
The SMUML UML subset

Tommi Junttila
Helsinki University of Technology TKK

Laboratory for Theoretical Computer Science
http://www.tcs.hut.fi/~tjunttil

Jori Dubrovin
Helsinki University of Technology TKK

Laboratory for Theoretical Computer Science
email: Jori.Dubrovin@tkk.fi

December 20, 2007

Abstract

This document describes the UML subset developed and used in the
project “Symbolic Methods for UML Behavioural Diagrams” (SMUML).
It also gives a formal semantics for the subset. The semantics includes a
formal definition for the structure and behavior of a class of hierarchical
UML state machines.

1 Introduction

This document describes the UML subset developed and used in the project
“Symbolic Methods for UML Behavioural Diagrams” (SMUML). The SMUML
project, carried out at the Laboratory for Theoretical Computer Science of
Helsinki University of Technology during the years 2005–2007, has been funded
by the Finnish Funding Agency for Technology and Innovation (TEKES), Nokia
Research Center, Conformiq Oy, and Mipro Oy. The goal of the project has
been to develop new symbolic methods for analyzing the dynamic behavior of
UML models. As UML is a very large modelling language, a subset of UML that
is supported by the tools developed in the project has been defined. The main
design goals for the subset are that it should be (i) suitable for modelling sys-
tems composed of asynchronously executing objects communicating with each
other though attribute access and message passing, and (ii) amenable for auto-
matic analysis by means of model checking [2] tools. As a result, a UML system
in the proposed UML subset is composed of a finite set of asynchronously exe-
cuting objects that are instances of classes in the UML model. The objects can
communicate with each other via message passing and attribute access. The
behavior of each active object is described by the hierarchical state machine
associated with the class of the object. The guards and effects appearing in
the transitions of the state machines are written in a Java-like action language
Jumbala [4]. In addition to specifying a UML subset, this document also gives
a formal semantics for the subset. In particular, the semantics includes a formal

1



definition of the structure and the behavior of a class of hierarchical UML state
machines.

To specify the subset of UML, we use the UML version 1.4 [6] as the start-
ing point. The reason for using a rather old version of UML is a historical and
practical one: when the SMUML project was started, the easiest way to access
and manipulate UML models was to use the Python programming language in-
terface of the Coral meta-modeling toolkit [1, 3] developed at the Åbo Akademi.
At that time, as well as today, Coral only had graphical editor for UML 1.4, not
for later versions. On the positive side, as UML 1.4 is basically a subset of later
versions of UML, the techniques developed in the project either directly apply
or can potentially be extended to more recent versions of UML. Of course, con-
structs like composite structures and ports may pose some research challenges
but, for instance, the semantics for state machines described in this document
should be usable as a basis for semantics of UML 2.0 state machines.

The rest of this document is divided in two parts:

• First, Section 2 gives the structural characterization of the models in the
proposed UML subset.

• Second, Section 3 gives a formal semantics for the models in the subset.
In particular, the semantics of the state machines are described in detail.

1.1 Model Input Format and a Model Validation Tool

The tools developed in the project use the Coral meta-modeling toolkit [1, 3]
developed at the Åbo Akademi to access the UML models. They expect the
models to also conform to the UML 1.4 meta-model as implemented in Coral
and to be given in the XMI file format as supported by Coral.

The SMUML project software tool set contains a model validator tool that
checks whether the given Coral UML 1.4 model conforms to the SMUML UML
subset. It can be invoked with

python validate_model.py umlmodel.xmi

where umlmodel.xmi is the model to be validated.

1.2 Acknowledgements

The financial support of the Finnish Funding Agency for Technology and Inno-
vation (TEKES), Nokia, Conformiq, and Mipro is gratefully acknowledged. The
authors also wish to thank Antti Huima, Toni Jussila, Timo Latvala, and Heikki
Tauriainen for their ideas, feedback, and comments during the development of
the UML subset.

2 Structure

This section describes the structure of the UML (1.4) models conforming to the
SMUML UML subset. It is required that the reader is familiar with the UML
1.4 meta-model specification [6]. In order to improve readability, the UML
concepts such as classes, attributes, and associations in the UML meta-model
are written in a different font in this Section; for instance, SimpleState for the

2



nof_sent: int

Environment

ProtocolEntity

env

receiversender

wsize: int = 3

peer

Figure 1: Classes

UML 1.4 meta-class “SimpleState” or s.outgoing for the association “outgoing”
of an element s (that is an instance of StateVertex).

2.1 Models

A model in the SMUML UML subset can contain Packages, Classes, DataTypes,
and Signals. If the model is to be simulated or analyzed with model checking
tools, it must also contain Objects and Links describing the initial configuration
of the modeled system (see Section 2.9).

2.2 Packages

Packages can be used to decompose models in smaller parts. They can con-
tain other Packages, Classes, DataTypes, and Signals. Currently they carry no
semantic or namespace information.

2.3 Data Types

The primitive, non-reference data types in a model are represented by DataTypes.
Currently the only supported sub-type of DataType is Primitive. Each Primitive

d must be owned by the model or by a Package. The following Primitives are
allowed:

• If d.name is “boolean”, then d represents the standard Boolean data type
with the domain {false, true}. Other attributes of d are ignored.

• If d.name is “int”, then d represents the standard 32-bit signed integer data
type with the domain

{

−231, . . . ,−1, 0, 1, . . . , 231 − 1
}

. Other attributes
of d are ignored.

2.4 Classes

The name of a Class c, c.name, must be a string matching the regular expression
“[a-zA-Z ][a-zA-Z 0-9]*”. In addition, as the Packages provide no namespace
information at the moment, the names of the Classes in a model must be disjoint.
Furthermore, inheritance and aggregation are not supported at the moment.

