
Jumbala Action Language Specification
Version 1.20

Jori Dubrovin

12th June 2007

Contents

1 Introduction 5
1.1 The Syntactic Grammar . 5

2 Lexical Structure 7
2.1 Input Elements . 7
2.2 Comments . 7
2.3 Identifiers . 8
2.4 Reserved Words . 8
2.5 Literals . 9
2.6 Integer Literals . 9
2.7 String Literals . 10
2.8 Separators and Operators . 11

3 Programs 12
3.1 Incremental Programs . 12

4 Types and Variables 14
4.1 Primitive Types and Values 14
4.2 Reference Types and Values 15
4.3 Objects and Memory . 15
4.4 Predefined Types . 16

4.4.1 The Class Object . 16
4.4.2 The Interface ObjectInterface 16
4.4.3 The Interface Cloneable 17
4.4.4 The Class String . 17
4.4.5 The Class Enum . 17

4.5 Subtyping . 17
4.6 Castability . 18
4.7 Variables . 19

4.7.1 Kinds of Variables . 19
4.7.2 Default Values . 19

1

5 Names 20
5.1 Scope . 21
5.2 Resolution of Type Names . 22

5.2.1 Simple Type Names 22
5.2.2 Qualified Type Names 22

5.3 Resolution of Method Names 22
5.3.1 Simple Method Names 22
5.3.2 Qualified Method Names 23

5.4 Resolution of Variable Names 23
5.4.1 Simple Variable Names 23
5.4.2 Qualified Variable Names 24

5.5 Reclassification of Ambiguous Names 24
5.5.1 Simple Ambiguous Names 24
5.5.2 Qualified Ambiguous Names 24

6 Type Declarations 26
6.1 Top-Level Types . 26
6.2 Nesting in Types . 26
6.3 Class Declarations . 27

6.3.1 Class Modifiers . 27
6.3.2 Direct Supertypes . 28

6.4 Interface Declarations . 28
6.4.1 Direct Supertypes . 29

6.5 Enum Declarations . 29
6.5.1 Members of an Enum 29

6.6 Field Declarations . 30
6.6.1 Initialization of Fields 31

6.7 Method Declarations . 32
6.8 Constructor Declarations . 33
6.9 Members of Classes and Interfaces 33

6.9.1 Member Types . 34
6.9.2 Fields . 34
6.9.3 Methods . 35

7 Arrays 37
7.1 Array Initializers . 37
7.2 Members of an Array . 38

8 Statements 39
8.1 Blocks . 40
8.2 Local Variable Declaration Statements 40

2

8.3 The Empty Statement . 42
8.4 Labeled Statements . 42
8.5 Expression Statements . 42
8.6 The send Statement . 43
8.7 The if Statement . 43
8.8 The assert Statement . 44
8.9 The switch Statement . 45
8.10 The while Statement . 46
8.11 The do Statement . 47
8.12 The for Statement . 47
8.13 The break Statement . 49
8.14 The continue Statement . 49
8.15 The return Statement . 50

9 Expressions 51
9.1 Contexts of Expressions . 52
9.2 Assignment Operators . 52

9.2.1 Simple Assignment . 53
9.2.2 Compound Assignment 54

9.3 Conditional Operators . 54
9.3.1 The Ternary Conditional Operator 54
9.3.2 The Other Conditional Operators 55

9.4 Bitwise and Logical Operators 56
9.5 Equality Operators . 56
9.6 Relational Operators . 57
9.7 Shift Operators . 58
9.8 Additive Operators . 59
9.9 Multiplicative Operators . 60
9.10 Unary Operators . 61

9.10.1 Numerical Unary Operators 61
9.10.2 The Logical Complement Operator 62
9.10.3 Casts . 62
9.10.4 Increment and Decrement Operators 63

9.11 Primary Expressions . 64
9.12 Field Access Expressions . 65
9.13 Array Access Expressions . 66
9.14 Method Invocation Expressions 67

9.14.1 Compile-Time Processing 68
9.14.2 Run-Time Processing 69
9.14.3 Examples . 71

9.15 Class Instance Creation Expressions 72

3

9.16 Array Creation Expressions 73

Bibliography 75

A List of Differences between Jumbala and Java 76

B Grammar Rules 79

4

Chapter 1

Introduction

The Jumbala language has been designed to function as an action language
in behavioral UML models. The idea is that action specifications in UML
state machines are written in Jumbala by the user. The purpose of this
document is to describe the details of Jumbala as a stand-alone programming
language. An overview of the language and the design decisions behind it and
a description of the connection between Jumbala and UML is given in [1].

Jumbala is based on version 5.0 of the Java programming language. Cor-
respondingly, this document is based on the Java Language Specification [2].
Jumbala is almost a simplified version of Java, with only minor additions.
For the most part, Jumbala follows the syntax and semantics of Java except
for the differences resulting from the omission of certain features. We have
tried to point out clearly the few deviations from the Java standard. Many
of the intricacies that follow from the rules of Java are also present in Jum-
bala, and not all of them have been explicitly brought out in the following
chapters. When in doubt, the reader is invited to consult the appropriate
sections of the Java Specification for code examples that illustrate the sub-
tleties. All the identified differences between Jumbala and Java have been
listed in Appendix A.

1.1 The Syntactic Grammar

We use a context-free grammar to define the syntactic structure of a Jumbala
program. The structure of the grammar is similar to that presented for
Java [2], but our notation is different.

A grammar rule has a left hand side, which is a nonterminal symbol,
and a right hand side, which contains zero or more terminal or nonterminal
symbols. Nonterminal symbols are typeset in Italics . Terminal symbols are

5

typeset in typewriter face when they represent characters as they appear in
a Jumbala program. The terminal symbols whose appearance varies in the
source program are typeset in SMALL CAPITAL letters.

The following two example illustrate grammar rules.

Program ::=(
TypeDeclaration

∣∣ BlockStatement
)∗

TypeName ::=[
TypeName .

]
IDENTIFIER

The left and right hand sides are separated by the characters ::=. We use
special characters in the right hand sides to make the notation more succinct.
They are explained below in the order of decreasing precedence.

• The Kleene star ∗ denotes zero or more occurrences of the element
immediately preceding it. Do not confuse with the terminal symbol *,
which denotes an asterisk in the input program.

• If elements are only separated by space, they are concatenated to form
a new element. In terms of precedence, concatenation is stronger than
the

∣∣ operator but weaker than the Kleene star.

• A vertical line
∣∣ separates two alternative elements, which is a short-

hand notation for two separate grammar rules. Do not confuse with
the terminal symbol |.

• An element inside square brackets
[]

is optional, i.e. there may be zero
or one occurrences of it. Do not confuse with literal square brackets [
and].

• Parentheses
()

are used to group together elements of the right hand
side. Parentheses are only used to affect the precedence of special sym-
bols. If parentheses were omitted in the first example above, the Kleene
star would only affect the symbol BlockStatement . Do not confuse with
the terminals symbols (and).

The nonterminal symbol Program is special in that it is the start symbol
of the grammar. Appendix B contains a list of all the grammar rules.

6

Chapter 2

Lexical Structure

2.1 Input Elements

A Jumbala program is a string of 8-bit characters. The significant part of the
program may only contain 7-bit ASCII characters. All characters outside the
7-bit range are considered special characters, which may appear only inside
comments and string literals. Unlike Java, Jumbala does not support Unicode
characters.

The string of input characters is grouped into a sequence of input ele-
ments. An input element can be a white space character, a comment, or a
token. White space and comments do not contribute to the semantics of a
program, other than by separating tokens from each other.

Tokens are the terminal symbols of the syntactic grammar. A token can
be either an identifier, a keyword, a literal, a separator, or an operator.

Program lines must end with the newline character (ASCII 10). Other
line terminators are not recognized. In particular, carriage returns (ASCII 13)
are not allowed (as they are in Java), except in comments and string literals.
A newline is not required after the last line of the program.

Newlines are treated as white space. Other white space characters are
the horizontal tab (ASCII 9), form feed (ASCII 12), and space (ASCII 32).

2.2 Comments

Comments are parts of the input text that are ignored by the interpreter.
There are two kinds of comments.

A traditional comment begins with the characters /* and ends with the
next occurrence of the characters */. A string of any characters, including

7

newlines, may appear in between. Therefore /**/ is a comment but /*/ is
not. An unterminated traditional comment results in a compile-time error.

An end-of-line comment begins with the characters // and ends at the
next newline character or at the end of the program, whichever comes first.

Comments do not nest, so // has no special meaning in a traditional
comment, and conversely, /* and */ have no special meaning in an end-of-
line comment.

Comments do not occur within string literals or any other tokens.

2.3 Identifiers

An identifier is a maximal unlimited-length sequence of the following char-
acters: the underscore , the dollar sign $, digits 0 to 9, uppercase letters
A to Z, and lowercase letters a to z. The first character of an identifier must
not be a digit. An identifier cannot have the same spelling as a reserved
word.

Two identifiers are the same if they are identical character sequences.
Uppercase and lowercase letters are considered distinct.

The token associated with an identifier is IDENTIFIER. The token carries
the name of the identifier as its value.

2.4 Reserved Words

The following character sequences are the reserved words of the language.

abstract extends null

assert false return

boolean final send

break for static

case if super

class implements switch

continue instanceof this

default int to

do interface true

else native void

enum new while

The words false, null, and true are named literals. Other reserved
words are keywords.

8

The corresponding token has the same name as the reserved word, e.g.
else or true.

2.5 Literals

A literal represents a null reference, a string, or a value of a primitive type
in the source code.

Integer literals can be expressed in decimal (base 10), octal (base 8), or
hexadecimal (base 16). The other literal types are boolean literals, string
literals, and the null literal.

The reserved words false and true are the boolean literals. They rep-
resent the two values of the boolean type.

The reserved word null is the null literal, which represents the only value
of the null type.

2.6 Integer Literals

Integer literals represent 32-bit integer numbers.
A decimal integer literal is either the single digit 0, or a digit 1 to 9

followed by zero or more digits 0 to 9. The value of the literal is the same as
its interpretation as a 32-bit signed decimal number.

The largest decimal integer literal allowed is 2147483648 (231). The cor-
responding token is INT LITERAL MUST NEGATE. It may only appear as the
operand of the unary minus operator -. Decimal integers larger than this
produce a compile-time error.

Decimal integers between 0 and 2147483647 may appear wherever an
integer is allowed. They are represented by the token INT LITERAL with an
integer value.

An octal literal begins with the digit 0 that is followed by one or more
digits 0 to 7. This is interpreted as a signed 32-bit number. Octal literals
00 to 017777777777 represent non-negative numbers 0 to 2147483647, and
020000000000 to 037777777777 represent negative numbers −2147483648
to −1, respectively. Larger octal numbers are not allowed.

A hexadecimal literal has the prefix 0X or equivalently 0x, followed by
one of more hexadecimal digits. Digits 0 to 9 are represented as such, and
digits 10 to 15 are expressed as letters A to F or a to f. The interpreta-
tion is analogous to octal literals. Literals 0x0 to 0x7fffffff represent
non-negative numbers 0 to 231 − 1, and 0x80000000 to 0xffffffff are the
negative numbers −231 to −1. Other hexadecimal numbers are not allowed.

9

An octal or hexadecimal literal always produces the token INT LITERAL
enclosed with the associated signed 32-bit integer value.

Java allows integer literals with the suffix L, but Jumbala does not. In
other words, there are no long integer literals.

2.7 String Literals

A string literal is a sequence of zero or more string characters enclosed in
double quotes ("). A string character can be either an escape sequence or
any 8-bit input character except the double quote, backslash \, or newline.

An escape sequence is used to represent one character of the string by
two or more input characters. It can be one of the following:

• \b (backspace, ASCII 8)

• \t (horizontal tab, ASCII 9)

• \n (newline, ASCII 10)

• \f (form feed, ASCII 12)

• \r (carriage return, ASCII 13)

• \" (double quote, ASCII 34)

• \’ (single quote, ASCII 39)

• \\ (backslash, ASCII 92)

• An octal escape, i.e. a backslash \ followed by an octal number between
0 and 377 (= 255 decimal). Leading zeros are allowed but the total
amount of octal digits must be three or less. This escape sequence
represents the character whose ASCII code is the value of the octal
number.

Other escape sequences are not allowed.
A string literal produces the token STRING LITERAL, whose value is the

contents of the string without the double quotes.

10

2.8 Separators and Operators

The following 9 input characters are recognized as separators :

() { } [] ; , .

The following 37 character sequences are the operators :

= > < ! ~ ? :

== <= >= != && || ++ --

+ - * / & | ^ % << >> >>>

+= -= *= /= &= |= ^= %= <<= >>= >>>=

The name of the associated token is the same character sequence that
forms the separator or operator.

11

Chapter 3

Programs

The string containing Jumbala source code is called the program.

Program ::=(
TypeDeclaration

∣∣ BlockStatement
)∗

BlockStatement ::=

LocalVariableDeclarationStatement∣∣ Statement

A program consists of type declarations and block statements (statements
and local variable declarations). Unlike in Java, statements may appear at
top level, outside all type declarations as well as in methods and constructors.
The block statements appearing at top level are top-level statements.

A program is executed by evaluating the top-level statements in sequence.
There is no special main method like in Java. However, such a method may
be defined and called explicitly from a top-level statement.

A top-level statement may refer to types, methods, and fields whose dec-
laration appears before or after the top-level statement.

A local variable declaration that appears directly at top level declares a
top-level local variable. Such a variable may only be referred to from top-level
statements, not e.g. from methods, so it is not a global variable.

Programs may not import entities from other programs. There are no
packages like in Java. A similar effect can be obtained using incrementality,
explained below.

3.1 Incremental Programs

A program is incremental if it augments another program. The incremental
program may refer to top-level types and top-level local variables of the

12

original program as if the two programs were concatenated as strings.
It is a compile-time error if an incremental program declares a top-level

type with the same name as a top-level type in the original program, or a
top-level local variable with the same name as a top-level local variable in
the original program.

An incremental program may be executed only after the original program
has finished executing. The state of top-level local variables and all class
variables is preserved from the first execution.

