
Tekes Ubicom program

LIME project

LightweIght formal Methods for distributed
component-based Embedded systems

Final Report

Date: January 29, 2010
Sites of research: Department of Information and Computer Science

Helsinki University of Technology (TKK)
Department of Information Technologies
�Abo Akademi University (AAU)

Responsible leader: Prof. Ilkka Niemel�a
Tel: +358-9-470 23290
Email: Ilkka.Niemela@tkk.�

Project duration: 1.10.2007 - 30.09.2009

1 Introduction

This is the �nal report of the project LightweIght formal Methods for distributed
component-based Embedded systems (LIME) carried out at the Department of In-
formation and Computer Science of Helsinki University of Technology (TKK) and
Department of Information Technologies of �Abo Akademi University (AAU) during
the years 2007-2009. The project has been funded by the Finnish Funding Agency
for Technology and Innovation (Tekes), Space Systems Finland Oy, Nokia Oyj, Con-
formiq Software Oy and Elektrobit Oyj. The goal of the project has been to develop
new lightweight design and validation methods for distributed embedded software
components which are easy to introduce in a conventional design ow in a stepwise
manner.

Executive Summary

The results and achievements obtained in the project with respect to the project
plan are summarized below.

� The project has reached its main goal of developing new techniques for design-
ing and validating distributed embedded software components successfully,
the key achievements being: (i) an interface speci�cation language for soft-
ware components, (ii) a method for generating these speci�cations from UML
protocol state machines, (iii) a method for monitoring the speci�cations at
runtime, (iv) a technique for generating test cases for software components
in a way that the speci�cations are taken into account, and (v) evaluation of

1



state-of-the-art lightweight approaches for software validation and evaluation
of the methods and tools developed in this project.

� The developed techniques have been implemented and evaluated in proof-of-
concept style prototype tools that have been made publicly available under an
open-source license.

� The project has produced six Master's Theses, one Bachelor's Thesis, one
student project report, two technical reports, and one international scienti�c
publication. Furthermore, the project has provided valuable post-graduate
education for the people that have worked in it.

� The costs of the project have stayed well within the budged.

The rest of this report is organized as follows. The rest of this section summarizes (i)
the people that have worked in the project, (ii) the produced Master's Theses and
Student Project Reports, (iii) the scienti�c talks, research visits, and other scienti�c
activities made in the project and (iv) the main deliverables produced in the project.
A brief overview of the project and the architecture of the developed tools is given
in Section 2. The results and developed techniques are explained in more detail in
Sections 3-6, corresponding to the Tasks 1-4 in the Project Plan.

1.1 Personnel

The following people have been working in the project at Helsinki University of
Technology.

� Ilkka Niemel�a, responsible leader, October 2007 - September 2009.

� Keijo Heljanko, research leader; project manager, part-time October 2007 -
August 2008.

� Kari K�ahk�onen, research assistant, full-time October 2007 - August 2008;
project manager, full-time September 2008 - September 2009

� Lauri Harpf, research assistant, full-time June{August 2008

� Janne Kauttio, research assistant, full-time June{August 2008; part time Septem-
ber 2008 - May 2009; full-time June{September 2009

� Jani Lampinen, research assistant, full-time October 2007 - September 2008

� Sami Liedes, research assistant, full-time June{August 2008; part time Septem-
ber 2008 - May 2009; full-time June{August 2009; part-time September 2009

� Karoliina Oksanen, research assistant, part-time June 2009,

� Olli Saarikivi, research assistant, full-time June{August 2009, part-time Septem-
ber 2009

2



� Xi Chen, research assistant, full-time June{August 2009.

� Arto Vuori, research assistant, full-time June{September 11, 2009.

The following people have been working in the project at �Abo Akademi University.

� Johan Lilius, responsible leader, October 2007 - September 2009.

� Ivan Porres, research leader, October 2007 - September 2009.

� Emil Auer, research assistant, 15 January 2008 - December 2008.

� Sam Gr�onblom, research assistant, November 2007 - November 2009.

� Petter Holmstr�om, research assistant, part-time September 2008 - May 2009,
full-time June 2009 - September 2009.

� S�oren H�oglund, research assistant, October 2008 - September 2009.

� Sebastien Lafond, research assistant, 15 February 2009 - 15 July 2009.

� Ye Liu, research assistant, January 2009 - September 2009.

� Mats L�ovdahl, research assistant, August 2008 - September 2009.

� Niclas Snellman, research assistant, full-time 15 May 2008 - August 2009,
part-time September 2009.

� Johan Sel�anniemi, research assistant, part-time April 2009 - May 2009, full-
time June 2009 - August 2009.

� Leif Sir�en, research assistant, part-time 15 March 2009 - April 2009, full-time
May 2009 - September 2009.

� Andreas �Akesson, research assistant, full-time 15 May 2008 - August 2009,
part-time September 2009.

1.2 Theses and Student Project Reports

The following academic theses and student project reports have been produced in
the project.

