Uboco User’s Guide

Jori Dubrovin
Helsinki University of Technology (TKK)
Laboratory for Theoretical Computer Science

May 16, 2008

1 Introduction

Uboco is a tool that translates UML state machine models to input programs
of the NuSMV [1] model checker. Together with NuSMV, Uboco functions
as a symbolic model checker for UML models. Uboco is part of the SMUML
toolset. It can be either run as a standalone command line tool or it can be
used automatically as a back-end by the SMUML frontend tool [3].

This document corresponds to Uboco version 1.10.

1.1 Analyzing Models

Uboco enables analyzing behavioral properties of UML state machine models
with either BDD-based symbolic model checking or SAT-based bounded model
checking, depending on the options given to NuSMV. Uboco is primarily de-
signed for bounded model checking, which means analyzing all executions of
the model of up to a constant number of execution steps.

The program produced by Uboco contains NuSMV code that instantiates
all active UML classes and their state machines. The program includes a de-
scription of the dynamics of the state machines, together with the properties
that are to be checked.

NuSMV can then be used for performing bounded model checking. NuSMV
does this by translating the program to a propositional Boolean formula, whose
satisfiability is equivalent to finding an execution trace that violates one of the
properties. If NuSMV provides a trace, it can be simulated using the SMUML
simulator.

In symbolic model checking, the global configuration of the system is rep-
resented as a finite-length bit string. For this reason, the maximum number of
instances per class and the capacity of event queues must be statically defined.
Any executions where these limits are exceeded will not be taken into account
in the analysis.

1.2 Acknowledgements

The symbolic model checking method for UML models has been developed by
the current author together with Tommi Junttila. The financial support of
the Finnish Funding Agency for Technology and Innovation (TEKES), Nokia,
Conformiq, and Mipro is gratefully acknowledged.

2 Installation

In order to use Uboco, you should have the following installed in your computer.
e The SMUML toolset.’
e A Python interpreter (version 2.3.5 or later).?

e The Coral metamodeling tool and its Python application programming
interface.?

e The NuSMV model checker (version 2.4.3 or later).

3 Usage

In the following, we assume the following.
e The SMUML toolset is installed in the directory $SMUML.

e The Python interpreter and the NuSMV model checker are in the com-
mand path.

e The current directory is set to the location where the trace file will be
output.

Calling Uboco from the shell command line can be done with
python $SMUML/bin/uboco.py [options] model.zmi model.smv

where model.zmi is the file name of the UML model and model.smv is the file
name of the NuSMV program that will be generated. At least one of the options
--check-deadlock, -—check-implicit-consumption, -—-check-assertions,
or ——check-runtime-errors should be provided (see below for details).

The output of Uboco can be model checked with NuSMYV by typing

NuSMV -load $SMUML/nusmv.scr model.smv

which causes NuSMV to run the predefined script nusmv.scr on the program.
The script performs bounded model checking up to a predefined bound and if an
error is found, a NuSMYV trace file nusmv . out is written to the current directory.
Parameters of the script can be adjusted by modifying nusmv.scr by hand (see
the NuSMV User Manual for details).

The produced trace can be executed with the SMUML simulator by the
commands

python $SMUML/bin/uboco_trace_to_generic_trace.py
model.smv nusmv.out >model.trace
python $SMUML/bin/simulate generic_trace.py model.trace

Thttp://wuw.tcs.hut.fi/Research/Logic/SMUML.shtml
?http://www.python.org/
Shttp://mde.abo.fi/confluence/display/CRL/
4http://nusmv.irst.itc.it/

3.1 Example

The tool can be applied for checking whether the simple communication protocol
model SCP.xmi has deadlocks by giving the following commands in the directory
of the SMUML toolset.

$ python bin/uboco.py --check-deadlock models/SCP.xmi s.smv

$ NuSMV -load nusmv.scr s.smv

FILE ->>> nusmv.scr

*#** This is NuSMV 2.4.3 zchaff (compiled on Tue May 29 10:06:14 UTC 2007)

-- no counterexample found with bound 5 and no loop
-- specification G (withinResources -> !deadlock) is false

-- as demonstrated by the following execution sequence

There is 1 trace currently available.

See file nusmv.out for counterexample traces.

$ python bin/uboco_trace_to_generic_trace.py s.smv nusmv.out >s.trace
$ python bin/simulate_generic_trace.py s.trace

Processing the trace file s.trace

The trace has 13 actions

Loading model models/SCP.xmi

The model in fact has a reachable deadlock state, and a counterexample trace
that leads to deadlock is printed by the simulator.

3.2 Command-line Options

The possible options for uboco.py are the following. The names of options can
be abbreviated.

3.2.1 Generic Options

-h or --help
Only show a help page and exit.

--version
Print the version number of the program and exit.

--sloppy-input
For better consistency with badly written UML models, ignore some errors
in the format of the input file.