13

Chapter 4

Types and Variables

Every variable and expression has a type that is known at compile time.

Type ::=

PrimitiveType
∣∣ ReferenceType

Types are divided to three categories. The primitive types are int and
boolean. The reference types are all class, interface, enum, and array types.
The special null type has only one value, null. The null type has no name
inside Jumbala programs, so it cannot be the type of a variable.

4.1 Primitive Types and Values

The two primitive types are int and boolean, which work almost identically
as their counterparts in Java.

PrimitiveType ::=

int
∣∣ boolean

The values of type int are 32-bit signed integers. The values of type
boolean are false and true.

Values of primitive types are not objects and there are no references to
primitive types. A variable or expression of a primitive type can only hold
values of that exact type.

There are no character types (use Strings instead), floating-point types,
or other than 32-bit integer types.

Jumbala defines no boxed types like Integer or Long found in Java. The
user can define classes with similar functionality.

14

4.2 Reference Types and Values

A reference type can be a class, interface, enum, or array type.

ReferenceType ::=

ArrayType
∣∣ TypeName

ArrayType ::=

Type []

Class, interface, and enum types are referred to by their names in pro-
grams (Section 5). An array type (Section 7) is denoted by its component
type followed by an empty pair of square brackets.

A variable or expression of a reference type has a value that is either the
null reference or a reference to an object of that type or one of its subtypes.

4.3 Objects and Memory

An object is an instance of either a class, enum, or array type. The type
of an object is specified when creating the object and cannot be changed
afterwards. The type cannot be an interface or an abstract class.

An object has identity and state. The state of an object consists of values
for all instance variables that are members of the type of the object or one
of its supertypes.

An object cannot be the value of a variable. However, several variables
may hold a reference to an object at the same time.

Class and array instances are created using new expressions (Section 9.15
and 9.16) or array initializers (Section 7.1). Instances of an enum type cannot
be created dynamically.

Jumbala pays no attention to the possibility of out-of-memory conditions.
Object creation always succeeds from the language point of view. If memory
runs out when creating objects or at any other point, it is considered an
exceptional situation that halts the program but that cannot be observed
from the program. In contrast, the Java language allows an out-of-memory
exception (called OutOfMemoryError) to occur only at certain points in the
program, and the error may be caught and handled within the program.

Objects have no scope that could be fixed at compile time. An object
exists as long as it can be reached from the program by following references.
An object is considered nonexistent when it becomes unreachable. It is not
defined what happens then. A proper implementation has a garbage collector
that removes unreachable data at some point. The effect of garbage collection

15

cannot be observed from the program because objects do not have finalizers
like in Java.

4.4 Predefined Types

Jumbala does not have an extensive class library like Java. However, the
definition of the language itself requires that a simple class structure exists.
Therefore we define following five top-level types that exist implicitly in every
Jumbala program.

4.4.1 The Class Object

Object is the primordial superclass of all other classes. It is a simplified
version of Object in Java.

The class Object has no fields. Its only constructor is the default con-
structor, which creates a new object. It has the following methods, which
are all non-final instance methods.

• clone, which takes no parameters and returns an Object. The method
results in a run-time error if it is invoked for an object whose class is
not a subclass of Cloneable. For example, new Object().clone()

evaluates to a run-time error. If the method is invoked on a Cloneable

object, it returns a reference to a new object whose fields have the
same values as the fields of the original object, i.e. a shallow copy of
the original object.

• equals, which takes one parameter of type Object and returns a
boolean. The method returns true if its argument refers to the same
object that the method is invoked on, otherwise false. The method
may be overridden to make semantic comparison between two objects.

• toString, which takes no parameters and returns a reference to a
String. The returned string is defined by the implementation, and
it may not be null. This method may be overridden to produce useful
human-readable representations of objects.

4.4.2 The Interface ObjectInterface

ObjectInterface is a subtype of Object and a supertype of all interfaces. It
exists explicitly in Jumbala, although it does not have a named counterpart

16

in Java. The effect is the same in both languages: all methods of class Object
are accessible through a reference of any interface type.

ObjectInterface has no fields and its methods have the same names, pa-
rameter types and return types as Object. The methods in ObjectInterface

differ from the methods in Object in tha they are abstract.

4.4.3 The Interface Cloneable

The Cloneable interface is a subtype of ObjectInterface. It does not have
any fields and its methods are those inherited from ObjectInterface.

To make a class whose objects can be cloned, declare the class as a subtype
of Cloneable and, if necessary, override the clone method to first invoke
super.clone and then perform other necessary copying activities, just like
in Java.

4.4.4 The Class String

String is a final class representing a string of text. It is the class of
string literals (Section 2.7). The members of String are defined in the
implementation.

4.4.5 The Class Enum

Enum is an abstract class that acts as the common supertype of all enum
types. Although Enum is not final, it is a compile-time error to declare a
subclass of Enum. The methods of Enum are those inherited from Object, and
it has not fields.

4.5 Subtyping

The subtype relationship is a reflexive, transitive, antisymmetric relationship
between types. Every type is a subtype of itself. If T is a subtype of S,
then S is a supertype of T . The relationship is characterized by the following
rules.

A primitive type has no subtypes or supertypes besides itself.
The null type is a subtype of all reference types. No primitive or reference

type is a subtype of the null type.
The subtype relationship between two reference types is determined by

the direct supertype relationship. Type T is a subtype of S if and only if

17

there exists a chain of types T = T1, T2, . . . , Tn = S such that each Tk+1 is
a direct supertype of Tk.

The class Object has no direct supertypes.
The direct supertypes of a class other than Object are its direct superclass

and direct superinterfaces. The direct superclass is the one mentioned in
the class declaration (after the keyword extends), or Object if no class is
explicitly mentioned. The direct superinterfaces are those mentioned in the
class declaration (after the keyword implements), if any.

The direct supertype of ObjectInterface is Object.
The direct supertypes of an interface other than ObjectInterface are

its direct superinterfaces, i.e. those mentioned in the interface declaration. If
none are mentioned, the only direct supertype if ObjectInterface.

The direct supertype of an enum type is the abstract class Enum.
The direct supertypes of an array of either a primitive type or the class

Object are Object and the interface Cloneable.
The direct supertypes of T[], an array of a reference type T other than

Object, are the array types S[] where S is a direct supertype of T .
It follows from these rules that Object is a supertype of all reference

types. ObjectInterface is a supertype of all interfaces. Object[] and
Cloneable are supertypes of all array types.

4.6 Castability

We say that type T is castable to type U if, informally, it is possible that a
variable of type T has the same value as a variable of type U . Castability is
a reflective, symmetric, and transitive relation between types.

T is castable to U if any of the following apply:

• One of T , U is a subtype of the other.

• One of T , U is a non-final class type and the other is an interface.

• Both T and U are array types and the component type of T is castable
to the component type of U .

The Java specification [2] talks about casting conversions and not casta-
bility. Jumbala has no conversions between values, so the simpler notion of
castability is introduced.

18

4.7 Variables

A variable is a typed storage location. A variable of a primitive type can hold
a value of that type. A variable of a reference type can hold either a reference
to an object of that type or one of its subtypes, or the null reference.

4.7.1 Kinds of Variables

There are six kinds of variables in Jumbala. These correspond to the kinds
of variables in Java, with the omission of exception-handler parameters.

1. A class variable is a field declared using the keyword static (Sec-
tion 6.6).

2. An instance variable is a field declared without the keyword static

(Section 6.6).

3. An array component is one of the storage locations in an instance of
an array (Section 7). It has no name.

4. A method parameter variable is created for each declared parameter
when a method is invoked. The parameter initially has the argument
value given in the method invocation (Section 9.14).

5. A constructor parameter is similar to a method parameter, but is as-
sociated with the creation of a class instance (Section 9.15).

6. A local variable is declared by a local variable declaration (Section 8.2).

Class and instance variables may be declared final, so that they cannot
be assigned to after initialization. Unlike Java, Jumbala does not allow
method or constructor parameters or local variables to be final.

4.7.2 Default Values

Every class variable, instance variable, and array component is initialized
to a default value when it is created. Local variables are not automatically
initialized to default values.

For a variable whose type is int, the default value is 0.
For a variable whose type is boolean, the default value is false.
For a variable whose type is a reference type, the default value is null.

19

Chapter 5

Names

A name is a textual reference to a declared entity in a program. Names are
classified to

• type names, which resolve to class, interface, and enum types,

• method names, which are used in method invocations, and

• variable names, which resolve to fields, local variables, and method or
constructor parameters.

There are no package names in Jumbala. What we call variable names
are called expression names in the Java specification.

A name can be simple, consisting of a single identifier, or qualified, con-
sisting of several identifiers separated with periods.

TypeName ::=[
TypeName .

]
IDENTIFIER

MethodName ::=[
AmbiguousName .

]
IDENTIFIER

VariableName ::=[
AmbiguousName .

]
IDENTIFIER

AmbiguousName ::=[
AmbiguousName .

]
IDENTIFIER

The classification of names is mostly handled by the grammar rules. The
only place in which a name is ambiguous according to the grammar is when

20

a variable name or a method name is qualified, for example in the expres-
sions Date.year or Date.reset(). It is unclear, without seeing the entire
program, whether Date refers to a type or a variable, so the left part of
the name is first classified as an AmbiguousName. An ambiguous name is
reclassified by the rules explained in Section 5.5.

An identifier used in a declaration to define the name of an entity is not
considered to be a name itself. In the code fragment below, the identifier
flag on the first line is not a name, but on the second line it is.

boolean flag;

flag = true;

5.1 Scope

The accessibility of an entity is affected by the scope of the declaration of
the entity. There are no explicit access modifiers such as private or public
in Jumbala; everything is implicitly public.

Scope is a static, compile-time concept. Declarations have scopes, objects
do not.

Scoping does not entirely determine what is accessible or not. It may
be possible to directly access a variable that is out of scope, for example,
using a qualified name. Conversely, it might not be possible to access a vari-
able or type that is in scope because it is shadowed or obscured by another
declaration. The concepts of shadowing and obscuring are explained in the
Java specification, and they are also present in Jumbala. They are not de-
scribed here explicitly, as they are logical consequences of the rules of name
resolution.

The scopes of different kinds of declarations are given below.
The scope of a top-level local variable declaration is the entire program

and the following incremental programs.
The scope of a local variable declaration that is not a top-level declara-

tion and not in the initialization part of a for statement is the rest of the
block, method/constructor body, or switch block that directly encloses the
declaration.

The scope of a local variable declaration in the initialization part of a for

statement is the rest of the for statement, including the body.
The scope of a method or constructor parameter is the body of the method

or constructor.

21

5.2 Resolution of Type Names

A type name resolves to a class, interface, or enum type.

5.2.1 Simple Type Names

A simple type name N is resolved as follows. If the name appears in the
body of a type declaration, let T1, . . . , Tn be the enclosing types such that
Ti+1 is nested in Ti.

If there exists an index i such that Ti has at least one (declared or inher-
ited) member type named N or the simple name of Ti itself is N , then let k
be the largest such index. If Tk has exactly one member type named N , the
name resolves to that type. If Tk has more than one member type named N ,
a compile-time error occurs. If Tk has no member type named N , the name
resolves to Tk.

If no such index exists and there is a top-level type named N , the name
resolves to that type. If there is no top-level type named N , a compile-time
error occurs.

5.2.2 Qualified Type Names

A qualified type name Q.N , where Q is a type name and N is an identifier,
is resolved as follows. First Q is resolved. If this does not result in a compile-
time error, Q resolves to a type T . If T has zero or more than one member
types named N , a compile-time error occurs. Otherwise Q.N resolves to the
unique member type named N .

5.3 Resolution of Method Names

A method name can only appear in a method invocation expression. The
first part in resolving a method name is to locate a reference type to search
for methods. That part is explained below. The entire method invocation
procedure is explained in Section 9.14.

5.3.1 Simple Method Names

A simple method name N must appear in the body of a type declaration,
or a compile-time error occurs. Let T1, . . . , Tn be the enclosing types such
that Ti+1 is nested in Ti.

22

Let k be the largest index i such that Ti has at least one (declared or
inherited) method named N . If no such index exists, a compile-time error
occurs. The type to search is Tk.

5.3.2 Qualified Method Names

A qualified method name has the form Q.N where Q is an ambiguous name
and N is an identifier. Q is first reclassified.

If Q is reclassified as a variable name, the type to search is the type of
the variable that Q resolves to.

If Q is reclassified as a type name, the type to search is the type that Q
resolves to.

5.4 Resolution of Variable Names

A variable name resolves to a variable. Variable names only appear in the
context of expressions. A variable name can be viewed as a special kind of
expression. It has a type and it can be evaluated at run-time.

The result type of a variable name is the type of the variable that the
name resolves to. The result value is the value of the variable. A variable
name as an expression is an lvalue if and only if it resolves to a non-final
variable.

5.4.1 Simple Variable Names

A simple variable name N is resolved as follows. If the name appears in the
scope of a local variable, method parameter, or constructor parameter named
N , the name resolves to that variable. If the variable is a local variable that
is uninitialized (Section 8.2) when the variable name is evaluated, a run-time
error occurs.

Assume that there is no local variable or method/constructor parameter
named N in scope. If N is not enclosed in the body of a type declaration, a
compile-time error occurs. Otherwise let T1, . . . , Tn be the enclosing types
such that Ti+1 is nested in Ti.

Let k be the largest index i such that Ti has at least one (declared or
inherited) field named N . If no such index exists, a compile-time error oc-
curs. If Tk has more than one field named N , a compile-time error occurs.
Otherwise Tk has exactly one field named N .

If the field is static, the name resolves to that field. Assume that the
field is an instance variable. If k 6= n or the name appears in a static context

23

(Section 9.1), a compile-time error occurs. Otherwise the name resolves to
the instance variable N (declared in Tk) in the current object (Section 9.1).

5.4.2 Qualified Variable Names

A qualified variable name has the form Q.N where Q is an ambiguous name
and N is an identifier. Q is first reclassified.

