
Summary–Cryptography Group PLA

Contributions

Billy Brumley

1 PLA Overview

The goal of PLA is to attach digital signatures to every packet sent over the
network, allowing every hop along the route to verify the packet. This is different
from, for example, IPSec, where digital signatures can only be verified once they
reach the destination; PLA can prevent distributed denial of service attacks,
while IPSec cannot. A PLA header is attached to IPv6 packets with fields
which allow the authenticity of packets to be verified.

The goal of the Cryptography Group in the PLA project is to minimize the
space requirements of the certificate and signature fields in the PLA header and
at the same time maximize the speed of packet verifications. Respectively, this
decreases the packet overhead and increases the throughput for PLA. There
are a number of standardizes signature schemes to choose from (RSA, DSA,
ECDSA, . . .) with many different cryptographic settings (generic multi-precision
integer arithmetic, prime field arithmetic, binary field arithmetic, . . .)—thus
an interesting research question for PLA. Different alternatives for public key
infrastructures also influence the aforementioned choices (such as identity-based
cryptography). A description of the cryptosystems used in PLA follows.

2 Description of Cryptography for PLA

The cryptographic settings and primitives for PLA were chosen in such a way
to achieve minimal overhead in the packet as well as high speed verification of
packet signatures. Elliptic curve cryptosystems are a natural choice for mini-
mizing the overhead, as signatures and keys are extremely small. The level of
security is based on the size of the group. In a multiplicative group of inte-
gers modulo a prime, there are sub-exponential attacks to solve the discrete log
problem (namely Index Calculus methods). In elliptic curve groups, the best
known attacks on the elliptic curve discrete log problem are general attacks
for solving the discrete log (namely Pollard’s ρ method) which has exponential
running times, and thus significantly smaller keys can be used. A comparison
of key sizes is given in the following table.

2.1 Elliptic Curve Cryptography for PLA

Specifically, the PLA implementation is done using the standardized Koblitz
curve K-163 (main prime subgroup order r ≈ 2163) defined over a binary field,
which provides ≈ 280 bits of security. Binary field operations are fast in both

1



Symmetric ECC DSA/RSA
80 163 1024
112 233 2048
128 283 3072
192 409 7680
256 571 15360

Table 1: Comparable key sizes (in bits).

hardware and software. Signatures are 326 bits, compressed public keys 164
bits, and private keys 163 bits. The Nyberg-Rueppel signature scheme is used
to sign packets. A description follows.

2.1.1 Digital Signatures

Elliptic curve E is chosen with base point generator G of prime order r where
r | #E. Alice generates a private key s and public key W by computing W = sG
where s ∈R Z∗

r . This requires one scalar multiplication involving a fixed point
G. To generate a signature (c, d) on a message m, Alice calculates

c = [uG]x + h(m) (mod r) where u ∈R Z∗
r

d = u− sc (mod r)

where [P ]x denotes the x-coordinate of the point P converted to an integer and
h is a collision-resistant hash function. To verify the signature (c, d) on the
message m, Bob checks that h(m) = c− [dG + cW ]x (mod r).

Instead of a traditional PKI approach, identity-based self-certified keys (im-
plicit certificates) are used. This eliminates the need for an explicit trusted
third party signature on users’ public keys, thus reducing the overhead in the
packet. A comparison of the two approaches is given in the following table,
where r is the group order, q the field size, and ESM the elliptic scalar multipli-
cation operation (a good measure of the computational time). The certificate
therein is a minimal one, containing only a TTP signature on the client’s public
key—in practice more information is needed (validity period, etc.), but only the
cryptographic storage requirements are measured here.

Certificate-Based PKI PLA Self-Certified PLA
signature (2r) 326 signature (2r) 326
public key (q + 1) 164 self-certified public key (q + 1) 164
TTP signature on public key (2r) 326 - 0
verify public key 2 ESMs extract public key 1 ESM
verify signature 2 ESMs verify signature 2 ESMs
Packet Total (bits) 816 490
Computation (ESMs, Sign/Verify) 1/4 1/3

Table 2: Storage and computation requirements.

One could argue that to save computation time, in traditional certificate-
based PKI the certificate need only be verified once, then a hash stored (the
same can be said of implicit certificates and extracting a client’s public key).
However, this requires extra storage and time and as the number of trusted

2



third parties grows, this is not convenient. Additionally, the 4 ESMs required
can be reduced to 2 simultaneous ESMs and the 3 ESMs to 1 simultaneous ESM
(summary given later)—hence one could argue the exact opposite when using
implicit certificates, that such storage and hashing will in fact not reduce the
computation time, but simply increase the complexity.

2.1.2 Implicit Certificates

PLA uses a Nyberg-Rueppel based scheme and requires that users have a unique
public identity assigned to them. A description follows.

