
WASP WP3 Report:
Language Extensions and Software

Engineering for ASP

Ilkka Niemelä (Ed.)

WASP: European Working group on Answer Set Programming
(funded by the European commission, FET ”Future Emerging Technologies”
initiative)
Work package 3: Language Extensions and Software Engineering
for ASP
Participating nodes: HUT, UCY, UNILEIPZIG, VUB, BATH, UNIPOTS-
DAM, TUWIEN, URJC, KULEUVEN, UNICAL, UNIRC, UNINA

Abstract

The report gives an overview of the most important language ex-
tensions for ASP with emphasis on work done within the WASP re-
search groups. We start from the more general purpose extensions
and then move to application oriented extensions and to work on log-
ical foundations. The report contains also a summary of available
implementations of ASP language extensions and a recapitulation of
interesting software engineering issues for ASP.

1

http://wasp.unime.it/
http://www.cordis.lu/ist/fet/home.html
http://www.tcs.hut.fi/Research/Logic/
http://www.cs.ucy.ac.cy/
http://www.informatik.uni-leipzig.de/
http://tinf2.vub.ac.be/
http://www.bath.ac.uk/comp-sci/
http://www.cs.uni-potsdam.de/wv/
http://www.cs.uni-potsdam.de/wv/
http://www.kr.tuwien.ac.at/
http://www.urjc.es/
http://www.cs.kuleuven.ac.be/cwis/research/dtai/members/index-E.shtml
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.informatica.ing.unirc.it/
http://cs.na.infn.it/security/


Contents

1 Introduction 3

2 General Extensions 4
2.1 Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Nested Programs . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Cardinality and Weight Constraints . . . . . . . . . . . . . . 6
2.4 Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Application Oriented Extensions 10
3.1 Abduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Rule Preferences . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Ordered Disjunctions . . . . . . . . . . . . . . . . . . 15
3.2.3 Optimization Programs . . . . . . . . . . . . . . . . . 17
3.2.4 Ordered Choice Logic Programs . . . . . . . . . . . . 18

3.3 Actions and Change . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Description Logics . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Open Answer Set Programming . . . . . . . . . . . . . 22
3.4.2 DL-Programs . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Social and Sensor-Dependent Logic Programming . . . . . . . 25

4 Logical Foundations 26
4.1 Default Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Finitary and Open Programs . . . . . . . . . . . . . . . . . . 27
4.3 ID-Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Summary of Implementations 29

6 Software Engineering Issues 31

2



1 Introduction

The work on ASP systems started from implementations [145] of stable model
semantics for normal logic programs. Most of the current ASP systems sup-
port a (Prolog style) logic programming language [137] based on normal rules
of the form

A0:- A1, . . . , Am, not B1, . . . , not Bn.

However, the semantics and the basic computational services of ASP systems
are different from those of Prolog. ASP programs typically have multiple
(stable) models representing the different solutions to a problem to be solved
and the task of an ASP solver is to search for models of a program. On the
other hand, Prolog type systems search for proofs and different solutions are
represented by different answer substitutions found by the proof procedure.
This also leads to different approaches in problem representation. Moreover,
Prolog systems are not strictly declarative but are, e.g., sensitive to the order
of rules in the program and the order of subgoals in the rule bodies whereas
ASP systems are based on declarative semantics. The same differences w.r.t.
ASP hold for extensions of Prolog style logic programming such as abductive
and constraint logic programming.

However, ASP systems support similar (deductive) database techniques
as Prolog type approaches where logical variables and recursive definitions
are combined. This is different from other similar frameworks for problem
representation such as constraint satisfaction problems (CSPs) and integer
programming which are basically propositional and do not allow effective
combination of (deductive) database techniques and search.

While the work on ASP started with normal rules, fairly soon imple-
mentations extending the basic language started to emerge with disjunctive
programs as the first key enhancement [127]. Below we summarize the most
important extensions to ASP based on normal programs with emphasis on
the work done within the WASP research groups. We start from the more
general purpose extensions in Section 2, then move to application oriented
extensions (Section 3) and finish with work on logical foundations (Section 4)
which aims at widening the basis of ASP systems and which has led already
to some interesting extensions. For each extension we provide brief moti-
vation, comparisons, references to relevant literature and links to available
software.

3



2 General Extensions

2.1 Disjunctions

Disjunctive logic programs are logic programs where disjunction is allowed in
the heads of rules. They have first been studied by Minker [142] in the context
of deductive databases, and are nowadays widely recognized as a valuable tool
for knowledge representation and commonsense reasoning [7, 138, 76, 95, 131,
143, 9]. One of the attractions of disjunctive logic programming (DLP) is its
capability of allowing the natural modeling of incomplete knowledge [7, 138].

DLP has always been at the core of ASP. In fact, the term “Answer Set
Programming” has been coined by Gelfond and Lifschitz [95] for disjunctive
logic programs with explicit negation.

DLP is the natural tool for programming following the “Guess&Check”
paradigm [76]. This methodology divides problems into a guessing part,
which defines the search space, and a checking part, which tests whether a
solution candidate is in fact a solution. In most cases, disjunctions are a
natural choice for implementing the guessing part.

As an example which matches this scheme, let us consider the well-known
3-Colorability problem.

3COL: Given a graph G = (V,E) in the input, assign each node one of
three colors (say, red, green, or blue) such that adjacent nodes always
have different colors.

3-Colorability is a classical NP-complete problem. Assuming that the set
of nodes V and the set of edges E are specified by means of predicates node
(which is unary) and edge (binary), respectively, it can be encoded by the
following “Guess&Check” program:

col(X,r) ∨ col(X,g) ∨ col(X,b) :- node(X).} Guess

:- edge(X,Y), col(X,C), col(Y,C). } Check

System development for DLP systems had begun very early, and the im-
plementations available today are mature and competitive. The DLV sys-
tem [127] (http://www.dlvsystem.com) is considered to be the state of
the art implementation dedicated to DLP. A competitive alternative is the
GnT system [112, 111] (http://www.tcs.hut.fi/Software/gnt/), which has
been built on top of Smodels (http://www.tcs.hut.fi/Software/smodels/).

Recently, disjunctive logic programs have been extended by parametric
connectives (OR and AND) [125]. These connectives allow for a compact
representation of disjunctions and conjunctions of a set of atoms having a
given property.

4

http://www.dlvsystem.com
http://www.tcs.hut.fi/Software/gnt/
http://www.tcs.hut.fi/Software/smodels/


2.2 Nested Programs

The syntax of disjunctive programs has been further extended to programs
with nested expressions, or nested programs for short [129], where the bodies
and heads of rules may contain arbitrary Boolean formulas.

A rule r of a nested program therefore has the form

H(r):- B(r),

where B(r) and H(r) (the body and head of r resp.) are formulas in con-
junction ∧, disjunction ∨ and negation ¬. A program, Π, is a finite set of
rules. Note that nested programs properly generalise disjunctive logic pro-
grams. To each rule r we can associate a corresponding propositional formula
r̂ = B(r) → H(r) and, accordingly, to each program Π a corresponding set
of formulas Π̂ = {r̂ | r ∈ Π}. We call expressions, rules, and programs basic
iff they do not contain the operator ¬. An interpretation I is a model of a
basic program Π if it is a model of the associated set Π̂ of formulas.

Given an interpretation I and an (arbitrary) program Π, the reduct, ΠI ,
of Π with respect to I is the basic program obtained from Π by replacing
every occurrence of an expression ¬ψ in Π which is not in the scope of any
other negation by ⊥ if ψ is true under I, and by > otherwise. I is an answer
set of Π iff it is a minimal model (with respect to set inclusion) of the reduct
ΠI .

Consider a logic program Π whose only rule is given by

p:- (q ∧ r) ∨ (¬q ∧ ¬s). (1)

To check whether a candidate I = {p} is an answer set for Π, observe that

(
(q ∧ r) ∨ (¬q ∧ ¬s)

)I
= (q ∧ r) ∨ (> ∧>),

and, therefore the reduct of (1) is given by p:- >. Consequently, the only
minimal model of this rule (and thus of ΠI) is {p}, so I is an answer set of
Π. In fact, there are no other answer sets of Π.

As already mentioned, nested programs properly generalise disjunctive
logic programs. One difference is that the so-called anti-chain property does
not hold for nested logic programs, while each disjunctive logic program, Π
satisfies this property, viz. for all answer sets I, J of Π, I ⊆ J implies I = J .
Let Π = {p:- ¬¬p}. It is easy to see that Π violates this anti-chain property
since it possesses the two answer sets, I1 = ∅ and I2 = {p}. For I1, ¬p is
true under I1 and we have ΠI1 = p:- ⊥, which has ∅ as its minimal model.
For I2, ¬p is false under I2 and we have ΠI2 = p:- >, which has {p} as its

5



minimal model. Consequently, both I1 and I2 are answer sets of Π, and we
have I1 ⊆ I2, but I1 6= I2.

Nested programs provide a richer syntax for modelling knowledge and
declaratively encoding problems. One important property is that so-called
weight constraints, see Section 2.3, can be expressed via nested programs,
[91]. Several concepts and methods from disjunctive logic programming have
been extended to nested programs. For instance, acyclic and head-cycle free
programs are examined in [136] and the splitting theorem is generalised to
nested programs in [87].

Nested logic programs can be encoded in terms of quantified boolean
formulas (QBFs) in linear time. Based on the resulting transformations,
complexity results related to logic programs with nested expressions can
be derived [149]. A polynomial reduction of nested programs to disjunc-
tive programs, where new atoms are admitted into the language, is studied
in [148]. These reductions have led to various implementations of nested
programs, see [161, 148, 134, 135]. For information on current systems, see
nlp (http://www.cs.uni-potsdam.de/~torsten/nlp/) and NoMoRe (http:
//www.cs.uni-potsdam.de/~linke/nomore).

2.3 Cardinality and Weight Constraints

There are classes of constraints that frequently occur in applications but are
not straightforward to encode succinctly using normal rules. Developing com-
pact and easy-to-understand treatments of such constraints is important (i)
from the software engineering point of view for enhancing the development,
updating and maintenance of ASP programs and (ii) from the implementa-
tion point of view for improving efficiency.

Important classes of such conditions are cardinality and weight constraints
and optimization criteria. For example, in the product configuration domain
typical constraints include conditions of the form

• a PC should have from one to four hard disks;

• sum of the disk space in the chosen hard disks should be at least 100GB;

• the cheapest set of hard disks should be selected.

Weight constraint rules [164, 165] are an extension to normal programs which
allows compact encoding of such constraints. For example, the cardinality
and weight constraint above can be expressed by the constraints

1 { hd1, hd2, hd3, ..., hdn } 4

100 [ hd1=23, hd2=25, hd3=102, ..., hdn=44 ]

6

http://www.cs.uni-potsdam.de/~torsten/nlp/
http://www.cs.uni-potsdam.de/~linke/nomore
http://www.cs.uni-potsdam.de/~linke/nomore


where the first expression is satisfied in a model if at least one and at most 4
of the hdi atoms are true in the model and the second expression is satisfied
in a model if the sum of weights (e.g. 23 for the atom hd1) of the atoms true
in the model is at least 100.

General weight constraint rules are expressions of the form

C0:- C1, . . . Cn.

where each Ci is a weight constraint (with normal literals and cardinality
constraints seen as special cases of weight constraints). The semantics [165] is
a generalization of the stable model semantics for normal programs assigning
each program (a set of weight constraints rules) a class of stable models.
A stable model (a set of atoms) is not necessarily subset minimal but the
semantics guarantees that each atom in a stable model is justified by the
rules in the program. For example, a program

r.

p :- q.

q :- 2 {r,p,q}.

has a unique stable model {r} and, e.g., the set of atoms {r, p, q} is not a sta-
ble model for the program. Hence, weight and cardinality constraints are not
treated straightforwardly as ordinary aggregates but are tightly integrated
into the stable model semantics.

In order to handle optimization requirements the weight constraint rule
language contains minimization and maximization statements to set opti-
mization criteria. For example, the condition on selecting the cheapest set
of hard disks can be expressed as

minimize [ hd1=100, hd2=115, hd3=95, ..., hdn=200 ].

Cardinality and weight constraints have proved to be very useful in develop-
ing applications. With them typical choices and constraints can be expressed
in a compact and easily maintainable way and they are in wide use as can be
seen from the WP5 report on model applications and proofs-of-concepts [89].

The Smodels system (http://www.tcs.hut.fi/Software/smodels/) im-
plements cardinality and weight constraints as well as optimization. For de-
tails on the algorithms and implementation techniques, see, e.g., [164, 165].
The Smodels system also supports variables, conditional literals, built-in
functions and limited use of function symbols [165, 168, 169].

ASP systems such as Smodels can be used as stand-alone systems which
take a program as input and compute stable models for it. However, in many
applications an ASP system is used as a (key) component integrated with
other parts of the system. For this the Smodels system contains a number
of APIs so that it can be embedded to a larger system as a software library.