If Q is reclassified as a variable name, it resolves to a variable V with
type T . T must be a reference type with exactly one field named N , or a
compile-time error occurs. If the field is static, Q.N resolves to that field.
If the field is an instance variable, Q.N resolves to that variable in the object
referred to by V . In the latter case, if V evaluates to null at run-time, a
run-time error occurs.

If Q is reclassified as a type name, it resolves to a type T . T must have
exactly one field named N that is a static, or a compile-time error occurs.
Q.N resolves to that field.

5.5 Reclassification of Ambiguous Names

An ambiguous name is reclassified to a type name or variable name that is
resolved by the rules stated above. The reclassification always succeeds but
the consequent resolution may result in a compile-time error.

5.5.1 Simple Ambiguous Names

A simple ambiguous name N is reclassified as follows. If the name appears
in the scope of a local variable, method parameter, or constructor parameter
named N , the name is reclassified as a simple variable name.

Assume that there is no local variable or method/constructor parameter
named N in scope. If N is not enclosed in the body of a type declaration,
the name is reclassified as a simple type name. Otherwise let T1, . . . , Tn be
the enclosing types such that Ti+1 is nested in Ti.

If an index i exists such that Ti has at least one (declared or inherited)
field named N , the name is reclassified as a simple variable name. If not, the
name is reclassified as a simple type name.

5.5.2 Qualified Ambiguous Names

A qualified ambiguous name has the form Q.N where Q is an ambiguous
name and N is an identifier. Q is first reclassified.

24

If Q is reclassified as a variable name, Q.N is reclassified as a variable
name.

Assume Q is reclassified as a type name. If the resolution of type name
Q does not produce a compile-time error and if Q resolves to a type that
has at least one field named N , then Q.N is reclassified as a variable name.
Otherwise Q.N is reclassified as a type name.

25

Chapter 6

Type Declarations

Type declarations define new reference types.

TypeDeclaration ::=

ClassDeclaration∣∣ InterfaceDeclaration∣∣ EnumDeclaration

6.1 Top-Level Types

A type declaration that appears at top level in a program declares a top-level
type.

It is a compile-time error if two top-level types with the same name are
declared in the same program or in two different programs, one of which
increments the other. It is a compile-time error if a top-level type is declared
with the same name as a predefined type (Section 4.4).

6.2 Nesting in Types

The declaration of a class or interface T has a body that can contain further
declarations. Any declaration, name, or expression E that appears within
the body of T is said to be enclosed in declaration of T . T is the directly
enclosing type of E if there is no type enclosed in T that also encloses E.

A type whose declaration is enclosed in T is a nested type of T . All nested
types in Jumbala are implicitly static. This is a deviation from Java, where
a nested class that is not declared using the keyword static can access the
instance variables of enclosing classes.

26

It is a compile-time error if two type declarations with the same directly
enclosing type declare a type with the same name.

6.3 Class Declarations

A class declaration defines a class, its name, supertypes, members, and con-
structors.

ClassDeclaration ::=[
abstract

∣∣ final]
class IDENTIFIER[

extends TypeName
][

implements TypeName
(
, TypeName

)∗]
{ ClassBodyDeclaration ∗ }

ClassBodyDeclaration ::=

MemberDeclaration∣∣ ConstructorDeclaration

MemberDeclaration ::=

FieldDeclaration∣∣ MethodDeclaration∣∣ TypeDeclaration

The IDENTIFIER following the keyword class is the name of the class.

6.3.1 Class Modifiers

The modifier abstract or final (but not both) may appear in the beginning
of the declaration.

The class is an abstract class if it is declared using the keyword abstract.
An abstract class cannot be instantiated but it may have abstract meth-
ods.

The class is a final class if it is declared using the keyword final. A
final class may not have subclasses.

27

6.3.2 Direct Supertypes

If the keyword extends followed a type name appears in the declaration,
that type name is resolved (Section 5.2) to the direct superclass of the class.
It is a compile-time error if the direct superclass is not a class, or if it is a
final class, or if it is the class Enum. If the extends part is missing, the
direct superclass of the class is Object. The class Object itself has no direct
superclass.

The direct superinterfaces of the class, if any, are specified after the key-
word implements. The type names following implements must all resolve to
interface types, no two of which are allowed to be the same type. Otherwise
a compile-time error occurs.

It is a compile-time error if one of the type names after the words extends
or implements resolves to a type whose declaration either encloses the class
declaration or appears textually after the class declaration. This is a no-
table difference from Java, which allows a subtype to be declared before its
supertypes.

The direct superclass and direct superinterfaces are the direct supertypes
of the class, as explained in (Section 4.5).

6.4 Interface Declarations

An interface declaration defines an interface type.

InterfaceDeclaration ::=

interface IDENTIFIER[
extends TypeName

(
, TypeName

)∗]
{ MemberDeclaration ∗ }

MemberDeclaration ::=

FieldDeclaration∣∣ MethodDeclaration∣∣ TypeDeclaration

The IDENTIFIER following the keyword class is the name of the class.
Unlike classes, interfaces cannot be declared using modifiers. It can be
thought that an interface is always implicitly abstract and static and
never final.

28

6.4.1 Direct Supertypes

If the keyword extends followed one or more a type names appears in the
declaration, that type names are resolved (Section 5.2) to the direct superin-
terfaces of the interface. It is a compile-time error if two of the names resolve
to the same type of if not all of the types are interfaces. If the extends part
is missing, the only direct superinterface is ObjectInterface. The interface
ObjectInterface has one direct supertype, Object.

It is a compile-time error if the declaration of any of the superinterfaces
either encloses the interface declaration or appears textually after the in-
terface declaration. This is a notable difference from Java, which allows a
subtype to be declared before its supertypes.

The direct superinterfaces are the direct supertypes of the interface, as
explained in (Section 4.5).

6.5 Enum Declarations

An enum declaration defines an enumerated type.

EnumDeclaration ::=

enum IDENTIFIER {
[
IDENTIFIER

(
, IDENTIFIER

)∗] [
,
]
}

Enumerated types or enums are types that have a fixed, finite set of values
known as enum constants. New instances of an enum type may not be cre-
ated dynamically. Enums in Jumbala are less powerful than in Java. Enum
constants are not allowed to have internal structure. Their only attributes
are their names and identities. Enum constants are objects and references of
enum types can be compared using operators == and !=.

The IDENTIFIER appearing after the keyword enum is the name of the
enum type. The identifiers inside curly braces are the names of the enum
constants. Enum constants of a single type must have distinct names.

The only direct supertype of an enum is the class Enum.

6.5.1 Members of an Enum

The members of an enum type are the fields defined by enum constants in the
enum declaration, the methods inherited from class Object, and the method
values.

Every enum constant appears as a final static field in the enum type.
The type of the field is a reference to the enum type, and the value of the
field is a reference to the object representing the enum constant. The fields

29

of an enum are initialized before the initialization of static fields in classes
and interfaces, so they can never be observed to have the value null. An
enum constant named c in an enum type E is accessed using the expression
E.c.

The instance method toString of an enum type returns a string repre-
sentation of an enum constant. The representation is implementation depen-
dent. The instance method clone results in a run-time error if executed. The
instance method equals takes a parameter of type Object and returns true
if and only if the argument is a reference to the same object the method is
invoked on. The class method values of an enum type E takes no parameters
and returns a reference to an array of E. The components of the returned
array are references to the enum constants of E in the same order in which
they are listed in the enum declaration.

There are no methods in an enum to directly support ordinal numbers
for enum constants (c.f. the method ordinal in the Java class Enum).

An enum type has no member types.

6.6 Field Declarations

A field declaration declares one or more fields for the directly enclosing class
or interface.

FieldDeclaration ::=(
static

∣∣ final)∗ Type

VariableDeclarator
(
, VariableDeclarator

)∗ ;
VariableDeclarator ::=

IDENTIFIER
[
= VariableInitializer

]
VariableInitializer ::=

Expression
∣∣ ArrayInitializer

ArrayInitializer ::=

{
[
VariableInitializer

(
, VariableInitializer

)∗] [
,
]
}

All fields declared by a single declaration have the same type and modi-
fiers. The modifiers static, final, or both can be used. If the same modifer
appears twice, a compile-time error occurs.

A field declared with the modifier static is a class variable. There is
exactly one instance of a class variable at run-time, and it is not associated

30

with an object. If the word static is not used, the field is an instance
variable.

A field declared with the modifier final cannot be assigned to. An at-
tempt results in a compile-time error. A final field must have an initializer.
In contrast, Java allows a final field not to have an initializer if the field is
assigned exactly once in each constructor.

It is a compile-time error if two fields with the same name are declared
in the same class or interface. However, a class or interface may have two
fields with the same name as members by inheritance.

6.6.1 Initialization of Fields

Unlike local variables, fields cannot be left uninitialized because they are
initialized to default values.

All class variables are initialized to their default values (Section 4.7.2)
depending on their type before any statements of the program are executed.
After that, for each variable initializer of a static variable, the initializer is
evaluated and the result is assigned to the variable. Initializers are evaluated
in the order in which they appear in the program. All this happens before any
top-level statements of the program are executed. However, initialization of
static variables in an incremental program takes place only after the previous
programs have been executed.

In the following example, fields w and x get the value 0, and y and z get
the value 10.

class C {

static int w;

static int x = y;

static int y = 10;

static int z = y;

}

The initialization of instance variables is specified in Section 9.15.
In Java there are restrictions on whether field initializers may refer to

other fields. Also, the order of initialization is different if fields are initialized
with compile-time constants. These special cases do not apply to Jumbala.

31

6.7 Method Declarations

A method declaration declares a method of the directly enclosing class or
interface.

MethodDeclaration ::=(
abstract

∣∣ static ∣∣ final ∣∣ native)∗ (
Type

∣∣ void)
IDENTIFIER FormalParameters MethodBody

FormalParameters ::=

(
[[
final

]
Type IDENTIFIER

(
,

[
final

]
Type IDENTIFIER

)∗])
MethodBody ::=

{ BlockStatement ∗ }∣∣ ;

Modifiers abstract, static, final, or native may be used in the dec-
laration. It is a compile-time error if the same modifier appears twice. All
methods of interfaces are considered abstract, whether the modifier is used
or not.

An abstract method has no body and cannot be directly invoked. An
abstract method cannot be static, codefinal, or native, or a compile-time
error occurs.

If the word static is used, the method is a class method. Otherwise it
is an instance method.

If a method is declared final, it cannot be hidden or overridden in a
subclass.

A native method is one that is no implemented in Jumbala but some
native programming language. A native method is invoked by the same
rules as an ordinary method. The details are implementation-specific.

A method may have any number of formal parameters. Variable arity
methods are not supported. When the method is invoked, a variable is
created for each formal parameter, and the argument values are assigned to
the variables. The parameter variables can be accessed from the method
body. A final parameter cannot be assigned to. It is a compile-time error
if a method has two formal parameters with the same name.

A method must have a body with zero or more block statements if and
only if the method is not abstract and not native. If the method is
abstract or native, the body must be replaced by a semicolon.

It is a compile-time error if two methods with the same name and same
parameter types are declared in the same class or interface. Further restric-
tions on methods with respect to subtyping are given in Section 6.9.3.

32

6.8 Constructor Declarations

A constructor declaration declares a constructor for the directly enclosing
class.

ConstructorDeclaration ::=

IDENTIFIER FormalParameters ConstructorBody

FormalParameters ::=

(
[[
final

]
Type IDENTIFIER

(
,

[
final

]
Type IDENTIFIER

)∗])
ConstructorBody ::=

{
[
super Arguments ;

]
BlockStatement ∗ }

Arguments ::=

(
[
Expression

(
, Expression

)∗])

The IDENTIFIER at the beginning of a constructor declaration must be the
simple name of the directly enclosing class, or a compile-time error occurs.

Constructors, like methods, have formal parameters. No two formal pa-
rameters of a constructor may have the same name. Argument values are as-
signed to constructor parameters upon constructor invocation (Section 9.15).
It is a compile-time error if a class has two constructors with the same number
and types of parameters.

Constructors are not members. They are never inherited, hidden, or
overridden.

The body of a constructor may begin with an explicit superclass con-
structor invocation using the keyword super with associated argument ex-
pressions. If there is no explicit superclass constructor invocation, an im-
plicit superclass constructor invocation is assumed. The implicit invocation
is equivalent to an invocation with no parameters, i.e. super();. In this
case it is a compile-time error if the direct superclass does not have a con-
structor that takes no parameters. The semantics for superclass constructor
invocation is given in Section 9.15.

It is not possible to invoke an alternate constructor of the same class in
the beginning of a constructor, like in Java.

6.9 Members of Classes and Interfaces

The members of a class or interface type are the fields, methods, and member
types that are either declared in the class or interface declaration or inherited
from direct supertypes. Constructors are not members.

33

A type may have several kinds of members with the same name as illus-
trated below.

class Confuse {
Confuse() {} // A constructor
void Confuse() {} // A method
void Thing() {} // A method
class Thing {} // A nested class
Thing Thing; // A field

}

6.9.1 Member Types

If a class or interface type T declares a nested type U named N , the decla-
ration hides any types named N that are members of the direct supertypes
of T . U is a member of T but the hidden types are not members of T .

A class or interface type T inherits a type U if U is a member of a direct
supertype of T and if T declares no type with the same name. The inherited
type is a member type of T .

A type may declare at most one nested type with a given name. However,
a type may have several member types with the same name as inherited types.
Trying to access such a type by its simple name is an error (Section 5.2).

A type may inherit the same member type from two different direct su-
pertypes if they have a common supertype that declares the nested type. The
member type is considered to be inherited only once, and it may be accessed
by its simple name.

6.9.2 Fields

A field is either an instance variable (non-static) or class variable (static).
If a class or interface type T declares a field F named N , the declaration

hides any fields named N that are members of the direct supertypes of T .
The hidden fields may have a different type than F . Both instance and class
variables can hide instance variables and class variables. F is a member of
T but the hidden variables are not members of T .

Even if an instance variable H is hidden, an object of type T (if T is not
an interface) has a value for the variable H. The variable can be accessed by
the expression super.N (Section 9.12) or by ((supertype) this).N .

