
SMUML Model Abstractor and Type Editor

Manual

Juhani Peltonen
Updated by Heikki Tauriainen

January 10, 2008

Contents

1 Introduction 2

2 Model Abstractor 2
2.1 Menu-bar . 2
2.2 Tool-bar . 6
2.3 Model Hierarchy . 6
2.4 Type Constraints . 6
2.5 Types . 7

3 Type Editor 7
3.1 Menu-bar . 8
3.2 The “Types” View . 10
3.3 The “Domain” View . 10
3.4 The “Operations” View . 11
3.5 The “Operation Definition” View 11

1

1 Introduction

This document describes the graphical user interface to the SMUML model
abstraction tools.

The model abstractor can be used to examine dependencies between ab-
stractable (integer) attributes of classes and signals of UML models, to assign
these attributes abstract types chosen from abstract type libraries, to auto-
matically check consistency of user-defined and model-induced constraints on
the precision of the types, to analyze contradictions arising from the constraint
analysis, and, when all contradictions have been resolved, to generate abstract
models for model checking. The type editor, which is part of the graphical user
interface, is used to define abstract type libraries and their operations either
manually or automatically.

The rest of this document is organized as follows: Section 2 describes usage
of the model abstractor and Section 3 usage of the type editor.

2 Model Abstractor

The model abstractor, shown in Figure 1, consists of the following items: a
menu-bar, a tool-bar, a hierarchical view of class and signal attributes in the
opened UML model (the “model hierarchy”), a tabbed container of attribute
constraints, and a list of types available in the currently loaded type library.

2.1 Menu-bar

The menu-bar consists of the following top-level items: File, Edit, Type inference
and View.

File→Open project... opens a dialog to select a new project file to be opened,
closing the one (if any) that is currently open. A shortcut for this option is
located in the tool-bar. The tool supports project files in XMI 2.0 format
as produced by the Coral metamodeling tool. A project file should contain
a single UML 1.4 model satisfying the following requirements:

• The model should define the primitive Jumbala data types “int” and “boolean” as
UML Primitives.

• Attributes and associations:

– The name of every class, signal, every class and signal attribute, and every nav-
igable association end defined in the model should be a valid identifier in the
Jumbala action language. There should be no duplicate definitions of classes,
signals, attributes, or association ends by the same name. (The names of classes
and signals reside in separate namespaces, as do the attributes and association
ends defined within each class or a signal.)

– The type of each attribute should be one of the primitive data types “int” or
“boolean”, or a class defined in the model. Only attributes of type “int” are
abstractable.

– Each class attribute may optionally specify an initializer (initialValue) expres-
sion, which must be a side-effect free expression in the Jumbala action language.

– Each association between classes should be a 1..1 association.

2

Figure 1: Main window of the model abstractor

3

• State machines:

– States:

∗ Every state machine in the model should have exactly one composite state
(its “top” state); all other non-pseudostates in the state machine should be
either simple states or final states.

∗ All pseudostates of a state machine in the model should be either initial or
choice pseudostates.

∗ Entry and exit actions and doActivities for states are ignored.

– Transitions:

∗ Each transition in a state machine should either have no trigger, or it should
be triggered by a SignalEvent associated with a signal defined in the model.

∗ The guard of each transition in a state machine should either be empty, or
a side-effect free Boolean expression in the Jumbala action language.

∗ The effect of each transition in a state machine should be an Uninter-
pretedAction with a (possibly) empty sequence of statements in the Jumbala
action language as its body. Each statement in this sequence should be one
of the following:

· an assert statement with a side-effect free Boolean expression;

· an empty statement (“;”)

· an assignment statement, whose right-hand side is either an expression
of the form “new C()” for a class C defined in the model, or a side-effect
free expression; or

· a send statement referring to a signal defined in the model, with side-
effect free parameter and target expressions.

– Side-effect free action language expressions:

∗ Side-effect free action language expressions should be type-consistent ex-
pressions in the Jumbala action language. The expressions can contain any
side-effect free arithmetic or Boolean operators, or the ternary conditional
operator.