7

http://www.tcs.hut.fi/Software/smodels/


2.4 Aggregates

There are some simple properties, often arising in real-world applications,
which cannot be encoded in a simple and natural manner using ASP. Espe-
cially properties that require the use of arithmetic operators (like sum, count,
or maximum) on a set of elements satisfying some conditions require rather
cumbersome encodings (often requiring an “external” ordering relation over
terms), if one is confined to classic ASP. The size of these programs is often
astonishingly large, which in many cases has adverse effects on solving time.

Similar observations have also been made in related domains, notably
database systems, which led to the definition of aggregate functions. Es-
pecially in database systems this concept is by now both theoretically and
practically fully integrated. When ASP systems became used in real ap-
plications, it became apparent that aggregates are needed also here. First,
cardinality and weight constraints, which are special cases of aggregates,
have been introduced (see previous section). However, in general one might
want to use also other aggregates (like minimum, maximum, or average),
and it is not clear how to generalize the framework of cardinality and weight
constraints to allow for arbitrary aggregates.

To overcome this deficiency, ASP has been extended by aggregate func-
tions. There have been several attempts for defining a suitable semantics for
aggregates [119, 97, 55, 152, 153, 90]. These semantic definitions typically
agree in the non-recursive case, but the picture is less clear for recursion. The
DLV system (http://www.dlvsystem.com/) contains an implementation of
stratified aggregates.

Consider the following example application: A project team has to be
built from a set of employees according to the following specifications:

1. The team consists of a certain number of employees.

2. At least a given number of different skills must be present in the team.

3. The sum of the salaries of the employees working in the team must not
exceed the given budget.

4. The salary of each individual employee is within a specified limit.

Suppose that our employees are provided by a number of facts of the form
emp(EmpId,Sex,Skill,Salary) and then the size of the team, the minimum
number of different skills, the budget, the maximum salary, and the minimum
number of women are specified by the facts nEmp(N), nSkill(N), budget(B),
maxSal(M), and women(W). We then encode each property stated above by
an aggregate atom, and enforce it by an integrity constraint.

8

http://www.dlvsystem.com/


in(I) v out(I) :- emp(I,Sx,Sk,Sa).

:- nEmp(N), not #count{I : in(I)}=N.

:- nSkill(M), not #count{Sk:emp(I,Sx,Sk,Sa),in(I)} >= M.

:- budget(B), not #sum{Sa,I:emp(I,Sx,Sk,Sa),in(I)} <= B.

:- maxSal(M), not #max{Sa:emp(I,Sx,Sk,Sa),in(I)} <= M.

Intuitively, the disjunctive rule “guesses” whether an employee is included
in the team or not, while the five constraints correspond one-to-one to the five
requirements. Thanks to the aggregates the translation of the specifications
is straightforward.

In addition, partial stable semantics for logic programs with arbitrary
aggregate relations has been defined in [152] and a translation to normal
logic programs which preserves the semantics in [151].

2.5 Templates

Although ASP systems have been extended in many directions, they still miss
features which may be helpful towards industrial applications, like capabili-
ties to quickly introduce new predefined constructs or to deal with compound
data structures and modules. The DLPT system is an extension of ASP with
template constructs. ASP systems developers are enabled to fast prototype,
making new features quickly available to the community, and later to concen-
trate on efficient (long lasting) implementations. Template predicates allow
to define intensional predicates by means of generic, reusable subprograms,
easing coding and improving readability and compactness. For instance, a
template program is like

#template max[p(1)](1) {

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X), not exceeded(X). }

The statement above defines the predicate max, which computes the max-
imum value over the domain of a generic unary predicate p. A template
definition may be instantiated as many times as necessary, through template
atoms (or template invocations), like in :-max[weight(*)](M),M>100. Template
definitions may be unified with a template atom in many ways. The above
rule contains a plain invocation, while in :-max[student(Sex,$,*)](M),M>25.

there is a compound one.
Semantics is given through a suitable mapping to usual ASP programs.

Given a DLPT program P , the Explode algorithm replaces each template
atom t with a standard atom, referring to a fresh intensional predicate pt. The
subprogram dt (which may have associated more than one template atom),

9



defining the predicate pt, is computed according to the template definition
D(t). The final output of the algorithm is a standard ASP program P ′.
Answer sets of the originating program P are constructed, by definition,
from answer sets of P ′.

The work takes inspiration from similar approaches such as the Hilog
language [37], and the comprehensive study about generalized quantifiers of
[82].

The DLPT language has been implemented on top of the DLV system
[127], creating the DLT system. The current version is available on the web
[69, 108, 109].

3 Application Oriented Extensions

3.1 Abduction

In the context of logic programming, abduction has been first proposed by
Eshghi and Kowalski [88], Kakas and Mancarella [113] and, during the recent
years, the interest in this subject has been growing rapidly [40, 122, 117, 72,
56, 160, 20, 114, 58, 133].

Unlike most of these previous works on abduction in the logic program-
ming framework, in [154], abduction with penalization from logic programs
has been proposed. This form of abductive reasoning, well studied in the
setting of classical logics [75], has not been previously analyzed in logic pro-
gramming and turns out to encode easily and in a natural way several relevant
problems, belonging to different domains.

In [154], a formal model for abduction with penalization from logic pro-
grams has been defined. Roughly, a problem of abduction with penalization
(PAP) consists of a logic program P , a set of hypotheses, a set of observations,
and a function that assigns a penalty to each hypothesis. An admissible so-
lution is a set of hypotheses such that all observations can be derived from
P assuming that these hypotheses are true. Each solution is weighted by the
sum of the penalties associated with its hypotheses. The optimal solutions
are those with the minimum weight, which are considered more likely to oc-
cur, and thus are preferred over other solutions with higher penalties. As an
example, consider the following diagnosis problem. Let N be the computer
network represented by the set of facts

F = {connected(a, b), connected(a, f), connected(b, d), connected(b, c),
connected(c, e), connected(d, e), connected(f, e)}.

and suppose that we are working on machine a (and we therefore know
that machine a is online) of N but we observe machine e is not reachable

10



from a, even if we are aware that e is online. We would like to know which
machines could be offline. However, we do not consider all the possible
explanations, rather we are interested in explanations with the minimum
number of offline machines. This problem is easily represented by a PAP
problem where the set of hypotheses is H = { offline(X) | X is a machine in
N}, the set of observations is O = { not offline(a), not offline(e), not
reaches(a,e)}, for each h ∈ H, γ(h) = 1, and the logic program P consists
of the set F and of the rules,

reaches(X, X) :- node(X), not offline(X).
reaches(X, Z) :- reaches(X, Y), connected(Y, Z), not offline(Z).

This PAP problem has the unique optimal explanation S = { offline(f),

offline(b)}, that corresponds to the unique solution of our diagnosis prob-
lem with a minimum number of offline machines. Note that, in this example
the penalty function γ assigns 1 to each hypothesis. However, minimizing
the number of offline machines is not necessarily the best strategy. If the
reliability of the machines is very different, one should take it into account.
To this end, for each machine x in N the penalty function γ should assign
the probability of x to be offline to the hypothesis offline(x).

The proposed framework for abduction with penalization over logic pro-
grams has been implemented as a front-end for the DLV system. The imple-
mentation is based on an algorithm that translates an abduction problem
with penalties into a logic program with weak constraints [32], which is then
evaluated by DLV. This abductive system is available in the current release
of the DLV system (www.dlvsystem.com), and can be freely retrieved for
experiments.

This work is evidently related to previous studies on semantic and knowl-
edge representation aspects of abduction over logic programs [113, 130, 114,
57, 133]. Another approach is given in [1], where abductive reasoning from
ground logic programs is based on the well-founded semantics with explicit
negation. In other proposals, the semantics is naturally associated to a partic-
ular optimality criterion, as for [110], where the authors consider prioritized
programs under the preferred answer set semantics. A similar optimization
criterion is proposed for the logic programs with consistency-restoring rules
(cr-rules) described in [6]. Furthermore, this work is also related to previous
work on abductive logic programming systems [171, 116].

3.2 Preferences

The predominant methodology in ASP uses a generate and test method which
works as follows:

11



1. generate answer sets which represent potential solutions,

2. specify conditions which destroy those answer sets which do not corre-
spond to actual solutions.

For instance, in graph colouring arbitrary assignments of colours to nodes
constitute potential solutions. If we add the condition that an answer set is
to be disregarded if it assigns the same colour to neighbouring nodes, then
the remaining answer sets will be the solutions to our original graph colouring
problem.

This methodology allows the programmer to distinguish between solu-
tions and non-solutions. However, in many realistic applications the possi-
bility to make more fine grained distinctions is required, in particular distinc-
tions between more and less preferred solutions. For a discussion of various
types of applications where preferences play an important role (like abduction
and diagnosis, revision and inconsistency handling) see [23].

For this reason, there has been a substantial amount of work on extending
logic programs with preferences. The different approaches can be categorized
according to the following criteria:

• representation of preference: numerical vs. qualitative

• object of preference: rules vs. atoms/formulas

• type of preference: static vs. context dependent

The major focus of recent research in WASP has been on qualitative ap-
proaches. This stems from the fact that for a variety of applications numer-
ical information is hard to obtain (preference elicitation is rather difficult)
— and often turns out to be unnecessary. We describe some main directions
studied within the WASP community. Both static and context dependent
approaches can be found in the category of rule preferences. Programs with
ordered disjunction and optimization programs are context dependent ap-
proaches with formula preference. Ordered logic programs belong to the
category of static rule preference. Comparative studies have been conducted
in [162, 53]. Among others, it is shown that the approaches to rule-based
preferences form a hierarchy as regards their strength in eliminating answer
sets.

3.2.1 Rule Preferences

A (statically) ordered logic program is a pair (Π, <), where Π is a logic pro-
gram and < ⊆ Π× Π is a strict partial order. Given, r1, r2 ∈ Π, the relation
r1 < r2 expresses that r2 has higher priority than r1.

12



For example, consider the following program Π1 = {r1, r2, r3}, where

r1 = ¬a ←
r2 = b ← ¬a, not c
r3 = c ← not b.

Each ri identifies the respective rule. This program has two regular answer
sets, one given by {¬a, b} and the other given by {¬a, c}. For the first answer
set, rules r1 and r2 are applied; for the second, r1 and r3. However, assume
that we have reason to prefer r2 to r3, expressed by r3 < r2. In this case we
would want to obtain just the first answer set.

There have been numerous proposals for expressing preferences in ex-
tended logic programs, including [173, 92, 123, 35, 29, 163, 162, 52, 121, 120,
53, 146, 147]. The general approach has been to employ meta-formalisms for
characterizing “preferred answer sets”. For instance, a common approach is
to generate all answer sets for a program and then, in one fashion or other,
select the most preferred set(s). Consequently, non-preferred as well as pre-
ferred answer sets are first generated, and the preferred sets next isolated by
a filtering step. Such approaches generally have a higher complexity than
the underlying logic programming semantics.

Unlike this, the preference approaches in [52, 162, 25], referred to as D-,
W -, and B-strategy, do not increase the complexity. There, preferred answer
sets are (standard) answer sets, where for the rules which determine the an-
swersetship, the “question of applicability” does not depend on lower ranked
rules. More precisely, in the D-strategy, it is not allowed to apply a rule r
whenever the derivation of positive prerequisites (so-called groundedness) of
r is done by lower ranked rules. Furthermore, rules can never be defeated by
lower ranked ones. The W -strategy weakens the D-strategy in that way that
groundedness or defeat by lower ranked rules is allowed whenever the head of
this rule can be derived in another way. In contrast to that, the B-strategy
pays only attention to the defeat of rules. In [162], a comparative study of the
D-, W -, and B-strategy is given, where all three approaches are described as
uniform fixpoint characterizations wherein the different ways of deciding the
applicability of rules is represented. Furthermore, a hierarchy between these
three strategies is shown. That is, every preferred answer set concerning D-
strategy, is also preferred in the W -strategy and every answer set preferred in
the W -strategy is also preferred in the B-strategy. This hierarchy is mainly
induced by the decreasing interaction between groundedness and preferences.
While the D-strategy requires full compatibility between groundedness and
preferences, this interaction is weakened in the W -strategy, before it is fully
abandoned in the B-strategy.

13



In the above given example Π1 with the preference r3 < r2, all strategies
obtain {¬a, b} as preferred answer set. Answer set {¬a, c} is in no strategy
preferred, since rule r2 is defeated by lower ranked rule r3 and there is no
way to derive the head of rule r2 in another way.

[52] provides for these strategies a polynomial transformation from or-
dered logic programs into extended logic programs wherein the preferences
are respected, in that the answer sets obtained in the transformed theory
correspond with the preferred answer sets of the original theory. This com-
pilation process has been implemented in the plp system [155]. Since the
result of the compilation is an extended logic program, one can make use of
existing answer set solvers, such as dlv [86] and smodels [166].

In contrast to the compilation, [120] provides an operational characteri-
zation for the integration of preference information into an answer set solver.
An ordered logic program is represented by a rule dependency graph which
includes the preference information. Preferred answer sets are character-
ized by non-standard graph colorings on this graph. For the D-strategy, the
GCplp system [94, 120] has been developed, where preferred answer sets are
computed by gradually turning an uncolored rule dependency graph into a
totally colored one. The interaction between groundedness and preference
information affects the computation of deterministic and non-deterministic
consequences.