Hidden class variables can be accessed by the expression supertype.N .
A class or interface type T inherits a field F if F is a member of a direct

supertype of T and if T declares no field with the same name. The inherited
field is a member of T .

34

A type may declare at most one field with a given name. However, a type
may have several fields with the same name as inherited members. Trying
to access such a field by its simple name is an error (Section 5.4).

A type may inherit the same field from two different direct supertypes if
they have a common supertype that declares the field. The field is considered
to be inherited only once, and it may be accessed by its simple name.

6.9.3 Methods

In the context of inheritance, methods are compared to each other using their
signatures, not only their names. The signature of a method consists of the
name of the method, the number of parameters it takes, and the ordered list
of the types of parameters.

Let M1 and M2 be two methods with the same signature. We say that
M1 conforms to M2 if i) the return type of M1 is a subtype of the return
type of M2, if ii) M1 and M2 are either both class methods or both instance
methods, and if iii) M2 is not final.

Overriding by Instance Methods. If a class or interface type T declares
an instance method M (abstract or not) with a signature S, the declara-
tion overrides any methods with signature S that are members of the direct
supertypes of T . Method M is a member of T but the overridden methods
are not. M must conform to each method with signature S that is a member
of any of the direct supertypes of T , or a compile-time error occurs. An
instance method that is not abstract can be overridden by an abstract

method, and vice versa.

Hiding by Class Methods. If a class or interface type T declares a class
method M with a signature S, the declaration hides any methods with sig-
nature S that are members of the direct supertypes of T . Method M is a
member of T but the hidden methods are not. It is a compile-time error if
M does not conform to all of the hidden methods.

Inheritance. Assume that a class or interface T has a direct supertype
that has a method with signature S but T does not declare a method with
signature S. Let M1, . . . , Mn be the methods with signature S in the direct
supertypes. At most one of the methods is non-abstract because only one
of the direct supertypes can be a class. Type T inherits one of the methods
by the following rules.

35

1. If one of the methods is a class method, then it is a compile-time error
if n > 1. Type T inherits the class method.

2. If one of the methods, say Mi, is a non-abstract instance method, it
is a compile-time error if it does not conform to every other Mj. T
inherits Mi.

3. If all methods are abstract, it is a compile-time error if T is a non-
abstract class. One of the methods, say Mi, must conform to all
others, or a compile-time error occurs. Type T inherits Mi. There
may be several methods that conform to all others but the choice is
arbitrary and does not affect the semantics.

The Java specification defines case 3 above differently. An abstract class
or interface can have several abstract methods with the same signature as
members. Our approach produces the same semantics.

36

Chapter 7

Arrays

Arrays are the only built-in collection type in Jumbala. Arrays in Jumbala
are mostly identical to those in Java.

For each type T there exists implicitly an array type T[] whose compo-
nent type is T . Array types are reference types, and arrays themselves are
objects. The length of an array (the number of components in it) is deter-
mined when the array is created. The components of an array are unnamed
variables whose type is the component type of the array. Components are
numbered from 0 to n − 1, where n is the length. Multidimensional arrays
can be simulated by arrays of arrays.

The componentes or an array are accessed using array access expressions
(Section 9.13). The components are never final variables. When an array
is created using an array creation expression, the values of the components
are the default values (Section 4.7.2) of the component type.

7.1 Array Initializers

An array is created either using an array creation expression (Section 9.16)
or when initializing a variable with an array initializer.

ArrayInitializer ::=

{
[
VariableInitializer

(
, VariableInitializer

)∗] [
,
]
}

VariableInitializer ::=

Expression
∣∣ ArrayInitializer

The variable being initialized must be of an array type, call it T[], and
the types of expressions appearing in the initializer must be subtypes of T .
When the array initializer is evaluated, the expressions are evaluated left to

37

right. The result of an array initializer is an array of T whose component
values are the results of the expressions.

7.2 Members of an Array

Arrays are cloneable objects, and every array type is a subtype of Object

(see Section 4.5 for details).
An array has one field as its member. The field is a final instance

variable of type int and its name is length. The value of the field is the
number of components in the array.

The methods of an array type are those inherited from Object, except
clone. The clone method of an array is overridden to return a new array
whose component values are copied from the original array. The return type
of the method is the array type.

Arrays have no member types.

38

Chapter 8

Statements

Statements are elements that constitute executable code. A statement can
be executed to produce an effect. Statements may contain other statements
and expressions. Statements are also used to control program flow.

The set of statements in Jumbala is principally the same as in Java, with
some simplifications.

We use the term block statement to denote statements and local variable
declarations. Block statements may appear in method bodies, constructor
bodies, the top level of a program, and in blocks.

BlockStatement ::=

LocalVariableDeclarationStatement∣∣ Statement

Statement ::=

StatementWithoutTrailingSubstatement∣∣ LabeledStatement∣∣ IfThenStatement∣∣ IfThenElseStatement∣∣ WhileStatement∣∣ ForStatement

StatementNoShortIf ::=

StatementWithoutTrailingSubstatement∣∣ LabeledStatementNoShortIf∣∣ IfThenElseStatementNoShortIf∣∣ WhileStatementNoShortIf∣∣ ForStatementNoShortIf

39

StatementWithoutTrailingSubstatement ::=

Block∣∣ EmptyStatement∣∣ ExpressionStatement∣∣ SendStatement∣∣ AssertStatement∣∣ SwitchStatement∣∣ DoStatement∣∣ BreakStatement∣∣ ContinueStatement∣∣ ReturnStatement

For rationale behind StatementNoShortIf , see Section 8.7.

8.1 Blocks

A block is a composition of zero or more statements, enclosed in braces.

Block ::=

{ BlockStatement ∗ }

BlockStatement ::=

LocalVariableDeclarationStatement∣∣ Statement

Blocks are used to group together statements, for example, in the branches
of an if statement. They also define a scope for local variables (Section 5.1).

When a block is executed, the contained statements are executed in se-
quence.

8.2 Local Variable Declaration Statements

A local variable declaration statement declares one or more local variables.

LocalVariableDeclarationStatement ::=

LocalVariableDeclaration ;

LocalVariableDeclaration ::=[
final

]
Type VariableDeclarator

(
, VariableDeclarator

)∗
40

VariableDeclarator ::=

IDENTIFIER
[
= VariableInitializer

]
Local variables can be declared in blocks, in method or constructor bodies,

in the initialization of a for statement, or at top level. A local variable has
a limited scope (Section 5.1).

All local variables declared in a single statement have the same type.
A local variable can be final, in which case it cannot be assigned to after
initialization, or a compile-time error occurs. In Jumbala, all final variables
must have an initializer.

The name of a local variable is defined by the IDENTIFIER in its declarator.
It is a compile-time error if a local variable in a method or constructor body
has the same name as a formal parameter (Sections 6.7 and 6.8). It is a
compile-time error if a local variable is declared in the scope of another local
variable with the same name.

Unlike any other kinds of variables, local variables are uninitialized by
default. Accessing an uninitialized local variable results in a run-time error,
unless the access is a simple assignment to the variable. When a local variable
declaration is executed, its variable declarators are executed left to right.
When a local variable declarator is executed, the local variable is created
and its value is first uninitialized. If the declarator has an initializer, it is
evaluated, and the result is assigned to the variable. The variable is in scope
in its own initializer and in any subsequent initializers.

There is one way to enter the scope of a local variable without executing
the declaration, as illustrated below. In this case, any variable initializers
are not evaluated.

switch (10) {

case 9:

int x = 12; // Not reached

break;

case 10:

// Variable x is in scope, but uninitialized.

System.out.println(x); // Run-time error.

x = 10; // Ok.

break;

}

41

8.3 The Empty Statement

The empty statement consists of a single semicolon. It carries no action when
executed.

EmptyStatement ::=

;

8.4 Labeled Statements

Labeled statements are used to direct the control flow when using labeled
break and continue statements.

LabeledStatement ::=

IDENTIFIER : Statement

LabeledStatementNoShortIf ::=

IDENTIFIER : StatementNoShortIf

It is a compile-time error if a labeled statement is enclosed in another
labeled statement with the same identifier as the label.

8.5 Expression Statements

An expression statement consists of an expression followed by a semicolon.
The statement evaluates the expression and discards the result.

Only certain kinds of expressions are allowed as the top-level expression in
an expression statement. These are simple or compound assignment, pre- or
postincrement expressions, and pre- or postdecrement expressions, method
invocation, and class instance creation expression.

ExpressionStatement ::=

StatementExpression ;

StatementExpression ::=

Assignment∣∣ PreIncrement∣∣ PreDecrement∣∣ PostIncrement∣∣ PostDecrement∣∣ MethodInvocation∣∣ ClassInstanceCreation

42

8.6 The send Statement

The send statement is a construct that does not exist in Java at all. Its
purpose is to model asynchronous transmission of a signal.

SendStatement ::=

send IDENTIFIER Arguments to Expression ;

Arguments ::=

(
[
Expression

(
, Expression

)∗])

The semantics of a send statement is defined by the semantics of a method
invocation statement (Section 9.14). A send statement is equivalent to the
following expression statement.

(Expression).$$signal IDENTIFIER (Arguments);

The latter statement is an invocation of a method whose name is the
concatenation of the string ’$$signal ’ and the name of the signal, i.e. the
IDENTIFIER in the send statement. (Dollar signs are valid characters in
identifiers.) Usual compile-time and run-time checks apply. For example,
the type of the Expression, which denotes the object that receives the signal,
must be a reference type. If the expression evaluates to null, a run-time error
occurs. The reference type must have a method with the above-mentioned
name. The Arguments of the signal must be compatible with the parameter
types of the method.

Notice that the evaluation order of a send statement is not left-to-right.
The Expression is evaluated before the Arguments .

8.7 The if Statement

The if statement conditionally selects one of two code branches for execu-
tion.

IfThenStatement ::=

if (Expression) Statement

IfThenElseStatement ::=

if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf ::=

if (Expression) StatementNoShortIf else StatementNoShortIf

43

The contained expression must be of type boolean, or a compile-time
error occurs. When executing the if statement, the expression is evaluated
first. If the resulting value is true, the first contained statement is executed.

If the value is false, the second contained statement is executed. If there
is no second statement (no else part), nothing is done.

The nonterminal symbols ending with NoShortIf are related to the infa-
mous “dangling else” problem, which is demonstrated by the code fragment
below.

if (cond1) if (cond2) x = 1; else x = 2;

Which if statement should the else branch be associated with? The
choice in many languages, including Java, has been to associate an else with
the innermost (rightmost) if, but this policy must somehow be enforced in
the grammar. The solution here is to restrict the kind of statements allowed
just before the keyword else. Such statements are explicitly forbidden to
end with a “short if”, i.e. an if statement without the else branch. This
is the meaning of the StatementNoShortIf symbol. The result is that an
else is always associated with the closest if statement possible. Because
the statement before else could be any complex construct that has a “short
if” as a trailing substatement, nonterminal symbols with NoShortIf at the
end have been used in the grammar to represent statements that do not end
with a “short if”.

8.8 The assert Statement

An assertion is a statement that expresses an invariant that is checked at
run-time.

AssertStatement ::=

assert Expression ;

The Expression must have type boolean, or a compile-time error occurs.
When the assertion is executed, the Expression is evaluated, and it is a run-
time error if the result is false.

This is a simplified version of assertions in Java, where an error message
can be attached to an assert statement, and assertions may be disabled
dynamically.

44

8.9 The switch Statement

The switch statement represents a choice with multiple possibilities.

SwitchStatement ::=

switch (Expression) { SwitchGroup ∗ }

SwitchGroup ::=(
case Expression

∣∣ default)
: BlockStatement ∗

The expression in parentheses is known as the switch expression. The
resulting type must be int or an enum type, or a compile-time error occurs.
The switch block, enclosed in braces, may contain zero or more case labels, at
most one default label, and zero or more statements. The mutual order of case
and default labels is free. If the statements include local variable declarations,
their scope is restricted to the switch block (unless tighter restrictions exist
by other rules).

The types of expressions within case labels, known as case expressions,
must be subtypes of the type of the switch expression, or a compile-time error
will result. If the switch expression is an enum type, Java allows (or requires)
the case expressions to be unqualified enumeration constant names. In Jum-
bala, the case expressions must be properly qualified as they are evaluated
in the scope just like any other expression.

Java restricts case expressions to have constant values. Because Jumbala
lacks the notion of constant expressions, this rule has been relaxed so that
any expression of appropriate type is accepted as a case expression. As a
result, the execution semantics of switch statements is slightly more general
than in Java. To avoid confusion, the programmer is encouraged only to
write case expressions that have constant, distinct, non-null values and no
side effects. Under these assumptions the semantics in Java and Jumbala are
equivalent.

A switch statement is executed by first evaluating the switch expression.
If the value is null, execution terminates with a runtime error. Otherwise,
each case expression is evaluated in turn and the resulting value is compared
to the value of the switch expression. Case expressions are evaluated in the
same order that they appear in the switch block. If there is a match (the
values are equal), no further case expressions are evaluated, and execution
jumps to the next statement after the case label. If no case matches and there
is a default label, execution jumps to the statement following the default
label. If there is no match and no default label, no action is taken after
evaluating all the case expressions and the switch statement completes.

45

After execution has jumped to a statement, that statement and all fol-
lowing statements within the switch block are executed sequentially, ignoring
all case and default labels between the statements. If execution reaches an
unlabeled break statement that is not further enclosed in a switch, while,
do, or for statement, execution of the switch statement completes and no
further statements in the switch block are executed.

8.10 The while Statement

The while statement executes a statement continuously as long as a given
condition is true.

WhileStatement ::=

while (Expression) Statement

WhileStatementNoShortIf ::=

while (Expression) StatementNoShortIf

It is a compile-time error if the Expression does not have type boolean.
A while statement is executed by evaluating the expression. If it is

true, the contained statement is executed and the entire while statement is
executed again. If an unlabeled break statement is encountered, execution
jumps out of the iteration, and an unlabeled continue statement skips back
to testing the condition.

More formally, the semantics can be reduced to those of the for state-
ment. A general while statement of the form

while (condition)
body

can always be rewritten as

for (; condition;)

body

The execution semantics of Section 8.12 can now be applied, even in the
presence of break and continue statements.

