop when number conflicts are found.

-seed number
Use number as the seed for random parts of computation.

18

Chapter 4

Theoretical Stuff

This chapter discusses the theoretical foundation of SMODELS so it shouldn’t
surprise anybody that the material in this chapter is quite theoretical. The only
things that are really necessary to know while using lparse are the informal
parts of Section 4.4 (pages 25-27).

If the presentation seems to be too heavy on first reading, feel free to skip
to the start of next chapter on page 38'.

4.1 Basic Terminology

An atom is of the form p(as,... ,a,) where p is a n-ary predicate symbol and
ai, ..., ap (n > 0) are terms. A term may be either a variable, a constant, or
a function f(t1,...,t,) where t1, ..., t,, are terms. An atom (or a function)

with no variables is called a ground atom (function).

A literal is either an atom a or its negation not a. Literals of the form not a
are called not-atoms or negative literals.

A rule is of the form

hely, ..l . (4.1)

where the rule head h is an atom and literals Iy, ..., I, (n > 0) form the rule
body? If the rule body is empty (n = 0), the rule is called a fact. A rule is called
a Horn rule if it doesn’t have any negative literals. A normal logic program is
a set of rules.

The rules of the form (4.1) are called basic rules. Lparse also supports a
number of extended rule types. However, for a while we consider only basic
rules and the extensions are presented in Section 4.6.

The Herbrand universe of a logic program is the set of all ground terms that
can be constructed using function symbols and constants in that program. The
Herbrand base HB of a logic program is the set of all ground atoms that can

LOf course, after reading the informal parts.
2also called the rule tail.

19

be constructed using the predicates in the program and terms in the Herbrand
universe.
For example, in a program

Program 4.1
d(a). d(b).
foo(X) :- not bar(X).
bar(X) :- not foo(X).

the Herbrand universe is {a, b} (these two constants are the only ground terms
of the program), and the Herbrand base is {foo(a), foo(b), bar(a), bar(b)}.

An instance of an atom, a literal, a rule, or a function is constructed by
replacing all variables in it by ground terms. The Herbrand instantiation of a
program is the set of all ground instances of the rules of the program that may
be constructed using terms in the Herbrand universe of the program.

For example, the Herbrand instantiation of the Program 4.1 is:

Program 4.2
d(a). d(b).
foo(a) :- not bar(a).
foo(b) :- not bar(b).
bar(a) :- not foo(a).

bar(b) :- not foo(b).

An interpretation I of a logic program is a subset of its Herbrand base. An
interpretation assigns a truth valuation V(a) to each element of the base. If an
atom « is in the interpretation, its valuation V(a) = true in the interpretation,
otherwise V(a) = false. An extension E, of a predicate p is the set

E, = {a | V(a) = true and the predicate symbol of a is p} . (4.2)

An atom a is satisfied by an interpretation if its valuation is true. A not-
atom not a is satisfied if the valuation of a is false. A basic rule is satisfied if
either at least one of its body literals is not satisfied by the interpretation or if
its head is satisfied.

If an interpretation satisfies every rule in the Herbrand instantiation of a
program, it is a (Herbrand) model of the program.

Example 4.1
An interpretation I = {d(a), d(b), foo(a), bar(b)} is a model of Program 4.1
because all rules of Program 4.2 are satisfied:

Rulesd(a); d(b); foo(a) :- not bar(a); andbar(b) :- not foo(b)
are satisfied because their heads are in the model. The rule foo(b) :-
not bar(b) is satisfied because not bar (b) is not satisfied. O

A model is minimal if no proper subset of it is also a model. An old theorem
by M.H. van Emden and R.A. Kowalski [20] states that a logic program without

20

negative literals has a unique minimal Herbrand model that is called the meaning
of the program. The minimal model M of a program P can be found by using
the Knaster-Tarski operator Tp where

Tp(M)={h|h<+1l,...,1l, is arulein the

4.3
program and ly,...,l,, € M} (43)

We can construct the minimal model by starting with an empty set and applying
the Tp operator until a fixed point is found.

Example 4.2

Suppose that the Herbrand instantiation of a program is

a. b.
c :- a.
d :- c, b.
e :- f.

Then the minimal model is found in following steps:

1. Initially, M = (). Now ¢, d, and e cannot be added to the model since
their bodies are not in the partial model. However, since the bodies
of first two rules are empty, they may be added to it to get a partial
model M = {a,b}.

2. Now the body of the rule for ¢ is in the partial model, so ¢ is added
to the partial model and the resulting partial model M = {a,b,c}.

3. Because both ¢ and b are in the partial model, d must be added to
it also, and M = {a,b,c,d}.

4. There are no more rules with true bodies that can be added to the
model, so the meaning of this program is M = {a,b,c, d}.

4.2 Stable Model Semantics

The concept of meaning that was defined above doesn’t generalize nicely to
logic programs with negations and something else is needed. The stable model
semantics [2] for a ground logic program P is defined in the following way:

Let M be any set of atoms from P. The reduct P™ of the program with
respect to M is obtained by deleting from P

1. each rule that has a negative literal not a in its body when a belongs to
M; and

2. all negative literals in the bodies of remaining rules.

21

As PM is negation-free, it has a unique minimal Herbrand model. If this
model coincides with M, then M is a stable model of the program P.

The intuitive explanation of the reduct is that if we believe that M is the
set of all true ground atoms of the program, then any rule that depends on a
literal not b when b is true cannot be used in deduction and may be discarded.
Also, every literal not b is trivially satisfied if b is false and can be discarded. If
M is the set of atoms that follow logically from P™ | we can say that our belief
was consistent and “rational”.

Example 4.3

Consider the program P:

a :- not b.
b :- not a.

The program has two stable models, My = {a} and M, = {b}. We can see
that M is a stable model by first taking the reduct to get the program
PM:

a.

As the only remaining rule has an empty body, the minimal model of the
program is {a} that is the same set that we started with. The other stable
model comes similarly.

In propositional logic this program has also third model, {a,b} but this
model is not stable, as its reduct is empty so the minimal model of the
reduct is also empty, not {a,b}.

¢

All stable models are justified in the sense that every atom in a model has to
have some reason to be in there; if an atom is in a model, there has to be a rule
such that the atom occurs at the head of it and all body literals are satisfied.
The third model in the above example was not justified because both rules had
unsatisfied bodies.

The set of stable models for a non-ground logic program is defined to be the
set of stable models of the Herbrand instantiation of the program.

4.3 Grounding

A grounding transforms a normal logic program into an equivalent ground logic
program where the equivalence is defined as having the same set of stable models.
A grounding is local if it is possible to do the grounding one rule at a time. A
variable binding is a substitution that maps a subset of variables of a rule into
ground terms.

In the previous section we defined the set of stable models of a general
program to be the set of stable models of its Herbrand instantiation. Why not

22

use it directly? The answer is that in practice it is not possible to generate all
Herbrand instances of a given logic program because the size of the Herbrand
instantiation is practically always exponential with respect to the size of the
original problem.
Usually most of the rules in the Herbrand instantiation have unsatisfiable
bodies and they may be discarded without affecting the set of stable models.
Consider the following program:

Program 4.3
d(a). e(b). e(c).
foo(X) :- d(X), not bar(X).
bar(X) :- d(X), not foo(X).

In the Herbrand instantiation of the program, the last two rules are both instan-
tiated for each of the three constants of the program. The complete instantiation
is:

Program 4.4

d(a). e(d). e(c).

foo(a) :- d(a), not bar(a).
foo(b) :- d(b), not bar(b).
foo(c) :- d(c), not bar(c).
bar(a) :- d(a), not foo(a).
bar(b) :- d(b), not foo(b).
bar(c) :- d(c), not foo(c).

It is not possible to deduce atoms d(b) and d(c) in the Program 4.4 and any
rule that depends on either of them cannot have its body true. Those rules
can be discarded without affecting stable models. In effect, the program can be
shortened to:

Program 4.5
d(a). e(b). e(c).
foo(a) :- d(a), not bar(a).
bar(a) :- d(a), not foo(a).

The crucial question now is, how do we know which rules can be dropped
out? Lparse does the job by dividing the predicates into two classes, domain and
non-domain predicates. The intuition is such that the non-domain predicates
are the ones that we are interested in and domain predicates just give all possible
variable bindings.

Informally domain predicates are the predicates that are not defined using
negative recursion.

In Program 4.3 predicates d and e are domain predicates, while foo and bar
are not since they depend recursively on each other. The recursion is negative
since there are the two nots in the rules. There is a longer discussion on domain
predicates in the next section.

23

4.4 Domain Predicates

In beginning of this section the notion of domain predicates is introduced quite
informally and the formal definitions are in Section 4.4.4. There are also some
tips on how to construct domains using relational algebra in Section 4.4.3.

4.4.1 What’s New?

NOTE THAT THE DEFINITION OF DOMAIN PREDICATES HAS
CHANGED IN LPARSE-1.0.3. HAVEN’T HAD TIME TO DOCU-
MENT THE NEW FORMAL DEFINITION BUT IT WILL COME
SOON. MEANWHILE, HERE IS A BRIEF AND HIGHLY INFOR-
MAL DESCRIPTION ABOUT THE NEW DOMAIN PREDICATES.

In lparse the grounding is done using domain predicates. Previously, a
predicate was a domain predicate exactly when it didn’t have recursion in its
definition. Now a domain predicate can be defined via positive recursion.

The main idea is that a hierarchy is created from the predicate symbols
where a predicate P is on higher level than the predicate @ if P depends on Q.
The actual definition is a little quirkier since we want that two predicates that
depend positively on each other may be in the same level. If two predicates
depend negatively on each other, they will be assigned to the highest level of
the hierarchy, as well as all predicates that depend on them.

A predicate that is not on the highest layer (called w-layer is a domain
predicate). The extended domain restriction condition states that all variables
that occur in a rule have to occur in some positive literal that is on lower level
than the rule head.

For example, consider the program:

Program 4.6
number (0. .n).
odd(X+1) :- number(X), even(X).
even(X+1) :- number(X), odd(X).
even(0).
two_divides(X) :- odd(X).
interesting(X) :- number(X), not dull(X).
dull(X) :- number(X), not interesting(X).
interesting odd(X) :- odd(X), interesting(X).

In this program all predicates except dull, interesting, and interesting_odd
are domain predicates. The predicates dull and interesting depend on each
other negatively and interesting_odd depends on interesting. The dependency
graph of the program is shown in Figure 4.1 and its stratification in Figure 4.2.

The predicate hierarchy is constructed using the following rules:

1. If P depends on) and @ doesn’t depend on P, then P > Q;

2. If P depends positively on) and () depends positively on P, then P = @;

24

even dull <«— positive

~ e <--negative
number Do
o o ov!/
odd interesting
two_divides interesting odd

Figure 4.1: The dependency graph of the program (4.6).

0 number

N

interesting_odd

Figure 4.2: The predicate hierarchy of Program 4.6

3. If P and @ depend on each other and there is a negative edge in their
dependency cycle, then P = () = w.

A more formal definition will come in this manual pretty soon.

4.4.2 Informal Domains

Lparse divides the predicate symbols of a logic program into two classes, domain
and non-domain predicates. The domain predicates are used to find all possible
variable bindings of rules during the grounding.

For example, in the program

Program 4.7
d(a,b). d(b,c). d(c,a).
foo(X,Y,Z) :- d4(X,Y), d(Y,Z), not bar(X,Y,Z).
bar(X,Y,Z) :- d(X,Y), d4(Y,Z), not foo(X,Y,Z).

the predicate d/2 is the only domain predicate. When grounding the rules for
foo and bar, lparse gets the possible variable bindings from literals d(X,Y)
and d(Y, Z).

25

In this program there are three possible variable bindings for the two non-
ground rules:

1. {X/a,Y/b,Z/c}, from d(a,b) and d(b,c).

2. {X/b,Y/ec,Z/a}, from d(b, c) and d(c, a).

3. {X/e,Y/a, Z/b}, from d(c,a) and d(a,b).
Thus, the resulting ground program will be:

Program 4.8

d(a,b). d(b,c). d(c,a).

foo(a,b,c) :- d(a,b), d(b,c), not bar(a,b,c).
foo(b,c,a) :- d(b,c), d(c,a), not bar(b,c,a).
foo(b,c,a) :- d(b,c), d(c,a), not bar(c,a,b).
bar(a,b,c) :- d(a,b), d(b,c), not foo(a,b,c).
bar(b,c,a) :- d(b,c), d(c,a), not foo(b,c,a).
bar(b,c,a) :- d(b,c), d(c,a), not foo(c,a,b).

In practice, the non-domain predicates are the “interesting” predicates, and the
domain predicates are just programmer’s way to tell precisely what instances of
the “interesting” predicates we want to consider.

After the grounding is done it is often possible to drop all domain literals
from the program. After all, we already know that they will be true in every
stable model of the program. Lparse command-line argument -d none (see
Section 3.1) drops all domain literals from the program.

We can use as a domain predicate (nearly) any predicate that has a fixed
extension in all stable models of the program. That is, if we know all true
ground instances of the predicate even before we ask smodels to compute them,
the predicate is a domain predicate.

For example, in the program:

Program 4.9
pX,Y) :- d1(X,Y), not q(X,Y).
q(X,Y) :- d1(X,Y), not p(X,Y).
d1(X,Y) :- d2(X), d3(Y), not d4(X).
d2(a). d2(b). d3(c). d4(a).

predicates dy, da, d3, and dy are domain predicates. All rules with ds, ds, or dy
as heads are facts so the extensions of those predicates are given directly in the
program ({dz(a),d2(b)} for d2 and {ds(c)} and {d4(a)} for d3 and dy).

As the only rule for d; has only domain literals in its body, we also can
compute its extension with relational algebra by taking a natural join over the
extensions of do, d3, and d4. The resulting extension is simply {d; (b, ¢)} (di(a, c)
is not in the extension because dy(a) is always true and thus the variable binding
doesn’t satisfy the literal not dy(X).