Alternatively, preference information can also be handled by a meta-
interpretation [70, 73] within answer set programming.

Instead of static preferences, one can also consider dynamic preferences,
where the preference information becomes dynamically active. An applica-
tion of dynamic preferences is, for example, legal reasoning. In (Gordon,
93) [99] the following legal reasoning problem was formulated:

“A person wants to find out if her security interest in a cer-
tain ship is perfected. She currently has possession of the ship.
According to the Uniform Commercial Code (UCC, §9-305) a se-
curity interest in goods may be perfected by taking possession
of the collateral. However, there is a federal law called the Ship
Mortgage Act (SMA) according to which a security interest in a
ship may only be perfected by filing a financing statement. Such
a statement has not been filed. Now the question is whether the
UCC or the SMA takes precedence in this case. There are two
known legal principles for resolving conflicts of this kind. The
principle of Lex Posterior gives precedence to newer laws. In our
case the UCC is newer than the SMA. On the other hand, the
principle of Lex Superior gives precedence to laws supported by

14



the higher authority. In our case the SMA has higher authority
since it is federal law.”

This can be modeled as the following ordered logic program with dynamic
preferences, where the name predicate is used to refer to the rules:

perfected← name(ucc), possession, not ¬perfected
¬perfected← name(sma), ship,¬finstatement, not perfected
possession←
ship←
¬finstatement←
(Y < X)← name(lex posterior(X, Y )), newer(X, Y ), not ¬(Y < X)
(X < Y )← name(lex superior(X, Y )), state law(X), federal law(Y ),

not ¬(X < Y )
newer(ucc, sma)←
federal law(sma)←
state law(ucc)←

Adding the rule

(lex posterior(X, Y ) < lex superior(X, Y ))←

gives Lex Superior higher priority than Lex Posterior. Hence, we get the
preferred answer set

{possession, ship,¬finstatement, newer(ucc, sma),
state law(ucc), federal law(sma),¬perfected}.

3.2.2 Ordered Disjunctions

Ordered disjunction is a form of disjunction where the order of disjuncts ex-
presses preference. Logic programs with ordered disjunction [22, 26], LPODs
for short, use ordered disjunction (×) in the head of rules to express prefer-
ences among literals in the head: the rule

r = A1 × . . .× An ← body

says: if body is satisfied then some Ai must be in the answer set, most
preferably A1, if this is impossible then A2, etc. Answer sets are defined
through split programs containing exactly one option for each of the original
LPOD rules, where, for k ≤ n, option rk of the rule above is

Ak ← body, not A1, . . . , not Ak−1.

15



An answer set S can satisfy rules like r to different degrees, where smaller
degrees are better: if body is satisfied in S, then the satisfaction degree of r is
the smallest index i such that Ai ∈ S. Otherwise, the rule is irrelevant. Since
there is no reason to blame an answer set for not applying an inapplicable
rule we also define the degree to be 1 in this case. The degree of r in S is
denoted degS(r).

Based on the satisfaction degrees of single rules a global preference order-
ing on answer sets is defined. This can be done through a number of different
combination strategies. Let Sk(P ) = {r ∈ P | degS(r) = k}. For instance,
we can use one of the following conditions to define that S1 is strictly pre-
ferred to S2:

1. there is a rule satisfied better in S1 than in S2, and no rule is satisfied
better in S2 than in S1 (Pareto);

2. at the smallest degree j such that Sj
1(P ) 6= Sj

2(P ) we have Sj
1(P ) ⊃

Sj
2(P ) (inclusion);

3. at the smallest degree j such that |Sj
1(P )| 6= |Sj

2(P )| we have |Sj
1(P )| >

|Sj
2(P )| (cardinality);

4. the sum of the satisfaction degrees of all rules is smaller in S1 than in
S2 (penalty sum).

Note that S1 is inclusion preferred to S2 whenever it is Pareto preferred to
S2, and cardinality preferred to S2 whenever it is inclusion preferred to S2.
The penalty sum strategy can, for instance, be used to model dlv’s weak
constraints, provided all weights are integers. In each case, we obtain a
partial order on answer sets, and we are interested in optimal answer sets,
that is answer sets which are not dominated by other answer sets with respect
to the given ordering.

As a simple example consider the LPOD representing the dinner prefer-
ences of a simple agent (colors denote types of wine):

1. red× white← meat
2. white× red← fish
3. meat× fish

Answer sets consist of 2 atoms combining a dish (fish or meat) with a wine
(red or white). The single maximally preferred answer set is, independent
of the chosen combination strategy, {meat, red}. All rules are satisfied to
degree 1. If we add the information that red wine is not available (¬red),
we get 2 the answer sets {meat, white} and {fish, white} which both are
optimal (both satisfy one of the rules to degree 2 only).

16



LPODs can be implemented using a generate and improve strategy: we
first generate an arbitrary answer set M and then use it as input for a tester
program, generated from M and the original LPOD. The tester program has
only answer sets strictly better than M . We can thus iterate until the tester
program becomes inconsistent and know that the last answer set found is
optimal. For an implementation, see psmodels (http://www.tcs.hut.fi/
Software/smodels/priority/)

3.2.3 Optimization Programs

In the LPOD approach the construction of answer sets is amalgamated with
the expression of preferences. Optimization programs [27], on the other hand,
strictly separate these two aspects. This allows for greater modularity, flex-
ibility and generality in the expression of preferences — in certain cases at
the cost of somewhat less compact representations.

An optimization program is a pair (Pgen, Ppref ). Here, Pgen is an arbitrary
logic program (normal, extended, disjunctive, ...) used to generate answer
sets. All we require is that it produces sets of literals as its answer sets. Ppref

is a preference program. Preference programs consist of preference rules of
the form

C1 > . . . > Cn ← body

where the Ci are boolean combinations of literals built from ∧,∨,¬ and not .
Here, a boolean combination over a set of atoms A is a formula built of atoms
in A by means of disjunction, conjunction, strong (¬) and default (not )
negation, with the restriction that strong negation is allowed to appear only
in front of atoms, and default negation only in front of literals. For example,
a ∧ (b ∨ not ¬c) is a boolean combination, whereas not (a ∨ b) is not. The
restriction simplifies the treatment of boolean combinations. Satisfaction of a
boolean combination in a given answer set can be defined in a straightforward
manner.

As in the case of LPODs, answer sets can satisfy preference rules to
different degrees. If the body of a preference rule is satisfied in an answer
set S and some boolean combination Ci in its head is also satisfied, then
the satisfaction degree of the rule in S is the index of the leftmost satisfied
boolean combination. Otherwise the rule is irrelevant. Since S is not to be
blamed for irrelevant rules, irrelevance is considered as good a satisfaction
degree as 1.

Again, the combination strategies described in the context of LPODs
— and many others — can be used to generate the global preference order
on answer sets out of the satisfaction degrees of individual rules. It is also
possible to introduce meta preferences among the preference rules themselves

17

http://www.tcs.hut.fi/Software/smodels/priority/
http://www.tcs.hut.fi/Software/smodels/priority/


by grouping them into subsets with different ranks. Preference rules with
highest priority are considered first. Intuitively, rules with lower priority are
only used to distinguish between answer sets which are of the same quality
according to the more preferred rules.

Since none of the different combination strategies is the most adequate
one for all applications, and since it may even be useful to apply different
combination methods for different aspects of a single problem, a preference
specification language has been proposed in [24]. The idea is to replace
preference programs by expressions of the new language. The language is
based on preference rules similar to the ones discussed above, but additionally
allows the user to specify in a flexible manner how the satisfaction degrees
of the rules are to be combined to a global preference order.

It turns out that this approach can be implemented in a similar fashion as
LPODs by compiling the current answer set M , the generating program Pgen

and the preference expression (respectively preference program) to a tester
program which produces only answer sets of Pgen strictly better than M .

3.2.4 Ordered Choice Logic Programs

Once the fundamental issues of how to represent and store information have
been addressed, one of the most important requirements for any automated
reasoning system is to be able to characterise and make decisions. To make
a decision a series of meta questions must first be answered; what are the
alternatives, how do they relate to each other, how many are there to choose
from and what should we do if alternatives are equally preferred or unrelated?
Any logic which seeks to characterise decisions must address these questions.

Ordered Choice Logic Programming (OCLP) [45, 44, 19, 41, 49] is a
conceptual extension of answer set programming to characterise decisions.

Choice rules [42, 43] are a formal way of saying which alternatives are
available when a decision has to be made. The ordering between compo-
nents gives a clear, expressive and extensive system for deciding which is the
‘best’ alternative, while the two decision semantics, skeptical and credulous,
say what to do when two options are equally preferred. OCLP has been de-
veloped over several years and OCT [19], a tool for computing the answer sets
of an OCLP program by providing a front-end to Smodels [145], is available
from http://www.cs.bath.ac.uk/~mdv/oct/ licenced under the GPL.

Both types of negation (classical negation and negation as-failure) can
easily be simulated inside OCLP. Also available is Extended OCLP providing
the necessary connectives and definitions that allow direct use of negation.

The algorithm implemented by OCT is a polynomial translation of OCLP
to traditional answer set programs. Furthermore it can be shown that a bi-

18

http://www.cs.bath.ac.uk/~mdv/oct/


directional transformation exists between OCLP and generalised extended
logic programs.

OCLP is well-suited for situations where knowledge about decisions and
the preference between their alternatives has to be modelled. Although the
notion of defeated (sometimes called overruling) is known in many preference/order-
based logic programming languages (e.g. [93, 124, 28, 36, 34, 2, 81], they
mostly restrict to comparing literals and their complements, making the “de-
cisions” static and predefined. In OCLP the decisions are dynamic and can
comprise multiple alternatives. Two systems, dynamic logic programming
[2] and update sequences [81], can easily be mapped to the OCLP.

So far OCLP has been used to model and extend classical game theory
[47, 48] and to model the reasoning capabilities of individual agents in a
multi-agent environment [46, 49].

3.3 Actions and Change

Reasoning about actions and change is an important field in knowledge rep-
resentation and reasoning. In this context the use of logic-based approaches,
in particular, for planning dates back many decades.

The usage of non-monotonic logic programs in this context, especially for
planning, has been explored in several preliminary works, including [68, 167].
Later, the use of ASP for planning has been advocated by Lifschitz, who
coined the term Answer Set Planning [132].

Action Language K

Inspired by action languages such as A, B and C, in [74, 79] the action lan-
guage K has been introduced, which is based on answer set semantics. It
follows like these languages a transition-oriented approach, in which tran-
sitions between states (which are described by the values of fluents, i.e.,
predicates that may change over time) are governed by axioms of a language
which, loosely speaking, state when certain fluents are causally explained to
be true resp. false in the new state given the value of other fluents in the new
state, in the previous state, and the actions that have been executed (in par-
allel). Different from similar languages, however, K provides default negation
“not” for usage in axioms, and allows to consider states in which the values
of fluents also might be unknown. This allows, in particular, for representing
secure planning problems (that is, conformant planning problems), in which
a form of a plan is searched that works under all circumstances, regardless
of the states and possible nondeterministic action effects, sometimes in a
concise way.

19



An example which illustrates the flavor of K is the following action de-
scription of the Bomb-in-the-Toilet (BT) problem. We have been alarmed
that there is a bomb (exactly one) in a lavatory. There are p suspicious pack-
ages which could contain the bomb. There is a toilet bowl, and it is possible
to dunk a package into it. If the dunked package contained the bomb, then
the bomb is disarmed and a safe state is reached. The obvious goal is to
reach a safe state.

The following action description in K serves this purpose.

fluents : armed(P) requires package(P).
unsafe.

actions : dunk(P) requires package(P).
always : inertial − armed(P).

caused − armed(P) after dunk(P).
caused unsafe if not − armed(P).
executable dunk(P).

Here, armed(P) is a fluent which intuitively states that package P is armed,
and unsafe is a fluent which says that the currents situation is unsafe. The
action dunk can be executed at any time (this is expressed by the last line),
to the effect that the respective package is disarmed. A situation is unsafe, if
there is a package of which we don’t know for certain that it is disarmed, i.e.,
it is possibly armed. Being disarmed is declared inertial (i.e., a bomb can’t
get armed if it wasn’t). The knowledge about the packages is represented by
facts package(1)., package(2)., . . . package(n).

From the knowledge perspective, nothing definite is known about armed(P)
(and about −armed(P)) for a particular package P, so the initial situation can
be represented by one state in which neither armed(P) nor −armed(P) holds.
Every plan for the goal not unsafe will lead to the desired state of safety.
For example, a feasible plan would be to take the actions dunk(1),. . . ,dunk(n)
one after the other. However, K features also parallel action execution; thus,
dunking all packages in parallel would be another plan. If undesired, parallel
action execution can be easily disabled using suitable constraints.

For precise definitions and more examples, see [79], where also a complex-
ity study is carried out. For an extension to accommodate optimal planning
using action costs, see [77]. An extended discussion, addressing knowledge
representation issues and a comparison to related languages is given in [80].

