User’s guide to proco version 2.00

Tommi Junttila
Helsinki University of Technology TKK
Laboratory for Theoretical Computer Science

December 3, 2007

1 Introduction

The proco tool is an implementation of a translation from UML models to the
input language promela of the model checking tool spin [Holzmann 2004]. The
translation itself is explained in [Jussila et al. 2006]; this document describes
the usage of the tool. The tool allows one to analyze various properties of UML
models conforming to the UML subset developed and applied in the SMUML
project [Junttila and Dubrovin 2007; SMUML 2007].

In order to use proco, you should have the following installed in your com-
puter.

e The SMUML project software distribution package available at [SMUML
2007]; this includes the proco tool, too.

e The Coral metamodeling tool [Alanen and Porres 2004; Coral 2007] de-
veloped at the Abo Akademi University.

e The spin model checking tool available at [Spin 2007].

e A C compiler (such as gee) and the Python language interpreter.

1.1 Acknowledgements

The original proco tool was developed in the SMUML project during 2005-
2006 by Toni Jussila. The translation from UML models to promela used in
proco has been developed by the current author together with Toni Jussila, Jori
Dubrovin, and Timo Latvala. The financial support of the Finnish Funding
Agency for Technology and Innovation (TEKES), Nokia, Conformiq, and Mipro
is gratefully acknowledged.

2 Usage
Calling proco from the shell command line can be done with
python proco2.py [options] model.xmi

where model.xzmi is the file name of the UML model and the possible options
are the following.

-h or --help
Only show a help page and exit.

--version
Print the version number of the program and exit.

-—check-assertions
Check whether it possible to violate an assertion in the model.

—-check-deadlock
Check whether the model has reachable deadlocks.

--check-implicit-consumption
Check whether it is possible to perform implicit consumption of a message
in any object in the model.

—--check-implicit-consumption-on-class=N
Check whether it is possible to perform implicit consumption of a message
in any object of type N, N being the name of a class in the model.

--check-queue-overflows
Check whether it is possible to exceed the queue capacity given by the
option ——queue-size.

--queue-size
Set the capacity of the input and defer queues (default: 2). Behaviours of
the model that exceed the capacity are not analyzed.

--max-search-depth=D
Set the maximum search depth that spin will use to D (default: 10000).
Behaviours that are longer in the promela model are not analyzed.

--use-bfs
Make spin to use breadth-first-search instead of depth-first-search.

--use-collapse
Make spin to use the so-called collapse mode that can reduce the amount
of memory it consumes (however, the required analysis time may increase).

--use-cex-minimization
Apply the counter-example minimization flag -i when running spin(this
is not relevant when —-use-bfs is used). Use of this flag may significantly
reduce the length of the produced counter-example trace (making it easier
to understand) but also significantly increase the required analysis time.

--spin=F
The name of the spin executable (default: spin).

--compiler=F
The name of the C compiler (default: cc).

--trace-file-name=F
Output the counter-example trace in the SMUML trace format into the
file name F.

--dont-print-cex
Do not print the counter-example trace.

--verbose
Produce some verbose output to standard output stream.

In addition to the properties to be checked listed above (deadlocks, assertion
violations, implicit consumption, queue overflows), run-time errors (e.g. null
reference accesses) are always checked.

3 Python API

The proco tool itself as well as the translator from UML models to promela
can also be accessed through a Python programming language API (proco, like
other tools developed in the SMUML project, is implemented in Python). For
documentation of the Python API, start a Python interpreter and type

import proco2
help(proco2)

4 An Example

The tool can be applied for checking whether the simple communication protocol
model SCP.xmi in the SMUML software distribution has deadlocks by using the
command

python proco2.py --check-deadlock --use-bfs models/SCP.xmi

The model in fact has a reachable deadlock state after it has executed 13 actions.
This counter-example trace is printed by proco to the standard output:

State 0
Object O receiver::ProtocolEntity
peer = ref to Object 1
x=0
env = ref to Object 2
sm_input_queue = []
sm_defer_queue = []
sm_state =
top
NewInitialState_7
Object 1 sender::ProtocolEntity
peer = ref to Object O
x=0
env = ref to Object 2
sm_input_queue = []
sm_defer_queue = []
sm_state =
top
NewInitialState_7
Object 2 environment::Environment
sender = ref to Object 1
nof_sent = 0

receiver = ref to Object O

sm_input_queue = []
sm_defer_queue = []
sm_state =

top

NewInitialState_7
Action: Object 2 executed transition ’NewTransition_9’
State 1
Object O receiver::ProtocolEntity
peer = ref to Object 1

x=0
env = ref to Object 2
sm_input_queue = []
sm_defer_queue = []
sm_state =

top

NewInitialState_7
Object 1 sender::ProtocolEntity
peer = ref to Object O

x=0
env = ref to Object 2
sm_input_queue = []
sm_defer_queue = []
sm_state =

top

NewInitialState_7
Object 2 environment::Environment
sender = ref to Object 1
nof_sent = 0
receiver = ref to Object O

sm_input_queue = []
sm_defer_queue = []
sm_state =
top
Beginning

Action: Object 2 executed transition ’NewTransition_11’
Action: Object 2 sent Listen() to object 0
State 2

Action: Object 1 consumed RFC()
Action: Object 1 executed transition ’NewTransition_2’
State 13
Object O receiver::ProtocolEntity
peer = ref to Object 1
x=0
env = ref to Object 2
sm_input_queue = []
sm_defer_queue []
sm_state =
top
Open
Object 1 sender::ProtocolEntity
peer = ref to Object O

x=0
env = ref to Object 2
sm_input_queue = []
sm_defer_queue [1
sm_state =
top
Open
Object 2 environment::Environment
sender = ref to Object 1
nof_sent = 1
receiver = ref to Object O
sm_input_queue = []
sm_defer_queue [1
sm_state =
top
end of sending data

5 Supported Features

The proco tool directly supports most of the features in the SMUML UML sub-
set described in [Junttila and Dubrovin 2007]. Most notably, no state machine
structure flattening is required as hierarchical state machines are directly sup-
ported in proco. Of the Jumbala action language the following operations on
data types are currently supported in proco:

e For integers, the following operations are supported: equality and inequal-
ity comparisons <, <=, ==, !=, >=and >; arithmetic operations +, - (both
binary and unary), *, and /; and bitwise operations &, |, and ~.

e For Booleans one can apply equality comparisons == and != as well as
logical operations &&, ||, !, and ~.

e For object references the only operations are the equality comparisons ==
and !=.

Creation of new objects with new statements is not currently supported. In
addition, branching control flow constructs if, for, while, and do are not sup-
ported but have to be eliminated by using the action language flattening tool
flatten_statemachine action_language.py included in the SMUML soft-
ware distribution.

References

ALANEN, M. AND PORRES, I. 2004. Coral: A metamodel kernel for transformation en-
gines. In Proceedings of the Second Furopean Workshop on Model Driven Architecture
(MDA), D. H. Akerhurst, Ed. Technical Report, vol. 17-04. Computing Laboratory,
University of Kent, 165-170.

Coral 2007. The home page of the Coral metamodeling tool. http://mde.abo.fi/
confluence/display/CRL/Home.

HoLzMANN, G. J. 2004. The Spin Model Checker. Addison Wesley.

JUNTTILA, T. AND DUBROVIN, J. 2007. The SMUML UML subset.

JussiLa, T., DUBROVIN, J., JUNTTILA, T., LATVALA, T., AND PORRES, 1. 2006. Model
checking dynamic and hierarchical UML state machines. In 3rd Workshop on Model

Design and Validation (MoDeVa 2006), B. Baudry, D. Hearnden, N. Rapin, and J. G.
Sif3, Eds. Genova, Italy, 94-110. Online proceedings at http://modeva.itee.uq.edu.
au/accepted_papers/paper_4_8.pdf.

SMUML 2007. Symbolic methods for UML behavioural diagrams (SMUML). http://www.
tcs.hut.fi/Research/Logic/SMUML. shtml.

Spin 2007. Spin — formal verification. http://spinroot.com/spin/whatispin.html.

