
MARIA : Modular Reachability Analyzer
for Algebraic System Nets

Application

MARIA is a powerful tool designed to aid engineers in
modelling and solving concurrency related problems in
parallel and distributed computing systems.

MARIA was written at the Laboratory for Theoretical
Computer Science of Helsinki University of Technol-
ogy. Many ideas are based on the preceding toolPROD,
but the modular design is completely new.

Benefits

- Construct a formal model to avoid or to solve am-
biguities in verbal specifications

- Detect design flaws in the planning stage, before
writing any code

- Powerful formalism eases model construction both
for humans and automatic translators

- Freely available under the GNU Copyleft

- Written in portable C++; runs on personal work-
stations as well as big mainframes

Features

- Based on algebraic system nets, a trulyformal
class of high-level Petri nets

- Sophisticated data types and powerful operations
with solid error checking bring additional safety

- Textual input format; anEMACS mode is supplied

- Both textual and graphical user interfaces

- Interactive simulation and visualisation of state
spaces and error traces

- Exhaustive reachability analysis and LTL model
checking with fairness constraints

- Probabilistic search for checking safety properties

- An option for translating models to C code for
speeding up exhaustive analysis

Analysing Industrial Systems

The expressive power ofMARIA ’s formalism is close
to high-level programming and specification languages
(such as Java and SDL). The powerful queue and stack
operations of the language make it possible to model
complex communications without introducing superflu-
ous intermediate states that complicate analysis.

Users do not need to be familiar with the internal
formalism of the analyser. An automatic translator, a
language-specific front-endcan hide the underlying for-
malism from the user:

- translate user programs to the internal formalism

- allow desired properties to be specified in terms of
the application

- display erroneous behaviour as an execution se-
quence of the application

A generic formalism has some advantages over spe-
cialised formalisms. Implementing new analysis meth-
ods immediately benefits all languages for which a
translation exists.

A front-end for SDL has been implemented, and
some plans for a Java front-end exist. The data type
system ofMARIA makes it easy to translate expressions
and message passing.

Overview

The tool can be run both interactively (textually and
graphically) and in batch mode. There are several
modes of operation:

- exhaustive reachability analysis

- interactive simulation: generate successors for the
states selected by the user

- on-the-fly verification of safety and liveness prop-
erties specified in temporal logic

- unfolding nets, optionally reduced with a “cover-
able marking” algorithm

1

typedef unsigned (1, 5, 10, 50, 100 , 500) money_t ;

place customer money_t : 10, 2#5;
place cashier money_t : 3#5, 10#1;

trans smaller
in {
 place customer : big;
 place cashier : small, (big/small− 1)#small;
}
gate big > small
out {
 place cashier : place customer ;
 place customer : place cashier ;
};

trans bigger
in {
 place customer : small, (big/small− 1)#small;
 place cashier : big;
}
gate big > small
out {
 place customer : place cashier ;
 place cashier : place customer ;
};

customer:
10,2#5

bigger:
small<big

big

smaller:
small<big

small,
((big/small)-1)#

small
cashier

cashier:
3#5,10#1

customer

cashier

customer
small,

((big/small)-1)#
small

big

Figure 1:An algorithm for changing money

@2 3(3)
customer:10#1,2#5
cashier:3#5,10

@5 3(3)
customer:5#1,3#5
cashier:5#1,2#5,105

@0 3(3)
customer:2#5,10
cashier:10#1,3#5

10

@4 2(2)
customer:10#1,10
cashier:5#510

5 @1 3(3)
customer:5#1,5,10
cashier:5#1,4#5

10

@3 2(2)
customer:4#5
cashier:10#1,5,10

5

10 5

5

5

10
10

5

10

10

5

Figure 2:The states of the money-changing algorithm

The tool manages the reachability graph (reachable
states and actions between states) in disk files. Keep-
ing all data structures on disk has some advantages:

- the analysis can be interrupted and continued later

- the generated reachability graph can be explored
on a different computer

- memory capacity is not a limit: a high-level model
with 15,866,988 states and 61,156,129 events was
analysed in 5 MB of RAM (and 1.55 GB of disk)

A probabilistic verification option does not use disk
files but constructs a set of reachable states in mem-
ory. It is most useful when verifying safety properties
non-interactively.

Graph Exploration

The reachability graph can be explored and browsed in
many ways. Expressions and temporal logic formulae
can be evaluated in different states. It is possible to
find the shortest path between a specified state and a set
of states.MARIA can compute the strongly connected
components of the graph.

Evaluating temporal logic expressions in a partially
generated reachability graph causes new states to be
added to the graph, until a counterexample violating the

property being verified is found or the property is found
to hold.

Simulation can be a useful tool when developing new
Petri Net models. The graph explorer performs simula-
tion in a very transparent way: when one lists the suc-
cessors of an unprocessed state, the successors will be
generated, stored in the reachability graph and shown to
the user.

Figure ?? illustrates a simple system both in the
MARIA input language (as highlighted byEMACS) and
its graphical presentation. Figure?? illustrates the state
space of this system. The graphs in both figures were
produced byMARIA and manually edited before laying
them out withGRAPHV IZ.

Powerful Algebraic Operations

In addition to basic programming language constructs,
there are built-in operations for

- managing buffers (queues and stacks),

- basic multi-set arithmetics (union, intersection,
difference, mappings), and

- aggregation: multi-set summation, existential and
universal quantification.

Aggregation over a dynamic range of indexes is a par-
ticularly powerful construct and extremely useful when
modelling distributed algorithms. For instance, it is
possible to use compact notation for modelling a server
that sends a message to all other servers. In order to
change the number of servers in the system, only one
data type definition needs to be modified.

Basic algebraic operations check for exceptional con-
ditions, such as overflows or division by zero. All oper-
ations detect constraint violations. The allowed values
can be restricted arbitrarily even for structured types.

Availability

MARIA has been developed in the UNIX environment.
Part of it works in any system for which a standard-
compliant C++ compiler is available. The tool can be
obtained fromhttp://www.tcs.hut.fi/maria/ .

Even if you are not familiar with our approach, please
do not hesitate to contact us. We are constantly looking
for interesting systems and models that can help us to
improve our tool.

2

http://www.tcs.hut.fi/maria/