A solid prototype of the system has been implemented, which is described
and compared against other systems in [78]. A download and online examples
are available at http://www.dbai.tuwien.ac.at/proj/dlv/K/.

20

http://www.dbai.tuwien.ac.at/proj/dlv/K/


Action Language E

The work described in [67] extends further the link between action languages
and ASP, by presenting a translation of action language E [115] into logic
programs under the answer sets semantics. The main purpose of language
E is to address, within a unifying framework, the three major problems of
frame, ramification and qualification with emphasis on the problems of mod-
ularity and elaboration tolerance of the domain descriptions. The following
examples illustrates the main features of language E .

Break initiates Broken
TurnOnKey initiates Running when {Battery}
¬Running whenever {Broken}
Break happens-at 1
TurnOnKey happens-at 2
Battery holds-at 0
¬Running holds-at 0

The first proposition says that the effect of action Break is that the car is
Broken, whereas the second proposition states that the execution of action
TurnOnKey has the effect that Running becomes true if at the time of the
execution of TurnOnKey the fluent Battery is true. The third proposition
is a ramification statement that expresses the fact that any action that would
initiate Broken it would also terminate Running. It also expresses the gen-
eral domain constraint that at any time Broken and Running can not hold
together. The next four propositions provide a specific narrative in which
two actions are known to have been executed at time 1 and 2. The last two
propositions are called observations, stating that Battery was true and that
the car was not running at time 0.

The semantics of language E sanctions essentially one model for the above
theory. In this model the car continues to remain not running at time 3
onwards, despite the execution of action TurnOnKey. This is because the
fact that the car is broken at time 3 (as a result of the earlier Break action)
prevents the initiation of Running by this action as otherwise after time 3
we would end up with a state that violates the constraint that we can not
have at the same time Broken and Running. Assume now that in addition
to the above we are also given the observation Running holds-at 3. If the
actions of the above theory are strict, the above theory is inconsistent. If
however the actions are default, then the semantics of language E sanction
one model where the action Brake fails to produce its effect Broken.

In [67] we investigated how increasing the expressiveness of a language E

21



so that it can capture the problems of frame, ramification and qualification,
affects its computational complexity, and how a solution to these problems
can be implemented within Answer Set Programming. Our current work
[66] focuses on identifying subclasses of action theories in which reasoning is
easier than in the general case. Our main interest is in theories that can be
computed efficiently by current state-of-the-art ASP solvers.

We are currently developing a prototype system that translates language
E theories into Smodels programs. We plan to use this system for experi-
mentation and comparison with the existing E-RES system (http://www2.
cs.ucy.ac.cy/~pslogic/) for E and other similar systems.

3.4 Description Logics

Two interesting approaches to combining description logics and ASP tech-
niques, open answer set programming and dl-programs, developed in the
WASP research groups are discussed in this section.

3.4.1 Open Answer Set Programming

In traditional ASP one has the domain-closure assumption [96], i.e. the rel-
evant domain elements are all supposed to be specified in the program. In
many natural problems, however, this assumption may lead to wrong conclu-
sions. For example, a DLP P consisting of the rules pass(X) ← study(X);
fail(X)← not pass(X); study(X)∨not study(X)←, and pass(john)←, has
the (normal) answer sets {pass(john)} and {pass(john), study(john)}. Since
none of them contains a fail -atom, one might, wrongfully, conclude that one
can never fail. Listing more students might solve the problem in this case,
however, in general, this puts a serious burden on the knowledge engineer,
having to handle “all” influential constants.

Using (possibly infinite) open domains, i.e. allowing the universe to be
a superset of the constants in the program, makes sure that one rightfully
concludes that students may fail if they do not study. For example,

({john, bill}, {pass(john), fail(bill)})

is an open answer set where the first component is the extended universe
and the second one is an answer set that resulted from grounding P with
this universe.

In [104, 103, 102], one can find the formal semantics of such open answer
set programming. Reasoning with open domains is undecidable for arbitrary
DLPs. To resolve this, [104, 103, 102] resort to an expressive subclass of
DLPs, i.e., Conceptual Logic Programs (CLPs). Reasoning with CLPs is

22

http://www2. cs.ucy.ac.cy/~pslogic/
http://www2. cs.ucy.ac.cy/~pslogic/


shown to be decidable in [104, 103] by a reduction to automata theory. The
type of CLPs in [102] allow for a reduction to normal, closed domain, finite
answer set programming.

The CLPs in [104] allow to simulate reasoning in the Description Logic [5]
SHIF , [103] loosens the syntax of CLPs and is able to simulate reasoning in
the more expressive DL SHIQ. Finally, the CLPs in [102] allow for constants
in programs such that the DL ALCHOQ(t,u) can be simulated. Since ASP
is a logic programming paradigm, and thus suited for reasoning with rules,
those simulations provide for integrated reasoning with both ontological and
rule knowledge.

Hybrid approaches to reasoning with DLs and rules can be found in
[71, 159] and [128], the former introduces ([159] extends) AL-log, i.e. a lan-
guage consisting of two subsystems, a DL part and a (disjunctive) Datalog
part, where the interaction between both happens through constraints within
Datalog clauses. In [128], knowledge bases contain a set of Horn rules and a
DL terminology where concepts and roles may appear as predicates in Horn
rules.

Another approach is to reduce DL knowledge bases to logic programs,
e.g., [107] uses an intermediate translation to first order clauses and then
performs resolution-based decision procedures before effectively translating
to a disjunctive Datalog program. In [144] non-recursive ALC is translated
in disjunctive databases. [3] presents a translation from the DL ALCQI to
answer set programs, using function symbols to accommodate for an infinite
Herbrand universe. [100] simulates reasoning in DLs through simple Datalog
programs. This necessitates heavily restricting the usual DL constructors,
e.g., negation or number restrictions cannot be expressed.

In [10], the simulation of a DL with acyclic axioms in open logic program-
ming is shown. An open logic program is a program with possibly undefined
predicates, and a FOL-theory; the semantics is the completion semantics,
which is only complete for a very restrictive set of programs.

There is currently no implementation for reasoning with CLPs available.

3.4.2 DL-Programs

Description logic programs, or dl-programs for short, are presented in [84, 85]
as a novel method to couple description logics with nonmonotonic logic pro-
grams. Roughly speaking, a dl-program KB = (L, P ) consists of a knowledge
base L in a description logic and a finite set P of generalized logic program
rules, called dl-rules. These are similar to usual rules in logic programs with
negation as failure, but they may also contain queries to L in their bodies,
which are given by special atoms (on which possibly default negation may

23



apply). For example, a rule

cand(X,P )← paperArea(P,A), DL[Referee](X), DL[expert ](X,A)

may express that X is a candidate reviewer for a paper P , if the paper is
in area A, and X is known to be a referee and an expert for area A. Here,
the latter two are queries to the description logic knowledge base L, which
has a concept Referee and role expert in its signature. For the evaluation,
the precise definition of Referee and expert within L is fully transparent, and
only the logical contents at the level of inference counts. Thus, dl-programs
fully support encapsulation and privacy of L — this is needed if parts of L
should not be accessible (for example, if L contains an ontology about risk
assessment in credit assignment), and only extensional reasoning services are
available.

Another important feature of dl-rules is that queries to L also allow for
specifying an input from P , and thus for a flow of information from P to L,
besides the flow of information from L to P , given by any query to L. Hence,
description logic programs allow for building rules on top of ontologies, but
also (to some extent) building ontologies on top of rules. This is achieved by
dynamic update operators through which the extensional part of L can be
modified for subjunctive querying. For example, the rule

paperArea(P,A)← DL[keyword ] kw ; inArea](P,A)

intuitively says that paper P is in area A, if P is in A according to the
description logic knowledge base L, where the extensional part of the keyword
role in L (which is known to influence inArea) is augmented by the facts of
a binary predicate kw from the program. In this way, additional knowledge
(gained in the program) can be supplied to L before querying. Using this
mechanism, also more involved relationships between concepts and/or roles
in L can be defined and exploited.

The description logic knowledge bases in dl-programs are specified in the
well-known description logics SHIF(D) and SHOIN (D), which underly
OWL Lite and OWL DL [105, 106], respectively.

Two basic types of semantics have been defined for dl-programs: in [84],
a generalization of the answer-set semantics for ordinary logic programs is
given, and in [85], a generalization of the well-founded semantics [170, 8]. In
fact, two versions of the answer-set semantics for dl-programs are introduced,
namely the weak answer-set semantics and the strong answer-set semantics.
Both semantics coincide with usual answer sets in the case of ordinary nor-
mal programs. Every strong answer set is also a weak answer set, but not
vice versa. The two notions differ in the way they deal with nonmonotonic

24



dl-queries. While the answer set semantics resolves conflicts by virtue of per-
mitting multiple intended models as alternative scenarios, the well-founded
semantics remains agnostic in the presence of conflicting information, assign-
ing the truth value false to a maximal set of atoms that cannot become true
during the evaluation of a given program.

An efficient implementation of the answer-set and the well-founded se-
mantics for dl-programs has been realized in a working prototype exploiting
the two state-of-the-art solvers DLV [126] and RACER [101]. A major issue
in this respect is an efficient interfacing between the two reasoning systems
at hand, for which special methods have been devised in [83]. Depending on
the type of stratification of the dl-program, a number of different evaluation
strategies can be employed, ranging from a refined guess-and-check algorithm
to iterative procedures with alternating calls of the external solvers.

3.5 Social and Sensor-Dependent Logic Programming

In a multi-agent environment it is possible to represent agents’ requirements
or desires as logic programs. Moreover, in order to pursue his goals, one agent
must often be capable of fine-tuning his behavior on that of the other agents.
Thus, in [30] we have focused on the interactions among logic-program agents
by introducing the SOcial Logic Programming (SOLP).

SOLP is designed for the description of agent mental states and enables
agent social ability, i.e. the ability to take into account (the models of)
the other agents in the community when reasoning. The language extends
COLP [31], the main extension consisting of constraints over the behavior (i.e.
what it can be inferred) of either a given number of or a specific other agent
in the system. Moreover, the language SOLP allows for social constraints
to be nested, and it is provided with a suitable fixpoint-like semantics. We
have shown that the Social Semantics of SOLP extends the Joint Fixpoint
Semantics of COLP. Importantly, we have shown that the language SOLP
can be translated into the well-known DLPA, which is basically disjunc-
tive logic programming with aggregate functions, by a polynomial source-to-
source transformation. The adoption of the stable model semantics provides
a sound formal characterization to the language.

A very large and widely accepted literature witnesses that logic program-
ming is a suitable framework for representing the agents’ subjective percep-
tion w.r.t. the dynamic environment in which they act. Thus, we assume
that the observe-think-act activity of an agent involves a set of sensors (re-
sponsible to scan the external environment) coupled to a reasoning layer
(where the events that may occur in the external environment are repre-
sented and causally related to agent actions). Now, it is possible to encode

25



into an extended logic program both the sensors (by using specific literals)
and the reasoning layer (by means of literals for events and actions and rules
possibly using sensor literals).

Unfortunately, such a solution is founded on a simple (yet unrealistic)
assumption: The agent always relies on its perception, which is sensitive
to failure. In this respect, we proposed in [33] an extension of Answer Set
Programming, called sensor-dependent (SD) logic programming, for taking
into account possible perception failure of sensors. It is shown by examples
that the language is very suitable for the above purpose. Moreover, a suit-
able semantics has been defined in an answer-set fashion and a polynomial
algorithm has been given, allowing any SD program to be translated into an
equivalent extended logic program.

4 Logical Foundations

4.1 Default Logic

Default logic was conceived in [157] as a logical formalism for default reason-
ing. Since then, it has turned into the best known and most widely studied
approach to nonmonotonic reasoning. In particular, it can be seen as the
direct ancestor of answer set programming. To see this, observe that a logic
programming rule is simply a syntactically restricted default rule that allows
for highly efficient implementations.

The very generality of default logic means that it lacks several important
properties, including existence of extensions [157] and cumulativity [140]. In
addition, differing intuitions concerning the role of default rules have led to
differing opinions concerning other properties, including semi-monotonicity
[157] and commitment to assumptions [156]. As a result, a number of modifi-
cations to the definition of a default extension have been proposed, resulting
in a number of variants of default logic. Most notably these variants include
constrained default logic [54], cumulative default logic [21], justified default
logic [139], and rational default logic [141]. (To be sure, there are other vari-
ants of default logic. The variants covered here are arguably the best-known
and studied [4].) In each of these variants, the definition of an extension is
modified, and a system with properties differing from the original is obtained.

In [51] we have shown how variants of default logic can be expressed
in Reiter’s original approach. Similarly, we have shown that rational default
logic and default logic may be encoded, one into the other. For the most part
the provided transformations have good properties, being (with exceptions)
faithful, polynomial, modular, and monotonic. This work then complements

26



previous work in nonmonotonic reasoning which has shown links between
(seeming) disparate approaches. Here we show links between (seemingly)
disparate variants of default logic. As well, the translations clearly illustrate
the relationships between alternative approaches to default logic.

