
Debugging Inconsistent Answer Set Programs

Tommi Syrjänen∗

Helsinki University of Technology, Dept. of Computer Science and Eng.,
Laboratory for Theoretical Computer Science,

P.O.Box 5400, FIN-02015 HUT, Finland
Tommi.Syrjanen@tkk.fi

Abstract

In this paper we examine how we can find contradictions
from Answer Set Programs (ASP). One of the most impor-
tant phases of programming is debugging, finding errors that
have crept in during program implementation. Current ASP
systems are still mostly experimental tools and their support
for debugging is limited. This paper addresses one part of
ASP debugging, finding the reason why a program does not
have any answer sets at all. The basic idea is to compute di-
agnoses that are minimal sets of constraints whose removal
returns consistency. We compute also conflict sets that are
sets of mutually incompatible constraints. The final possible
source of inconsistency in an ASP program comes from odd
negative loops and we show how these may also be detected.
We have created a prototype for the ASP debugger that is it-
self implemented using ASP.

Introduction
One of the most important phases in computer programming
is always debugging; no matter how much care is used in
program writing, some errors will creep in. For this reason
a practical Answer Set Programming (ASP) system should
have support for program debugging. It is not possible to
detect all errors automatically since a construct may be an
error in one case but correct code in another.

The current ASP systems (Niemelä, Simons, & Syrjänen
2000; Dell’Armi et al. 2001; East & Truszczyński 2001;
Anger, Konczak, & Linke 2001; Babovich 2002; Lin & Zhao
2002) are still on experimental level and their support for
debugging is limited. In this paper we examine how we can
debug one class of program errors, namely finding the con-
tradictions in a program. We have developed a prototype
debugger implementation for the SMODELS input language
but the same principles are applicable for most ASP systems.

Program defects can be roughly divided into two
classes (Aho, Sethi, & Ullman 1986):

• syntax errors: the program does not conform with the for-
mal syntax of the language; and

• semantic errors: the program is syntactically correct but
does not behave as the programmer intended.

∗This research has been funded by the Academy of Finland
(project number 211025).

In this discussion we leave out syntactical errors since they
are generally easy to remedy: the ASP system notes that the
program is not valid and outputs an error message telling
where the problem occurred.

The semantical errors are more difficult to handle. In the
context of ASP, they too can be roughly divided into two
classes:
• typographical errors such as misspelling predicate or

variable names, using a constant in place of a variable or
vice versa; and

• logical errors where a rule behaves differently from what
was intended.

The intuition of the division is that an error is typographi-
cal if it is caused by a simple misspelling of a single syn-
tactical element. For example, using corect(X) instead of
correct(X). On the other hand, a logical error is one where
the programmer writes a rule that does not do what he or
she expects it to do. For example, a programmer writing
an encoding for a planning problem might want to state the
constraint that an object may be at one place at a time by
using the rule:

← at(O, L1, I), at(O, L2, I).

The problem is that the values of L1 and L2 are not con-
strained and may take the same value. Thus, for each ob-
ject o, location x, and time step i, there will be a ground
instance:

← at(o, x, i), at(o, x, i).

which causes a contradiction no matter where the object is.
In this case the programmer should have added a test L1 6=
L2 to the rule body.

Our experience is that finding the reason for a contradic-
tion is one of the most laborious tasks in ASP debugging.
Currently the most practical approach is to remove rules
from the program until the resulting program has an answer
set and then examining the removed rules to see what caused
the error.

In this paper we examine how we can automate this pro-
cess using ASP meta-programming. When we have a con-
tradictory program, we create several new ASP programs
based on it such that their answer sets reveal the possible
places of error.

We borrow our basic idea from the model-based diagno-
sis (Reiter 1987) field. There we have a system that does
not behave like it should and a diagnosis is a set of com-
ponents whose failure explains the symptoms. In our ap-
proach a diagnosis is a set of rules whose removal returns
consistency to the program. However, we do not attempt
construct a standard diagnostic framework. The reason for
this is pragmatic: our aim is to create a practical tool that
helps answer set programmers to debug their programs. It is
not reasonable to expect that a programmer would have an
existing system description that could be analyzed since that
would in effect be a correct program. On the other hand,
we are not willing to leave the debugger completely with-
out of formal semantics. One of the strengths of ASP is that
all programs have declarative semantics so it seems natu-
ral that also their diagnoses have one. Thus, we construct
our own formal framework that shares some features with
model-based diagnosis but is different in other areas.

