
Overview of the SMUML Toolset

Heikki Tauriainen
Helsinki University of Technology (TKK)

Laboratory for Theoretical Computer Science

May 16, 2008

Abstract

This document gives a brief introduction to the main features of the
SMUML toolset as they are presented in the graphical user interface of
the toolset’s front-end script. The document also provides a reference to
the on-line documentation of the individual tools in the toolset.

Contents

1 Introduction 2

1.1 Acknowledgments . 2

2 Prerequisites 2

3 Features of the Graphical Front-End 3

3.1 Configuring Paths for Scripts 3
3.2 Model Preprocessing Options 4
3.3 Model Checking Options . 6
3.4 Abstraction Refinement Options 7

3.4.1 Overview of Data Abstraction Refinement 7
3.4.2 Settings . 8

3.5 Counterexamples . 9
3.6 Running the Analysis . 9

4 Known Limitations 9

A List of Tools in the SMUML Toolset 11

A.1 Model Preprocessing Tools 12
A.1.1 flatten state machine hierarchy.py 12
A.1.2 flatten state machine action language.py 13
A.1.3 slice state machines.py 14
A.1.4 flatten transition effects.py 16
A.1.5 jumbala to uml.py 17

A.2 Scripts for Model Analysis and Simulation 19
A.2.1 simulator.py . 19
A.2.2 uboco.py . 20
A.2.3 uboco trace to generic trace.py 21
A.2.4 suboco.py . 22
A.2.5 proco2.py . 23
A.2.6 simulate generic trace.py 24

1

A.2.7 analyze.py . 25
A.3 Abstraction Scripts . 28

A.3.1 Abstract Type Libraries 28
A.3.2 generate abstract type.py 30
A.3.3 generate interval abstraction.py 31
A.3.4 abstractor.py . 32
A.3.5 canal.py . 36

1 Introduction

This document provides a brief summary of the main features available
in the SMUML toolset, focusing on their use via a front-end graphical
user interface (GUI). It is assumed that the reader is familiar with the
Unified Modeling Language (UML) 1.4 subset used within the toolset (for
more information, see the separate document The SMUML UML subset

included in the toolset documentation) as well as constructing UML 1.4
models as XML Metadata Interchange (XMI) 2.0 files (using, e.g., the
Coral metamodeling tool).

1.1 Acknowledgments

The SMUML toolset was designed by Jori Dubrovin, Tommi Junttila, Toni
Jussila, Timo Latvala, Sami Liedes, Ilkka Niemelä, Vesa Ojala, Juhani Pel-
tonen and Heikki Tauriainen at Helsinki University of Technology (TKK),
Laboratory of Theoretical Computer Science. The financial support of the
Finnish Funding Agency for Technology and Innovation (TEKES), Nokia,
Conformiq, and Mipro is gratefully acknowledged.

2 Prerequisites

The front-end to the SMUML toolset requires the following software (not
included in the SMUML toolset distribution) to be installed:

• A Python interpreter (at least version 2.4 or later).1

• The Coral metamodeling tool (and its Python application program-
ming interface).2

• The GTK+ graphical user interface toolkit libraries, including the
PyGTK application programming interface (version 2.8 or later rec-
ommended).3 The tools in the SMUML toolset can be used also in
text mode, in which case these libraries are not required.

Additionally, at least one of the following back-end tools must have been
installed before any models can be analyzed:

• The NuSMV model checker (with satisfiability solvers required for
bounded model checking).4

• The Spin model checker5 and a C compiler.

1http://www.python.org/
2http://mde.abo.fi/confluence/display/CRL/
3http://www.gtk.org/, http://www.pygtk.org/
4http://nusmv.irst.itc.it/
5http://spinroot.com/

2

• A Satisfiability Modulo Theories (SMT) solver. The supported SMT
solvers are those accessible via the PySMT application programming
interface (included in the SMUML toolset distribution); currently,
support is provided for the solvers CVC36, MathSAT7, STP8, Yices9

and Z310.

Before running any tools in the toolset, check that your PYTHONPATH search
path includes the locations of the Python API for the Coral metamodeling
tool, and the PyGTK API (if you intend to use the tools via their graphical
user interface).

3 Features of the Graphical Front-End

To start the front-end in graphical mode, type

[SMUML root]/bin/analyze.py --gui

at the command prompt (where [SMUML root] is the name of the root
directory of the SMUML toolset). Provided that the libraries required
by the toolset have been installed correctly, you should be presented with
the window similar to the one shown in Figure 1. This window consists
of a text entry field for the name of an XMI 2.0 project file containing a
UML 1.4 model to be analyzed, a button for opening a file chooser dialog
to select a project file, and the following tabs:

Preprocessing The Preprocessing tab contains options which can be
used to select transformations to be applied to the model before
analysis. See Section 3.2.

Model checking The Model checking tab contains options for choos-
ing the back-end to use for model checking, and options for con-
trolling the behavior of the selected model checking back-end. See
Section 3.3.

Abstraction refinement The options on the Abstraction refinement

tab control the behavior of counterexample-based automatic data
abstraction refinement. See Section 3.4.

Counterexamples The Counterexamples tab provides some post-pro-
cessing options for counterexamples found in model checking. See
Section 3.5.

Configuration The Configuration tab can be used to specify paths for
scripts and external tools needed by the front-end script or the model
checking back-ends. See Section 3.1.

About The About tab displays information about the SMUML toolset.

Additionally, the window contains the buttons Start and Quit for starting
model analysis and exiting the program, respectively.

3.1 Configuring Paths for Scripts

Before starting model analysis for the first time, you should check that
the paths of external scripts and tools specified on the Configuration tab

6http://www.cs.nyu.edu/acsys/cvc3/
7http://mathsat.itc.it/
8http://theory.stanford.edu/~vganesh/stp.html
9http://yices.csl.sri.com/

10http://research.microsoft.com/projects/z3/

3

Figure 1: Graphical user interface for changing model analysis settings.

are appropriate for your environment. By default, this tab displays the
contents of the textual configuration file paths.conf in the current work-
ing directory (if such a file exists); an alternate configuration file can be
loaded by clicking the Browse... button on this tab. A configuration file
template is included in the SMUML toolset distribution.

The configuration file for the paths of external scripts and tools should
contain zero or more lines of the form

[key]=[value]

Empty lines and the part of each line following the first # are ignored.
Each [key] represents the name of a variable (a script or an external tool),
and each [value] is a value for this variable (the command to run the script
or tool with possible command line arguments). If a value begins or ends
with white space, enclose the value in single or double quotes. Previously
defined variables (including variables defined in the environment) can be
referenced using the syntax $[key] or ${[key]}.

The easiest way to prepare a configuration file is to modify the sample
configuration file included in the SMUML toolset distribution to your
needs. In particular, check that the keys PYTHON and SMUML, the key
nusmv specifying a path for the NuSMV model checker, the keys for paths
for the supported SMT solvers (cvc3, mathsat, stp, yices, z3), and the
keys needed for using the Spin model checker (spin, CC) have appropriate
values if you intend to use these model checkers or solvers.

3.2 Model Preprocessing Options

The Preprocessing tab contains options for choosing transformations to
be applied to the model before model checking. These transformations
are sometimes needed to normalize models before they can be analyzed
since the model checking back-ends and abstraction refinement tools have
varying constraints for models given to the tools as input. To apply a
particular transformation, check its associated checkbox on this tab. The
available transformations are:

4

Flatten state machine hierarchy Replace all hierarchical state ma-
chines in the model with state machines containing no composite
states other than their top state. Additionally, ensure that all tran-
sitions leaving a state of any of these state machines are either trig-
gered by a signal, or they are all completion transitions.

Flatten action language control flow Make the control flow in all ac-
tion language statements involving a branch (such as conditional
statements, or for and while loops) explicit in the transition struc-
ture of the state machines such that all effects of transitions in the
resulting state machines contain only statements which will be exe-
cuted sequentially (empty statements, assignments, and assert and
send statements). Note that every sequence of these statements oc-
curring within the effect of a single transition will be executed atom-
ically; to control the atomicity, the sequences of statements can be
split further into segments, each of which contains either (i) at most
send statement, or (ii) at most one simple statement.

Slice model with respect to assertions Perform a static analysis on
each state machine in the model to find action language statements
whose execution will not affect the value of any variable in the condi-
tion of any assertion statement in the model; replace all such state-
ments with empty statements to try to reduce the effort needed for
model checking.