� The Master's Thesis of Jani Lampinen [22] has been accepted at the Depart-
ment of Information and Computer Science at Helsinki University of Tech-
nology (TKK) in May 2008. The topic of the thesis is the LIME interface
speci�cation method for software components.

3



� The Master's Thesis of Kari K�ahk�onen [17] has been accepted at the Depart-
ment of Information and Computer Science at Helsinki University of Technol-
ogy (TKK) in August 2008. The topic of the thesis is automated test case
generator developed in the project.

� The Master's Thesis of Emil Auer [1] has been accepted at the Department of
Information Technology at �Abo Akademi in December 2008. The topic of the
thesis is the generation of LIME interface speci�cations from UML protocol
state machines.

� The Master's Thesis of Sam Gr�onblom [8] has been accepted at the Department
of Information Technology at �Abo Akademi in February 2009. The topic of
the thesis is the experimental comparison of unit testing and inspections.

� The Master's thesis of Mats L�ovdahl [26] has been accepted at the Department
of Information Technology at �Abo Akademi in 2009. The topic of the thesis is
the generation of LIME and JML interface speci�cations from UML protocol
state machines with invariants.

� The Master's thesis of S�oren H�oglund [13] has been accepted at the Department
of Information Technology at �Abo Akademi in 2009. The thesis describes an
evaluation of di�erent unit testing tools based on the LIME and JML interface
speci�cation languages.

� The Bachelor's Thesis of Janne Kauttio [20] has been accepted at the Depart-
ment of Information and Computer Science at Helsinki University of Technol-
ogy (TKK) in May 2009. The topic of the thesis is the C language version of
the LIME interface speci�cation language and its implementation.

� A report by Olli Saarikivi [29], describing the �tness based search heuristic that
is used to guide the LIME Concolic Tester towards execution paths that violate
given LIME interface speci�cations, has been accepted as the deliverable for
the course \T-79.5001 Student Project in Theoretical Computer Science" at
the Department of Information and Computer Science of Helsinki University
of Technology (TKK).

1.3 Talks, Research Visits and Other Scienti�c Activities

The following lists the conference participations and research visits made in the
project.

Helsinki University of Technology:

� On February-July 2008 Jori Dubrovin visited the Embedded Systems Research
Unit (formerly IRST-SRA) of the Bruno Kessler Foundation in Trento, Italy.
The research unit led by Dr. Alessandro Cimatti has substantial experience in
designing methods and tools for the development and veri�cation of embed-
ded systems in industrial settings. The main research topic of the visit was

4



the e�cient application of abstraction methods on model checking concurrent
systems. Abstraction is a key technique in enhancing the scalability of model
checking methods. This work contributes to Task 1.3 and Task 2.3, where
such methods are planned to be used for guiding the generation of relevant
test cases.

� On February 14-15, 2008 Keijo Heljanko participated in a Artemis Brokerage
event in D�usseldorf, Germany

� On June 23-27, 2008 Jori Dubrovin participated in 8th International Confer-
ence on Application of Concurrency to System Design (ACSD 2008), Xi'an,
China and presented the paper\ Symbolic model checking of hierarchical UML
state machines" by Jori Dubrovin and Tommi A. Junttila.

� On March 29 - April 6, 2008, Kari K�ahk�onen and Keijo Heljanko visited The
European Joint Conferences on Theory and Practice of Software (ETAPS)
and its satellite events Foundations of Interface Technologies (FIT), Fourth
Workshop on Model-Based Testing (MBT) and 8th International Workshop
on Runtime Veri�cation (RV).

� On May 26 - 30, 2008, Kari K�ahk�onen visited the 15th International Sympo-
sium on Formal Methods (FM 2008) held in Turku, Finland.

� On June 4-6, 2008 Jori Dubrovin participated in the 10th IFIP WG 6.1 Inter-
national Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS 2008), Oslo, Norway and presented the paper \Symbolic
Step Encodings for Object Based Communicating State Machines" by Jori
Dubrovin, Tommi A. Junttila and Keijo Heljanko.

� On October 21-23, 2008 Keijo Heljanko participated in the Artemis and ITEA2
co-summit in Rotterdam, the Netherlands.

� November 22-27, 2008 Jori Dubrovin participated in the 15th International
Conference on Logic for Programming, Arti�cial Intelligence, and Reasoning
(LPAR 2008), Doha, Qatar and presented the paper \Encoding Queues in
Satis�ability Modulo Theories Based Bounded Model Checking" by Tommi A.
Junttila and Jori Dubrovin.

� On April-September, 2009 Matti J�arvisalo visited the Institute for Formal
Models and Veri�cation at Johannes Kepler University Linz, Austria in April-
September, 2009. The institute led by Prof. Armin Biere has a strong track
record in developing automated veri�cation techniques and the visit by Matti
J�arvisalo contributed to the task of developing automated test generation
methods. In particular, Prof. Biere's group has recently developed a new
powerful SMT solver approach supporting bit-vectors and bit-vector arrays
and this approach has been used to enhance concolic testing techniques devel-
oped in the project.