3



Example 2.1 Figure 1 shows two Classes, “Environment” and “ProtocolEn-
tity”. It is common, although not required, to capitalize Class names. ♣

2.4.1 Non-reference Attributes

The primitive, non-reference attributes of a Class c are declared by the Attribute

elements in c.feature. For each Attribute a in c.feature,

• a.changeability must be changeable, implying that constant attributes can-
not be defined currently.

• a.initialValue is an Expression whose body is either empty or a constant
Jumbala expession of type matching a.type, refer to Section 2.11 for Jum-
bala expressions.

• a.name must be a string matching the regular expression “[a-zA-Z ][a-zA-
Z 0-9]*”.

• a.multiplicity must be 1..1.

• a.ordering must be unordered.

• a.ownerScope must be instance, implying that a is a so-called instance
attribute (each instance of the Class owns its own copy of the Attribute);
class (i.e. static in C++ terms) attributes cannot be defined currently.

• a.targetScope must be instance.

• a.type must be a DataType (see Section 2.3).

• a.visibility must be public.

When an instance (object) of a Class is created when executing the model,
the value of each Attribute a of the object is initialized by the following rules.

1. If the object is created in the beginning of the execution because the model
contains it as an Object o (see Section 2.8) and o contains an AttributeLink

l for the Attribute in o.slot, then a is initialized to have the value l.value.

2. If the previous case does not apply but the body of a.initialValue is not
empty, then a is initialized to have that value.

3. Otherwise a is initialized to have the default value of a.type, i.e. 0 for the
Primitive “int”, and false for the Primitive “boolean”.

Example 2.2 The Class “Environment” in Figure 1 has an Attribute “nof sent”
that is of the primitive type “int” and has no initial value definition. The initial
value of the Attribute “wsize” of the class is defined to be “3”. ♣

4



2.4.2 Reference Attributes: Associations

Object reference attributes are modeled by using Associations. Only unidirec-
tional associations are supported. Each Association a must have two Associatio-

nEnds in a.connection. The so-called source AssociationEnd e1 must have

• e1.multiplicity of 0..∗,

• no name,

• e1.isNavigable set to false, and

• e1.participant referencing to a Class.

The so-called target AssociationEnd e2 must have

• e2.multiplicity of 0..1,

• e2.name matching the regular expression “[a-zA-Z ][a-zA-Z 0-9]*” (this is
the name of the reference attribute in question, the name of the Association

is not relevant or even required),

• e2.isNavigable set to true, and

• e2.participant referencing to a Class.

The Association a thus defines that the Class e1.participant has a reference at-
tribute called e2.name referencing to an object of type e2.participant. In addition,
for both AssociationEnds, aggregation must be “none” and visibility “public”.
Like non-reference attributes, all the reference attributes are instance attributes,
not class (i.e. static in C++ terms) attributes.

The names of the attributes (including both non-reference and reference
attributes) of a class must be disjoint.

Example 2.3 The Class “ProtocolEntity” in Figure 1 has a reference attribute
called “env”. In an instance (object) of the Class, the value of the attribute is
either null or a reference to an instance of the Class “Environment”. ♣

2.4.3 Operations

Operations or methods are not supported at the moment.

2.4.4 Active Classes and State Machines

A Class c is active if the attribute c.isActive is true. If c is active, then (and
only then) c.behavior must contain exactly one StateMachine sm that describes
the behavior of an instance of the Class. The StateMachine sm must be owned
by the Class c, i.e. it must also belong to c.ownedElement. Requirements for
StateMachines are described in Section 2.7.

5



2.5 Signals

Signals define the signatures of the messages sent between the instances of the
active Classes.

Each Signal sig must have a name in sig .name that is a string matching the
regular expression “$?[a-zA-Z ][a-zA-Z 0-9]*”; e.g. “tick” and “$tack” are valid
signal names. The names of the Signals in a model must be disjoint. If the Signal

name starts with the dollar sign, then the signal is interpreted as a so-called
external signal that are received non-deterministically from the environment.

The parameters of a Signal sig are described in sig .feature that is an ordered
set of Attributes. Each Attribute a in sig .feature must have a.type that is either
a DataType (see Section 2.3) or a Class (see Section 2.4). The parameters of
DataType type are passed by value while the ones of Class type are passed by
reference. The multiplicity in a.multiplicity must be 1..1 if a.type is a DataType

and 0..1 if a.type is a Class (null reference is allowed). External signals may not
have parameters.

2.6 Signal Events

SignalEvents are used in the transition triggers of state machines to model signal
(message) reception and in the states of state machines to model deferring of
signals (messages).

For each SignalEvent e, the attribute e.signal must reference to a Signal (see
Section 2.5). The attribute e.parameter must contain as many Parameters as the
Signal e.signal has Attributes in e.signal.feature. Each Parameter p in e.parameter

should have a p.name, and the Class c owning the SignalEvent e must have a
(primitive or reference) attribute with the name p.name and of the same type
as the type of the corresponding Parameter in the Signal e.signal. The names
of the Parameters in e.parameter must be disjoint. When a signal (message) is
consumed by a transition, the parameter values are assigned to the attributes
of the executing object.

2.7 State Machines

Each active Class in the model is attached with a StateMachine describing its
dynamic behavior. In the specified UML subset, the transitions in state ma-
chines are either triggered by SignalEvents or have no trigger (i.e. are completion
transitions); method calls and remote procedure calls via CallEvents are thus not
supported in the UML subset. Each active object has a first-in-first-out (FIFO)
input queue for messages sent to the object as well as an internal FIFO defer
queue for messages that are temporarily deferred.