When we construct diagnoses, we are interested in min-
imal ones. There are several possible ways to define min-
imality and we will use cardinality minimality: a diagno-
sis is minimal if there is no diagnosis that contains fewer
rules than it. Another possibility would be subset minimal-
ity where a diagnosis is minimal if it does not contain an-
other diagnosis as its subset. We chose cardinality minimal-
ity mainly because it was easier to implement in the proto-
type and also because it is possible that smaller diagnoses
are easier to handle in practical debugging.

Not all minimal diagnoses are equally good for debugging
purposes. For example, consider the program:

{a} . (1)
b← a. (2)
c← not a. (3)
← 1 {b, c} . (4)

Here (1) says that a may be true or false, (2) tells that b is
true if a is true, (3) that c is true if a is not, and finally (4) is
a constraint stating that it is an error if either b or c is true.

No matter what truth value we choose for a, either b or
c is true, so we have a contradiction. The minimum num-
ber of rules that we have to remove to repair consistency is
one: removing either (2), (3), or (4) results in a consistent
program. Removing (4) gives the most information to the
programmer since neither b ← a nor c ← not a can cause
the contradiction by themselves. On the other hand, (4) is a
constraint telling that its body should not become true so the
connection to the contradiction is immediate.

We take the approach that we include only constraints in
minimal diagnoses. Examining just them is not enough since
a contradiction can arise also from an odd loop. An odd loop
is a program fragment where an atom depends recursively
on itself through an odd number of negations. The simplest
example is:

a← not a.

This rule causes a contradiction since if a is set to false, we
have to conclude that a is true. On the other hand, if a is set

to true, the body of the rule is not satisfied so we do not have
a justification for a and we have to set it false.

Not all odd loops are errors since they may be used to
prune out unwanted answer sets. Since it is difficult to deter-
mine which odd loops are intentional and which are errors,
we take the approach that all odd loops are considered to be
errors.

This means that the programmer has to use some other
construct to replace the odd loops. In SMODELS the alterna-
tive approach is to first generate the possible model candi-
dates using choice rules of the form:

{head} ← body.

Here the intuition is that if body is true, then head may be
true but it may be also false. The pruning is then done using
constraints of the form:

← body.

A constraint asserts that the body must be false. Note that
a constraint is actually an odd loop in a disguise: we could
replace a constraint by the equivalent rule:

f← body, not f.

In general, a program may have a number of different
minimal diagnoses. In many cases some constraints occur-
ring in them are related to each other. For example, in pro-
gram:

{a} .

← a. (1)
← not a. (2)
← not b. (3)

there are two different diagnoses: {1, 3} and {2, 3}. Here
the constraints (1) and (2) both depend on the value of a. If
a is chosen to be true, then (1) fails, if not, (2) fails. In effect,
we can have either (1) or (2) in the program, but not both.
The constraint (3) is independent from the other two and it
always fails.

A conflict set is a way of formalizing the concept of re-
lated constraints. The intuition is that a set of constraints
is a conflict set if every diagnosis of the program contains
exactly one member from the set.1 We use the conflict sets
to give more information to the programmer. In the above
program the two conflict sets are {2, 3} and {4}. In general,
if two rules belong in the same conflict set, the truth values
of the literals that occur in their bodies depend on same truth
values of same atoms: choosing one value leads to one con-
tradiction and choosing the other leads to another. Grouping
them together may lead the programmer to the place of error
faster.

Note that there are programs whose constraints cannot be
divided into conflict sets. In those cases we cannot use con-
flict sets to help debugging and have to use other methods.
Fortunately, those cases seem to be quite rare in practice.

1Note that conflict sets are different from conflicts. In model-
based diagnosis a conflict is a set of components that contains at
least one malfunctioning component.

Related Work
Brain et. al. (Brain, Watson, & De Vos 2005) presented an
interactive way for computing answer sets. A programmer
can use the interactive system as a debugging aid since it can
be used to explain why a given atom is either included in an
answer set or left out from it. Their approach is very similar
to our method of computing explanations for diagnoses.

The NoMoRe system (Anger, Konczak, & Linke 2001)
utilizes blocking graphs that can be used to examine why
a given rule is applied or blocked and thus they provide a
visual method for debugging ASP programs.