The extensions of predicates p and g can’t be computed beforehand, since
they depend on each other recursively. The program has one choice point where

26

either p(b, c) is added to the model or ¢(b,c) is added to model, but not both.
Thus the extension of p will be either {p(b,c)} or it will be empty, depending
on which atom got included in the model. Similarily for g.

Here should be an example that details the transitive closure in domain pred-
1cates.

There is one more complication about domain predicates: If a predicate
occurs as a head in an extended rule (see Section 5.4) it may not be a domain
predicate. The reason why choice rules are excluded is clear as they implicitly
add a choice point to the program. The reason why other rules are also excluded
is implementation specific, as extended rules are processed after the domain
generation. This will probably change in a future release, but for the time being
you cannot use a predicate as a domain predicate if it occurs as a head in an
extended rule.

4.4.3 Constructing Domains

All basic relational algebra operations can be done on the extensions of domain
predicates and the result will still be a domain predicate. The operations are:

1. Union P U R of the extensions of P and R:

U(X) :- P(X).
U(X) :- R(X).

2. Intersection P N R of the extensions:
I(X) :- P(X), RX).
3. Set difference P\ R of the extensions:
D(X) :- P(X), not R(X).
4. Cartesian product P x R:
C(X,Y) :- P(X), R(Y).
5. Natural join P i R:
J(X,Y,2) :- P(X,Y), R(Y,2).
6. Symmetric difference P A R:

S(X) :- P(X), not R(X).
S(X) :- R(X), not P(X).

4.4.4 Formal Domains

The dependency graph Gp = (Vp, Ep) of a logic program P is constructed as
follows:

1. Vp = {p| p is a predicate symbol in P}.

27

male parent female

Figure 4.3: The dependency graph of family relationships

2. (a,b) € Ep if and only if there exists a rule in P where a is the predicate
symbol in the head and b is a predicate symbol in the rule body.

A predicate a depends on a predicate b if and only if there exists a path
from a to b in the dependency graph. A predicate p of a logic program P is a
domain predicate if and only if it holds that every path starting from node p in
the dependency graph is cycle free.

Example 4.4

Consider the following program:

Program 4.10
ancestor (X,Y) :- ancestor(X,Z), parent(Z,Y).
ancestor (X,Y) :- parent(X,Y).
son(X,Y) :- parent(Y,X), male(X).
daughter(X,Y) :- parent(Y,X), female(X).

The dependency graph of this program is shown in Figure 4.3. We can see
from the graph that ancestor depends on itself and on parent. Likewise,
daughter depends on parent and female. Here all predicates but ancestor
are domain predicates. O

4.5 Domain-Restricted Programs

A rule is domain-restricted if it holds that if a variable appears in the rule it
also appears in a positive domain literal in the body.

A logic program is domain-restricted program if and only if every rule in it
is domain-restricted.

Example 4.5

Suppose that d is a domain predicate and there are two rules:
p&X,Y) :- d(X,Y), not q(X,Y).
q(X,Y) :- not d(X,Y), not q(X,Y).

Now the first rule is domain-restricted since both X and Y occur in the
domain literal d(X,Y). The second rule is not domain-restricted, since
the domain literal is negative, and not positive. ¢

28

The reason for having domain restriction is that during grounding we have
to know exactly what ground instances of rules are needed.

For example, if we tried to use rules of the following form:

a(X) :- not b(X,Y).

we would have to generate a ground instance for each imaginable binding of
Y. In effect, we would have to use every single constant that appears somewhere
in the program as a possible binding for Y and there may be thousands of them.
So the domain predicates are used to “restrict the domain” of variables.

Example 4.6

The Program 4.10 is otherwise domain-restricted but the variable X in the
first rule doesn’t occur in a domain predicate. We can fix the situation by
defining a new predicate, person, and rules

ancestor (X,Y) :- ancestor(X,Z), parent(Z,Y), person(X).
person(X) :- female(X).
person(X) :- male(X).

The earlier smodels front-end, parse, allowed rules of the form:
p&X,Y) :- q(X,Y), not r(X,Y).
where ¢ was any predicate symbol. Parse computed the needed ground in-
stances by dropping all negative literals and then computing a deductive closure
of the rules. This method had the weakness that the whole program had to be
kept in memory during grounding, which severely affected the performance of
the system.

4.6 Weight Constraints

The SMODELS versions 2.0 and later have three extended rule types in addition
to basic rules that were defined in Section 4.2: choice, constraint, and weight
rules. The formal semantics of all three can be defined through use of weight
constraints and weight constraint rules. In 1parse the weight constraints are
implemented as special literal types.

Basically, a weight constraint is something of the form

L<{a; =w,...,a, = wy,n0t by =wp41,...,00t by, = Wppn} KU (4.4)
where ay,...,an,b1,...,b, are atoms, L and U are the integral lower and upper
bounds, and wy, ..., Wy,4, are weights of the literals. Later on, we denote the

weight of a literal [with w(l). Here we consider only positive weights as the
negative weights can be removed from a program as by negating the weight and
inverting the literal.

The intuitional semantics of a weight constraint is that it is satisfied exactly
when the sum of weights of satisfied literals [y, ..., [, is between L and U, in-
clusive. The stable model semantics for weight constraint rules was first defined
in [12].

29

Example 4.7
Let M = {a,b} and

C;=2<{a=1l,notb=1,notc=1} <3
Co=1<{a=1b=1c=1}<1

Now M satisfies C; because literals a and not ¢ are satisfied and their
total weight is greater than the lower bound and lower than the upper
bound. However, C; is not satisfied as the sum of the weights of a and b
is greater than the upper bound. O

A weight constraint rule is of the form

C()(—Cl,...cn (45)
where Cy, ..., C), are weight constraints. We also have to restrict Cy so that
may not have any negative literals in it.

A weight constraint rule is satisfied if Cy is satisfied whenever Cy, ..., Cp,

are satisfied.. Analogously to the definition of normal logic programs, a weight
constraint program is a set of weight rules.

A reduct CM of a weight constraint C' with respect to a set M of atoms
is obtained by removing the upper bound and all negative literals from it, and
subtracting the weights of satisfied not-atoms from the lower bound:

C’M:L'g{ai:w”aiEM} (46)
where

LI'=L-> wb) (4.7)

big M

The reduct of a weight rule RM of a weight rule R with respect to a set M
of atoms is the set of rules

w ,lf 301'21 MJﬁ Ci
RM =S {heCM, .. CcM|
h € M and h is an atom in Cp}

4.8
, otherwise (48)

where M F C denotes that M doesn’t satisfy the weight constraint C'. The
above definition looks quite ugly but basically it just says that a rule with
an unsatisfied body is dropped out of the reduct and the negative literals are
dropped from the remaining rules.

I guess that most of the readers can guess by now how the reduct is defined
for weight constraint programs. It is formed by taking union over reducts of
individual rules.

PM = {RM | R e P} (4.9)

30

The rules in the reduct have all same form: they have a single atom as head
and there are no negative literals in the weight constraints of the rule body. We
call these rules Horn weight rules analogously to the definition for basic rules.

We can define the Knaster-Tarski operator Tp for Horn weight rules in a
similar way that it was defined for basic Horn rules.

Tp(M)={h| h <+ Ci,...Cy is a rule in the program

_ (4.10)
and C1,...,C, are all satisfied by M}

Example 4.8

Consider the following program?® P:

Program 4.11

a:-1[a=11].

b:-0[b=1001].
c:-6[b=5,d=1]1, 2 [b =2, a=2].
d:-1[a=1,b=1,c=11].

We start iterating the Tp from the empty set.

1. Tp(0) = {b}, because the empty set satisfies the body of the second
rule.

2. Tp({b}) = {b,d}, because b = 1 is enough to satisfy the constraint of
the last rule.

3. Tp({b,d}) = {b,c,d}, as w({b,d}) = 6 > 6 in the first constraint of
the rule for ¢ and w({b}) = 2 > 2 in the second constraint.

4. Tp({b,c,d}) = {b,c,d} and the fixed point is found.
¢

Unfortunately we can’t define the stable models of a weight rule program
using only reducts. The problem is that we threw out all upper bounds of weight
constraints while computing the reduct and we have to ensure that the model
satisfies also the upper bounds.

A set M of atoms is a stable model of a weight constraint program P if and
only if the following two conditions are met:

1. M satisfies all rules in P; and
2. M is the least fixpoint of Tpam (().
Example 4.9

Let a program P be simply:

3Here we use the lparse syntax. Namely, the < symbol is left out and the square brackets
denote weight constraints.

31

Program 4.12
1la=1,b=11711.

Now M; = {a} is a stable model of P as M; satisfies the only rule and
the reduct PM of the program is

a.
Similarily for My = {b}. On the other hand, {a,b} is not a stable model
even though the reduct of the program is

a.

b.

since the combined weights of @ and b are more than the upper bound of
the rule. O

Example 4.10

Let’s now look at a slightly more complex example program P:

Program 4.13
1 [a=1, b=1, c=1] 2 :- 2 [d=1, not b=1, not e=3] 4.
1 [d=3, e=2] 5.

Now M; = {a,d, e} is one stable model of the program. The reduct P1
is now

a:-1[d=11.
d.
e.

and the least fixpoint of Tpm; = M; and the model satisfies all rules.
However, M> = {d, a} is not a stable model because the constraint in the
first rule body is not satisfied (w(M) =5 > 4) so it is dropped out from
the reduct and there is no longer any way to deduce a. O

In the beginning of this section I claimed that negative weights can be re-
moved. This is proven in [12] and I only present here the translation. A weight
constraint

L<{a=-wgnotb=—-wp} <U (4.11)
can be transformed to an equal form
L+ w, +w, < A{not a=wsb=wy} <U + w, +wp (4.12)

The idea here is that instead of subtracting w, from the total weight when a is
true, we add w, if @ is not true and we raise the bounds with the same amount,
the net result being the same.

32

4.7 Classical Negation

The basic version of the stable model semantics has only negation as failure.
That is, we conclude not a if we can’t prove that a is true. Sometimes this is
not desirable. For example, suppose that we want to check whether it is safe to
cross railroad tracks. This could be expressed with a rule:

safe < not train .

The problem here is that we consider the crossing to be safe if we can’t prove
that a train is coming. A more safe approach would be to declare the crossing
safe only if we can prove that train is, indeed, not coming:

safe < —train .

This stronger negation is called the classical negation and programs utilizing
it are usually called extended logic programs. The extended logic programs were
proposed in [3].

The semantics of the extended logic programs differs a bit from the stable
model semantics of oridinary programs. The answer set S of an extended pro-
gram P is a minimal subset of the Herbrand base HB(P) of the program such
that:

1. for any rule l, < Iy,...,l, in P,ifl;, ..., 1, € S, then [, € S; and
2. if S contains a pair of complementary literals, then S = HB(P).

There are two different ways how an extended program can fail to have
an useful answer set. Either there is no answer at all or the only answer is
inconsistent.

Example 4.11
Consider the following program P:

a < not b b+ not a

d < not ¢ ¢+ not d

—e < not a e < not ¢
f < mnot f,b,d

This program has three answer sets:

Sl = {a7d7 —|€}
52 = {b7 C,e}
53 = {aabaca daea_'eaf}

The first two answer sets, S; and S5 are consistent and Ss is inconsistent.
It is not possible to have an answer set where both b and d are true because
it will cause the last rule to fire causing a contradiction. ¢

33

Lparse handles extended programs by transforming the programs into nor-
mal logic programs. The rules are otherwise unaffected but for each negative
atom —a that occurs in the program, the rule:

—a,—a (4.13)

is added. Note that this approach differs from the semantics described above in
that the inconsistent answer sets are automatically rejected. As this information
is sometimes useful, 1parse has a variant behavior that can be initialized with
the command line option --allow-inconsistent-answers. With it, a special
atom INCONSISTENT is added to the program that is true whenever the stable
model contains complementary literals:

INCONSISTENT 4 a,-a . (4.14)

4.8 Partial Models and Disjunctive Programs

SMODELS and lparse now include facilities to compute stable and partial mod-
els for disjunctive logic programs. However, this functionality is still quite prim-
itive. Disjunctive logic programs are discussed in detail in [1] and the theoretical
basis for the partial model expansion is introduced in [5].

The disjunctive model semantics is enabled by selecting the command line
option --d1lp and the partial model expansion by the option --partial. The
exact output of the partial model expansion can be altered with the -r command
line option.

4.8.1 Disjunctive Programs

A disjuntive rule is of the form

ay | az |- | a, ¢ body (4.15)

If the body of a disjunctive rule is true, at least one of the head atoms

ai, --., ay has to be true. A disjunctive logic program is a set of disjunctive
rules.

The reduct PA of a disjunctive program Pp is obtained using the procedure
that was used with normal logic programs. That is, all rules with unsatisfiable
negative literals in the body are dropped as well as all remaining negative lit-
erals. A set M of atoms is a disjunctive stable model of Pp iff M is a minimal
model of PM. Note that P may have more than one minimal model.

It was easy to find the minimal model of the reduct of a normal logic program.
However, this is not the case with disjunctive programs. In fact, after we have
found a model for the reduct it is still a NP-complete problem to find out

whether it is minimal or not.
Because of this complexity, pure smodels doesn’t handle disjunctive pro-

grams correctly. However, you can still solve disjunctive queries by using two
interleaved smodels processes. The file example4.cc in the smodels/examples
directory shows how it is done.

34

Example 4.12

Consider a disjunctive program Pp:

Program 4.14

al|b:-c.
c :- not d.
d :- not c.

This program has three disjunctive stable models. Either ¢ or d has to be
in a model and if ¢ is chosen, we have to add a or b in the model. Thus,
the models are: M; = {d}, M> = {c,a}, and M3 = {b,c}. The fourth
possibility, M’ = {¢, a, b} is not a disjunctive model since M, is a model
and My C M' so that M’ is not minimal. O

A disjunctive rule of the form (4.15) is very similar to a weight constraint
rule of the form

1 <{ai,as,...,ap} < body (4.16)

but there is one subtle difference: disjunctive stable models are always minimal
while there may be non-minimal stable models of weight constraint programs.
For example, if we replace the first rule of Program 4.14 with
1{a b} :-c.
then {a, b, c} is a stable model of the program.