∗ Every attribute reference in a side-effect free expression must be either of the
form “x1.x2...xn” for some n ≥ 1, or “this.x1.x2...xn” for some n ≥ 0.
For n ≥ 1, the two forms are semantically equivalent. If the reference
occurs in action language code belonging to (a state machine of) class C,
the “this” expression refers to the instance of the class C itself. For all
1 ≤ i ≤ n, xi should be the name of a navigable (outgoing) end of an
association (or, alternatively, if i = n, an attribute) defined in the class
which is reached from class C by tracking the (possibly empty) sequence of
associations x1 → x2 → · · · → xi−1.

File→Export abstract model... opens a dialog to select an existing file or
to create a new one to which the currently loaded model is exported,
abstracting the class and signal attributes in the model using the user-
defined constraints on the types of attributes. A model cannot be exported
until all contradictions in the type constraints have been resolved.

File→Close closes the loaded project.

File→Quit quits the program.

Edit→Types... opens the type editor (see Section 3). A shortcut for this
option is located also in the tool-bar.

Edit→Preferences... opens a dialog which can be used to specify options
which will persist between invocations of the graphical user interface. The
Options tab of this dialog contains the following options:

Automatic type inference When checked, type inference is performed
automatically after every change that is made in the attribute con-
straints.

4

Model runtime exceptions in automatic type generation When
checked, results of automatically generated operations for types (see
Section 3) will include the special domain value INVALID on those
abstract operands which cover concrete operand combinations for
which the corresponding concrete operation is not defined, such as
division by zero. The domains of abstract types will be automatically
extended with this value if necessary.

The External tools tab of the dialog can be used to select a Satisfiability
Modulo Theories solver to use for generating definitions of operations for
abstract types, and specify a path for the solver executable. This tab can
also be used to specify a path to use for the dot tool of the GraphViz graph
visualization toolset1 used for generating images in the GUI. The Save
button saves the preferences to an external file (.smuml abst gui prefs)
in the user’s home directory. The Apply button applies the preferences
for the loaded project but does not save them to a file. In this case the
applied preferences will remain in effect only as long as the GUI is running
(unless they are later changed or saved).

Type inference→Run performs type inference (a shortcut resides in the tool-
bar). This option is disabled if automatic type inference is active.

Type inference→Change default type... opens a dialog for selecting the
default type to be used for type inference (see Section 2.5). The same
task can be accomplished by choosing the default type from the drop-
down menu above the list of types located in the lower right pane of the
main GUI.

Type inference→Run automatically This option selects whether auto-
matic type inference is in use or not. When checked, type inference is auto-
matically repeated after every change that is made to the type constraints.
To change the setting permanently, use Edit→Preferences.

View→Type hierarchy opens or closes a window which displays the precision
ordering between integer types in the currently loaded type library. In the
figure that is displayed, arrows point from more precise types to less precise
ones: there is an arrow between two types if values of the source type can
be directly coerced to values of the target type.

View→Attribute dependencies opens or closes a window which displays
the value flow between attributes in the model (as determined from the
model’s action language statements and expressions). In the figure that is
displayed, there is an arrow from an attribute to another one if the value
of the attribute is directly used to compute the value of the other attribute
in some context. When adding constraints for the types of attributes, it
should be remembered that the type of an attribute can be only as precise

1http://www.graphviz.org/

5

as the least precise type of an attribute that is used to compute the value
of the attribute in some context.

2.2 Tool-bar

The tool-bar contains shortcuts to commonly used tasks. It consists of the
following items: Open, Export, Edit types and Infer types, whose actions cor-
respond respectively to the menu items File→Open project..., File→Export ab-
stract model..., Edit→Types..., and Type inference→Run. See Section 2.1 for a
description of these options.

2.3 Model Hierarchy

The model hierarchy view contains a hierarchical view of the integer type at-
tributes of classes and signals in the loaded model (only integer type attributes
can be abstracted). The Classes branch contains all the classes and the Signals
all the signals of the model. The leaves in the Attribute column contain the
attributes. The Original type column contains the concrete type of an attribute
which it had in the original model. The Inferred type shows the type of an
attribute after type inference (i.e., a type suggested for the attribute to satisfy
all constraints on the precision of the attributes). The Changed column uses a
red dot to highlight those attributes whose inferred types changed in the last
application of type inference (to display this information also in the case some
branches in the hierarchical view are collapsed, the dot is shown also in the class
and signal rows to indicate those classes and signals which contain attributes
whose types changed during type inference).

