
Suboco User’s Guide

Jori Dubrovin
Helsinki University of Technology (TKK)

Laboratory for Theoretical Computer Science

May 16, 2008

1 Introduction

Suboco is a tool that performs bounded model checking of UML state machine
models using an SMT (satisfiability modulo theories) solver as the back-end.
Suboco is part of the SMUML toolset. It can be either run as a standalone
command line tool or it can be used automatically as a back-end by the SMUML
frontend tool [2].

This document corresponds to Suboco version 1.10.

1.1 Analyzing Models

Suboco analyzes behavioral properties of UML state machine models using
bounded model checking, which means analyzing all executions of the model
of up to a constant number of execution steps. Suboco does this by producing
an SMT problem instance that is satisfiable if and only if the model has an
execution of k steps that violates one of the given properties. An external SMT
solver is used for deciding satisfiability. By default, the process is repeated for
k = 0, 1, 2, . . . until a satisfying instance is found or the program is interrupted.

If Suboco finds a satisfying SMT instance, it converts it to an execution trace
of the model that violates one of the properties. The trace can be simulated
using the SMUML simulator.

In symbolic model checking, the global configuration of the system is rep-
resented as a finite-length bit string. For this reason, the maximum number of
instances per class and the capacity of event queues must be statically defined.
Any executions where these limits are exceeded will not be taken into account
in the analysis.

1.2 Acknowledgements

The symbolic model checking method for UML models has been developed by
the current author together with Tommi Junttila. The financial support of
the Finnish Funding Agency for Technology and Innovation (TEKES), Nokia,
Conformiq, and Mipro is gratefully acknowledged.

1

2 Installation

In order to use Suboco, you should have the following installed in your computer.

• The SMUML toolset.1

• A Python interpreter (version 2.3.5 or later).2

• The Coral metamodeling tool and its Python application programming
interface.3

• A supported SMT solver. Yices version 1.0.9 is recommended.4

3 Usage

Calling Suboco from the shell command line can be done with

python $SMUML/bin/suboco.py [options] model.xmi

where $SMUML is the installation directory of the SMUML toolset and model.xmi
is the file name of the UML model. At least one of the options --check-deadlock,
--check-implicit-consumption, --check-assertions, or --check-runtime-errors
should be provided (see below for details). The temporary files used by Suboco
are written to the current directory.

If an error is found, a counterexample trace is written by default to a file that
has the extension .trace and the same path and base file name as model.xmi.
The produced trace can be executed with the SMUML simulator by the com-
mand

python $SMUML/bin/simulate generic trace.py model.trace

3.1 Example

The tool can be applied for checking whether the simple communication protocol
model SCP.xmi has deadlocks by giving the following commands in the directory
of the SMUML toolset.

$ python bin/suboco.py --check-deadlock models/SCP.xmi

Bound 0, gates 1005 (relevant 138) unsat

Bound 1, gates 1930 (relevant 1016) unsat

Bound 2, gates 2855 (relevant 1898) unsat

Bound 3, gates 3780 (relevant 2780) unsat

Bound 4, gates 4705 (relevant 3662) unsat

Bound 5, gates 5630 (relevant 4544) unsat

Bound 6, gates 6555 (relevant 5426) sat

Trace written to models/SCP.trace

Total solver CPU time 0.470 s

$ python bin/simulate generic trace.py models/SCP.trace

1http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
2http://www.python.org/
3http://mde.abo.fi/confluence/display/CRL/
4http://yices.csl.sri.com/

2

Processing the trace file models/SCP.trace

The trace has 13 actions

Loading model models/SCP.xmi

.

.

.

The model in fact has a reachable deadlock state, and a counterexample trace
that leads to deadlock is printed by the simulator.

3.2 Command-line Options

The possible options for suboco.py are the following. The names of options can
be abbreviated.

3.2.1 Generic Options

-h or --help
Only show a help page and exit.

--version

Print the version number of the program and exit.

--sloppy-input

For better consistency with badly written UML models, ignore some errors
in the format of the input file.

3.2.2 Checked Properties

Use one or more of the following options to generate checks for various properties
of the models. If none of this options are supplied, then no checks will be done.

--check-deadlock

Generate checks for deadlocks, i.e. reachable configurations of the system
in which no object can perform an action.

--check-implicit-consumption

Generate checks for the implicit consumption of events by any object.

--check-assertions

Generate checks for violations of all Jumbala assert statements in the
model.

--check-runtime-errors

Generate checks for Jumbala runtime errors such as division by zero and
null reference errors.

3.2.3 Output Options

--trace-file=file
The path and file name for the trace file. If no counterexample is found,
then no trace file will be created. The default is the name of the model
file with the extension changed to .trace.

3

--dot-file

The path and file name for a dot file that can be read by the GraphViz
dotty tool. The dot file represents the generated SMT circuit for one
execution step. By default, no dot file is created.

3.2.4 Solver Options

By default, Suboco assumes that the Yices SMT solver can be executed with
the command yices. Other solvers may be specified by the options. Only one
solver should be specified. Suboco has been tested with (in decreasing order
of support) Yices 1.0.9, CVC3 1.2.1, MathSAT 3.4.1, STP 30.8.2007, and Z3
0.1. The support for other solvers than Yices and the support for the SMT-LIB
input format are experimental and may cause problems.