5



� On June 26 - July 2, 2009, K�ahk�onen presented the paper \The LIME In-
terface Speci�cation Language and Runtime Monitoring Tool" by K�ahk�onen,
Lampinen, Heljanko and Niemel�a in the Runtime Veri�cation workshop (RV
2009) held in conjunction with the Computer Aided Veri�cation (CAV) con-
ference in Grenoble, France.

� On June 8-9, 2009, Keijo Heljanko participated in the Artemis Summer Camp
2009, Brussels, Belgium.

� On June 30-July 3, 2009 Matti J�arvisalo participated in the Twelfth In-
ternational Conference on Theory and Applications of Satis�ability Testing,
Swansea, Wales, United Kingdom

� On September 25, 2009 Keijo Heljanko gave a presentation of the LIME In-
terface Test Bench and the associated methodology developed in LIME with
a talk "Automated Testing of Interfaces in Component Based Embedded Sys-
tems" at the Tekes Ubicom programme result seminar held in association with
the Elkom 2009 fair ECT Forum Embedded Software development session.
The seminar was open to the general public.

�Abo Akademi:

� On February 13-14 2008, Ivan Porres visited Prof. Lionel Briand at the Simula
Research Center, Oslo. Prof. Briand has a large experience on the evaluation
of test methods and provided guidance for the Task 3.

� During June - November 2008, M.Sc. Torbj�orn Lundkvist visited Technische
Universit�at M�unchen in Germany to collaborate with Dr. Bernhard Sch�atz
in his research group. Dr. Sch�atz is a merited researcher and model-based
development of embedded systems for automotive applications is one of his
main research interests.

1.4 Deliverables

The following briey lists the main deliverables produced in the project. For more
details, see Sections 3-6. The developed software and the research reports are avail-
able at http://lime.abo.fi.

� The LIME Interface Speci�cation Language and the supporting monitoring
tool has been described in [23]. The research report also describes the support
for C programming language and partially implemented systems. This report
is a deliverable produced as part of Task 1.

� The automated test case generation method has been described in [18]. The
report is a deliverable for Task 1.

6



� A method to guide automated test generation based on speci�cations written
with LIME Interface Speci�cation Language is described in [30]. This report
has been produced as part of Task 1.

� An approach to generate LIME interface speci�cations from UML protocol
state machines containing state invariants and a supporting tool [15]. The
tool also contains an interface to a UML modeling tool and can execute the
LIME testing tools directly and report code coverage. The report and tool
have been produced as part of Task 1.

� A tool to monitor LIME Interface speci�cations has been implemented for
both Java and C programs [24]. The tool is a deliverable for Task 2.

� A tool to automatically generate test cases for sequential Java programs has
been implemented [19]. The tool is a deliverable for Task 2.

� A tool to generate JUnit tests based on the test cases generated by LCT has
been implemented [19]. The tool has been produced as a part of Task 2.

� A graphical user interface has been implemented to provide access to the tools
developed in the LIME project via a common front-end [5]. The graphical user
interface was implemented as part of Task 2.

� A report on the approach to evaluate the LIME interface speci�cation language
and its associated tools [11]. The report is a deliverable for Task 3.

� A report describing an evaluation of the LIME Speci�cation Language [10].
The report is a deliverable for Task 3.

� A report describing a controlled Experiment Comparing Inspection and Test-
ing of Embedded Software [9]. The report is a deliverable for Task 3.

� A report evaluating the LIME testing tools and similar tools, specially JML
tools [14]. The report is a deliverable for Task 3.

2 An Overview of Tasks and Objectives of the

Project

The project was divided into four tasks described in more detail below. Task 1:
Design Methods and Languages, Task 2: Automated Validation Methods, Task 3:
Research Drivers and Research Evaluation; and Task 4: Preparation of ARTEMIS
proposal.

In Task 1 the idea was to develop a lightweight interface speci�cation method which
is easy to integrate into a normal design ow where the system under validation is
already (partially or fully) implemented in source code level. In Task 2 the goal was
to develop validation techniques, in particular, automated testing methods for such
speci�cations.

7



Figure 1: Architecture of the LIME Interface Test Bench

Task 3 comprised an evaluation of the state of the art in lightweight approaches for
software validation. Finally, the objective of Task 4 was to create a proposal for the
ARTEMIS call for an European project with similar goals as LIME.

To get an overview of the tools developed in the project as part of Task 1 and 2,
Figure 1 shows the outline of the tools. This toolset is called LIME Interface Test
Bench (LimeTB).

The starting point when using LimeTB is the system under validation, e.g. a software
system composed of Java classes. Each class is augmented with a set of speci�cations
(in form of code annotations) that describe both (i) how the class interface should
be used by its clients and (ii) how the class itself should behave. The speci�cation
language used by LimeTB was developed in Task 1.