4.8.2 Partial Models

As we saw in Section 4.1, an interpretation of a logic program assigns a truth
value to atoms in the Herbrand base of the program. Each atom is either true
or false in the interpretation. A partial interpretation is an interpretation that
assigns a definite truth value only to some atoms of the base and the rest of the
atoms are said to have unknown truth value. Formally, a partial interpretation
I of a program P is a pair (T, F) of subsets of the Herbrand base HB(P) of
the program such that 7N F = (. The atoms in sets It = T, IT = F, and
I* = HB(P) — (T U F) are considered to be true, false, and unknown in the
interpretation.

A partial model is a partial interpretation that satisfies all rules of the pro-
gram. However, the concept of satisfaction has to be refined to take into accord
the fact that there are now three different truth values. We impose an order <
on truth values so that

false < unknown < true

The truth value I(B) of the body of a rule is obtained by taking minimum
of the truth values of the literals in the body and the truth value I(H) of the
head is the maximum of the truth values of the head atoms. A rule is satisfied
when I(H) > I(B).

35

Example 4.13

Suppose that we have a partial interpretation

I(H) = ({b},{d})
Suppose further that we have two rules:

ald:- b, not c.
d :- a.

Now the first rule is satisfied since I(a) = unknown > I(¢) = unknown.
The second rule is not satisfied as I(d) = false < I(a) = unknown. O

A partial model I that assigns a definite truth value to all atoms (I'* = ()
is called a total model or alternatively a regular model. A total stable model M
of P is a total model that is additionally a minimal model of the reduct PM. A
partial stable model M of P is a minimal partial model of PM .

We can compute the partial stable models of a disjunctive or normal logic
program P by using a translation that maps it into another program Tr(P) that
has the property that M is a stable model model of Tr(P) if and only if M is a
partial stable model of P.

We start the translation by adding a new atom a’ for each atom a € HB(P).
The intuitive meaning of a' is that it is potentially true. A rule of the form:

ay |-+ |ap < b1,...,by,n0t ¢1,...,n0t ¢ (4.17)

is replaced with the rules:

ar |- |ap < bi,...,by,no0t c},...,n0t c
LT e et l (4.18)
ay |- |a, < by,...,b,,n0t c1,...,n0t ¢/ .
Additionally, Tr(P) includes the rule:
a <+ a (4.19)

for all @ € HB(P) so an atom is always potentially true if we know that it is
true.

Let M be a stable model of Tr(P). Then, there exists a partial stable
interpretation N of P that corresponds to M. The truth value of an atom a in
N is obtained by the following three rules:

1. If both a,a’ € M, then I(a) = true;
2. If o’ € M and a ¢ M, then I(a) = unknown; and
3. Otherwise, I(a) = false.

The formal proof that this translation works is presented in [5].

Example 4.14

36

Consider a disjunctive program P:

a | b :- not c.
b :- not b.
c :- not c.

The translated program Tr(P) is:

al|l b :- not c’.

a’ | b’ :- not c.

b :- not b’.

b’ :- not b.

c :- not c’.

c’ :- not c.

a’ :- a.

b’ :- b.

c’ :- c.
The only stable model of Tr(P) is {b',¢'} and it correspond to the partial
interpretation of P where b and ¢ are both unknown and a is false. O

Because the partial model translation introduces a dependency loop for each

predicate, it is not done for domain predicates. Instead, the rule
d’(X) :- 4dX).

is added for each domain predicate d.

The behavior of the partial model translation can be altered with the -r com-
mand line switch. In the first alternative (-r 1) the rules of the form (4.19) are
left out. This option is useful when one wants to find all possible fixpoints of
the program.

The second alternative (-r 3) adds constraints of the form

a+a (4.20)

for all @ € HB(P) to the program. These ensure that an atom is true always
when it is possibly true.

4.9 Computational Complexity

This section will appear here when I have time to write it.

37

Chapter 5

Language

This chapter describes the SMODELS language. Each different language feature
has its own section here.

5.1

Comments

You can have comments in SMODELS programs. The comment character is ‘%’.
A comment then lasts util the end of the row.

9.2

Terms

There are four different types of terms: constants, variables, functions, and
ranges.

Constant

A constant is either a symbolic constant or a numeric constant. A sym-
bolic constant is a string of letters and numbers which may also contain
underscores (_) starting with a lower case letter, or a sequence of characters
that is enclosed within double quotes (").

The quote characters are retained in the quoted strings by default, even
if unnecessary, and a is different from "a". This behavior can be altered
with the --drop-quotes command line argument.

A numeric constant is an integer. Currently the allowed range for numbers
goes only from —23° to 230, This is due to seriously limited implementation
of constants and will be removed in some later release (see Section 8).

Sample constants: 0, 1020, cons_tant, "quoted constant".

It is also possible to define a symbolic constant to act as an numeric con-
stant by adding a constant declaration (see Section 5.5). If you add the

38

line const foo = mumber to your program, from that point on every oc-
currence of the constant foo will be substituted by number. Alternatively,
you can use the -c command line option.

In general, you may use an expression that evaluates to a constant value
everywhere where you can use constants, that is, it is legal to use con-
structs like:

const double = 2 * foo.

Variable
A variable is a string of letters and numbers that may also contain un-
derscores _ starting with an upper case letter

Sample variables: X, Time_1.

Function
A function is either a function symbol followed by a parenthesised argu-
ment list or an builtin arithmetical expression. A function may be either
a numerical function that is actually used to compute something or it is a
symbolic function of the form foo(a), which basically just defines a new
constant that gets the name foo(a).

A numerical function may be either built-in internal function or a user
specified C or C++ function that is linked to lparse dynamically (see
Section 5.7.3).

The internal comparison functions (eq, neq, 1t, le, gt, and ge) can be
used with both numeric and symbolic constants but the rest of internal
functions allow only numeric arguments.

The use of functions is explained more fully in Section 5.7.
Sample functions: X+1, times(X, 5, plus(Y, 1)).
Range
A range is of the form:
start .. end

where start and end are constant valued arithmetic expressions. A range
is a notational shortcut that is mainly used to define numerical domains in
a compact way. A range is expanded by defining a new domain predicate
and adding all elements of the range to its extension. The range is then
replaced by a variable that gets its domain from the new domain predicate.

For example, a fact a(1..3). is a shortcut for

a(X) :- int1(X).
int1(1).
int1(2).
int1(3).

Ranges can also be used in rule bodies with the same semantics.

39

b :- a(1..3).
expands to

b :- a(X), int1(X).

int1(1).

int1(2).
int1(3).

Now b is true if any of a(1), a(2), or a(3) is true.

5.3 Atoms and Literals

Starting from version 2.0 smodels has offered support for three extended rule
types: choice, constraint, and weight. Lparse further enhances this by allowing
a rule have an arbitary number of constraint and weight literals in a rule body.
Constraint and weight literals are both called extended literals. In addition
to basic and extended literals, 1parse has one further literal type, namely,
conditional literal.

Atom
An atom is a predicate symbol that is optionally followed by a parenthe-
sized list of terms.

Sample atoms: foo(X), a, foo.

It is possible to give multiple argument lists to an atom. These constructs
are of the form:

a(argumentsy; argumentss; ---; arguments,)

When multiple argument lists appear in a rule body or in a choice rule
head (see Section 5.4 on page 43), a new literal is constructed for each list.
That is, a rule

{ a(X;Y+1) } = d(X;V).
is expanded to
{ a(X), a(y+1) } :- d(X), d(Y).

In a basic rule head a new rule is constructed for each argument list so
that

foo(a ; b; c).
becomes

foo(a).
foo(b).
foo(c).

Basic literal
A basic literal is either an atom a or its negation not a.

40

Beginning with lparse-0.99.57 you have been able to use classical nega-
tions in your programs. The classical negation —a of an atom a is de-
noted by a minus sign that is immedietely before the atom name: -a.
The classical negation extension is enabled by the command line option
--true-negation.

Sample literals: a(X), not b(X).

Constraint literal
A constraint literal is of the form

lower { 1.1, 1.2, ..., 1n } upper
where lower and upper are arithmetic expressions and [y, ..., [,, are basic
or conditional literals.

A constraint literal is satisfied if the number of satisfied literals in the
body of the constraint is between lower and wpper (inclusive). If the
lower bound is missing, zero is substituted in its place and if the upper
bound is missing, any number of literals may be true.

It is possible to have variables in the rule bounds. For example, the
following rule could be used to count the length of a path in a graph:

length(N) :- N { in_path(X,Y) : edge(X,Y) } N,
possible_length(I).

During grounding a constraint literal is replaced by two basic literals and
two new rules are added to the program. For example, a rule:

h(a) :- 2 { d_1(a), d-2(a), d-3(a), d4(a) } 3
is transformed to

h(a) :- inti(a), not int2(a).

inti(a) :- 2 { di(a), d2(a), d3(a), d4(a) }.

int2(a) :- 4 { d1(a), d2(a), d3(a), d4(a) }.
Here int; and ints; are new internal predicates. The transformation is
done because smodels allows only one constraint per rule and only lower
bounds are examined.

Weight literal
A weight literal is of the form

lower [11=w_1, ..., 1n=wn] upper

A weight literal behaves otherwise just like a constraint literal but each
literal may be given a different integral weight.

The weight literal is satisfied if the sum of the weights of satisfied literals in
the rule body is between lower and upper (inclusive). If the lower bound
is missing, —oo is substituted.

The weights wy, ..., w, may be any expressions. If there are variables in
weight expressions, they must be domain restricted.

41

The weights may be given in the weight literal body, or they may be
defined earlier by global weight declarations. The local values override
the global values. If there is neither a global or a local value, the default
value is used. The default is normally 1 but you can change it with the
command line argument -w (see Section 3.1).

Negative weights are handled by inverting the literal (¢ becomes not a
and not a becomes a), changing the sign of the weight, and adding the
absolute value of the weight to the bounds.

For example,
lower [a_l=-w_1, not a_2=-w_2]

becomes

lower+w_1+w_2 [not a_l=w_1, a2=w_2].

Conditional literal
A conditional literal is of the form:
p(X) : q(X)

where p(X) is any basic literal and ¢(X) is a domain predicate. If the ex-
tension of ¢ is {g(a1),q(az), ..., g(ay)}, the above condition is semantically
equivalent to writing p(a1), p(az), ..., p(a,) in the place of condition.

For example,

q(1..2).

a:-1{pX:qX) }.
will be grounded to give

q(1). q(2).

a:-1{p), p(2) }.
Semantically the expansion of conditions takes place after the variables
that occur also in another part of the rule are instantiated. For example
in the program

a(1..2).

a(X) :- 1 { pX,Y) : a(¥) }, 4(X).

the variable X will be first instantiated to give the program
d(1). 4(2).

a(1) =1 { p(1, Y) : a(y) }, d(1).
a(2) -1 {p(2, Y) : a(Y) }, d(2).

In the next step the conditions are expanded to give

d(1). 4.
a(l) -1 { P(l, 1)’ P(l, 2) }’ d(l)-
a(2) -1 { P(2: 1): P(2: 2) }, d(2)-

42

In practice, the conditions are expanded as early as possible and if none
of the variables in a condition occur in other parts of a rule, the condition
will be expanded before anything else is done.

It is also possible add many conditions to one literal. For example in the
conditional literal:

p&X,Y) : q-1(X) : q-2(Y)

domain predicate ¢; gives values to X and ¢, gives values to Y.

5.4 Rule Types

The version 2.0 of smodels added support for three new rule types: choice,
constraint, and weight rules. In lparse the constraint and weight rules are
handled by more general constraint and weight literals that were introduced in
the section above.

Basic rule
A basic rule is of the form:

h(X) :- a.1(X), ..., an(X), not b_1(X), ..., not bm(X).

Ifa1(X), ..., a,(X) are in a stable model and b;(X), ..., b,(X) are not,
the head atom h(X) is put also in the model.

If the rule has no head, all model candidates that satisfy the rule body
are discarded.

Choice rule
A choice rule has one of the following two forms:

lower { hl, ..., hn } upper :- body.
lower [hl=w_1, ..., hn=wn] upper :- body.

If the body of a choice rule is satisfied, the number (or total weight) of
hi, ..., hy, that are true in the model will be between lower and upper,
inclusive.

If both bounds are missing, any number of head literals may be included
in a model. It is then said that the body gives the head atoms a reason to
be in a model, but it doesn’t force them to be in it.

For example, the program

1{a, b} .
has three stable models, M; = {a}, M> = {b}, and M3 = {a,b}.

It is also possible to use a weight literal as a head. In that case, the total
weight of the satisfied literals in it has to be between the bounds.

There exists also a special notation

43

hi1] ... | hn :- body.
that is a shorthand for

1{hil, ..., hn } 1 :- body.

That is, using |-notation you ge an exclusive or of the head atoms. Also,
the notation is used with disjunctive semantics that are explained in Sec-
tion 4.8.1.

Internally, a choice rule with non-zero bounds will be translated into three
rules:

{hi, ..., hn } :- body.
:- upper +1 { h.1, ..., hn }, body.
i= n —lower +1 { not h.1, ..., not hmn }, body.

This transformation is done because smodels doesn’t allow bounds in
choice rules.

5.5 Declarations

There are eight kinds of declarations in the language: constant, domain, ex-
ternal, hide, function, option, show and weight declarations. The declarations
may occur anywhere in the source code. The only restriction is that you have
to declare a constant or a function before you use it.

All declarations start with a ‘#’ symbol. The old practice of writing them
without it is still supported but it is recommended to exclusively use the new
convention since some future version will drop the support.

Constant declaration
A constant declaration is of the form

#const bar = ezpr.

This declares the identifier bar as being a numeric constant with the value
erpr that may be any constant valued expression. It is also possible to
define constants from the command line by using the option -c. There
are more about numeric constants in Section 5.2.

Domain declaration

A domain declaration is of the form

#domain a(X).

