
lbtt
LTL-to-Büchi Translator Testbench
30 August 2005, lbtt Versions 1.2.x

Heikki Tauriainen

Copyright c© 2005 Heikki Tauriainen

The latest version of this manual can be obtained from
<http://www.tcs.hut.fi/Software/lbtt/>.

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the section
entitled “GNU General Public License” is included exactly as in the original,
and provided that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions.

i

Table of Contents

GNU GENERAL PUBLIC LICENSE 1
Preamble . 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 2
Appendix: How to Apply These Terms to Your New Programs 7

1 Overview . 9

2 Test methods . 10
2.1 Random input generation . 10

2.1.1 Random LTL formulas . 10
2.1.1.1 The formula generation algorithm 11

2.1.2 Random state spaces . 13
2.1.2.1 Algorithm for generating connected graphs 14

2.2 Testing procedure . 15
2.3 Model checking result cross-comparison test 16
2.4 Model checking result consistency check . 17
2.5 Automata intersection emptiness check . 18

3 Invocation . 19
3.1 Configuration file . 19

3.1.1 The ‘Translator’ section . 20
3.1.2 The ‘GlobalOptions’ section . 21
3.1.3 The ‘FormulaOptions’ section . 22
3.1.4 The ‘StateSpaceOptions’ section . 26
3.1.5 Sample configuration file . 27

3.2 Command line options . 29
3.2.1 Special options . 30
3.2.2 Global options . 31
3.2.3 LTL formula options . 33
3.2.4 State space options . 35

4 Interpreting the output 38
4.1 Configuration information . 38
4.2 Test round messages . 39
4.3 Test statistics . 42

ii

5 Analyzing test results . 44
5.1 Command conventions . 44
5.2 Getting help . 45
5.3 Test control commands . 45
5.4 Data display commands. 46
5.5 Failure analysis commands . 48

5.5.1 Alphabetical list of failure analysis commands 48
5.5.2 Witnesses, proofs and refutations . 50

6 Interfacing with lbtt . 52
6.1 Requirements for translator executables . 52
6.2 Input file format for LTL formulas . 53
6.3 Output file format for automata . 54
6.4 The lbtt-translate utility . 57

References . 59

Appendix A Definitions . 63
A.1 LTL formulas . 63
A.2 Generalized automata . 64

A.2.1 Formal definition of generalized automata 64
A.2.2 Transition label encoding . 64
A.2.3 Converting between equivalent definitions 65

A.3 State spaces . 65

Configuration file option index 66

Command line option index 68

User command index . 69

Concept index . 70

1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is in-
tended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public Li-
cense applies to most of the Free Software Foundation’s software and to any
other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free software.
If the software is modified by someone else and passed on, we want its recip-
ients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will in-
dividually obtain patent licenses, in effect making the program proprietary.

2

To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modifica-
tion follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed un-
der the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copy-
right law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute
such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such in-
teractive use in the most ordinary way, to print or display an an-
nouncement including an appropriate copyright notice and a notice

3

that there is no warranty (or else, saying that you provide a war-
ranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume
of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sec-
tions 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physi-
cally performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

c. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any

4

associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special ex-
ception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense or distribute the Program is void, and will au-
tomatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to sat-
isfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution
of the Program.

5

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consis-
tent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and condi-
tions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

6

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

7

Appendix: How to Apply These Terms to Your
New Programs
If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright” line
and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,

USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the ap-
propriate parts of the General Public License. Of course, the commands you
use may be called something other than ‘show w’ and ‘show c’; they could
even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may

8

consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

Chapter 1: Overview 9

1 Overview

lbtt is a tool for testing programs that translate formulas expressed in
propositional linear temporal logic (LTL) into Büchi automata. These finite-
state automata over infinite words are used e.g. in automata-theoretic model
checking [VW86, Var96], where they can help in detecting errors in the spec-
ifications of finite-state hardware or software systems. Usually the model
checking procedure involves first composing an automaton with a formal
model of a given system, and the result of the composition reveals whether
any computation path of the system violates some property that the au-
tomaton represents. (For an introduction to model checking techniques in
general, see, for example, [CGP99].)

The property to be model checked can be specified as an LTL formula,
and the Büchi automaton used for model checking is obtained automati-
cally from the formula with a translation algorithm. (For descriptions and
optimization techniques for such algorithms, see the references, for exam-
ple, [VW86, Isl94, GPVW95, Cou99, DGV99, Ete99, SB00, EH00, EWS01,
GO01, Gei01, Sch01, Wol01, Ete02, GL02, GSB02, Thi02, Fri03, GO03,
Lat03, ST03].) In practice, ensuring the correctness of the implementation
of such a translation algorithm is crucial to guarantee the soundness of the
implementation of a model checking procedure.

The goal of lbtt is to assist implementing LTL-to-Büchi translation algo-
rithms correctly by providing an automated testing environment for LTL-to-
Büchi translators. Testing consists of running LTL-to-Büchi translators on
randomly generated (or user-specified) LTL formulas as input and then per-
forming simple consistency checks on the resulting automata to test whether
the translators seem to function correctly in practice. (See [TH02] for more
information on the theory behind the testing methods.) If the test results
suggest that there is an error in an implementation, lbtt can generate sam-
ple data which causes a test failure and which may also be useful for debug-
ging the implementation.

Additionally, the testing environment can be used for very basic profiling
of different LTL-to-Büchi translators to evaluate their performance.

Note: although lbtt might be able to detect inconsistent behavior in an LTL-
to-Büchi translator, it is only a testing tool and is therefore incapable of for-
mally proving any translation algorithm implementation to be correct. There-
fore, the test results should never be used as the sole basis for any formal
conclusions about the correctness of an implementation.

Chapter 2: Test methods 10

2 Test methods

This chapter describes the algorithms lbtt uses for generating input for the
tests and introduces some terminology. A short description of each test is
also included together with the outline of lbtt’s testing procedure. However,
the chapter is not intended to be a thorough introduction to the theoretical
background of the different tests; see, for example, [TH02] or [Tau00] for
more information.

2.1 Random input generation
By default, all tests lbtt makes are based on randomly generated input.
However, the LTL formulas used as input for the LTL-to-Büchi translators
can be optionally given by the user by telling lbtt to read LTL formulas from
a file or from standard input (see [‘--formulafile’ command line option],
page 30).

Additionally, some of the tests make use of randomly generated “state
spaces”, which are basically directed labeled graphs with labels on nodes with
the additional requirement of having at least one arc leaving each node. The
label of each node is a subset of a finite collection of atomic propositions (an
uninterpreted set of assertions which may or may not hold in a state), which
occur also in the LTL formulas used in the tests.

The following sections describe how lbtt generates input for the tests
and list the parameters which can be used to adjust the behavior of the
input generation algorithms.

2.1.1 Random LTL formulas

The LTL formulas used by lbtt are built from atomic propositions (with
names of the form ‘pn ’ for some nonnegative integer n), the Boolean con-
stants True and False, and logical or temporal operators. lbtt supports
the following logical operators:

• logical disjunction (∨ — ‘\/’ as shown in output messages),

• logical conjunction (∧ — ‘/\’),

• logical negation (¬ — ‘!’),

• logical implication (→ — ‘->’)

• logical equivalence (↔ — ‘<->’)

• logical “exclusive or” (⊕ — ‘xor’)

and the following temporal operators:

• “Next time” (X — ‘X’),

• “(Strong) Until” (U — ‘U’),

• “Weak Until” (also known as “Unless”) (W — ‘W’),

• “Finally” (“Eventually”) (F — ‘<>’)

Chapter 2: Test methods 11

• “Before” (B — ‘B’)

• “(Weak) Release”, the dual of “(Strong) Until” (V — ‘V’),

• “Strong Release”, the dual of “Weak Until” (M — ‘M’),

• “Globally” (“Always”, “Henceforth”) (G — ‘[]’).

See Section A.1 [LTL formulas], page 63, for a reference on the exact seman-
tics of these operators.

The behavior of lbtt’s random formula generation algorithm can be ad-
justed with the following parameters:

• Number of nodes in the parse tree of a formula (i.e., the total number
of occurrences of propositions, Boolean constants and operators in the
formula).

• Number of different atomic propositions that can be used for generating
a formula. (Note that this does not restrict the total number of atomic
propositions in the formula, nor the number of occurrences of any indi-
vidual proposition. However, none of the generated formulas will have
more than this number of different atomic propositions.)

• Priorities for the Boolean constants and atomic propositions. The pri-
ority of a symbol determines the relative likelihood of its occurrence in a
generated formula. The higher the priority of a symbol, the more likely
it is that the symbol will occur (with respect to the other symbols) in
a generated formula; a zero priority will exclude the symbol altogether.

• Priorities for the logical and temporal operators.

Note that the priorities for atomic symbols (Boolean constants and atomic
propositions) and the priorities of the logical and temporal operators are
independent, i.e., changing the priority of an atomic symbol does not affect
the likelihood of the occurrence of any logical or temporal operator and vice
versa.

2.1.1.1 The formula generation algorithm

lbtt uses an algorithm similar to the one outlined in [DGV99] for generating
random LTL formulas. The algorithm can be described in pseudocode as
follows:

1 function RandomFormula(n : Integer) : LtlFormula;

2 if n = 1 then begin

3 p := random atomic proposition or TRUE or FALSE;
4 return p;

5 end

6 else if n = 2 then begin

7 op := random unary operator;
8 f := RandomFormula(1);

9 return op f;

10 end

11 else begin

12 op := random unary or binary operator;

Chapter 2: Test methods 12

13 if op is a unary operator then begin

14 f := RandomFormula(n-1);

15 return op f;

16 end

17 else begin

18 x := random integer in the interval [1,n-2];

19 f1 := RandomFormula(x);

20 f2 := RandomFormula(n-x-1);

21 return (f1 op f2);

22 end;

23 end;

24 end;

Each invocation of the algorithm returns an LTL formula with n nodes
in the formula parse tree. The behavior of the algorithm can be adjusted by
giving values for the parameters n (the number of nodes in the formula parse
tree), |AP | (the number of different atomic propositions), and pri(SYMBOL)
(the priorities for the different symbols).

In lbtt’s implementation of the above algorithm, the priority of a symbol
determines the probability with which the symbol is chosen into a generated
formula each time line 3, 7 or 12 of the algorithm is executed. For Boolean
constants True and False (line 3 of the algorithm), the probability is given
by the equation

pri(CONSTANT)/(pri(AP) + pri(True) + pri(False))

where CONSTANT is either True or False, and pri(AP) is the total pri-
ority of all atomic propositions.

The probability of choosing a particular atomic proposition into a formula
(line 3) is

pri(AP)/
(

|AP | × (pri(AP) + pri(True) + pri(False))
)

where |AP | and pri(AP) are as defined above.

Line 7 of the algorithm concerns choosing a unary operator (¬, X, F or
G) into a formula. Here the probability of choosing the unary operator op
is given by the equation

pri(op)/
∑

op′∈{¬,X,F,G}

pri(op′)

where op ′ ranges over all unary operators.

Finally, at line 12 of the algorithm, the probability of choosing the (unary
or binary) operator op into the formula is

pri(op)/
∑

op′∈{¬,∨,∧,→,↔,⊕,X,U,W,F,B,V,M,G}

pri(op′)

where op ′ ranges over all unary and binary operators.

Chapter 2: Test methods 13

An analysis of this algorithm is included in an appendix of [Tau00]. The
analysis shows how to use the operator priorities to calculate the expected
number of occurrences of an operator in a randomly generated formula.
lbtt can optionally compute the expected operator distribution for a given
combination of operator priorities; see the ‘--showoperatordistribution’
command line option (see [‘--showoperatordistribution’ command line
option], page 31) for more information.

See also the web page
<http://www.tcs.hut.fi/Software/lbtt/formulaoptions.php> for an
interface to a small database for adjusting the operator priorities towards
certain simple distributions.

2.1.2 Random state spaces

State spaces are needed as input for tests only in the model checking re-
sult cross comparison test (see Section 2.3 [Model checking result cross-
comparison test], page 16) and the model checking result consistency check
(see Section 2.4 [Model checking result consistency check], page 17). The
state spaces are directed labeled graphs, each node of which is labeled with
a randomly chosen set of atomic propositions (the propositions that hold in
the state corresponding to the graph node). In addition, each state of the
state space always has at least one successor.

lbtt provides three different random state space generation algorithms
that differ in the structure of the generated state spaces. The common
parameters for each of these algorithms are:

• Number of states in the state space.

• Maximum number of different atomic propositions allowed in the label
of any state of the state space.

• The probability with which each atomic proposition should hold in a
state of the state space (which is, for simplicity, common to all atomic
propositions).

The different types of random state spaces that can be generated are:

1. Random connected graphs. These state spaces are guaranteed to have at
least one state such that every other state of the state space is reachable
from this state. In addition to the three above parameters, the behavior
of the algorithm generating these state spaces can be adjusted by spec-
ifying a probability which approximates the density of the graph, i.e.,
the probability that there is a directed edge from a state x to another
state y, where x and y are any two states in the state space. For more
details, see Section 2.1.2.1 [Algorithm for generating connected graphs],
page 14.

2. Random graphs. These state spaces are constructed simply by taking
all pairs (x, y) of states in the state space and connecting state x to
state y with a user-specified probability that approximates the graph
density.

Chapter 2: Test methods 14

3. Random paths. A random path is simply a non-branching sequence of
states, where the last state of the sequence is connected to a randomly
chosen state earlier in the sequence.

lbtt also includes a state space generation algorithm which systemati-
cally enumerates all “paths” (see above) of a given size with a given number
of atomic propositions in each state. If |S| is the number of states in the path
and |AP | is the number of atomic propositions in each state of the path, it
is easy to see that the number of different paths having these parameters is

|S| · 2|S|·|AP |,

a number which grows exponentially in the product of the two parameters.
Obviously, this makes the exhaustive enumeration of all paths of a given size
practicable only for very small values of |S| and |AP |.

In practice, testing should be started using only very small state spaces
(say, with only 10–50 states and a small density) regardless of the particular
algorithm chosen for generating the state spaces. The size of the state spaces
can then be increased if lbtt’s memory consumption and the time spent
running the tests stay within acceptable limits.

2.1.2.1 Algorithm for generating connected graphs

lbtt uses the following algorithm for generating random connected graphs:
1 function RandomGraph(n : Integer; d : Real in [0.0,1.0];

t : Real in [0.0,1.0]) : Graph;

2 S := {s1, s2, ..., sn};

3 NodesToProcess := {s1};

4 UnreachableNodes := {s2, s3, ..., sn};

5 Edges := {};

6 while NodesToProcess is not empty do begin

7 state := a random node in NodesToProcess;

8 remove state from NodesToProcess;

9 Label(state) := {};

10 for all p in AP do

11 if RandomNumber(0.0, 1.0) < t then

12 insert p into Label(state);

13 if UnreachableNodes is not empty then begin

14 state’ := a random node in UnreachableNodes;

15 remove state’ from UnreachableNodes;

16 insert state’ into NodesToProcess;

17 insert (state,state’) into Edges;

18 end;

19 for all state’ in S do

20 if RandomNumber(0.0, 1.0) < d then begin

21 insert (state,state’) into Edges;

22 if state’ is in UnreachableNodes then begin

23 remove state’ from UnreachableNodes;

24 insert state’ into NodesToProcess;

25 end;

Chapter 2: Test methods 15

26 end;

27 if there is no edge (state,state’) in Edges

for any state’ in S then

28 insert (state,state) into Edges;

29 end;

30 return <S, Edges, s1, Label>;

31 end;

The algorithm receives the parameters n (number of states in the state
spaces), d (approximate density of the generated graph) and t (the proba-
bility with which each of the propositions in AP should hold in a state) and
returns the generated state space as a quadruple <S, Edges, s1, Label>. Here
S is the set of states, Edges is the set of directed edges between the states,
s1 is a state from which every state of the state space can be reached, and
Label is a function which maps each state to its label (a subset of AP).