A StateMachine sm can contain SimpleStates, FinalStates, concurrent and
non-concurrent CompositeStates, initial PseudoStates, and choice PseudoStates.
The top state sm.top of the state machine must be a non-concurrent Compos-

iteState. Each non-concurrent composite state must contain exactly one initial
Pseudostate. If a non-concurrent composite state has a concurrent composite
state as its container, then it is called a region. Each concurrent composite
state must have at least two non-concurrent composite states in its subvertex

set (i.e. as its regions) and may not have any subvertices of other types. If two
states are orthogonal, then they are not allowed to be interested in the same

6



r1

r2

B2
B1

A2

C1

C2 C3

A3

D1

D2

D3

t11: e(p)

t14: d(x)

t7: [x!=0]

A1

B3e/defer

r3

B4

t13: e(p)

t15:

t16: q(y)/x=x+y;

t8: d(x) t9: [x==0]

t10: e(p)[p>3]/x=0;

t18: [x==3]
C4

t17: r()/send ack(x) to peer;

Figure 2: A UML state machine.

signals. That is, the signals that (i) are deferrable in the states or (ii) serve as
triggers in transitions leaving the states must be disjoint.

Example 2.4 In the StateMachine in Figure 2, A1 is an initial Pseudostate, A2

is a concurrent CompositeState with two regions r1 and r2, B2 is a SimpleState,
B3 is a choice Pseudostate, and B4 is a FinalState. The SimpleStates B2 and C3

are orthogonal. ♣

2.7.1 Transitions

Each Transition t in a StateMachine sm is owned by sm and listed in sm .transitions.
First, the trigger t.trigger must either be absent or a SignalEvent (recall

Section 2.6). If there is no t.trigger, then the transition is called a completion
transition, otherwise a signal triggered transition. In UML, the completion
transitions are though to be triggered by the implicit completion event. The
transitions leaving a PseudoState must be completion transitions; and there must
be at least one such transition; in addition, it is required that in each possible
global configuration of the model, there is at least one outgoing transition whose
guard evaluates to true.

Example 2.5 In Figure 2, the transition t9 leaving the choise pseudostate B3

is a completion transition. The transition t10 is triggered with the signal e;
when t10 is fired, the first parameter of the received message (instance of the
signal e) is assigned to the attribute p of the executing object. ♣

The guard t.guard of a Transition t must either be absent or a Guard with
t.guard.expression.body including a side-effect free Jumbala expression. If there
is no t.guard, then the guard is implicitly always true. The guards are evaluated
in a global configuration where the possible message parameters (recall Sec-
tion 2.6) have been assigned to the attributes of the owning class as explained
in Section 2.6).

Example 2.6 In Figure 2, the guard of transition t8 is implicitly true. The
guard of transition t10 is a Jumbala expression “p>3” and therefore the transition
t10 is enabled only when the state configuration is in a stable configuration where
the source state B2 is active, the first message in the input queue is an instance
of the signal e, and the first parameter of the message if greater than 3. ♣

7



If a Transition t has an effect, it is given in t.effect. If t.effect exists, it
should be an instance of either Action or UninterpretedAction such that (i)
both t.effect.recurrence.body and t.effect.target.body are empty strings, and (ii)
t.effect.script.body is the Jumbala code for the effect.

Example 2.7 In Figure 2, the effect of the transition t10 is the statement
“x=10”. ♣

2.7.2 Deferrable Events

A SimpleState or CompositeState s can have SignalEvents in s.deferrableEvent

denoting that, when the state is active in a stable state configuration, the first
message in the input queue, if it is of that Signal type, can be deferred if it is not
explicitly consumed by a transition leaving from that state or any of its active
substates. Deferring means that the message is removed from the input queue
and put in the defer queue. When the state machine reaches the next stable
state configuration after firing some transition(s), the defer queue is flushed to
the front of the input queue. External signals (cf. Section 2.5) may not be
deferrable.

Example 2.8 If the state machine in Figure 2 is in the stable state configu-
ration {A2, B2, C2} and the first message in the input queue is e(2), then the
transition t10 is not enabled and the message is deferred. ♣

2.7.3 Execution Granularity and Steps

In order to apply model checking techniques for analyzing the dynamic behavior
of UML systems, we have to fix the granularity level of executions. That is, we
have to decide what consitutes to an atomic step. In the proposed UML subset
we consider one step to consists of exactly one object executing one of the
following actions:

• Firing one transition in its state machine. This includes evaluating the
transition guard, copying the signal parameters to the corresponding at-
tributes, executing the code in the transition effect, changing the state
configuration of the state machine, and flushing the defer queue in front
of the input queue if the new state configuration is stable.

• Implicitly consuming the implicit completion event.

• Deferring the first message in the input queue.

• Implicitly consuming the first message in the input queue.

2.7.4 Flat and Normalized State Machines

A state machine is flat if the only composite state it contains is the top state.
Each state machine can be transformed into a corresponding flat one by basically
enumerating its possible state configurations.

A flat state machine is normalized if for each SimpleState it holds that either

• all outgoing transitions are signal triggered,

8



S T

U

V

e()[g2]

[g3]

[g1]

S S ′ T

V

U

e()[g2]

[g1]

[g3]

[¬g1∧¬g3]

(a) (b)

Figure 3: A part of a state machine (a) and its normalized version (b).

Failure

A B

Loop

$tick[x<10]

$tick[x>0]/x=x−1;

F2

t4: /a=true;

F1

I2

I1

Main

t1: /x=10;

a=false;

[x==0]

t9: e()[a==true]

e()

e

$tick[x<10]

/a=true;

/a=true;

$tick[x<10]

[!(x==0)]

[x==0]

$tick[x>0]/x=x−1;
e[a==true]

$tick[x>0]/x=x−1;

/x=10;a=false;

e()[a==true]

e()

Figure 4: A hierarchical state machine and its flat and normalized version.