The speci�cations do not need to completely cover the behavior of the class. In
addition, (the methods in) the classes are not necessarily implemented at all, or are
only partially implemented. Each speci�cation in the classes is then translated into
an observer, i.e., Java code that observes whether the speci�cation is violated during
the execution of the system. Together with a test case input (e.g. a sequence of
user actions), the system code augmented with the observers can then be executed
in a run-time environment resulting in an assertion violation and error trace if a
speci�cation was violated on that input. The test case inputs needed can be provided
by the developers/testers of the system or an automatic test case generator can be
applied. In Task 2 such a test case generator (LIME Concolic Tester) was developed
and it integrates with the observers generated from the speci�cations.

3 Task 1: Design Methods and Languages

The goal of this task was to develop lightweight methods to support interface spec-
i�cations in an embedded system. The initial design was based on ideas from the
hardware community such as the use of IEEE 1850 Property Speci�cation Language
(PSL), as well as Java/ESC and the Java Modeling Language (JML) from the soft-

8



Figure 2: The interaction model

ware speci�cation side. The aim was to ease the introduction of formal methods
into a conventional design ow in a stepwise manner.

3.1 Task 1.1: Lightweight Interface Speci�cation Method

for Full Source Code

The aim in this task was to design a lightweight behavioral interface speci�cation
method including use speci�cations and pre/post conditions (assumptions/guarantees)
with tentative deployment of a subset of the PSL language suitably modi�ed for soft-
ware use.

The LIME interface speci�cation language (LIME ISL) developed in the project
is a lightweight formal method for de�ning behavioral interfaces. The approach
is supported by implementations for Java and C developed in Task 2 to monitor
whether the speci�ed interface speci�cations are violated. The core idea of the LIME
interface speci�cation language is to provide a declarative mechanism for de�ning
how di�erent software components can interact through interfaces in a manner that
can be monitored at runtime. These interactions can be speci�ed in two ways:
by call speci�cations (CS) which de�ne how components should be used and by
return speci�cations (RS) which de�ne how the components should respond. If a
call speci�cation is violated, the calling component can be determined to be incorrect
and, respectively, if the called component does not satisfy its return speci�cations, it
is functioning incorrectly. This interaction model between components is illustrated
in Fig. 2.

The aim of the LIME ISL design was to enable a convenient way for the speci�cation
of behavioral aspects of interfaces in a manner that can be e�ciently supported by
tools. We have extended the design by contract [27] approach to software develop-
ment supported by approaches such as the Java Modeling Language (JML) [4] to
behavioral aspects of interfaces. The idea is to divide the component interface to

9



two parts in an assume/guarantee fashion: (i) call speci�cations (component envi-
ronment assumptions) that specify requirements for the allowed call sequences to a
software component and (ii) return speci�cations (component behavior guarantees)
that specify the allowed behaviors of the component instance.

Another source of inspiration for the design of the LIME ISL has been the rise
of standardized speci�cation languages in the hardware design community such as
IEEE 1850 - Property Speci�cation Language (PSL) [16]. One of the key features
of PSL is the inclusion of both temporal logic LTL as well as regular expressions in
the speci�cation language provided for the user.

Both the call and return speci�cations can be expressed in several di�erent ways:
as past time linear temporal logic (LTL) formulas, as (safety) future LTL formulas,
as regular expressions, and as nondeterministic �nite automata. On the syntactical
level the interface speci�cations are annotations in Java and comments in a spe-
cial syntax in the C code variant. The interface speci�cations consists of a set of
atomic propositions de�nitions and the actual call and return speci�cations. Atomic
propositions are used to make claims about the program execution and the state of
the program. These atomic propositions are subdivided into three classes: value
propositions, call propositions and exception propositions. There is also support
for primitive data handling through the keyword #pre which makes it possible to
reference an entry value in return speci�cations after the actual method has been ex-
ecuted. This allows speci�cations that describe how some value must change during
execution of the observed method.

The �nal design of the LIME interface speci�cation language can be found in [23]
and a workshop paper describing the approach [21] has been presented at Runtime
Veri�cation (RV2009) workshop.

We have developed an approach to generate LIME speci�cations from UML protocol
state machines and developed a tool support the approach. The supported input
format is a UML 2.0 or 2.1 state machine represented in XMI 2.1. The tool produces
LIME speci�cations in the form of a �nite automaton. This allows a developer to
use the UML as an interface speci�cation language and bene�t from the testing tools
developed in Task 2. AAU has also evaluated the use of UML Sequence Diagrams in
the context of the LIME project, but the results were not encouraging. This work
is documented in the report [2]

3.2 Task 1.2: Extending the Method for Partially Imple-

mented Systems

One aim in Task 1 was to extend the interface speci�cation method to cope with
systems which are only partially implemented or even with system designs with no
actual implementation. Additional goal in this task was to enhance the interface
speci�cation method with new techniques that allow better handling of di�erent
aspects in interface speci�cations.

The support for partially implemented systems was developed by extending the in-
terface speci�cation method with automated stub code generation. The main idea

10



in this approach is to use the interface speci�cations to close a system from either
top (call speci�cations) or bottom (return speci�cations) by generating stub code
from the component interface. The stub code in the case of closing a system from
top consists of a non-deterministic program whose call sequences to the underly-
ing component that implements the interface is restricted to those allowed by the
speci�cation in a generate and test fashion. The approach for closing systems from
below is similar, i.e., the stub code will return values nondeterministically that are
restricted by the return speci�cations. The restriction to valid call sequences and
argument/return values is achieved by making a test verdict to be inconclusive if
the stub code causes a speci�cation to be violated.