2.2 Testing procedure
The following figure illustrates the first two tests in lbtt’s testing procedure:

LTL−to−Büchi

translator 2

fLTL formula fNegated LTL formula

f2 for

Automaton

1 for f

Automaton

f1 for

Automaton

fforn

Automaton

fforn

Automaton

ntranslator

LTL−to−Büchi

f2 for

Automaton

Model

check

Model

check

Model

check

Model

check

Model

check

Model

check

Consistency

check

Consistency

check

Consistency

check

Cross−comparison test Cross−comparison test

translator 1

LTL−to−Büchi

State space

After obtaining an LTL formula f (either by reading it from a file or by
calling the random formula generation algorithm), lbtt invokes each LTL-
to-Büchi translator participating in the tests in turn to construct a collection
of Büchi automata for the formula f and the negated formula ¬f . Each of
these automata is then composed with the randomly generated state space,
whereafter lbtt performs the model checking result cross-comparison test
(see Section 2.3 [Model checking result cross-comparison test], page 16) and

Chapter 2: Test methods 16

the model checking result consistency check (see Section 2.4 [Model checking
result consistency check], page 17) on the model checking results, and reports
all detected failures.

The Büchi automata intersection emptiness check (see Section 2.5 [Au-
tomata intersection emptiness check], page 18) operates as follows (note that
the LTL-to-Büchi translation phase is repeated in this figure only for com-
pleteness; in reality, lbtt performs this phase only once):

LTL−to−Büchi

translator 2

fLTL formula fNegated LTL formula

f2 for

Automaton

1 for f

Automaton

f1 for

Automaton

fforn

Automaton

fforn

Automaton

ntranslator

LTL−to−Büchi

f2 for

Automaton

translator 1

LTL−to−Büchi

Intersection

emptiness

check

Intersection

emptiness

check

Intersection

emptiness

check

Intersection

emptiness

check

Intersection

emptiness

check

Intersection

emptiness

check

Intersection

emptiness

check

Intersection

emptiness

check

Intersection

emptiness

check

The test procedure can then be repeated using a different LTL formula
and/or a different state space.

2.3 Model checking result cross-comparison test
LTL model checking can be used to test whether any of the infinite paths
starting from some state of a state space satisfies a given LTL formula. For
a fixed LTL formula, this question may have a different answer in different
states of the state space, but the answer should be independent of the details
of any (correct) implementation of the LTL model checking procedure.

Therefore, it is possible to test LTL-to-Büchi translators by comparing
the results obtained by model checking an LTL formula in a fixed state space
several times, using each time a different translator for constructing a Büchi
automaton from the LTL formula. Differences in the model checking results

Chapter 2: Test methods 17

then suggest that at least one of the translators failed to translate the LTL
formula correctly into an automaton.

To extract as much test data as possible from a state space, lbtt will by
default make the model checking result comparison “globally” in the state
space, which means using each LTL-to-Büchi translator to find all states in
the state space with an infinite path supposedly satisfying some LTL formula
and then comparing the resulting state sets for equality. Alternatively, the
test can be performed only “locally” in a single state of each state space
(i.e., by choosing some state of the state space and checking that all Büchi
automata constructed using the different translators give the same model
checking result in that state), which may speed up testing, but will reduce
the number of comparison tests. In addition, lbtt repeats the result cross-
comparison test for the negation of each LTL formula, since model checking
also the negated formula permits making an additional consistency check
(see below) on the results computed using each implementation.

Note: If the generated state spaces are paths (either random or sys-
tematically enumerated, see Section 2.1.2 [Random state spaces], page 13),
lbtt will then include its internal LTL model checking algorithm (a re-
stricted model checking algorithm used normally in test failure analysis, see
Chapter 5 [Analyzing test results], page 44) into the model checking result
cross-comparison test. This is especially useful if there is only one transla-
tion algorithm implementation available for testing (in which case normal
model checking result cross-comparison is obviously redundant) but may be
of advantage also in other cases by providing an additional implementation
to include in the tests.

2.4 Model checking result consistency check
LTL model checking tells whether any of the infinite paths starting from some
state of a state space satisfies a given LTL formula. If there are no such paths
beginning from the state, it follows that all infinite paths beginning from
the state must then satisfy the negation of the same formula. Since all state
spaces used by lbtt always have at least one path beginning from each state
of the state space (guaranteed by the state space generation algorithms), at
least one path beginning from any state must satisfy either the formula or
its negation, i.e., it cannot be the case that none of the paths is a model of
either formula.

However, implementation errors in an LTL-to-Büchi translator used for
model checking may actually lead to this inconsistent model checking result
if the translation of either of the formulas results in an incorrect automaton,
in which case lbtt will report an error.

Similarly to the model checking result cross-comparison test, the model
checking result consistency check can be performed either in all states of
the state space (“globally”) or only in a single state of the state space (“lo-

Chapter 2: Test methods 18

cally”), with the same trade-offs between testing speed and number of tests
as described in the previous section.

2.5 Automata intersection emptiness check
The semantics of LTL guarantees that no model of an LTL formula can be
the model of the negation of the same formula. In terms of Büchi automata,
this implies that the languages accepted by automata constructed from two
complementary LTL formulas should be disjoint. This can be confirmed
by intersecting the automata (i.e., by composing the automata to construct
a third Büchi automaton that accepts precisely those inputs accepted by
both of the original automata) and checking the result for emptiness. If the
intersection is found to be nonempty, however, at least one of the LTL-to-
Büchi translator(s) used for constructing the original automata must have
failed to perform the translation of either formula correctly.

Chapter 3: Invocation 19

3 Invocation

lbtt is started with the command lbtt with optional command line param-
eters. Before starting the program, however, you need to create a configu-
ration file which lists the LTL-to-Büchi translators to be tested and defines
additional testing parameters. See Section 3.1 [Configuration file], page 19.
If no suitable configuration file is found or if the configuration file cannot be
processed successfully, lbtt exits with an error message.

After reading the configuration file, lbtt starts tests on the LTL-to-
Büchi translators listed in the configuration file (for details about the testing
procedure, see Chapter 2 [Test methods], page 10). The program exits after
a predetermined number of test rounds.

If the program is started in any of its interactive modes (see [Interactiv-
ity modes], page 21), the program may occasionally pause to wait for user
input between test rounds. Type ‘quit 〈ENTER〉’ at the prompt to exit lbtt
at this point (or see Chapter 5 [Analyzing test results], page 44, for more
information on how to use lbtt’s internal commands).

3.1 Configuration file
The configuration file of lbtt contains a list of the LTL-to-Büchi translators
to be tested along with other options which affect the way the tests are
performed. The configuration file is processed before starting the tests. By
default, lbtt will try to read the configuration from the file ‘config’ in the
current working directory; a different file name can be specified with the
‘--configfile=filename ’ command line option.

The configuration file consists of one or more sections, each of which pro-
vides a collection of interrelated configuration options. The general format
of the configuration file is

section-name

{

option-name = value

option-name = value

...

}

...

Section and option names are case-insensitive. Values can be numbers,
strings or truth values (‘yes’ and ‘no’, or equivalently, ‘true’ and ‘false’).
String values are case-sensitive and are subject to common quoting and es-
caping rules (i.e., string values containing white space should be enclosed in
quotes, or the white space characters should be escaped with ‘\’).

Comments can be included by putting a ‘#’ symbol before them; the end
of any line containing the ‘#’ character will be ignored when processing the
configuration file.

Chapter 3: Invocation 20

The configuration file must contain at least one ‘Translator’ section
specifying an LTL-to-Büchi translator. The other sections are optional and
can be used to override the default testing parameters.

3.1.1 The ‘Translator’ section

Each LTL-to-Büchi translator to be tested requires a separate ‘Translator’
section1 in the configuration file; there must be at least one such section in
the file.

The translators are assumed to be accessible through external executable
files. Therefore, this section must at a minimum specify the full file name
of the executable to run in order to invoke the translator; see Section 6.1
[Translator interface], page 52, for information about the conventions lbtt
uses to communicate with the LTL-to-Büchi translators.

Translators specified in the configuration file are given unique integer
identifiers in the order they are listed in the file, starting from zero. These
numbers can be used when referring to the different translators when using
lbtt’s internal commands (see Chapter 5 [Analyzing test results], page 44).
Alternatively, the translators can be referred to using the names specified in
the configuration file.

The following options (in alphabetical order) are available within this
section:

‘Enabled = TRUTH-VALUE ’
This option determines whether the translator should be initially
included in or excluded from the tests. The default value is
‘Yes’. The translator can be enabled or disabled during testing
with lbtt’s internal commands (see Section 5.3 [Test control
commands], page 45).

‘Name = STRING ’
This option can be used to specify a unique textual identifier for
the LTL-to-Büchi translator. lbtt will use this identifier when
displaying various messages concerning the implementation; the
identifier can also be used to refer to the implementation when
working with lbtt’s internal commands (see Chapter 5 [Ana-
lyzing test results], page 44). (If no name has been explicitly
given for the translator, lbtt assigns the translator a name of
the form ‘Algorithm n ’, where n is the running integer identifier
for the translators.)

The identifier ‘lbtt’ is reserved for lbtt’s internal model check-
ing algorithm (see Section 2.3 [Model checking result cross-
comparison test], page 16).

1 The ‘Algorithm’ and ‘Implementation’ keywords are recognized as aliases of the
‘Translator’ keyword.

Chapter 3: Invocation 21

‘Parameters = STRING ’
This option can be used to specify any additional parameters
that should be passed to the translator executable whenever
running it. (The parameter string defaults to the empty string
if the option is not used.)

‘Path = STRING ’
This option must be given a value for each translator specified
in the configuration file. The value should be the complete file
name of the program which is used to run the translator.

3.1.2 The ‘GlobalOptions’ section
The ‘GlobalOptions’ section includes options that affect the general be-
havior of lbtt. Options available within this section are (in alphabetical
order):

‘ComparisonCheck = TRUTH-VALUE ’
‘ComparisonTest = TRUTH-VALUE ’

This option can be used to enable or disable the model checking
result cross-comparison test (see Section 2.3 [Model checking
result cross-comparison test], page 16). The test is enabled by
default.

‘ConsistencyCheck = TRUTH-VALUE ’
‘ConsistencyTest = TRUTH-VALUE ’

This option can be used to enable or disable the model checking
result consistency check (see Section 2.4 [Model checking result
consistency check], page 17). The test is enabled by default.

‘Interactive = MODE-LIST ’
This option determines when lbtt should pause to wait for
user input between test rounds. The MODE-LIST is a comma-
separated list of the following modes (with no spaces in between
the modes):

‘Always’ Pause unconditionally after each test round.

‘OnError’ Pause testing only after failed test rounds.

‘Never’ Run all tests without interruption.

‘OnBreak’ Pause testing when requested by the user (for ex-
ample, after receiving a break signal from the key-
board). If this mode is not specified, ‘lbtt’ will
respond to break signals by aborting.

(Since the first three interactivity modes are mutually exclusive,
it does not make sense to combine these modes with each other.)
The default mode list consists of the value ‘Always’, that is,
testing is paused after every test round, and signalling a break
will abort testing.

Chapter 3: Invocation 22

‘IntersectionCheck = TRUTH-VALUE ’
‘IntersectionTest = TRUTH-VALUE ’

This option can be used to enable or disable the Büchi automata
intersection emptiness check (see Section 2.5 [Automata intersec-
tion emptiness check], page 18). The test is enabled by default.

‘ModelCheck = Local | Global’
This option determines whether lbtt should perform model
checking with respect to all states of each state space or only
with respect to a single state of each state space. This affects
the number of tests that lbtt makes during the model check-
ing result cross-comparison test (see Section 2.3 [Model checking
result cross-comparison test], page 16) and the model checking
result consistency check (see Section 2.4 [Model checking result
consistency check], page 17). Global model checking (the de-
fault) maximizes the number of tests, but may require more
time and memory. (Note: This option has no effect if none of
the model checking tests is enabled.)

‘Rounds = INTEGER ’
The ‘Rounds’ option can be used to specify the number of test
rounds to run; the default value is 10.

‘TranslatorTimeout = TIME-SPECIFICATION ’
This option can be used to specify a time limit (in wall-clock
time) after which the execution of a translator is aborted if
it fails to produce a result within the given limit. A timeout
is considered a test failure. The time specification is of the
form ‘[hours]h[minutes]min[seconds]s’ where hours, minutes
and seconds specify the time limit in the obvious way (time
units having value 0 can be omitted). For example, a limit of
‘1h30min’ sets the limit at one hour and thirty minutes.

‘Verbosity = INTEGER ’
This option sets the verbosity level for output messages. The
value can be an integer between 0 and 5 (inclusive). A value of
0 will suppress all messages (and is therefore useful only when
storing test results into a log file; see [‘--logfile’ command line
option], page 31); increasing the value results in more output.
The default value is 3.

3.1.3 The ‘FormulaOptions’ section

The ‘FormulaOptions’ section defines the parameters that affect the algo-
rithm lbtt uses for generating random LTL formulas (for more information
about the algorithm, see Section 2.1.1 [Random LTL formulas], page 10).
This section provides the following options:

Chapter 3: Invocation 23

‘AbbreviatedOperators = TRUTH-VALUE ’
This option determines whether the generated formulas should
be allowed to include any of the operators ‘->’, ‘<->’, ‘xor’, ‘W’,
‘<>’, ‘B’, ‘V’, ‘M’ or ‘[]’ (all of which can be given definitions using
only the operators ‘!’, ‘\/’, ‘/\’, ‘U’ and ‘V’). Setting this option
to ‘No’ assigns each of the abbreviated operators a zero priority,
overriding any explicit priorities defined for these operators in
the program configuration. The default value for the option is
‘Yes’, so abbreviations are allowed by default.

‘AndPriority = INTEGER ’
Priority of the logical conjunction operator (‘/\’).

‘BeforePriority = INTEGER ’
Priority of the temporal operator “before” (‘B’). (Note: This
option has no effect if ‘AbbreviatedOperators’ is set to ‘No’.)

‘ChangeInterval = INTEGER ’
This option determines how often (in number of test rounds)
lbtt should generate a new random LTL formula (or read a
new formula from a user-specified file). A value of 0 forces lbtt
to use a fixed LTL formula for all tests. The default value is 1,
i.e., a new formula will be generated at the beginning of each
test round.

‘DefaultOperatorPriority = INTEGER ’
This option sets the priority for all formula operators for which
no priority has been given explicitly in the program configuration
(i.e., it can be used as a shorthand to initialize the priority of all
operators). The default value of this option is 0, so all operators
with no explicitly given priorities are disabled by default.

‘EquivalencePriority = INTEGER ’
Priority of the logical equivalence operator (‘<->’). (Note: This
option has no effect if ‘AbbreviatedOperators’ is set to ‘No’.)

‘FalsePriority = INTEGER ’
Priority of the Boolean constant False (with respect to priori-
ties of the constant True and the atomic propositions).

‘FinallyPriority = INTEGER ’
Priority of the temporal operator “finally” (‘<>’). (Note: This
option has no effect if ‘AbbreviatedOperators’ is set to ‘No’.)