2.4 Type Constraints

The Type constraints pane provides various views to the type constraints defined
for the attributes of the loaded model. The Attribute tab shows the constraints
associated with the currently selected attribute (if any) in the model hierarchy,
the All tab all constraints of all attributes, and the Contradictions tab a set
of constraints which led to a contradiction during last type inference. All tabs
include an Add, an Edit and a Remove button. The Add button, which is
inactive in the Contradictions tab, adds a new constraint on the type of an
attribute. Pressing the Add button opens a dialog similar to the one shown
in Figure 2. The Attribute, Constraint and Type drop-down lists identify the
attribute for which the constraint is to be defined, the type of the constraint,
and the constraining abstract type, respectively. The Edit button can be used
to edit, and the Remove button to remove an existing constraint. Note that
when removing or editing constraints to resolve type inference conflicts, the
Contradictions tab will not be updated automatically unless automatic type
inference is in use (rerun the type inference manually to check whether there
remain any contradictions).

6

Figure 2: The “Add constraint” dialog

2.5 Types

The types view contains a drop-down list for selecting the default type for type
inference. This default type will be assigned automatically to all attributes
whose type is not constrained in any other way by the model-induced or user-
defined type constraints. (More precisely, this means that the value of the
attribute should neither depend on nor flow into any type-restricted context.)
The default type can also be changed from the Type inference→Change default
type... menu option.

3 Type Editor

The type editor, shown in Figure 3, is used to edit type libraries. The type
editor can be accessed from the main GUI either by selecting Edit→Types...
from the menu-bar or pressing the Edit types button in the tool-bar.

Figure 3: Type editor

The type editor consists of a menu-bar and four views labeled Types (which

7

lists all user-defined abstract integer types in the type library), Domain (which
lists the elements in the domain of the currently selected type), Operations
(which lists the operations defined for the currently selected type) and Operation
definition (which shows the definition of the currently selected operation).

As seen in Figure 3, types, operations and definitions are shown in different
styles according to their state. Red color on an operation indicates that the re-
sult values of the operation are undefined for all operand combinations (operand
combinations with undefined result values are shown red also in the Operation
definition view), orange that the operation is defined only partially, and black
that the operation has a non-empty set of return values for all operand combi-
nations. On a type, red color indicates that none of its operations is completely
defined (in other words, the color of all operations is red), and black that all of
the operations defined for the type are completely defined. Otherwise, the color
of a type is orange.

All views have a context menu with varying options. This menu can be
accessed via the right mouse button. The action selected from the menu applies
to the item which is currently highlighted.

3.1 Menu-bar

The menu-bar consists of the following top-level items: Library and View.

Library→Import... opens a dialog to select one or more type library files to
import. (To select multiple files, hold down the Ctrl key while selecting
the files.) The imported type library will replace the currently active one.

Library→Export... opens a dialog to choose a file to which the currently
active type library should be exported.

Library→Generate operations... opens a dialog to choose operations to
generate automatically. This dialog is shown in Figure 4. Note that the
path to the Yices executable should be set (via the Edit→Preferences...
menu option in the main GUI window) before operations for types can
be generated automatically. Furthermore, automatic generation of opera-
tions is possible only for types which have a coercion from the type “int”
defined. (To define a coercion between user-defined abstract types auto-
matically, both types must have such a coercion defined. Additionally, it
is not possible to have cycles in the type precision hierarchy.)

In Figure 4, the “Type” drop-down list identifies the type for which to gen-
erate operations. If the box “Show only undefined operations” is checked,
only those operations that are not defined for the currently selected type
(shown in gray) are displayed instead of all operations. For the (partially)
defined operations, a color coding similar to the one in the type editor
window is used. The operations to generate can be chosen by selecting
them in the list of operations.

8

Figure 4: Operation generation dialog

If the Model runtime exceptions in automatic type generation option has
been selected in the Edit→Preferences... dialog of the main GUI, auto-
matically defined operators will include the special value INVALID in
their set of results on those abstract operands whose concretizations cover
concrete operand combinations for which the concrete operation is not de-
fined (division or modulo by zero, bit shifts by a negative number of bits).
Evaluating the concrete operation on such invalid operand combinations
causes a run-time error in the Jumbala action language interpreter; the
special domain value INVALID models the possibility of these situations
explicitly. The domains of types are extended automatically with this
special value both if the value is needed to represent the “result” of an
operation, or if a coercion is to be defined from a type including this value
in its domain.