The domain declaration above asserts that the variable X should always
get its domain from the literal a(X). In practice, this is implemented by
adding a(X) into the tails of all rules where X occurs. The literal is added
to all such rules, no matter whether X would be otherwise restricted or
not.

44

Example 5.1

Consider the following program:

#domain a(X, Y), b(Z).

foo(X, Y) :- not bar(X, Y).

bar(X, Z) :- not foo(X, Z).
Before the grounding actually takes place, this program is trans-
formed in the form:

foo(X, Y) :- a(X,Y), not bar(X, Y).

bar (X, Z) :- a(X,Y), b(Z), not foo(X, Z).
Note that both a(X,Y) and b(Z) are added to the body of the second
rule. O

External declaration
An external declaration has the form

#external p(X).

where p is a domain predicate. External predicates are used during
grounding to find out possible instantiations of rules depending on them
but they are left out of the actual output.

Example 5.2

The program P:
#external a(X).

a(l..2).
b(X) :- a(X).
is grounded to the following program:
b(1) :- a(1).
b(2) :- a(2).

0

External predicates are useful when the program is large and it has to be
grounded many times with slightly different extensions for domain pred-
icates. The solution is to ground the program once with all possible val-
ues for the domain predicates using external declarations and reading the
grounded program in with -g command line argument when the correct
extension is known.

Example 5.3

Suppose that the program in Example 5.2 is stored in foo.lp and
bar.1lp contains only the fact:

a(l).
Then, you could compute the stable models of foo.1lp using bar.1lp
as the source for extension of a with the following command lines:

45

% lparse foo.lp > full grounding

% lparse -g full grounding bar.lp | smodels
Answer: 1

Stable Model: b(1) a(l)

True

0

For a more thorough explanation on external and its possible uses, see
Section 7.4 on page 68.

Function declaration
A function declaration is of the form:

#function foo.

This declares the identifier foo to be used as a numeric function throughout
the program. The user defined functions are described in more detail in
Section 5.7.3.

Hide declaration
A hide declaration has two possible forms:

#hide.
#hide p(X,Y).

The smodels 2.x offers a feature where some atoms may be hidden from
the output. The atoms still affect the computation in the usual way but
they are not printed. The internal predicates generated by lparse are
automatically hidden. A hide declaration without arguments marks all
predicates as hidden by default and the show declaration can then be
used to tell what atoms are included in the output.

The second hide declaration above marks all ground instances of the 2-ary
predicate p to be hidden. The arguments of p are used only to distinct
predicates with different arities from each other.

For example, if the program
#hide p(X).

p(1..2).
pX,Y) :- p(X), p(Y).

is given to smodels as input, the output will be:

smodels version 2.16. Reading...done
Answer: 1

Stable Model: p(1,1) p(2,1) p(1,2) p(2,2)
True

Option declaration

46

An option declaration is of the form

#option command-line-option.

This declaration can be used to set lparse command line arguments in
the source code. This is mainly useful if your program uses some of the
supported translations, for example —-true-negation or --partial.

Show declaration
A show declaration has the form

#show p(X,Y).

This declaration is the opposite of a hide declaration. It tells 1parse that
the 2-ary predicate p should be shown in the model. This is only useful
when all predicates are hidden using an empty hide declaration.

Weight declaration
A weight declaration has two possible forms:

#weight literal = ezxpr.
#weight literal; literals.

The first one declares the default weight of a literal literal to be expr.
Any variables occuring in ezpr must also occur in literal. The weights will
be instantiated during grounding. The second one declares the weight of
literal; to be the same as the weight of literal, that may be defined in
other part of the program.

When a weight is needed for a literal a that doesn’t have an explicit weight
assigned to it, 1parse starts looking for weight definitions that it has seen
before the line in question. Lparse tries to unify a with each definition
and when a match is found, it uses that weight. If no weight definition
matches a, the global default weight (1, if not set with the -w option) is
used.

For example, in a program

#weight p(X,Y) = 1.
#weight p(a,Y) = 2.
#weight p(a,b) = 3.
a :- 2 [p(a,b)=1, p(a,a), p(b,b) 1.

the weight of p(a,b) is 1 because the explicit definition overrides all global
definitions. Lparse then starts looking for weight of p(a,a). It first tries
to unify p(a,a) and p(a,b), but fails because a # b. Unifying with p(a,Y")
succeeds when the variable Y is binded to the value a. Thus, the weight
of p(a,a) is 2. Using a similar process, lparse determines that the weight
of p(b,b) is 1.

If the weight of a literal is defined more than once, only the latest definition
is used. For example:

47

X.
10.

#weight p(X)
#weight p(2)

a:- 2 [p), p(2) 1. % weights: p(1) =1, p(2) = 10
#weight p(Y) = Y+5.
b:-2 [p(), p(2) 1. 7 weights: p(1l) =6, p(2) =7

The weights may be defined separately for positive and negative literals. If
a negative literal doesn’t have a matching negative weight declaration, it
uses a corresponding positive one by default. This behavior can be changed
with the option ‘--separate-weight-definitions’. For example, after:

#weight a = 2.

#weight not a = 3.

#weight b = 5
the weight of a is 2, of not a is 3, and both b and not b have weights 5.
However, with the above command line argument the weight of not b is
the default 1.

5.6 Statements

The statements are used to specify desired properties of the models. There are
two kinds of statements, compute and optimize statements.

Compute statement
A compute statement is of the form:

compute number { a_l, ..., amn, not b1, ..., not bm }.

Only stable models containing a1, ..., a, and not containing by, ..., 1b,,
are computed. The number of generated models is controlled by number.
If number is 0 or the identifier all, all models are computed. The default
number of models is 1.

Optimize statement
An optimize statement has four possible forms:

maximize { a1, ..., am, not b1, ..., not bm }.
maximize [1.1 = w1, ..., 1n =wn J].
minimize { a_1, ..., amn, not b.1, ..., not bm }.
minimize [1.1 = w1, ..., 1n = wn J].

When an optimize statement is given, smodels tries to find models with
as many (or as few) of the given literals as possible. You may also use
weights with these literals and then the model with maximal (or minimal)
weight is returned. The optimize statements use braces analogously to
constraint and weight literals; with curly braces the number of true literals
is maximized (or minimized) and with square brackets the weight of true
literals is maximized.

48

However, the behavior of smodels is not the one that would come to mind
first. Namely, smodels first searches a single model and prints it. After
that, smodels prints only “better” models. For example, if in the first
model includes three optimized atoms, only those with four or more are
returned afterwards.

If there are many optimize statements, they are considered in fixed order,
the last one being the strongest. When comparing two models M; and M,
the last optimize statement is considered first. If it gives different values
for both models, the rest of the statements are not evaluated at all. Only
if My and M- tie with respect to the last optimize statement the next one
before it is used, and so on.

5.7 Functions

There are two kinds of functions in lparse, numerical functions and symbolic
functions. The difference is that a numerical function is used to compute
some concrete numeric value but a symbolic function basically just defines a
new constant that is the value of the function.
For example, in a program:
d(1..2). e(a ; b).
q(X+1) - d(X).
pEX)) - e(X).
there are two functions, X +1 and f(X). Here X + 1 is a numerical function
and its value is computed during grounding. On the other hand, f(X) is a
symbolic function and only thing that grounding does to it is to instantiate X.
The grounded program is:
d(1). d(2). e(a). e(b).
q(2) :- d().
q(3) :- d(2).
p(f(a)) :- e(a).
p(f(b)) :- e(b).
The functions f(a) and f(b) are treated just like constants by smodels.
A numerical function has to be declared with a function declaration before
they can be used.

5.7.1 Numerical Functions

Numerical functions can occur in two different roles in rules, either as a term
or as a test in a rule body.

As a term, a numerical function gives a value to an argument of a predicate.
During grounding the rule the function is called and the return value is used
as the argument. Internally the function is replaced by a new variable and an
assign function in the rule body.

For example,

49

Table 5.1: Lparse internal functions

Function Operator Function Operator
plus(X,Y) X + Y 1t (X,Y) X <Y
minus(X,Y) X —Y gt(X,Y) X >Y
times(X,Y) X %Y le(X,Y) X <=Y
div(X,Y) X/ Y ge(X,Y) X >=Y
mod (X,Y) X mod Y eq(X,Y) X =Y
assign(X,Y) X=Y neq(X,Y) Xt!=Y
and (X,Y) X&Y xor (X,Y) X"

or (X,Y) XY bnot (X) ~X

abs (X) | X | weight (a(X))

pX, Y, X+Y) :- d(X,YV).
becomes
pX, Y, Z) :- d(X,Y), Z = X+Y.

If we ground the above rule with a variable binding {X/1,Y/2}, the ground

rule becomes
p(1,2,3) :- d(1,2).

As a test, a function works as a constraint for possible variable values. If
the function returns false, i.e. 0, when called with a given variable binding, the
binding is discarded. If it returns true, i.e. any value other than 0, the ground
rule corresponding to the binding is printed. After the test has been performed
succesfully, the function is removed before printing the ground rule.

For example, the program:

d(1). d(2).

q(X,Y) :- d(X), d(¥Y), X < Y.
is grounded to give

d(1). d(2).

q(1,2) :- d(1), 4(2).

A numerical function has to be declared (see Section 5.5) before it can be
used.

5.7.2 Internal Functions

There are 17 different arithmetical functions built in 1parse. The internal
functions are automatically declared unless the -i command line option is given.
The lparse interal functions are shown in Table 5.1.

There is an infix operator defined for each internal function!. The notations
f(X,Y) and X of Y are interchangeable. In fact, the latter is converted inter-
nally to the former. All internal functions accept many arguments, so you can
call for example plus(X,Y, Z,2). The operator precedence is shown in Table 5.2.

LWith the exception of weight(a(X)).

50

Table 5.2: Lparse operator precedence

~ funary), -
%, /, mod
+, —
==, !:, <7 >, <:, >=
&, |,

Only comparison functions allow symbolic constants as their arguments and
the others work only for numbers. The symbolic constants are compared using
lexicographic, that is phonebook, ordering.

The functions and, or, xor, and b_not implement the bitwise logical opera-
tions.

The assign-function returns always 1 when the assignment succeeds, so the
constructs like X = Y = 5 don’t work like they do in some other languages.

The weight function is a special case that takes a basic literal as its argument
and returns its weight.

Example 5.4

Consider the program:

weight a(X) = X.

b(1..4).

c(X) :- b(X), weight(a(X)) <= 2.

d(X,Y) :- b(X), b(Y), weight(a(X)) + weigh(a(Y)) > 4.

The extension of ¢ will be {c(1),¢(2)} and the extension of d will be
{d(174)7d(273)7d(37 2)7d(47 1)}' <>

5.7.3 User-Defined Functions

It is possible to add a user-defined C or C++ function to lparse. In earlier
versions of lparse you had to use the perl script register to link the functions
statically to lparse binaries. The current method allows dynamic linking of
shared library files to 1parse.

Just about every C/C+-+-function can be linked with Iparse, but those func-
tions that meant to be directly called from logic programs should have the
prototype:

long foo(int num args, long *args)

That is, 1parse passes the arguments in an array of long integers with an
integer parameter telling the lenght of the array. The symbolic constants are
encoded as indices to a symbol table where the actual strings are stored. The

51

numeric constants can be handled using normal functions and operators but
the only way to handle symbolic constants is to use the lparse API that is
introduced in the next section.

Lparse uses the normal C convention of treating value 0 as false and every
other value as true.

Before you can use your own function, you have to add it to a shared library
and tell lparse where the library can be found. Lparse searches for libraries
from the following directories:

1. A path stored in an environmental variable LPARSE L.IBRARY PATH.
2. Directories specified in the file “/.1parserc.
3. A path stored in an environmental variable LD_LIBRARY PATH.

Lparse library definitions may be placed either in the environmental variable
LPARSE_LIBRARIES or in the file .1parserc.
An example .lparserc is:

LPARSE_LIBRARY PATH = /home/tss/lparse-1libs
LPARSE_LIBRARIES = libfoobar.so
If you have files foo.c and bar.c that you want to use with lparse, you can
create the shared library with following steps. (These steps work with gcc on a
Linux system; if you use some other system they may or may not work.)

1. Compile the files into object files using the option-fPIC:
% gcc -fPIC -Wall -c foo.c

2. Create the shared library. If your functions call some library functions,
it will be safest to link these to the library. Here we suppose that foo.c
uses some functions defined in standard math library:

% gcc -shared -Wl,-soname,libfoobar.so -o libfoobar.so
foo.o0 bar.o -1m

3. Move libfoobar.so to a suitable place and put a pointer to it into
.lparserc.

There is an example makefile in the 1ib directory of the lparse distribution
that can be used as a model for generating your own libraries.

The final step is to tell 1lparse that you want to use your own functions.
This is done by adding a function declaration

function foo.

to the program. When a function is declared, 1lparse goes on and tries to
find the function symbol from the libraries. It will pick the first match that
it finds and display an error if no matches are found. If lparse founds some
other external symbol with the same name, such as a character array, it will die
horribly trying to jump at the symbol. If you get a lot of segmentation faults
while using your own functions, this may be one reason.

92

lparse_constant_t lparse_constant_type(long constant)

int lparse_is numeric(long constant)

int lparse_is_symbolic(long constant)

char *lparse_get_symbolic_constant name(long symbolic_constant)
long lparse get_symbolic_constant_index(char *symbolic_constant)
int lparse_symbol exists(char *symbolic_constant)

long lparse _create new_symbolic_constant (char *arg)

Figure 5.1: Lparse API functions

5.7.4 Lparse API

The lparse version 0.99.47 added a programming API that allows user-defined
functions to manipulate symbolic constants. The API functions are defined in
the file 1parse.h that is located in the 1ib directory of lparse distribution.

The 1lparse.h contains declarations of seven functions that provide the basic
constant handling capabilities. The functions are listed in Figure 5.1 and their
descriptions are below. The current version of the API doesn’t differentiate be-
tween symbolic constants and symbolic functions. That is, a symbolic function
is internally treated as a oridinary constant that just happens to have a specific
form.