Flatten expressions in effects of transitions Augment classes in the
model with new temporary variables to be used for evaluating com-
pound arithmetic subexpressions in the effects of transitions in the
state machines in the model. (Guard expressions of transitions will
be left unchanged.) For example, the compound arithmetic expres-
sion

((y + z) - w) * q

could be transformed to a plain reference to a temporary variable
tmp 2 initialized using the sequence of assignments

tmp 0 = (y + z); tmp 1 = tmp 0 - w; tmp 2 = tmp 1 * q;

This transformation may reduce the effort needed for inlining defi-
nitions of abstract operations when using automatic abstraction re-
finement.

The selected model transformations will always be applied in the order
from top to bottom.

Table 1 shows a high level overview of the constraints on input models
for various model transformation and analysis tools included in the toolset.
Input models for tools which do not support hierarchical state machines
need to be first processed with the state machine hierarchy flattener if nec-
essary; similarly, input models containing complex action language control
flow constructs need to be processed through the action language flattener
before they can be analyzed. Note that some unsupported constructs (for
example, action language expressions which contain arithmetic expres-
sions having side effects, such as pre- or postfix increment operations)
cannot be removed from the models automatically using tools currently
available in the SMUML toolset.

5

Table 1: Summary of input model features supported by model transformation

and analysis tools. A Xmeans that the model feature is supported directly by

the tool.

M
odel slicing

Expression
flattening

U
boco

Suboco

Proco

A
bstraction

refinem
ent

C
ounterexam

ple
sim

ulation

hierarchical state machines, comple-
tion transitions mixed with triggered
onesa

X X X X

action language constructs with con-
trol flow branchingb

more than one send statement per
transitionb

X X X X X

arithmetic expressions with side
effectsc

a can be removed by flattening state machine hierarchy
b can be removed by flattening action language control flow
c cannot be removed automatically using tools in the toolset

3.3 Model Checking Options

The Model checking tab contains options which control how a model is to
be analyzed. The SMUML toolset depends on external back-end model
checkers (or Satisfiability Modulo Theories solvers) in the actual model
analysis phase: for each of these back-ends, the SMUML toolset includes
an interface via which the model to be analyzed is translated into input
formalisms supported by the external tools. The supported interfaces and
back-ends are:

Uboco This interface translates models into the input language of the
NuSMV symbolic model checker. This model checking back-end
supports model analysis using bounded model checking (BMC) with
the help of a satisfiability (SAT) solver, or exhaustive model checking
using binary decision diagrams (BDDs). See Uboco User’s Guide for
more information.

Suboco This interface supports model analysis via bounded model check-
ing by translating the model checking problem into Satisfiability
Modulo Theories (SMT) problem instances, which are then solved
using any of the SMT solvers supported by the toolset. For more
information, see Suboco User’s Guide.

Proco This interface translates models into Promela, the input language
of the Spin explicit state model checker. The model checking is
then done by a verifier generated from this model by Spin and a C
compiler. For more information, see User’s guide to proco version

2.0.

6

The SMUML toolset can be used to analyze models for the following
errors:

Assertion violations Check whether the model has a computation
which leads to a violation of the condition of an assert statement.

Presence of deadlocks Check whether the model has a computation
which ends in a state in which no further progress is possible. (Not
compatible with abstract models.)

Implicit consumption of events Check whether the model has a com-
putation in which some signal event is consumed without triggering
a transition.

Runtime errors (Uboco and Suboco; for Proco, runtime error check-
ing is always enabled) Check whether the model has a computation
which leads to a runtime error (e.g., division by zero).

Event queue overflows (Proco) Check whether the model has an ex-
ecution where the maximum capacity of the event queue of some
object is exceeded.

Additionally, there are a number of options specific to each model
checking back-end. Most of these settings, which are adjusted using com-
mand line options when using the back-end interfaces as stand-alone tools
via the console, are collected in the Additional options column for each
back-end; see the documentation for each back-end interface for more in-
formation. The Extra options field can be used to specify options (from
the command line options supported by the back-end) which do not have
a corresponding setting in the GUI.

3.4 Abstraction Refinement Options

The Abstraction refinement tab can be used to enable automatic coun-
terexample-based data abstraction refinement, and choose settings related
to generating operations for abstract data types. Automatic abstraction
refinement is intended to be applied always directly to concrete models;
automatic abstraction refinement is not supported (at least in the way
that might be expected) for abstract models generated with the model
abstraction tools using user-defined type libraries.

3.4.1 Overview of Data Abstraction Refinement

The purpose of data abstraction is to reduce the state space of a model
to be analyzed by assigning its attributes abstract types with domains
that are smaller than the domains associated with the original types of
the attributes. Each abstract type has also operations whose results over-
approximate the results of the corresponding concrete operations. An
abstract model can be generated via a source-to-source transformation by
replacing each concrete operation used in an action language expression
in the model with the definition of the corresponding abstract operation
for some abstract type.

The SMUML toolset supports data abstraction of integer attributes.
For automatic abstraction refinement, abstract types for the attributes
are chosen from a family of partitions of the set of integers into intervals.
Each partition in this family is characterized by a finite set of integers to
be separated from the partition: the domain of the abstract type corre-
sponding to the partition then consists of these integers and the intervals

7

between them. Automatic abstraction refinement starts with abstract-
ing all integer attributes in the model using the trivial partition with no
elements separated from it; abstraction refinement then proceeds by an-
alyzing counterexamples found in model checking to gradually refine the
partitions assigned to the model’s attributes until the types of the at-
tributes are precise enough to show the existence of a computation which
leads to an error in the original unabstracted model, or prove that the
model has no such computations (of at most some given length when
using bounded model checking).

3.4.2 Settings

The abstract models used in the SMUML toolset are generated using a
source-to-source transformation as described above. The definitions of ab-
stract operations are generated automatically using a Satisfiability Mod-
ulo Theories solver. The toolset provides several choices for the integer
semantics to use for generating abstract types:

Bounded integer semantics When using this semantics, the automat-
ically generated abstract operations will approximate the semantics
of the corresponding concrete operations of the int type of the Jum-
bala action language (32-bit signed integers which wrap on arith-
metic overflow). The approximations are safe overapproximations of
the concrete operations under the assumption that no runtime errors
(e.g., division by zero) occur. This option provides the most faithful
approximation of the actual semantics of the Jumbala action lan-
guage and has no limitations as to which operations can be used in
action language expressions contained in a model—that is, all arith-
metic (+, -, *, /, %, &, |, ~, ^, <<, >>, >>>) and test (==, !=, <, <=, >,
>=) operators of the Jumbala action language are supported. (The
Boolean operators &&, || ! and the ternary conditional operator ?:
are also supported; these operators are never actually abstracted,
however.)

Unbounded integer semantics Choosing this semantics for integers
allows abstract operations to be generated by exploiting the proper-
ties of integer partitions, which is usually faster than generating the
operations using a generic SMT solver. Although assuming the un-
derlying concrete operations to operate on unbounded integers will
in general produce semantically unsound approximations for oper-
ations in the action language, this semantics can still be useful if
there is no danger of (or need to prepare for) arithmetic overflow.
When using this semantics, however, abstraction is supported only
for the basic arithmetic (+, -, *, /) and test (==, !=, <, <=, >, >=)
operators.

Mixed integer semantics When using this option, abstract operations
will be generated using a combination of the previous two semantics:
basic arithmetic (+, -, *, /) and test (==, !=, <, <=, >, >=) operations
(as well as mappings between values of abstract types) will be gener-
ated by approximating the corresponding operations on unbounded
integers, and the remaining arithmetic operators (%, &, |, ~, ^, <<,
>>, >>>) will be generated by approximating operations on bounded
integers.

Abstract operations can be generated automatically using any of the
Satisfiability Modulo Theories solvers supported by the SMUML toolset.

8

Finally, the Limit for flattening abstract operations controls how ea-
gerly the abstract model generator should apply partial evaluation (“flat-
tening”) to compound action language expressions which contain only ref-
erences to variables of abstract (or Boolean) type. For example, instead of
first replacing the subexpression (a + b) in the compound expression (a

+ b) - c with the definition of the addition operation for some abstract
type (resulting in an expression e) and then (in effect) the expression e -

c with the definition of the subtraction operation for an abstract type, the
entire expression could be replaced with a case analysis enumerating the
possible combinations of values for the expression’s “input attributes” a,
b and c and the value of the expression under each combination of values.
This transformation may help to reduce the size of expressions in an ab-
stract model, but on the other hand may make abstract models converge
more rapidly towards the concrete model in abstraction refinement. The
value for the limit is used to restrict flattening to those expressions, the
size of whose input domain (i.e., the Cartesian product of the domains
of its input attributes) is at most equal to this limit. The value None

removes this upper limit, enabling unconditional flattening of all abstract
operations.

