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Abstract—In a private similarity search (PSS) protocol, a client from [1] are only claimed to be secure againgthertext-only
receives from the database the entry, closest to her query, without gttack.
either the client or the database getting to know more information Our contributions. We show that several protocols in [1] are

than necessary. PSS protocols have potentially wide application . : . _ .
in areas like bioinformatics, where precise queries might be NSECUre even following the weak security definitions of their

impossible. We show that the previously proposed PSS protocols @uthors. First, [1] proposes protocols for the PSS with respect
by Du and Atallah have serious weaknesses; in particular, some to the Euclidean distance. This protocol essentially employs
of their protocols can be broken by a semi-honest third party who g private minimal scalar product (PMSP) protocol, using the
observes a relatively small amount of traffic. In several cases, we help of Ursula to find the minimum. The PMSP protocol masks

show that even maximally securified versions of these protocols— th | dist b iralditi kina functi
when used as proposed by Du and Atallah—are not private in e real distances by usiraglditive masking functions

the sense, needed in the practice. We propose a few protocols that \We show that the PMSP protocol of Du and Atallah [1] is
are better from the privacy viewpoint, but none of the proposed completely insecure against ciphertext-only attacks. Namely,
protocols is really efficient. we show that a conditionally trusted third party Ursula can

Index Terms—Cryptanalysis, cryptographic protocols, privacy- fecover the queries by observing a small amount of traffic and
preserving data-mining, private similarity search. using a straightforward matrix equations. Our attack against

this protocol succeeds with a very high probability as soon as
I. INTRODUCTION the database has a reasonable size. As a consequence, the full
PSS protocol becomes insecure in practice.

In a private similarity search (PSS) protocol [1], a client After that, we show that all PMSP protocols, that are
receives from the database (the index of the) the entry, closesinputed by using additive masking functions, must reveal
to her query, without either the client or the database gettifige differences between the scalar products. We then propose
to know more information. Similarity search is used in manyvo new SMSP protocols that do not reveal anything else,
cases where, e.g., finding the exact match is impossible except these differences, in the security-model proposed by
infeasible, when the data is corrupted by noise or the ugen and Atallah (security against ciphertext-only attacks with
is really interested in similar objects. A canonical applicatiothe help of a semi-honest third party Ursula). This protocol is
area of the PSS is bioinformatics, together with related fields efficient as the Du-Atallah PMSP protocol and quantifiably
like biometrics. A motivating task could be, given a DNAmore secure.
sample of a criminal, to find the closest match in the genomeHowever, ciphertext-only security is not sufficient in many
database without compromising the safety of honest citizepgactical applications, since additional public information
To implement such applications, one must address the privagyout the database may easily disclose private information.
concerns. Otherwise, both clients and database maintain@is argue that practical PSS protocol must at least withstand
would be discouraged to participate in such services. statistical attacks (where the attacker knows something non-

One can expect private similarity search to be a hatrivial about the database) and known-plaintext attacks. We
problem, in particular since at some point during the PShow that any PMSP protocol, where Ursula learns distance
protocol, the participants have to find minimum over nordifferences, is insecure against very simple statistical attacks.
public distances. Private minimum finding is a well-knowwhile a refinement to the additive masking (the use of order-
cryptographic hard problem and only generic inefficient prreserving affine transformation, defined later in this paper)
tocols for it are known [2]. can resist simple statistical attacks, it is not sufficient for more

Thus, one cannot expect to design really practical protoc@kborate attacks. Finally, in Sect. IV, we propose the divide
for the PSS that are secure in the sense of secure two-patyl conquer technique that provides more security, but it is
computations [3]. The main goal of published research @iso computationally more demanding.
the PSS [1] has been to proposHicient PSS protocols that We stress that also the protocols, proposed in this paper,
are secure according to somewhat less stringent notions. kog applicable only in limited environments, e.g., when only
example, in [1] the authors propose several PSS protocols ttie ciphertext-only attacks are allowed. Still, the provably
are relatively efficient but make use of a conditionally trustesecure alternative of using Yao’s alternative garbled circuit
third party Ursula, who is assumed to follow the protocol anevaluation [4] is computationally too costly for large databases,
not to collaborate with any other party. Moreover, the protocoéd therefore our new protocols could be used in the practice



when a trade-off between security and efficiency is desired.ilhave left-inverses iffA/ does. Random sampling i@, is

is a major open problem to design a PSS protocol that is bathuivalent to random sampling modu¢’ for every i, and

secure and efficient. thus the probability in this case is just a product of the

Road-map. Section Il introduces the reader to notation angrobabilities given by case (a). ]

preliminaries. Section Il describes our attacks againstiM Private similarity search. A private similarity search (PSS)