The consistency-restoring rules of Balduccini and Gel-
fond (Balduccini & Gelfond 2003) are another related ap-
proach. They define a method that allows a reasoning sys-
tem to find the best explanation for conflicting observations.
The main difference between our approaches is that we do
not try to fix the contradictory program but instead try to
help the programmer to find the places that are in error.

There has been a lot of previous work on the properties
of odd and even cycles in a program (for example, (You &
Yuan 1994; Lin & Zhao 2004; Costantini & Provetti 2005;
Constantini 2005)) and how they affect the existence and
number of answer sets. In this work we propose methodol-
ogy where even loops are replaced by choice rules and odd
loops by constraints, so our viewpoint is slightly different.
However, the theoretical results of previous work still hold
since our programs could be translated back to normal logic
programs. In particular, constraints are equivalent to one-
rule odd loops.

The most closely related area of odd loop research is Con-
statini’s work on static program analysis (Constantini 2005).
She notes that there are two different ways to escape the in-
consistency caused by an odd loop: either there has to be
one unsatisfied literal in the body of at least one rule of the
loop or there has to be a non-circular justification for some
atom in the loop. The literals that are present in rule bodies
but are not part of the loop are called AND-handles and the
extra rules are OR-handles. In every answer set of the pro-
gram there has to be an applicable handle for every odd loop
in it. Since the handles are purely syntactic properties, we
can statically analyze the rules to see what conditions have
to be met so that all loops are satisfied. This approach seems
promising but there is currently the limitation that the def-
initions demand that the program is in kernel normal form.
This is not an essential limitation from theoretical point of
view since every normal logic program can be systemati-
cally translated to the normal form, but it will cause an extra
step in practical debugger since the results have to be trans-
lated back to the original program code.

Language
In this paper we construct a debugger for a subset of SMOD-
ELS language.2 We will consider only finite ground pro-
grams that do not have cardinality constraint literals but that
may have choice rules.

2The actual debugger implementation handles the complete lan-
guage.

The basic building block of a program is an atom that en-
codes a single proposition that may be either true or false. A
literal is either an atom a or its negation not a.

A basic rule is of the form:

h← l1, . . . , ln

where the head h is an atom and l1, . . ., ln in the body are
literals. The intuition is that if all literals l1, . . ., ln are true,
then h has to be also true. If the body is empty (n = 0), then
the rule is a fact. A choice rule has the form:

{h} ← l1, . . . , ln

where h and li are defined as above. The intuition of a choice
rule is that if the body is true, then the head may be true but
it may also be false. If an atom does not occur in the head of
any rule that has a satisfied body, it has to be false.

Basic and choice rules are together called generating
rules. The other possibility is a constraint that is a rule with-
out a head. If the body of a constraint becomes true, then the
model candidate is rejected. A logic program P = 〈G, C〉 is
a pair where G is a finite set of generating rules and C a finite
set of constraints.

Before we can define the formal ASP semantics for
these programs, we need to define notation that allows
us to refer to the parts of a rule. Let r = h ←
a1, . . . , an,not b1, . . . ,not bm be a basic rule where ai and
bi are atoms. Then,

head(r) = h

body+(r) = {a1, . . . , an}
body−(r) = {b1, . . . , bm} .

The same notation is used for choice rules. We use
Atoms(P) to denote the set of atoms that occur in a pro-
gram P .

A set of atoms S satisfies an atom a (denoted by S � a) iff
a ∈ S and a negative literal not a iff a /∈ S. A set S satisfies
a set of literals L iff ∀l ∈ L : S � l. A set S satisfies
constraint← l1, . . . , ln iff S 6� li for some 1 ≤ i ≤ n.

The ASP semantics is defined using the concept of a
reduct (Gelfond & Lifschitz 1988). The reduct PS of a pro-
gram P = 〈G, C〉 with respect of a set of atoms S is:

PS = 〈GS , C〉, where

GS = {head(r)← body+(r) | r ∈ G, S � body−(r),
and r is either a basic rule or a
choice rule and head(r) ∈ S} .

Note that all rules that belong to the generator part of a
reduct P are basic rules and all literals that occur in them
are positive. Such rules are monotonic so GS has a unique
least model (Gelfond & Lifschitz 1988) that we denote
with MM(GS). If this least model happens to coincide with
S and it also satisfies all constraints, then S is an answer set
of P .

Definition 1 Let P = 〈G, C〉 be a program. A set of ground
atoms S is an answer set of P if and only if:

1. MM(GS) = S; and
2. ∀r ∈ C : S � r.

A program P is consistent if it has at least one answer set
and inconsistent if it has none.