The header file defines an enumeration lparse_constant_t to hold the pos-
sible types of lparse constants:

typedef enum { LP_NUMERIC, LP_SYMBOLIC } lparse_constant_t;
The following functions are available:

Iparse_constant_t lparse_constant_type(long constant)
The function lparse_constant_type returns the type (LP_NUMERIC or
LP_SYMBOLIC) of the argument constant.

int lparse_is_numeric(long constant)
Returns true if constant is a numeric constant, false otherwise.

int lparse_is_symbolic(long constant)
Returns true if constant is a symbolic constant, false otherwise.

char *lparse_get_symbolic_constant_name(long symbolic_constant)
Returns a pointer to the symbol table entry of symbolic_constant or NULL
if it is not defined. As the pointer is to the actual symbol table, don’t
mess with it.

long lparse_get_symbolic_constant_index(char *symbolic_constant)
Returns the 1parse symbolic constant that corresponds to the character
string symbolic_constant or a special value LP_INVALID_CONSTANT if the
symbolic constant is not defined.

33

int lparse_symbol_exists(char *symbolic_constant)

Returns true if symbolic_constant is defined as a symbolic constant and
false otherwise.

long lparse_create_new_symbolic_constant(char *new_string)
The function stores its argument into the symbol table and returns its
symbolic constant index value. It is safe to add same constant many times
to the table and all calls will return the same value.

Example 5.5

The following code can be used to identify whether a constant is a symbolic
function (this example can also be found in the 1ib directory of lparse
distribution):
/% apitest .c —— a small example on
how the Iparse API can be used x/

#nclude 7lparse.h”
#include <string .h>

/* This function returns the constant ’true’ if
its first argument is a symbolic function,
and ’false’ otherwise %/

long is_symbolic_function (int nargs, long xargs)

{

char xst = 0;
if (lparse_is_symbolic (args[0])) {
st = lparse_get_symbolic_constant_name (args [0]);

/x supposes that there is a ’(’ in a constant only
if it actually is a symbolic function x/
if (strstr(st, (7)) {
return lparse_create_new_symbolic_constant (”true”);
}

}

return lparse_create_new_symbolic_constant (” false”);

}

Supposing that the above function was compiled and linked to liblparse. so.
Then, the following program

Program 5.1

function is_symbolic_function.
a(is_symbolic_function(1)).
b(is_symbolic_function(foo(1))).
c(is_symbolic_function(bar)).

54

Table 5.3: Lparse keywords

compute const
external | function
hide maximize
minimize mod
not show
weight

gives the following output:

smodels version 2.23.
Answer: 1
Stable Model:
True

Reading. . .done

c(false) b(true) a(false)

5.8 Keywords

Lparse has a set of keywords that may not be used for other purposes. The
keywords are shown in Table 5.3. In addition to keywords lparse uses internal
atoms, predicates, and variables. The names of the internal predicates and
atoms start with an underscore (_). The names of internal variables start with
I_. You should avoid using the internal symbols in your programs, or strange
behavior may result.

35

Chapter 6

Examples

The source code of all examples in this chapter is included in the examples
directory of lparse tarball. More examples can be found from lparse-demo.tgz
which is available at

http://www.tcs.hut.fi/pub/smodels/lparse/.

6.1 Node Coloring

Program 6.1

% Node coloring problem by Tommi Syrjé&nen.
% Given a graph given as a set of nodes and edges
% find a way to color the nodes with ’n’ colors such that
% two adjacent nodes are not colored with the same color.
const n=3. ¥ this can be changed with the
%command line argument ’-c’.

color(l..n).
% Each node should have exactly one color:
1 { node_color(N, C) : color(C) } 1 :- node(N).
% Two adjacent nodes have to have different colors:

:- node_color (X, C), node_color(Y,C), edge(X,Y), color(C).
% Typical command line
% lparse -d none -c n=3 color2.lp graph | smodels

6.2 Logical Puzzles

The example/puzzle directory contains a couple SMODELS programs that solve
logical puzzles that are taken from Raymond Smullyan’s excellent Forever Un-
decided [17]. All following programs should be run with the command line

% lparse file | smodels O
so that all possible answers are generated.

96

Knights and Knaves
The Island of Knights and Knaves has two types of inhabitants: knights,
who always tell the truth, and knaves, who always lie.

One day, three inhabitants (A, B, and C) of the island met a foreign
tourist and gave the following information about themselves:

1. A said that B and C are both knights.
2. B said that A is a knave and C is a knight.

What types are A, B, and C?

This logical puzzle can be solved with the following program:

Program 6.2

% Each person is either a knight or a knave
1 { knight(P), knave(P) } 1 :- person(P).

% There are three persons in this puzzle:
person(a ; b ; c).

% Rest of this program models the two hints.

% Hint 1:

% If A tells the truth, B and C are both knights
2 { knight(b), knight(c) } 2 :- knight(a).

% If A lies, both cannot be knights.
:— knave(a), knight(b), knight(c).

% Hint 2:
% If B tells the truth, A is a knave and B is a knight
2 { knave(a), knight(c) } 2 :- knight(b).

% If B lies, one of the claims has to be false
:— knave(b), knave(a), knight(c).

Martian-Venusian Club, part 1

On Ganymede — a satellite of Jupiter — there is a club known as the
Martian-Venusian Club. All members are either from Mars or from Venus,
although visitors are sometimes allowed. An earthling is unable to dis-
tinguish Martians from Venetians by their appearance. Also, earthlings
cannot distinguish either Martian or Venusian males from females, since
they dress alike. Logicians, however, have an advantage, since the Venu-
sian women always tell the truth and the Venusian men always lie. The
martians are the opposite; the Martian men tell the truth and the Martian
women always lie.

One day a visitor met two Club members, Ork and Bog, who made the
following statements:

57

w N =

4

. Ork: Bog is from Venus.
. Bog: Ork is from Mars.
. Ork: Bog is male.

. Bog: Ork is female.

Where are Ork and Bog from, and are they male or female?

Program 6.3

% All persons are from Mars or Venus
1 { martian(P), venetian(P) } 1 :- person(P).

% All persons are male or female
1 { female(P), male(P) } 1 :- person(P).

% All persons either lie or tell the truth depending on
% their origins and sex.

lies(P) :- person(P), martian(P), female(P).

lies(P) :- person(P), venetian(P), male(P).

truthful (P) :- person(P), martian(P), male(P).
truthful (P) :- person(P), venetian(P), female(P).

% A person may not tell the truth and lie at the
% same time
:— person(P), lies(P), truthful(P).

% Persons:
person(ork; bog).

% Hints

h1.

venetian(bog) :- truthful(ork).
:— lies(ork), venetian(bog).

0,

h 2.

martian(ork) :- truthful(bog).
:— lies(bog), martian(ork).

% 3.
male(bog) :- truthful(ork).
:— lies(ork), male(bog).

h 4.

female(ork) :- truthful(bog).
:- lies(bog), female(ork).

98

Martian-Venusian Club, part 2
The Martians and the Venetians often intermarry, and there are several
mixed couples in the club. One couple approached the visitor and the
following conversation ensued:

1. Visitor: Where are you from?

2. A: From Mars.
3. B: That’s not true!

Was the couple mixed or not?

The program to solve this one uses the same basic foundations as the
puzzle above and below only the changed parts are shown.

Program 6.4

% Persons:
person(a; b).

% The persons in this puzzle are married so they can’t
% have the same sex.

:— male(a), male(b).

:— female(a), female(b).

% The hints.

% 1.

martian(a) :- truthful(a).
:— martian(a), lies(a).

% 2.

lies(a) :- truthful(b).
:— lies(a), lies(b).

6.3 Planning

The largest example program in the example directory is logistics.1lp which
shows a way to encode planning problems as SMODELS programs. The program
is too big to be included in this manual entirely but here are some selected bits.

In a planning problem, we are given a descriptions of the initial state of the
world and the desired goal state. In addition, we are given a set of actions that
can be used to change the state of world.

In logistics domain, we have an action load_truck(Object, Truck) that is
used, naturally enough, to load packages into trucks. The precondition for this
operation is that the object and truck are at the same place and the effect is
that the package will be inside the truck.

99

The first step in converting the action to smodels rules is to add a third ar-
gument to it, namely time, to it. Thus we’ll use predicate load_truck(0Object,
Truck, Time) to model the loading.

A natural way to encode actions is to use choice rules, in form:

{ action } :- preconditions.

If the body of a choice rule is true in a model, the head may be true in it,
but it doesn’t have to. Thus, when the preconditions are fulfilled we can either
perform the action or decide to do some other action.

The effects of an action are implied by the action:

effects :- action.

The blocking of conflicting actions is done by adding a constraint that says
that if an action doesn’t change its own precondition, then the precondition has
to hold also at the next instant:

precondition(I+1) :- action, precondition(I).
Using these guidelines we can encode load_truck with following rules:

Program 6.5
{ load_truck(Obj, Tr, I) } :-
at(0bj, Loc, I),
at(Tr, Loc, I),
object (0bj),
truck(Tr),
location(Loc),
time (1) .
%Effects:
in(0Obj, Tr, I+1) :-
load_truck(0bj, Tr, I),
truck(Tr),
object (0bj),
time (I).
changes(Obj, I) :-
load_truck(0bj, Tr, I),
truck(Tr),
object (0bj),
time (I).
% As one of the preconditions for load _truck(Obj, Tr, I) is
% at(Tr, Loc, I) and the operator doesn’t change it, the
% truck has to be at the same place at the next instant.
at(Tr, Loc, I+1) :-
load_truck(0bj, Tr, I),
at(Tr, Loc, I),
location(Loc),
truck(Tr),
object (0bj),
time (I).

60

In addition to the operators we also need a set of frame axioms that take care
of those parts of the world that doesn’t change at an time step and that keep
the system in consistent state:

Program 6.6

% FRAME AXIOMS
% Everything stays at the same place where it is unless
% some action moves it.
at(0bj, Loc, I+1) :-
at(0bj, Loc, I),
not changes(0bj, I),
object (0bj),
location(Loc),
time(I).
% An object may not be in two places at the same time
:- 2 { at(0Obj, Loc, I) : location(Loc),
in(0bj, Cont, I) : container(Cont) },
object (0bj),
time(I).

61

Chapter 7

Writing Smodels Programs

This chapter contains some miscellaneous topics on writing programs for SMOD-
ELS. The first section detains the operation of an Emacs major-mode for writing
SMODELS code. The two following sections contain some tips for debugging logic
programs and using parser warnings.

7.1 Editing Smodels Programs with Emacs

There is a major-mode for writing SMODELS programs with Emacs. It is de-
fined in file smodels-mode.el which is located int the 1ib directory of 1lparse
distribution.

To use the mode you have to copy smodels-mode.el into some directory
that is mentioned in your load-path Emacs variable and add a command to
load the mode when needed.

For example, suppose that you want to use the directory ~/.elisp for all
your Emacs Lisp files. Then you could copy smodels-mode.el to that directory
and add the following commands to your .emacs startup file:

;; First set the load path
(setq load-path (cons "~/.elisp" load-path))

;3 Load smodels-mode automatically when needed.
(autoload ’smodels-mode "smodels-mode" "Smodels Editing Mode" t)

;; Use smodels-mode for all files that end with ¢.1lp’.

(setq auto-mode-alist (cons ’("\\.1lp$" . smodels-mode)
auto-mode-alist))

;; Turn syntax highlighting on automatically

(add-hook ’smodels-mode-hook ’turn-on-font-lock)

Smodels-mode knows how to indent SMODELS programs and performs some syn-
tax highlighting. All keywords are printed with font-lock-keyword-face font,

62

built-in functions with font-lock-builtin-face, and variables with font-
lock-variable-face.

You can also run lparse and smodels processes under Emacs with smodels-
mode. You can choose what parser you want to use with the command M-x
smodels-set-parser. By default lparse is used. The actual smodels version
that is used to compute the models can be set with M-x smodels-set-program.
By default, smodels is used. You can set command line arguments with M-x
smodels-set-parser-arguments and M-x smodels-set-program-arguments.

There are four different commands that can be used to start smodels pro-
cesses:

e M-x smodels-compute-buffer grounds the current buffer with chosen
parser, sends the results to a smodels process, and prints the stable models
in buffer *smodelsx*.

o M-x smodels-compute-files works like smodels-compute-buffer but
it allows you to process programs that are stored in multiple files. When
you use this function the first time it asks what files you want to include
with the run. If you want to change the file list later, you can do it with
command M-x smodels-set-file-list.

e M-x smodels-parse-buffer sends the current buffer to the parser and
displays the output in the buffer *smodels*. By default, the command
displays its output in plain text format but if you include an argument
(i.e. if you invoke it with C-u M-x smodels-parse-buffer), the output
is in smodels internal format.

e M-x smodels-parse-files grounds many files.

The smodels-mode keymap binds above functions to following keys:
e C-c C-bis binded to smodels-parse-buffer

e C-c C-f is binded to smodels-parse-files

e C-t C-bis binded to smodels-compute-buffer

e C-t C-f is binded to smodels-compute-files

7.2 Debugging Smodels Programs

So now you have written a large logic program, but only thing that smodels
wants to answer is False. Finding problems within logic programs may be
tedious and frustrating since a small typo may ruin the whole program. It is
not possible to give a debugging procedure that works every time, but here are
some things that I have found helpful.

63

e Make sure that all constants begin with a lower case letter and that
all variables begin with an upper case letter. I once spent a couple of
hours searching for a mysterious bug in a planning model that seemed to
come and go. The cause for the bug was that in one rule I had written
at(tr, Loc, I) instead of at(Tr, Loc, I). When there was only one
truck (namely, tr) in the model, everything worked well, but when there
were more trucks a plan couldn’t be found because only one of the trucks
could move.

e Comment rules out one at a time to see which rule causes the contradic-
tion. Of course, if the problem is that some necessary rule is missing, you
cannot find it this way. It is also possible that the rule commented out
works correctly, but some other incorrect rule conflicts with it.

e Make the domains as small as possible. If your program works well when
there is only one item of some type and it fails when there are more of
them, it is quite likely that some rule demands that if something is true for
one item, it is true for all of them. For example, I once tried to split the
predicate drive_truck(Tr, From, To, I) into three smaller predicates:
drives(Tr, I),moves_from(Tr, From, I), and moves_to(Tr, To, I).
The rule that I wrote for moves_to was of the form:

moves_to(Tr, To, I) :-
truck(Tr),
location(To),
time(I),
drives(Tr, I).