Elliptic curve E is chosen with base point generator G of prime order r
where r | #E. The Trusted Third Party (TTP) generates a domain private
key sD ∈R Z∗

r and domain public key WD = sDG. Generating client implicit
certificates is done using the following protocol in such a way that only the
client knows the private key—TTP does not learn it. To generate a private key
on user Alice’s identity IDA, Alice calculates kAG where kA ∈R Z∗

r and sends
kAG to TTP. TTP calculates1

(r̄A, bA) = compress(kAG + kT G) , where kT ∈R Z∗
r

rA = r̄A + h(IDA)
s̄A = kT − rAsD (mod r)

where compress is the point compression function, yielding the x-coordinate of
uG and the compression bit bA; TTP sends (rA, bA), s̄A to Alice. Alice calculates
the private key sA = kA + s̄A (mod r). Alice’s public key is WA = sAG,
extracted given the implicit certificate (rA, bA) and Alice’s identity IDA by
computing WA = decompress(rA − h(IDA), bA)− rAWD where decompress
is the point decompression function given an x-coordinate and compression bit
b. This requires one scalar multiplication and one point addition.

3 Summary of Contributions

The combination of self-certified keys and Koblitz curves has led to many inter-
esting contributions for the cryptography group. These are summarized below;
for details, see the corresponding referenced papers.

Fast signature verification. In [Bru06b] we show how to accomplish self-
certified public key extraction and signature verification simultaneously using
only one three-term scalar multiplication. This means that verifying signatures
is very fast and there is no need to store the previously extracted public keys
and hashes. In [Bru06c] we show how to reduce the joint weight of an arbitrary
number of scalars when using Koblitz curves. For PLA, this reduces the total
number of elliptic curve operations needed, thus the signature verification is
faster. An FPGA implementation was done independently by the hardware
group [JFS07] using these ideas.

1Note that the values (rA, s̄A) are simply a Nyberg Rueppel signature on the message
m = IDA.

3



Software implementation. A software implementation was also done using
these ideas as part of a Master’s thesis [Bru06a]. The cryptographic imple-
mentation done in C was later integrated into the PLA software package which
handles the verification of packets. The software was written to be compatible
with a future hardware implementation; this particular cryptographic setting is
not common in software, so the implementation has merit.

Preventing impersonation. In [BN07] we prove some important differential
properties of elliptic curve mappings. For PLA, this means that when running
the self-certified key generation protocol between a user and the trusted third
party, a proof-of-knowledge need not be performed to prevent impersonation
and one roundtrip communication can be eliminated—a significant savings.

Fast signature generation. In [BJ07] we provide a new method for com-
puting the integer equivalent of random Frobenius expansions. This can sig-
nificantly speed up signature generation, as no costly modular reduction needs
to be performed and the hardware implementation takes much less area. Joint
work with the hardware group.

References

[BJ07] Billy Bob Brumley and Kimmo Järvinen. Koblitz curves and integer
equivalents of Frobenius expansions. In Selected Areas in Cryptogra-
phy, 14th International Workshop—SAC ’07, volume 4876 of Lecture
Notes in Computer Science, pages 126–137. Springer-Verlag, 2007.

[BN07] Billy Bob Brumley and Kaisa Nyberg. Differential properties of el-
liptic curves and blind signatures. In Information Security, 10th In-
ternational Conference—ISC ’07, volume 4779 of Lecture Notes in
Computer Science, pages 376–389. Springer-Verlag, 2007.

[Bru06a] Billy Bob Brumley. Efficient elliptic curve algorithms for compact
digital signatures. Master’s thesis, Helsinki University of Technology,
Department of Computer Science and Engineering, Laboratory for
Theoretical Computer Science, November 2006.

[Bru06b] Billy Bob Brumley. Efficient three-term simultaneous elliptic scalar
multiplication with applications. In Viiveke F̊ak, editor, Proceedings
of the 11th Nordic Workshop on Secure IT Systems—NordSec ’06,
pages 105–116, Linköping, Sweden, October 2006.

[Bru06c] Billy Bob Brumley. Left-to-right signed-bit τ -adic representations of
n integers (short paper). In Information and Communications Secu-
rity, 8th International Conference—ICICS ’06, volume 4307 of Lecture
Notes in Computer Science, pages 469–478. Springer-Verlag, 2006.

[JFS07] Kimmo Järvinen, Juha Forsten, and Jorma Skyttä. FPGA design of
self-certified signature verification on Koblitz curves. In Cryptographic
Hardware and Embedded Systems—CHES ’07, volume 4727 of Lecture
Notes in Computer Science, pages 256–271. Springer-Verlag, 2007.

4