Library→Close closes the type editor and applies the changes to the model
abstractor, i.e., the Types view and the default type are updated and
constraints referring to types that were removed from the type library are
removed from the set of defined constraints.

View→Type hierarchy opens or closes the dialog which shows the precision
ordering between types (described in Section 2.1).

9

3.2 The “Types” View

The types view shows all the user-defined abstract (integer) types in the cur-
rently active type library. A type is added by clicking the Add button. A sample
dialog is shown in Figure 5. The name of a type should be a valid identifier in
the Jumbala action language, i.e., a string conforming to the regular expression
[A-Za-z][A-Za-z0-9]*.

The domain field can either be left empty or filled with one or more comma-
separated values (before the the type is updated, leading and trailing white
spaces are removed from the inputted domain elements). A domain element can
be any string which contains no white space or the literal symbols “,” or “:”. A
type can be removed by first selecting it with a mouse and clicking the Remove
button or by using the context menu (accessible using the right mouse button).
The context menu also includes the Generate operations... option which is a
shortcut to the item Library→Generate operations... located in the menu-bar.

Figure 5: The “New type” dialog

3.3 The “Domain” View

The domain view shows the domain of the currently selected type. New domain
elements can be added by clicking the Add button (see the dialog in Figure 6).
As with types, several values can be added at once by separating them with
commas. A domain element can be removed by selecting it with a mouse and
clicking the Remove button or by selecting Remove from the right mouse button
context menu when the mouse cursor points to the desired element.

Figure 6: The “Add domain element(s)” dialog

The domain value INVALID has special semantics as regards automatic
generation of operations for types under certain conditions (see Section 3.1).

10

3.4 The “Operations” View

The operations view shows the operations defined for the currently selected
type. An operation can be an operator, a test or a coercion. A new opera-
tion can be added by clicking the Add button. A sample dialog is shown in
Figure 7; operators which have variants with different number of operands are
identified by showing their arities. An operation can be removed by selecting it
with a mouse and clicking the Remove button or by selecting Remove from the
right mouse button context menu when the mouse cursor points to the desired
operation.

Figure 7: The “New operation” dialog

By checking the “Generate definition” box in the dialog, or by clicking the
right mouse button on top of an operation in the list of operations shown in
the type editor window and then selecting Generate definition from the context
menu, result values are automatically filled for that operation (provided that
automatic generation of operations is possible for the type, see Section 3.1).

3.5 The “Operation Definition” View

For operators and tests, the operation definition view shows all the operand
combinations and their associated result values. A result value selection dialog
can be opened either by double clicking a row or by selecting the Edit... option
from the right mouse button context menu in a row whose result values should
be set. The dialog is shown in Figure 8. The selection mechanism in the dialog
is toggle-like: an unselected item can be selected and a selected item can be
unselected by clicking it with a mouse.

For coercions, the operation definition view shows the definition of a coercion
from the type currently selected in the Operations view (the source type) to the
type currently selected in the Types view (the target type). The definition of
a coercion consists of a list of test cases (Boolean expressions in the Jumbala
action language) with associated return values. The semantics of a coercion on
a value of the source type is the set of result values associated with the first
test which evaluates to true when the tests are evaluated in top-down order,
replacing the special construct “<>” in each test with the value of the source
type to be coerced. (The result of the coercion is undefined if no test evaluates
to true.)

11

Figure 8: The “Select result values” dialog for operations

The Add and Remove buttons can be used to add and remove coercion test
cases, and the Up and Down buttons (accessible also via the right mouse button
context menu) can be used to change the order of the tests in the coercion.

Clicking the Add button (or double clicking a row in the coercion, or selecting
the Edit... option from the right mouse button context menu) displays a dialog
analogous to the one shown in Figure 9. Depending on the source type, the
dialog may include an entry field for the coercion test (where “<>” can be used
to refer to the value of the source type to be coerced), or a drop-down list of
values of the source type. The result values associated with the test or value
are selected from a list as for the other operations.

Figure 9: The “Edit coercion case” dialog

12