As in answer set programming, default logics offer two kind of reason-
ing principles: a default conclusion that appears in some extension is called
a credulous (or brave) default conclusion, while one that appears in every
extension is called a skeptical conclusion. Intuitively it might seem that
skeptical inference is the more useful notion. However, this is not necessarily
the case. In diagnosis from first principles [158] for example, in one encoding
there is a 1-1 correspondence between diagnoses and extensions of the (en-
coding) default theory. Hence one may want to carry out further reasoning
to determine which diagnosis to pursue. More generally there may be reasons
to prefer some extensions over others, or to somehow synthesize the infor-
mation found in several extensions. In [50], we have described an approach
for encoding default extensions within a single extension. Using constants
and functions for naming, we can refer to default rules, sets of defaults, and
instances of a rule in a set. Via these names we can, first, determine whether
a set of defaults is its own set of generating defaults and, second, consider the
application of sets of defaults ordered by set containment. The translated
theory requires a modest increase in space: except for unique names axioms,
only a constant-factor increase is needed.

4.2 Finitary and Open Programs

Finitary programs [12, 15] support function symbols and recursion, without
affecting decidability. This extension is mainly motivated by the need of
representing and reasoning about recursive data structures (such as XML
documents) in a natural and uniform way, without resorting to external pre-
processors.

Current prototypes [11] comprise a finitary program recognizer and a rel-
evant program constructor. They can be downloaded from http://people.

na.infn.it/~bonatti/ricerca/software/index.html. Work on integrat-
ing finitary programs into DLV is in progress.

In open programs [13, 14] the definition of some predicates is not complete
(or exhaustive), and can be integrated by more rules. Open programs have
been introduced for program module analysis, as well as reasoning with open
domains. A combination of finitary programs and open programs supports
abduction with unbounded, possibly open domains [16, 17].

27

http://people.na.infn.it/~bonatti/ricerca/software/index.html
http://people.na.infn.it/~bonatti/ricerca/software/index.html


4.3 ID-Logic

This line of work aims at developing an alternative ASP logic called ID-logic.
This logic is an extension of classical logic with inductive definitions. The
motivation for this work is to build a logic with solid epistemological founda-
tions in mathematics, suitable as a rich and natural knowledge representation
language and for which more efficient problem solvers can be built. There
are three components of this project: semantics, knowledge representation
and problem solving. Below we discuss each of these components.

The epistemological foundation of ID-logic is the notion of inductive def-
inition as found in mathematics. Inductive definitions that appear in math-
ematical texts show a very strong correspondence with logic programs, both
on syntactical and semantical level. To formalise this idea, we developed a
theory of generalised nonmonotone inductive definitions and demonstrated
its relationship with answer set programming and non-monotone reasoning.
Our theory, called approximation theory, is a fixpoint theory. The stan-
dard fixpoint theory is limited to monotone induction and was developed
70 years ago by Alfred Tarski. We have contributed here by extending this
theory to the case of general non-monotone induction [62, 61]. This result
has been obtained in collaboration with Prof. Truszczyński and Prof. Marek
from University of Kentucky. We have also showed that our fixpoint theory
uniformly describes the semantics of the three main non-monotonic reason-
ing formalisms, i.e. logic programming, default logic and autoepistemic logic
[63, 61]. Moreover, we have been able to unify default logic and autoepistemic
logic; their relation was an open problem for two decades.

At the knowledge representation level, ID-logic is defined as an extension
of classical logic with non-monotone inductive definitions. An inductive def-
inition in an ID-logic theory is represented as a set of rules defining a subset
of defined predicates in terms of other, open predicates. As an example, the
following theory containing two definitions for the predicate Person and one
axiom expressing that men and women are disjunct categories:{

∀x(Person(x)⇐Man(x)),
∀x(Person(x)⇐ Woman(x))

}
{
∀x(Person(x)⇐ Child(x)),
∀x(Person(x)⇐ Adult(x))

}

¬∃xMan(x) ∧Woman(x)

The syntax and semantics of ID-logic have been defined in [59, 65], partly
in collaboration with Prof. Ternovska from Simon Fraser University. In [64]

28



we have demonstrated the role of ID-logic for knowledge representation by
showing how situation calculus, a well-known AI-formalisms for temporal
reasoning, contains hidden forms of inductive definitions and has an elegant
formalisation in ID-logic. The methodology of ID-logic and its relationship
to answer set programming have been studied in [64, 98, 60]. We have also
studied the computational complexity of inference in ID-logic [61, 151]. We
have also started with the study of extensions of definitions with aggregates
in the context of the PhD work of Dr. Pelov [152, 151, 150].

At the computational level the work ID-logic solvers is still in a early
stage but some results have been obtained. One important result that we
have already obtained is the development of the A-system [118, 172]. This
system implements abductive inference in the context of a sublogic of ID-
logic. At this moment, this is one of the best abductive systems available. It
has been developed in the context of the PhD-work of Dr. Van Nuffelen
at the K.U.Leuven, in collaboration with Prof. Kakas of the University
of Cyprus (WASP partner). The system integrates CLP-techniques, open
functions and aggregates. It is available at http://www.cs.kuleuven.ac.

be/~bertv/Asystem/.
We have also started with the development of a model generator for ID-

logic. A first version exploits a translation from ID-logic to answer set pro-
gramming presented in [98] and uses Smodels to generate models of the
input ID-logic theory. It is available at http://www.cs.kuleuven.ac.be/

~maartenm. We have started a new project to build a model generator tuned
for ID-logic.

5 Summary of Implementations

In this section we summarize available implementations of language exten-
sions described in the report.

Systems implementing disjunctive logic programs (Section 2.1)

• DLV (http://www.dlvsystem.com)

• GnT (http://www.tcs.hut.fi/Software/gnt/)

• Cmodels version 3 (http://www.cs.utexas.edu/users/tag/cmodels.
html)

Systems implementing nested programs (Section 2.2)

29

http://www.cs.kuleuven.ac.be/~bertv/Asystem/
http://www.cs.kuleuven.ac.be/~bertv/Asystem/
http://www.cs.kuleuven.ac.be/~maartenm
http://www.cs.kuleuven.ac.be/~maartenm
http://www.dlvsystem.com
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.cs.utexas.edu/users/tag/cmodels.html


• nlp (http://www.cs.uni-potsdam.de/~torsten/nlp/)

• NoMoRe (http://www.cs.uni-potsdam.de/~linke/nomore)

Systems implementing cardinality and weight constraints (Section 2.3)

• Smodels (http://www.tcs.hut.fi/Software/smodels/)

Systems implementing aggregates (Section 2.4)

• DLV (http://www.dlvsystem.com)

• Smodels-ag (http://www.cs.nmsu.edu/~ielkaban/smodels-ag.html)

Systems implementing templates (Section 2.5)

• DLPT (http://dlpt.gibbi.com) build on top of DLV (http://www.
dlvsystem.com)

Application oriented extensions

• Abduction with penalization (Section 3.1)

implemented as a frontend of DLV (http://www.dlvsystem.com)

• Rule preferences (Section 3.2.1)

plp (http://www.cs.uni-potsdam.de/~torsten/plp)

GCplp (http://www.cs.uni-potsdam.de/~konczak/system/GCplp)

• Ordered disjunctions (Section 3.2.2)

psmodels (http://www.tcs.hut.fi/Software/smodels/priority/)

• Ordered choice logic programs (Section 3.2.4)

OCT (http://www.cs.bath.ac.uk/~mdv/oct/)

• Action language K (Section 3.3)

implemented as a frontend of DLV (http://www.dbai.tuwien.ac.at/
proj/dlv/K/)

• Action Language E (Section 3.3)

E-RES system (http://www2.cs.ucy.ac.cy/~pslogic/)

• DL-Programs (Section 3.4.2)

NLP-DL (http://www.kr.tuwien.ac.at/staff/roman/semweblp/)

30

http://www.cs.uni-potsdam.de/~torsten/nlp/
http://www.cs.uni-potsdam.de/~linke/nomore
http://www.tcs.hut.fi/Software/smodels/
http://www.dlvsystem.com
http://www.cs.nmsu.edu/~ielkaban/smodels-ag.html
http://dlpt.gibbi.com
http://www.dlvsystem.com
http://www.dlvsystem.com
http://www.dlvsystem.com
http://www.cs.uni-potsdam.de/~torsten/plp
http://www.cs.uni-potsdam.de/~konczak/system/GCplp
http://www.tcs.hut.fi/Software/smodels/priority/
http://www.cs.bath.ac.uk/~mdv/oct/
http://www.dbai.tuwien.ac.at/proj/dlv/K/
http://www.dbai.tuwien.ac.at/proj/dlv/K/
http://www2.cs.ucy.ac.cy/~pslogic/
http://www.kr.tuwien.ac.at/staff/roman/semweblp/


Finitary programs (Section 4.2)
Finitary program recognizer and instantiator (http://people.na.infn.it/
~bonatti/ricerca/software/index.html)

ID-Logic (Section 4.3)
A-system http://www.cs.kuleuven.ac.be/~bertv/Asystem/.

6 Software Engineering Issues

This section recaps interesting software engineering issues for ASP.

• Generate and test programming methodology

The predominant programming methodology for ASP is the generate
and test technique briefly explained in Sections 2.1 and 3.2. This
methodology has also motivated many of the language extensions. For
example, disjunctions and cardinality and weight constraints have been
found very useful for programming the generation of solution candi-
dates and, e.g., aggregates and preferences for testing solution candi-
dates.

• Core engine approach to language extensions

Many of the language extensions have been implemented using a tech-
nique where the idea is to exploit an efficient implementation of a
basic ASP language and implement new language features by com-
piling them to this basic language. For example, DLV (http://www.
dlvsystem.com) and Smodels (http://www.tcs.hut.fi/Software/
smodels/) have been extensively used as such core engines for imple-
menting new language extensions ranging from preferences to action
languages.

• Combining ASP and other approaches

To complement the core engine approach there is new work on com-
bining ASP engines with other approaches such as satisfiability (SAT)
checkers and constraint programming systems. One trend is to use
SAT checkers to implement answer set computation as, e.g., in ASSAT

(http://assat.cs.ust.hk/) and Cmodels (http://www.cs.utexas.
edu/users/tag/cmodels.html). Another interesting line of develop-
ment is to integrate ASP solvers and constraint programming systems.
The Smodels-ag system (http://www.cs.nmsu.edu/~ielkaban/smodels-ag.
html) is an example of this.

31

http://people.na.infn.it/~bonatti/ricerca/software/index.html
http://people.na.infn.it/~bonatti/ricerca/software/index.html
http://www.cs.kuleuven.ac.be/~bertv/Asystem/
http://www.dlvsystem.com
http://www.dlvsystem.com
http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/smodels/
http://assat.cs.ust.hk/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.cs.nmsu.edu/~ielkaban/smodels-ag.html
http://www.cs.nmsu.edu/~ielkaban/smodels-ag.html


• Programming Tools

The need for better programming tools such as debuggers and tracers
has been widely recognized. Now there is interesting recent work in
this area, for example, in the IDEAS system [18]. Another interesting
active area is equivalence testing of logic programs. Equivalence testing
tools could provide a useful aid for step-wise development of an ASP
program where the correctness of modifications or refinements would
be checked against previous versions of the program. Interesting tools
for equivalence testing are already emerging such as SELP [38], setest
(http://www.kr.tuwien.ac.at/students/prak_setest/) and lpeq

(http://www.tcs.hut.fi/Software/lpeq/).

References

[1] J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded se-
mantics and generalized stable models via tabled dual programs. Jour-
nal of the Theory and Practice of Logic Programming, Forthcoming.

[2] José Júlio Alferes, Leite J. A., Lúıs Moniz Pereira, Halina Przymusin-
ska, and Teodor C. Przymusinski. Dynamic logic programming. In
Cohn et al. [39], pages 98–111.

[3] G. Alsaç and C. Baral. Reasoning in Description Logics using
Declarative Logic Programming, 2002. http://www.public.asu.edu/
~guray/dlreasoning.pdf.

[4] Grigoris Antoniou. A tutorial on default logics. ACM Computing Sur-
veys, 31(4):337–359, 1999.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider. The Description Logic Handbook. Cambridge University
Press, 2003.

[6] M. Balduccini and M. Gelfond. Logic programs with consistency-
restoring rules. In International Symposium on Logical Formalization of
Commonsense Reasoning, AAAI 2003 Spring Symposium Series, pages
9–18, 2003.

[7] C. Baral and M. Gelfond. Logic Programming and Knowledge Repre-
sentation. Journal of Logic Programming, 19/20:73–148, 1994.

32

http://www.kr.tuwien.ac.at/students/prak_setest/
http://www.tcs.hut.fi/Software/lpeq/
http://www.public.asu.edu/~guray/dlreasoning.pdf
http://www.public.asu.edu/~guray/dlreasoning.pdf


[8] C. Baral and V. S. Subrahmanian. Dualities between alternative seman-
tics for logic programming and nonmonotonic reasoning. J. Automated
Reasoning, 10(3):399–420, 1993.

[9] Chitta Baral. Knowledge Representation, Reasoning and Declarative
Problem Solving. Cambridge University Press, 2002.