46

8.11 The do Statement

The do statement repeats a loop until a Boolean condition is false.

DoStatement ::=

do Statement while (Expression) ;

The contained expression must have type boolean or a compile-time error
will result.

Informally, on each iteration the statement is executed first and then
the expression is evaluated. If the result is true, the entire do statement is
executed again. Thus, the statement is always executed at least once. If an
unlabeled break is executed inside the body of the loop, the do statement
completes immediately. An unlabeled continue statement jumps straight to
testing the Boolean expression.

Again, an arbitrary do statement

do

body
while (condition);

can be expressed in terms of the more general for statement:

for (boolean c = true; c; c = condition)
body

The symbol c above represents a unique identifier that does not appear any-
where else in the program. The semantics of the for statement (Section
8.12) now applies.

8.12 The for Statement

The for statement is a flexible loop construct that first executes an initializa-
tion code and then iterates by evaluating a Boolean condition, a statement,
and an update code as long as the condition is true.

ForStatement ::=

for (ForInitialization ; ForCondition ; ForUpdate)

Statement

ForStatementNoShortIf ::=

for (ForInitialization ; ForCondition ; ForUpdate)

StatementNoShortIf

47

ForInitialization ::=

LocalVariableDeclaration∣∣ StatementExpressionList

ForCondition ::=[
Expression

]
ForUpdate ::=

StatementExpressionList

StatementExpressionList ::=[
StatementExpression

(
, StatementExpression

)∗]
The Statement or StatementNoShortIf is called the body of the for state-

ment. If ForCondition contains an expression, it must have type boolean,
or a compile-time error occurs.

The execution begins at the initialization code. If ForInitialization is
empty, no action is taken. If it consists of statement expressions, those are
evaluated from left to right and the results are discarded. If ForInitialization
is a local variable declaration, it is executed in the same way as a local variable
declaration statement (Section 8.2. The scope of the declared variables is the
rest of the for statement, up to and including the body. After initialization,
the loop iteration begins.

Iteration of the loop has several phases. First, ForCondition is evaluated.
If the resulting value is false, no further action is taken and the entire for

statement completes. If the value is true or if the condition is empty, the
body is executed. Then the expressions in ForUpdate, if any, are evaluated
from left to right and the results are discarded. Finally a new iteration step
is taken.

If execution of the body reaches an unlabeled break statement that is not
enclosed in the body of a nested switch, while, do, or for statement, the
iteration stops immediately. ForUpdate or ForCondition are not evaluated,
and execution of the entire for statement completes.

If an unlabeled continue statement is executed in the contained state-
ment, but not within a nested while, do, or for statement, the rest of the
contained statement is skipped. The expressions in ForUpdate are evaluated,
and a new iteration step begins.

The current version of Java also defines so called enhanced for state-
ments, which are a syntactical shortcut for iterator-based looping. This con-
struct is not allowed in Jumbala.

48

8.13 The break Statement

The break statement transfers control out of an enclosing statement.

BreakStatement ::=

break
[
IDENTIFIER

]
;

A break statement can be unlabeled or labeled with an identifier.
When executed, an unlabeled break statement terminates the execution

of the innermost enclosing switch, while, do, or for statement, transferring
control to the end of the statement. If an unlabeled break statement is not
contained in such enclosing structure, a compile-time error will occur.

A labeled break statement must be enclosed in a LabeledStatement with
the same label, or a compile-time error occurs. When the break statement is
executed, control is immediately transferred to the end of the LabeledState-
ment . Unlike unlabeled break statements, labeled break statements are not
restricted to be used only with iteration or switch statements.

8.14 The continue Statement

The continue statement transfers control to the loop continuation point of
an iteration statement.

ContinueStatement ::=

continue
[
IDENTIFIER

]
;

A continue statement can be unlabeled or labeled with an identifier.
The continue target of an unlabeled continue statement is the innermost

while, do, or for statement enclosing the continue statement. The continue
target of a continue statement labeled with an identifier is the while, do,
or for statement that (i) encloses the continue statement and (ii) is imme-
diately enclosed in a LabeledStatement labeled with the same identifier. In
either case, if there is no continue target fulfilling the conditions, a compile-
time error occurs.

If a continue statement is executed and the continue target is a while

or do statement, execution will jump to the point of the iteration of the
continue target where the Boolean condition is evaluated. Otherwise the
continue target is a for statement, and execution will jump to the point of
iteration where ForUpdate is evaluated.

49

8.15 The return Statement

The return statement is used to return from a method or constructor.

ReturnStatement ::=

return
[
Expression

]
;

It is a compile-time error if a return statement is not enclosed in a
method or constructor body.

If a return statement appears in the body of a constructor or a void

method, it must not contain an Expression, or a compile-time error occurs.
When the statement is executed, control is transferred back to the level that
invoked the constructor or method (Sections 9.15 and 9.14).

If a return statement appears in the body of a method that is not void, it
must contain an Expression whose type is a subtype of the return type of the
method, or a compile-time error occurs. When the statement is executed,
the Expression is evaluated and the result is used as the return value of
the method. Control is then transferred back to the level that invoked the
method (Section 9.14).

50

Chapter 9

Expressions

Expressions are elements of a Jumbala program that denote computation of
values. Expressions are evaluated at run time to produce values. Expressions
can also have side effects, such as changing the value of a variable.

Expressions can appear in statements, in variable initializers, as case
expressions in switch statements, and as subexpressions in other expressions.
A common special case is an expression statement, which is a statement that
contains just one expressions that is evaluated for side effects.

Expressions have a type that is deduced at compile-time. The type of
the run-time value of an expression is a subtype (Section 4.5) of the type of
the expression. An exception is a method invocation expression that invokes
a method that returns no value (a void method). Such an expression has
no type and produces no value, and it is a compile-time error if it appears
anywhere else but as the expression in an expression statement.

We say that an expression produces an lvalue if the expression denotes a
variable that can be assigned to. As a simple example, the expression temp is
an lvalue if it appears in the scope of a local variable named temp that is not
final. An lvalue can be used as a value, or it can be assigned to. Therefore,
an expression producing an lvalue can appear as the left-hand side of an
assignment or as the operand of an increment or decrement operator.

When expressions are assembled from simpler subexpressions, the eval-
uation order of subexpressions is fully specified in Jumbala, like in Java.
Generally, the order is from left to right, and subexpressions are evaluated
before the containing expression. Specifically, of the two operands of a binary
operator, the leftmost one is evaluated first, then the rightmost one.

The set of different kinds of expressions is the same as in Java. We also
define the grammar for expressions in a similar way. The grammar rules in
this chapter define how complex expressions are divided syntactically. The
hierarchy of grammar rules implies the rules for operator precedence and asso-

51

ciativity, which are the same as in Java. The nonterminal symbol Expression
lies at the top of the hierarchy, representing any kind of an expression.

Expression ::=

AssignmentExpression

9.1 Contexts of Expressions

An expression can appear in a static context or in an instance context. The
context is an instance context if the expression appears inside one of the
following constructs.

1. A variable initializer for an instance variable (Section 6.6).

2. The body of an instance method (Section 6.7).

3. The body of a constructor but not in an explicit superclass constructor
invocation (Section 6.8).

Otherwise the context is a static context.
When an expression that appears in an instance context is evaluated, a

current object is implicitly known. In cases 1 and 3 above, the current object
is the object that is being created or initialized. In case 2, the current object
is the object that the method has been invoked for, i.e. the object obtained
by evaluating the target reference in the method invocation.

A this expression can be used in an instance context to obtain a reference
to the current object. The word this may not appear in a static context.

9.2 Assignment Operators

As assignment expression assigns a value to a variable.

AssignmentExpression ::=

TernaryConditionalExpression∣∣ Assignment

Assignment ::=

LeftHandSide = Expression∣∣ LeftHandSide CompoundAssignmentOperator Expression

52

LeftHandSide ::=

VariableName
∣∣ FieldAccess

∣∣ ArrayAccess

CompoundAssignmentOperator ::=

*=
∣∣ /= ∣∣ %= ∣∣ += ∣∣ -= ∣∣ <<= ∣∣ >>= ∣∣ >>>= ∣∣ &= ∣∣ ^= ∣∣ |=

The left hand side of an assignment must be an lvalue, or a compile-time
error occurs. In other words, final variables may not be assigned to. It
is also a compile-time error if the left hand side is a variable name whose
resolution fails.

The type of an assignment expression is the type of the left hand side
expression. The value of an assignment is the assigned value. Assignment
does not produce an lvalue.

9.2.1 Simple Assignment

A simple assignment has the form LeftHandSide = Expression. The type of
Expression must be a subtype of the type of LeftHandSide, or a compile-
time error occurs. Execution of a simple assignment can be divided to three
disjoint cases.

If the left hand side is a simple variable name (a single identifier) or a
qualified variable name qualified by a type name or a field access expression
of the form super.IDENTIFIER, the right hand side Expression is evaluated
and the result is assigned to the variable denoted by the left hand side.

If the left hand side is a field access expression of the form PrimaryExpres-
sionNoName . IDENTIFIER or a qualified variable name qualified by another
variable name, the qualifying expression or variable name is first evaluated to
produce a value, call it ref. Then the right hand side is evaluated to produce
a value. If the left hand side denotes a class variable, the result is assigned
to the variable. Otherwise the left hand side denotes an instance variable. If
ref is null, a run-time error occurs. Otherwise the result of the right hand
side is assigned to the object referred to by ref.

If the left hand side is an array access expression, it has the form ref-
expr[indexexpr]. First, refexpr is evaluated to produce a value ref. Then,
indexexpr is evaluated to produce a value index. Then, the right hand side
is evaluated to produce a value rhs. If ref is null, a run-time error occurs
at this point. Otherwise ref is a reference to an array. If index is equal to or
greater than the length of the array or if index is less than zero, a run-time
error occurs. If the component type of the array object is a reference type
and if rhs is a reference to an object whose type is not a subtype of the com-
ponent type, a run-time error occurs. This is situation is equivalent to the

53

ArrayStoreException in Java. Otherwise rhs is assigned to the component
of the array whose index is index.

9.2.2 Compound Assignment

A compound assignment has the form lhsexpr op= rhsexpr, where op is one
of the binary operators *, /, %, +, -, <<, >>, >>>, &, ^, or |. It is roughly
equivalent to the expression LeftHandSide = LeftHandSide op Expression.

The types of the left hand side and right hand side expressions must form
a valid pair of operand types for the binary operator, or a compile-time error
occurs. Because of the simplified type system of Jumbala, this restriction
implies that the result type is assignable to the variable on the left hand
side.

At run-time, the left hand side is evaluated to produce a value of a vari-
able. We call the variable var and its value lhs. Both the identity of the
variable and its value are stored at this point. Then the right hand side is
evaluated to a value, call it rhs. The binary operator is applied to the values
as if by evaluating lhs op rhs. The result is assigned to var. Like in Java,
evaluation of the right hand side cannot not change the value lhs or the tar-
get variable of the assignment, because they have already been fixed before
the right hand side is evaluated.

9.3 Conditional Operators

The three conditional operators perform conditional branching in expres-
sions. Conditional operators do not produce lvalues.

9.3.1 The Ternary Conditional Operator

A ternary conditional operator can be seen as an inline replacement for an
if statement.

TernaryConditionalExpression ::=

ConditionalOrExpression∣∣ ConditionalOrExpression ?

Expression : TernaryConditionalExpression

The expression before the question mark is called the condition of the
ternary conditional expression. The expressions before and after the colon
are the true-expression and false-expression, respectively.

54

The condition must have type boolean, or a compile-time error occurs.
The type of the ternary conditional expression depends on the types of the
subexpressions. If the type of the true-expression is a subtype of the false-
expression, the result type is the type of the false-expression. Otherwise,
if the type of the false-expression is a subtype of the true-expression, the
result type is the type of the true-expression. It is a compile-time error if
neither holds, or if either or both of the subexpressions is invocation of a
void method.

The type rules above are equivalent to those of the previous versions of
Java. Java 5.0 allows any types of true-expressions and false-expressions
as long as they have a common supertype. In Jumbala, the same can be
achieved by explicitly casting the true-expression (or the false-expression) to
the common supertype.

At run-time, the condition is first evaluated and a subexpression is chosen
for evaluation. If the result is true, the true-expression is chosen. Otherwise
the false-expression is chosen. The chosen expression is evaluated and its
value becomes the value of the ternary conditional expression. The expression
that is not chosen will not be evaluated.

9.3.2 The Other Conditional Operators

The conditional or operator and the conditional and operator perform logical
operations with short-circuit evaluation. They work in the same way as in
Java.

ConditionalOrExpression ::=

ConditionalAndExpression∣∣ ConditionalOrExpression || ConditionalAndExpression

ConditionalAndExpression ::=

OrExpression∣∣ ConditionalAndExpression && OrExpression

A conditional or expression has the form leftoperand || rightoperand

and it is equivalent to the ternary conditional expression ((leftoperand) ?

true : (rightoperand)) with respect to compile-time restrictions and run-
time evaluation.

Similarly, a conditional and expression leftoperand && rightoperand is
equivalent to ((leftoperand) ? (rightoperand) : false).

55

9.4 Bitwise and Logical Operators

The bitwise or, bitwise exclusive or, and bitwise and operators combine inte-
ger values to produce an integer result. The corresponding logical operators
combine boolean values to produce boolean results. The semantics is equiv-
alent to that in Java.

OrExpression ::=

OrExpression∣∣ OrExpression | XorExpression

XorExpression ::=

AndExpression∣∣ XorExpression ^ AndExpression

AndExpression ::=

EqualityExpression∣∣ AndExpression & EqualityExpression

Bitwise and logical operators are not distinguished syntactically but on
the grounds of the types of their operands. If both operands expressions have
type int, the operator is a bitwise operator and the result type is int. If
both operands have type boolean, the operator is a logical operator and the
result type is boolean. If neither holds, a compile-time error occurs.

At run time, the left operand is evaluated first, then the right operand.
Unlike the conditional operators, logical operators do not apply short-circuit
evaluation rules. Both operands are always evaluated.