Theory for Debugging
Odd Loops
Definition 2 The dependency graph DGP = 〈V,E+, E−〉
of a program P = 〈G, C〉 is a triple where V = Atoms(P)
and E+, E− ⊆ V × V are sets of positive and negative
edges such that:

E+ = {〈h, a〉 | ∃r ∈ G : head(r) = h and a ∈ body+(r)}
E− = {〈h, b〉 | ∃r ∈ G : head(r) = h and b ∈ body−(r)} .

Definition 3 Let DGP = 〈V,E+, E−〉 be a dependency
graph. Then the two dependency relations OddP and EvenP

are the smallest relations on V such that:
1. for all 〈a1, a2〉 ∈ E− it holds that 〈a1, a2〉 ∈ OddP ;
2. for all 〈a1, a2〉 ∈ E+ it holds that 〈a1, a2〉 ∈ EvenP ;
3. if 〈a1, a2〉 ∈ E− and 〈a2, a3〉 ∈ EvenP , then 〈a1, a3〉 ∈

OddP ;
4. if 〈a1, a2〉 ∈ E− and 〈a2, a3〉 ∈ OddP , then 〈a1, a3〉 ∈

EvenP ;
5. if 〈a1, a2〉 ∈ E+ and 〈a2, a3〉 ∈ EvenP , then 〈a1, a3〉 ∈

EvenP ; and
6. if 〈a1, a2〉 ∈ E+ and 〈a2, a3〉 ∈ OddP , then 〈a1, a3〉 ∈

OddP .

The reason for the interleaved definition is that the relations
Odd and Even are then easy to compute: we start by ini-
tializing them with the edges of the dependency graph, and
then compute the transitive closure of the graph where every
negative edge changes the parity of the dependency: if b de-
pends on c evenly and there is a negative edge from a to b,
then a depends oddly on c.

Definition 4 Let P be a program. Then, an odd loop is a set
L = {a1, . . . , an} of atoms such that 〈ai, aj〉 ∈ OddP for
all 1 ≤ i, j ≤ n. An atom a ∈ Atoms(P) occurs in an odd
loop iff 〈a, a〉 ∈ OddP . The program P is odd loop free if
∀a ∈ Atoms(P) : 〈a, a〉 /∈ OddP .

Diagnoses and Conflict Sets
Definition 5 Let P = 〈G, C〉 be an odd loop free program.
Then, a diagnosis of P is a set D ⊆ C such that the program
〈G, C \ D〉 is consistent. A diagnosis is minimal iff for all
diagnoses D′ of P it holds that |D′| ≥ |D|. The set of all
minimal diagnoses of P is denoted by D(P).

Example 1 Consider the program:

{a} .

← a. (1)
← not a. (2)
← not b. (3)

This program has two minimal diagnoses: D1 = {1, 3} and
D2 = {2, 3}. To see that D1 is really a diagnosis, note that
when its rules are removed, we are left with:

{a}.
← not a.

that has the answer set {a}.

We can observe two properties of diagnoses from Defini-
tion 5. First, if P is consistent, then it has a unique minimal
diagnosis that is the empty set. The second observation is
that every inconsistent program has at least one minimal di-
agnosis.

Theorem 1 Let P = 〈G, C〉 be an inconsistent odd loop free
program. Then there exists at least one minimal diagnosis D
for it.

Proof 1 The rules in G can be systematically translated into
an equivalent normal logic program G′ where every choice
rule is replaced by an even loop (see (Niemelä & Simons
2000) for details). Since G′ is odd loop free, it is consis-
tent (You & Yuan 1994). Thus, the set D′ = C is a diagno-
sis. Since C is finite, there has to exist at least one minimal
diagnosis D ⊆ D′.

Definition 6 Let P = 〈G, C〉 be a program and D(P) the
set of its minimal diagnoses. Then, a conflict set C ⊆ C is a
set of constraints such that:
1. for all diagnoses D ∈ D(P) it holds that |D ∩ C| = 1;

and
2. for all constraints r ∈ C there exists a diagnosis D ∈

D(P) such that r ∈ D.
The set of all conflict sets of P is denoted by C(P).

Intuitively, constraints that belong in a conflict set are mu-
tually exclusive in the sense that it is impossible to have all
of them satisfied at the same time. Note that with this defini-
tion it is possible that a program does not have any conflict
sets at all.