3.5 Counterexamples

The Counterexamples tab contains a text entry for specifying the name
of a file in which to save a counterexample trace leading to an error in the
model (if a real counterexample is found in model checking), and whether
to also simulate the counterexample after model checking. Counterex-
ample traces are saved in the SMUML toolset’s generic counterexample
format. Traces in this format can be simulated independently using the
trace simulator included in the toolset.

3.6 Running the Analysis

After setting model analysis options, the analysis can be started by click-
ing the Start button. During the analysis, the graphical user interface
displays some debugging information about the progress of the analysis.
After the analysis is complete, a log of these debug messages can be saved
to a file by clicking the Save log as... button. Clicking the Exit button
returns to the model analysis settings dialog.

4 Known Limitations

In addition to the restrictions on input models supported by the individual
tools in the SMUML toolset (Table 1), the toolset has the following known
limitations:

• Input models generated using Uboco may contain features which
are supported by the NuSMV model checker only in bounded model
checking mode.

• The extent of support for different Satisfiability Modulo Theories
solvers may vary (currently only partial support for some solvers is
available). The Yices SMT solver (version 1.0.9) is known to work
with the tools in the SMUML toolset without severe limitations.

9

• The Proco model checking back-end does not support the analysis
of abstracted models. Consequently, the back-end cannot be used
for abstraction refinement, either.

• Checking for the existence of deadlocks in abstracted models is not
recommended since model abstraction may introduce spurious dead-
locks which are normally forbidden by UML semantics (which may,
for example, cause deadlocking counterexample traces from abstract
models to be unsimulatable, thus preventing, e.g., counterexample
analysis for abstraction refinement).

• Checking for runtime errors is not supported for abstracted arith-
metic operations (enabling runtime error checking will have no ef-
fect).

• The graphical user interface to the front-end does not provide a
method to interrupt the model analysis. (Killing an external model
checker process may in some cases be used as a workaround.)

• The graphical user interface may seem to freeze in the “Generating
abstract model” phase when saving an abstract model file. This is
normal.

• Using a large value (or the value None) for the limit for flattening ab-
stract expressions for abstraction refinement may cause the Python
interpreter to exceed its default maximum recursion depth.

• Depending on the types of error conditions selected to be checked,
counterexample trace simulation may not always be possible up to
the first error of one of the selected types if another error (of any
type) occurs already before this error in the trace.

10

UML modeling tool

jumbala to uml.py

flatten state machine hierarchy.py

flatten state machine action language.py

slice state machines.py

flatten transition effects.py

abstractor.py

uboco.py suboco.py proco2.py analyze.pysimulator.py

NuSMV

uboco trace to generic trace.py

SMT solver Spin

simulate generic trace.py canal.py

(XMI file)

(Preprocessed XMI file)

(Abstracted XMI file)

(NuSMV input file)

(NuSMV counterexample trace)

(Generic counterexample trace)

generate abstract type.py generate interval abstraction.py

(Type library files)

(Type association file)

Text editor

(Jumbala process specification file)

(nusmv.scr)

The SMUML toolset

(paths.conf)

Figure 2: Overview of the workflow using tools in the SMUML toolset. The

extent of the SMUML toolset is displayed in a grey background.

A List of Tools in the SMUML Toolset

Most tools included in the SMUML toolset can be used also independently
via the console using the Python interpreter. This appendix collects the
on-line documentation of the main tools in the SMUML toolset for refer-
ence. Tools related w.r.t. their functionality are grouped by section. Fig-
ure 2 gives an overview of the dependencies between tools in the toolset
(see also Table 1 and Section 4 for more details on the requirements and
limitations of tools in the toolset).

11

A.1 Model Preprocessing Tools

Model preprocessing scripts can be used for constructing and transforming
UML models before analyzing them.

A.1.1 flatten state machine hierarchy.py

Description
Removes hierarchy from state machines and normalizes transitions of state
machines in a model.

On-Line Documentation

usage: python flatten_state_machine_hierarchy.py [options] inputmodel.xmi output

model.xmi

Flattens the hierarchy of all state machines appearing in the model in
the file ’inputmodel.xmi’. In addition, the state machines are normalized
so that each simple state either has (i) no outgoing transitions,

(ii) only signal triggered outgoing transitions, or (iii) only
outgoing completion transitions with the additional quarantee that

at least one of them will always be enabled.

The resulting model is written in the file ’outputmodel.xmi’.

options:
-h, --help show this help message and exit

--dotty-file=FILE print the state machines in dotty format to files
starting with FILE [default: no dotty output]

Example

$ python flatten_state_machine_hierarchy.py models/TV.xmi TV_flat.xmi
Flattening the state machine ’<<anon>>::TV::statemachine of TV’

The state machine has
15 state vertices

1 concurrent composite states
4 nonconcurrent composite states
6 simple states

0 final states
4 initial pseudostates

0 choice pseudostates
13 transitions

The flattened state machine has
11 state vertices
0 concurrent composite states

1 nonconcurrent composite states
6 simple states

0 final states
1 initial pseudostates

3 choice pseudostates
24 transitions

$

12

A.1.2 flatten state machine action language.py

Description
Makes the control flow of conditional statements, and while and for loops
explicit in the transition structure of each state machine in a model.

On-Line Documentation

usage: python flatten_state_machine_action_language.py [options] inputmodel.xmi

outputmodel.xmi

Removes if, for, while, do, break, and continue constructs

from the action language statements appearing in
the state machines of the model in the file inputmodel.xmi.

Writes the resulting model in the file outputmodel.xmi.

options:
-h, --help show this help message and exit
--single-statement extra flattening: each transition will have at most

one statement
--atmost-one-send-statement

extra flattening: each transition will have at most
one send statement

--dotty-file=FILE print the state machines in dotty format to files
starting with FILE [default: no dotty output]

Example

$ python flatten_state_machine_action_language.py model.xmi model_flat.xmi
$

13

A.1.3 slice state machines.py

Description
Simplifies state machines in a model using program slicing techniques.

On-Line Documentation

Usage: slice_state_machines.py [OPTIONS] FILE

Slices UML state machines in the UML model in FILE.

Options:
-o, --outputfile=FILENAME Specifies the name for the file in which to

write the sliced UML model. If not specified,

original name will be used with ’.sliced’ added
into it. For example, a sliced version of

’model.xmi’ would be ’model.sliced.xmi’.
If the name of a model to be sliced does not
end with postfix ’.xmi’ or ’.xml’, a sliced

model will have the name of the original model
with a ’.sliced.xmi’ postfix added.

-h, --help Displays this text.

-C, --cfg Writes dot files describing control flow graph
(CFG) used in slicing.

-I, --inputsm Writes dot files containing the original state

machines represented by graphs in DOT language.

-O, --outputsm Writes dot files containing the sliced state

machines represented by graphs in DOT language.

-D --dependencies=OPTIONS Specifies what dependencies are drawn to the
dot-file representing CFG (if --cfg flag is used)

Possibilities are:
d = data dependencies
n = non-termination sensitive control dependencies

o = decisive control dependencies
i = interference dependencies

s = signal sending dependencies

For example -Ddno prints data dependencies,
non-termination sensitive control dependencies,
and decisive control dependencies.

If this flag is not given, all dependencies are

drawn as a default.

-N, --nosliced Writes no sliced UML model.

-A --sliceassert Adds all assert statements to slicing criterion.

Slicing criterion is defined in the UML model given by user as an
input. It is a set of transitions that contain all the transitions
from the original UML model that have a taggedValue named

’slicingCrit’. The actual value of taggedValue ’slicingCrit’ have no
meaning.

You can also add all assert-statements to slising criterion by using
the correct command line option.

Dot files are text files describing a graph in a DOT language. Graphs

described in DOT can be viewed with a small program called ’dotty’ which is
part of a Graphviz package.

For more information about the theory behind the slicer, see
http://www.tcs.hut.fi/Studies/T-79.5001/reports/ojal07sliuml.pdf

This script was written by Vesa Ojala for the SMUML project

<http://www.tcs.hut.fi/Research/Logic/SMUML.shtml>.