‘GenerateMode = Normal | NNF’
This option determines whether lbtt should generate random
formulas directly into (a weakened version of) negation nor-
mal form in which the negation operator may only precede
atomic propositions. Note that the formulas may still con-
tain “abbreviated” operators if they have nonzero priorities—use

Chapter 3: Invocation 24

‘AbbreviatedOperators=No’ or ‘OutputMode=NNF’ if you wish
to prevent this. The default value for this option is ‘Normal’.
(See the ‘OutputMode’ option below for an example about the
differences in the effects of the ‘GenerateMode’ and ‘OutputMode’
options.)

‘GloballyPriority = INTEGER ’
Priority of the temporal operator “globally” (‘[]’). (Note: This
option has no effect if ‘AbbreviatedOperators’ is set to ‘No’.)

‘ImplicationPriority = INTEGER ’
Priority of the logical implication operator (‘->’). (Note: This
option has no effect if ‘AbbreviatedOperators’ is set to ‘No’.)

‘NextPriority = INTEGER ’
Priority of the temporal operator “next time” (‘X’).

‘NotPriority = INTEGER ’
Priority of the logical negation operator (‘!’).

‘OrPriority = INTEGER ’
Priority of the logical disjunction operator (‘\/’).

‘OutputMode = Normal | NNF’
This option determines whether lbtt should transform each gen-
erated LTL formula into (strict) negation normal form before
passing it to LTL-to-Büchi translators. If the value is set to
‘NNF’, lbtt will rewrite each generated formula into a form con-
sisting of the operators ‘!’, ‘\/’, ‘/\’, ‘U’ and ‘V’ such that all
negations in the formula (if any) precede atomic propositions.
The default value is ‘Normal’. (See also the ‘GenerateMode’ op-
tion that can be used to force formulas to be generated directly
into negation normal form.)

The option is probably useful only if you have a translator which
does not support the “abbreviated” operators directly, but you
still wish to test it with formulas which describe properties ex-
pressed using these operators. Note, however, that rewriting
may change the size of the formula.
The following table illustrates the effects of the ‘GenerateMode’
and the ‘OutputMode’ options.

LTL formula Can f be OutputMode’s effect on the
f generated if formula passed to the

GenerateMode LTL-to-Büchi translators
=NNF ?

(p1 V ! p0) Yes Normal/NNF: (p1 V ! p0)

[] p0 -> <> p1 Yes* Nor: [] p0 -> <> p1

NNF: (true U ! p0) \/ (true U p1)

Chapter 3: Invocation 25

! <> p0 No Nor: ! <> p0

NNF: (false V ! p0)

* only if AbbreviatedOperators=Yes

‘PropositionPriority = INTEGER ’
Priority for atomic propositions with respect to the priority of
Boolean constants. This priority is the common priority of all
atomic propositions.

‘Propositions = INTEGER ’
This option sets the maximum number of different atomic propo-
sitions in each generated LTL formula. No generated formula
will have more than this number of different atomic propositions.
A value of 0 will generate random formulas with only Boolean
constants (one of which must in this case have a nonzero prior-
ity). The default value is 5. The names of the propositions are
of the form ‘pn ’, where n is a nonnegative integer less than the
maximum number of propositions.

‘RandomSeed = INTEGER ’
This option specifies a seed value for generating random numbers
for the random LTL formula generation algorithm. If this option
is not present, the seed defaults to 1. See the next section for
information on how to change the default seed for the random
state space generation algorithm.

(The reason for having two separate random seeds is to make
the sequences of random formulas and state spaces independent
of each other. For example, this makes it easy to repeat tests
using the same batch of random LTL formulas, but with state
spaces of different size.)

‘ReleasePriority = INTEGER ’
Priority of the temporal “(weak) release” operator (‘V’).

‘Size = INTEGER ’
‘Size = MINIMUM-SIZE-MAXIMUM-SIZE ’
‘Size = MINIMUM-SIZE...MAXIMUM-SIZE ’

This option defines how many nodes are allowed in the parse tree
of each randomly generated LTL formula. If the size is given as
an interval (by separating the bounds with ‘-’ or ‘...’ with no
white space in between), lbtt chooses the size of each formula
randomly in the interval using a uniform random distribution.
The default size is 5.

‘StrongReleasePriority = INTEGER ’
Priority of the temporal “strong release” operator (‘M’). (Note:
This option has no effect if ‘AbbreviatedOperators’ is set to
‘No’.)

Chapter 3: Invocation 26

‘UntilPriority = INTEGER ’
Priority of the temporal “(strong) until” operator (‘U’).

‘TruePriority = INTEGER ’
Priority of the Boolean constant True (with respect to the pri-
orities of the constant False and the atomic propositions).

‘WeakUntilPriority = INTEGER ’
Priority of the temporal “weak until” operator (‘W’). (Note: This
option has no effect if ‘AbbreviatedOperators’ is set to ‘No’.)

‘XorPriority = INTEGER ’
Priority of the logical “exclusive or” operator (‘xor’). (Note:
This option has no effect if ‘AbbreviatedOperators’ is set to
‘No’.)

3.1.4 The ‘StateSpaceOptions’ section

The ‘StateSpaceOptions’ section defines the parameters that affect the way
lbtt generates random state spaces for the model checking result cross-
comparison test (see Section 2.3 [Model checking result cross-comparison
test], page 16) and the model checking result consistency check (see Sec-
tion 2.4 [Model checking result consistency check], page 17). See also Sec-
tion 2.1.2 [Random state spaces], page 13, for more information about the
different types of available state spaces and the algorithms used for con-
structing them. The options available within this section are:

‘ChangeInterval = INTEGER ’
This option determines how often (in number of test rounds)
lbtt should generate a new random state space. A value of 0
forces lbtt to use a fixed state space for all tests. The default
behavior is to generate a new state space at the beginning of
each test round.

‘EdgeProbability = PROBABILITY ’
This option sets the approximate probability (between 0.0 and
1.0) of adding a transition from any state x to some other state
y when generating random graphs as state spaces. The de-
fault value is 0.2. The probability is approximate because lbtt
still has to ensure that all states of each generated state spaces
have at least one successor, which might require adding extra
transitions to the graph. Note: This option has no effect if
‘GenerateMode’ is set to ‘RandomPath’ or ‘EnumeratedPath’.

‘GenerateMode = RandomConnectedGraph | RandomGraph | RandomPath |
EnumeratedPath’

This option selects the type of generated state spaces
from the four available types. The default value is
‘RandomConnectedGraph’. See Section 2.1.2 [Random state

Chapter 3: Invocation 27

spaces], page 13, for more information on the different state
space types.

Note: Using the ‘RandomPath’ or the ‘EnumeratedPath’ setting
includes lbtt’s internal model checking algorithm into the var-
ious model checking tests if they are enabled. For more infor-
mation, see Section 2.3 [Model checking result cross-comparison
test], page 16.

‘Propositions = INTEGER ’
This option sets the number of atomic propositions attached to
each state of the generated state spaces. The default value is 5.

Usually this should probably be the same as the maximum num-
ber of different atomic propositions in the generated formulas
(see Section 3.1.3 [FormulaOptions section], page 22). If the
number of propositions attached to each state of the state spa-
ces is less than the maximum number of different propositions
that may occur in the generated formulas, all “extra” proposi-
tions in the formulas are considered to be false in every state of
the state space.

‘RandomSeed = INTEGER ’
This option specifies a seed value for generating random num-
bers required by the random state space generation algorithm.
If this option is not present, the seed defaults to 1. See the previ-
ous section for how to change the random seed used to initialize
the random number generator for the random LTL formula gen-
eration algorithm.

‘Size = INTEGER ’
‘Size = MINIMUM-SIZE-MAXIMUM-SIZE ’
‘Size = MINIMUM-SIZE...MAXIMUM-SIZE ’

This option sets the number of states in the generated state
spaces. If the size is given as an interval, lbtt either chooses a
random size in the interval (including its endpoints) each time
a new state space is generated, or, if ‘GenerateMode’ is set to
‘EnumeratedPath’, enumerates all state spaces in the specified
range systematically, starting from the minimum size. The de-
fault size is 20.

‘TruthProbability = PROBABILITY ’
Probability (between 0.0 and 1.0) with which each individual
atomic proposition has the value True in any state of the state
space. Note: This option has no effect if ‘GenerateMode’ is set
to ‘EnumeratedPath’. The default value is 0.5.

3.1.5 Sample configuration file

The following configuration file sets lbtt up for testing two imaginary LTL-
to-Büchi translators.

Chapter 3: Invocation 28

Sample configuration file for lbtt

Translator

{

Name = Translator\ 1

Path = /home/lbtt-user/bin/t-1 # location of the translator

executable

Enabled = Yes

}

Translator

{

Name = "Translator 2"

Path = /home/lbtt-user/bin/t-2

Parameters = "-x -y 3 -v 0" # parameters to be passed to the

executable

Enabled = Yes

}

GlobalOptions

{

Rounds = 100 # 100 test rounds

Interactive = OnError,OnBreak # pause testing in case of an error

or when receiving a break signal

Verbosity = 1 # show only numeric statistics

ComparisonTest = Yes # enable all tests except the

ConsistencyTest = Yes # Büchi automata intersection

IntersectionTest = No # emptiness test

ModelCheck = Local # perform the tests only in a

single state of each state

space

TranslatorTimeout = 30s # abort the execution of a

translator if it fails to give

a result in 30 seconds

}

FormulaOptions

{

AbbreviatedOperators = Yes # formula generation mode

GenerateMode = Normal

OutputMode = NNF # rewrite formulas in negation

normal form before passing

them to the translators

ChangeInterval = 1 # new formula after each round

RandomSeed = 4632912 # random seed

Chapter 3: Invocation 29

Size = 5-15 # 5 to 15 nodes in the parse

tree of each formula

Propositions = 3 # allow at most three different

propositions in each LTL formula

PropositionPriority = 50 # priorities for propositional

TruePriority = 1 # symbols

FalsePriority = 1

AndPriority = 10 # priorities for some logical

OrPriority = 10 # operators

NotPriority = 10

EquivalencePriority = 5

NextPriority = 5 # priorities for some temporal

UntilPriority = 5 # operators

ReleasePriority = 5

FinallyPriority = 2

DefaultOperatorPriority = 0 # disable all the remaining

operators

}

StatespaceOptions

{

GenerateMode = RandomGraph # generate random (not

necessarily connected) graphs

as state spaces

ChangeInterval = 10 # new state space after every

10th test round

RandomSeed = 37620 # random seed

Size = 50 # 50 states in each state space

Propositions = 3 # three propositions in each

state of each state space

EdgeProbability = 0.1 # approximate probability of

having a transition between

any two states

TruthProbability = 0.5 # probability with which any

atomic proposition is true in

a state

}

Chapter 3: Invocation 30

3.2 Command line options

This section lists the command line options that may be used when invok-
ing lbtt. The command line options are processed only after reading the
configuration file, so they can be used to override the settings given in the
file. There are also a few options for which there is no direct equivalent in
the configuration file options.

3.2.1 Special options

The following list presents all command line options for which there is no
(directly) corresponding option that may be set in the program configuration
file.

‘--configfile=FILE-NAME ’
This option can be used to instruct lbtt to read program con-
figuration from another file instead of the default configuration
file ‘config’ in the current working directory.

‘--formulafile=FILE-NAME ’
This option instructs lbtt to read the LTL formulas used in the
tests from a file (or standard input) instead of generating them
randomly. The special filename ‘-’ refers to standard input.
Each input formula should be followed by a newline. The for-
mulas can be specified either in lbtt’s own prefix notation (see
Section 6.2 [Format for LTL formulas], page 53; also the infix
notation used in output messages is supported) or in a variety of
formats found in some LTL-to-Büchi translator implementations
(Spin, LTL2BA, LTL2AUT, Temporal Massage Parlor, Wring,
Spot, LBT), however with the restriction that all atomic propo-
sitions should have names of the form ‘pN ’ for some nonnegative
integer N.

(When using one of the alternative formats, it is recommended to
use parentheses to avoid possible ambiguities in the precedence
and associativity of the various operators; in lbtt, the unary op-
erators have the highest precedence, ‘/\’ has higher precedence
than ‘\/’, which in turn has higher precedence than any of ‘->’,
‘<->’ or ‘xor’, and the binary temporal operators have the low-
est precedence. All binary logical operators are left-associative;
all binary temporal operators are nonassociative.)

If this option is used, all command line or configuration file
parameters affecting the generation of random LTL formulas
(excluding their mode of output) are ignored.

‘--h’
‘--help’ These options list all the available command line parameters.

Chapter 3: Invocation 31

‘--logfile=FILE-NAME ’
This option instructs lbtt to create a log of all errors encoun-
tered during testing. By default no log will be created.

‘--profile’
This option can be used as a shorthand for disabling all Büchi
automata correctness tests. The test report generated at the end
of testing then shows only the running times of each tested LTL-
to-Büchi translator and the sizes of the generated automata.

‘--quiet’
‘--silent’

These options suppress any messages that are normally dis-
played during testing. Use the ‘--logfile’ option (see above)
with these options to save a test failure report into a log file.

‘--showconfig’
If this option is present on the command line, lbtt will write
the current configuration to standard output (see Section 4.1
[Configuration information], page 38) and then exit. This op-
tion can be used together with the ‘--configfile’ option to
test the settings defined in a configuration file without actually
performing any tests.

‘--showoperatordistribution’
With this option lbtt uses the priorities defined for the LTL
formula operators available for random LTL formula generation
to compute the expected number of occurrences of each operator
in a single randomly generated formula. The distribution is then
displayed along with other configuration information when the
program starts.

‘--skip=NUMBER-OF-ROUNDS ’
This option can be used to skip the first NUMBER-
OF-ROUNDS test rounds, i.e., begin testing from round
NUMBER-OF-ROUNDS+1.

‘-V’
‘--version’

This option displays the version of the lbtt executable.

3.2.2 Global options

The following list presents the options that can be used to override the values
specified in the ‘GlobalOptions’ section of the configuration file.

‘--comparisontest[=yes | no]’
‘--nocomparisontest’

These options enable or disable the model checking result cross-
comparison test (see Section 2.3 [Model checking result cross-
comparison test], page 16).

Chapter 3: Invocation 32

‘--consistencytest[=yes | no]’
‘--noconsistencytest’

These options enable or disable the model checking result consis-
tency check (see Section 2.4 [Model checking result consistency
check], page 17).

‘--disable=IMPLEMENTATION-ID [,IMPLEMENTATION-ID ...]’
This option can be used to exclude some implementations from
the tests by specifying a comma-separated list of implementation
names or their numeric identifiers. (The implementations are
numbered in the order in which they appear in the configuration
file, starting from zero. Use the ‘--showconfig’ option, see
Section 3.2.1 [Special options], page 30, to obtain a list of the
implementations specified in the configuration file, together with
their identifiers.)

‘--enable=IMPLEMENTATION-ID [,IMPLEMENTATION-ID ...]’
This option can be used to include implementations into the
tests (in the case they are initially disabled in the configuration
file).

‘--globalmodelcheck’
This option instructs lbtt to perform model checking glob-
ally (with respect to all states of each random state space) in
the model checking result cross-comparison test and the model
checking result consistency check. Using a global check increases
the number of possible tests.