Example 2 In Example 1 we had two diagnoses D1 =
{1, 3} and D2 = {2, 3}. We can partition the constraints
that occur in them into two conflict sets:

C1 = {1, 2}
C2 = {3} .

Example 3 The program:
{a}. ← not a. (1) ← a, b. (4)
{b}. ← not b. (2) ← b, c. (5)
{c}. ← not c. (3) ← a, c. (6)

has six minimal diagnoses: {1, 2}, {1, 3}, {1, 5}, {2, 3},
{2, 6}, and {3, 4}. We see that there is no way to partition
the constraints so that every diagnosis contains exactly one
rule for each set.

The ASP Programs
In this section we create three different ASP programs that
can be used to debug contradictory programs. We express
these programs using the full SMODELS syntax so we need
to introduce a few new constructs. We do not give here the
full formal semantics but the interested reader may consult
(Syrjänen 2004) for details.

A cardinality constraint literal is of the form
L {l1, . . . , ln} U where L and U are integral lower
and upper bounds and li are literals. A cardinality constraint
literal is true if the number of satisfied literals li is between
U and L, inclusive. Next, a conditional literal has the
form a(X) : d(X) This construct denotes the set of
literals {a(t) | d(t) is true}. Finally, a fact may have a
numeric range in it and a(1..n) denotes the set of n facts
{a(1), . . . , a(n)}.

Odd Loop Detection
When we do the odd loop detection, we will use the standard
meta-programming encoding of logic programs (Sterling &
Shapiro 1994). A rule:

r = h← a,not b

is encoded using the facts:

rule(r). pos-body(r, a).
head(r, h). neg-body(r, b).

We start the odd loop program by extracting the atoms from
the program representation:

atom(H)← head(R, H).
atom(A)← pos-body(R, A).
atom(B)← neg-body(R, B).

Next, we construct the dependency graph for the program:

pos-edge(H, A)← head(R, H),
pos-body(R, A).

neg-edge(H, B)← head(R, H),
neg-body(R, B).

One step positive dependency is even, negative odd:

even(X, Y)← pos-edge(X, Y).
odd(X, Y)← neg-edge(X, Y).

Adding a new positive edge preserves parity:

even(X, Z)← pos-edge(X, Y), even(Y, Z), atom(Z).
odd(X, Z)← pos-edge(X, Y), odd(Y, Z), atom(Z).

Adding a negative edge flips parity:

odd(X, Z)← neg-edge(X, Y), even(Y, Z), atom(Z).
even(X, Z)← neg-edge(X, Y), odd(Y, Z), atom(Z).

There is an odd loop if a predicate depends oddly on itself:

odd-loop(X)← odd(X, X).

Two atoms X and Y are in same odd loop if X depends
oddly on Y and Y depends evenly on X:

in-odd-loop(X, Y)← odd(X, Y), even(Y, X).

The above rules correspond directly to the Definitions 1–4.
We could stop here, but we can make debugging a bit easier
if we also identify which rules belong to which loops. We
start by choosing one of the atoms that occur in a loop to
act as an identifier for the loop. We take the atom that is
lexicographically the first one:

first-in-loop(A)← odd-loop(A), not has-predecessor(A).
has-predecessor(A)← in-odd-loop(B, A), B < A.

The final part of the odd loop detection is to compute which
rules belong to the loop. The idea is that if X and Y are in
the same loop, then a rule that has X in the head and Y in
the body participates in the loop. We also have to extract the
identifier of the particular loop.

rule-in-loop(R, Z)← in-odd-loop(X, Y),
in-odd-loop(X, Z),
first-in-loop(Z),
head(R, X),
pos-body(R, Y).

rule-in-loop(R, Z)← in-odd-loop(X, Y),
in-odd-loop(X, Z),
first-in-loop(Z),
head(R, X),
neg-body(R, Y).

Example 4 Consider the program:

a← not b. (1)
b← a. (2)

This program is expressed with facts:
head(1, a). neg-body(1, b).
head(2, b). pos-body(2, a).

When these facts are given as an input for the odd loop de-
tection program, we have a unique answer set. The relevant
atoms from it are:

S = {odd-loop(a), odd-loop(b), first-in-loop(a),
rule-in-loop(2, a), rule-in-loop(1, a)} .

This answer set tells that the rules (1) and (2) form an odd
loop whose identifier is a.