Grounding transformed this rule into form:
moves_to(tr, a, 1) :- drives(tr, 1).
moves_to(tr, b, 1) :- drives(tr, 1).

That is, the rule demanded that if a truck drives somewhere at all, it must
at the same time drive to each possible location.

e Use compute statements to test what combination of atoms cause contra-
dictions. Start with an empty compute statement and if smodels finds a
model, continue by adding some atoms that should be in the model to see
where the things go wrong.

For example, when debugging my planning encoding, I used compute state-
ments of the form
compute 1 { load_truck(pct,tr,1), drive truck(tr,a,b,2),
unload_truck(pct,tr,3), at(pct,b,4) }.
after adding each operator to check that the program could find at least
some legal plan.

e Use the -t option to see what exactly lparse does to your program.
Because the ground programs are often quite big you should comment out
everything that in your opinion is not related to the bug.

64

e Use the parser warnings. The warnings are detailed in the next section.

e You can also try to compute the partial models of the program using the
opition --partial. This may sometimes give some hints on where the
problem is located.

For example, a program

a :—- b.
b :- not a.

doesn’t have any models since not a implies a, which causes a contradic-
tion. The problem here is that a not was forgotten from the first rule.
Using the option --partial we get the following result:

% lparse —-partial foo | smodels
smodels version 2.25. Reading...done
Answer: 1

Stable Model: a’ b’

True

The atoms a' and b’ are true in the partial model but a and b are not,
suggesting that the problem is somehow related to a and b atoms, since
they are only possibly true.

7.3 Parser Warnings

Lparse can detect some possible errors from its input. The checks are mostly
aimed to detect constructs that have caused trouble earlier'. Most of the con-
structs are sometimes useful, but in wrong places they have caused a lot of
debugging. If you want to use the warnings effectively, you should know what
causes warnings and why.

-W arity
Arity detects cases when a predicate symbol has two different arities in
same program. This warning is mainly intended for catching bugs where
you forgot an argument from a predicate. For example

p(a).
p(a,a).

causes the warning

2: Warning: predicate ’p’ is used with 2 arguments at line 2,
while it is also used with 1 argument at line 1.

There are cases when when it is useful to have many different arities for
same predicate. For example, you could want to say something like

LTf you are sometimes bitten badly by something you think lparse should detect automat-
ically, please send me an email about it and I’ll try to incorporate a new warning for it in
later releases.

65

goal :- goal(I), time(I).

to say that it doesn’t matter when the goal is found. Of course, in many
of these cases it would be better to use different predicate symbols.

-W extended
Extended detects general problems with extended rules. This is a warn-
ing that should be enabled nearly always. At least I haven’t found any
legitimate use for the constructs that trigger this warning.

Currently, extended warns about cases where you have explicitly defined
weights in places where they don’t have any effect. Most often this happens
because you have used curly braces instead of brackets.

For example,
a:-2{b=3, notc=2}.

gives the warning

1: Warning: weight defined for literal ’b’ in a constraint
rule.

1: Warning: weight defined for literal ’not ¢’ in a constraint
rule.

Here the fix is to replace ‘{’ and ‘}’ with ‘[’ and ‘1 .

-W library
Library causes a warning in two cases: if you have defined a library file
that doesn’t exist in .1lparserc or if you declare a function two times.

-W similar
Similar detects cases where you might have misspelled the initial letter
of a constant or variable. For example, in the program

a(1..5).
b(3..7).
c(I) :- a(I), b(i).

the variable I was misspelled in the literal b(i) so the domain of the
predicate c(X) is empty instead of c(3..5) as intended. If the warning
similar is enabled, lparse prints:

3: Warning: constant ’i’ is similar to variable ’I’
(other occurrences of ’i’ are not checked)

Lparse warns only the first possible typo that it sees.

This warning is quite often a false alarm, since there are many reasons
why a program would have similar names for constants and variables.
However, enabling this warning cathces some of the most annoying bugs
in logic programs.

66

-W unsat
Unsat is another option that can catch hard-to-find typos. Given this
option lparse warns if there is some predicate symbol that can’t be satisfied
because it doesn’t occur in a head of any rule. This option is mainly
intended to find out cases where you have misspelled a predicate. For
example, in the program

const max_time = 10.

time(1l .. max_time).
{ action(I) } :- preconition(I), time(I).
precondition(I) :- time(I).

the first non-trivial rule is probably trying to say that an action is pos-
sible only if its precondition is true, but the predicate was misspelled.
Sometimes these errors are a pain to find and correct. Using warning
unsat lparse prints:

3: Warning: predicate ’preconition/1’ doesn’t occur in any rule
head.

This option is similar to the one above in that there are many cases where
it is not an error to have some unsatisfiable predicate in the program. For
example, in the program,

a :- not b, enable_a.
b :- not a.

we want that a is not in any model unless we specifically allow it by adding
enable_a as a fact into the program.

-W weight
Weight prints a warning if you use the default weight of a literal in some
weight rule. Default weights are very often useful but if you want to define
weight explicitly for each literal, you can set this option to catch typos in
global weight definitions. For example, you might have program

e(1..3).

weight c(1) = 10.
weight c(2) = 15.
weight d(3) = 20.

a =30 [cX) : eX 1.

Here the idea is, that a should be true if the total weight of true c(X)
atoms is more than 30. However, the last weight definition was misspelled
so that the weight of c(3) is the default 1 instead of 20.

Given the option -W weight lparse warns:

5: Warning: default weight used for literal ’c(3)’

-W error
Error causes lparse to treat all warnings as errors.

67

There are three options that can be used to set more than one warning flag
at a time:

e -W all enables all warnings.
e - syntax sets arity, extended, and weight.

e - typo sets similar and unsat.

7.4 Handling BIG programs

You sometimes meet problems where the smodels finds the stable models in few
seconds but lparse takes 20-30 seconds (or even more) to ground the problem.
If these are isolated cases, the problem is not severe. On the other hand, if you
want to alter the compute statements just a bit or tweak the domain predicates,
having to ground the whole program every time can be quite a nuisance.

This problem can be partially solved using external declarations and the
command line option —-g. The option allows you to read in a previously grounded
progam and add new rules to it.

In this section we consider three cases that occur in practice:

1. we don’t have to change the actual grounded program but we want to
change the compute statement;

2. there’s a domain predicate whose extension is not available during ground-
ing but we know what is the largest possible extension; and

3. we have an existing program and we want to enlarge the extensions of
domain predicates to get more rules.

The second case occurs for example in the configuration management problem;
we know that there’s a set of components that the user can choose but we don’t
know what the actual choices will be for each configuration task beforehand.
An example of the third case occurs in planning problems where we may want
to increase the number of time steps if a plan can’t be found.

For the rest of this section we will examine the program test.1lp:

Program 7.1
a(l1 .. max.a).
b(X) :- a(X), not c(X).
c(X) :- a(X), not b(X).

7.4.1 Altering the Compute Statement

So, you have now written test.lp and you want to test it out with several
different compute statements without having to ground the program again each
time.

First step is to ground the program the first time:

68

% lparse -c max_a=2 test.lp > test_output

This command grounds test.1lp and stores the output in the file test_output.
The argument -c max_a=2 sets the extension of a to {a(1),a(2)}.
Next step is to write a source file compute.lp that contains the compute
statement:
compute { b(1) }.
Now you can find all models of Program 7.1 with the command line:
$ lparse -g test_output compute.lp | smodels 0
The output of the command is:

smodels version 2.25. Reading...done
Answer: 1

Stable Model: b(1) c(2) a(1l) a(2)
Answer: 2

Stable Model: b(1) b(2) a(1) a(2)
False

Changing the compute.lp to
compute { b(1), b(2) }.
you will get only one model, as expected:

smodels version 2.25. Reading...done
Answer: 1

Stable Model: b(1) b(2) a(1l) a(2)
False

Now, with all this success you might want to simplify the compute statement a
bit and change it to the form:
compute { b(X) : a(X) }.
However, quite surprisingly the answer is not the same as it was to the earlier
query! Instead of having only one model containing b(1) and b(2), you will get
all four models of Program 7.1:

smodels version 2.25. Reading...done
Answer: 1

Stable Model: b(1) c(2) a(1) a(2)
Answer: 2

Stable Model: b(1) b(2) a(1) a(2)
Answer: 3

Stable Model: c(1) b(2) a(1l) a(2)
Answer: 4

Stable Model: c(1) c(2) a(1l) a(2)
False

What happened here? The explanation lies in the fact that once a rule is
grounded its structure is lost. There is no connection from the grounded rule

69

to the original non-ground rule that generated it. Similarily, the knowledge of
domain predicates and their extensions is lost.

Lparse first read the ground program in, recognizing and storing the atom
names in the process. Then it simply passed the rules, unmodified, to smodels
and started to read in compute.lp and process. As it didn’t give any definitions
to the predicate a/1, the condition in the compute statement was expanded to
the empty set of literals that didn’t constraint the models in any way.

In theory it would be possible to construct the domains from the grounded
program but this would cause other problems:

1. it is possible that the program was originally grounded with -d none and
there are actually no domain predicates left at all; and

2. computing domains would make it impossible to incrementally ground a
program as all rules would need to be grounded for the old domains as
well as the new ones.

7.4.2 Restricting the Extensions of Domain Predicates

In the second scenario you want to alter the domains of domain predicates and
you have the advantage of knowing the maximal extensions for each predicate.
In terms of Program 7.1, you would know that there were at most max_a in-
stances of a(X) but you didn’t know which ones are necessary.

These situations can be handled with the external declarations. We start
by modifying test.1lp a bit:

Program 7.2
external a(X).
a(l .. max.a).
b(X) :- a(X), not c(X).
c(X) :- a(X), not b(X).

We can now check with the -t option what happens to the program:

% lparse -t -c max_a=2 test.lp
c(1) :- a(l), not b(1).
c(2) :- a(2), not b(2).
b(1) :- a(l), not c(1).
b(2) :- a(2), not c(2).

As we see, lparse created a rule for each possible binding of a(X) didn’t include
them as facts in the program. Now we can specify the extension of a in a separate
program a_def.lp:
a(l).
We can now combine a_def.lp with the test_output generated as in the
previous section to get:

70

% lparse -g test_output a_def.lp | smodels 0
smodels version 2.25. Reading...done

Answer: 1

Stable Model: b(1) a(1)

Answer: 2

Stable Model: c(1) a(1)

False

Note that you cannot use a hide declaration on a predicate that is declared
to be external. The reason for this is that once you have thrown the name
away, only thing that is left is the numerical index of the atom and it isn’t
possible to associate it to its original representation.

If you really wish, you can read more than one grounded program in with
-g switches. However, this will probably cause problems as different programs
may have used the same numerical index for different atoms. Lparse notices
and gives an error message for many of these cases but if there are hidden or
internal atoms, it is very likely that the programs will mix together incorrectly.
So use multiple -g options only if you are absolutely sure that the atom lists
are identical for both programs.

7.4.3 Enlarging the Extensions of the Domain Predicates

In the third scenario we have grounded the program but we want to add more
instances of domain predicates to it. This can be done most conveniently when
using numeric domains but the same principles hold also for symbolic domains.
Again, we start by modifying test.lp:

Program 7.3

a(min.a .. max._a).
b(X) :- a(X), not c(X).
c(X) :- a(X), not b(X).

First we ground the program with the initial values of domain predicates:
% lparse -c min_a=1 -c max_a=2 test.lp > test_output

Suppose that we now want to increase the maximum value for a to 3. We can do
that by reading in the grounded program, setting the minimum and maximum
values to 3 and grounding the original program again:

% lparse -g test_output -c min_a=3 -c max_a=3 test.lp > new_output
% smodels 0 < new_output

7.4.4 Hacking Bits and Pieces Together by Hand

If the grounded program is sufficiently big, just running it through lparse can
take too much time as each atom has to be individually processed. In those
cases you may have to roll up your sleeves and do some manipulation directly

71

to the grounded program. When doing this, you may find it helpful to read
Section B where the internal smodels 2.x format is explained.

There is one command line option, -—atom-file that can be used to divide
the 1lparse output into two parts: the rules and the rest stuff. Given the
command line

% lparse --atom-file atoms program.lp

lparse prints the ground rules of program.lp to standard output and sends
the symbol table and compute statement to the file atoms.

For example, we can extract the symbol table of Program 7.1 with the com-
mand line:

% lparse --atom-file atoms -c max_a=2 test.lp
11

e
O U N W
O O r B
O O = =

W = BN

The rules are in smodels internal format. The most interesting rules for hacking
around are the last two rules. Rules of the form:
1n00O
denote that the atom number n is a fact in the program (i.e., there’s a basic
rule with n as the head and an empty body in the program).
After the preceeding command line the atoms file looks like this:

c(1)
b(1)
c(2)
b(2)
a(1)
a(2)

O OO WN -

The first part is the symbol table giving the representation for each atom. The
part after B+ contains the atoms that have to be in a model (the zero designates
the end of this part), part after B- contains the negative compute statement
and the final line gives the desired number of models.

The easiest way to modify grounded programs by hands is to ground it with
external declarations, read in the symbol table and compute statement, and
add some of the external atoms as facts to the program.

72

7.5 Miscellanous Tips

This section contains a few miscellanous tips that can help in writing SMODELS
programs. Most of this stuff is also mentioned elsewhere in the manual, but I
thought that it would be nice to collect them to one place. This section will
probably increase in size in the future revisions when more things come to my
mind.

The -t option
The -t is probably the most important lparse command line option as
you can use it to see what actually happened to your program when it
went through lparse.

The -4 option
The second most important option is -d none that simplifies the output
by leaving out the domain predicates. It also speeds smodels a little.