‘--interactive[=MODE-LIST]’
‘--pause[=MODE-LIST]’

These options can be used to override whether lbtt should pause
between test rounds to wait for user input. The optional MODE-
LIST is a comma-separated list of interactivity modes (‘Always’,
‘OnError’, ‘Never’, ‘OnBreak’) with no spaces in between (see
[Interactivity modes], page 21, for the mode descriptions). If
omitted, the mode list defaults to ‘Always’.

‘--intersectiontest[=yes | no]’
‘--nointersectiontest’

These options enable or disable the Büchi automata intersection
emptiness check (see Section 2.5 [Automata intersection empti-
ness check], page 18).

‘--localmodelcheck’
This option instructs lbtt to perform model checking only with
respect to a single state of each random state space in the model
checking result cross-comparison test and the model checking
result consistency check.

Chapter 3: Invocation 33

‘--modelcheck=global | local’
This option can be used to select the model checking mode.

‘--pause[=MODE-LIST]’
See ‘--interactive’.

‘--rounds=NUMBER-OF-ROUNDS ’
This option can be used to override the number of test rounds
to run.

‘--translatortimeout=TIME-SPECIFICATION ’
This option can be used to override the running time limit (in
wall-clock time) for translators (see [Timeouts], page 22, for
more information).

‘--verbosity=INTEGER ’
This option sets the verbosity of output messages. The value
must be between 0 and 5 (inclusive).

3.2.3 LTL formula options

The following command line options can be used to control the behavior of
lbtt’s random LTL formula generation algorithm. They correspond to the
options available in the ‘FormulaOptions’ section of the configuration file.

‘--abbreviatedoperators[=yes | no]’
‘--noabbreviatedoperators’

These options can be used to allow or prevent lbtt from using
any of the “abbreviated” operators (‘->’, ‘<->’, ‘xor’, ‘W’, ‘<>’,
‘B’, ‘M’ and ‘[]’) when generating random LTL formulas.

‘--andpriority’
This option sets the priority for logical conjunction (the ‘/\’
operator).

‘--beforepriority’
This option sets the priority for the temporal “before” operator
(‘B’).

‘--defaultoperatorpriority’
This option sets the default priority for all logical and temporal
operators.

‘--equivalencepriority’
This option sets the priority for logical equivalence (the ‘<->’
operator).

‘--falsepriority’
This option sets the priority for the Boolean constant ‘false’.

‘--finallypriority’
This option sets the priority for the temporal “finally” operator
(‘<>’).

Chapter 3: Invocation 34

‘--formulachangeinterval=NUMBER-OF-ROUNDS ’
This option determines how often (in number of test rounds)
lbtt should generate a new random LTL formula. A value of 0
forces lbtt to use a fixed LTL formula for all tests.

‘--formulageneratemode=normal | nnf’
This option can be used to choose how lbtt should
generate random LTL formulas. With the option
‘--formulageneratemode=nnf’, all generated formulas
will be in (a weakened) negation normal form in which all
negations in the formula (if any) precede atomic propositions.
(Note that the formulas may still contain some of the
“abbreviated” operators if their priorities are not explicitly set
to zero.)

‘--formulaoutputmode=normal | nnf’
This option can be used to force or prevent lbtt from convert-
ing each LTL formula into (strict) negation normal form (i.e.,
rewriting it with the operators ‘!’, ‘/\’, ‘\/’, ‘U’ and ‘V’) before
passing it to the LTL-to-Büchi translators.

‘--formulapropositions’
This option sets the maximum number of different atomic propo-
sitions that lbtt may use for generating random LTL formulas.

‘--formularandomseed=INTEGER ’
This option gives a seed value for generating random numbers
used by the random LTL formula generation algorithm.

‘--formulasize=INTEGER ’
‘--formulasize=MINIMUM-SIZE-MAXIMUM-SIZE ’
‘--formulasize=MINIMUM-SIZE...MAXIMUM-SIZE ’

This option sets the size of the random LTL formulas generated
for the tests. The size can be given either as a fixed integer or
as an interval, in which case the size of each generated formula
will be chosen randomly in the interval using a uniform random
distribution.

‘--generatennf’
‘--nogeneratennf’

These options can be used instead of the
‘--formulageneratemode’ option to select the random
formula generation mode.

‘--globallypriority’
This option sets the priority for the temporal “globally” operator
(‘[]’).

‘--implicationpriority’
This option sets the priority for logical implication (the ‘->’
operator).

Chapter 3: Invocation 35

‘--nextpriority’
This option sets the priority for the temporal “next time” oper-
ator (‘X’).

‘--notpriority’
This option sets the priority for logical negation (the ‘!’ opera-
tor).

‘--orpriority’
This option sets the priority for logical disjunction (the ‘\/’ op-
erator).

‘--outputnnf’
‘--nooutputnnf’

These options can be used instead of the
‘--formulaoutputmode’ option to choose the format in
which lbtt passes LTL formulas to LTL-to-Büchi translators.

‘--propositionpriority’
This option sets the priority for atomic propositions.

‘--releasepriority’
This option sets the priority for the temporal “(weak) release”
operator (‘V’).

‘--strongreleasepriority’
This option sets the priority for the temporal “strong release”
operator (‘M’).

‘--truepriority’
This option sets the priority for the Boolean constant True.

‘--untilpriority’
This option sets the priority for the temporal “(strong) until”
operator (‘U’).

‘--weakuntilpriority’
This option sets the priority for the temporal “weak until” op-
erator (‘W’).

‘--xorpriority’
This option sets the priority for the logical “exclusive or” oper-
ator.

Note also the ‘--formulafile=FILE-NAME ’ option (see [‘--formulafile’
option], page 30), which can be used to instruct lbtt to read LTL formulas
from a file (or standard input) instead of generating them randomly.

3.2.4 State space options

The following command line options affect the way in which lbtt generates
state spaces that are then used in the model checking tests. They correspond

Chapter 3: Invocation 36

to options in the ‘StateSpaceOptions’ section of the configuration file. See
also Section 2.1.2 [Random state spaces], page 13, for more information
about the graph generation modes.

‘--edgeprobability=PROBABILITY ’
This option sets the approximate random edge probability for
state spaces. (The option has no effect if the generated state
spaces are random or enumerated paths.)

‘--enumeratedpath’
This option instructs lbtt to enumerate all paths of a given size
as state spaces instead of generating random state spaces for
model checking tests. The option also enables lbtt’s internal
model checking algorithm.

‘--randomconnectedgraph’
This option makes lbtt generate random connected graphs as
state spaces for model checking tests.

‘--randomgraph’
This option makes lbtt generate random graphs as state spaces
for model checking tests.

‘--randompath’
This option forces lbtt to generate random paths as state spa-
ces. The option also enables lbtt’s internal model checking
algorithm in the model checking tests.

‘--statespacechangeinterval=NUMBER-OF-ROUNDS ’
This option sets the frequency (in test rounds) in which new
state spaces are generated. A value of 0 forces lbtt to use a
fixed state space for all tests.

‘--statespacegeneratemode=randomconnectedgraph | randomgraph |
randompath | enumeratedpath’

This option can be used instead of one of the four options above
to select the state space generation mode.

‘--statespacerandomseed=INTEGER ’
This option gives a seed value for generating random numbers
required by the random state space generation algorithm.

‘--statespacesize=INTEGER ’
‘--statespacesize=MINIMUM-SIZE-MAXIMUM-SIZE ’
‘--statespacesize=MINIMUM-SIZE...MAXIMUM-SIZE ’

This option can be used to change the size of the generated state
spaces.

‘--truthprobability=PROBABILITY ’
This option sets the probability that lbtt uses for choosing the
valuation for each atomic proposition in each state of the ran-

Chapter 3: Invocation 37

domly generated state spaces. (This option has no effect if using
enumerated paths as state spaces.)

Chapter 4: Interpreting the output 38

4 Interpreting the output

This chapter briefly introduces the most typical messages that lbtt outputs
during testing. Most of the examples in this section illustrate the output
when lbtt is running in its default output verbosity mode (3). In lower
verbosity modes some (or in verbosity mode 0, all) of these messages will be
suppressed; in higher verbosity modes, some additional information about
lbtt’s internal behavior is shown.

4.1 Configuration information

Before starting tests, lbtt outputs (in verbosity modes 2 and above) a
summary of the current program configuration as obtained by reading the
program configuration file and interpreting the command line parameters.
The same summary can be obtained without running any tests by us-
ing the ‘--showconfig’ command line option (see [‘--showconfig’ option],
page 31). The information will be written also to the error log file if one was
specified in the command line with the ‘--logfile’ option (see [‘--logfile’
option], page 31). The summary consists of the following information:

• LTL-to-Büchi translator implementations enabled for testing.

• List of enabled tests.

• Random state space generation parameters.

• Random LTL formula generation parameters (unless reading LTL for-
mulas from an external source; see [‘--formulafile’ command line op-
tion], page 30). This includes information about all enabled formula
operators and their priorities. When using the command line option
‘--showoperatordistribution’ (see [‘--showoperatordistribution’
option], page 31), lbtt shows also the expected number of occurrence
of each operator in each randomly generated formula.

Example:
Program configuration:

1000 test rounds.

Testing will be interrupted in case of an error.

Signalling a break will interrupt testing.

Using global model checking for tests.

Writing error log to ‘error.log’.

Implementations:

0: ‘Implementation 0’

1: ‘Implementation 1’

Timeout for translators is set to 30 seconds.

Enabled tests:

Model checking result cross-comparison test

Chapter 4: Interpreting the output 39

Model checking result consistency check

Büchi automata intersection emptiness check

Random state spaces:

Random graphs (50 states, 5 atomic propositions)

New state space will be generated after every 5th round.

Random seed: 98

Random edge probability: 0.10

Propositional truth probability: 0.50

Random LTL formulas:

5 parse tree nodes, 5 atomic propositions

New LTL formula will be generated after every round.

Random seed: 17991

Atomic symbols in use (priority):

false (5); propositions (90); true (5)

Operators used for random LTL formula generation:

operator ! /\ U V X \/

priority 10 10 20 20 10 20

4.2 Test round messages
In verbosity modes 1 and 2, lbtt reports numeric statistics on the generated
automata in tabular form. Each row of this table contains the following
information (in this order):

• number of the current test round (verbosity mode 1 only);

• numeric identifier of an implementation;

• formula identifier (‘+’ or ‘-’);

• time consumed when generating an automaton from the formula using
the implementation;

• number of states, transitions and acceptance conditions in the automa-
ton;

• number of states and transitions in the product automaton

• number of accepting cycles in the state space (see below), and

• result of the consistency check (verbosity mode 2 only).

The following example shows a fragment of the output that lbtt might
produce during a test round when running in the default verbosity mode 3.
1. Round 6 of 10

2. Generating random state space

3. Random LTL formula:

formula: ((p1 <-> p0) U (p0 \/ ! p3))

negated formula: ! ((p1 <-> p0) U (p0 \/ ! p3))

0: ‘Implementation 0’

Chapter 4: Interpreting the output 40

Positive formula:

4. Büchi automaton:

number of states: 6

number of transitions: 15

acceptance sets: 1

computation time: 0.03 seconds (user time)

5. Product automaton:

number of states: 582 [97.00% of worst case (600)]

number of transitions: 7188

6. Accepting cycles:

cycle reachable from 0 states

not reachable from 100 states

7. Negated formula:

Büchi automaton:

number of states: 4

number of transitions: 6

acceptance sets: 0

computation time: 0.04 seconds (user time)

Product automaton:

number of states: 363 [90.75% of worst case (400)]

number of transitions: 2581

Accepting cycles:

cycle reachable from 25 states

not reachable from 75 states

8. Result consistency check:

result: failed [75 (75.00%) of 100 test cases]

The numbered parts of the output are:

1. Number of the test round.

2. lbtt generates a new random state space for model checking tests. (In
this case the size of the state spaces was fixed in the configuration; if
the state space size is allowed to vary in an interval, lbtt would also
show here the actual size of the generated state space.)

3. Information about a random LTL formula and its negation. To simplify
the notation, it is assumed that all unary formula operators have higher
precedence than binary operators.

4. Information about the Büchi automaton that ‘Implementation 0’ gener-
ated from the positive LTL formula (number of states, transitions and
acceptance conditions, and the amount of user time elapsed in generat-
ing the automaton).

5. Information about the synchronous product of the state space and the
Büchi automaton constructed from the positive formula.

6. Model checking result information. In this case, the automaton cannot
reach an “accepting cycle” regardless of the state of the state space in
which the automaton could begin its execution. In other words, the
random state space contains no states with an infinite path beginning
from the state such that the Büchi automaton accepts the temporal
interpretation of the path (the infinite sequence of state labels on the
path).

Chapter 4: Interpreting the output 41

7. The model checking process is repeated using the negated formula as
input for the LTL-to-Büchi translator ‘Implementation 0’.

8. lbtt performs the model checking result consistency check (see Sec-
tion 2.4 [Model checking result consistency check], page 17) using the
model checking results computed for the positive and the negative for-
mula. In this example, the result consistency check fails in 75 states of
the state space. This implies that ‘Implementation 0’ failed to translate
one (or both) of the formulas into a Büchi automaton correctly.

The output of phases 4—8 will be repeated for each implementation in-
cluded in the tests. After this lbtt proceeds to the model checking re-
sult cross-comparison test (see Section 2.3 [Model checking result cross-
comparison test], page 16) and the Büchi automata intersection emptiness
test (see Section 2.5 [Automata intersection emptiness check], page 18).

The model checking result cross-comparison test might result in the fol-
lowing output (shown in verbosity modes greater than 1):

Model checking result cross-comparison:

result:

failed (+) 0: ‘Implementation 0’, 1: ‘Implementation 1’

Throughout all test failure reports, lbtt refers to the positive and negated
formulas with the symbols ‘+’ and ‘-’, respectively. Therefore, the above
message indicates that the model checking results obtained using ‘Imple-
mentation 0’ and ‘Implementation 1’ for the positive formula do not agree.
A similar line will be shown for all pairs of implementations for which the
test failed.

lbtt also reports if the model checking result cross-comparison could not
be performed between a pair of implementations (for example, if one of the
implementations failed to generate an automaton); in this case, the result of
the test is ‘N/A’.

If using enumerated or randomly generated paths as state spaces, the
model checking results are also compared against those given by lbtt’s in-
ternal model checking algorithm.

A similar convention is used to report failures in the Büchi automata
intersection emptiness check. However, because this test is always performed
on Büchi automata constructed from two complementary LTL formulas, a
test failure report shows LTL formula information beside the name of the
implementation used for generating the Büchi automaton from that formula.
Note that the Büchi automata intersection emptiness check may fail on the
automata constructed by the same implementation; in the following example,
the check failed between the automata constructed by ‘Implementation 0’,
and the automata constructed by ‘Implementation 0’ and ‘Implementation
1’ from the positive and negative formulas, respectively.

Büchi automata intersection emptiness check:

result:

failed 0: ‘Implementation 0’

failed (+) 0: ‘Implementation 0’, (-) 1: ‘Implementation 1’

Chapter 4: Interpreting the output 42

If using a log file (see [‘--logfile’ command line option], page 31), a
summary of all testing errors will be written to the file using the output
format specified above.

4.3 Test statistics
At the end of testing, lbtt outputs some simple statistics computed over
all tests in verbosity modes 2 and above. If using an error log file (see
[‘--logfile’ command line option], page 31), the statistics will be stored also
in the log file. These statistics can be also accessed during interactive testing
by using the internal command ‘statistics’ (see [‘statistics’ command],
page 48). In brief, the statistics include:

• Number of generated state spaces and the total number of states and
transitions in them.