[10] K. Van Belleghem, M. Denecker, and D. De Schreye. A Strong Corre-
spondence between Description Logics and Open Logic Programming.
In Proc. of ICLP’97, pages 346–360, 1997.

[11] P. A. Bonatti. Prototypes for reasoning with infinite stable models and
function symbols. In Proceedings of Logic Programming and Nonmono-
tonic Reasoning, 6th International Conference, LPNMR 2001, number
2173 in LNCS, pages 416–419. Springer, 2001. [Link].

[12] P. A. Bonatti. Reasoning with infinite stable models. In Proceedings
of the Seventeenth International Joint Conference on Artificial Intelli-
gence, IJCAI 2001, pages 603–610. Morgan Kaufmann, 2001. [Link].

[13] P. A. Bonatti. Reasoning with open logic programs. In Proceedings of
Logic Programming and Nonmonotonic Reasoning, 6th International
Conference, LPNMR 2001, number 2173 in LNCS, pages 147–159.
Springer, 2001. [Link].

[14] P. A. Bonatti. Abduction, asp and open logic programs. In Proceedings
of NMR’02, 2002. [Link].

[15] P. A. Bonatti. Reasoning with infinite stable models II: Disjunctive
programs. In Proceedings of the 18th International Conference on
Logic Programming, ICLP 2002, number 2401 in LNCS, pages 333–
346. Springer, 2002. [Link].

[16] P. A. Bonatti. Finitary open logic programs. In Proceedings of Answer
Set Programming: Advances in Theory and Implementation, NMR’02,
number 78 in CEUR Workshop Proceedings, pages 84–97, 2003. [Link].

[17] P.A. Bonatti. Abduction over unbounded domains via asp. In Proceed-
ings of the 16th European Conference on Artificial Intelligence, ECAI
2004, pages 288–292. IOS Press, 2004.

[18] M. Brain and M. De Vos. Debugging logic programs under the answer
set semantics. In Answer Set Programming: Advances in Theory and
Implementation (ASP05), pages 141–152, Bath, UK, 2005.

33

http://people.na.infn.it/~bonatti/ricerca/
http://people.na.infn.it/~bonatti/ricerca/
http://people.na.infn.it/~bonatti/ricerca/
http://people.na.infn.it/~bonatti/ricerca/
http://people.na.infn.it/~bonatti/ricerca/
http://people.na.infn.it/~bonatti/ricerca/


[19] Martin Brain and Marina De Vos. Implementing OCLP as a front-
end for Answer Set Solvers: From Theory to Practice. In ASP03:
Answer Set Programming: Advances in Theory and Implementation.
Ceur-WS, September 2003. online CEUR-WS.org/Vol-78/asp03-final-
brain.ps; [ps.gz].

[20] R. Brena. Abduction, that ubiquitous form of reasoning. Expert Sys-
tems with Applications, 14(1–2):83–90, January 1998.

[21] G. Brewka. Cumulative default logic: In defense of nonmonotonic
inference rules. Artificial Intelligence, 50(2):183–205, 1991.

[22] G. Brewka. Logic programming with ordered disjunction. In Proc.
AAAI-02, pages 100–105. AAAI Press, 2002.

[23] G. Brewka. Answer sets: From constraint programming towards quali-
tative optimization. In Proc. LPNMR-04, pages 34–46. Springer LNCS
2923, 2004.

[24] G. Brewka. Complex preferences for answer set optimization. In Proc.
KR AAAI-04, pages 213–223. Morgan Kaufmann, 2004.

[25] G. Brewka and T. Eiter. Preferred answer sets for extended logic pro-
grams. Artificial Intelligence, 109(1-2):297–356, 1999.

[26] G. Brewka, I. Niemelä, and T. Syrjänen. Logic programs with ordered
disjunction. Computational Intelligence, special issue on preferences in
AI, 2004.

[27] G. Brewka, I. Niemelä, and M. Truszczyński. Answer set optimiza-
tion. In Proc. International Joint Conference on Artificial Intelli-
gence(IJCAI 2003). Morgan Kaufman, 2003. [PS].

[28] Gerhard Brewka. Well-Founded Semantics for Extended Logic Pro-
grams with Dynamic Preferences. Journal of Articficial Intelligence
Research, 4:19–36, 1996.

[29] Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended
logic programs. Artificial Intelligence, 109(1-2):297–356, April 1999.

[30] F. Buccafurri and G. Caminiti. A Social Semantics for Multi-Agent
Systems. In in Proc. of 8th LPNMR’05 (to appear). Springer, 2005.

34

http://www.cs.bath.ac.uk/~mdv/Publications/asp03.ps.gz
ftp://ftp.cs.uky.edu/cs/manuscripts/aso-ijcai03.ps


[31] F. Buccafurri and G. Gottlob. Multiagent Compromises, Joint Fix-
points, and Stable Models, volume 2407 of LNCS and LNAI. Springer,
2002.

[32] F. Buccafurri, N. Leone, and P. Rullo. Enhancing Disjunctive Datalog
by Constraints. IEEE Transactions on Knowledge and Data Engineer-
ing, 12(5):845–860, 2000.

[33] Francesco Buccafurri, Gianluca Caminiti, and Domenico Rosaci.
Perception-dependent reasoning and answer sets. In Marco Cadoli,
Marco Gavanelli, and Toni Mancini, editors, Atti della Giornata di La-
voro: Analisi sperimentale e benchmark di algoritmi per l’Intelligenza
Artificiale, Dipartimento di Ingegneria, Universita‘ di Ferrara, Italy,
June 10 2005. [PDF].

[34] Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive
Logic Programs with Inheritance. In Danny De Schreye, editor, Inter-
national Conference on Logic Programming (ICLP), pages 79–93, Las
Cruces, New Mexico, USA, 1999. The MIT Press.

[35] Francesco Buccafurri, Wolfgang Faber, and Nicola Leone. Disjunctive
logic programs with inheritance. Journal of the Theory and Practice
of Logic Programming, 2(3), 2002.

[36] Francesco Buccafurri, Nicola Leone, and Pasquale Rullo. Disjunctive
ordered logic: Semantics and expressiveness. In Cohn et al. [39], pages
418–431.

[37] Weidong Chen, Michael Kifer, and David Scott Warren. HILOG: A
foundation for higher-order logic programming. Journal of Logic Pro-
gramming, 15(3):187–230, 1993.

[38] Y. Chen, F. Lin, and L. Li. Selp—a system for studying strong equiva-
lence between logic programs. In Answer Set Programming: Advances
in Theory and Implementation (ASP05), pages 141–152, Bath, UK,
2005.

[39] Anthony G. Cohn, Lenhard K. Schubert, and Stuart C. Shapiro, edi-
tors. Proceedings of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning, Trento, June 1998. Morgan
Kaufmann.

35

http://www.ing.unife.it/eventi/rcra05/articoli/BuccafurriEtAl.pdf


[40] L. Console, D. Theseider Dupré, and P. Torasso. On the Relationship
Between Abduction and Deduction. Journal of Logic and Computation,
1(5):661–690, 1991.

[41] Marina De Vos. Implementing Ordered Choice Logic Programming
using Answer Set Solvers. In Third International Symposium on Foun-
dations of Information and Knowledge Systems (FoIKS’04), volume
2942, pages 59–77, Vienna, Austria, February 2004. Springer Verlag.

[42] Marina De Vos and Dirk Vermeir. Choice Logic Programs and Nash
Equilibria in Strategic Games. In Jörg Flum and Mario Rodŕıguez-
Artalejo, editors, Computer Science Logic (CSL’99), volume 1683 of
Lecture Notes in Computer Science, pages 266–276, Madrid, Spain,
1999. Springer Verslag.

[43] Marina De Vos and Dirk Vermeir. On the Role of Negation in Choice
Logic Programs. In Michael Gelfond, Nicola Leone, and Gerald Pfeifer,
editors, Logic Programming and Non-Monotonic Reasoning Conference
(LPNMR’99), volume 1730 of Lecture Notes in Artificial Intelligence,
pages 236–246, El Paso, Texas, USA, 1999. Springer Verslag.

[44] Marina De Vos and Dirk Vermeir. Dynamically Ordered Probabilistic
Choice Logic Programming. In Proceedings of Foundations of Software
Technology and Theoretical Computer Science Conference (FST TCS
2000), number 1974 in Lecture Notes in Computer Science, pages 227–
239, New Delhi, India, December 2000. Springer-Verlag. [ps.gz].

[45] Marina De Vos and Dirk Vermeir. A Logic for Modelling Decision
Making with Dynamic Preferences. In Proceedings of the Logic in Arti-
ficial Intelligence (Jelia2000) workshop, number 1999 in Lecture Notes
in Artificial Intelligence, pages 391–406, Malaga, Spain, 2000. Springer
Verslag.

[46] Marina De Vos and Dirk Vermeir. Logic Programming Agents and
Game Theory. In Answer Set Programming: Towards Efficient and
Scalable Knowledge Representation and Reasoning, pages 27–33, Stan-
ford (Palo Alto), California, US, March 2001. American Association
for Artificial Intelligence Press. [ps.gz].

[47] Marina De Vos and Dirk Vermeir. Dynamic Decision Making in Logic
Programming and Game Theory. In AI2002: Advances in Artifi-
cial Intelligence, Lecture Notes in Artificial Intelligence, pages 36–47.
Springer, December 2002. [ps.gz].

36

http://www.cs.bath.ac.uk/~mdv/Publications/fsttcs.ps.gz
http://www.cs.bath.ac.uk/~mdv/Publications/mdevos01.ps.gz
http://www.cs.bath.ac.uk/~mdv/Publications/ai2002.ps.gz


[48] Marina De Vos and Dirk Vermeir. Logic Programming Agents Play-
ing Games. In Research and Development in Intelligent Systems XIX
(ES2002), BCS Conference Series, pages 323–336. Springer, December
2002. [ps.gz].

[49] Marina De Vos and Dirk Vermeir. Extending Answer Sets for Logic
Programming Agents. Annals of Mathematics and Artifical Intelli-
gence, 42(1–3):103–139, September 2004. Special Issue on Computa-
tional Logic in Multi-Agent Systems.

[50] J. Delgrande and T. Schaub. Reasoning credulously and skeptically
within a single extension. Journal of Applied Non-Classical Logics,
12(2):259–285, 2002. [PDF].

[51] J. Delgrande and T. Schaub. On the relation between Reiter’s de-
fault logic and its (major) variants. In Th. Nielsen and N. Zhang, edi-
tors, Proceedings of the Seventh European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, volume 2711
of Lecture Notes in Artificial Intelligence, pages 452–463. Springer-
Verlag, 2003. [PDF].

[52] J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling
preferences in logic programs. Theory and Practice of Logic Program-
ming, 3(2):129–187, March 2003. [PDF].

[53] J. Delgrande, T. Schaub, H. Tompits, and K. Wang. Towards a classifi-
cation of preference handling approaches in nonmonotonic reasoning. In
U. Junker, editor, Proceedings of the Workshop on Preferences in Arti-
ficial Intelligence and Constraint Programming: Symbolic Approaches,
pages 16–24. AAAI Press, 2002. [PDF].

[54] J.P. Delgrande, T. Schaub, and K. Jackson. Alternative approaches to
default logic. Artificial Intelligence, 70(1-2):167–237, October 1995.

[55] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and
Gerald Pfeifer. Aggregate Functions in DLV. In Marina de Vos and
Alessandro Provetti, editors, Proceedings ASP03 - Answer Set Pro-
gramming: Advances in Theory and Implementation, pages 274–288,
Messina, Italy, September 2003. Online at http://CEUR-WS.org/

Vol78/.

[56] M. Denecker and D. De Schreye. Representing incomplete knowledge
in abductive logic programming. Journal of Logic and Computation,
5(5):553–577, 1995.

37

http://www.cs.bath.ac.uk/~mdv/Publications/es2002.ps.gz
http://www.cs.uni-potsdam.de/wv/pdfformat/delsch02a.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/delsch03a.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/descto02a.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/desctowa02a.pdf
http://CEUR-WS.org/Vol78/
http://CEUR-WS.org/Vol78/


[57] M. Denecker and D. De Schreye. SLDNFA: An Abductive Procedure for
Abductive Logic Programs. Journal of Logic Programming, 34(2):111–
167, 1998.

[58] M. Denecker and A. C. Kakas. Abduction in Logic Programming. In
Computational Logic: Logic Programming and Beyond 2002, number
2407 in LNCS, pages 402–436. Springer, 2002.

[59] Marc Denecker. Extending classical logic with inductive definitions. In
J. Lloyd et al., editor, First International Conference on Computational
Logic (CL2000), volume 1861 of Lecture Notes in Artificial Intelligence,
pages 703–717, London, July 2000. Springer.

[60] Marc Denecker. Whatś in a model? Epistemological analysis of
Logic Programming. In Proceedings of Ninth International Con-
ference on Principles of Knowledge Representation and Reasoning,
Delta Whistler Resort, Canada, pages 106–113, 2004. URL =
http://www.cs.kuleuven.ac.be/cgibin-dtai/publ info.pl?id=41086.