14

Example

$ python slice_state_machines.py model.xmi
2 statemachine(s)

reaching definitions calculated
data dependencies calculated

non-termination sensitive control dependencies calculated
interference dependencies calculated
decisive control dependencies calculated

control flow graph slice calculated
sliced UML model generated

sliced model wrote to file ’model.sliced.xmi’

done
$

15

A.1.4 flatten transition effects.py

Description
Replaces compound arithmetic expressions in effects of transitions of state
machines in a model with sequences of assignments of simpler arithmetic
expressions to temporary variables added to the model.

On-Line Documentation

Usage: flatten_transition_effects.py INFILE OUTFILE
Flatten action language expressions in effects of transitions of state
machines in a UML model contained in a XMI 2.0 project file INFILE, and

generate a new project file and model (with possibly new temporary
variables added to its classes) as OUTFILE. The model contained in the

input file should first have been processed through the state machine
hierarchy and action language flatteners (if necessary).

"Flattening" an expression means translating the expression to a series
of assignments to temporary variables introduced for subexpressions of

the expression. For example, the expression "((y + z) - w) * q" could
be flattened to a plain reference to a temporary variable "tmp_2"

initialized using the sequence of assignments
"tmp_0 = (y + z); tmp_1 = tmp_0 - w; tmp_2 = tmp_1 * q;".

This script will flatten only action language expressions of integer type;
for example, the topmost "Boolean part" of any expression is left intact

(integer subexpressions of Boolean expressions are still flattened, though).

Options:

-h, --help Display this help and exit.

This script was written by Heikki Tauriainen for the SMUML project
<http://www.tcs.hut.fi/Research/Logic/SMUML.shtml>.

Example

$ python flatten_transition_effects.py model.xmi model_flat.xmi

$

16

A.1.5 jumbala to uml.py

Description
Constructs a UML model from a collection of concurrent processes speci-
fied as simple programs in the Jumbala action language.

On-Line Documentation

Usage: jumbala_to_uml.py [OPTION...] INPUT-FILE OUTPUT-FILE

Construct a UML 1.4 model from one or more simple sequential Jumbala
programs representing concurrent processes communicating via shared
variables.

The following command line option is supported:

-h, --help Display this help and exit.

The input for the script should consist of definitions of process types
and processes. A process type represents a simple sequential Jumbala
program with variables (each of which can be of type "int", "boolean", or

a reference to another process type); each process type will be
represented by a unique active class in the constructed model. A process

is an instantiation of a process type and corresponds to an object in the
constructed model. There can be multiple instantiations of the same

process type.

In short, each process type definition should begin with a line of the

form "#proctype <PROCTYPE-ID>" (where <PROCTYPE-ID> is a valid name for
a non-primitive type in the Jumbala action language) followed by a

newline-separated list of variable declarations (in the usual form,
e.g., "int x;") and a fragment of Jumbala action language code, which may
refer to the variables declared in the process type definition, but may

not contain any further variable, class, or function declarations. The
type of a variable can be either "int", "boolean", or the name of a

process type defined in the same input file. The name of a variable
should be a valid identifier in the Jumbala action language.

Each process definition should begin with a line of the form
"#process <PROCESS-ID> <PROCTYPE-ID>", where <PROCESS-ID> is a valid name

for an identifier in the Jumbala action language, and <PROCTYPE-ID> is a
name of a process type defined in the same input file. If the process

type of the process declares references to other process types, all such
references have to be initialized for the process by following the
"#process ..." line with a newline-separated list of assignments of the

form "<REF-ID> = <PROCESS-ID>;", where <REF-ID> is the name of a
reference to a process type declared in <PROCTYPE-ID>, and <PROCESS-ID>

is the name of a process instatiated using this process type in the same
input file. Primitive type variables of processes can (but do not have

to) be initialized (with a constant value of the appropriate type) using
a similar syntax "<VARIABLE-ID> = <VALUE>;".

Formally, the input for the script should conform to a string generable
from the nonterminal <definitions> using the following grammar.

(Nonterminals in the grammar should be separated from other sequences
of non-whitespace characters by white space. Strings in quotes should
be interpreted literally without the quotes; <EOL> represents a newline.

Comments are enclosed in /* ... */.)

<definitions> ::= <definition> <definitions> | /* empty */

<definition> ::= <proctype-definition> | <process-definition>

<proctype-definition> ::= <proctype-declaration> <var-declarations>

<ACTION-LANGUAGE-CODE>

<proctype-declaration> ::= "#proctype" <PROCTYPE-ID> <EOL>

<var-declarations> ::= <var-declaration> <var-declarations> | /* empty */

<var-declaration> ::= ("int" | "boolean" | <PROCTYPE-ID>) <VARIABLE-ID> ";"

<EOL>

<process-definition> ::= <process-declaration> <initializations>

17

<process-declaration> ::= "#process" <PROCESS-ID> <PROCTYPE-ID> <EOL>

<initializations> ::= <initialization> <initializations>

| /* empty */

<initialization> ::= <var-initialization> | <ref-initialization>

<var-initialization> ::= <VARIABLE-ID> "=" <VALUE> ";" <EOL>

<ref-initialization> ::= <REF-ID> "=" <PROCESS-ID> ";" <EOL>

Note that this simple helper script will not check <ACTION-LANGUAGE-CODE>
for any errors. Additionally, the generated model may need to be

processed through the action language flattener included in the SMUML
toolset before it is ready to be analyzed.

This script was written by Heikki Tauriainen for the SMUML project
<http://www.tcs.hut.fi/Research/Logic/SMUML.shtml>.

Example

$ cat program.jmb

#proctype Producer

int i;
int value;

boolean waiting_for_consumption;
Producer self;
Consumer consumer;

i = 0;

self.waiting_for_consumption = false;

while (true) {
/* "produce" a value */
value = i;

/* wait for consumer to act */
self.waiting_for_consumption = true;

while (self.waiting_for_consumption)
;

/* check that the consumer now has the correct value */

assert self.value == consumer.value;
/* increment the value to be produced */

self.value = consumer.value;
i = i + 1;

}

#proctype Consumer

int value;

Producer producer;

while (true) {

/* wait until a value is ready to be consumed */
while (!producer.waiting_for_consumption)

;
/* "consume" the value */

value = producer.value;
/* signal that the value has been consumed */
producer.waiting_for_consumption = false;

}

#process producer_process Producer
self = producer_process;
consumer = consumer_process;

#process consumer_process Consumer

producer = producer_process;
$ python jumbala_to_uml.py program.jmb model.xmi

$

18

A.2 Scripts for Model Analysis and Simulation

This section contains documentation for scripts which can be used for
simulating and analyzing models and counterexample traces.

A.2.1 simulator.py

Description
Interactive simulator for UML models.

On-Line Documentation

Usage: simulator.py uml14model.xmi

Interactively simulates the UML1.4 model given as the argument.

Example

$ python simulator.py model.xmi

The initial trace is:
State 0

Object 0 p::Process

sm_input_queue = []
sm_defer_queue = []

sm_state =
top

init

Action 1: execute transition set on object 0 (p)

from: top::init
to: top::start

Please select an action, 0 to send a signal to an object, or ’b’ to backtrack on
e step, ’q’ to quit: 1
The trace is:

State 0
Object 0 p::Process

sm_input_queue = []
sm_defer_queue = []

sm_state =
top

init

Action: Object 0 executed transition ’initialize’
State 1

Object 0 p::Process
sm_input_queue = []
sm_defer_queue = []

sm_state =
top

start

Action 1: execute transition set on object 0 (p)
from: top::start
to: top::run

effect: assert 5 < 2;
Please select an action, 0 to send a signal to an object, or ’b’ to backtrack on

e step, ’q’ to quit: 1

Traceback (most recent call last):

File "simulator.py", line 62, in ?
while sim.interactive_step():

File "Sim/Core.py", line 3513, in interactive_step
o.sm_state,action_list = o.sm_state.fire(o, set, self, next_global_state)

File "Sim/Core.py", line 1304, in fire
raise Sim.Error.ActionLanguageError(orig, e)

Sim.Error.ActionLanguageError: An assertion violation occurred when object 0 exe

cutes transition ’Model::Process::state machine::execute code’ from ’Model::Proc
ess::state machine::top::start’ to ’Model::Process::state machine::top::run’ wit

h effect ’assert 5 < 2;’
$

19

A.2.2 uboco.py

Description
Translates UML models to input files for the NuSMV model checker.