--yices=file
--cvc3=file
--mathsat=file
--stp=file
--z3=file

Set the path and file name for the SMT solver. At most one of these
should be supplied. The default is to use Yices with the command yices.

--format=format
Set the file format for the generated SMT problem. The possible values of
format are native for the native format of the chosen solver, and smtlib

for the SMT-LIB format. The default is native. With the Z3 solver,
--format=smtlib is compulsory.

3.2.5 Model Checking Options

The following options specify the kinds of executions that will be considered in
the analysis.

--min-bound=N

Set the first considered problem bound to N . Default: N = 0.

--max-bound=N

Set the last considered problem bound to N . Default: N = 999999.

--int-bits=N

Set the number of bits in the int type to N , which must be an integer
between 2 and 32. The integer domain will be restricted to the range from
−2N−1 to 2N−1

− 1, and operations will be carried out using modulo 2N

arithmetic. The value N=32 gives the correct semantics, but setting N

to a lower value may increase performance. Default: N=32.

--queue-size=N

Set the default queue capacity of objects to N . The queue capacity is the
maximum total number of events in the input and deferred queues of an
object. Executions where the capacity of a queue is exceeded will not be
considered in the analysis. Default: N=2.

4

--specific-queue-size=classname:N
Set the queue capacity of all objects of class classname to N . This option
can appear multiple times.

--allow-queue-overdraft

Allow exceeding queue capacity. Using this option, the checking proce-
dure may consider some executions where queues may temporarily contain
one event more than what their capacity is. It also makes the resulting
circuit smaller, potentially increasing performance. By default, the queue
capacities are strict. This option has no effect if --encode-interleaving
is also given.

3.2.6 Encoding Options

The following options affect the way Suboco encodes the behavior of models.
They may affect the performance SMT solving but not the set of checked prop-
erties.

--encode-interleaving

Use the standard interleaving execution semantics in the encoding. This
typically increases the required bound to find an error and degrades per-
formance. By default, step execution semantics is used.

--encode-static

Use static step execution semantics. By default, dynamic step execution
semantics is used.

--enum-type=encoding
Set the type for representing enumeration variables in the encoding. The
possible values of encoding are enum and bitvector. The default is enum.

--enter=encoding
Set the encoding for state enter and exit predicates. The possible values of
encoding are old, trim, and linear. This may affect performance when
analyzing hierarchical state machines. The default is linear.

--qpos-type=encoding
Set the type for representing the variables that point to the next event
in the event queues. The possible values of encoding are bitvector and
integer. The default is bitvector.

--queue-indexing=encoding
Set the encoding for representing the contents of each queue. The possible
values of encoding are constant (use a separate variable for each queue
position) and parameter (represent the contents of each queue by a single
function parameterized over queue positions). The default is parameter.

--queue-contents=encoding
Set the encoding for messages in queues. The possible values of encoding
are messages (store the contents of messages directly in event queues) and
tags (use integer tag values to represent messages in event queues, and
encode uninterpreted functions that map these tags to message contents).
The default is tags.

5

4 Input Models

Suboco accepts UML models in the XMI format supported by the Coral tool.
The supported UML subset is that described in [1], with the following further
restrictions.

• All classes must be active and must have a state machine.

• Dynamic creation of objects is not supported. The new expression is not
allowed in transition effects.

• Control flow constructs are not allowed in transition effects. Such con-
structs can be eliminated using the script
flatten state machine action language.py [2].

• One transition can send at most one message to an object of each class.
In other words, for each class C and each transition t, the effect of t can
contain at most one send statement send s(...) to o; such that o is
a reference to an object of class C.

• Jumbala division (/), remainder (%), and shifting operations (<<, >>, >>>)
are not supported.

5 Known Bugs and Limitations

• In some cases with hierarchical state machine models, the step encoding
may produce a trace that is not a valid execution of the model. This may
happen in one of the following cases.

– If a state machine contains two transitions t1 and t2 such that (i)
t1 and t2 are not completion transitions and they are triggered with
the same signal, (ii) the source state of t1 is a descendant of the
source state of t2, and (iii) t1 has a guard, then superfluous traces
may occur.

– If a state machine contains two transitions t1 and t2 such that (i) t1
and t2 are completion transitions, (ii) the source states of t1 and t2 are
not pseudostates, (iii) the source states of t1 and t2 are orthogonal,
and (iv) firing t1 makes a pseudostate active, then superfluous traces
may occur.

Such superfluous traces should not occur when using interleaving execu-
tion semantics (--encode-interleaving).

• Support for different solvers varies. This may cause error messages, crashes,
and even wrong results. Yices 1.0.9 seems to be the most robust solver
and Suboco supports it best.

• The running time is often dominated by generating the SMT problem
instead of solving it.

6

References

[1] Tommi Junttila and Jori Dubrovin. The SMUML UML subset, 2007.

[2] Heikki Tauriainen. Overview of the SMUML toolset, 2007.

7