For integer operands, the | operator performs a bitwise inclusive or op-
eration on the operand values. The ^ operator performs a bitwise exclusive
or operation, and the & operator performs a bitwise and operation.

For boolean operands, the value of a | b is true if and only if a and b
are not both false. The value of a ^ b is true if and only if one of a and
b is true and the other is false. The value of a & b is true if and only if
both a and b are true.

A bitwise or logical operator never produces an lvalue.

9.5 Equality Operators

An equality expression tests whether its operands have the same value.

EqualityExpression ::=

RelationalExpression∣∣ EqualityExpression
(
==

∣∣ !=)
RelationalExpression

56

An equality expression is not an lvalue. The resulting type is boolean.
The type of the left operand expression must be castable to the type of the
right operand expression (or vice versa; castability is a symmetric relation).
Otherwise a compile-time error occurs.

The operator == evaluates to true if and only the run-time values of
the operands are equal. All such cases are listed below. The operator !=

evaluates to true if and only if the operands are not equal.
Two values a and b are equal if and only if one of the following holds.

1. The value a is true and b is true.

2. The value a is false and b is false.

3. The value a is an int and b is an int and both represent the same
integer.

4. The value a is null and b is null.

5. The value a is a reference to an object and b is a reference to the same
object.

9.6 Relational Operators

The relational operators perform numerical comparison of integer values or
type comparison of reference types.

RelationalExpression ::=

ShiftExpression∣∣ RelationalExpression
(
<

∣∣ > ∣∣ <= ∣∣ >=)
ShiftExpression∣∣ RelationalExpression instanceof ReferenceType

The type of a relational expression is always boolean. A relational ex-
pression is never an lvalue.

The operators <, >, <=, and >= are the numerical comparison operators.
They require that both operand expressions are of type int. Otherwise a
compile-time error occurs. The value of a numerical comparison expression
is true or false, depending on the signed integer values of the operands as
follows. The value produced by operator < (operator >) is true if and only
if the left operand is strictly less than (greater than) the right operand. The
value produced by operator <= (operator >=) is true if and only if the left
operand is less than or equal to (greater than or equal to) the right operand.

57

The type comparison operator instanceof has one operand appearing
on the left-hand side. The type of the operand expression, call it T , must
be a reference type or the null type. The ReferenceType appearing on the
right-hand side must denote a type that is castable to T . Failure to meet
these conditions produces a compile-time error. The run-time value of an
instanceof expression is true if and only if the value of the operand is a
reference to an object whose type is a subtype of the ReferenceType. If the
operand is null, the instanceof expression evaluates to false.

The instanceof operator is closely related to cast expressions. Assume
that e is an expression and T is a type. If the expression e instanceof T

produces no compile-time error and evaluates to true at run time, then the
cast expression (T) e will not produce a run-time error (as long as e still has
the same value, of course). The converse does not hold in all cases. The cast
(String) null is correct even though null instanceof String evaluates
to false. Furthermore, the cast (int) 17 contains no errors, but the phrase
17 instanceof int is not even a valid expression.

9.7 Shift Operators

The left shift operators <<, signed right shift operator >>, and unsigned right
shift operator >>> perform bitwise shifting of integer values.

ShiftExpression ::=

AdditiveExpression∣∣ ShiftExpression
(
<<

∣∣ >> ∣∣ >>>)
AdditiveExpression

The types of the left and right operand expressions for all these operators
must be int, or a compile-time error occurs. The left operand is the value
to be shifted, and the right operand is the shift distance.

The resulting type of a shift expression is also int, and it is not an lvalue.
At run time, the left operand is evaluated first, then the right operand.

The value of n << s is n shifted left by s bit positions, interpreted as a 32-bit
signed integer. This corresponds to multiplying by 2s.

The value of n >> s or n >>> s is obtained by shifting n right by s bits. If
n is non-negative, the result is the same regardless of which operator is used.
If n is negative (the highest-order bit of the two’s-complement representation
is 1), the signed operator >> uses sign-extension. In other words, the s

highest-order bits of n >> s are ones. The unsigned operator >>> uses zero-
extension, so the s highest-order bits of n >>> s are zeros regardless of the
sign of n.

58

Signed right-shifting divides the left operand by the value 2s, rounding
towards minus infinity. In contrast, the binary division operator / always
rounds towards zero.

In Java, the value of n op s is equal to the value of n op (s & 31) if n
is an int and op is a shift operator. Jumbala deviates from this behavior
if s is less than zero or greater than 31. If s is negative, a run-time error
occurs immediately after its evaluation. If s is strictly greater than 31, then
all the bits of the left operand are shifted off the 32-bit boundary. Therefore,
assuming that s ≥ 32, the value of n << s or n >>> s is 0. The value of n
>> s is 0 if n is non-negative, and −1 otherwise, because of sign-extension.

9.8 Additive Operators

The additive operators + and - are used for integer addition and subtraction.
The + operator is also used for string concatenation.

AdditiveExpression ::=

MultiplicativeExpression∣∣ AdditiveExpression
(
+

∣∣ -)
MultiplicativeExpression

The operand expressions for the binary + operator can be either both of
type String or both of type int. The types of both operand expressions
for the binary - operator must be int. It is a compile-time error if these
restrictions are not met.

The operator + acting on two String operands is called the string con-
catenation operator. Note specifically that it is not sufficient if only one of
the operand expressions has the type String. Java is much more liberal in
this aspect: if one operand is a String, the other can be of any type, and
it will be implicitly converted to string form by an appropriate mechanism.
Jumbala does not support implicit conversion, but an explicit invocation of
the static method valueOf in class String can be used to achieve the same
effect.

The run-time value of a string concatenation expression is a reference
to a String object that has the characters of the left operand immediately
followed by the characters of the right operand. If either operand evaluates
to null at run time, a run-time error occurs. Java would convert a null

value to the text string “null” instead.
The operator + is called the addition operator when acting on integer

operands. The resulting value is the sum of the operands, with only the 32
lowest-order bits of the two’s complement representation taken into account.

59

Similarly, the - operator subtracts the right-hand operand value from the
left operand value. The value of x - y is always the same as x + (-y). No-
tice that if addition or subtraction overflows, the result is silently truncated
without an error message.

An additive expression never produces an lvalue.

9.9 Multiplicative Operators

The binary multiplicative operators *, /, and % perform arithmetic on integer
values.

MultiplicativeExpression ::=

UnaryExpression∣∣ MultiplicativeExpression
(
*

∣∣ / ∣∣ %)
UnaryExpression

It is a compile-time error if either operand expression of a multiplicative
operator is not of type int. A multiplicative expression first evaluates the
left operand, then the right operand. The expression has type int, and it is
not an lvalue.

The multiplication operator * yields the product of its two operands.
The result has the 32 lowest-order bits of the true mathematical value. If an
overflow occurs, the result may have a wrong magnitude, and possibly the
wrong sign. This does not produce a run-time error or any other signal to
the user.

The division operator / gives the value of the left operand divided by
the value of the right operand. The result is rounded to a whole number
towards zero. It is a run-time error if the right operand evaluates to zero.
The only situation in which an overflow occurs is when the left operand is
equal to −231 and the right operand is equal to −1. The result in this case
is −231 instead of the true value 231, which cannot be represented in 32-bit
two’s-complement form.

The modulo operator % produces the remainder from the integer division
of the left operand value x by the right operand value y. If y equals 0, a
run-time error occurs. Assume that y is not 0. If x is an integer multiple of
y, the result value is zero. Otherwise the result value, call it m, is an integer
that has the same sign as x. The absolute value of m is less than the absolute
value of y, and x−m is an integer multiple of y. In all cases, if x and y have
values of type int and y is not equal to 0, the expression x % y gives the
same result as x - ((x / y) * y). This is true even in the special case in
which the division expression x / y overflows.

60

9.10 Unary Operators

Unary operators take only one operand instead of two. The unary operators
in Jumbala are the same as in Java.

UnaryExpression ::=

UnaryExpressionNotPlusMinus∣∣ + UnaryExpression∣∣ -
(
UnaryExpression

∣∣ INT LITERAL MUST NEGATE
)∣∣ PreIncrement∣∣ PreDecrement

UnaryExpressionNotPlusMinus ::=

PostfixExpression∣∣ Cast∣∣ ~ UnaryExpression∣∣ ! UnaryExpression

9.10.1 Numerical Unary Operators

The unary plus operator +, the unary minus operator -, and the bitwise
complement operator ~ are the numerical unary operators. The type of
these expressions is int. The operand expression must also be int, or a
compile-time error occurs.

The value of a unary plus expression +UnaryExpression is the same as
the value of its operand. The unary plus operator does not contribute to
the semantics of a program, but it exists as a contrast to the unary minus
operator.

The value of a unary minus expression -UnaryExpression is the arith-
metic negation of the operand value. Because of the two’s-complement
representation, the arithmetic negation of −231, the most negative inte-
ger value, is the same value itself. A related special case is the expres-
sion -2147483648, which consists of the unary minus followed by the token
INT LITERAL MUST NEGATE. This is the only place in the grammar where
the token may appear.

The value of a bitwise complement expression ~UnaryExpression is the
value of the operand with all bits complemented. Thus, ~x equals -x-1 for
all integer values of x.

A numerical unary expression is not an lvalue.

61

9.10.2 The Logical Complement Operator

The logical complement operator ! must have an operand expression of type
boolean, or a compile-time error occurs. The logical complement expression
has type boolean, and it is not an lvalue.

The value of the logical complement expression is true if the operand is
false. The value is false if the operand is true.

9.10.3 Casts

A cast expression is used to verify an assumption about the type of the
operand expression.

Cast ::=

(PrimitiveType) UnaryExpression∣∣ (ArrayType) UnaryExpression∣∣ (TypeName) UnaryExpressionNotPlusMinus

The type in parentheses is said to be the target type of the cast expression.
It is a compile-time error if the operand expression has a void result or if
type of the operand expression is not castable (Section 4.6) to the target
type.

The type of a cast expression is its target type. A cast expression is never
an lvalue, even if the operand expression is.

If the operand expression is of a primitive type, it is necessarily the same
as the target type, by the definition of castability. The value of such a cast
expression at run time is the value of the operand expression.

If the type of the operand expression is not a primitive type, it can only
be a reference type or the null type. Then the run-time value of the operand
is either a reference to an object or a null reference. A run-time error occurs
if the operand value is a reference to an object whose type is not a subtype of
the target type. Note that this can never happen if the type of the operand
expression is a subtype of the target type. If there is no run-time error, the
value of the cast expression is the same as the value of the operand.

The semantics can be stated informally as follows. A compile-time check
is made that it is at least possible that the run-time type of the operand
is a subtype of the target type. At run time, if there is any doubt, it is
checked that the actual type of the operand is indeed a subtype of the target
type. Notice that a cast expression never converts an object into an object
of another type, or a value of a primitive type into a value of another type.

62

The requirement of castability makes it illegal to write a cast of an ex-
pression of type S to a completely unrelated type T . To be more specific,
unrelatedness here means that S and T could never have a common subtype
(other than possibly the null type, which is a subtype of all reference types).
For example, S and T could be classes, neither of which is a superclass of
the other. If such a cast was permitted, it would always produce an error
at run time, except in the special case that the operand evaluates to null.
The cast expression would just degenerate into an obscure way of testing for
a null value.

Although the Java specification [2] talks about ’casting conversions’ in-
stead of castability of types, the implied semantics and compile-time checks
are the same.

9.10.4 Increment and Decrement Operators

The postfix increment and postfix decrement operators are the two unary
postfix operators of Jumbala. They, and the prefix increment and prefix
decrement operators, are used to adjust the value of an integer variable.

PostfixExpression ::=

PrimaryExpression∣∣ PostIncrement∣∣ PostDecrement

PostIncrement ::=

PostfixExpression ++

PostDecrement ::=

PostfixExpression --

PreIncrement ::=

++ UnaryExpression

PreDecrement ::=

-- UnaryExpression

Increment and decrement expressions can be used as statement expres-
sions evaluated for their side effects, or as parts of more complex expressions.
The type of a prefix or postfix increment or decrement expression is int. It
is not an lvalue.

63

The operand expression must be an lvalue of type int, or a compile-time
error occurs. At run time, the operand is evaluated to produce an integer
value. The value 1 (in the case of a prefix or postfix increment operator ++)
or −1 (in the case of a prefix or postfix decrement operator --) is added
to the integer, using the same rules for arithmetic as the binary + operator
(Section 9.8). The new value is stored into the variable denoted by the lvalue.

In the case of a postfix increment or decrement operator (an operand
followed by ++ or --), the resulting value is the the original unmodified value
of the subexpression. In the case of a prefix increment or decrement operator
(++ or -- followed by an operand), the resulting value is the new value of the
variable.

9.11 Primary Expressions

Primary expressions are the basic building blocks that are used as elements
in more complex expressions. These include literals and the this keyword,
as well as field and array accesses, method invocations, and expressions in
parentheses.

PrimaryExpression ::=

PrimaryExpressionNoName∣∣ VariableName

PrimaryExpressionNoName ::=

PrimaryExpressionNoNameNoNewArray∣∣ ArrayCreation

PrimaryExpressionNoNameNoNewArray ::=

Literal∣∣ FieldAccess∣∣ ArrayAccess∣∣ MethodInvocation∣∣ ClassInstanceCreation∣∣ this∣∣ (Expression)

64

Literal ::=

INT LITERAL∣∣ STRING LITERAL∣∣ false∣∣ true∣∣ null

The type of an integer literal is int. The type of false or true is
boolean. The type of null is the null type. The type of a string literal is
the top-level type String. A literal is never an lvalue.

The expression this, when used in the body of an instance method,
denotes a reference to the object for which the method was invoked, i.e. the
current object (Section 9.1). If used in the body of a constructor or in the
initializer of an instance variable, the value of this is a reference to the
object being constructed. The keyword this may not be used in an other
context, or a compile-time error occurs. The type of a this expression is the
innermost class in which it occurs. A this expression is never an lvalue.