On-Line Documentation

usage: python uboco.py [options] infile.xmi outfile.smv

options:
--version show program’s version number and exit

-h, --help show this help message and exit
--sloppy-input accept inconsistent UML models
--int-bits=N number of bits in the int type [default: 8]

--instances=N number of instances per class [default: 1]
--specific-instances=CLASSNAME:N

number of instances of a specific class
--queue-size=N size of event queues [default: 2]

--specific-queue-size=CLASSNAME:N
size of event queue of a specific class

--check-deadlock check deadlocks

--check-implicit-consumption
check implicit consumption of events

--check-assertions check Jumbala assertion errors
--check-runtime-errors

check Jumbala run-time errors

--encode-interleaving
encode interleaving execution semantics

--encode-static encode static step semantics [default: dynamic steps]
--old-enter encode superlinear enter predicates [default: linear]

--allow-queue-overdraft
allow exceeding queue capacity in step semantics

Example
Translate a model into a NuSMV input file instrumented with a linear time temporal
logic property for checking the model for assertion violations.

$ python uboco.py --check-assertions model.xmi model.smv

$

20

A.2.3 uboco trace to generic trace.py

Description
Translates NuSMV error traces into traces in the SMUML toolset’s generic
counterexample format.

On-Line Documentation

Usage: uboco_trace_to_generic_trace.py NuSMVfile NuSMVoutputfile

Example
Run NuSMV on an input file generated by Uboco using the commands from the file
nusmv.scr (included in the SMUML toolset distribution), then translate the error
trace into the generic counterexample format.

$ NuSMV -int -load nusmv.scr model.smv

FILE ->>> nusmv.scr
*** This is NuSMV 2.4.3 zchaff (compiled on Fri Sep 21 08:42:36 UTC 2007)
*** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.
*** Please report bugs to <nusmv@irst.itc.it>.

[...]
There is 1 trace currently available.
See file nusmv.out for counterexample traces.

$ python uboco_trace_to_generic_trace model.smv nusmv.out
Model model.xmi

InitialConfiguration object obj#i1#cProcess umlobject DCE:C97D1998-3086-6174-C35
B-B8BB2FBBD01A

TransitionExecution object obj#i1#cProcess transition DCE:D7AA8B65-88CE-EB95-2FC
2-80A1C2972AF0
TransitionExecution object obj#i1#cProcess transition DCE:991FA2D5-0AE8-0C46-725

2-A596E8437291
$

21

A.2.4 suboco.py

Description
Analyzes a model using bounded model checking and a Satisfiability Mod-
ulo Theories solver. This script generates counterexamples in the SMUML
toolset’s generic counterexample format.

On-Line Documentation

usage: python suboco.py [options] infile.xmi

options:

--version show program’s version number and exit
-h, --help show this help message and exit

--sloppy-input accept inconsistent UML models
--check-deadlock check deadlocks
--check-implicit-consumption

check implicit consumption of events
--check-assertions check Jumbala assertion errors

--check-runtime-errors
check Jumbala run-time errors

--trace-file=FILE trace output file name [default: "infile.trace"]
--dot-file=FILE dot output file name [default: <none>]
--yices=FILE path to Yices solver binary [default: "yices"]

--cvc3=FILE path to CVC3 solver binary [default: <none>]
--mathsat=FILE path to MathSAT solver binary [default: <none>]

--stp=FILE path to STP solver binary [default: <none>]
--z3=FILE path to Z3 solver binary [default: <none>]
--format=FORMAT solver format: "native" or "smtlib" [default: native]

--min-bound=N minimum BMC problem bound [default: 0]
--max-bound=N maximum BMC problem bound [default: 999999]

--int-bits=N number of bits in the int type [default: 32]
--queue-size=N size of event queues [default: 2]

--specific-queue-size=CLASSNAME:N
size of event queue of a specific class

--allow-queue-overdraft

allow exceeding queue capacity in step semantics
--encode-interleaving

encode interleaving execution semantics
--encode-static encode static step semantics [default: dynamic steps]

--enum-type=ENCODING encoding of enumerations: "enum" or "bitvector"
[default: "enum"]

--enter=ENCODING encoding for enter/exit predicates: "old", "trim", or

"linear" [default: "linear"]
--qpos-type=ENCODING queue position type: "bitvector" or "integer"

[default: "bitvector"]
--queue-indexing=ENCODING

queue index encoding: "constant" or "parameter"

[default: "parameter"]
--queue-contents=ENCODING

encoding of queue contents: "messages" or "tags"
[default: "tags"]

Example
Check a model for assertion violations using Suboco with Yices as the SMT solver.

$ python suboco.py --check-assertions --max-bound=10 --yices=bin/yices model.xmi

Bound 0, gates 97 (relevant 19) unsat
Bound 1, gates 178 (relevant 81) unsat
Bound 2, gates 259 (relevant 145) sat

Trace written to model.trace
Total solver CPU time 0.000 s

$

22

A.2.5 proco2.py

Description
Analyzes a model using the Spin model checker. This script generates
counterexamples in the SMUML toolset’s generic counterexample format.

On-Line Documentation

usage: python proco2.py [options] infile.xmi

options:
--version show program’s version number and exit

-h, --help show this help message and exit
--check-assertions check Jumbala assertion errors

--check-deadlock check deadlocks
--check-implicit-consumption

check implicit consumption
--check-implicit-consumption-on-class=CLASSNAME

check whether an instance of a class "CLASSNAME" can

perform implicit consumption
--check-queue-overflows

check queue overlows
--queue-size=N size of event queues [default: 2]

--max-search-depth=N the maximum search depth of spin [default: 1000000]
--use-bfs use breadth first search in spin
--use-collapse use the collapse mode of spin

--use-cex-minimization
use the counter-example minimization option -i with

spin (only relevant when --use-bfs is not used)
--spin=FILE the spin executable [default: spin]
--compiler=FILE the C compiler executable [default: cc]

--trace-filename=FILE
SMUML trace output filename

--dont-print-cex do not print the counter-example
--verbose produce some verbose output

Example

$ python newproco.py --check-assertions --spin=bin/spin --compiler=cc model.xmi

The trace up to and including the current global state is:
State 0
Object 0 p::Process

sm_input_queue = []
sm_defer_queue = []

sm_state =
top

init

Action: Object 0 executed transition ’initialize’
State 1

Object 0 p::Process
sm_input_queue = []

sm_defer_queue = []
sm_state =

top

start
An assertion violation occurred when object 0 executes transition ’Model::Proces

s::state machine::execute code’ from ’Model::Process::state machine::top::start’
to ’Model::Process::state machine::top::run’ with effect ’assert 5 < 2;’
Aborting!

$

23

A.2.6 simulate generic trace.py

Description
Simulates generic counterexample traces generated by the model check-
ing back-end scripts uboco trace to generic trace.py, suboco.py and
proco2.py.

On-Line Documentation

Usage: simulate_generic_trace.py trace

Example

$ python simulate_generic_trace.py counterexample.trace
Processing the trace file counterexample.trace

The trace has 2 actions
Loading model model.xmi
Getting initial global configuration correspondence...

Simulating trace...
Object 0 moves from ’init’ to ’start’

Object 0 moves from ’start’ to ’run’
The trace up to and including the current global state is:
State 0

Object 0 p::Process
sm_input_queue = []

sm_defer_queue = []
sm_state =

top
init

Action: Object 0 executed transition ’initialize’

State 1
Object 0 p::Process

sm_input_queue = []
sm_defer_queue = []
sm_state =

top
start

An assertion violation occurred when object 0 executes transition ’Model::Proces
s::state machine::execute code’ from ’Model::Process::state machine::top::start’

to ’Model::Process::state machine::top::run’ with effect ’assert 5 < 2;’
Aborting!
Traceback (most recent call last):

File "/home/htauriai/smuml/cvs/SMUML/simulate_generic_trace.py", line 461, in
?

sim = simulate(sys.argv[1])
File "/home/htauriai/smuml/cvs/SMUML/simulate_generic_trace.py", line 358, in

simulate

raise RuntimeError("The trace cannot be simulated")
RuntimeError: The trace cannot be simulated

$

24

A.2.7 analyze.py

Description
Common interface to the model analysis tools.