As randomly generated call sequences and return values will likely lead to many
inconclusive test runs, the stub code approach is intended to be used mainly with
the automated test case generator developed in Task 1.3 and Task 2.3. The use of
the test case generator makes it possible to compute valid input arguments to the
method calls and to make sure that the same call sequences are not tested repeatedly.
The stub code generation is described in more detail in [23, 21].

To enhance the LIME interface speci�cation language it was extended to support
propositions on exception occurrence, as exceptions are commonly in a critical role
in Java code and, thus, need to be supported in order to be able to properly specify
the allowed behavior of the program. The extension allows specifying propositions
to be used in monitoring which are true if and only if a certain kind of exception, as
speci�ed by the user, is thrown by the method being monitored. This proposition
can then be used as part of conditions in any of the supported forms of speci�cations,
i.e., regular expression, PLTL and NFA speci�cations. The full details on exception
propositions are described in [23].

In order to provide better support to data aspects in the interface speci�cation we
have extended the UML to LIME approach described in Task 1.1 to support UML
protocol state machines with state invariants.

We have implemented tool support to translate UML protocol statemachines with
invariants into LIME speci�cations containing pre and postcondition speci�cations.
The tool can also generate JML speci�cations and run the LIME and JML testing
tools automatically. This was done to support Task 3.4. The applicability of the
tool is demonstrated with examples ranging from simple to complex applications.
We have also developed a plugin for a commercial UML modeling tool (MagicDraw)
that integrates the speci�cation generation tool and the testing tools. This plugin is
an example on how the LIME project results can be integrated with existing UML
modeling tools. This work is documented in the report [15]

3.3 Task 1.3: Enhancing the Method with Automated Test

Case Generation

The goal in this task was to design techniques for automated test case genera-
tion that can be used together with the interface speci�cation method developed

11



in Task 1.1 and Task 1.2. The aim was to combine testing with symbolic model
checking methods.

The automated test case generation was designed to be based on concolic testing [7,
31]. In concolic testing a program is executed both concretely and symbolically at
the same time. The main idea behind this approach is to �rst execute the program
under test with random concrete input values and then during execution to collect
symbolic constraints about input values that would force the program to follow a
di�erent execution path (i.e., to follow a di�erent outgoing branch at some branching
statement). All the execution paths of a given program can be expressed as a
symbolic execution tree where the nodes represent branching points in execution
that have symbolic constraints associated to them. Concolic testing can be seen
as a method to generate a symbolic execution tree and use it to systematically
test di�erent execution paths of a program. The input values needed to explore
the di�erent execution paths are obtained by solving the collected constraints using
o�-the-shelf SMT-solvers. The details on the test case generation using concolic
techniques can be found from [18].

The concolic testing approach was also extended to take LIME interface speci�-
cations into account when generating test cases. The approach here is based on
computing a heuristic value of how close a speci�cation is to being violated from
the �nite state automata of the runtime observers. This heuristic value is computed
for each unexplored execution branch created by the LIME test generation tool and
the execution branches that are the most likely to lead to a speci�cation violation
are explored �rst. The computation of the heuristic values is based on sampling
random walks on the �nite state automata. More detailed description of computing
the heuristic values can be found from [30].

4 Task 2: Automated Validation Methods

The focus of this task was to implement prototype tools to support the methods
developed in Task 1.

4.1 Task 2.1: Prototype Tool Framework for Interface Spec-

i�cations

The LIME Interface Monitoring Tool (LIMT) is the Java version of a monitoring
tool for the LIME ISL developed in Task 1. It allows monitoring the speci�cations
at runtime to determine if some component violates the given speci�cations. An
architectural overview of the toolset is given in Fig. 1.

The monitoring tool works by reading the speci�cation annotations from the Java
source �les. The speci�cations are then translated into deterministic �nite state
automata that function as observers. These automata are translated into runnable
Java code and AspectJ (http://www.eclipse.org/aspectj/) is used to weave the
code into the original program that is being tested. This results in an instrumented

12



runtime environment where the observers are executed at the timepoints discussed
in the previous section.

Spoon [28], the dk.brics.automaton (http://www.brics.dk/automaton/) package
and SCheck [25] are adopted as third-party software. Spoon is used for analyzing
the program and the dk.brics.automaton package is used for internal representation
and manipulation of regular expression checkers. SCheck is used for converting fu-
ture time LTL subformulas into �nite state automata. The approach of [12] using
synthesized code with history variables is used for past time subformulas, while for
the future part the tool SCheck is used to encode informative bad pre�xes [25] of fu-
ture LTL formulas to minimal DFA. The implementation allows the use of past-time
subformulas LTL in future-time LTL formulas but not vice versa. More technical
details of the implementation approach taken for Java can be found from [23, 22].