Hide declarations
Another way how you can get simpler models is to use hide declarations
liberally. Postprocessing the answer is much easier when you don’t have
to worry about some hundreds of uninteresting atoms.

Using a predicate as its own condition
You may use a domain predicate as its own condition in constraint and
weight literals. For example, you might want to say that a graph is big if
there are more than 100 edges:

big graph :- 101 { edge(X,Y) : edge(X,Y) }.

73

Chapter 8

Future Development

I have a couple of ideas that will probably be included in lparse some day.
They include:

e Extended support for data types. I vision system like one that is used in
the programming language Scheme, that is, the user may freely mix normal
integers, floating point numbers, and bignums and the system takes care
of rest. However, as this requires rewriting of quite large parts of lparse
code this will not happen very soon.

e Some sort of unified method for setting attributes for predicates, like mark-
ing them hidden, setting weights, and like. This feature would prevent
“keyword-pollution” that has been threatening 1parse lately. The feature
will be implemented in such way that it will be easy to convert current
programs into new format automatically.

e Possibility of using predicates that occur as head of a special rule as do-
main predicates.

If you have some suggestions or if you found a bug in lparse, please send
email it for me (tommi. syrjanen@hut.fi).

74

Appendix A

Smodels API

This section contains a brief overview of the smodels programming API. The
APIis alibrary interface that allows a C++ program to construct logic programs
and compute their stable models. Unfortunately, the current interface is quite
unintuitive and there’s no easy way of using the functionality of lparse with
it, so in practice only ground programs can be handled conveniently. However,
the integration of these functionalities will be added in a future version and the
library interface will be cleaned.

A.1 Installing and Using the API

Before you can use smodels as a library you have to compile it as such. This
can be achieved by typing:
% make lib
in the smodels source directory. The library build process uses GNU libtool
that should be installed on the system. The command:
% make libinstall
will then install the libraries to a path that is specified in the Makefile.
The default path is /usr/local/lib. The command doesn’t install the header
files anywhere, so they should either be copied to a suitable location by hand
or the programs should be compiled with the ‘~I’ compiler option. The most
important header files are listed in Figure A.1.
If the compiler and linker can find the header files and the libsmodels.la
file, respectively, you can link the library to your programs in the usual way,
using the ‘~1smodels’ argument to instruct the linker:

% gcc -o foo -I/smodels/header/path foo.cc -lsmodels
The smodels example directory contains several examples on API use.

75

A.2 Header Files

This section goes through the five most important header files and presents
important classes and methods that are defined in them. However, this is not
intended to be a complete reference but it is more like a cookbook of useful
stuff.

A.2.1 defines.h

The most important thing in the header file defines.h is the definition of
different rule types:

typedef enum {
ENDRULE,
BASICRULE,
CONSTRAINTRULE,
CHOICERULE,
GENERATERULE,
WEIGHTRULE,
OPTIMIZERULE

} RuleType;

The meaning of different rule types can be best explained by showing the
corresponding logic program segments.

ENDRULE
An ENDRULE is not a concrete rule but it is used as a placeholder before
the actual rule type is decided. You don’t have to worry about it.

BASICRULE
A basic rule is a normal logic programming rule that doesn’t contain any
constraint or weight literals. For example, a rule
a :- bl, b2, b3, not cl, not c2, not c3.

is a basic rule.
CONSTRAINTRULE

A constraint rule has a basic literal as its head and its tail is one constraint
literal with only a lower bound. For example, the rule

api.h Functions for creating logic programs
atomrule.h Definitions of atoms and rules
defines.h General definitions

stable.h Functions for reading programs from files
smodels.h Functions for computing stable models

Figure A.1: Important smodels header files

76

a :- 2 { bl, b2, b3, not cl, not c2, not c3 }.

is a constraint rule.

CHOICERULE
A choice rule has a constraint literal with no bounds as its head and the
body has only basic literals:

{ a1, a2, a3 } :- b1, b2, b3, not cl, not c2, not c3.

GENERATERULE
Generate rules are not used anymore since their semantics couldn’t be
defined in a nice way.

WEIGHTRULE
A weight rule is otherwise similar to a constraint rule but every literal in
the tail should have an explicit weight defined for it. For example,

a :- 2 [b1=1,b2=2,b3=3,not cl=1,not c2=2,not c3=3].

OPTIMIZERULE
An optimize rule handles minimize and maximize statements. However,
only minimization is explicitly modeled and maximization has to be done
by negating all literals in the rule body. Also, every literal in the rule
body needs a weight definition for it.

A.2.2 api.h

The header file api.h contains the class Api that can be used to create and
manipulate logic programs. The class has the following methods:

Constructor
The constructor of the Api class is:

Api (Program xpr);

The class Program is defined in the header program.h and it is not nec-
essary to know about its internal details to be able to use the API. The
only thing that you need to ensure is that an Api has a valid pointer to
use. In practice, most often you want to use a program that is tied to an
instance of the Smodels class that will be presented below. So an Api is
usually created using the following commands:

Smodels smodels;
Api api(&smodels. program);

You'll get a segmentation fault if the pointer is not valid, so it is not one
of those hard-to-detect bugs.

Destructor
The destructor of the class is simply:

virtual ~Api();

7

and it doesn’t do anything special.

Creating Rules
The rules are created using the following three methods:
void begin_rule (RuleType type);
void add_head (Atom xa);
void add_body (Atom xa, bool pos);
void add_-body (Atom xa, bool pos, Weight w);
void end_rule ();

The possible rule types are described in the above section. When using
all other rule types but CHOICERULE you may add only one head to a
rule. The pos argument to an add_body call decides whether the literal is
positive or negative.

Example A.1

The rule
a :- b, not c.

could be created with

api.begin_rule (BASICRULE);
api.add-head (a);

api.add-body (b, true);
api.add-body(c, false);
api.end_rule ();

supposing that the Atoms a, b, and ¢ have been defined accordingly.
O

Setting bounds
The bounds for constraint and weight rules can be defined using the fol-
lowing two functions:

void set_atleast_body (long);

void set_atleast_weight (Weight);
Currently the type Weight is defined with a typedef:

typedef unsigned long Weight;

Note that both of these functions have to be called before end_rule().

Creating and Manipulating Atoms
There are five functions that can be used to create and manipulate atoms.

virtual Atom xnew_atom ();

void set_name (Atom *xa, const char xname);
Atom * get_atom (const char xname);

void set_compute (Atom *a, bool in_model);
void reset_compute (Atom xa, bool in_model);

78

The new_atom() function creates a new atom and returns a pointer to it.
The atom doesn’t have a name assigned to it and it has to be set with the
set_name () function. Note that you have to call the remember () function
before you can define names. If you know a textual representation of an
atom, you can get a pointer to it with the get_atom function. Note that
get_atom returns NULL if no such atom is defined.

The two last functions are used to define the compute statement. A state-
ment
set_compute (a, true);

asserts that the atom a has to be true in the models. Correspondingly,
set_compute (a, false);

asserts that it must be false. If neither statement is given, the atom may
be true or false. If both are given, the result is an immediate contradiction.

The last function can be used to remove an atom from the compute state-
ment. The boolean argument is used to indicate whether the atom is
removed from the positive or the negative compute list.

Example A.2

Suppose that you want to define an atom a and demand that it has to
be true in all models. Then you can do it with the program snippet:

api.remember ();

Atom *a = api.new_atom ();
api.set_name (a, ”"a”);
api.set_compute (a, true);

0

Handling Atom Names
There are two functions that control whether atom names are allowed or
not:

void remember ();
void forget ();

You can call remember () when you want to use names for atoms and
forget () when you want to get rid of them.

Miscellanous Functions

void copy (Api *ap);
void done ();

The function copy () generates a new copy of the Api that is given as the
argument. The function done() is called when all rules of the program
have been constructed. This is used to signal the Api class that it can
now create the internal data structures for the program. You can’t add
new rules or atoms to an Api after the done() call.

79

The following code example is based on the file example.cc that is in the
examples directory of the smodels distribution.

Example A.3

We will create the Api representation of the simple program:

a :- not b. b :- not a. compute a .
The resulting C++ code is:

#include ”smodels.h”
#include ”api.h”
int main ()
{
Smodels smodels;
Api api (&smodels. program);

// Keep track of atom names
api.remember ();

// Define the atoms

Atom xa = api.new_atom ();
Atom xb = api.new_atom ();
api.set_name (a, "a”);
api.set_name (b, "b”);

// define the rule a :— not b
api.begin_rule (BASICRULE);
api.add_-head (a);

api.add_-body (b, false);
api.end._rule ();

// and b :— not a.
api.begin_rule (BASICRULE);
api.add-head (b);
api.add_-body (a,
api.end._rule ()

false);

?

// compute statement
api.set_compute (a, true);

// signal the end
api.done ();

80

A.2.3 atomrule.h

The header file atomrule.h contains the definitions of the classes Atom and
Rule. Both contain lots of internal stuff that is not necessary for using the API.
However, the Atom class contains few useful methods and attributes:

Constructor
The constructor is defined as:

Atom (Program xp);
The argument p is a pointer to the program where the atom occurs. You

shouldn’t have to create atoms directly as it is better to use the new_atom
method of the Api class.

Name
The name of an atom (if defined) can be obtained with the method:

const char xatom_name ();

Truth value
The truth value of an atom in a stable model is stored in two attributes:

bool Bpos : 1;
bool Bneg : 1;

The variable Bpos is true when the atom is in a stable model and Bneg is
true when the atom is not in the model. If both are false, then the atom
is neither true or false. Note that this may not occur in normal use.

Compute statement
The following two attributes control whether an atom is in the compute
statement:

bool computeTrue : 1;
bool computeFalse : 1;

You can also use the set_compute method of the Api class to do this.

A.2.4 smodels.h

The header file smodels.h contains the definition of the class Smodels that im-
plements the actual computation of stable models. The most important methods
of the class are:

Constructor

Smodels ();

The constructor doesn’t take any arguments.

81

Initialization
After the rules of a logic program have been generated using the Api class
that is tied to a Smodels instance, the computation has to be initialized
with the initialization function:

void init ();

Computation
The stable models are computed with the model function.

int model (bool look = true, bool jump = false);

The function returns 1 if a model is found and 0 if there are no more
models. Successive calls return all models of the program. For example,
the code snippet:

while (smodels.model()) {
// do something

can be used to generate all stable models.

The arguments to the function control whether lookahead heuristics is
used and whether backjumping techniques are enabled. Lookahead helps
in most programs so it is usually a good idea to leave it on. However,
the algorithm is quadratic and with programs that have “easy” structure
may be slower with it. Backjumping is sometimes worthwile but usually
it costs more than it helps so it is off by default.

Examining Models

After a model has been computed, it can be printed with the function

void printAnswer ();

If you want to go through the atoms one at a time, you can do it by going
through the atom list of the Program component using the following code
snippet:

Node *nd = smodels . program. atoms. head ();
for (; nd ; nd = nd—>next) {
if (nd—>atom—>Bpos) { // the atom is true
// do something

} else if (nd—>atom—>Bneg) { // the atom is false

// do something

}
}

Resetting the Computation

The function

82

void revert ();

undoes all changes that have been done after calling init (). In particular,
it will destroy all backtrack information so the next model () call will again
find the first model. This call is useful when you want to use many compute
statements.

Miscellanous Bits

The next functions may be useful if you want to do something special with
the logic program. They are called by the above functions but sometimes
it may be useful to call them independently.

void setup ();

void setup_with_lookahead ();

These two functions simplify the program by first computing a deductive
closure of the rules and then dropping all unsatisfiable atoms and rules
from it. The latter function also does one round of lookahead examination.

bool conflict ();

The conflict() function checks whether a contradiction is found. Also,
if optimize statements are used, this function checks whether the model
candidate is better than the currently best found. Note that this function
clears the conflict flag so you’ll have to be careful with it.

void lookahead ();

bool lookahead_-no_heuristic ();

void heuristic ();

The two lookahead functions choose what literal should be added to the
model candidate. The index number of the chosen atom is stored into
the variable hi_index. If the best choice is a positive literal, the boolean
variable hi_is_positive is set to be true, otherwise it is set to false.

void expand ();
The function expand () computes the deductive closure of the atoms whose
truth value is known.

int wellfounded ();

This function computes and prints the well-founded model of the program.

void setToBTrue (Atom xa);
void setToBFalse (Atom xa);

These two functions can be used to set truth values of atoms directly.
Note that usually it is better to set the compute statement, instead.

83

A.2.5 stable.h

The header file stable.h contains the class Stable that can be used to read
logic programs from files. The programs should be stored in smodels internal
format that is explained in Section B. The important methods are:

Constructor
The constructor is simply

Stable ();

Reading programs

Logic programs can be read with the method
int read (istream &f);

The argument £ should be bound to the file storing the program.

A.2.6 Example

This section contains an example API function that can be used to compute
partial models of logic program, not in the sense of Section 4.8, but in the sense
that it will find a partial model candidate that can possibly be extended to a
full stable model. This kind of function may be useful when the program is
large and we want to construct the model interactively.

For conveniety, this function is added to the Smodels class, but it might be
used also outside it.

bool Smodels:: partial_model ()

// continue as long as there are possible models
while (! fail)

// compute the deductive closure of

// the current partial model

expand ();

if (conflict ()) // is the situation consistent ?
backtrack (true);

else if (covered ())
return true; // a full model

else if (!lookahead_-no_heuristic ())
return true; // a partial model

}

return false; // no models left

}

This function would then be used like:

84

while (1) {
if (partial_-model ()) {
// process the partial model and possibly ask
// the user how the model should be extended.
// the selections can be expressed wusing
// setToBTrue (atom) and setToBFalse (atom)
// calls . Alternatively , you can use the sequence

// heuristic (); choose ();
// to use smodels’s heuristics .
} else {

// print some diagnostics
backtrack (true)

85

Appendix B

Smodels Internal Format

The language that smodels 2.x accepts is much simpler than the one accepted
by lparse. During grounding lparse transforms the complex rules to those
accepted by smodels. There are four different rule types: basic rules, constraint
rules, choice rules, and weight rules.