• all outgoing transitions are completion transitions and it is guaranteed
that, in every possible global configuration of the system, at least one
their guards will evaluate to true, or

• there are no outgoing transitions.

Due to the second condition, the concept of implicit consumption of a com-
pletion events (i.e. quiescing) is not needed for normalized flat state machines.
It is possible to transform a non-normalized state machine to a corresponding
normalized version while preserving (i) deadlocks, (ii) assertion violations, and
(iii) stuttering invariant linear time temporal logic properties. This is done by
making the quiescing steps explicit by making duplicate states for completion
sensitive states and extra completion transitions for the quiescing case. This
construction is illustrated in Figure 3.

The state machine hierarchy flattening tool in the SMUML project software
tool set, flatten state machine hierarchy.py, performs both hierarchy flat-
tening and the normalization transform, thus producing flat and normalized
state machines. For instance, Figure 4 shows a hierarchical state machine and
its flat and normalized version.

2.8 Objects, Slots, and Links

The Objects in a model are used to describe the initial global configuration of
the model (see Section 2.9). An Object o is an instance of a Class c in the model.

9



s: ProtocolEntity r: ProtocolEntity

e: Environment

wsize = 2

env
sender receiver

env

peer

peer

Figure 5: Objects and links.

Thus o.classifier must contain c (and nothing else).

Example 2.9 Figure 5 shows a global configuration composed of three Objects:
e, s, and r. The Object e is an instance of the Class “Environment”. ♣

Initializing Primitive Attributes. The initial values of non-reference at-
tributes in an Object o can be specified by including AttributeLinks in o.slot (re-
call the attribute value initialization rules in Section 2.4). For each AttributeLink

l in o.slot,

• l.attribute must be a non-reference Attribute of the Class o.classifier,

• l.instance must be o, and

• l.value must be a DataValue v such that

– v.classifier is the DataType l.attribute.type,

– v.name describes a member in the domain of v.classifier. That is, it is
(i) the string representation of an integer in the range [−231, . . . , 231−
1] when v.classifier is the Primitive “int”, or (ii) the string “false” or
“true” when v.classifier is the Primitive “boolean”.

A DataValue can be owned by an Object, a Class, a Package, or the model.

The Attributes of AttributeLinks in o.slot must be disjoint, i.e. it is not allowed
to define the initial value of an Attribute multiple times.

Example 2.10 In the global configuration shown in Figure 5, the Attribute

“wsize” of the object e is initialized to 2. Without the slot in the Object defini-
tion, it would have been initialized to 3 because of the initial value description in
the definition of the Class “Environment” in Figure 1. The Attribute “nof sent”
of the Object e is initialized to the default value 0 of the “int” data type as it
has no slot or initial value definition. ♣

Initializing Reference Attributes. The initial values of reference attributes
(as described by Associations, recall Section 2.4.2) in Objects can be specified
by Links. For each Link l the following must hold.

• l.association is the Association that the link is initializing.

10



• l.connection must contain two LinkEnds correspoding to the Associatio-

nEnds in l.association.connection. For both LinkEnds e, e.associaionEnd

is the corresponding AssociationEnd and e.instance is an Object match-
ing the type of the AssociationEnd, i.e. e.instance.classifier should equal to
e.associaionEnd.participant.

The initial value of a reference attribute must not be defined multiple times by
Links.

Example 2.11 In Figure 5 the reference attribute “env” of the Object s is
initialized by a Link to refer to the Object e. ♣

2.9 Initial Global Configuration

The initial global configuration of the model describes one instantiation of the
model and serves as the starting point for the dynamic analysis methods such
as simulation and model checking. It is composed of the Objects (refer to Sec-
tion 2.8) included in the model, describing the objects existing in the beginning
of the execution of the system. The non-reference attributes of the objects in
the initial global configuration are initialized as described in Sections 2.4 and
2.8. The reference attributes of the objects are initialized by the Links in the
model, see Section 2.8. The input and defer queues (recall Section 2.7) of active
objects (instances of active Classes) are empty in the initial global configuration.

Example 2.12 Figure 5 shows an initial global configuration explained in more
detail in Section 2.8. ♣

2.10 Comments and Tagged Values

Each elements e in a model can be associated with Comments in e.comment and
TaggedValues in e.taggedValue. They have no general semantic meaning but can
be used, for instance, by the modeller to annotate the model with comments or
by model transformation tools to pass information to other tools.

2.11 Action Language

The guards and effects of the transitions in a model are described with the Java-
like action language Jumbala [4]. From the perspective of the action language
statements and expressions, each Class in a model corresponds to a Jumbala
class of the same name and attributes. Non-reference attributes of classes are
mapped in a one-to-one way from UML to Jumbala, e.g. if a UML Class has a
primitive attribute x of type “int”, then the corresponding Jumbala class also
has an attribute x of Jumbala type “int”. Reference attributes are mapped in a
similar way: if a UML Class A has a reference attribute x to a Class B, then the
corresponding Jumbala class A has an attribute x referencing to the Jumbala
class B. For more details, see [4].

The following subset of Jumbala is supported in the models currently.

• Attribute reference.

The attributes in the enclosing and other objects can be referenced in
the standard way, e.g. the expression “x” refers to the attribute x of the

11



enclosing object and “a.y” refers to the attribute y of the object referenced
by the reference attribute a of the enclosing object.

• Operations.

Standard logical and arithmetic operations can be applied in expressions;
for instance, “x + 3 < 10” is a legal Boolean expression provided that x
is an “int” attribute. That is, usual typing constraints apply.

An expression is side-effect free if evaluating it does not cause changes in
the state of the system. For instance, creation of new objects with the
new construction as well as the pre- and postfix increment and decrement
operations (such in x--) are not allowed in side-effect free expressions.

• Assignments.