Parentheses can be used to control the order of evaluation of expressions.
The type and value of a parenthesized expression are the same as those of
the contained expression. A parenthesized expression is an lvalue if and only
if the contained expression is an lvalue.

9.12 Field Access Expressions

A field access expression is used to access a member field of an object, using
the value of an expression as a reference to the object. Another way to
access fields is to use variable names (Section 5.4), which are technically not
regarded as field access expressions.

FieldAccess ::=

PrimaryExpressionNoName . IDENTIFIER∣∣ super . IDENTIFIER

In the first form, the type of the PrimaryExpression must be a reference
type, and the type must have exactly one member field with the name de-
noted by the IDENTIFIER. Otherwise a compile-time error occurs. The type
of the field access expression is the type of the selected field.

At run time the PrimaryExpression is evaluated. If the field is static, the
value of the expression is discarded. The value of the field access expression
is the value of the field.

65

If the field is not static, the value of the PrimaryExpression is checked.
If the value is null, a run-time error occurs. If the value is not null, it is
a reference to an object that has the selected field as an instance variable.
The value of the field access expression is the value of that variable.

The second form may only appear in an instance context (Section 9.1).
It is used to access fields of the superclass of the directly enclosing class. The
superclass must have exactly one member field whose name is the IDENTI-
FIER, or a compile-time error occurs. The type of the field access expression
is the type of the selected field. If the field is a class variable, the run-time
value of the field access expression is the value of the variable. If the field is
an instance variable, the value of the field access expression is the value of
the instance variable in the current object (Section 9.1).

A field access expression results in an lvalue if and only if the selected
field is not final.

9.13 Array Access Expressions

An array access expression is used to access the components of an array
object.

ArrayAccess ::=

PrimaryExpressionNoNameNoNewArray [Expression]∣∣ VariableName [Expression]

The VariableName or PrimaryExpressionNoNameNoNewArray appear-
ing before the square brackets is called the array reference expression. Its
type must be an array type, or a compile-time error occurs. The type of the
array access expression is the component type of the array type.

The Expression inside square brackets is the index expression. It must
be of type int, otherwise a compile-time error occurs.

Evaluation of an array access expression proceeds in the following order.
The array reference expression is evaluated first, then the index expression.
The value of the array reference is checked not to be null. If it is, a run-
time error occurs. Otherwise the index value is compared to the length of
the referred array. It is a run-time error if the index is equal to or greater
than the length, or if the index is negative. Otherwise the index is used to
select a component of the array, and the value of the array access expression
is the value of that component.

The order of evaluation is slightly different if the array access appears on
the left side of a simple assignment expression (Section 9.2.1).

66

An array access expression always gives an lvalue, even if the array ref-
erence is a final variable.

Notice that the grammar rule explicitly forbids writing an array creation
expression before the square brackets in array access. For a justification,
consider the expression new int[3][4], which is supposed to create a 3-by-
4 integer matrix. However, without the restriction, a parser could see it as
(new int[3])[4], which is an attempt to access the component at index
4 in a newly created array of 3 integers. Thus, the latter interpretation
is ruled out. In fact, so is the former, because Jumbala does not allow
multidimensional array creation expressions that specify the length of more
than one dimension.

9.14 Method Invocation Expressions

A method invocation expression calls a method.

MethodInvocation ::=

PrimaryExpressionNoName . IDENTIFIER Arguments∣∣ super . IDENTIFIER Arguments∣∣ MethodName Arguments

MethodName ::=[
AmbiguousName .

]
IDENTIFIER

Arguments ::=

(
[
Expression

(
, Expression

)∗])

Every method invocation has a list of arguments, which are expressions
inside parentheses. The grammar rules above show three kinds of invoca-
tion forms, depending on which symbols appear before the arguments. The
invocation form affects the way a method invocation is processed.

At compile time, one method is chosen as the prototype method based on
the invocation form and arguments. At run time a method is chosen as the
invocation method. The invocation method may be the prototype method or
some other method that has the same signature (Section 6.9.3). The concept
of delaying the selection of the invocation method until run-time is a key
aspect in object-oriented programming.

67

9.14.1 Compile-Time Processing

The first step is to select a reference type to search for methods that match
the invocation. The type to search depends on the invocation form.

• The form is PrimaryExpressionNoName .IDENTIFIER. The type to
search is the type of the primary expression. It is a compile-time error
if the type is not a reference type.

• The form is super.IDENTIFIER. It is a compile-time error if the method
invocation appears in a static context (Section 9.1) or if it is directly
enclosed in the class Object. The type to search is the direct superclass
of the directly enclosing class.

• The form is MethodName. The type to search is resolved by the rules
in Section 5.3. It is a compile-time error if the type is not a reference
type.

The next step is to locate methods that are applicable. Let n be the
number of expressions in Arguments and let A1, . . . , An be their types. A
method M is applicable if all of the following apply.

1. M is a member of the type to search.

2. The name of M is the IDENTIFIER that appears in the method invoca-
tion right before the arguments.

3. M has exactly n parameters.

4. The type of the k:th parameter of M is a supertype of Ak, for all
k = 1, . . . , n.

It is a compile-time error if no method is applicable. Next, the most
specific method is chosen as follows.

Let M and N be two methods with the same name and same number of
parameters. Let P1, . . . , Pn be the parameter types of M and Q1, . . . , Qn

the parameter types of N . Method M is more specific than method N if and
only if Pk is a subtype of Qk for k = 1, . . . , n.

An applicable method M is maximally specific if no applicable method
other than M is more specific than M . If there is exactly one maximally
specific method, that is the most specific method. Otherwise a compile-time
error occurs. Notice that unlike in Java, two different maximally specific
methods necessarily have a different signature because a type cannot have
two methods with the same signature in Jumbala.

68

The most specific method is chosen as the prototype method. Further
checks are made on the method.

• If the invocation form is super.IDENTIFIER and the prototype method
is abstract, a compile-time error occurs.

• If the invocation form is MethodName, where the method name is sim-
ple, and the prototype method is an instance method, the invocation
must appear in an instance context (Section 9.1) and the prototype
method must be a member of the directly enclosing class. Otherwise a
compile-time error occurs.

• If the invocation form is MethodName, where the method name is qual-
ified by a type name (Section 5.3), and the prototype method is an
instance method, a compile-time error occurs.

The type of the method invocation expression is the return type of the
prototype method. If the prototype method does not return a value (it is
declared with the keyword void), the result of the expression is void and the
method invocation cannot appear as a subexpression of another expression.

A method invocation is never an lvalue.

9.14.2 Run-Time Processing

The run-time processing involves possibly evaluating an expression to ob-
tain a target reference to an object, evaluating the arguments, selecting the
invocation method based on the prototype method chosen at compile-time,
and invoking the invocation method. First, the target reference is computed.
The procedure depends on the invocation form.

• The form is PrimaryExpressionNoName .IDENTIFIER. The primary
expression is evaluated first. The result of the primary expression is
the target reference.

• The form is super.IDENTIFIER. The target reference is a reference to
the current object.

• The form is MethodName, where the method name is an IDENTIFIER.
The target reference is a reference to the current object.

• The form is MethodName, where the method name is qualified by a type
name. The prototype method is necessarily a class method. There is
no target reference.

69

• The form is MethodName, where the method name is qualified by a
variable name. The variable name is evaluated as an expression (Sec-
tion 5.4. The result is the target reference.

Next the argument expressions are evaluated from left to right.
If the prototype method is a class method or if the invocation form

is super.IDENTIFIER, the prototype method is chosen as the invocation
method. If there is a target reference, its value is ignored. It may or may not
be null. Even though the target reference is not used, the expression that
produces it is evaluated for side effects before evaluating the arguments.

If the prototype method is an instance method and the invocation form
is not super.IDENTIFIER, there is necessarily a target reference. The target
reference is checked after evaluating the arguments. If it is null, a run-
time error occurs. Otherwise the target reference is a reference to an object
whose class has an instance method with the same signature as the prototype
method. That method is chosen as the invocation method.

The invocation method is invoked as follows. New variables are created
for the parameters of the method. The values of argument expressions are
assigned to the variables. The body of the method is then executed. If the
method is an instance method, the target reference refers to an object that
is used as the current object when executing the body of the method.

The execution of the body ends when a return statement is executed
or when execution reaches the end of the body. All local variables created
in the method are destroyed. If the return statement contains an expres-
sion, the value of the expression becomes the value of the method invocation
expression.

If execution reaches the end of the method body and the method has
a return type (the method is not void), a run-time error occurs. Such a
situation does not exist in Java because a Java compiler performs a static
analysis to ensure that all execution paths end in a proper return statement
if the method is not void.

70

9.14.3 Examples

The following example illustrates the difference between various invocation
modes and between class, instance, and abstract methods.

abstract class Base {
abstract void abst();
void inst() {}
static void clas() {}

}

class Derived extends Base {
Derived good = this;
Derived bad = null;

void abst() {}
void inst() {}
static void clas() {}

void test() {
abst(); // Invokes Derived.abst
good.abst(); // Invokes Derived.abst
bad.abst(); // Run-time error
((Base) this).abst(); // Invokes Derived.abst
((Base) good).abst(); // Invokes Derived.abst
((Base) bad).abst(); // Run-time error
super.abst(); // Compile-time error
Derived.abst(); // Compile-time error

inst(); // Invokes Derived.inst
good.inst(); // Invokes Derived.inst
bad.inst(); // Run-time error
((Base) this).inst(); // Invokes Derived.inst
((Base) good).inst(); // Invokes Derived.inst
((Base) bad).inst(); // Run-time error
super.inst(); // Invokes Base.inst
Derived.inst(); // Compile-time error

clas(); // Invokes Derived.clas
good.clas(); // Invokes Derived.clas
bad.clas(); // Invokes Derived.clas
((Base) this).clas(); // Invokes Base.clas
((Base) good).clas(); // Invokes Base.clas
((Base) bad).clas(); // Invokes Base.clas
super.clas(); // Invokes Base.clas
Derived.clas(); // Invokes Derived.clas

}
}

71

9.15 Class Instance Creation Expressions

A class instance creation expression is used to create a new object, which is
an instance of a predetermined class.

ClassInstanceCreation ::=

new TypeName Arguments

The TypeName is resolved to determine the class being instantiated. The
name must denote a class type that is not abstract, or a compile-time
error occurs. Enum instances cannot be created using class instance creation
expressions.

The expressions in parentheses are used as arguments to a constructor.
The number and compile-time types of the expressions are used to select
a constructor of the class type, using the same algorithm as for method
invocations. A compile-time error occurs if there is no unique most specific
constructor that matches the arguments.

The type of a class instance creation expression is the class being instan-
tiated, and its value is a reference to the new object. The expression is not
an lvalue.

Every time a class instance creation expression is evaluated, the following
steps are taken.

1. A new object of the class type is created. The object has a variable
allocated for each instance variable declared in the class type or one
of its superclasses. The variables are initialized to their default values
(Section 4.7.2).

2. The constructor arguments are evaluated left to right.

3. The selected constructor is invoked. The argument values are assigned
to parameter variables of the constructor.

4. If the constructor is for the class Object, this step is skipped. Oth-
erwise the constructor begins with an explicit or implicit superclass
constructor invocation (Section 6.8). The arguments in the invocation
are evaluated left to right, and steps 3 to 6 are taken for the superclass
and the selected superclass constructor.

5. Each instance variable initializer in the class is evaluated with the new
object as the current object and the resulting value is assigned to the
corresponding instance variable. The initializers are processed left to
right.

72

6. The rest of the body for the constructor is evaluated with the new
object as the current object.

9.16 Array Creation Expressions

An array creation expression is used to create a new instance of an array
type.

ArrayCreation ::=

new
(
PrimitiveType

∣∣ TypeName
)
[Expression]

(
[]

)∗∣∣ new
(
PrimitiveType

∣∣ TypeName
)
[]

(
[]

)∗ ArrayInitializer

ArrayInitializer ::=

{
[
VariableInitializer

(
, VariableInitializer

)∗] [
,
]
}

VariableInitializer ::=

Expression
∣∣ ArrayInitializer

The PrimitiveType or TypeName denotes the element type for the array.
The Expression surrounded by square brackets is the dimension expression. If
the element type cannot be resolved or if the type of the dimension expression
is not int, a compile-time error occurs.

The element type can be any non-array type, even an abstract class or
interface type. The type of the new array object is an n-dimensional array of
the element type, where n is the number of square bracket pairs appearing in
the array creation expression, including the one that contains the dimension
expression.

At run time the dimension expression is evaluated to obtain the length
for the array. If the length is less than zero, a run-time error occurs. Other-
wise a new array object with the specified type and length is created. The
components of the array are initialized to their default values (Section 4.7.2).

The type of an array creation expression is the type of the new array
object, and the value of the expression is a reference to the array. It is not
an lvalue.

The Java language allows an additional construct that make it more con-
venient to create multidimensional arrays. Jumbala requires the programmer
to be more explicit to achieve the same effect, as demonstrated by the fol-
lowing examples.

String[][] calendar;

73

// Not allowed: calendar = new String[12][31];

// Instead, an explicit loop is required.

calendar = new String[12][];

for (int i = 0; i < calendar.length; i++)

calendar[i] = new String[31];

74

Bibliography

[1] Jori Dubrovin. Jumbala — an action language for UML state machines.
Research Report A101, Helsinki University of Technology, Laboratory for
Theoretical Computer Science, Espoo, Finland, March 2006.

[2] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification. Addison-Wesley, third edition, 2005.

75

Appendix A

List of Differences between
Jumbala and Java

The following list contains items that describe how Jumbala differs from
version 5.0 of the Java language.

• No exceptions and hence no throws clauses and no throw, try-catch,
or try-catch-finally statements.

• The following situations cause a run-time error instead of an exception:
division by zero, following a null reference, an illegal cast, an illegal
array store, creating an array with negative length, accessing an array
out of bounds, trying to clone a non-Cloneable object, assertion error.

• No compile-time checking against unreachable statements or against
reading uninitialized local variables. The latter causes a run-time error.

• No threading, hence no synchronized methods or synchronized state-
ments, no volatile variables and no complicated memory model.