DASP protocol and improved PSS protocols. Section I@rotocol has two parties, the querier Alice and the database

gives a brief overview of other possible attack scenarios andner Bob. Alice’s private input is a vector (query;

solutions. Bob’s private input is the database with vector elements

Y1, ---,Ym- Assume that the similarity between two vectors

is determined by a public distance (score) functidf, ).

Notation. A PSS database can consist of either discret®uring a PSS protocol, Alice learns thmatch indexb,

continuous or hybrid vectors. For example, genome data @t y, = argmin,, d(x,y;). and the correspondingatch

be represented over discrete alphabet, whereas biometric da@re d(x,y,) = min; d(x,y;). If b is not unique, Bob

is inherently continuous. For discrete data, we use elementswdy return a randomly chosen index that minimigedlice

some quotient ring,, and we think of continuous parametersnust gain no new information, except her private output (the

as fixed point real numbers that are mapped ftdy using match index and the match score). Bob must gain no new

a suitable affine transform. information. Some PSS protocols use a conditionally trusted
For n-dimensional vectors, two standard distance functiomisird party Ursula, who must gain no new information during

are the Euclidean distanaé,(z,y) = [>;(z; — v:)?]*/? the protocol.

and the Manhattan distancg (x,y) := . |z; — v;|, where Du-Atallah protocol for finding minimal Euclidean dis-

all calculations are done . (If made inZ;, no modular tance.The task of finding the closest match can be simplified

reductions should appear in the computations.) whend(-,-) is the Euclidean distance. Then one can ignore

Cryptographic background. A public-key cryptosysteriil is  the square root and comput(x,y;) == >, (25 — ¥ij)%,

atriple (G, E, D) of probabilistic polynomial-time algorithms where y; = (yi1,...,%:n). Moreover, sinced?(x,y;) =

for key-generation, encryption and decryption. A cryptosysteg? — 2z - y; + y;2 andx? is a constant known to Alice, it is

IT is homomorphic ifEx (m1;7) - Ex(me;s) = Ex(mi +  sufficient for Alice to learn the minimal value ef2z-y; +y;>

ma;7-s), Where+ is a group operation ands a groupoid op- over all i-s. The latter task can be reduced to the private

eration, and semantically secure if no probabilistic polynomiatinimal scalar product problem by defining new vectefs=

time adversary can distinguish between random encryptions(of2zy, ..., —2z,,1) and y} := (yi1,- -, Yin, 2. ;- ¥3;) for

two elements, chosen by herself. See, e.qg., [5], for an efficiegt ;-s: thenz’ - Y= —2x - y; +yi®.

semantically secure homomorphic public-key cryptosystem. Since only generic inefficient protocols are known for the

Linear-algebraic background. The next results are necessaryninimum finding [2], the hardest part of any reasonable

to quantify our attacks in the next section. For the sake PSS protocol is to find the minimum over the distances.

completeness, we present them together with proofs. To overcome this issue Du and Atallah proposed in [1] to
First, let us denote the ring of x n matrices over the ring use a trusted third party Ursula. Their proposed protocol,

Z by Maty, «,,(Z:). Recall that a matrix equation/z = y MINDASP, is depicted by Protocol 1.

over the finite fieldGF(q) = Z, can have at mogg®—"ank(M)

solutions. Generally, whe#; is a ring, the solution oM x =

II. NOTATION AND PRELIMINARIES

INPUT: A query = and a databasgi, ..., ym.

y is unique iff the matrix) is left-invertible. LetL be the
set of left-invertible matrices. DefinB,,,«,(t) := Pr[M «
Mat,,xn(Zt) : M € L].
Lemma l:Let m > n, let ¢,q,...,q¢0 be some
primes. Then the following claims hold: (&),.xn(q) =
n—1 —m—+kY-
k=0 (1 —4q )'
(©) P (a" -+ a;") = ITizy P (@0)-

Proof: (a) SinceZ, is a finite field, a matrix A/
over Z, is left-invertible iff all columns of M are linearly
independent. Now, if the firsk columns of M are linearly
independent, they span a vector space of dimensiand size

OUTPUT: The indexb and the score: - ys.