An assignment statement is of form “r = e;”, where r is a reference to
an attribute and e is an expression. For instance, “a.y = x+3;” is an
assignment statement. Both r and e must be side-effect free.

• Assertion statements.

A statement of form “assert(e);”, where e is a side-effect free Boolean
expression, cause the execution to terminate in an error if the expression
e evaluates to false.

• Send statements.

For asynchronous message passing Jumbala includes send statements of
form “send s(e1,...,en) to t;”, where (i) s is the name of a Signal

in the model, (ii) e1, . . . , en are expressions describing the values of the
message parameters, and (iii) t is an expression referencing to the object
to which the message is sent (also called the target of the send statement).
External signals cannot be sent, i.e. s must not start with the dollar sign.
The parameter expressions e1, . . . , en as well as the target expression t
must be side-effect free.

• Control flow constructs.

In addition to sequences of statements, the following control flow con-
structs of Jumbala are allowed in the effects of transitions in the model:
labels, if, for, while, do, break, and continue. For instance,

a:

while(true)

for(i=0;i<3;i++) {

if(i>j)

break a;

j = j - 1;

}

is allowed. The condition part of if, for, and while constructs must be
a side-effect free Jumbala expression. In addition, the initialization and
update parts of each for construct should consist of assignments of form
“r = e” with r and e being side-effect free expressions. As an example,
”for(i = x++; i<3; i++) ...” is not allowed.

12



A B

A B

sig[x==0]/assert(y>0);while(y>=0) {x=x+2;y−=1;}; send ack(x) to peer;

sig[x==0]/assert(y>0) [!(y>=0)]/send ack(x) to peer;

[y>=0]/x=x+2;y−=1;

Figure 6: A transition with an action containing a “while” statement and the
corresponding flattened version with an extra choice pseudo-state.

• Creation of new objects.

New objects can be created with assignment statements of form

r = new C();

where r is a side-effect free reference expression and C is the name of a
Class in the model. As method calls are not supported at the moment,
neither are constructor methods.

Note that local variable declarations are not currently supported.
Note that not all tools developed in the SMUML project accept the full sub-

set of action language described above. For instance, the symbolic model check-
ing tools do not allow the control flow constructs to appear in the state machine
transition effects. Fortunately, such constructs can be eliminated by inserting
extra pseudo-states into the state machine, in a sense lifting the control flow
structure from the action language level into the state machine level (see Figure 6
for an example). A tool, called flatten state machine action language.py,
has been developed in the project for removing all “if”, “while”, “do”, “for”,
“break”, and “continue” statements from state machine transition effects. But
please note that doing this transformation changes the behavior of the model
as the transition is no longer atomic as it’s code is now distributed over several
transitions in the model, allowing other objects to execute while the transition
is in one of its intermediate choice pseudostates. That is, the resulting model
has more behaviors than the original one.

3 Formal Semantics

In this section we give a semantics for the proposed subset of UML models. The
main focus is on the semantics of state machines; the semantics of the action
language are essentially abstracted away as it should be intuitively clear.

3.1 Types, Signals, and Classes

As the main focus of the semantics definition is on UML state machines, other
relevant parts of UML models, most notably data value manipulation by action
language expressions and statements, are defined only in a very abstract level.

The set of all finite sequences over a set X is denoted by X∗. If a =
〈a1, . . . , ak〉 ∈ X∗, b = 〈b1, . . . , bl〉 ∈ X∗, and x ∈ X , then concat(a, b) =

13



〈a1, . . . , ak, b1, . . . , bl〉, dequeue(a) = 〈a2, . . . , ak〉 (undefined if k = 0, the empty
sequence 〈〉 if k = 1), and append(a, x) = 〈a1, . . . , ak, x〉.

Data Types and Action Language. To capture data types in UML models,
a finite set T of types is assumed, each type T ∈ T being associated with a non-
empty domain set dom(T ). In particular, the Boolean type B with dom(B) =
{false, true} belongs to T . A typed variable is a name x associated with a type
type(x) ∈ T . The guards and effects appearing in state machines are expressed
with a strongly typed action language L over the types; LB ⊂ L denotes the set
of side-effect free Boolean valued expressions and LStmt ⊂ L the set of (possibly
compound) statements in the action language.

Signals and Messages. As state machines can communicate with each other
by sending messages, we assume a finite set Sigs of signals. Each signal sig ∈
Sigs is associated with a list params(sig) = 〈Tsig ,1, . . . , Tsig,ksig

〉 ∈ T ∗ of param-
eter types. The set Sigs is partitioned into system signals SysSigs and external
signals ExtSigs . Note that in the level of formal semantics, external signals can
have parameters; this is not the case in the actual UML subset due to some tech-
nical reasons. A message is of form sig [v1, . . . , vksig

], where sig ∈ Sigs and each
vi ∈ dom(Tsig,i); the set of all messages is denoted by Msgs . Message recep-
tion in state machines is specified with signal triggers of form sig(x1, . . . , xksig

),
where sig ∈ Sigs and each xi is a typed variable with type(xi) = Tsig,i. The set
of all signal triggers is denoted by Trigs .

Classes. A class is a pair C = 〈attrsC , smC〉, where attrsC is a finite set of
typed variables called the attributes and smC is the state machine of the class.
Define Attrs(C) = attrsC and SM (C) = smC .

3.2 State Machines

The behavior of an instance of a class (i.e. an object) is described by the associ-
ated state machine. Formally, a hierarchical UML state machine is a structure

sm = 〈S,R, top, container , T , defers〉,

where

• S is a finite set of state vertices partitioned into (i) simple states Ssi , (ii)
composite states Sco , (iii) final states Sfi , (iv) initial pseudostates Sin , and
(v) choice pseudostates Sch ;

• R is a finite set of regions (disjoint from S);

• top ∈ R is the unique top region;

• container : (S ∪R\ {top}) → (S ∪R) describes the state hierarchy of the
state machine;

• T is a finite set of transitions ; and

• defers : (Ssi ∪ Sco) → 2Sigs assigns each state a (possibly empty) set of
deferrable signals.