Finding Diagnoses
We could use the meta-representation of the previous sec-
tion for also diagnosis computation but it is more efficient
in practice to use a more direct translation. The basic idea is
that we add a new literal to the bodies of constraint to control
whether it is applied or not. For example, a constraint:

r =← a, not b.

is translated into two rules:
← not removed(r), a,not b.

constraint(r).
All generating rules are kept as they were. Next, we add the
rule:

{removed(R) : constraint(R)} n.

This rule asserts that at most n of the constraints may be
removed. Here n is a numeric constant whose value is set
from the command line.

The actual diagnoses are then computed by first setting
the n to zero and then increasing the value until the trans-
lated program has an answer set. The diagnosis can then be
extracted by noting the removed/1 atoms that are true in the
answer.

Example 5 The program from program from Example 1 is
translated into:

{a}.
← not removed(1), a.

← not removed(2),not a.

← not removed(3),not b.

constraint(1..3).
{removed(R) :constraint(R)} n.

When we start computing the answer sets for the trans-
formed program we note that there are no answer sets when
n = 0 and n = 1. With n = 2 there are two answer sets:

S1 = {removed(1), removed(3), a}
S2 = {removed(2), removed(3)}

The two diagnoses can then be read directly from S1 and S3.

Finding Conflict Sets
Once we have computed all diagnoses, we can check
whether the program has conflict sets. We use a fact

in-diagnosis(d, r).
to denote that the constraint r is in the dth diagnosis.

First, we initialize several type predicates:
conflict-set(1..s).

diagnosis(S)← in-diagnosis(S, R).
rule(R)← in-diagnosis(S, R).

Here s is again a constant that is set during the instantiation
of the program.

We need two rules to compute the sets. The first one states
that each rule belongs to exactly one conflict set, and the
second states that every diagnosis should have exactly one
rule in each conflict set:

1 {in-set(S, R) : conflict-set(S)} 1← rule(R).
1 {in-set(S, R) : in-diagnosis(X, R)} 1← conflict-set(S),

diagnosis(X).
The conflict sets are computed in a same way as the diag-

noses: we start with only one conflict set, and increase their
number until we either find a partition or we know that none
exists.

Explanations

Initialization

Odd loops

Diagnoses

Debug

Loop
Critical sets

Figure 1: The debugger workflow

Example 6 From Example 5 we get the facts:

in-diagnosis(1, 1). in-diagnosis(1, 3).
in-diagnosis(2, 2). in-diagnosis(2, 3).

With these facts we find an answer set3 when s = 2. This
answer set is:

S = {in-set(1, 1), in-set(1, 2), in-set(2, 3)}

corresponding to C(P) = {{1, 2}, {3}}.

Debugger Implementation
We have created a prototype implementation for the
ASP debugger, smdebug, by combining the SMOD-
ELS programs with a driver program that is written with
Perl. The debugger implementation is included within
the lparse instantiator that is available for download at
http://www.tcs.tkk.fi/Software/smodels.

The general system architecture of smdebug is shown in
Figure 1. The debugger has four main components:

1. Odd loop detection. If the input program has an odd loop,
smdebug issues an error message and terminates;

2. Diagnosis computation where smdebug calls SMODELS
to compute all minimal diagnoses of the program;

3. Conflict set computation where smdebug tries to find
conflict sets of the program; and

4. Explanation computation where smdebug computes
derivation trees for constraints that occur in diagnoses.

We did not examine the fourth phase in this work but its idea
is to give the programmer more detailed knowledge about
the reasons of the contradictions. The user selects one diag-
nosis, and the debugger computes which set of choices leads
to this particular contradiction and presents the information
in the form of a derivation tree.

3More precisely, we have two isomorphic answer sets.

Conclusions and Further Work
In this work we applied the techniques from the symbolic
diagnosis (Reiter 1987) field to ASP debugging. The main
concepts have a natural mapping into ASP programs where a
diagnosis is a set of constraints whose removal returns con-
sistency to the program. We restrict these diagnoses to pro-
grams that are created in such a way that they do not have
odd loops. We use another ASP program to find the odd
loops that occur in a program and to warn about them. Fi-
nally, we defined the concept of the conflict set that can be
used to check which constraints are mutually exclusive.

We have created a prototype implementation, smdebug,
that implements the three debugging techniques of this pa-
per for the full SMODELS input language. Additionally,
smdebug also can compute derivation trees to act as ex-
planations for the contradictions.