• Number of processed LTL formulas (not counting the negations of each
formula). If using random formulas, lbtt also shows the overall dis-
tribution of each individual proposition, Boolean constant and logical
or temporal operator in the sample of randomly generated formulas.
Theoretically, in a large sample of random formulas, this distribution
should correspond to the one that can be computed before testing by
using the ‘--showoperatordistribution’ command line option (see
[‘--showoperatordistribution’ command line option], page 31).

• Automata statistics for each implementation:

− number of generated Büchi automata and product automata

− total and average numbers of states, transitions and acceptance sets
in the generated Büchi/product automata, and

− total and average time consumed in generating the Büchi automata.

• Number of times that each implementation failed to generate an accept-
able automaton from an input formula.

• Number of failures in the model checking result consistency check (see
Section 2.4 [Model checking result consistency check], page 17) for each
implementation.

• Number of result inconsistencies detected in pairwise comparison of the
Büchi automata generated by different implementations. Depending on
the model checking mode and which correctness tests are enabled, the
output may include none, some or all of the following information:

− Overall number of failures in the model checking result cross-
comparison test (see Section 2.3 [Model checking result cross-
comparison test], page 16) for each pair of implementations.

− Number of failures in the model checking result cross-comparison
test in a single fixed state of each generated state space (called the
“initial” state of the state space).

Chapter 4: Interpreting the output 43

− Number of failures in the Büchi automata intersection emptiness
check (see Section 2.5 [Automata intersection emptiness check],
page 18) for each pair of implementations.

Note that the pairwise inconsistency results form a symmetric matrix
(possibly shown in several parts), which means that the same informa-
tion is repeated on both sides of the matrix diagonal.

Where applicable, the statistics are shown separately for positive, negative
and all LTL formulas used in the tests.

Chapter 5: Analyzing test results 44

5 Analyzing test results

This chapter documents how to use lbtt’s internal commands to analyze
test results.

To use the internal commands, lbtt must be started in one of its inter-
active modes (see [Interactivity modes], page 21). Depending on the mode,
lbtt may occasionally pause (for example, after each test round, or when a
test failure is detected) between test rounds to wait for user input by showing
a prompt of the form

** [Round 22 of 1000] >>

5.1 Command conventions
Commands are entered by typing a command name followed by any param-
eters for the command and then pressing 〈ENTER〉. The command names
are case-sensitive. Each parameter should be separated from the command
name and other parameters with white space.

Command names can be abbreviated to the shortest prefix that identifies
the command unambiguously (for example, ‘h’ could be used in place of the
‘help’ command).

Some of the commands expect lists of implementation or state identifiers
as parameters. The lists can be specified as comma-separated numbers (for
example, ‘8’) or intervals (for example, ‘3-11’) with no white space between
the commas and the numbers or intervals that belong to the same list. For
example, assuming that the state space used in the current test round has at
least 23 states, the command ‘statespace -5,8,14-18,22-’ would display
information about all state space states with an identifier less than or equal
to 5, together with information about state 8, states 14 to 18 (inclusive) and
all states with an identifier greater than or equal to 22. The ‘*’ symbol can
be used as a shorthand for all identifiers in the available range.

lbtt also recognizes the symbolic names of implementations (defined in
the configuration file) in implementation identifier lists. The names can be
used in place of the numeric identifiers. Quotes or the escape character (‘\’)
should be used to handle white space in identifiers.

Some of the commands require a formula identifier as a parameter for
choosing between a positive and a negative LTL formula. The formula iden-
tifier (‘+’ for positive formula, ‘-’ for negative formula) must follow the com-
mand name as the first parameter for the command. If the formula identifier
is omitted, the positive formula is assumed.

The output of most commands (excluding the test control commands, see
Section 5.3 [Test control commands], page 45) can be redirected or appended
to a file by ending the command line with ‘>filename’ or ‘>>filename’,
respectively.

Optionally, the output can be handed over to an external program by
ending the command line with ‘| command ’, where command is the command

Chapter 5: Analyzing test results 45

line used for invoking the external program. For example, the output of the
(lbtt’s internal) command can be piped to a pager application if the entire
output does not fit on the screen by itself. Using the pipe construct without
specifying any internal command will simply invoke the external program.

5.2 Getting help

Use the ‘help’ command to access on-line help. Typing ‘help’ with no
parameters shows a list of all available commands, together with general
conventions for using the commands. The ‘help’ command can be optionally
given a command name as a parameter to access command-specific help.

In command-specific help, arguments in angle brackets (<, >) denote
obligatory command parameters, while arguments in square brackets ([,])
are optional. A vertical bar (|) denotes selection between several alterna-
tives. Arguments in double quotes should be entered literally (without the
quotes themselves).

5.3 Test control commands
The following commands can be used to continue or abort testing, skip a
number of test rounds, enable or disable implementations for testing, and
change the verbosity of lbtt’s output messages.

‘continue [number-of-rounds]’
Continue testing. If no argument is given, testing will be inter-
rupted again when mandated by the current interactivity mode
(see [Interactivity modes], page 21). The optional argument
number-of-rounds can be used to specify a number of rounds to
run; testing is then interrupted again after the given number of
test rounds (or in case of a new test failure if mandated by the
current interactivity mode).

‘disable [implementation-id-list]’
Disable testing of a list of implementations (all implementations
if no list of implementations is specified). lbtt will not include
these implementations in the tests in subsequent test rounds.
(See Section 5.1 [Command conventions], page 44, for the syntax
used for the list of implementations.)

‘enable [implementation-id-list]’
Enable testing of a list of implementations.

‘quit’ Display test statistics (see Section 4.3 [Test statistics], page 42)
over the test rounds performed and then abort testing.

‘skip [number-of-rounds]’
Skip a number of test rounds and then return to wait for further
user input. If not explicitly specified, the number of rounds to
skip defaults to 1. Use the ‘--skip’ command line option (see

Chapter 5: Analyzing test results 46

[The ‘--skip’ command line option], page 31) to begin testing
from another test round than 1.

‘verbosity [verbosity-level]’
Display or change the verbosity of lbtt’s output messages. If no
argument is given, show the current verbosity level, otherwise
change the verbosity setting to the given value. The argument
must be an integer between 0 and 5 (inclusive). (The new value
will take effect when testing is resumed.)

5.4 Data display commands
The following commands can be used to access test result information and
to inspect the LTL formulas, Büchi automata and the state space used in
the current test round.

‘algorithms’
‘implementations’
‘translators’

Show a list of implementations declared in the program con-
figuration file and tell whether they are currently enabled for
testing. The list also shows the numeric identifiers of the imple-
mentations.

‘buchi [“+” | “-”] <implementation-id> [state-id-list | “dot”]’
Display information about the structure of the Büchi automaton
generated by the implementation implementation-id from the
positive (‘+’) or negative (‘-’) LTL formula used in the current
test round. The implementation identifier may be optionally fol-
lowed by a list of state identifiers to display specific states of the
automaton (see Section 5.1 [Command conventions], page 44,
for details on how the list should be formatted), or the keyword
‘dot’ to display the automaton in a format that can be given
as input for the ‘dot’ tool of the GraphViz graph visualization
package [GViz] to obtain a graphical representation of the au-
tomaton.

‘evaluate [“+” | “-”] [implementation-id-list] [state-id-list]’
Display the model checking results for the positive (‘+’) or the
negative (‘-’) formula computed using a given set of implemen-
tations for constructing a Büchi automaton from the formula.
If no implementation list is specified, show the results for all
implementations. The implementation identifier list may op-
tionally be followed by a list of (state space) state identifiers
to restrict the output to only a subset of all states. (See Sec-
tion 5.1 [Command conventions], page 44, for more information
about the format used for the lists.)

This command can be used to look for states in which the model
checking result cross-comparison test (see Section 2.3 [Model

Chapter 5: Analyzing test results 47

checking result cross-comparison test], page 16) failed for a pair
of implementations. These state identifiers can then be used
as input for the ‘resultanalysis’ command (see Section 5.5
[Failure analysis commands], page 48).

Note 1: Observe that the model checking results shown do
not follow the “universal” semantics of LTL (common in model
checking), by which a formula is usually considered to hold in a
set of infinite paths beginning from a state only if all paths in
the set are accepted by the Büchi automaton constructed from
the formula to be model checked. Instead, lbtt will mark the
result true if any of these paths is accepted by the automaton.

Note 2: If using random or enumerated paths as state spaces,
lbtt accepts also the identifier ‘lbtt’ in the implementation
identifier list. This identifier can be used for accessing the model
checking results computed using lbtt’s internal model checking
algorithm for paths.

‘formula [“+” | “-”] [“normal” | “nnf”]’
Display the positive (‘+’) or the negative (‘-’) LTL formula used
for tests in the current test round either in the form in which
it was generated (‘normal’ – the default) or in negation normal
form (‘nnf’).

‘inconsistencies [implementation-id-list]’
List the state space states in which the model checking result
consistency check (see Section 2.4 [Model checking result consis-
tency check], page 17) failed for each implementation in the list
(or all implementations if the list is omitted). See Section 5.1
[Command conventions], page 44, for information on formatting
the list. The state identifiers can then be used as input for
the ‘consistencyanalysis’ command (see Section 5.5 [Failure
analysis commands], page 48).

‘results [implementation-id-list]’
Display test results (in the current test round) for each imple-
mentation in the list (or all implementations if the list is omit-
ted). For more information about the output, see Section 4.2
[Test round messages], page 39; see Section 5.1 [Command con-
ventions], page 44, for information on how to specify the imple-
mentations.

‘statespace [state-id-list | “dot”]’
Display information about the structure of the state space used
for model checking tests in the current test round. The optional
state-id-list can be used to display only a part of the whole state
space (see Section 5.1 [Command conventions], page 44, for in-
formation on formatting the state list). Alternatively, the ‘dot’
keyword can be used to output the state space description in a

Chapter 5: Analyzing test results 48

format recognized by the ‘dot’ tool of the GraphViz graph visu-
alization package [GViz] that can be used to obtain a graphical
representation of the state space.

‘statistics’
Display statistics computed over all test rounds performed since
the program was started. This is the same information that
lbtt normally outputs at the end of testing; see Section 4.3
[Test statistics], page 42, for more information about the output
that is displayed.

5.5 Failure analysis commands
The first part of this section introduces the commands available for identify-
ing an LTL-to-Büchi translator that caused a failure in one of the automata
correctness tests. The second part describes the conventions that lbtt uses
for justifying the result of the analysis.

5.5.1 Alphabetical list of failure analysis commands

‘buchianalysis <implementation-id> <implementation-id>’
Analyze a failure in the Büchi automata intersection emptiness
check (see Section 2.5 [Automata intersection emptiness check],
page 18). The two implementation identifiers select the Büchi
automata for which to perform the analysis. The Büchi au-
tomata intersection emptiness check always involves automata
constructed from the positive and the negative formulas used
in the current test round. The first implementation identifier
chooses an implementation that constructed an automaton from
the positive formula, and the second identifier selects an imple-
mentation used for translating the negative formula into an au-
tomaton. (The identifiers can also be equal if one of the tested
implementations failed the check against itself.)

A failure in the Büchi automata intersection emptiness check
implies that there exists an input sequence over subsets of atomic
propositions that is accepted by both automata included in the
analysis. lbtt examines the intersection of the automata to find
a witness of such an input, checks whether this witness is a model
of the positive formula, and tells which one of the automata is
likely to be incorrect according to the following rules:

• If the positive formula is found to hold in the witness, the
automaton constructed from the negative formula is likely
to contain an error.

• If the witness is not a model for the positive formula, then
the automaton constructed from the positive formula prob-
ably accepts the witness incorrectly.

Chapter 5: Analyzing test results 49

‘consistencyanalysis <implementation-id> [state-id]’
Analyze a failure in the model checking result consistency
check (see Section 2.4 [Model checking result consistency check],
page 17). The implementation-id parameter chooses the imple-
mentation to analyze. In addition, the optional state-id param-
eter can be used to specify a state (in the state space) in which
to perform the analysis (use the ‘inconsistencies’ command,
Section 5.4 [Data display commands], page 46, to see a list of
all states in which the check failed). If the state identifier is
omitted, lbtt will try to find a state where the check failed.

A failure in the model checking result consistency check implies
the existence of a witness (i.e., a path in the state space used
for the tests in the current test round) whose temporal inter-
pretation is not accepted by either of two automata constructed
from two complementary LTL formulas. In the analysis, lbtt
finds such a witness, checks separately whether it is a model of
the positive formula, and then tells which one of the automata
seems to reject the witness incorrectly.

‘resultanalysis [“+” | “-”] <implementation-id>
<implementation-id> [state-id]’

Analyze a failure in the model checking result cross-comparison
test (see Section 2.3 [Model checking result cross-comparison
test], page 16) between two implementations on either the posi-
tive (‘+’) or the negative (‘-’) LTL formula used in the current
test round. The implementation identifiers can be optionally
followed by an identifier of a state in the state space to spec-
ify a state in which the analysis should be performed. (Suitable
state identifiers can be found by looking for inconsistencies in the
model checking results accessible with the ‘evaluate’ command,
Section 5.4 [Data display commands], page 46; by omitting the
state identifier, lbtt will try to find a state in which the model
checking result comparison failed between the implementations.)

If using randomly generated or enumerated paths as state spaces,
lbtt also accepts the identifier ‘lbtt’ in place of either of the
implementation identifiers. This instructs lbtt to perform the
analysis against lbtt’s internal model checking algorithm.

A failure in the model checking result cross-comparison test sug-
gests that the state space used in the current test round contains
a path which is accepted by one, but rejected by another au-
tomaton constructed from the same LTL formula. To determine
which one of these automata accepts or rejects the input in-
correctly, lbtt finds a witness path giving contradictory model
checking results, model checks the formula separately in the wit-
ness, and tells which one of the automata seems to accept or
reject the witness incorrectly.

Chapter 5: Analyzing test results 50

5.5.2 Witnesses, proofs and refutations

All of the above analysis commands use lbtt’s internal model checking al-
gorithm to determine which one of the two automata involved in each test
is incorrect by checking whether an LTL formula holds in a witness path
extracted from the state space used in the current test round or from the
intersection of two Büchi automata. The witness path is a sequence of con-
secutive states that ends in a loop, and is represented in two parts as an
initial “prefix” (which may be empty) and a “cycle” that is considered to
repeat itself indefinitely. The witness might, for example, look as follows:

Execution M:

prefix:

s3 {p0,p2,p4} --> s4

cycle:

s4 {p1,p3} --> s5

s5 {p3} --> s6

s6 {p1,p2,p3} --> s7

s7 {p3,p4} --> s8

s8 {p1} --> s9

s9 {} --> s2

s2 {} --> s3

s3 {p0,p2,p4} --> s4

In this case, the witness (or “execution” as displayed in the output) M
consists of a single-state prefix followed by a cycle of eight states. The
atomic propositions that hold in each state are also shown in the output.

(The witness can be considered a small state space
M = 〈S, ρ,L〉 following the definition in Section A.3 [State spa-
ces], page 65; in the example above, S = {s2, s3, s4, s5, s6, s7, s8, s9},
ρ = {(s2, s3), (s3, s4), (s4, s5), (s5, s6), (s6, s7), (s7, s8), (s8, s9), (s9, s2)},
L(s2) = L(s9) = ∅, L(s3) = {p0, p2, p4}, L(s4) = {p1, p3}, L(s5) = {p3},
L(s6) = {p1, p2, p3}, L(s7) = {p3, p4}, and L(s8) = {p1}.)