14



d(x)

q(y)/x=x+y;
[x==3]

r1

r2

B2

B4

B1

A2

C1

C2 C3

C4

A3

D1

D2

D3

e(p)

t11: e(p)

t14: d(x)

t7: [x!=0]

A1

t10: e(p)[p¿3]/x=0;

r()/send ack(x) to peer;

B3e/defer

r3

[x==0]

Figure 7: A UML state machine.

For each v ∈ S ∪R, define children(v) = {v′ ∈ S ∪R \ {top} | container (v′) = v}
and descendants(v) =

{

v′ ∈ S ∪R \ {top} | ∃i > 0 : container i(v′) = v
}

. The
state hierarchy must be a connected tree, i.e. descendants(top) = S ∪ R \ {top}
must hold. It is required that the container of each non-top region is a compos-
ite state, i.e. ∀r ∈ R \ {top} : container (r) ∈ Sco and that the container of each
state vertex is a region, i.e. ∀s ∈ S : container (s) ∈ R. Furthermore, each re-
gion must contain exactly one initial state, i.e. ∀r ∈ R : |children(r) ∩ Sin | = 1,
and each composite state at least one region, i.e. ∀s ∈ Sco : children(s) 6= ∅. If a
composite state contains more than one region, then it is called concurrent. Two
state vertices s1, s2 ∈ S are orthogonal, denoted s1 ⊥ s2, if there are distinct re-
gions r1, r2 ∈ R such that container(r1) = container (r2), s1 ∈ descendants(r1),
and s2 ∈ descendants(r2). A set S ⊆ S of state vertices is consistent iff for any
two distinct state vertices s1, s2 ∈ S either s1 ⊥ s2, s1 ∈ descendants(s2), or
s2 ∈ descendants(s1).

Example 3.1 Consider the state machine in Figure 7. A2 is a concurrent com-
posite state with container(A2) = top and children(A2) = {r1, r2}, where r1 and
r2 are regions. B2 is a simple state with defers(B2) = {e} and container(B2) =
r1. The choice pseudostate B3 and the final state C4 are orthogonal. The state
set {A2, B1, C2} is consistent while {A3, D2, D3} is not. ♣

A transition t in the set T of transitions is a tuple

〈s, σ, g, e, s′〉 ∈ (S \ Sfi) × (Trigs ∪ {τ}) × LB × LStmt × (S \ Sin)

with the restriction that if s ∈ Sin ∪ Sch , then σ = τ . We define source(t) =
s, guard(t) = g, effect(t) = e, target(t) = s′, and container(t) = r, where
r ∈ R is the smallest (w.r.t. the partial order induced by container ) region
such that {s, s′} ⊆ descendants(r). If σ = τ , we say that t is a completion
transition and define triggersig(t) = τ . Otherwise, σ = sig(. . .) and we define
triggersig(t) = sig . We require that transitions originating from orthogonal
states are not triggered by the same signal: for all t1, t2 ∈ T it holds that
triggersig(t1) = triggersig(t2) 6= τ implies that source(t1) ⊥ source(t2) does not
hold.

Example 3.2 In Figure 7, t10 = 〈B2, e(p), p>3, x=0;, D3〉 is a transition with
container(t10) = top. The completion transition t7 has container (t7) = r1,
guard(t7) = x!=0 and effect(t7) = skip, where skip is a pseudostatement that
does nothing. ♣

15



A state configuration of the state machine is a pair

sc = 〈A, Q〉,

where the set A of active state vertices is a maximal consistent subset of S and
Q ⊆ A is a set of quiescent states. The intuition is that a state is in Q if it
has already consumed its implicit “completion event” (that is, the guards of
the completion transitions leaving the state have already been evaluated, and
will not be evaluated again without re-entering the state). This construction
(from [5]) accurately models the use of the implicit completion events in UML
without adding them explicitly in the input queue. Because completion events
are only relevant for states with outgoing completion transitions, we only define
quiescence status for the set of completion sensitive states SCS = {s ∈ Ssi∪Sco |
∃t ∈ T s.t. source(t) = s and triggersig(t) = τ}. Thus, Q is always a subset
of A ∩ SCS . A state s ∈ SCS is ready to consume its completion event in sc,
denoted by ceready(sc, s), if

1. it is active but not quiescent: s ∈ A \ Q, and

2. it is either (i) a simple state: s ∈ Ssi , or (ii) a composite state with all its
regions in final states: s ∈ Sco and ∀s′ ∈ S ∩ A : container (container(s′)) = s ⇒
s′ ∈ Sfi .

A state configuration sc = 〈A, Q〉 is

• in compound transition, denoted by inct(sc), if it contains an active pseu-
dostate: A ∩ (Sin ∪ Sch) 6= ∅,

• in run-to-completion (RTC) step, denoted by inrtc(sc), if (i) it is in com-
pound transition, or (ii) there is a completion sensitive state that is ready
to consume its completion event in it, and

• stable, denoted by stable(sc), otherwise.

A UML state machine consumes messages from its input queue only when it is
in a stable state configuration.

Example 3.3 Consider again the state machine in Figure 7. The state C3 is
the only completion sensitive state in it. The pair 〈{A2, B2, C3}, {C3}〉 is a
stable state configuration, while the state configuration 〈{A2, B3, C3}, {C3}〉 is
in compound transition. The state configuration 〈{A2, B2, C3}, ∅〉 is in RTC
step (but not in compound transition) because the state C3 is ready to consume
its completion event in it. ♣

Assume a state vertex s ∈ S and a region r ∈ R such that s ∈ descendants(r).
The default entry completion of s under r, denoted by dec(r, s), is the small-
est maximal consistent subset of descendants(r) ∩ (Sco ∪ Sin ∪ {s}) such that
s ∈ dec(r, s).