The main limitation for the current version of smdebug
is that it can be used to find only contradictions. However,
some of the techniques can be adapted to also explain why
a given atom is or is not in an answer set. In particular, the
method of computing explanations should generalize to this
direction quite easily.

The next step in continuing with the smdebug develop-
ment is to add support for handling non-contradictory pro-
grams. This means that we have to add support for comput-
ing and analyzing answer sets of the program.

There are several avenues of further research for improv-
ing the current system. The algorithm that smdebug uses
for finding the minimal diagnoses and conflict sets is rather
naive: iteratively increasing the size of the parameter un-
til we get a program that has an answer set. It is possible
that some other approach could get us equally useful results
faster. Also, using some other minimality condition, like
subset minimality, might give better results in some cases.

This debugger has not been used to debug large answer
set programs, yet. The largest debugged program thus far
has been the part of the debugger itself. One of its early
versions of the explanation generation program contained a
bug that caused it to be contradictory. The debugger not
only identified the place of the error immediately, but it also
uncovered two bugs in the lparse instantiator.

It may be that the current debugging support is not strong
enough to handle really large programs. In those cases prob-
ably the best way to proceed is to try to manually find the
smallest input program where the error happens and to de-
bug that one.

In conclusion, this approach seems promising for ASP
development but only time will tell if it will fulfill those
promises.

References
Aho, A. V.; Sethi, R.; and Ullman, J. D. 1986. Compil-
ers: Principles, Techniques, and Tools. Addison-Wesley
Publishing Company.
Anger, C.; Konczak, K.; and Linke, T. 2001. Nomore :
A system for non-monotonic reasoning under answer set
semantics. In Proceedings of the 6th International Confer-

ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR’01), 406–410.
Babovich, Y. 2002. Cmodels, a system computing answer
sets for tight logic programs.
Balduccini, M., and Gelfond, M. 2003. Logic programs
with consistency-restoring rules. In AAAI Spring 2003
Symposium, 9–18.
Brain, M.; Watson, R.; and De Vos, M. 2005. An inter-
active approach to answer set programming. In Answer
Set Programming: Advances in Theory and Implementa-
tion ASP-05, 190 – 202.
Constantini, S. 2005. Towards static analysis of answer set
programs. Computer Science Group Technical Reports CS-
2005-03, Dipartimento di Ingegneria, Universita‘ di Fer-
rara.
Costantini, S., and Provetti, A. 2005. Normal forms for
answer sets programming. TPLP 5(6):747–760.
Dell’Armi, T.; Faber, W.; Ielpa, G.; Koch, C.; Leone, N.;
Perri, S.; and Pfeifer, G. 2001. System description: Dlv. In
Proceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’01).
Vienna, Austria: Springer-Verlag.
East, D., and Truszczyński, M. 2001. Propositional satis-
fiability in answer-set programming. In Proceedings of KI
2001: Advances in Artificial Intelligence, 138–153.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proceedings of the 5th
International Conference on Logic Programming, 1070–
1080. The MIT Press.
Lin, F., and Zhao, Y. 2002. ASSAT: Computing answer
sets of a logic program by SAT solvers. In Proceedings
of the 18th National Conference on Artificial Intelligence,
112–118. Edmonton, Alberta, Canada: The AAAI Press.
Lin, F., and Zhao, Y. 2004. On odd and even cycles in
normal logic programs. In Proceedings of the 19th Na-
tional Conference on Artificial Intelligence (AAAI-04), 80–
85. The AAAI Press.
Niemelä, I., and Simons, P. 2000. Extending the smodels
system with cardinality and weight constraints. In Minker,
J., ed., Logic-Based Artificial Intelligence. Kluwer. 491–
521.
Niemelä, I.; Simons, P.; and Syrjänen, T. 2000. Smodels: A
system for answer set programming. In Proceedings of the
8th International Workshop on Non-Monotonic Reasoning.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32:57–95.
Sterling, L., and Shapiro, E. 1994. The Art of Prolog. MIT
press.
Syrjänen, T. 2004. Cardinality constraint logic programs.
In The Proceedings of the 9th European Conference on
Logics in Artificial Intelligence (JELIA’04), 187–200. Lis-
bon, Portugal: Springer-Verlag.
You, J.-H., and Yuan, L. Y. 1994. A three-valued semantics
for deductive database and logic programs t. Journal of
Computer and System Science 49:334–361.