Additionally, the minimize statements are internally represented by their
own rule type. The maximize statements are changed into minimize statements
by negating all literals in them.

Basic rules are the normal rules that don’t use any extended features. Con-
straint rules correspond to lparse rules of the form

a:-2{Db, c, not d}.
choice rules have the form

{a b, c}:-4d, e, not £, not g.
and weight rules have the form

a :- 2 [b=1, c=2, not d=3 1].

In all cases there may be only one special construct in one rule and there
are only lower bounds for constraint and weight rules.

Internally smodels uses integers as atoms and the atom names are stored in
a separate symbol table. The smodels expects to read first the actual rules of
the program, next the symbol table, and finally the compute statement. The
different parts are separated by a line that has only a ‘0.

The different sections are best introduced by an example. Consider the
following program:

Program B.1
a :- not b.
b :- not a.
- b.

compute { a }.

The internal format for this program is:

86

12113
13112
11103
0
2 a
3b
0
B+
2
0
B_
1
0
1

The first part of the listing consists of the the rules of the program:
12113
13112
11103
0

The first number denotes the rule type. All of the rules are basic rules so the
number is one in all cases. The next number identifies the head of the atom. In
this case, the atom a is represented by 2 and the atom b by 3. The atom number
1 is an internal atom named _false that is true when a model candidate should
be rejected.

Next comes the body definition. The first number is the total number of
literals in the body and the second one is the number of negative literals. The
rest of the line contains the numbers of the literals, with negative ones being in
front. The line with just O signals the end of the rules.

The second part is the symbol table containing the atom definitions:

2 a
3b
0

If an atom is left out the symbol table, it is considered to be a hidden atom
and it is not printed in the model. In this example, the first atom is hidden.

The third part contains the compute statement

B+

After B+ comes the positive compute statement, that is, a list of atoms that
should be true in the model. After B- comes a list of atoms that shouldn’t be in
the model. The last 1 signifies the number of models that should be calculated.

87

Table B.1: The mapping of atoms that are used in the examples

atom | number
a 1
b 2
C 3
d 4
e b)

B.1 Rule Types

Basic Rule
A basic rule has the form:

1 head #literals #negative mnegative positive

Where head is the atom that is the head of the rule, #1iterals is the total
number of literals in the rule body, #negative is the number of negative
literals in the rule body, negative is the list of negative literals, and positive
is the list of positive literals.

Example B.1

Let the atoms be defined as in Table B.1. Then, the rule:
a :- b, not ¢, d, not e.

is represented as:
11423523

Constraint Rule
A constraint rule has the form:
2 head #literals #negative bound negative positive

where head, #literals, #negative, negative, and positive are as with
basic rules and bound is the amount of literals in body that has to be true
so that the head is true.

Example B.2

Given the bindings in Table B.1, the rule
a:-2{b, c, not d }.

is represented as
21312423

88

Choice Rule
A choice rule has the form

3 #heads heads #literals #negative negative positive

Most of the entries are the same as with basic rules. The entry #heads
denotes the number of the atoms in a choice rule head and heads is the
list of the atoms in the rule head.

Example B.3

Using the usual bindings for the atoms, the rule
{a, b, ¢} :- e, not d.

is represented as
331232145

Weight Rule
A weight rule has the form

5 head bound #lits #negative negative positive wetights

Most of the entries are the same as in constraint rules. The entry weights
is a list of the weights of the literals in the rule body.

Example B.4

The rule:
a :- 3 [b=1, not c=2 1.
is represented as:
513213221

Minimize Rule
A minimize rule is of the form:

6 0 #lits #negative negative postitive weights

Note that each literal has to have an explicit weight assigned to it. Max-
imization can be achieved by negating all literals in the statement body.

Example B.5

The statement:
maximize [a=5, not b = 10].

is represented as:
602121105

0

In case you wonder, the missing rule type 4 was originally used for generate
rules that were essentially choice rules with bounds. As they caused semantical
troubles, they were removed from use.

89

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[8]

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog.
ACM Transactions on Database Systems, 22(3):364 — 418, September 1997.

M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In Proceedings of the 5th International Conference on Logic Program-
ming, pages 1070-1080, Seattle, USA, August 1988. The MIT Press.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In
Proceedings of the 7th International Conference on Logic Programming,
pages 579-597, Jerusalem, Israel, June 1990. The MIT Press.

Keijo Heljanko. Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe petri nets. In Proceedings of
the 5th International Conference on Tools and Algorithms for Construction
and Analysis of Systems, pages 240-254. Springer-Verlag, 1999.

Tomi Janhunen, Ilkka Niemelid, Patrik Simons, and Jia-Huai You. Unfold-
ing partiality and disjunctions in stable model semantics. In Proceedings
of the Tth International Conference on Principles of Knowledge Represen-
tation and Reasoning, 2000.

W. Marek and M. Truszczynski. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm: a 25-year
Perspective, pages 375—398. Springer-Verlag.

I. Niemeld and P. Simons. Evaluating an algorithm for default reasoning.
In Working Notes of the IJCAI’95 Workshop on Applications and Imple-
mentations of Nonmonotonic Reasoning Systems, Montreal, Canada, pages
66-72, Montreal, Canada, August 1995.

I. Niemeld and P. Simons. Efficient implementation of the well-founded
and stable model semantics. In M. Maher, editor, Proceedings of the Joint

International Conference and Symposium on Logic Programming, pages
289-303, Bonn, Germany, September 1996. The MIT Press.

I. Niemel4, P. Simons, and T. Soininen. Stable model semantics of weight
constraint rules. In Proceedings of the 5th International Conference on

90

[10]

[11]

[12]

Logic Programming and Nonmonotonic Reasoning, pages 317-331, El Paso,
Texas, USA, December 1999. Springer-Verlag.

I. Niemeld, P. Simons, and T. Syrjinen. Smodels: A system for answer
set programming. In Proceedings of the 8th International Workshop on
Non-Monotonic Reasoning, April 2000.

Ilkka Niemeld and Patrik Simons. Smodels — an implementation of the
stable model and well-founded semantics for normal logic programs. In
Proceedings of the 4th International Conference on Logic Programming and
Non-Monotonic Reasoning, pages 420429, Dagstuhl, Germany, July 1997.
Springer-Verlag.

Ilkka Niemeld, Patrik Simons, and Timo Soininen. Stable model seman-
tics of weight constraint rules. In Proceedings of the Fifth Interational
Conference on Logic Programming and Nonmonotonic Reasoning. Springer-
Verlag, December 1999.

P. Simons. Efficient implementation of the stable model semantics for nor-
mal logic programs. Research Report 35, Helsinki University of Technology,
Helsinki, Finland, September 1995.

P. Simons. Towards constraint satisfaction through logic programs and
the stable model semantics. Research Report 47, Helsinki University of
Technology, Helsinki, Finland, August 1997.

P. Simons. Extending the stable model semantics with more expressive
rules. In Proceedings of the 5th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, pages 305-316, El Paso, Texas,
USA, December 1999. Springer-Verlag.

P. Simons. Extending and implementing the stable model semantics. Re-
search Report 58, Helsinki University of Technology, Helsinki, Finland,
2000.

Raymond Smullyan. Forever Undecided. Alfred A. Knopf. Inc, 1988.

Leon Sterling and Ehud Shapiro. The Art of Prolog, 2nd ed. MIT press,
1994.

T. Syrjanen. Implementation of local grounding for logic programs with
stable model semantics. Technical Report B 18, Helsinki University of
Technology, Helsinki, Finland, October 1998.

M.H. van Emden and R.A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the Association for Computing
Machinery, 23:733-742, 1976.

91

Index

.lparserc, 52
#const, 44
#domain, 44
#external, 45
#function, 46
#hide, 46
#option, 46
#show, 47
#weight, 47
Tr, 36

algebra
relational, 27
answer set, 33
API
lparse, 53
smodels, 12
atom, 5, 19, 40
ground, 19
satisfaction, 20

basic rule, 19, 43
binding, 22

body, 19

bound, 29, 41
built-in functions, 50

cartesian product, 27
choice point, 7
choice points, 11
choice rule, 43
command line options, 16
-1, 15, 16
-D, 16
-W, 17, 65
-c, 15, 16, 39, 44, 69
-d, 16, 26, 70, 73

92

-g, 68, 71
-g file, 16
-i, 16, 50
-n, 16
-r, 34, 37
-r 2,17
-t, 11, 15, 16, 64, 70, 73
-v, 16
-w, 17, 42, 47
--allow-inconsistent-answers, 17,
34
--atom-file, 72
--atom-file file, 17
--dlp, 17, 34
--drop-quotes, 2, 17, 38
--partial, 17, 34, 65
--separate-weight-definitions, 2,
17, 48
--true-negation, 17, 41
smodels, see smodels, options
compute, 68
compute statement, 48
conditional literal, 42
constant, 5, 38
constant declaration, 44
constraint
weight, 29
constraint literal, 41

debugging, 63

declaration, 44
constant, 44
domain, 44
external, 45, 68
function, 46
hide, 46
option, 46

show, 47 ground instance, 20

weight, 42, 47 grounding, 22
dependency graph, 27
depends, 28 hacking, 71
disjunctive head, 19

program, 34 Herbrand

reduct, 34 base, 19

rule, 34 instantiation, 20, 22
dlsmodels, 12 model, 20
domain declaration, 44 universe, 19
domain predicate hide, 71

definition, 28 hide declaration, 46
domain construction, 27 Horn
domain predicate, 25, 27 rule, 19
domain-restricted, 28 weight rule, 31

domain-restricted program, 28

duration, 10 INCONSISTENT, 34

installation, 13

Emacs, 62 instance, 20
environmental variable, 52 internal functions, 50
example, 56 interpretation, 20
extension, 20, 26, 27 partial, 35
external, 68, 70 intersection, 27
invocation, 15
fact, 19
false, 20 keywords, 55
forced atoms, 11 Knaster-Tarski operator, 21, 31
function, 39, 49 .
API, 53 library, 52
arguments, 39 literal, 1.9, 40
basic, 40

ground, 19

numerical, 49
prototype, 51
symbolic, 49

conditional, 42
constraint, 41
extended, 40

user-defined, 51 negative, 19
function weight, 41
weight, 51 10(:2.11 grounding, 22

function declaration, 46 logic program
functions extended, 33

internal, 50 Iparse, 12

API, 53

gcc, 52 installation, 13
goal, 6 invocation, 15
graph options, see command line op-

dependency, 27 tions
ground, 19 synopsis, 15

93

lparse_constant_t, 53
lparse_constant_type, 53
lparse_create new_symbolic_constant,
o4
lparse_get_symbolic_constant_index,
33
lparse_get_symbolic_constant_name,
93
lparse_is_numeric, 53
lparse_is_symbolic, 53
LPARSE_LIBRARIES, 52
LPARSE_LIBRARY PATH, 52
lparse_symbol_exists, 54

maximize, 48
mcsmodels, 12
meaning, 21
minimal model, 20
minimize, 48
mod, 50
model, 20
disjunctive, 34
minimal, 20
partial, 35
partial, stable, 36
regular, 36
stable, 22
total, 36
total, stable, 36
weight constraint program, 31
multiple arguments, 40

natural join, 27
negation
as failure, 33
negative literal
satisfaction, 20
negative literals, 19
negtion
classical, 33
node coloring, 8
NODE COLORING, 56
not, 40
not-atom
satisfaction, 20
not-atoms, 19

94

operator
Knaster-Tarski, 21
Knaster-Tarski, weight rule, 31
operators, 50
precedence, 50
optimize, 48
option declaration, 46
options, see command line options

parse, 12
partial interpretation, 35
partial model, 35
picked atoms, 11
planning, 59
pparse, 12
predicate
domain, definition, 28
domain, formal, 27
domain, informally, 25
extension, 20
program
disjunctive, 34
domain-restricted, 28
extended, 33
logic, 19
weight constraint, 30
puzzle, 56

range, 39

reduct
disjunctive program, 34
normal logic programs, 21
weight constraint, 30
weight constraint program, 30
weight constraint rule, 30

regular model, 36

relational algebra, 27
cartesian product, 27
intersection, 27
natural join, 27
set difference, 27
symmetric difference, 27
union, 27

rule, 5, 19
basic, 19, 43
body, 19

choice, 43
disjunctive, 34

head, 19

Horn, 19

Horn weight, 31
satisfaction, 20

tail, 19

types, 43

weight constraint, 29
weight constraint, 30

satisfaction

atom, 20

basic rule, 20

choice rule, 43

constraint literal, 41

disjunctive rule, 34

negative literal, 20

partial, 35

weight constraint, 29

weight constraint rule, 30

weight literal, 41
security, 13
set difference, 27
show declaration, 47
size of searchspace, 11
smodels

API, 12

options, 17

statistics, see statistics
smodels-compute-buffer, 63
smodels-compute-files, 63
smodels-mode.el, 62
smodels-parse-buffer, 63
smodels-parse-files, 63
smodels-set-file-list, 63
smodels-set-parser, 63
smodels-set-parser-arguments, 63
smodels-set-program, 63
smodels-set-program-arguments,

63

stable model, 22

disjunctive, 34

partial, 36

total, 36

weight constraint, 31

95

stable model semantics, 21
statement, 48
compute, 48
maximize, 48
minimize, 48
optimize, 48
statistics, 10
choice points, 11
duration, 10
forced atoms, 11
number of atoms, 11
number of rules, 11
picked atoms, 11
size of searchspace, 11
truth assignments, 11
wrong choices, 11
subgoal, 6
symmetric difference, 27

tail, 19

term, 19, 38

total model, 36
true, 20

truth assigments, 11
truth valuation, 20

union, 27

valuation, 20
variable, 5, 39
binding, 22

warnings, 65
weight, 41
constraint, 29
constraint rule, 29, 30
declaration, 42
default, 42, 47
expression, 41
weight
function, 51
literal, 41
of literal, 29
weight declaration, 47
wrong choices, 11