Given a state configuration sc = 〈A, Q〉 and a transition t ∈ T with source(t) ∈
A, the t-successor of sc is the state configuration

succ-conf (sc, t) = 〈A′, Q′〉,

where A′ = (A \ D) ∪ dec(container (t), target(t)), Q′ = Q \ D, with the abbre-
viation D = descendants(container (t)).

16



Example 3.4 In the state machine in Figure 7, the t10-successor of the state
configuration sc = 〈{A2, B2, C3}, {C3}〉 is 〈{A3, D3}, ∅〉 while the t11-successor
of sc is 〈{A3, D1}, ∅〉. ♣

3.3 Global Configurations and State Spaces

We next define global configurations, that are snapshots of the global state
of the system described by the UML model, and state spaces that consists of
all possible global configurations and the information how they may evolve to
others.

Global Configurations. We consider a UML system to consist of a finite set
of objects O, each object o ∈ O being associated with the class Class(o) that it
is an instance of. A global configuration of the system is a tuple

gc = 〈stateconf gc , attrvalsgc, inputqgc, deferqgc〉,

where

• stateconf gc maps each object o to the current state configuration of its
state machine SM (Class(o)),

• attrvalsgc maps each object o to a function giving each attribute x ∈
Attrs(Class(o)) its current value in dom(type(x)), and

• inputqgc, deferqgc : O → Msgs∗ describe the contents of the input and
deferred queues, respectively, of each object.

Define StateConf (gc, o) = stateconf gc(o), AttrVal(gc, o, x) = attrvalsgc(o)(x),
InputQ(gc, o) = inputqgc(o), and DeferQ(gc, o) = deferqgc(o). The set of all
global configurations is denoted by GC .

Given a side-effect free Boolean expression φ in LB, eval (gc, o, φ) evaluates
it in the context of a global configuration gc and an object o, and returns false
or true. Given a statement γ in LStmt, exec(gc, o, γ) executes it in the context
of gc and o, and returns a new global configuration gc′ with the only restric-
tions that, for each o′ ∈ O, (i) the state machine configuration is not modified:
StateConf (gc′, o′) = StateConf (gc, o′), (ii) messages cannot be removed from
the input queue: InputQ(gc, o′) is a prefix of InputQ(gc′, o′), and (iii) the de-
ferred queue is not modified: DeferQ(gc′, o′) = DeferQ(gc, o′).

In addition, UML requires that for each pseudostate, there is always at least
one outgoing (completion) transition whose guard evaluates to true:

∀gc ∈ GC , ∀o ∈ O, ∀s ∈ Sin ∪ Sch ∃t ∈ T :

source(t) = s ∧ eval (gc, o, guard(t)) = true.

State Spaces. The actual semantics of a UML system is given by its state
space that describes how the system may evolve from one global configuration
to another. Each atomic step between global configurations corresponds to one
object either firing one transition, deferring a message, or implicitly consuming
a message or a completion event. The UML run-to-completion semantics for

17



individual state machines is followed as messages can only be consumed in stable
state configurations. Formally, the state space of a UML system is the tuple

〈GC , gcinit, ∆〉,

where gcinit ∈ GC is the initial configuration, and ∆ ⊆ GC ×A× GC is
the minimal transition relation defined by the following rules (A being a set
of possible annotations). Assume an object o ∈ O, that SM (Class(o)) =
〈S,R, top, container , T , defers〉 and let sc = 〈A, Q〉 = StateConf (gc, o).

• Signal triggered transitions.

If t = 〈s, sig(x1, . . . , xk), g, e, s′〉 ∈ T for a sig ∈ SysSigs , then the system
transition instance 〈o, t〉 is enabled in gc, denoted by enabled(gc, 〈o, t〉), if

– the state configuration is stable: stable(sc),

– the source state is active: s ∈ A,

– the first message in the input queue matches the trigger:
InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,

– the guard of the transition evaluates to true: eval (gc?, o, g) = true,
where gc? equals to gc except that the message sig [v1, . . . , vk] has
been received: InputQ(gc?, o) = dequeue(InputQ(gc, o)) and ∀1 ≤
i ≤ k : AttrVal(gc?, o, xi) = vi,

– no prioritized transition is enabled:
@t′ ∈ T : source(t′) ∈ descendants(s) ∩ A ∧ enabled(gc, 〈o, t′〉), and

– the message is not deferred at a deeper level:
@s′′ ∈ descendants(s) ∩ (Ssi ∪ Sco) ∩ A : sig ∈ defers(s′′).

If enabled(gc, 〈o, t〉) holds, then

〈gc, 〈o, t〉, gc′〉 ∈ ∆,

where gc′ equals to gc′′ = exec(gc?, o, e) except that (i) StateConf (gc′, o) =
succ-conf (sc, t) and (ii) the deferred queue is flushed to the input queue:
InputQ(gc ′, o) = concat(DeferQ(gc, o), InputQ(gc′′, o)), and DeferQ(gc′, o) =
〈〉.

• Non-deterministic reception of external events.

