QUEENS BENCHMARK: To solve the n-queens problem, select a generator module gen-x.lp (generates a placement of queens row-by-row) gen-y.lp (generates a placement of queens column-by-column) and a check module check-1.lp check-2.lp (optimized version of check-1.lp) and compose them together. All four possible encodings are modularly equivalent. For grounded instances see: queens-genx.$variables.$i.sm queens-geny.$variables.$i.sm queens-check1.$variables.$i.sm queens-check2.$variables.$i.sm in ASP07-benchmarks.tgz. HAMILTONIAN CYCLES BENCHMARK: To solve the Hamiltonian cycle problem, use the graph generator module graph.lp (different graph families, all directed graphs by default) and select either modules hc-candidate.lp (generates a candidate for a Hamiltonian cycle) reached.lp (checks the each node in the graph is reachable in a cycle candidate) or module hc.lp (the choice of cycle candidate and reachability check combined). In reached.lp and hc.lp it is possible to hide predicate reached(X,Y). Also, an optimized version of hc-candidate.lp can be used. For grounded instances, see: For graph.lp: all-directed.$variables.$i.sm asymmetric.$variables.$i.sm euclidean.$variables.$i.sm irreflexive.$variables.$i.sm symmetric.$variables.$i.sm For hc-candidate.lp: hc-h1.$variables.$i.sm hc-h2.$variables.$i.sm (optimized version) For reached.lp: hc-r.$variables.$i.sm hc-r.hidden.$variables.$i.sm (predicate reached(X,Y) hidden) For hc.lp: hc-hr.$variables.$i.sm hc-hr.hidden.$variables.$i.sm (predicate reached(X,Y) hidden) in ASP07-benchmarks.tgz.