[61] Marc Denecker, Victir Marek, and Mirek Truszczyński. Ulti-
mate approximation and its application in nonmonotonic knowl-
edge representation systems. Information and Computation,
192(1):84–121, 2004. URL = http://www.cs.kuleuven.ac.be/cgi-bin-
dtai/publ info.pl?id=41124.

[62] Marc Denecker, Victor Marek, and Miros law Truszczyński. Ultimate
approximations of operators in commonsense reasoning. In Principles
of Knowledge Representation and Reasoning: Proceedings of the Eigth
International Conference (KR2002), pages 177–188, Toulouse, France,
April 2002. Morgan Kaufman.

[63] Marc Denecker, Victor Marek, and Miroslaw Truszczyński. Uniform
semantic treatment of default and autoepistemic logics. Artificial In-
telligence, 143(1):79–122, 2003.

[64] Marc Denecker and Eugenia Ternovska. Inductive Situation
Calculus. In Proceedings of Ninth International Conference
on Principles of Knowledge Representation and Reasoning, Delta
Whistler Resort, Canada, pages 545–553, 2004. URL =
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41085.

[65] Marc Denecker and Eugenia Ternovska. A logic of non-monotone in-
ductive definitions and its modularity properties. In Vladimir Lifschitz

38



and Ilkka Niemelä, editors, 7th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, 2004. [Link].

[66] Y. Dimopoulos, L. Michael, and A. Kakas. Answer set programming
algorithms and complexity for reasoning about actions and change.
Submitted, 2004.

[67] Yannis Dimopoulos, Antonis Kakas, and Loizos Michael. Reasoning
about actions and change in answer set programming. In Proceedings
of the 7th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’04), number 2923 in Lecture Notes in
Computer Science, pages 61–73. Springer-Verlag, 2004.

[68] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding
Planning Problems in Nonmonotonic Logic Programs. In Proceedings
of the European Conference on Planning 1997 (ECP-97), pages 169–
181. Springer Verlag, 1997.

[69] The DLPT web site. http://dlpt.gibbi.com.

[70] meta-interpreter. http://www.dbai.tuwien.ac.at/proj/dlv/preferred/,
2002.

[71] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrat-
ing Datalog and Description Logics. J. of Intelligent and Cooperative
Information Systems, 10:227–252, 1998.

[72] P. M. Dung. Negation as Hypotheses: An Abductive Foundation for
Logic Programming. In Proceedings of the 8th International Conference
on Logic Programming (ICLP’91), pages 3–17. MIT Press, 1991.

[73] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Computing preferred
answer sets by meta-interpretation in answer set programming. Jour-
nal of the Theory and Practice of Logic Programming, 3(4-5):463–498,
2003.

[74] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Plan-
ning under Incomplete Knowledge. In John Lloyd, Veronica Dahl, Ul-
rich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi,
Lúıs Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors,
Proceedings First International Conference on Computational Logic
(CL-2000), Knowledge Representation and Non-monotonic Reasoning
Stream, number 1861 in LNCS/LNAI, pages 807–821. Springer Verlag,
July 2000.

39

http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=40945


[75] T. Eiter and G. Gottlob. On the Computational Cost of Disjunctive
Logic Programming: Propositional Case. Annals of Mathematics and
Artificial Intelligence, 15(3/4):289–323, 1995.

[76] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Declarative Problem-Solving Using the DLV System. In Jack Minker,
editor, Logic-Based Artificial Intelligence, pages 79–103. Kluwer Aca-
demic Publishers, 2000.

[77] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres. Answer Set Planning under Action Costs. Journal of Artificial
Intelligence Research, 19:25–71, 2003.

[78] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres. A logic programming approach to knowledge-state planning,
II: The dlvK system. Artificial Intelligence, 144(1-2):157–211, 2003.

[79] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres. A Logic Programming Approach to Knowledge-State Plan-
ning: Semantics and Complexity. ACM Transactions on Computational
Logic, 5(2):206–263, April 2004.

[80] Thomas Eiter, Wolfgang Faber, Gerald Pfeifer, and Axel Polleres.
Declarative planning and knowledge representation in an action lan-
guage. In Ioannis Vlahavas and Dimitris Vrakas, editors, Intelligent
Techniques for Planning. Idea Group, Inc., 2005. To appear.

[81] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits.
On Properties of update Sequences Based on Causal Rejection. Theory
and Practice of Logic Programming, 2(6), November 2002.

[82] Thomas Eiter, Georg Gottlob, and Helmuth Veith. Modular Logic Pro-
gramming and Generalized Quantifiers. In Jürgen Dix, Ulrich Furbach,
and Anil Nerode, editors, Proceedings of the 4th International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR-
97), number 1265 in LNCS, pages 290–309. Springer, 1997.

[83] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans
Tompits. Nonmonotonic Description Logic Programs: Implementation
and Experiments. In F. Baader and A. Voronkov, editors, Proceed-
ings 12th International Conference on Logic for Programming, Artifi-
cial Intelligence and Reasoning (LPAR 2005), LNCS. Springer, 2005.
To appear.

40



[84] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Combining Answer Set Programming with Description Log-
ics for the Semantic Web”. In Didier Dubois, Christopher Welty, and
Mary-Anne Williams, editors, Proceedings Ninth International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR
2004), June 2-5, Whistler, British Columbia, Canada, pages 141–151.
Morgan Kaufmann, 2004.

[85] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Well-founded Semantics for Description Logic Programs in
the Semantic Web. In G. Antoniou and H. Boley, editors, Proceed-
ings RuleML 2004 Workshop, ISWC Conference, Hiroshima, Japan,
November 2004, number 3323 in LNCS, pages 81–97. Springer, 2004.

[86] Eiter, T., Leone, N., Pfeifer G., Mateis C., and Scarcello, F. The kr
system dlv: Progress report, comparisons and benchmarks. In Pro-
ceedings of the 6th International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 406–417. Morgan Kaufmann
Publishers, 1998.

[87] S. Erdogem and V. Lifschitz. Definitions in answer set programming.
In V. Lifschitz and I. Niemel, editors, Proceedings LPNMR 04, volume
2923 of Lecture Notes in Computer Science, pages 114–126. Springer-
Verlag, 2004.

[88] K. Eshghi and R. A. Kowalski. Abduction compared with negation
by failure. In G. Levi and M. Martelli, editors, Proceedings of the 6th
International Conference on Logic Programming, pages 234–255. MIT
Press, 1989.

[89] T. Eiter et al. WP5 report: Model applications and proofs-of-concepts.
[html], 2004.

[90] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggre-
gates in disjunctive logic programs: Semantics and complexity. In
José Júlio Alferes and João Leite, editors, Proceedings of the 9th Eu-
ropean Conference on Artificial Intelligence (JELIA 2004), number
3229 in Lecture Notes in AI (LNAI), pages 200–212. Springer Verlag,
September 2004.

[91] P. Ferraris and V. Lifschitz. Weight constraints as nested expressions.
Theory and Practice of Logic Programming, 2004. Accepted for publi-
cation.

41

http://www.kr.tuwien.ac.at/projects/WASP/wasp-wp5-web.html


[92] D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. Sceptical
Semantics for Ordered Logic Programs. In J. Allen, R. Fikes, and
E. Sandewall, editors, Proceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning, pages 208–
217, Cambridge, Mass, 1991.

[93] D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. Sceptical
Semantics for Ordered Logic Programs. In J. Allen, R. Fikes, and
E. Sandewall, editors, Proceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning, pages 208–
217, Cambridge, Mass, 1991. Morgan Kaufmann.

[94] GCplp. http://www.cs.uni-potsdam.de/∼konczak/system/GCplp,
2003.

[95] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and
Disjunctive Databases. New Generation Computing, 9:365–385, 1991.

[96] M. Gelfond and H. Przymusinska. Reasoning in Open Domains. In
Logic Programming and Non-Monotonic Reasoning, pages 397–413.
MIT Press, 1993.

[97] Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C.
Kakas and Fariba Sadri, editors, Computational Logic. Logic Program-
ming and Beyond, number 2408 in LNCS, pages 413–451. Springer,
2002.

[98] D. Gilis, M. Mariën, and M. Denecker. On the relation between id-logic
and answer set programming. In J. J. Alferes and J. Leite, editors,
Logics in Artificial Intelligence (proceedings of Jelia’04), volume 3229
of LNAI, pages 108 – 120. Springer, 2004.

[99] T. Gordon. The pleading game: An Artificial Intelligence Model of
Procedural Justice. Dissertation, Technische Hochschule Darmstadt,
1993.

[100] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description
Logic Programs: Combining Logic Programs with Description Logic.
In Proceedings of Twelfth International World Wide Web Conference
(WWW 2003), pages 48–57. ACM, 2003. http://www.cs.man.ac.uk/
~horrocks/Publications/download/2003/p117-grosof.pdf.

[101] V. Haarslev and R. Möller. RACER system description. In Proceedings
IJCAR-2001, volume 2083 of LNCS, pages 701–705, 2001.

42

http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/p117-grosof.pdf
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/p117-grosof.pdf


[102] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Semantic Web
Reasoning with Conceptual Logic Programs. In Proceedings of the
Rules and Rule Markup Languages for the Semantic Web Workshop,
number 3323 in LNCS. Springer, 2004. To appear.

[103] S. Heymans and D. Vermeir. Integrating Description Logics and An-
swer Set Programming. In Franćois Bry, Nicola Henze, and Jan
Maluszynski, editors, International Workshop on Principles and Prac-
tice of Semantic Web Reasoning (PPSWR 2003), number 2901 in
LNCS, pages 146–159, Mumbai, India, December 2003. Springer. http:
//tinf2.vub.ac.be/~sheymans/publications/ppswr2003.ps.

[104] S. Heymans and D. Vermeir. Integrating Ontology Languages and
Answer set Programming. In Fourteenth International Workshop on
Database and Expert Systems Applications, pages 584–588, Prague,
Czech Republic, September 2003. IEEE Computer Society. http:

//tinf2.vub.ac.be/~sheymans/publications/webs2003.ps.

[105] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. In Proceedings ISWC-2003, volume 2870
of LNCS, pages 17–29, 2003.

[106] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. Journal
of Web Semantics, 1(1):7–26, 2003.

[107] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Descrip-
tion Logic to Disjunctive Datalog Programs. FZI-Report 1-8-11/03,
Forschungszentrum Informatik (FZI), 2003.

[108] G. Ianni, F. Calimeri, G. Ielpa, A. Pietramala, and M. C. Santoro. En-
hancing answer set programming with templates. In 10th International
Workshop on Non-Monotonic Reasoning (NMR 2004), pages 233–239,
June 2004.

[109] Giovambattista Ianni, Giuseppe Ielpa, Francesco Calimeri, Adriana
Pietramala, and Maria Carmela Santoro. A system with template an-
swer set programs. In Logics in Artificial Intelligence: 9th European
Conference, JELIA 2004, LNCS 3229, pages 693–697, September 2004.

[110] K. Inoue and C. Sakama. Abducing priorities to derive intended con-
clusions. In Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI’99), pages 44–49, 1999.

43

http://tinf2.vub.ac.be/~sheymans/publications/ppswr2003.ps
http://tinf2.vub.ac.be/~sheymans/publications/ppswr2003.ps
http://tinf2.vub.ac.be/~sheymans/publications/webs2003.ps
http://tinf2.vub.ac.be/~sheymans/publications/webs2003.ps


[111] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J. You. Unfolding
partiality and disjunctions in stable model semantics. ACM Transac-
tions on Computational Logic, 2005. Accepted for publication. Prelim-
inary version available at CoRR: cs.AI/0303009.

[112] T. Janhunen, I. Niemelä, P. Simons, and J. You. Unfolding par-
tiality and disjunctions in stable model semantics. In A.G. Cohn,
F. Guinchiglia, and B. Selman, editors, Proceedings of the Seventh In-
ternational Conference on Principles of Knowledge Representation and
Reasoning, pages 411–419, Breckenridge, Colorado, USA, April 2000.
Morgan Kaufman Publishers.

[113] A. C. Kakas and P. Mancarella. Generalized Stable Models: a Seman-
tics for Abduction. In Proceedings of the 9th European Conference on
Artificial Intelligence (ECAI ’90), pages 385–391, 1990.

[114] A. C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive Constraint
Logic Programming. Journal of Logic Programming, 44(1-3):129–177,
2000.

[115] A. C. Kakas and R. Miller. Reasoning about actions, narratives and
ramifications. Electronic Transactions on Artificial Intelligence, 1(4),
1997.

[116] A. C. Kakas, B. Van Nuffelen, and M. Denecker. A-System: Problem
Solving through Abduction. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2001), pages
591–596, Seattle, WA, USA, 2001.

[117] A.C. Kakas, R.A. Kowalski, and F. Toni. Abductive Logic Program-
ming. Journal of Logic and Computation, 2(6):719–770, 1992.

[118] Anthonis C. Kakas, Bert Van Nuffelen, and Marc Denecker. A-system
: Problem solving through abduction. In B. Nebel, editor, Proceedings
of IJCAI’01 - Seventeenth International Joint Conference on Artificial
Intelligence, volume 1, pages 591–596. Morgan Kaufmann Publishers,
Inc., 2001. [Link].