3.2.2 Checked Properties

Use one or more of the following options to generate checks for various properties
in the NuSMV program. If none of this options are supplied, then no checks
will be done by NuSMV. Typically, several LTLSPEC specifications will be
generated by each option, and NuSMV will check them one by one.

-—check-deadlock
Generate checks for deadlocks, i.e. reachable configurations of the system
in which no object can perform an action.

--check-implicit-consumption
Generate checks for the implicit consumption of events by any object.

—-check-assertions
Generate checks for violations of all Jumbala assert statements in the
model.

-—check-runtime-errors
Generate checks for Jumbala runtime errors such as division by zero and
null reference errors.

3.2.3 Model Checking Options

The following options specify the kinds of executions that will be considered in
the analysis.

--int-bits=N
Set the number of bits in the int type to N, which must be an integer
between 2 and 32. The integer domain will be restricted to the range from
—2N=1 to 2N=1 _ 1, and operations will be carried out using modulo 2%
arithmetic. The value N=32 gives the correct semantics, but setting N to
a high value may severely degrade the performance of NuSMV. Default:
N=8.

--instances=N
Set the default number of objects instantiated for each class to N. How-
ever, all objects that appear in the initial configuration will always be
instantiated. Because Uboco does not support creation of new objects,
this option has no use. Default: N=1.

--specific-instances=classname: N
Set the number of objects instantiated for the class classname to N. How-
ever, all objects that appear in the initial configuration will always be
instantiated. This option can appear multiple times. Because Uboco does
not support creation of new objects, this option has no use.

--queue-size=N
Set the default queue capacity of objects to N. The queue capacity is the
maximum total number of events in the input and deferred queues of an
object. Executions where the capacity of a queue is exceeded will not be
considered in the analysis. Default: N=2.

--specific-queue-size=classname: N
Set the queue capacity of all objects of class classname to N. This option
can appear multiple times.

--allow-queue-overdraft
Allow exceeding queue capacity. Using this option, the checking procedure
may consider some executions where queues may temporarily contain one

event more than what their capacity is. It also makes the resulting pro-
gram smaller, potentially increasing performance. By default, the queue
capacities are strict. This option has no effect if ~—~encode-interleaving
is also given.

3.2.4 Encoding Options

The following options affect the way Uboco encodes the behavior of models.
They affect the performance of NuSMV but not the set of checked properties.

--encode-interleaving
Use the standard interleaving execution semantics in the encoding. This
typically increases the required bound to find an error and degrades per-
formance when performing bounded model checking with NuSMV. By
default, step execution semantics is used.

-—encode-static
Use static step execution semantics. By default, dynamic step execution
semantics is used.

--old-enter
Use an alternative encoding for state machine control logic. This may
affect performance when analyzing hierarchical state machines.

4 Input Models

Uboco accepts UML models in the XMI format supported by the Coral tool.
The supported UML subset is that described in [2], with the following further
restrictions.

e All classes must be active and must have a state machine.

e Dynamic creation of objects is not supported. The new expression is not
allowed in transition effects.

e Control flow constructs are not allowed in transition effects. Such con-
structs can be eliminated using the script
flatten statemachine action_language.py [3].

e One transition can send at most one message to an object of each class.
In other words, for each class C' and each transition ¢, the effect of ¢ can
contain at most one send statement send s(...) to o; such that o is
a reference to an object of class C.

5 Known Bugs and Limitations

e In some cases with hierarchical state machine models, the step encoding
may produce a trace that is not a valid execution of the model. This may
happen in one of the following cases.

— If a state machine contains two transitions ¢; and to such that (i)
t1 and t9 are not completion transitions and they are triggered with
the same signal, (ii) the source state of ¢; is a descendant of the
source state of ta, and (iii) ¢; has a guard, then superfluous traces
may occur.

— If a state machine contains two transitions ¢; and to such that (i) ¢
and to are completion transitions, (ii) the source states of t; and ¢, are
not pseudostates, (iii) the source states of ¢; and t2 are orthogonal,
and (iv) firing ¢; makes a pseudostate active, then superfluous traces
may oCCur.

Such superfluous traces should not occur when using interleaving execu-
tion semantics (-—encode-interleaving).

e NuSMV 2.4.3 has a bug that makes it report syntax errors when running
bounded model checking on input generated by Uboco. A patch exists
that fixes the bug, but it has not been published.

e NuSMYV 2.4.3 may get stuck when generating a counterexample trace from
a largish UML model.

References

[1] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV version 2: An opensource tool for
symbolic model checking. In CAV’02, volume 2404 of LNCS, pages 359-364.
Springer, 2002.

[2] Tommi Junttila and Jori Dubrovin. The SMUML UML subset, 2007.
[3] Heikki Tauriainen. Overview of the SMUML toolset, 2007.