4.2 Task 2.2: Adding Support for the C Programming Lan-

guage

The C code variant of the LIME interface speci�cation language has also been imple-
mented sharing much of the source code with the Java variant. The main di�erences
in the C language version to the Java version are: (i) comments in special syntax are
used to de�ne the speci�cations instead of Java annotations, (ii) instead of being part
of an object creation in Java, in C monitor instances have to be explicitly associated
to an interface, (iii) Doxygen tool (www.doxygen.com) is used (instead of Spoon for
Java) to �nd the interface speci�cations from the C comments, (iv) AspeCt-oriented
C (ACC, http://research.msrg.utoronto.ca/ACC) is used to weave the monitors
into the C source code; (v) there is no support for Java speci�c features such as ex-
ceptions. The C variant, of course, generates the weaved monitoring code in C but
is otherwise functionally identical to the Java version.

More technical details of the implementation approach taken for C can be found
from [23, 20].

4.3 Task 2.3: Test Case Generator

The automated test case generation method developed in Task 1.3 was implemented
in tool called LIME Concolic Tester (LCT) that supports Java as the target pro-
gramming language. Concolic execution of programs requires that the program
under test is instrumented with additional code that allows the program to be sym-
bolically executed. For the instrumentation the Soot optimization framework [32]
was adopted as an external tool. To solve the constraints resulting from symbolic
execution, support for Yices [6] and Boolector [3] was implemented. Due to licensing
issues, the solvers are not included in the tool and must be downloaded separately.

Typical Java Virtual Machines cause the following technical limitation in the instru-
mentation: core Java classes (e.g., java.lang.String and java.lang.Integer) cannot be
modi�ed freely and therefore they cannot always be fully instrumented by LCT.

13



The reason for this limitation is that most Java Virtual Machines are very sensitive
to modi�cations in the core system classes (e.g., the load order of classes during
bootstrapping may change due to instrumentation) and this can cause the JVM to
crash. Furthermore, instrumenting the core classes means that the instrumented
code that also uses core classes would use their rewritten versions which can cause
complications.

To solve this limitation custom versions of Integer, Short, Boolean and Byte classes
were implemented so that they can be instrumented. The system under test is
modi�ed to use these custom classes instead of the original Java core classes. The
instrumentation of other core classes is not currently supported and if such classes
are used in the system under test, the test generator may fail to explore all possible
execution paths. The supported subset of core classes is, however, su�cient to make
the test generation method work properly together with the monitoring tool. A more
details description of the limitations regarding core classes can be found from [18].

The basic test case generation provided by LCT was extended by developing LIME
JUnit Tools (LJUT) that provide the possibility to automatically generate test
drivers to unit test methods and to generate JUnit test cases that allow replay-
ing the unit tests even without LCT.

4.4 Enhancing the Usability of the Developed Tools

The tools included in the LIME Interface Test Bench were primarily designed to be
used from the command-line. To make the tools more accessible for new users, a
graphic user interface was developed for the tools.

The GUI was developed as a stand-alone application and therefore it does not force
the developers to use any speci�c programming framework. The GUI allows the user
to con�gure the LIME tools and to perform the basic tasks provided by the tools.

To help the user of LimeTB to understand and debug the cause of speci�cation
violations, the LIME Interface Monitoring Tool was extended with tracer function-
ality. The generated observers write extensive information about their state to a log
�le during the execution of the instrumented program. This logging functionality
is enabled by default, but can be optionally disabled during the compilation of the
program either on a per-speci�cation basis or completely. The log �le can then be
read with the provided tracer-utility, which is a command-line tool that has also
been integrated into the graphical user interface. The tracer parses the log �le and
shows the user the execution of the program from the point of view of the observers,
which will make �nding the reason of a possible speci�cation violation easier.

5 Task 3: Research Drivers and Research Evalu-

ation

The goal for task 3 was to evaluate and provide a feedback loop for the work per-
formed in the other tasks. We have produced four reports [11, 10, 9, 14].

14



5.1 Task 3.1 Selection of Case Studies

The objective of this task was to organize the evaluation e�ort in the LIME project.
We developed an evaluation criteria for the LIME speci�cation language and LIME
testing tools and introduced di�erent software systems that are used in the evalua-
tion.

The initial goal was to select two case studies in cooperation with the companies
that are participating in the project. However, we only obtained one case study from
the industry partners. Based on the recommendations from the Steering Group and
our experiences using LIME, we decided to add two more systems equipped with
formal interface speci�cations to be used in our evaluation: The Sun Java Card API
and the JML contracts for this API created by Wojciech Mostowski and a collection
of simple Java classes distributed with the JML tools.

The results of this task are reported in [11].

5.2 Task 3.2 Case Study Evaluation Using Standard Meth-

ods

The objective of this task was to evaluate the case studies selected in Task 3.1 using
standard methods such as software inspections and unit tests created manually.

We carried out this task by conducting an experiment to compare which method
�nds more defects in a single session. In our study 22 graduate and undergraduate
students performed each method on separate programs. We also tried to distinguish
between merely �nding a defect and also discovering the fault in the code that
caused the defect. The results indicate that given a short amount of time for the
task, inspectors �nd signi�cantly more faults than testers.