1) Alice and Bob jointly generate two random numbers 2.
2) For every rowi:

a) Alice and Bob jointly generate two random vectors
A B

RA RB.
b) Alice sendswi* — = + R ands? —z - RZ +r4
to Ursula.
c) Bob sendaw? — y; + RZ ands? — R - w? ++F
to Ursula.

d) Ursula computes and stores — wi* - w? — s — sP.

3) Ursula finds an indek for which v, = min; v;. She send$
andw, to Alice. Alice outputsvy, + r* + 2.

Protocol 1: MINDASP protocol.

q"*. The probability that the next column avoids this space is

1—¢*/q™ and thus probability that at columns are linearly

independent i [} —, (1 — ¢~"t%).
(b) Follows directly sincelM has a left-inverse modulg™ iff

remainder theorem, matrice®/; = M mod q{l for every

During this protocol, for everyi, Ursula learns the value

v; = x-y;—r—rB for r, andr g unknown to her. Therefore,

provided that Ursula is honest, Alice learns the correct answer.
M mod ¢ has a left-inverse modulg. (c) By the Chinese Though Ursula gains new non-trivial information about the
query, the authors of [1] argue that it is not sufficient to




reveal either the match scores, the queries or the datahdN¥8UT A query z and a databasgs, . .., Ym.
However, [1] does not give any further analysis. It also dg&¥/TPUT: The indexb and the scorer - .

not specify how to choose random values. In the case gf al) Alice and Bob jointly a random query key
discrete search space, we should @sewith ¢ being larger | 2) For every row:.

R B
than any intermediate scalar product. More preciselyAlet a) aA"SiZlg?Td_ Bob randomly choose vectdR', R}’ and

max{x - y; — « - y;}; then we must have > 2A since b) Alice sendsw? — = + R ands? — z- R +1r; to
otherwise, Ursula cannot determine the smallgstThus, in Ursula.

the discrete case, Alice and Bob first agree on a %afe c) Bob sendsw —yi+RP and

perform all calculations iZ; and choose all necessary random s{ — R wP —r—rito UFSU|aA 5 A B

d) Ursula computes and stores«— w; - w; —s; — s; .

Ursula finds the minimising indek such thatv, = min; v;.
Then send$ and v, to Alice, who finds the score, — .

numbers uniformly fromZ,. If the vectors are continuous
Alice and Bob have to embed real numbers into large eno Jgh3)
Z.. More precisely, they should first fix the precision parameter

p and use transformatiom — |p - 2]. Therefore, we must Protocol 2: The MINTSP protocol
havet > p?A, since otherwise Ursula cannot determine the
minimum.

. . Proof: Correctness is clear, sinee? - w? — s — s =

Du-Atallah security model. In the security model of Du and A B B K lf;’ 5 ngi,

Atallah, only ciphertext-only attacks with the next restrictions(zc FRY) (it Ry - (@ Ry ) — (R (s + R —
r,-) = x - y; + r. It is straightforward to simulate the

are allowed: Ursula colludes with nobody and has no prl(\)news of Alice and Bob, and therefore nothing will be leaked
information about queries and a database. A protocol

considered secure in this model if Ursula cannot restore t them. To prove that nothing else, except the vahlresrs

queries, database vectors or corresponding match score ed to Ursula, we show how to perfectly simulate views
is still required that Bob must learn no new informatro rsula by a simulator who knows all the differencés.
onsrder the view of Ursula. In a valid protocol run, Ursula
and Alice must only learn the match index and the matcly, . tuplegw?, w5, s, sB), such thatw wB — st — P =
score. It is easy to see that during thaN®ASP protocol, N Wi S
Ursula can trivially learn distance differences. This does n ot A B A

“Yi + 7 SrnceRA RB r; are chosen unrformly, the triple
has aIso a uniform distribution. Consequently,
directly imply that ciphertext-only attacks are dangerous to t Wi, 87) q Y

ﬁe simulator can choose;, w:*, w2,s/ at random and
protocol in the Du-Atallah security model, as the drfferences A -B }1’ B

themselves do not reveal any vectors or match scores Computes® = & - @7 — 5% — by — d i -
y : To reduce the number of required random bits and the com-
1. ANALYSIS OF SMSP ROTOCOLS munication, Alice and Bob can use a pseudo-random generator

for generating-, R;“, RE.r;. Then they have to agree only on
random seed and only send the tupléw?*, w?, s&, sP) to
Ursula. This reduces the communication between Alice and
Bob to a few hundred bits.