In the model checking result cross-comparison test and the model check-
ing result consistency check, the witness is an actual path extracted from
the state space used for the tests in the current test round. In this case,
the state identifiers correspond to the states of the state space, and can be
accessed with the ‘statespace [state-id]’ command (see Section 5.4 [Data
display commands], page 46).

To justify the result of the analysis, lbtt also displays a proof or a refu-
tation for the LTL formula in the witness. The proof or refutation is con-
structed by a recursive examination of the subformulas of the (positive or
negative) formula used in the current test round according to the semantics
of LTL and might look as follows:

Analysis of the formula in the execution:

M,<s3, ...> |/= ((X p0 U ! p4) <-> p0) :

+-> M,<s3, ...> |/= (X p0 U ! p4) :

| +-> M,<s3, ...> |/= X p0 :

| | +-> s3 --> s4

| | +-> M,<s4, ...> |/= p0

Chapter 5: Analyzing test results 51

| +-> M,<s3, ...> |/= ! p4 :

| +-> M,<s3, ...> |== p4

+-> M,<s3, ...> |== p0

The proof (or refutation) can be considered a tree of statements of the form
‘M,<s, ...> |== subformula ’ or ‘M,<s, ...> |/= subformula ’. Here, the
symbol ‘|==’ is used to denote that the formula subformula holds in the
(infinite) subsequence beginning at state ‘s’ of the witness, and the relational
symbol ‘|/=’ denotes the opposite. The children of each proof tree node give
justification for the claim in their parent node; the children might be further
expanded if the claims in them do not directly follow from the definition of
L. In the presence of temporal operators, the proofs may need to be based
also on the structural properties of M . These are shown as statements of
the form ‘sn --> sm’ to indicate that M contains a transition from the state
‘sn’ to the state ‘sm’ (and, since the states in M are connected into a non-
branching sequence, that this is the only transition originating from ‘sn’).

In the above example, lbtt claims that the formula ‘((X p0 U ! p4) <->
p0)’ does not hold in the witness presented earlier in this section, and that
this follows (by the semantics of logical equivalence) from the claims that the
subformula ‘(X p0 U ! p4)’ does not hold, but the subformula ‘p0’ holds in
this witness. ‘(X p0 U ! p4)’ does not hold in the witness, because neither
‘X p0’ nor ‘! p4’ holds in the first state of the witness (p4 ∈ L(s3), and
p0 /∈ L(s4), where s4 is the only successor of s3). On the other hand, ‘p0’
holds in the witness because of the fact that p0 ∈ L(s3).

Chapter 6: Interfacing with lbtt 52

6 Interfacing with lbtt

The output generated by lbtt consists of textual messages and an optional
error log file (see [‘--logfile’ command line option], page 31). The for-
mat of the output messages is determined by the verbosity mode; for more
information, see Chapter 4 [Interpreting the output], page 38. In addition,
lbtt returns one of the following three values as its exit status upon normal
termination:

• 0: lbtt exited successfully; no errors were detected during testing.

• 1: lbtt exited successfully; errors were detected during testing.

• 2: An error was found when reading the program configuration or when
processing the command line options.

• 3: lbtt exited due to an unrecoverable internal error.

The rest of this chapter gives the details on how to use lbtt for testing
LTL-to-Büchi translation algorithm implementations that are not supported
by the basic distribution. (See Section 6.4 [The lbtt-translate utility], page 57
for information on how to connect several publicly available LTL-to-Büchi
translator implementations to lbtt.)

6.1 Requirements for translator executables
lbtt assumes each tested LTL-to-Büchi translator to be accessible by run-
ning an executable file which should read in an LTL formula from a file,
convert it into a Büchi automaton and then write the automaton into an-
other file. For this purpose, the executable should support the following
command line interface:

path-to-program parameters input-file output-file

where path-to-program is the full name (and location) of the executable,
parameters are any optional parameters that might be needed for running the
executable, and input-file and output-file are two file names. The translator
executable should read its input (an LTL formula) from input-file and write
its output (a Büchi automaton) into output-file (without removing the input
file); see the following two sections for a description on how these files should
be formatted.

The translator executable should always create an output file and then
return with a zero exit status in case no errors occur during the translation.
lbtt interprets a missing output file or a nonzero exit status as an error
and will not in this case try to run any tests, even if an automaton were
successfully saved in an output file.

To start testing the translator, add a new ‘Translator’ section for it into
lbtt’s configuration file (see Section 3.1 [Configuration file], page 19), for
example

Translator

{

Chapter 6: Interfacing with lbtt 53

Name = "LTL-to-Büchi translator"

Path = /home/lbtt-user/bin/ltl-to-buchi-translator

Parameters = "-x -y -z"

Enabled = Yes

}

6.2 Input file format for LTL formulas

lbtt passes each LTL formula to each LTL-to-Büchi translator in a file
containing an LTL formula in a prefix notation followed by a single newline.
The precise grammar for the LTL formulas (in a BNF-style notation) is as
follows:

formula ::= ‘t’

// “true”
| ‘f’

// “false”
| ‘p’[0—9]+

// atomic proposition with
// a nonnegative integer
// identifier

| ‘!’ sp formula

// negation
| ‘X’ sp formula

// “next time”
| ‘F’ sp formula

// “finally”
| ‘G’ sp formula

// “globally”
| ‘&’ sp formula sp formula

// conjunction
| ‘|’ sp formula sp formula

// disjunction
| ‘i’ sp formula sp formula

// implication
| ‘e’ sp formula sp formula

// equivalence
| ‘^’ sp formula sp formula

// exclusive or
| ‘U’ sp formula sp formula

// “(strong) until”
| ‘V’ sp formula sp formula

// “(weak) release”
| ‘W’ sp formula sp formula

// “weak until”
| ‘M’ sp formula sp formula

// “strong release”
| ‘B’ sp formula sp formula

// “before”

(The quoted characters denote the characters themselves; sp denotes any
nonempty string of white space. Lines containing a // are comments and

Chapter 6: Interfacing with lbtt 54

are not part of the grammar. All atomic propositions in the formula have a
nonnegative numeric identifier.)

For example, the LTL formula (p0 U p1) → (F G(¬p2 ↔ p3)) would be
expressed in the form

i U p0 p1 F G e ! p2 p3

in an output file.

If your translator does not support all of the above operators, edit the
configuration file (see Section 3.1 [Configuration file], page 19) or use the
command line options (see Section 3.2 [Command line options], page 29) to
prevent lbtt from generating random LTL formulas with these operators.

6.3 Output file format for automata
lbtt expects the Büchi automata generated by each LTL-to-Büchi transla-
tor implementation to be in the format specified below. The format encodes
a generalized Büchi automaton (a Büchi automaton with zero or more ac-
ceptance conditions) with a single initial state and labels (guards) on tran-
sitions. For the full formal definition and examples on how to reduce other
definitions into the one used by lbtt, see Appendix A [Definitions], page 63.

The output file generated by the translator should contain an automaton
described using the following grammar (as before, quoted characters denote
the characters themselves, sp denotes any nonempty string of white space,
lines containing a // are comments that are not part of the grammar, and
‘\n’ corresponds to the newline character).

automaton ::= num-states sp cond-specifier state-list

num-states ::= [0—9]+

cond-specifier ::= [0—9]+[st]*

state-list ::= state-list sp state

| // empty

The automaton description begins with a nonnegative number that gives
the number of states in the automaton. If the number of states is 0, the
automaton will not accept any input. If the number is positive, it should
be followed by a cond-specifier that determines the number and placement
of acceptance conditions in the automaton. If the number of acceptance
conditions is 0, the automaton accepts an input word if and only if it has
a run on that word according to the definition given in the Appendix (see
Appendix A [Definitions], page 63).

The placement of acceptance conditions is specified by concatenating a
string formed from the symbols ‘s’ and ‘t’ to the number of acceptance
conditions (with no white space in between). The interpretation of this
string is as follows:

Chapter 6: Interfacing with lbtt 55

• If the string is empty or does not include the symbol ‘t’, the acceptance
conditions of the automaton are placed exclusively on its states. (This
alternative corresponds to the definition supported by lbtt 1.0.x.)

• If the string is nonempty but does not include the symbol ‘s’, the au-
tomaton has acceptance conditions exclusively on its transitions.

• Otherwise, the automaton has acceptance conditions on both states and
transitions.

The cond-specifier is followed by a list of the descriptions of states in
the automaton. The format of this list is affected by the choice of the
placement of the acceptance conditions. More precisely, the choice affects the
interpretation of the cond-list nonterminal symbol in the following fragment
of the grammar: we indicate this by prefixing the nonterminal with either
“<s>” or “<t>” to denote that the list (together with its terminating ‘-1’)
should be omitted in automata that do not associate acceptance conditions
with states or transitions, respectively.

state ::= state-id sp initial? <s>cond-list transition-list

state-id ::= [0—9]+

initial? ::= ‘0’ | ‘1’

cond-list ::= sp acceptance-condition-id cond-list

| sp ‘-1’

acceptance-condition-id ::= [0—9]+

transition-list ::= sp transition transition-list

| sp ‘-1’

transition ::= state-id <t>cond-list sp guard-formula ‘\n’

guard-formula ::= ‘t’

// “true”
| ‘f’

// “false”
| ‘p’[0—9]+

// atomic proposition
| ‘!’ sp guard-formula

// negation
| ‘&’ sp guard-formula sp guard-formula

// conjunction
| ‘|’ sp guard-formula sp guard-formula

// disjunction
| ‘i’ sp guard-formula sp guard-formula

// implication
| ‘e’ sp guard-formula sp guard-formula

// equivalence
| ‘^’ sp guard-formula sp guard-formula

// exclusive or

Chapter 6: Interfacing with lbtt 56

The description of each state begins with a numeric state identifier, which
can be any nonnegative integer. The state identifier should be followed by a
number telling whether the state is initial (‘1’ if yes). The automaton should
have exactly one initial state. If the automaton has acceptance conditions
associated with its states, this number should then be followed by a list of
acceptance condition identifiers separated by white space. This list should
be terminated with ‘-1’.

The state description should be followed by the list of transitions starting
from the state (terminated again by ‘-1’). Each transition consists of a state
identifier (the target state of the transition), a list of acceptance condition
identifiers (if the automaton has acceptance conditions on transitions), and a
propositional formula1 that encodes the symbols of the alphabet 2AP (where
AP is a finite set of atomic propositions) on which the automaton is allowed
to take the transition. The propositional formula should be terminated with
a newline.

The state and acceptance condition identifiers need not be successive,
and the states or acceptance conditions can be listed in any order. The
only restrictions are that the identifiers of different states and acceptance
conditions should be unique and that the total number of different identifiers
should equal num-states or num-conds, respectively. (The same identifiers
can be shared between states and acceptance conditions, however.)

Note that the output file should always contain a valid automaton de-
scription if the LTL-to-Büchi translation was successful, even in the case
that the resulting automaton is empty (lbtt interprets a missing automa-
ton description file as an error).

The following examples illustrate the file format. The first example gives
the description of an automaton with acceptance conditions on states. Note
that in this case the ‘s’ is optional for describing the placement of acceptance
conditions; therefore, the automaton files used with lbtt 1.0.x are upwards
compatible with newer versions of the tool (provided that each guard of a
transition is terminated by a newline).

6 2s // an automaton with six states and two acc. conditions on states
0 1 -1 // state 0: initial state, no acceptance conditions
2 p1 // transition to state 2, guard ‘p1’

5 p2 // transition to state 5, guard ‘p2’

15 p3 // transition to state 15, guard ‘p3’

-1 // end of state 0
2 0 1 -1 // state 2: non-initial state, acceptance condition 1
2 p1 // transition to state 2, guard ‘p1’

5 p2 // transition to state 5, guard ‘p2’

15 p3 // transition to state 15, guard ‘p3’

-1 // end of state 2

1 Although not described formally in the grammar, the guard formulas can be specified
in any of the formats lbtt supports in its formula input files (see [‘--formulafile’
command line option], page 30). Note that the formula always needs to be terminated
with a newline, though.

Chapter 6: Interfacing with lbtt 57

5 0 0 -1 // state 5: non-initial state, acceptance condition 0
5 p2 // transition to state 5, guard ‘p2’

8 & p1 p2 // transition to state 8, guard ‘p1 /\ p2’

12 & p1 p3 // transition to state 12, guard ‘p1 /\ p3’

15 p3 // transition to state 15, guard ‘p3’

-1 // end of state 5
8 0 0 -1 // state 8: non-initial state, acceptance condition 0
5 p2 // transition to state 5, guard ‘p2’

8 & p1 p2 // transition to state 8, guard ‘p1 /\ p2’

12 & p1 p3 // transition to state 12, guard ‘p1 /\ p3’

15 p3 // transition to state 15, guard ‘p3’

-1 // end of state 8
15 0 1 0 -1 // state 15: non-initial state, acceptance conditions 1 and 0
2 p1 // transition to state 2, guard ‘p1’

5 p2 // transition to state 5, guard ‘p2’

15 p3 // transition to state 15, guard ‘p3’

-1 // end of state 15
12 0 1 0 -1 // state 12: non-initial state, acceptance conditions 1 and 0
2 p1 // transition to state 2, guard ‘p1’

5 p2 // transition to state 5, guard ‘p2’

15 p3 // transition to state 15, guard ‘p3’

-1 // end of state 12

The following example illustrates an automaton in which acceptance condi-
tions are placed on transitions.

4 3t // four states, three acceptance conditions on transitions
5 0 // state 5: non-initial state
84 0 -1 p1 // transition to state 84, condition 0, guard ‘p1’

27 0 -1 & p1 ! p2 // tr. to state 27, condition 0, guard ‘p1 /\ ! p2’

5 -1 t // transition to state 5, no conditions, guard ‘true’

-1 // end of state 5
84 1 // state 84: initial state
5 1 -1 t // transition to state 5, condition 1, guard ‘true’

27 0 -1 p1 // transition to state 27, condition 0, guard ‘p1’

-1 // end of state 84
49 0 // state 49: non-initial state
5 -1 t // transition to state 5, no conditions, guard ‘true’

49 1 4 -1 & p1 ! p2 // tr. to state 49, conds. 1 and 4, guard ‘p1 /\ ! p2’

84 -1 p1 // transition to state 84, no conditions, guard ‘p1’

-1 // end of state 49
27 0 // state 27: non-initial state
49 -1 & p1 p3 // transition to state 49, no conds., guard ‘p1 /\ p3’

-1 // end of state 27

Automata with acceptance conditions on both states and transitions can be
specified using a combination of the above two formats, that is, by using
‘st’ as the acceptance condition placement specifier and including a list of
acceptance conditions both after the value determining the initialness of a
state, and after the identifier of the target state of each transition.

Chapter 6: Interfacing with lbtt 58

6.4 The lbtt-translate utility

The lbtt source distribution includes a small utility which can be used as
a common interface for the following publicly available LTL-to-Büchi trans-
lator algorithm implementations:

• lbt — an LTL-to-Büchi translation algorithm implementa-
tion based on the algorithm described in [GPVW95]. See
<http://www.tcs.hut.fi/Software/maria/tools/lbt/> for more
information, including the source code of the implementation.

• Spin [Hol97] — a model checking tool that includes a module
for translating LTL formulas into Büchi automata origi-
nally based on the algorithm presented in [GPVW95]. See
<http://spinroot.com/spin/whatispin.html> for more informa-
tion.

• Spot [DP04] — a model checking library that includes a module
for translating LTL formulas into Büchi automata incorporat-
ing optimization techniques from several different sources. See
<http://spot.lip6.fr/> for more information.