[119] David B. Kemp and Peter J. Stuckey. Semantics of Logic Programs with
Aggregates. In Vijay A. Saraswat and Kazunori Ueda, editors, Proceed-
ings of the International Symposium on Logic Programming (ISLP’91),
pages 387–401. MIT Press, 1991.

44

http://lanl.arxiv.org/abs/cs.AI/0303009
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=34862


[120] K. Konczak, T. Schaub, and T. Linke. Graphs and colorings for answer
set programming with preferences. Fundamenta Informaticae, 57(2-
4):393–421, 2003. [PDF].

[121] K. Konczak, T. Schaub, and T. Linke. Graphs and colorings for an-
swer set programming with preferences: Preliminary report. In M. De
Vos and A. Provetti, editors, Proceedings of the Second International
Workshop on Answer Set Programming (ASP’03), volume 78, pages
43–56. CEUR Workshop Proceedings, 2003. [Link], [PDF].

[122] K. Konolige. Abduction versus closure in causal theories. Artificial
Intelligence, 53(2-3):255–272, 1992.

[123] Els Laenens and Dirk Vermeir. Assumption-free semantics for ordered
logic programs: On the relationship between well-founded and stable
partial models. Journal of Logic and Computation, 2(2):133–172, 1992.

[124] Els Laenens and Dirk Vermeir. A Universal Fixpoint Semantics for
Ordered Logic. Computers and Artificial Intelligence, 19(3), 2000.

[125] N. Leone and S. Perri. Parametric connectives in disjunctive logic
programming. In Answer Set Programming: Advances in Theory and
Implementation (ASP03), pages 124–135, Messina, Italy, 2003.

[126] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, C. Koch,
C. Mateis, S. Perri, and F. Scarcello. The DLV system for knowledge
representation and reasoning. Technical Report INFSYS RR-1843-02-
14, Institut für Informationssysteme, Technische Universität Wien, A-
1040 Vienna, Austria, October 2002.

[127] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello. The DLV System
for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic, 2005. To appear. Available via http://www.

arxiv.org/ps/cs.AI/0211004.

[128] A. Y. Levy and M. Rousset. CARIN: A Representation Language
Combining Horn Rules and Description Logics. In European Conference
on Artificial Intelligence, pages 323–327, 1996.

[129] V. Lifschitz, L. Tang, and H. Turner. Nested expressions in logic pro-
grams. Annals of Mathematics and Artificial Intelligence, 25(3-4):369–
389, 1999.

45

http://www.cs.uni-potsdam.de/wv/pdfformat/koscli03b.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-78/
http://www.cs.uni-potsdam.de/wv/pdfformat/koschli03a.pdf
http://www.arxiv.org/ps/cs.AI/0211004
http://www.arxiv.org/ps/cs.AI/0211004


[130] V. Lifschitz and H. Turner. From disjunctive programs to abduction. In
Non-Monotonic Extensions of Logic Programming, pages 23–42, 1994.

[131] Vladimir Lifschitz. Foundations of Logic Programming. In G. Brewka,
editor, Principles of Knowledge Representation, pages 69–127. CSLI
Publications, Stanford, 1996.

[132] Vladimir Lifschitz. Answer set programming and plan generation.
Journal of Artificial Intelligence, 138(1-2):39–54, 2002.

[133] F. Lin and J. You. Abduction in logic programming: A new definition
and an abductive procedure based on rewriting. Artificial Intelligence,
140(1–2):175–205, September 2002.

[134] T. Linke. Using nested logic programs for answer set programming. In
M. De Vos and A. Provetti, editors, Proceedings of the Second Inter-
national Workshop on Answer Set Programming (ASP’03), volume 78,
pages 181–194. CEUR Workshop Proceedings, 2003. [Link], [PDF].

[135] T. Linke, A. Bösel, and C. Anger. noMoRe a graph-based system for
non-monotonic reasoning with logic programs under answer set seman-
tics, 2000–2003. [PDF].

[136] T. Linke, H. Tompits, and S. Woltran. On acyclic and head-cycle
free nested logic programs. In B. Demoen and V. Lifschitz, editors,
Proceedings of 19th International Conference on Logic Programming
(ICLP04), volume 3132 of Lecture Notes in Computer Science, pages
225–239. Springer-Verlag, 2004.

[137] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
Berlin, 1984.

[138] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of
Disjunctive Logic Programming. The MIT Press, Cambridge, Mas-
sachusetts, 1992.

[139] W.  Lukaszewicz. Considerations on default logic: An alternative ap-
proach. Computational Intelligence, 4(1):1–16, Jan. 1988.

[140] D. Makinson. General theory of cumulative inference. In M. Reinfrank,
editor, Proc. of the Second International Workshop on Non-Monotonic
Reasoning, volume 346 of Lecture Notes in Artificial Intelligence, pages
1–18. Springer Verlag, 1989.

46

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-78/
http://www.cs.uni-potsdam.de/wv/pdfformat/linke03a.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/liboan03a.pdf


[141] A. Mikitiuk and M. Truszczyński. Constrained and rational default
logics. In Proceedings of the International Joint Conference on Artifi-
cial Intelligence, pages 1509–1515, Montréal, 1995. Morgan Kaufmann
Publishers.

[142] Jack Minker. On Indefinite Data Bases and the Closed World As-
sumption. In D.W. Loveland, editor, Proceedings 6th Conference on
Automated Deduction (CADE ’82), number 138 in Lecture Notes in
Computer Science, pages 292–308, New York, 1982. Springer.

[143] Jack Minker. Overview of Disjunctive Logic Programming. Annals of
Mathematics and Artificial Intelligence, 12:1–24, 1994.

[144] B. Motik, R. Volz, and A. Maedche. Optimizing Query Answering in
Description Logics using disjunctive deductive databases. In Proc. of
KRDB’03, pages 39–50, 2003.

[145] I. Niemelä and P. Simons. Efficient implementation of the well-founded
and stable model semantics. In M. Maher, editor, Proceedings of the
Joint International Conference and Symposium on Logic Programming,
pages 289–303, Bonn, Germany, September 1996. The MIT Press.

[146] D. Van Nieuwenborgh and D. Vermeir. Preferred answer sets for or-
dered logic programs. In Logic in Artificial Intelligence, JELIA 2002,
pages 432–443, Cosenza, Italy, September 2002. http://tinfpc2.vub.
ac.be/papers/jelia2002.ps.gz.

[147] D. Van Nieuwenborgh and D. Vermeir. Order and Negation as Fail-
ure. In Proceedings of the 19’th International Conference on Logic
Programming (ICLP 2003), Lecture Notes in Computer Science, page
to appear. Springer Verlag, 2003.

[148] D. Pearce, V. Sarsakov, T. Schaub, H. Tompits, and S. Woltran. A
polynomial translation of logic programs with nested expressions into
disjunctive logic programs. In P. Stuckey, editor, Proceedings of the
International Conference on Logic Programming, volume 2401, pages
405–420. Springer-Verlag, 2002. [PDF].

[149] D. Pearce, H. Tompits, and S. Woltran. Encodings for equilibrium
logic and logic programs with nested expressions. In Pavel Brazdil
and Aĺıpio Jorge, editors, Proceedings of 10th Portuguese Conference
on Artificial Intelligence (EPIA 01), volume 2258 of Lecture Notes in
Computer Science, pages 306–320. Springer-Verlag, 2001.

47

http://tinfpc2.vub.ac.be/papers/jelia2002.ps.gz
http://tinfpc2.vub.ac.be/papers/jelia2002.ps.gz
http://www.cs.uni-potsdam.de/wv/pdfformat/pesasctowo02a.pdf


[150] Nikolay Pelov. Semantics of logic programs with aggregates. Phd,
Department of Computer Science, K.U.Leuven, Leuven, Belgium, apr
2004. 152 + x pages.

[151] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Translation
of aggregate programs to normal logic programs. In Marina De Vos
and Alessandro Provetti, editors, Answer Set Programming: Advances
in Theory and Implementation, volume 78 of CEUR Workshop Pro-
ceedings, pages 29–42, 2003. [Link].

[152] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Partial sta-
ble semantics for logic programs with aggregates. In Vladimir Lifschitz
and Ilkka Niemelä, editors, 7th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, 2004. [Link].

[153] Nikolay Pelov and Miros law Truszczyński. Semantics of disjunctive
programs with monotone aggregates - an operator-based approach.
In Proceedings of the 10th International Workshop on Non-monotonic
Reasoning (NMR 2004), Whistler, BC, Canada, pages 327–334, 2004.

[154] S. Perri, F. Scarcello, and N.Leone. Abductive logic programs with
penalization: Semantics, complexity and implementation. Journal of
the Theory and Practice of Logic Programming, Forthcoming. [PDF].

[155] plp. http://www.cs.uni-potsdam.de/∼torsten/plp, 2002.

[156] D.L. Poole. What the lottery paradox tells us about default reasoning
(extended abstract). In Proceedings of the First International Con-
ference on the Principles of Knowledge Representation and Reasoning,
Toronto, Ont., 1989.

[157] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-
2):81–132, 1980.

[158] R. Reiter. A theory of diagnosis from first principles. Artificial Intel-
ligence, 32(1):57–96, 1987.

[159] R. Rosati. Towards Expressive KR Systems Integrating Datalog and
Description Logics: Preliminary Report. In Proc. of DL’99, pages 160–
164, 1999.

[160] C. Sakama and K. Inoue. Abductive logic programming and disjunctive
logic programming: their relationship and transferability. Journal of
Logic Programming, 44(1-3):75–100, 2000.

48

http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=40920
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ_info.pl?id=40922
http://xxx.lanl.gov/PS_cache/cs/pdf/0310/0310047.pdf


[161] V. Sarsakov, T. Schaub, H. Tompits, and S. Woltran. nlp: A com-
piler for nested logic programming. In V. Lifschitz and I. Niemelä, edi-
tors, Proceedings of the Seventh International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’04), volume 2923 of
Lecture Notes in Computer Science, pages 361 – 364. Springer-Verlag
Heidelberg, 2003. [PDF].

[162] T. Schaub and K. Wang. A semantic framework for preference han-
dling in answer set programming. Theory and Practice of Logic Pro-
gramming, 3(4-5):569–607, 2003. [PDF].

[163] Torsten Schaub and Kewen Wang. A comparative study of logic pro-
grams with preference. In Bernhard Nebel, editor, Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI) 2001, pages 597–602, Seatle, Washington, USA, August 2001.
[PDF].

[164] P. Simons. Extending and implementing the stable model seman-
tics. Doctoral Dissertation. Research report A58, Helsinki University
of Technology, Helsinki, Finland, April 2000.

[165] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing
the stable model semantics. Artificial Intelligence, 138(1–2):181–234,
2002.

[166] smodels. http://www.tcs.hut.fi/Software/smodels/, 2002.

[167] V.S. Subrahmanian and Carlo Zaniolo. Relating Stable Models and
AI Planning Domains. In Leon Sterling, editor, Proceedings of the
12th International Conference on Logic Programming, pages 233–247,
Tokyo, Japan, June 1995. MIT Press.

[168] T. Syrjänen. Omega-restricted programs. In Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic
Reasoning, pages 267–279, Vienna, Austria, September 2001. Springer-
Verlag.

[169] T. Syrjänen. Cardinality constraint programs. In Proceedings of the
9th European Conference on Logics in Artificial Intelligence, JELIA’04,
pages 187–199, Lisbon, Portugal, September 2004. Springer-Verlag.

[170] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM, 38(3):620–650,
1991.

49

http://www.cs.uni-potsdam.de/wv/pdfformat/sasctowo03a.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/schwan02a.pdf
http://www.cs.uni-potsdam.de/wv/pdfformat/schwan01b.pdf


[171] B. Van Nuffelen and A. C. Kakas. A-System: Declarative Programming
with Abduction. In Proceedings of the 6th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR-01),
volume 2173 of LNCS, pages 393–396, Vienna, Austria, 2001. Springer.

[172] Bert Van Nuffelen. Abductive constraint logic programming: imple-
mentation and applications. Phd, Department of Computer Science,
K.U.Leuven, Leuven, Belgium, jun 2004. 315+xxii pages.

[173] D. Vermeir, E. Laenens, and D. Sacca. Extending logic programming.
In Proceedings of the SIGMOD Conference, pages 184–193. ACM, 1990.

50


	Introduction
	General Extensions
	Disjunctions 
	Nested Programs 
	Cardinality and Weight Constraints 
	Aggregates 
	Templates 

	Application Oriented Extensions
	Abduction 
	Preferences 
	Rule Preferences 
	Ordered Disjunctions 
	Optimization Programs 
	Ordered Choice Logic Programs 

	Actions and Change 
	Description Logics 
	Open Answer Set Programming
	DL-Programs

	Social and Sensor-Dependent Logic Programming

	Logical Foundations
	Default Logic 
	Finitary and Open Programs 
	ID-Logic 

	Summary of Implementations
	Software Engineering Issues