On-Line Documentation

Usage: analyze.py [OPTION]... MODEL [BACKEND-OPTION]...

Check a UML 1.4 model contained in the project file MODEL (in XMI 2.0
format) for counterexamples.

General options:
--configuration-file=FILENAME

Specify alternate configuration file
[default: paths.conf]

-h, --help Display this help and exit.
--gui Run the analyzer in graphical mode.

--quiet, --silent Suppress all messages when running in console
mode.

-v, --verbose Show verbose output (repeating the option

multiple times will increase output
verbosity). Effective only when running in

console mode.

In console mode, the script will check the given model for

counterexamples. If a counterexample is found, the script will print a
generic counterexample trace to standard output (or, alternatively, save

the trace to a file specified using the --counterexample-trace-file
option). In graphical mode, the script displays a GUI for choosing model

analysis settings; this GUI will be displayed again between model
checking runs.

Model preprocessing options:
--flatten-hierarchy Run the state machine hierarchy flattener

before model analysis.
--no-hierarchy-flattening Do not run the state machine hierarchy

flattener before model analysis [default].

--flatten-action-language Run the action language flattener before model
analysis.

--flatten-action-language-split-sends
Run the action language flattener before model

analysis; break each transition whose effect
contains multiple ‘send’ statements into a
sequence of transitions, each of which

contains at most one ‘send’ statement in its
effect.

--flatten-action-language-single-statement
Run the action language flattener before model
analysis; break each transition whose effect

contains multiple simple statements into a
sequence of transitions, each of which

contains at most one simple statement in its
effect.

--no-action-language-flattening
Do not run the action language flattener
before model analysis [default].

--slice-assertions Try to simplify the model before analysis by
removing action language code which cannot

affect any assertions in the model.
--no-slicing Do not apply model slicing [default].
--flatten-effect-expressions

Run the state machine transition effect
expression flattener before model analysis.

--no-effect-expression-flattening
Do not run the state machine transition effect

expression flattener before model analysis
[default].

The model preprocessors are always run in the order (i) state machine
hierarchy flattener, (ii) action language flattener, (iii) model

slicer, (iv) transition effect expression flattener.

25

Model analysis options:

--backend=NAME Specify a model checking back-end to use
[default: uboco]. The following back-ends are

supported:
proco
Use the Proco back-end with Spin as the

model checker.
suboco[:SMT-SOLVER]

Use the Suboco back-end. SMT-SOLVER
selects between the SMT solvers available

for use in bounded model checking (CVC3,
MathSat, STP, Yices, STP, Z3). The
default is Yices.

uboco[:MODE[:BOUND]]
Use the Uboco back-end with NuSMV as the

model checker. MODE can be either a name
of one of the satisfiability solvers
supported by NuSMV (ZChaff, MiniSat, Sim),

in which case the model will be analyzed
using bounded model checking with the

chosen SAT solver (using BOUND as the
bound for BMC), or "bdd", in which case

the model will be analyzed exhaustively
using BDD-based model checking. The
default value for MODE is ZChaff, and

the default BOUND is 30.
--counterexample-trace-file=FILE

If a real counterexample is found, write a
counterexample trace in generic format to FILE
[default: "-", which refers to standard

output].
--simulate-counterexample If a real counterexample is found, simulate it

(writing output to standard output).
--no-counterexample-simulation

Do not simulate counterexamples [default].

Any BACKEND-OPTIONs present at the end of the command line will be passed

to the chosen back-end (Proco, Uboco, Suboco).

Abstraction refinement options:
--refinement Apply automatic abstraction refinement to the

model’s integer attributes.

--no-refinement Do not apply automatic abstraction refinement
[default].

--integer-semantics=SEMANTICS
Specify the integer semantics to use for

generating abstract types for abstracion
refinement. SEMANTICS can be one of
"bounded", "unbounded", or "mixed" [default:

bounded].
--abstract-type-smt-solver=SOLVER

Specify an SMT solver to use for generating
operations for abstract types under bounded
or mixed integer semantics. SOLVER can be

one of CVC3, MathSAT, STP, Yices, or Z3
[default: Yices].

--expression-flattening-limit=VALUE
Specify an integer limit for flattening

definitions of inlined abstract operations
[default: 0, which disables expression
flattening altogether]. Use the value "none"

to enable maximal flattening.

Abstract arithmetic operations generated using bounded integer semantics
provide safe approximations of the corresponding operations on 32-bit
signed integers (with wraparound on overflow) used in the Jumbala action

language. Alternatively, the abstract operations can be made to
approximate operations on unbounded integers by using unbounded integer

semantics; however, in this case only models with basic arithmetic (+, -,
*, /), logical (&&, ||, !) and comparison operations (==, !=, <, <=,

>, >=), and the ternary conditional operator (?:) are supported as input.
When using mixed semantics for abstract types, definitions of basic
arithmetic and comparison operations (and coercions between abstract

types) will be generated by approximating the corresponding operations on

26

unbounded integers, and the remaining operators will be approximations of

bounded integer operations.

This script was written by Heikki Tauriainen for the SMUML project
<http://www.tcs.hut.fi/Research/Logic/SMUML.shtml>.

Example

$ python analyze.py --verbose --backend=uboco:ZChaff model.xmi --check-assertions
analyze.py:info:using Uboco as model checking back-end

analyze.py:info:using ZChaff as SAT solver for NuSMV
analyze.py:info:using paths configuration file ‘paths.conf’

analyze.py:info:using ‘/tmp/tmpGA3WR9’ as working directory
analyze.py:info:loading model ‘model.xmi’

analyze.py:info:analyzing model
analyze.py:info:no errors found in model (bounded model checking)
$

27

A.3 Abstraction Scripts

This section lists the tools which can be used for generating abstract types
and models.

A.3.1 Abstract Type Libraries

Instead of using automatic abstraction refinement, abstract models can be
generated from concrete models with the help of user-defined abstract type
libraries built from one or more user-defined abstract type specification
files. This section documents the specification file format.

Type Specification Files

The basic structure of a type specification file is defined by the
grammar below. Nonterminals in the grammar should be separated from other

sequences of non-whitespace characters by white space. Strings in quotes
are to be interpreted literally, and the terminal symbols (can be assumed

to) have the following meaning:
<EOL>: end of line

<ID>: any string usable as a name for a Python identifier
<OPERATOR-SYMBOL>: an arithmetic operator symbol in the Jumbala

action language

<TEST-SYMBOL>: a Boolean operator symbol in the Jumbala action
language

<ARITY>: "1" or "2"
<STRING>: any string containing no newlines
<INTEGER>: any integer

<type-specification-file> ::= <type-declaration>*

<type-declaration> ::= "type" <type-name> ":" <domain-specification> <EOL>

<type-definition>
<type-name> ::= <ID>
<domain-specification> ::= <symbolic-value-list>

| <symbolic-value-list> ":" <integer-value-list>
<type-definition> ::= (<operator-declaration> | <test-declaration>

| <coercion-declaration>)*

<operator-declaration> ::= "operator" <ARITY> <OPERATOR-SYMBOL> <EOL>
<operator-defs>

<operator-defs> ::= (<symbolic-value-list> ":" <symbolic-value-list> <EOL>)*

<test-declaration> ::= "test" <ARITY> <TEST-SYMBOL> <EOL>

<test-defs>
<test-defs> ::= (<symbolic-value-list> ":" <boolean-value-list> <EOL>)*

<coercion-declaration> ::= "coercion" <type-name> <backend-name> <EOL>
<coercion-defs>

<backend-name> ::= <ID>
<coercion-defs> ::= <STRING> ":" <symbolic-value-list> <EOL> <coercion-defs>

| "end" <EOL>

<symbolic-value-list> ::= <ID>

| <ID> "," <symbolic-value-list>
<integer-value-list> ::= <INTEGER>

| <INTEGER> "," <integer-value-list>
<boolean-value-list> ::= <boolean-value>

| <boolean-value> "," <boolean-value-list>

<boolean-value> ::= "true" | "false"

In the following, we use the term "type library" to refer to all types
defined in a given set of type specification files.

In brief, a type specification file contains definitions for abstract
types, operations and tests on the types, and coercions between the types.

The part following the first ‘#’ of every input line (if this symbol is
present) is ignored.

The definition of an abstract type begins with the keyword "type"

28

followed by the name of the type (the names of primitive Jumbala types

"int" and "boolean" are reserved), and a comma-separated list of symbolic
names for the values in its domain separated from the type name with ":".