The results of this task are reported in [10].

5.3 Task 3.3 and 3.4: Case Study Evaluation Using the

Methods Developed in the LIME Project

This task had two phases: evaluation of the LIME speci�cation language and the
evaluation of the LIME tools. The evaluation was performed by using the case
studies from Task 3.1 and the same set of metrics as in Task 3.2 and comparing
LIME to other approaches and tools with the same objectives. This task produced
two reports.

The �rst report [9] describes our observations on using the LIME speci�cation lan-
guage to describe software interfaces in three case studies. We analyzed which
software interfaces from the case studies can be described in the LIME speci�cation
language and provide some recommendations for the future development of LIME.
We found that the LIME speci�cation language could be used to specify many
properties of the interfaces present in the case studies. However, we also produced

15



some recommendations on future extensions to the LIME language that can help
increasing its applicability.

The second report [14] contains a mutation testing experiment evaluating the per-
formance (e�ciency, e�ectiveness and statement coverage) of several speci�cation-
based tools. The tools studied include JML-JUnit, JET, ESC/Java2, UnitTesk,
LIME Interface Monitoring Tool and LIME Concolic Tester. The evaluation re-
vealed di�erent issues in the LIME tools that were promptly �xed. Although it is
too early to perform a complete evaluation of the LIME Concolic tester, the results
are encouraging. The test suite is available to evaluate the future development of
the LIME tools.

6 Task 4: Preparation of ARTEMIS proposal

The Reduced Certi�cation Costs Using Trusted Multi-core Platforms (RECOMP)
project proposal was submitted on time the 3rd for September.

The proposed RECOMP research project will establish methods, tools and platforms
for enabling cost-e�cient certi�cation and re-certi�cation of safety-critical systems
and mixed-criticality systems, i.e. systems containing safety-critical and non-safety-
critical components.

RECOMP will provide reference designs and platform architectures together with
the required design methods and tools for achieving cost-e�ective certi�cation and re-
certi�cation of mixed-criticality, component based, multi-core systems. The aim of
RECOMP is to de�ne a European standard reference technology for mixed-criticality
multi-core systems supported by the European tool vendors participating in RE-
COMP.

The partners of the consortium cover several domains (automotive, industrial au-
tomation, lifts, avionics, health care and building automation), ensuring that the
developed technology will be adoptable in several domain. The consortium also in-
cludes companies that will exploit the methodology for selling sub-contracting. The
RECOMP project will bring clear bene�ts in terms of cross-domain implementa-
tions of mixed-criticality systems in all domains addressed by project participants:
automotive systems, aerospace systems, industrial control systems, lifts and trans-
portation systems.

RECOMP in Finland

RECOMP has 7 participants from Finland: �Abo Akademi, Metso, Space System
Finland, the Helsinki University of Technology, Kone, Spinet and Vacon. Kone,
Metso and Vacon are proposing the implementation of an application demonstrator
for the RECOMP project.

The total eligible costs for Finnish partners are around 4 million euro and represents
16% of the total project costs. The total funding requested from Tekes is around
1,6 million euro, and the total funding requested from the ARTEMIS JU is around
0,67 million euro.

16



RECOMP in numbers

� 41 participants from 8 countries: CZ, DK, ES, FI, FR, DE, IE, UK

� 31 companies: 9 small, 4 medium and 18 non-SME

� 10 Universities and research organisations

� Total eligible costs of 25 879 930 euro

� Requested national funding of 9 704 226 euro

� Requested ARTEMIS JU contribution of 4 320 945 euro

� Total e�ort of 2 633 person months

� Proposal of 406 pages including 188 pages of annexes

17



References

[1] Emil Auer. Generation of LIME speci�cations from UML protocol state ma-
chines. Master's thesis, �Abo Akademi University, Department of Information
Technologies, 2009.

[2] Emil Auer and Ivan Porres. SM2LIME: A translation tool from UML state
machines to LIME speci�cations, 2008. LIME project deliverable.

[3] Robert Brummayer and Armin Biere. Boolector: An e�cient smt solver for
bit-vectors and arrays. In Stefan Kowalewski and Anna Philippou, editors,
TACAS, volume 5505 of Lecture Notes in Computer Science, pages 174{177.
Springer, 2009.

[4] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and
applications. Software Tools for Technology Transfer, 7(3):212{232, June 2005.

[5] Xi Chen, Janne Kauttio, and Olli Saarikivi. A graphical user interface for
LimeTB, 2009. Computer program in LimeTB 1.0.0 software release.

[6] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver for
DPLL(T). In Proceedings of the 18th Computer-Aided Veri�cation conference,
volume 4144 of LNCS, pages 81{94. Springer-Verlag, 2006.

[7] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated
random testing. In PLDI, pages 213{223, 2005.

[8] Sam Grn�onblom. A controlled experiment comparing code reviews and testing
of embedded software. Master's thesis, �Abo Akademi University, Department
of Information Technologies, 2009.