Provided that vectors belong or can be safely embedded into
Z}, whereZ, is the plaintext space of the used semantically
secure homomorphic public-key cryptosystBm- (G, E, D),
one can alternatively use the next communication-efficient
MINHSP protocol, depicted by Protocol 3. Note that the same
key K can be used in multiple protocols.

Efficient ciphertext-only attack against MINDASP. Recall
that m is the number of database elements ands the
dimension of the vectors.

Lemma 2: Assume that the MiDASP protocol is executed
over the ringZ;. If m > n, a semi-honest Ursula can
reconstructe with probability P, 1)y, (t).

Proof: For anyi, s? = (w — ) - w2 + r? and thus
wB .z =w wP +rP—sP. Hence, Ursula obtains: — 1
equationgw? —w?B).z = w wP —w wB —(sF —sP).
The claim now follows from Lemma 1.

As an exemple, ift = 10, n = 6 andm = 7, _the SUCCESS[ A\ Ce's INPUT A queryz — (1, ..., 2n)
probability is roughly0.22, while m = 11 raises it t00.94. If | Bog's inpuT: A databaseys, ..., ym, wherey; = (yi1, ..., yin).
m > 2n, the success rate will be almokt OuTPUT: The indexb and the scorex - yp.

Improved protocols. Next, we propose two alternative PMSP 1) yrsula generates a new private-public key pairlfoand
protocols that achieve the security goal, proposed by Du and sends the public keys to Alice and Bob.

Atallah: namely, Alice learns exactly the closest match and the2) Alice and Bob choose a randomfrom the plaintext space ¢
match index, Bob gains no new information and Ursula learns IL. ) .

only the distance differences; := d(z,v;) — d(zx, y;). 3) V'flﬂrefea;d?sea[ﬁgsﬁl'f;njg%d?dn%e%{(‘”;tj) to Bob,

The MINTSP protocol, depicted by Protocol 2, is a simple 4y For each row, Bob sendss; — [[ /" - Ex(r;t), for a

=

tweak to MNDASP that achieves the required security level. fresh random numbet; to Ursula.

(Note that scalar products in theIMTSP protocol represent 5) Ursula decrypts the result and sends the match indaxd

distances up to an additive constant.) v <= Dic(sp) to Alice. Alice computes the score, — .
Lemma 3:Assume the participants are semi-honest. During Protocol 3: The MINHSP protocol

a single run of Protocol 2, Alice learns only the match score
and match index, Bob learns nothing and Ursula learns onlyAlice’s and Bob’s privacy in the MiHSP protocol relies on
the scalar product differences; := = - y; — = - y;. the semantical security @f. The security proof for Protocol 3



is very standard and therefore omitted. TheNMSP protocol variance and then use the obtained knowledge to reconstruct
requiresn encryptions by Alice, andnn exponentiations the match score. For example, in the case of thes MsP
by Bob. The number of exponentiations can be amortiseahd the MNHSP protocols, one can compute the expected
For example, if vectorg; consist of binary data, Bob will value ofv;, Exp(v;) := & > | v; = Exp(d;) +r. Therefore,
not have to perform any exponentiations. Hence, the maftr, y,) = v, — Exp(v;) + Exp(d;). Since by assumption,
demanding computational burden wof decryptions is placed all d;-s are sampled randomly frorf?, then the standard
on Ursula. The communication of the INHSP protocol is central limit theorem assures thBkp(d;) has the Gaussian
only m+n ciphertexts, whereas theINITSP protocol requires distribution N (11, 02 /m), whereu ando are the mean and the
sending at leastm(n+1) scalars. Since the MTSP protocol variance of the distributio®. Let d. = v, —Exp(v;)+ i, then
is computationally more efficient, we will have a trade-ofbne can use standard results from statistics to show that the
between communicational and computational complexity. match scorel(x, yp) is in the intervald, + o2 /\/m with the
probability 68%. For example, ifn = 100, x = 50 andm >