This list of symbolic names can optionally be followed by another ":" and
a comma-separated list of distinct integers to be used internally as the
numeric values of the corresponding elements of the symbolic domain of the

type. (If this list is not specified, a suitable numeric domain will be
generated automatically. The integers in the domain are guaranteed to

correspond to unique elements of the symbolic domain of the type.)

All operator, test, or coercion definitions before the next "type"
keyword in the file will be associated with this type ("the currently
active type").

An operator (test) for elements of the currently active type is declared

using the keyword "operator" ("test") followed by the arity n of the
operator or test (1 or 2), and the operator (test) symbol, which must be
an operator symbol (whose arity matches the specified one) in the Jumbala

action language. The possible value(s) yielded by the operator (test) shall
then be enumerated in the file separately for all n-tuples of input values.

A definition of a coercion from another type to the currently active type

T1 consists of the keyword "coercion" followed by the name of another type
T2 (a primitive type such as ’int’ or ’boolean’, or another type defined in
the type library) and the name of a "back-end" for which to define the

coercion. This declaration is then followed by a sequence of lines
consisting of a string S containing no newlines, a ":", and a comma-separated

list L of values from the domain of the type T1. The definition of the
coercion is terminated by a line that contains the single keyword "end".

The string S is supposed to represent a condition under which a value of
type T2 will get coerced to (one of) the values in the list L. For the

predefined back-ends "python" and "Jumbala", S must be a valid Boolean
expression template in the back-end language, i.e., a Boolean expression

in the language (with no references to variables), where the following
constructs have special semantics:

- If the source type (T2) for the coercion is one of the primitive

types of the Jumbala action language (int or boolean), all occurrences
of <> will be replaced by the actual value to be coerced from T2 to

T1.
- If the source type (T2) for the coercion is another user-defined

abstract type in the type library, all occurrences of <> will be

replaced by the internal integer representation of the value (in
the domain of T2) to be coerced from T2 to T1. Furthermore, for

any element E in the symbolic domain of T2, all occurrences of <E>
will be replaced with the internal integer representation of the

element E in the numeric domain of T2.
Furthermore, for these back-ends, the entire coercion has the following
semantics:

- The tests of the coercion will be evaluated (after making the above
substitutions) in their order of specification using ‘eval’. (Thus

every test should correspond to a valid Python expression after the
substitutions.)

- The result of the coercion will be the set of values associated with

the first test which evaluates to True.
- The result of the coercion is undefined if no test evaluates to True.

The automatically generated code (see below) will raise a ValueError
in this case.

For other back-ends, the string S and the coercion are not interpreted in
any way by the type library. A user-defined back-end is thus free to
define its own semantics for the string S and the coercion.

The coercions defined between types in the type library should form a

partial order between the types such that more precise types can be coerced
only into types of (strictly) less precision, i.e., cyclic dependencies
between the precision of different types are not allowed. The API provided

for defining coercions enforces this constraint automatically. The API
treats the primitive types as maximally precise; using any of these

types as a target type of a coercion is not permitted.

Example
See the examples in Sections A.3.2 and A.3.3.

29

A.3.2 generate abstract type.py

Description
Generates abstract operations for any user-defined abstract types using a
Satisfiability Modulo Theories solver.

On-Line Documentation

Example
Generate the abstract version of the “less than” comparison operation for an abstract
type using the Yices Satisfiability Modulo Theories solver.

$ cat sign.type

type Sign: POS, ZERO, NEG
coercion int Jumbala

<> < 0 : NEG
<> == 0: ZERO
true : POS

end
$ python generate_abstract_type.py -I "<" -s yices:bin/yices <sign.type

type Sign : POS, ZERO, NEG : 0, 1, 2
test 2 <

POS, POS : true, false

POS, ZERO : false
POS, NEG : false

ZERO, POS : true
ZERO, ZERO : false

ZERO, NEG : false
NEG, POS : true
NEG, ZERO : true

NEG, NEG : true, false
coercion int python

<> < 0 : NEG
<> == 0 : ZERO
True : POS

end
coercion int Jumbala

<> < 0 : NEG
<> == 0 : ZERO

true : POS
end

$

30

A.3.3 generate interval abstraction.py

Description
Generates abstract operations for abstract types corresponding to finite
partitions of integers.

On-Line Documentation

Example
Generate the abstract version of binary addition operation for an abstract type spec-
ified as a partition of integers into intervals.

$ python generate_interval_abstraction.py -I "2+" "Sign:(-inf;-1],0,[1;+inf)"

type Sign : (-inf;-1], [0;0], [1;+inf) : 0, 1, 2
operator 2 +

(-inf;-1], (-inf;-1] : (-inf;-1]
(-inf;-1], [0;0] : (-inf;-1]
(-inf;-1], [1;+inf) : (-inf;-1], [0;0], [1;+inf)

[0;0], (-inf;-1] : (-inf;-1]
[0;0], [0;0] : [0;0]

[0;0], [1;+inf) : [1;+inf)
[1;+inf), (-inf;-1] : (-inf;-1], [0;0], [1;+inf)
[1;+inf), [0;0] : [1;+inf)

[1;+inf), [1;+inf) : [1;+inf)
coercion int Jumbala

<> <= -1 : (-inf;-1]
<> == 0 : [0;0]

<> >= 1 : [1;+inf)
end

coercion int python

<> <= -1 : (-inf;-1]
<> == 0 : [0;0]

<> >= 1 : [1;+inf)
end

$

31

A.3.4 abstractor.py

Description
Finds abstractable attributes in a model, performs type inference using
user-defined constraints on the types of attributes, and generates abstract
models based on the results of type inference via a source-to-source trans-
formation. The graphical user interface to the model abstractor is de-
scribed in a separate document (see the document SMUML Model Ab-

stractor and Type Editor included in the toolset documentation).

On-Line Documentation
Usage: abstractor.py MODE [OPTION]... FILE

Extract information about abstractable attributes, perform type inference
using given constraints, or generate an abstract model using given

constraints from a UML 1.4 model contained in a project file in XMI 2.0
format.

The first parameter to the script specifies the mode in which the script
is to operate. The following modes are available:

-e, --extract Read a project file FILE containing a UML 1.4
model and write information about the model’s

abstractable class and signal attributes to
standard output [default].

-h, --help Display this help and exit.

-i, --infer Read a project file FILE containing a UML 1.4
model, perform type inference using

constraints from the model and standard input,
and write a refined set of constraints to
standard output.

-r, --rewrite Generate an abstract model from the UML 1.4
model in a project file FILE using type

constraints from the model and standard input.
--gui Start a graphical user interface for

abstracting models and editing type
libraries. This option will ignore the FILE
given as argument; use the menus in the

graphical user interface to open a project
file.

The following command line options are supported (console mode only):

-d, --default-type=TYPENAME
(to be used in combination with -i): Specify
the type to be assigned to those attributes

whose type is not otherwise constrained by
the type inference process. If not given,

these attributes will keep their original
types from the model.

-o, --output-file=FILENAME (to be used in combination with -r): Specify

the name for a project file in which to write
the abstracted model [default:

‘abstracted.xmi’].
-l, --expression-flattening-limit=VALUE

(to be used in combination with -r): Specify
an integer limit for flattening definitions
of inlined abstract operations [default: 0,

which disables expression flattening]. The
value "none" enables maximal flattening.

-t, --rename-transitions (to be used in combination with -r): Rename
transitions in the model using the action
language code which was substituted for

their effects when rewriting the model.
-v, --verbose Display verbose output about the type

inference process.

RESTRICTIONS ON INPUT MODELS
This script supports only input models which satisfy the following
constraints:

* The model should define the primitive Jumbala data types "int" and
"boolean" as UML Primitives.

* Attributes and associations:
- The name of every class, signal, every class and signal

32

attribute, and every navigable association end defined in the

model should be a valid identifier in the Jumbala action
language. There should be no duplicate definitions of classes,

signals, attributes, or association ends by the same name. (The
names of classes and signals reside in separate namespaces, as
do the attributes and association ends defined within each class

or a signal.)
- The type of each attribute should be one of the primitive data

types "int" or "boolean", or a class defined in the model. Only
attributes of type "int" are abstractable.

- Each class attribute may optionally specify an initializer
(initialValue) expression, which must be a side-effect free
expression in the Jumbala action language.