To use lbtt for testing the LTL-to-Büchi translators included in these
tools, you should first install the tool normally by following its installation
instructions. Then add the following ‘Translator’ section in lbtt’s config-
uration file:

Translator

{

Name = "[name for the implementation]"
Path = "[path to lbtt-translate]"
Parameters = "[implementation selector] [path to executable]"
Enabled = Yes

}

where [path to lbtt-translate] contains the complete path and file name
of the lbtt-translate tool executable, [implementation selector] is either
of the options ‘--lbt’ or ‘--spin’, and [path to executable] is the full path of
the tool executable. The names of these executables are usually (assuming
a normal installation) lbt and spin, respectively.

Note: These implementations may not have built-in support for all of
the LTL formula operators available for generating random LTL formulas
with lbtt. See the documentation of each translator for information about
which operators are supported, and then change the parameters in lbtt’s
configuration file accordingly to disable the unsupported operators (or in-
struct lbtt to read the formulas from an external source by invoking lbtt
with the [‘--formulafile’ command line option], page 30).

The lbtt-translate utility can also be invoked directly from the shell
to translate an LTL formula into a Büchi automaton using either of the
above translators. Use the command lbtt-translate --help to see a short
summary of available options.

Chapter 6: References 59

References

[CGP99] E. Clarke Jr., O. Grumberg and D. Peled. Model checking. The
MIT Press, 1999.

[Cou99] J.-M. Couvreur. On-the-fly verification of linear temporal logic.
In Proceedings of the World Congress on Formal Methods in the
Development of Computing Systems (FM’99), volume I, volume
1708 of Lecture Notes in Computer Science, pages 253—271.
Springer-Verlag, 1999.

[DGV99] M. Daniele, F. Giunchiglia and M. Y. Vardi. Improved au-
tomata generation for linear temporal logic. In Proceedings of
the 11th International Conference on Computer Aided Verifi-
cation (CAV’99), volume 1633 of Lecture Notes in Computer
Science, pages 249—260. Springer-Verlag, 1999.

[DP04] A. Duret-Lutz and D. Poitrenaud. SPOT: An Extensible Model
Checking Library Using Transition-Based Generalized Büchi
Automata. In Proceedings of the 12th IEEE/ACM International
Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2004), pages 76–
83. IEEE Computer Society Press, 2004.

[EH00] K. Etessami and G. Holzmann. Optimizing Büchi automata.
In Proceedings of the 11th International Conference on Concur-
rency Theory (CONCUR 2000), volume 1877 of Lecture Notes
in Computer Science, pages 153—167. Springer-Verlag, 2000.

[Ete99] K. Etessami. Stutter-invariant languages, omega-automata, and
temporal logic. In Proceedings of the 11th International Confer-
ence on Computer Aided Verification (CAV’99), volume 1633 of
Lecture Notes in Computer Science, pages 236—248. Springer-
Verlag, 1999.

[Ete02] K. Etessami. A hierarchy of polynomial-time computable sim-
ulations for automata. In Proceedings of the 13th International
Conference on Concurrency Theory (CONCUR 2002), volume
2421 of Lecture Notes in Computer Science, pages 131—144.
Springer-Verlag, 2002.

[EWS01] K. Etessami, Th. Wilke and R. Schuller. Fair simulation re-
lations, parity games, and state space reduction for Büchi au-
tomata. In Proceedings of the 28th International Colloquium on
Automata, Languages and Programming (ICALP 2001), volume
2076 of Lecture Notes in Computer Science, pages 694—707.
Springer-Verlag, 2001.

[Fri03] C. Fritz. Constructing Büchi automata from linear temporal
logic using simulation relations for alternating Büchi automata.

Chapter 6: References 60

In Proceedings of the 8th International Conference on Implemen-
tation and Application of Automata (CIAA 2003), volume 2759
of Lecture Notes in Computer Science, pages 35—48. Springer-
Verlag, 2003.

[GO01] P. Gastin and D. Oddoux. Fast LTL to Büchi automata trans-
lation. In Proceedings of the 13th International Conference on
Computer Aided Verification (CAV 2001), volume 2102 of Lec-
ture Notes in Computer Science, pages 53—65. Springer-Verlag,
2001.

[GO03] P. Gastin and D. Oddoux. LTL with past and two-way weak
alternating automata. In Proceedings of the 28th International
Symposium on Mathematical Foundations of Computer Science
(MFCS 2003), volume 2747 of Lecture Notes in Computer Sci-
ence, pages 439—448. Springer-Verlag, 2003.

[Gei01] M. C. W. Geilen. On the construction of monitors for tempo-
ral logic properties. Electronic Notes for Theoretical Computer
Science, 55(2), 2001.

[GPVW95]
R. Gerth, D. Peled, M. Y. Vardi and P. Wolper. Simple on-the-
fly automatic verification of linear temporal logic. In Proceed-
ings of 15th IFIP WG6.1 International Symposium on Protocol
Specification, Testing, and Verification (PSTV’95), pages 3—18.
Chapman & Hall, 1995.

[GL02] D. Giannakopoulou and F. Lerda. From states to transitions:
Improving translation of LTL formulae to Büchi automata. In
Proceedings of the 22nd IFIP WG6.1 International Conference
on Formal Techniques for Networked and Distributed Systems
(FORTE 2002), volume 2529 of Lecture Notes in Computer Sci-
ence, pages 308—326. Springer-Verlag, 2002.

[GSB02] S. Gurumurthy, F. Somenzi and R. Bloem. Fair simulation min-
imization. In Proceedings of the 14th International Conference
on Computer Aided Verification (CAV 2002), volume 2404 of
Lecture Notes in Computer Science, pages 610—624. Springer-
Verlag, 2002.

[GViz] GraphViz - open source graph drawing software. See
<http://www.research.att.com/sw/tools/graphviz/>.

[Hol97] G. J. Holzmann. The model checker Spin. IEEE Transactions
on Software Engineering, 23(5):279—295, 1997.

[Isl94] A. Isli. Mapping an LPTL formula into a Büchi alternating
automaton accepting its models. In Temporal Logic: Proceedings
of the ICTL Workshop, pages 85—90. Research Report MPI-I-
94-230, Max-Planck-Institut für Informatik, 1994.

Chapter 6: References 61

[Lat03] T. Latvala. Efficient model checking of safety properties. In
Proceedings of the 10th Spin Workshop on Model Checking of
Software (SPIN 2003), volume 2648 of Lecture Notes in Com-
puter Science, pages 74—88. Springer-Verlag, 2003.

[Sch01] K. Schneider. Improving automata generation for linear tempo-
ral logic by considering the automaton hierarchy. In Proceedings
of the 8th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR 2001), volume 2250
of Lecture Notes in Computer Science, pages 39—54. Springer-
Verlag, 2001.

[ST03] R. Sebastiani and S. Tonetta. “More deterministic” vs.
“smaller” Büchi automata for efficient LTL model checking.
In Proceedings of the 12th Advanced Research Working
Conference on Correct Hardware Design and Verification
Methods (CHARME 2003), volume 2860 of Lecture Notes in
Computer Science, pages 126—140. Springer-Verlag, 2003.

[SB00] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL
formulae. In Proceedings of the 12th International Conference
on Computer Aided Verification (CAV 2000), volume 1855 of
Lecture Notes in Computer Science, pages 247—263. Springer-
Verlag, 2000.

[Tau00] H. Tauriainen. Automated testing of Büchi automata
translators for linear temporal logic. Research report A66,
Laboratory for Theoretical Computer Science, Helsinki
University of Technology, Espoo, Finland, 2000. Available on
the WWW at <http://www.tcs.hut.fi/Publications/info/
bibdb.HUT-TCS-A66.shtml>.

[TH02] H. Tauriainen and K. Heljanko. Testing LTL formula translation
into Büchi automata. International Journal on Software Tools
for Technology Transfer (STTT) 4(1):57—70, 2002.

[Thi02] X. Thirioux. Simple and efficient translation from LTL formulas
to B"uchi automata. Electronic Notes in Theoretical Computer
Science, 66(2), 2002.

[Var96] M. Y. Vardi. An automata-theoretic approach to linear tempo-
ral logic. In Logics for Concurrency: Structure versus Automata,
volume 1043 of Lecture Notes in Computer Science, pages 238—
265. Springer-Verlag, 1996.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification. In Proceedings of the First
IEEE Symposium on Logic in Computer Science (LICS’86),
pages 332—344. IEEE Computer Society Press, 1986.

Chapter 6: References 62

[Wol01] P. Wolper. Constructing automata from temporal logic formu-
las: A tutorial. In Lectures on Formal Methods and Performance
Analysis: First EEF/Euro Summer School on Trends in Com-
puter Science, Revised Lectures, volume 2090 of Lecture Notes
in Computer Science, pages 261—277. Springer-Verlag, 2001.

Appendix A: Definitions 63

Appendix A Definitions

This appendix reviews the formal definitions of the objects that lbtt ma-
nipulates.

A.1 LTL formulas
lbtt uses the traditional definition for propositional linear temporal logic.
Let AP be a finite set of atomic propositions. The set of propositional linear
temporal logic formulas is defined inductively as follows:

• All atomic propositions in AP and the Boolean constant True are LTL
formulas.

• If ϕ and ψ are LTL formulas, then ¬ϕ,Xϕ, (ϕ ∨ ψ) and (ϕ U ψ) are
LTL formulas.

The semantics of linear temporal logic (i.e., a satisfiability relation, de-
noted by |=) is defined over infinite sequences ξ = 〈y0, y1, y2, . . .〉 ∈ (2AP)ω

over subsets of AP as follows:

• ξ |= True for all sequences ξ.

• ξ |= p ∈ AP if and only if p ∈ y0, the first element of the sequence ξ.

• ξ |= ¬ϕ if and only if it is not the case that ξ |= ϕ.

• ξ |= ϕ ∨ ψ if and only if ξ |= ϕ or ξ |= ψ.

• ξ |= Xϕ if and only if 〈y1, y2, y3, . . .〉 |= ϕ.

• ξ |= ϕ U ψ if and only if there exists an i ≥ 0 such that 〈yi, yi+1,
yi+2, . . .〉 |= ψ and for all 0 ≤ j < i, 〈yj , yj+1, yj+2, . . .〉 |= ϕ.

lbtt also supports the following operators and Boolean constants, the
definitions of which can be given in terms of the previously defined operators:

• “false”: False ≡def ¬True

• logical conjunction: (ϕ ∧ ψ) ≡def ¬(¬ϕ ∨ ¬ψ)

• logical implication: (ϕ→ ψ) ≡def (¬ϕ ∨ ψ)

• logical equivalence: (ϕ↔ ψ) ≡def ((ϕ→ ψ) ∧ (ψ → ϕ))

• logical “exclusive or”: (ϕ ⊕ ψ) ≡def ¬(ϕ↔ ψ)

• temporal “finally”: Fϕ ≡def (True U ϕ)

• temporal “globally”: Gϕ ≡def ¬F¬ϕ

• temporal “(weak) release”: (ϕ V ψ) ≡def ¬(¬ϕ U ¬ψ)

• temporal “weak until”: (ϕ W ψ) ≡def ((ϕ U ψ) ∨ Gϕ)

• temporal “strong release”: (ϕ M ψ) ≡def ((ϕ V ψ) ∧ Fϕ)

• temporal “before”: (ϕ B ψ) ≡def ¬(¬ϕ U ψ)

Appendix A: Definitions 64

A.2 Generalized automata

lbtt uses internally finite-state automata on infinite words (Büchi au-
tomata) over the alphabet 2AP (where AP is a finite set of atomic proposi-
tions) with one initial state, labels on transitions and zero or more acceptance
conditions.

A.2.1 Formal definition of generalized automata

Formally, a generalized Büchi automaton can be represented as a tuple1

〈Σ, Q,∆, qI ,F , λ〉, where

• Σ is the finite alphabet (Σ = 2AP in this case),

• Q is the finite set of states,

• ∆ ⊆ Q × 2Σ × 2F × Q is the set of transitions (each of which consists
of four components called the start state, the guard, the acceptance
component, and the target state, respectively),

• qI is the initial state,

• F = {f1, f2, . . . , fn} (for some finite n) is the set of acceptance condi-
tions (a “nongeneralized” Büchi automaton has exactly one acceptance
condition), and

• λ : Q → 2F is a labeling function that associates each state of the
automaton with a set of acceptance conditions.

A run of a Büchi automaton on an infinite sequence 〈x0, x1, x2, . . .〉 ∈
(2AP)ω over the alphabet 2AP is an infinite sequence of pairs of states and
transitions 〈(q0, t0), (q1, t1), (q2, t2), . . .〉 ∈ (Q×∆)ω such that q0 = qI and for
all i ≥ 0, ti = 〈qi,Xi, Yi, qi+1〉 ∈ ∆ such that xi ∈ Xi. (Because the relation
∆ is not necessarily a function from Q× 2Σ × 2F to Q, the automaton may
have many runs on the same input.)

A run 〈(q0, t0), (q1, t1), (q2, t2), . . .〉 (where ti = 〈qi,Xi, Yi, qi+1〉 ∈ ∆ for
all i) is accepting if and only if additionally, for each acceptance condition
f ∈ F , f ∈ λ(qi) or f ∈ Yi for infinitely many i.

The automaton accepts an infinite sequence 〈x0, x1, x2, . . .〉 ∈ 2AP if and
only if the automaton has at least one accepting run on this sequence.

A.2.2 Transition label encoding

When working with automata on words over the alphabet 2AP , the guards
of transitions can be expressed as propositional formulas by identifying a
set of symbols from this alphabet with the set of models of a propositional
formula. A transition can then be seen as a rule “if in state qi and the

1 This definition differs from those commonly found in the literature by specifying the
acceptance conditions in terms of a separate set that is independent of the other com-
ponents of the automaton, together with an explicit labeling function for the states.
This is to allow the definition to correspond more accurately to the automata that can
be described in input files.

Appendix A: Definitions 65

next input symbol xi is a model of the propositional formula guarding the
transition, the automaton can move to state qi+1”. In the context of Büchi
automata constructed from LTL formulas, this often allows for a compact
representation for the transitions.

A.2.3 Converting between equivalent definitions

Many LTL-to-Büchi translation algorithms presented in the literature (for
example, [GPVW95]) are based on a slightly different definition for gener-
alized Büchi automata, where the automata can have several initial states,
acceptance is determined using a family of sets of states, and the guards of
transitions are replaced with an additional state labeling that associates a
set of LTL formulas with each state. These automata can easily be described
using the above definition through the following steps:

1. Add a new state (associated with an empty set of LTL formulas) into
the automaton and add transitions from it to each initial state of the
original automaton. Make the new state the (only) initial state of the
automaton.

2. For each state of the (modified) automaton, construct a conjunction of
all propositional constraints (all formulas with no temporal operators)
associated with the state and make the conjunction the guard of each
transition coming into the state (the acceptance component of each
transition remains empty). Then remove the association between states
and sets of formulas.

3. If Q1, Q2, . . . , Qk ∈ 2Q are the sets of states determining acceptance in
the original automaton, let fi = Qi for all 1 ≤ i ≤ k, and let λ(q) =
{fi | q ∈ fi} for all states q.

A.3 State spaces
lbtt uses randomly generated state spaces in the model checking re-
sult cross-comparison test (see Section 2.3 [Model checking result cross-
comparison test], page 16) and the model checking result consistency check
(see Section 2.4 [Model checking result consistency check], page 17). For-
mally, the state spaces are (finite) Kripke structures with a total transition
relation, i.e., directed graphs with a set of atomic propositions attached to
each state, with each state having at least one immediate successor (which
may be the state itself). The precise definition is as follows (as before, let
AP be a finite set of atomic propositions).