[9] Sam Gr�onblom and Ivan Porres. A controlled experiment comparing inspection
and testing of embedded software, 2008. LIME project deliverable.

[10] Sam Gr�onblom and Ivan Porres. Preliminary evaluation of the LIME speci�ca-
tion language, 2008. LIME project deliverable.

[11] Sam Gr�onblom and Ivan Porres. Research drivers and research evaluation in
the LIME project, 2008. LIME project deliverable.

[12] Klaus Havelund and Grigore Ro�su. E�cient monitoring of safety properties.
Software Tools for Technology Transfer (STTT), 6(2):158{173, 2004.

[13] S�oren H�oglund. An empirical evaluation of speci�cation-based unit testing
tools. Master's thesis, �Abo Akademi University, Department of Information
Technologies, 2009.

[14] Petter Holmstr�om, S�oren H�oglund, Leif Sir�en, and Ivan Porres. Evaluation of
speci�cation-based testing approaches, 2009. LIME project deliverable.

18



[15] Petter Holmstr�om, Ye Liu, Mats L�ovdahl, Irum Rauf, Johan Sel�anniemi, Leif
Sir�en, and Ivan Porres. Generation of behavioral interface speci�cations from
UML protocol state machines with state invariants, 2009. LIME project deliv-
erable.

[16] IEEE-Commission. IEEE standard for property speci�cation language (PSL).
Technical report, IEEE, 2005. IEEE Std 1850-2005.

[17] Kari K�ahk�onen. Automated dynamic test generation for sequential Java pro-
grams. Master's thesis, Helsinki University of Technology, Department of In-
formation and Computer Science, 2008.

[18] Kari K�ahk�onen. Automated test generation for software components. Technical
Report TKK-ICS-R26, Helsinki University of Technology, Department of Infor-
mation and Computer Science, Espoo, Finland, December 2009. LIME project
deliverable.

[19] Kari K�ahk�onen. LIME Concolic Tester, 2009. Computer program in LimeTB
1.0.0 software release.

[20] Janne Kauttio. LIME-C { Rajapintam�a�arittelymenetelm�a C-kielisille
ohjelmille. Bachelor's thesis, Helsinki University of Technology, Department
of Information and Computer Science, 2009.

[21] Kari K�ahk�onen, Jani Lampinen, Keijo Heljanko, and Ilkka Niemel�a. The LIME
interface speci�cation language and runtime monitoring tool. In Proceedings of
the 9th Internatinal Workshop on Runtime Veri�cation, volume 5779 of Lecture
Notes in Computer Science, 2009. to appear.

[22] Jani Lampinen. Interface speci�cation methods for software components. Mas-
ter's thesis, Helsinki University of Technology, Department of Information and
Computer Science, 2008.

[23] Jani Lampinen, Sami Liedes, Kari K�ahk�onen, Janne Kauttio, and Keijo Hel-
janko. Interface speci�cation methods for software components. Technical Re-
port TKK-ICS-R25, Helsinki University of Technology, Department of Infor-
mation and Computer Science, Espoo, Finland, December 2009. LIME project
deliverable.

[24] Jani Lampinen, Sami Liedes, Janne Kauttio, Lauri Harph, Olli Saarikivi, and
Kari K�ahk�onen. LIME Interface Monitoring Tool, 2009. Computer program in
LimeTB 1.0.0 software release.

[25] Timo Latvala. E�cient model checking of safety properties. In Thomas Ball
and Sriram K. Rajamani, editors, Model Checking Software, 10th International
SPIN Workshop. Portland, OR, USA, May 9-10, 2003, Proceedings, volume
2648 of Lecture Notes in Computer Science, pages 74{88. Springer, 2003.

19



[26] Mats L�ovdahl. Automatic generation of JML and LIME speci�cations from
UML protocol state machines. Master's thesis, �Abo Akademi University, De-
partment of Information Technologies, 2009.

[27] Bertrand Meyer. Applying "design by contract". IEEE Computer, 25(10):40{51,
1992.

[28] Renaud Pawlak, Carlos Noguera, and Nicolas Petitprez. Spoon: Program Anal-
ysis and Transformation in Java. Research Report RR-5901, INRIA, 2006.

[29] Olli Saarikivi. Design and implementation of a heuristic for directing dynamic
symbolic execution, 2009. A student project deliverable made in the LIME
project.

[30] Olli Saarikivi. Design and implementation of a heuristic for directing dynamic
symbolic execution, 2009. LIME project deliverable.

[31] Koushik Sen and Gul Agha. CUTE and jCUTE : Concolic Unit Testing and
Explicit Path Model-Checking Tools. In 18th International Conference on Com-
puter Aided Veri�cation (CAV'06), volume 4144 of Lecture Notes in Computer
Science, pages 419{423. Springer, 2006.

[32] Raja Vall�ee-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam,
and Vijay Sundaresan. Soot - a Java bytecode optimization framework. In
Stephen A. MacKay and J. Howard Johnson, editors, CASCON, page 13. IBM,
1999.

20