- Each association between classes should be a 1..1 association.
* State machines:

- States:
. Every state machine in the model should have exactly one

composite state (its "top" state); all other non-

pseudostates in the state machine should be either simple
states or final states.

. All pseudostates of a state machine in the model should be
either initial or choice pseudostates.

. Entry and exit actions and doActivities for states are
ignored.

- Transitions:

. Each transition in a state machine should either have no
trigger, or it should be triggered by a SignalEvent

associated with a signal defined in the model.
. The guard of each transition in a state machine should

either be empty, or a side-effect free Boolean expression in

the Jumbala action language.
. The effect of each transition in a state machine should be

an UninterpretedAction with a (possibly empty) sequence of
statements in the Jumbala action language as its body. Each

statement in this sequence should be one of the following:
(i) an "assert" statement with a side-effect free

Boolean expression;

(ii) an empty statement (";")
(iii) an assignment statement, whose right-hand side is

either an expression of the form "new C()" for a
class C defined in the model, or a side-effect free
expression; or

(iv) a "send" statement referring to a signal defined in
the model, with side-effect free parameter and

target expressions.
- Side-effect free action language expressions:

. Side-effect free action language expressions should be
type-consistent expressions in the Jumbala action language.
The expressions can contain any side-effect free arithmetic

or Boolean operators, or the ternary conditional operator.
. Every attribute reference in a side-effect free expression

must be either of the form "x1.x2...xn" for some n >= 1, or
"this.x1.x2...xn" for some n >= 0. For n >= 1, the two
forms are semantically equivalent. If the reference occurs

in action language code belonging to (a state machine of)
class C, the "this" expression refers to the instance of

the class C itself. For all 1 <= i <= n, "xi" should be the
name of a navigable (outgoing) end of an association (or,

alternatively, if i == n, an attribute) defined in the class
which is reached from class C by tracking the (possibly
empty) sequence of associations x1->x2->...->x(i-1).

TYPE CONSTRAINTS (console mode only)

Type constraints for the -i and -r modes of operation can be specified
by feeding the script (via standard input) a list of names of type
specification files (to define the library of abstract types to be used

for type inference and abstract model construction), together with a
list of associations between UUID’s of attributes in the UML model and

abstract types defined in the type specification files. Use the -e mode
of operation to obtain an initial list of constraints.

More specifically, the input to the script (in modes -i and -r) should
consist of zero or more lines of the form

import <filename>

33

followed by zero or more lines of the form

<uuid> <constraint-operator> <type-name>
where

<filename> is the path name of a type specification file
to be used for building the abstract type
library (if the file name begins or ends with

white space, enclose it in single or double
quotes),

<uuid> is the UUID of a class or signal attribute in
the UML model,

<constraint-operator> is one of the operators "==", "<=", or ">="
(excluding the quotes) separated from <uuid>
by white space, and

<type-name> is the name of an abstract type defined in one
of the imported abstract type specification

files.

An abstract type specification file whose name does not contain any path

separators will be searched for, in addition to the current working
directory, in the colon-separated list of directories given by the value

of the SMUML_ABSTRACT_TYPE_PATH environment variable.

The constraint operators (for an attribute with UUID ‘id’ and a type
name ‘t’, respectively) have the following semantics:

id == t : type of attribute with UUID ‘id’ must be equal to ‘t’

id <= t : type of attribute with UUID ‘id’ may not be more abstract
than ‘t’ (but is allowed to be any type that is at least

as precise as ‘t’, including the original type of the
attribute)

id >= t : type of attribute with UUID ‘id’ must be at least as

abstract as ‘t’
If no type constraint is specified for the UUID of an attribute, the

corresponding attribute will be left unconstrained. In this case the
type inference procedure will be allowed to assign the attribute any

type that is at least as abstract as its original type when searching
for a type assignment which satisfies all constraints. For attributes
with no type constraints generated in the type inference process, this

type will be either the default type for unconstrained attributes (if
specified using -d), or the original type of the attribute.

The part following the first ‘#’ of every input line (if present) is
ignored.

This script was written by Heikki Tauriainen for the SMUML project

<http://www.tcs.hut.fi/Research/Logic/SMUML.shtml>.

Example
List the abstractable attributes in a model.

$ python abstractor.py --extract model.xmi >types

$ cat types
Class attributes
Model::Class::x

DCE:747789EE-C107-11DB-A38E-00508DD16D61 == int
Model::Class::y

DCE:74778E6C-C107-11DB-A38E-00508DD16D61 == int
Model::Class::z

DCE:73CE44B0-C107-11DB-A38E-00508DD16D61 == int

Edit the output.

$ $EDITOR types
[... edit the file ...]

$ cat types
Import a type library which defines the type "Sign"
import typelibrary

Class attributes
abs_simple_test::test::x

DCE:747789EE-C107-11DB-A38E-00508DD16D61 == Sign
abs_simple_test::test::y

DCE:74778E6C-C107-11DB-A38E-00508DD16D61 >= int
abs_simple_test::test::z
DCE:73CE44B0-C107-11DB-A38E-00508DD16D61 >= int

34

Apply type inference to find additional constraints on the types of the model’s at-
tributes. (The type of an attribute cannot be more precise than the type of any
attribute which is used in some context for computing its value.)

$ python abstractor.py --infer model.xmi <types
Abstract type specification files

import "typelibrary"
Class attributes
abs_simple_test::test::x

DCE:747789EE-C107-11DB-A38E-00508DD16D61 == Sign
abs_simple_test::test::y

DCE:74778E6C-C107-11DB-A38E-00508DD16D61 == Sign
abs_simple_test::test::z

DCE:73CE44B0-C107-11DB-A38E-00508DD16D61 == int

Rerun type inference to generate an abstract model.

$ python abstractor.py --rewrite --output-file abstracted.xmi model.xmi <types
Abstract type specification files

import "typelibrary"
Class attributes
abs_simple_test::test::x

DCE:747789EE-C107-11DB-A38E-00508DD16D61 == Sign
abs_simple_test::test::y

DCE:74778E6C-C107-11DB-A38E-00508DD16D61 == Sign
abs_simple_test::test::z

DCE:73CE44B0-C107-11DB-A38E-00508DD16D61 == int
$

35

A.3.5 canal.py

Description
Checks whether an abstract counterexample trace corresponds to a real
counterexample in the concrete model.

On-Line Documentation

usage: canal.py [options] TRACE_FILE CONC_MODEL

Checks whether an abstract counterexample trace corresponds to a real
counterexample in the concrete model. If it does not, relevant variables

in the trace can be calculated. Relevant variables in a given point of
trace are a set of variables are most likely the source of the spurious

counterexample. Also a hint for abstraction refinement can be given
(is given by default). A refinement hint consist of variable XMIids and of

values that should be abstracted precisely in the abstract type the variable
is. This is primarily intented to be used with interval abstractions
(used in SMUML automatic abstraction refinement procedure).

arguments:

TRACE_FILE Abstract counterexample trace.
CONC_MODEL Concrete model.

options:
--version show program’s version number and exit

-h, --help show this help message and exit
-a, --check-assert Analyze assertion errors in counterexamples.

-i, --check-implicit-consumption
Analyze implicit consumptions as errors in
counterexamples.

-r, --only-relevant-variables
Calculates only relevant variables in the case of

spurious counterexample, does not suggest variables
for refinement.

-f, --only-feasibility
Check only feasibility of a counterexample.

-q, --quiet Suppress all messages.

-v, --verbose Show verbose output. When this option is used, trace
simulated step by step in the abstract and in the

concrete model are shown with relevant variables
marked. (Requires the calculation of relevant
variables)

Example

$ python canal.py --check-assert --check-implicit-consumption counterexample.trace model.xmi
Counterexample analysator is checking for following errors:

* runtime errors (can not be turned off)
* assertion errors

* implicit consumptions

Analysing feasibility of the counterexample by simulating
counterexample step by step in the concrete model:
Object 0 moves from ’init’ to ’begin’

Object 2 moves from ’init’ to ’state1’
Object 0 moves from ’begin’ to ’middle’

Implicit comsumption in Object 2 can not be executed.
Calculating relevant variables
Determining variables that are suggested to be refined

Following variables are suggested to be refined:
DCE:F907BFC9-F43A-BEAE-F95C-5A61F278D1CD: -7, 3

DCE:C27301A3-C65F-DD56-5018-D6BA41D12ACE: -7, 3

$

36