A state space can be represented as a tuple 〈S, ρ,L〉, where

• S is the finite set of states,

• ρ ⊆ S × S is the transition relation, and

• L : S → 2AP is the labeling function which maps each state to a set of
atomic propositions that hold in the state.

Appendix A: Configuration file option index 66

Configuration file option index

A
AbbreviatedOperators [FormulaOptions]

. 23

AndPriority [FormulaOptions] 23

B
BeforePriority [FormulaOptions] 23

C
ChangeInterval [FormulaOptions] 23

ChangeInterval [StateSpaceOptions]
. 26

ComparisonCheck [GlobalOptions] 21

ComparisonTest [GlobalOptions] 21

ConsistencyCheck [GlobalOptions] . . . 21

ConsistencyTest [GlobalOptions] 21

D
DefaultOperatorPriority

[FormulaOptions] 23

E
EdgeProbability [StateSpaceOptions]

. 26

Enabled [Translator] 20

EquivalencePriority [FormulaOptions]
. 23

F
FalsePriority [FormulaOptions] 23

FinallyPriority [FormulaOptions] . . . 23

G
GenerateMode [FormulaOptions] 23

GenerateMode [StateSpaceOptions] . . . 26

GloballyPriority [FormulaOptions] . . 24

I
ImplicationPriority [FormulaOptions]

. 24
Interactive [GlobalOptions] 21
IntersectionCheck [GlobalOptions] . . 22
IntersectionTest [GlobalOptions] . . . 22

M
ModelCheck [GlobalOptions]. 22

N
Name [Translator] 20
NextPriority [FormulaOptions] 24
NotPriority [FormulaOptions] 24

O
OrPriority [FormulaOptions] 24
OutputMode [FormulaOptions] 24

P
Parameters [Translator] 21
Path [Translator] 21
PropositionPriority [FormulaOptions]

. 25
Propositions [FormulaOptions] 25
Propositions [StateSpaceOptions] . . . 27

R
RandomSeed [FormulaOptions] 25
RandomSeed [StateSpaceOptions] 27
ReleasePriority [FormulaOptions] . . . 25
Rounds [GlobalOptions] 22

S
Size [FormulaOptions] 25
Size [StateSpaceOptions] 27
StrongReleasePriority

[FormulaOptions] 25

Appendix A: Configuration file option index 67

T

TranslatorTimeout [GlobalOptions] . . 22

TruePriority [FormulaOptions] 26

TruthProbability [StateSpaceOptions]
. 27

U

UntilPriority [FormulaOptions] 26

V
Verbosity [GlobalOptions] 22

W
WeakUntilPriority [FormulaOptions]

. 26

X
XorPriority [FormulaOptions] 26

Appendix A: Command line option index 68

Command line option index

--abbreviatedoperators. 33
--andpriority . 33
--beforepriority 33
--comparisontest 31
--configfile . 30
--consistencytest 32
--defaultoperatorpriority 33
--disable. 32
--edgeprobability 36
--enable . 32
--enumeratedpath 36
--equivalencepriority 33
--falsepriority . 33
--finallypriority 33
--formulachangeinterval 34
--formulafile . 30
--formulageneratemode 34
--formulaoutputmode 34
--formulapropositions 34
--formularandomseed 34
--formulasize . 34
--generatennf . 34
--globallypriority 34
--globalmodelcheck 32
--help . 30
--implicationpriority 34
--interactive . 32
--intersectiontest 32
--localmodelcheck 32
--logfile. 31
--modelcheck . 33
--nextpriority . 35
--noabbreviatedoperators 33
--nocomparisontest 31
--noconsistencytest 32

--nogeneratennf . 34
--nointersectiontest 32
--nooutputnnf . 35
--notpriority . 35
--orpriority . 35
--outputnnf . 35
--pause . 33
--profile. 31
--propositionpriority 35
--quiet . 31
--randomconnectedgraph. 36
--randomgraph . 36
--randompath . 36
--releasepriority 35
--rounds . 33
--showconfig . 31
--showoperatordistribution 31
--silent . 31
--skip . 31
--statespacechangeinterval 36
--statespacegeneratemode 36
--statespacerandomseed. 36
--statespacesize 36
--strongreleasepriority 35
--translatortimeout 33
--truepriority . 35
--truthprobability 36
--untilpriority . 35
--verbosity . 33
--version. 31
--weakuntilpriority 35
--xorpriority . 35
-h . 30
-V . 31

Appendix A: User command index 69

User command index

A
algorithms . 46

B
buchi . 46
buchianalysis . 48

C
consistencyanalysis 49
continue . 45

D
disable . 45

E
enable . 45
evaluate . 46

F
formula . 47

H
help . 45

I
implementations . 46

inconsistencies . 47

Q
quit . 45

R
resultanalysis . 49

results . 47

S
skip . 45

statespace . 47
statistics . 48

T
translators . 46

V
verbosity. 46

Appendix A: Concept index 70

Concept index

!
‘!’ (LTL formula operator) 10
‘!’ (operator semantics in LTL) 63

-
‘->’ (LTL formula operator) 10
‘->’ (operator semantics in LTL) 63

/
‘/\’ (LTL formula operator) 10
‘/\’ (operator semantics in LTL) 63

<
‘<->’ (LTL formula operator) 10
‘<->’ (operator semantics in LTL) 63

\
‘\/’ (LTL formula operator) 10
‘\/’ (operator semantics in LTL) 63

A
abbreviated LTL formula operators . . . 23,

33
‘Algorithm’ section (configuration file)

. 20
always (LTL formula operator) 11
always (operator semantics in LTL) . . . 63
analyzing test failures, Büchi automata

intersection emptiness check 48
analyzing test failures, model checking

result consistency check 49
analyzing test failures, model checking

result cross-comparison test 49
and (LTL formula operator) 10
and (operator semantics in LTL) 63
atomic proposition 10
atomic propositions, computing

probabilities for 12
atomic propositions, priorities for 11,

12, 22, 25, 33

B
‘B’ (LTL formula operator) 11
‘B’ (operator semantics in LTL) 63
before (LTL formula operator) 11
before (operator semantics in LTL) 63
Büchi automata intersection emptiness

check . 18
Büchi automata intersection emptiness

check, failure analysis 48
Büchi automata, formal definition 64
Büchi automata, LTL-to-Büchi translator

output file format. 54

C
changing verbosity of output . . . 22, 33, 46
commands, abbreviating 44
commands, conventions for entering . . . 44
commands, entering lists of numbers . . 44
commands, getting help 45
commands, invoking external programs

. 44
commands, LTL formula identifiers 44
commands, redirecting output 44
commands, test control 45
commands, writing output to a pipe . . . 44
comments in configuration file 19
configuration file, ‘Algorithm’ section . . 20
configuration file, changing the name of

. 30
configuration file, comments 19
configuration file, example 27
configuration file, formatting 19
configuration file, ‘FormulaOptions’

section . 22
configuration file, ‘GlobalOption’ section

. 21
configuration file, ‘Implementation’

section . 20
configuration file, minimal requirements

. 19, 20
configuration file, option values 19
configuration file, ‘StateSpaceOptions’

section . 26
configuration file, ‘Translator’ section

. 20
configuration information 38
conjunction (LTL formula operator) . . . 10

Appendix A: Concept index 71

conjunction (operator semantics in LTL)
. 63

constants, computing probabilities for
. 12

constants, priorities for 11, 12, 22, 33
conventions for entering commands 44
conventions for writing configuration files

. 19

D
default operator priority 23, 33
density (of a state space) 13, 26
disabling LTL-to-Büchi translators. . . . 20,

32, 45
disjunction (LTL formula operator) . . . 10
disjunction (operator semantics in LTL)

. 63

E
enabling and disabling tests . . . 21, 22, 31,

32
enabling LTL-to-Büchi translators 20,

32, 45
enumerated path 14, 26, 36
equivalence (LTL formula operator) . . . 10
equivalence (operator semantics in LTL)

. 63
eventually (LTL formula operator) 10
eventually (operator semantics in LTL)

. 63
exclusive or (LTL formula operator) . . . 10
exclusive or (operator semantics in LTL)

. 63
exiting lbtt . 19

F
‘f’ (Boolean constant semantics in LTL)

. 63
‘F’ (LTL formula operator) 10
‘F’ (operator semantics in LTL) 63
failure analysis, Büchi automata

intersection check 48
failure analysis, model checking result

consistency check 49
failure analysis, model checking result

cross-comparison test 49
false (Boolean constant semantics in LTL)

. 63

file formats, formula input file for lbtt

. 30
file formats, LTL-to-Büchi translator input

file . 53

file formats, LTL-to-Büchi translator
output file . 54

finally (LTL formula operator) 10
finally (operator semantics in LTL) 63

formula size . 11
‘FormulaOptions’ section (configuration

file). 22

G
‘G’ (LTL formula operator) 11

‘G’ (operator semantics in LTL) 63
generalized Büchi automata, formal

definition . 64
generalized Büchi automata, LTL-to-Büchi

translator output file format 54
global model checking 17, 22, 32, 33
globally (LTL formula operator) 11

globally (operator semantics in LTL) . . 63
‘GlobalOptions’ section (configuration

file). 21

graph density . 13, 26
GraphViz . 46, 48

H
henceforth (LTL formula operator) 11
henceforth (operator semantics in LTL)

. 63

I
identifiers for LTL-to-Büchi translators

. 20

‘Implementation’ section (configuration
file). 20

implication (LTL formula operator) . . . 10
implication (operator semantics in LTL)

. 63
interactivity modes 21, 32
interfacing LTL-to-Büchi translators with

lbtt . 52, 58
internal model checking algorithm 17,

27, 41
invoking lbtt . 19

Appendix A: Concept index 72

L
lbt . 58
lbtt (executable file) 19
lbtt-translate (executable file) 58
local model checking 17, 22, 32, 33
log file for test failures 31
LTL formula operators, abbreviated . . 23,

33
LTL formula operators, supported 10
LTL formula, displaying with user

command . 47
LTL formula, generation algorithm 11
LTL formula, identifiers in commands . . 44
LTL formula, LTL-to-Büchi translator

input file format 53
LTL formula, output modes 24, 34, 35
LTL formula, parameters for generation

algorithm 11, 22, 33
LTL formula, random 10
LTL formula, reading from a file or

standard input 30
LTL formula, size . 11
LTL-to-Büchi translators, automaton

output file format. 54
LTL-to-Büchi translators, disabling . . . 20,

32, 45
LTL-to-Büchi translators, enabling . . . 20,

32, 45
LTL-to-Büchi translators, identifiers . . . 20
LTL-to-Büchi translators, interface

requirements . 52
LTL-to-Büchi translators, interfacing with

. 52, 58
LTL-to-Büchi translators, LTL formula

input file format 53

M
‘M’ (LTL formula operator) 11
‘M’ (operator semantics in LTL) 63
minimal requirements for configuration

files . 19
model checking . 9
model checking modes 17, 22, 32, 33
model checking result consistency check

. 17
model checking result consistency check,

failure analysis 49
model checking result cross-comparison

test . 16
model checking result cross-comparison

test, failure analysis. 49

N

negation (LTL formula operator) 10

negation (operator semantics in LTL) . . 63

negation normal form 23, 24, 34, 35

next time (LTL formula operator) 10

next time (operator semantics in LTL)
. 63

not (LTL formula operator) 10

numeric values in configuration file 19

O

operators, abbreviated 23, 33

operators, computing distribution for
. 31, 42

operators, computing probabilities for
. 12

operators, precedence in input files 30

operators, precedence in output messages
. 40

operators, priorities for 11, 12, 22, 33

or (LTL formula operator) 10

or (operator semantics in LTL) 63

P

parameters for random LTL formula
generation algorithm 11, 22, 33

parameters for random state space
generation algorithm 13, 26, 36

priorities for formula constants, atomic
propositions and operators . . . 11, 12,
22, 33

probabilities for formula constants and
atomic propositions 12

probabilities for formula operators 12

proof for an LTL formula 50

Q

quitting lbtt . 19, 45

Appendix A: Concept index 73

R
random connected graph 13, 26, 36
random connected graph, generation

algorithm . 14
random graph 13, 26, 36
random LTL formula 10
random LTL formula, computing operator

distribution . 31
random LTL formula, generation

algorithm . 11
random LTL formula, generation modes

. 23, 34
random LTL formula, output modes . . 24,

34, 35
random LTL formula, parameters for

generation algorithm 11, 22, 33
random LTL formula, random seed for

generation algorithm 25
random LTL formula, size 11
random path 14, 26, 36
random seed, LTL formula generation

algorithm . 25, 34
random seed, state space generation

algorithm . 27
random state space 13
random state space, algorithm for

generating random connected graphs
. 14

random state space, density 13, 26
random state space, generation

parameters 13, 26, 36
random state space, random seed for

generation algorithm 27, 36
redirecting command output 44
refutation for an LTL formula. 50
release (LTL formula operator). 11
release (operator semantics in LTL) . . . 63

S
skipping test rounds 31, 45
SPIN . 58
Spot . 58
starting lbtt . 19
state space . 10, 13
state space, algorithm for generating

random connected graphs 14
state space, density 13, 26
state space, displaying with an user

command . 47
state space, formal definition. 65
state space, generation modes . . 13, 26, 36

state space, generation parameters 13,
26, 36

state space, random 13

‘StateSpaceOptions’ section
(configuration file) 26

string values in configuration file 19

strong release (LTL formula operator)
. 11

strong release (operator semantics in LTL)
. 63

strong until (LTL formula operator) . . . 10

strong until (operator semantics in LTL)
. 63

supported LTL formula operators 10

suppressing output 31

T
‘t’ (Boolean constant semantics in LTL)

. 63

testing procedure . 15

tests, aborting . 19

tests, against internal model checking
algorithm 17, 27, 41

tests, Büchi automata intersection
emptiness check 18

tests, controlling with user commands
. 45

tests, enabling and disabling. . . 21, 22, 31,
32

tests, failure analysis. 48, 49

tests, failure report format 41

tests, model checking result consistency
check . 17

tests, model checking result
cross-comparison test 16

tests, output example 39

tests, profiling LTL-to-Büchi translators
. 31

tests, skipping test rounds. 31, 45

tests, starting. 19

tests, statistics. 42

timeouts for translators 22

‘Translator’ section (configuration file)
. 20

true (Boolean constant semantics in LTL)
. 63

truth values in configuration file 19

Appendix A: Concept index 74

U
‘U’ (LTL formula operator) 10

‘U’ (operator semantics in LTL) 63

unless (LTL formula operator) 10

unless (operator semantics in LTL) 63

until (LTL formula operator) 10

until (operator semantics in LTL) 63

using a test failure log file 31

using the internal model checking
algorithm . 17, 27

V
‘V’ (LTL formula operator) 11

‘V’ (operator semantics in LTL) 63

verbosity, changing 22, 33, 46

W
‘W’ (LTL formula operator) 10
‘W’ (operator semantics in LTL) 63
weak release (LTL formula operator) . . 11
weak release (operator semantics in LTL)

. 63
weak until (LTL formula operator) 10
weak until (operator semantics in LTL)

. 63
witness . 48, 49, 50

X
‘X’ (LTL formula operator) 10
‘X’ (operator semantics in LTL) 63
‘xor’ (LTL formula operator) 10
‘xor’ (operator semantics in LTL) 63

