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Abstract

Maria is a tool for analysing concurrent systems. It performs simulation, exhaustive
reachability analysis and on-the-fly LTL model checking with fairness constraints. It sup-
ports high-level Petri Nets based on an algebra with powerful built-in data types and opera-
tions. Optimised for both memory usage and speed, the tool is suitable for analysing mod-
els generated from distributed computer programs written in procedural or object-oriented
languages, or high-level specifications.

Maria has been implemented in portable C and C++, and it is freely available under the
conditions of the GNU General Public License.

Keywords. reachability analysis, high-level nets, concurrent systems, on-the-fly verifi-
cation

1 Background

There are many tools for analysing concurrent software systems, but most of them are only
suitable for education or for analysing relatively simple, hand-made highly abstracted mod-
els. Many academic tools have been developed just to see whether a theoretical idea might
work in practice, often analysing models that do not directly have any roots in the real world.
Commercial tool vendors concentrate on user interfaces and code generation. For both camps,
exhaustive formal analysis of industrial-size designs using minimal manual effort has been out
of the scope for a long time.

The intention behindMARIA [4] is to develop a reachability analyser and model checker
for a formalism whose expressive power is close to high-level programming and specification
languages (such as C++ and SDL). The powerful queue and stack operations of the language
make it possible to model complex communications without introducing superfluous interme-
diate states that make analysis more difficult.

Users do not need to be familiar with the formalism internally used by the analyser, in our
case Algebraic System Nets [1]. The user works in the domain he is used to, and alanguage-
specific front-endis responsible for hiding the underlying formalism from the user:
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• translate user programs to the internal formalism

• allow desired properties to be specified in terms of the application

• display erroneous behaviour as an execution sequence of the application

A generic formalism has some advantages over specialised formalisms. Implementing new
analysis methods immediately benefits all languages for which a translation exists.

At the time of writing, we have an experimental front-end for SDL [7]. The data type system
of MARIA makes it easy to translate expressions and message passing.

2 Overview

Figure1 illustrates the modular structure of our analyser. The tool can be run both interactively
(textually and graphically) and in batch mode. There are several modes of operation:

• exhaustive reachability analysis

• interactive simulation: generate successors for states selected by the user

• on-the-fly verification of safety and liveness properties specified in temporal logic

• unfolding nets, optionally reduced with a “coverable marking” algorithm [5]
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Figure 1:The Features ofMARIA
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The tool manages the reachability graph (reachable states and actions between states) in disk
files. Keeping all data structures on disk has some advantages:

• the analysis can be interrupted and continued later

• the generated reachability graph can be explored on a different computer

• memory capacity is not a limit: a high-level model with 15,866,988 states and 61,156,129
events was analysed in 5 MB of RAM (and 1.55 GB of disk)

The above mentioned analysis was completed in less than 10 hours on a 266 MHz Pentium II
system when using the option that generates C code for all model-dependent tasks. Using this
option typically reduces analysis times to a third, sometimes to a fifth. The interpreter mode is
useful in interactive simulations, when debugging a model.

There is also an experimental implementation of probabilistic verification that does not use
disk files. Since the method does not produce any reachability graph, it is most useful when
verifying safety properties non-interactively.

3 Graph Exploration

MARIA contains an interactive tool for exploring the reachability graph, for checking temporal
logic properties and for performing partial reachability analysis, also calledsimulation.

The reachability graph can be explored and browsed in many ways. Expressions and tem-
poral logic formulae can be evaluated in different states. It is possible to find the shortest path
between a specified state and a set of states. The tool can compute the strongly connected
components of the graph. Figure2 illustrates the component graph of a simple model.

Evaluating temporal logic expressions in a partially generated reachability graph will cause
new states to be added to the graph, until a counterexample violating the property being verified
is found or the property is found to hold.

Simulation can be a useful tool when developing new Petri Net models. The graph explorer
performs simulation in a very transparent way: when one lists the successors of an unprocessed
state, the successors will be generated, stored in the reachability graph and shown to the user.
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Figure 2:The strongly connected components of a state space
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4 Rich Data Types

The data type system was designed with high-level specification and programming languages
in mind. Compound types are tuples, arrays indexed by any type, and bounded-capacity queues
and stacks. They can be nested and constrained arbitrarily.

For instance, a stack holding 0 or 2 small integers can be defined asint (1..3) [stack
2] ({},{1,1}..) . The contents requiresdlog2(3

0+32)e= 4 bits of storage. Tight constraints

• reduce the space occupied for storing states,

• reduce possibilities in exhaustive analysis and when unfolding, and

• helps detect errors in the model (constraint violations).

Detecting constraint violations is useful when analysing manually constructed models. All
errors that occur during the analysis are reported.

5 Powerful Algebraic Operations

In addition to basic programming language constructs, there are built-in operations for

• managing buffers (queues and stacks),

• basic multi-set arithmetics (union, intersection, difference, mappings), and

• aggregation: multi-set summation, existential and universal quantification.

Aggregation over a dynamic range of indexes is a particularly powerful construct and extremely
useful when modelling distributed algorithms. For instance, it is possible to use compact no-
tation for modelling a server that sends a message to all other servers. In order to change the
number of servers in the system, only one data type definition needs to be modified.

Basic algebraic operations check for exceptional conditions, such as overflows or division
by zero. All operations detect constraint violations. The set of allowed values can be restricted
arbitrarily even for structured types.

6 Model Checking with Fairness Constraints

A fully automated analysis can detect rather simple and coarse errors, such as

• states where the system cannot proceed (deadlocks), and

• erroneous computing steps where some kind of an error occurs.

Experts who know the system can describe the desired properties of the system e.g. with for-
mulae of temporal or modal logic. These properties are usually divided into safety and liveness
properties. A violation of a safety property (“nothing bad happens”) is a chain of events from
the initial state of the system to a “bad” state that is reachable in the system. A liveness property
(“something good eventually happens”) is violated if the system can infinitely execute a loop of
events without performing a “good” event.
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Liveness properties are often refined with fairness assumptions. For instance, a communica-
tion protocol should eventually deliver the sent messages to the recipient. If the communication
path may lose or distort messages, we are not interested in such counterexamples where the
connection is constantly broken. A fairness assumption can dictate that the events modelling
the lossy data path must treat the alternative events fairly.

The on-the-fly LTL model checker inMARIA takes into account both weak and strong fair-
ness constraints specified in the model. Omitting the fairness properties from the LTL formula
leads to exponential savings [3]. To our knowledge, this is the first model checker of its kind
for high-level Petri nets.

Counterexamples, or event loops that violate liveness properties, easily become even thou-
sands of events long when fairness assumptions are present.MARIA tries to locate short loops
efficiently [2].

For translating LTL formulae to generalised Büchi automata we use an external tool [6]. As
MARIA is modular, replacing the translator is easy.
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