If t = 〈s, sig(x1, . . . , xk), g, e, s′〉 ∈ T for an external signal sig ∈ ExtSigs,
then the external transition instance 〈o, t〉 is 〈v1, . . . , vn〉-enabled in gc,
denoted by enabled(gc, 〈o, t(v1, . . . , vn)〉), if

– the state configuration is stable: stable(sc),

– the source state is active: s ∈ A,

– the guard of the transition evaluates to true: eval (gc?, o, g) = true,
where gc? equals to gc except that the message sig [v1, . . . , vk] has
been virtually received: ∀1 ≤ i ≤ k : AttrVal(gc?, o, xi) = vi,

– no prioritized transition with the same signal as trigger is 〈v1, . . . , vn〉-
enabled: @t′ ∈ T : triggersig(t′) = sig∧source(t′) ∈ descendants(s) ∩ A∧
enabled(gc, 〈o, t′(v1, . . . , vn)〉), and

18



– the virtual message is not deferred at a deeper level:
@s′′ ∈ descendants(s) ∩ (Ssi ∪ Sco) ∩ A : sig ∈ defers(s′′).

If enabled(gc, 〈o, t(v1, . . . , vn)〉) holds, then

〈gc, 〈o, t(v1, . . . , vn)〉, gc′〉 ∈ ∆,

where gc′ equals to gc′′ = exec(gc?, o, e) except that StateConf (gc ′, o) =
succ-conf (sc, t) and the deferred queue is flushed to the input queue:
InputQ(gc ′, o) = concat(DeferQ(gc, o), InputQ(gc′′, o)), and DeferQ(gc′, o) =
〈〉.

• Deferring of messages.

If no transition instance is enabled, then the first message in the input
queue can be deferred. Formally, the deferring instance 〈o,defer〉 is
enabled in gc, denoted by enabled(gc, 〈o,defer〉), if

– the state configuration is stable: stable(sc),

– the input queue is not empty: InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,

– no transition consumes the message:
@t ∈ T : triggersig(t) = sig ∧ enabled(gc, 〈o, t〉), and

– there is an active state deferring the message:
∃s ∈ (Ssi ∪ Sco) ∩ A : sig ∈ defers(s).

If enabled(gc, 〈o,defer〉) holds, then

〈gc, 〈o,defer〉, gc′〉 ∈ ∆,

where gc′ equals to gc except that (i) InputQ(gc ′, o) = dequeue(InputQ(gc, o))
and (ii) DeferQ(gc ′, o) = append(DeferQ(gc, o), sig [v1, . . . , vk]).

• Implicit consumption of messages. If the first message in the input
queue is not consumed by a transition or deferred, it can be implicitly
consumed. Formally, enabled(gc, 〈o, imco〉) holds if

– the state configuration is stable: stable(sc),

– the input queue is not empty: InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,

– no transition consumes the message:
@t ∈ T : triggersig(t) = sig ∧ enabled(gc, 〈o, t〉), and

– the message is not deferred: ¬enabled(gc, 〈o,defer〉).

If enabled(gc, 〈o, imco〉) holds, then

〈gc, 〈o, imco〉, gc′〉 ∈ ∆,

where gc′ equals to gc except that InputQ(gc ′, o) = dequeue(InputQ(gc, o)).

• Firing completion transitions.

Completion events are consumed until a stable state configuration is reached.
Formally, if t = 〈s, σ, g, e, S′〉 ∈ T with σ = τ , then the completion transi-
tion instance 〈o, t〉 is enabled in gc, denoted by enabled(gc, 〈o, t〉), if

19



– the source is active: s ∈ A,

– either (i) the source is a pseudostate: s ∈ Sin ∪ Sch or (ii) the state
configuration is in RTC step but not in compound transition and the
source state s ready to consume its completion event: ¬inct(sc) ∧
inrtc(sc) ∧ s ∈ Ssi ∪ Sco ∧ ceready(sc, s), and

– the guard condition holds: eval(gc, o, g) = true.

If enabled(gc, 〈o, t〉) holds, then

〈gc, 〈o, t〉, gc′〉 ∈ ∆,

where gc′ equals to exec(gc, o, e) except that StateConf (gc ′, o) = succ-conf (sc, t).

• Implicit consumption of completion events: quiescing.

If a state s ∈ SCS is ready to consume its completion event but no outgoing
completion transition is enabled, the state can quiesce (i.e. implicitly con-
sume the completion event). Formally, enabled(gc, 〈o,quiesces〉) holds
if

– the state configuration is in RTC but not in compound transition:
inrtc(sc) ∧ ¬inct(sc),

– the state is active and ready to consume its completion event:
s ∈ SCS ∩ A ∧ ceready(sc, s), and

– no completion transition leaving s is enabled:
@t ∈ T : source(t) = s ∧ triggersig(t) = τ ∧ enabled(gc, 〈o, t〉).

If enabled(gc, 〈o,quiesces〉) holds, then

〈gc, 〈o,quiesces〉, gc
′〉 ∈ ∆,

where gc′ equals to gc except that StateConf (gc ′, o) = 〈A, Q ∪ {s}〉.

References

[1] Marcus Alanen and Ivan Porres. Coral: A metamodel kernel for transforma-
tion engines. In D. H. Akerhurst, editor, Proceedings of the Second European
Workshop on Model Driven Architecture (MDA), volume 17-04 of Techni-
cal Report, pages 165–170. Computing Laboratory, University of Kent, Sep
2004.

[2] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
The MIT Press, 1999.

[3] MDE at CREST — the Coral metamodeling toolkit. http://mde.abo.fi/
tools/Coral/.

[4] Jori Dubrovin. Jumbala — an action language for UML state machines.
Research Report A101, Helsinki University of Technology, Laboratory for
Theoretical Computer Science, Espoo, Finland, March 2006.

20



[5] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala, and Ivan Porres.
Model checking dynamic and hierarchical UML state machines. In Proc.
MoDeV2a: Model Development, Validation and Verification, pages 94–110,
2006.

[6] OMG unified modeling language specification version 1.4. Document
formal/01-09-67 of the Object Management Group, September 2001.

21