• No serialization support, no transient variables.

• No floating-point types double or float, no floating-point arithmetic
or FP-strict expressions, classes, or interfaces. No floating-point liter-
als.

• No instance initializers or static initializers.

• Strict left-to-right initialization order for fields with no compile-time
checks against accessing an uninitialized field. No special treatment of
final class variables with a constant initializer.

76

• All final variables must have an initializer. Assignment to final variables
is never allowed in constructors or methods.

• No alternate constructor invocations.

• No recovering from out-of-memory situations.

• More intuitive overflowing rules for shift expressions, involving a run-
time error when the shift distance is negative.

• No unused keywords such as goto.

• No compile-time checking against a missing return statement. Falling
off the end of the body of a non-void method causes a run-time error.

• No implicit conversion of a type to String.

• No boxed types Integer or Boolean, hence no automatic boxing or
unboxing.

• The only integer type is int. No byte, short, char, or long types.
Hence no conversions between primitive types. No character literals or
long integer literals.

• No dynamic class loading, hence no possibility for missing methods or
other binary incompatibilities.

• No packages, no import declarations.

• Limited character set in identifiers. No support for Unicode in pro-
grams. No support for carriage returns as line terminators.

• No support for obsolete placing of array brackets, such as in int a[];.

• No inner classes, no local classes, no anonymous classes. All nested
classes are static. The keyword static may not be used for declaring
a nested class.

• No generic types, no type variables.

• Simpler definitions for built-in classes Object and String.

• No access control. Every declaration is implicitly public. No keywords
private, protected, or public.

• The body of an enum may only contain enum constants without argu-
ments or class bodies. No implicit valueOf method for enums.

77

• A declaration of a supertype must precede the declaration of a subtype.

• No annotations.

• No implicit initialization of multidimensional arrays.

• No assert statements that have an associated message string.

• No restriction that the case expressions of a switch statement must
be compile-time constants. No checking against several case expres-
sions evaluating to the same value. No special scoping rules for enum
constants appearing in case expressions.

• No enhanced for statements.

• Added send statements.

• Added support for top-level statements and incremental programs.

78

Appendix B

Grammar Rules

All grammar rules used in this specification are listed below. Consult Sec-
tion 1.1 for a description of the notation. The start symbol of the grammar
is Program.

Program ::=(
TypeDeclaration

∣∣ BlockStatement
)∗

Type ::=

PrimitiveType
∣∣ ReferenceType

PrimitiveType ::=

int
∣∣ boolean

ReferenceType ::=

ArrayType
∣∣ TypeName

ArrayType ::=

Type []

TypeName ::=[
TypeName .

]
IDENTIFIER

MethodName ::=[
AmbiguousName .

]
IDENTIFIER

VariableName ::=[
AmbiguousName .

]
IDENTIFIER

79

AmbiguousName ::=[
AmbiguousName .

]
IDENTIFIER

TypeDeclaration ::=

ClassDeclaration∣∣ InterfaceDeclaration∣∣ EnumDeclaration

ClassDeclaration ::=[
abstract

∣∣ final]
class IDENTIFIER[

extends TypeName
][

implements TypeName
(
, TypeName

)∗]
{ ClassBodyDeclaration ∗ }

ClassBodyDeclaration ::=

MemberDeclaration∣∣ ConstructorDeclaration

MemberDeclaration ::=

FieldDeclaration∣∣ MethodDeclaration∣∣ TypeDeclaration

InterfaceDeclaration ::=

interface IDENTIFIER[
extends TypeName

(
, TypeName

)∗]
{ MemberDeclaration ∗ }

EnumDeclaration ::=

enum IDENTIFIER {
[
IDENTIFIER

(
, IDENTIFIER

)∗] [
,
]
}

FieldDeclaration ::=(
static

∣∣ final)∗ Type

VariableDeclarator
(
, VariableDeclarator

)∗ ;
VariableDeclarator ::=

IDENTIFIER
[
= VariableInitializer

]
VariableInitializer ::=

Expression
∣∣ ArrayInitializer

80

ArrayInitializer ::=

{
[
VariableInitializer

(
, VariableInitializer

)∗] [
,
]
}

MethodDeclaration ::=(
abstract

∣∣ static ∣∣ final ∣∣ native)∗ (
Type

∣∣ void)
IDENTIFIER FormalParameters MethodBody

FormalParameters ::=

(
[[
final

]
Type IDENTIFIER

(
,

[
final

]
Type IDENTIFIER

)∗])
MethodBody ::=

{ BlockStatement ∗ }∣∣ ;

ConstructorDeclaration ::=

IDENTIFIER FormalParameters ConstructorBody

ConstructorBody ::=

{
[
super Arguments ;

]
BlockStatement ∗ }

BlockStatement ::=

LocalVariableDeclarationStatement∣∣ Statement

Statement ::=

StatementWithoutTrailingSubstatement∣∣ LabeledStatement∣∣ IfThenStatement∣∣ IfThenElseStatement∣∣ WhileStatement∣∣ ForStatement

StatementNoShortIf ::=

StatementWithoutTrailingSubstatement∣∣ LabeledStatementNoShortIf∣∣ IfThenElseStatementNoShortIf∣∣ WhileStatementNoShortIf∣∣ ForStatementNoShortIf

81

StatementWithoutTrailingSubstatement ::=

Block∣∣ EmptyStatement∣∣ ExpressionStatement∣∣ SendStatement∣∣ AssertStatement∣∣ SwitchStatement∣∣ DoStatement∣∣ BreakStatement∣∣ ContinueStatement∣∣ ReturnStatement

Block ::=

{ BlockStatement ∗ }

LocalVariableDeclarationStatement ::=

LocalVariableDeclaration ;

LocalVariableDeclaration ::=[
final

]
Type VariableDeclarator

(
, VariableDeclarator

)∗
LabeledStatement ::=

IDENTIFIER : Statement

LabeledStatementNoShortIf ::=

IDENTIFIER : StatementNoShortIf

EmptyStatement ::=

;

ExpressionStatement ::=

StatementExpression ;

StatementExpression ::=

Assignment∣∣ PreIncrement∣∣ PreDecrement∣∣ PostIncrement∣∣ PostDecrement∣∣ MethodInvocation∣∣ ClassInstanceCreation

82

SendStatement ::=

send IDENTIFIER Arguments to Expression ;

Arguments ::=

(
[
Expression

(
, Expression

)∗])

IfThenStatement ::=

if (Expression) Statement

IfThenElseStatement ::=

if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf ::=

if (Expression) StatementNoShortIf else StatementNoShortIf

AssertStatement ::=

assert Expression ;

SwitchStatement ::=

switch (Expression) { SwitchGroup ∗ }

SwitchGroup ::=(
case Expression

∣∣ default)
: BlockStatement ∗

WhileStatement ::=

while (Expression) Statement

WhileStatementNoShortIf ::=

while (Expression) StatementNoShortIf

DoStatement ::=

do Statement while (Expression) ;

ForStatement ::=

for (ForInitialization ; ForCondition ; ForUpdate)

Statement

ForStatementNoShortIf ::=

for (ForInitialization ; ForCondition ; ForUpdate)

StatementNoShortIf

83

ForInitialization ::=

LocalVariableDeclaration∣∣ StatementExpressionList

ForCondition ::=[
Expression

]
ForUpdate ::=

StatementExpressionList

StatementExpressionList ::=[
StatementExpression

(
, StatementExpression

)∗]
BreakStatement ::=

break
[
IDENTIFIER

]
;

ContinueStatement ::=

continue
[
IDENTIFIER

]
;

ReturnStatement ::=

return
[
Expression

]
;

Expression ::=

AssignmentExpression

AssignmentExpression ::=

TernaryConditionalExpression∣∣ Assignment

Assignment ::=

LeftHandSide = Expression∣∣ LeftHandSide CompoundAssignmentOperator Expression

LeftHandSide ::=

VariableName
∣∣ FieldAccess

∣∣ ArrayAccess

CompoundAssignmentOperator ::=

*=
∣∣ /= ∣∣ %= ∣∣ += ∣∣ -= ∣∣ <<= ∣∣ >>= ∣∣ >>>= ∣∣ &= ∣∣ ^= ∣∣ |=

84

TernaryConditionalExpression ::=

ConditionalOrExpression∣∣ ConditionalOrExpression ?

Expression : TernaryConditionalExpression

ConditionalOrExpression ::=

ConditionalAndExpression∣∣ ConditionalOrExpression || ConditionalAndExpression

ConditionalAndExpression ::=

OrExpression∣∣ ConditionalAndExpression && OrExpression

OrExpression ::=

OrExpression∣∣ OrExpression | XorExpression

XorExpression ::=

AndExpression∣∣ XorExpression ^ AndExpression

AndExpression ::=

EqualityExpression∣∣ AndExpression & EqualityExpression

EqualityExpression ::=

RelationalExpression∣∣ EqualityExpression
(
==

∣∣ !=)
RelationalExpression

RelationalExpression ::=

ShiftExpression∣∣ RelationalExpression
(
<

∣∣ > ∣∣ <= ∣∣ >=)
ShiftExpression∣∣ RelationalExpression instanceof ReferenceType

ShiftExpression ::=

AdditiveExpression∣∣ ShiftExpression
(
<<

∣∣ >> ∣∣ >>>)
AdditiveExpression

85

AdditiveExpression ::=

MultiplicativeExpression∣∣ AdditiveExpression
(
+

∣∣ -)
MultiplicativeExpression

MultiplicativeExpression ::=

UnaryExpression∣∣ MultiplicativeExpression
(
*

∣∣ / ∣∣ %)
UnaryExpression

UnaryExpression ::=

UnaryExpressionNotPlusMinus∣∣ + UnaryExpression∣∣ -
(
UnaryExpression

∣∣ INT LITERAL MUST NEGATE
)∣∣ PreIncrement∣∣ PreDecrement

UnaryExpressionNotPlusMinus ::=

PostfixExpression∣∣ Cast∣∣ ~ UnaryExpression∣∣ ! UnaryExpression

Cast ::=

(PrimitiveType) UnaryExpression∣∣ (ArrayType) UnaryExpression∣∣ (TypeName) UnaryExpressionNotPlusMinus

PostfixExpression ::=

PrimaryExpression∣∣ PostIncrement∣∣ PostDecrement

PostIncrement ::=

PostfixExpression ++

PostDecrement ::=

PostfixExpression --

PreIncrement ::=

++ UnaryExpression

86

PreDecrement ::=

-- UnaryExpression

PrimaryExpression ::=

PrimaryExpressionNoName∣∣ VariableName

PrimaryExpressionNoName ::=

PrimaryExpressionNoNameNoNewArray∣∣ ArrayCreation

PrimaryExpressionNoNameNoNewArray ::=

Literal∣∣ FieldAccess∣∣ ArrayAccess∣∣ MethodInvocation∣∣ ClassInstanceCreation∣∣ this∣∣ (Expression)

Literal ::=

INT LITERAL∣∣ STRING LITERAL∣∣ false∣∣ true∣∣ null

FieldAccess ::=

PrimaryExpressionNoName . IDENTIFIER∣∣ super . IDENTIFIER

ArrayAccess ::=

PrimaryExpressionNoNameNoNewArray [Expression]∣∣ VariableName [Expression]

MethodInvocation ::=

PrimaryExpressionNoName . IDENTIFIER Arguments∣∣ super . IDENTIFIER Arguments∣∣ MethodName Arguments

87

ClassInstanceCreation ::=

new TypeName Arguments

ArrayCreation ::=

new
(
PrimitiveType

∣∣ TypeName
)
[Expression]

(
[]

)∗∣∣ new
(
PrimitiveType

∣∣ TypeName
)
[]

(
[]

)∗ ArrayInitializer

88

	Introduction
	The Syntactic Grammar

	Lexical Structure
	Input Elements
	Comments
	Identifiers
	Reserved Words
	Literals
	Integer Literals
	String Literals
	Separators and Operators

	Programs
	Incremental Programs

	Types and Variables
	Primitive Types and Values
	Reference Types and Values
	Objects and Memory
	Predefined Types
	The Class Object
	The Interface ObjectInterface
	The Interface Cloneable
	The Class String
	The Class Enum

	Subtyping
	Castability
	Variables
	Kinds of Variables
	Default Values

	Names
	Scope
	Resolution of Type Names
	Simple Type Names
	Qualified Type Names

	Resolution of Method Names
	Simple Method Names
	Qualified Method Names

	Resolution of Variable Names
	Simple Variable Names
	Qualified Variable Names

	Reclassification of Ambiguous Names
	Simple Ambiguous Names
	Qualified Ambiguous Names

	Type Declarations
	Top-Level Types
	Nesting in Types
	Class Declarations
	Class Modifiers
	Direct Supertypes

	Interface Declarations
	Direct Supertypes

	Enum Declarations
	Members of an Enum

	Field Declarations
	Initialization of Fields

	Method Declarations
	Constructor Declarations
	Members of Classes and Interfaces
	Member Types
	Fields
	Methods

	Arrays
	Array Initializers
	Members of an Array

	Statements
	Blocks
	Local Variable Declaration Statements
	The Empty Statement
	Labeled Statements
	Expression Statements
	The send Statement
	The if Statement
	The assert Statement
	The switch Statement
	The while Statement
	The do Statement
	The for Statement
	The break Statement
	The continue Statement
	The return Statement

	Expressions
	Contexts of Expressions
	Assignment Operators
	Simple Assignment
	Compound Assignment

	Conditional Operators
	The Ternary Conditional Operator
	The Other Conditional Operators

	Bitwise and Logical Operators
	Equality Operators
	Relational Operators
	Shift Operators
	Additive Operators
	Multiplicative Operators
	Unary Operators
	Numerical Unary Operators
	The Logical Complement Operator
	Casts
	Increment and Decrement Operators

	Primary Expressions
	Field Access Expressions
	Array Access Expressions
	Method Invocation Expressions
	Compile-Time Processing
	Run-Time Processing
	Examples

	Class Instance Creation Expressions
	Array Creation Expressions

	Bibliography
	List of Differences between Jumbala and Java
	Grammar Rules