IV. SECURITY AGAINST MORE ELABORATED ATTACKS ;2 _ 695 Ursula can with probabilitss% infer the match

To avoid the costly minimum finding operation, the previouscore with precisiont-1. Ursula can estimate the variance
protocols make use of a trusted third party Ursula. However? ~ Exp((v; —Exp(v;))?) = 1/m >, (v; — Exp(v;))? directly
Ursula learns some non-trivial information—namely, the digrom the multi-set{d(x, y;) + r} and thus also compare the
tance differences—about the queries and the database. Neiferent match scores without knowing the distribution.
we will analyse how Ursula can abuse this information arldetection of identical queries.In all presented protocols,
what could be the possible counter-measures. Ursula can detect identical queries, since identical (or even
Known-plaintext attacks. As Ursula obtains the list of dis- just similar) queries have identical (resp., similar) distance
tance differences;; = x-y; —x-y;, the knowledge ok-y; for multi-sets {d(x,y;)}. Thus, with a high probability, Ursula
any singlei reveals all scalar products. If Ursula knows- n  can decide whether two queries were equal or not. The rate of

database elementg;,,...,y;. , she will obtainr equations false positives—two different queries that have have identical
divie = @ - (Yi, — Yio)- COnsequently, she can restore albr similar distance multi-sets—depends on database vectors,
query vectorse, provided thaty;, — vi,,-..,¥i,. — Yi, are but is certainly small. E.g., this rate can be computed if all

linearly independent. The latter holds for a random databadistances are sampled independently frémIf the queries
with probability, given by Lemma 1. By a similar argumentare similar,d(xy,z2) < 7, then|d(xzy,y;) — d(z2,y;)| < 7.
the knowledge of- > n linearly independent query vectors tof v} andv? are ordered lists of the values obtained in the
the same database reveals all differenggs- y;. PSS protocols then for similar querigs; —v? —vi +v?| < 7.
Some simple attacks can be avoided by randomly permuti@gder preserving transformations. The previously described
the database elements before each query. This forces Urqirlatocols make use of the simplest order preserving transfor-
to determine the values,,,...,v;. that are paired with mationd; — d; + r. This map corresponds to the use of one-
Yig, - - -, Yi,.. Since the number of valid pairings i&(m — time pad, and thus the knowledge of a single distance compro-
1)--- (m—r+1), wherem is the number of database elementsnises all distances. If say a randomised affine transformation
such attacks become infeasible for most databases, at least if> sd; + r + ¢, with a random distortion, is used, we get
assuming that Ursula does not have any extra knowledge abautit more security but the database can still be completely
the database. determined by a known distance pair.
Statistical attacks. However, the random permuting of the In the MINTSP and MNHSP protocols, it is straightfor-
database rows does not provide absolute protection sinveard to replace the additive masking function with an affine
Ursula still learns the multi-sefd(x,y;) +r}. If n is large transformation. First note that not all affine transformations
and the database vectors contain enough entropy, then onemaserve order: (a\ := max{z - y; — = - y;} < t/(2s)
approximate the empirical distance distribution with a dataust hold to avoid modular reduction; ()< € < s must
independent distribution (this is caused by these of high hold to avoid local re-ordering. Thus, to implement affine
dimensions This statement is of course purely qualitativemasking, Alice must choose randomly from valid interval
quantitative estimates require the knowledge of the distributiene [s,,in, Smaz], Where s,,;, and s,,... are chosen so that
of query and database vectors. For example, if the datab#ise resulting transformation would preserve order, and then
and query vectors are uniformly and at random chosen frame sz instead ofz, while Bob must use: + ¢ instead of
{0,1}", then the distribution ofi3 can be approximated with ». However, as not all values of are valid, Ursula knows
the Gaussian distributiooV (%, %). Similar results can be thatd; — d; € [(vi — vj)/Smaz, (Vi — v;)/Smin). HeNce, the
obtained if the vector components are assumed to be (weak®io s, /smin Classifies the maximum uncertainty, though
independent; then the desired results follow from the theoremhe knowledge ofA sometimes allows to exclude part of the
of weak convergence. interval. Therefore, the knowledge of the mean valuef D
Assume now that the distance distributiBnis known to does not reveal the match score,if.../smin > 1/ (t—dmin),
Ursula and for a single query, all distances are independentihered,,,;, = min; d;.
sampled fromD. Consequently, Ursula can compute sever8@livide-and-conquer technique. The underlying idea of
point estimators like the mean value, the median or thlvide-and-conquer approach (see Protocol 4) is to find mini-



mum in several stages with a tournament scheme.

INPUT: A query = and a databasgi, ..., Ym.
OuTPUT: The indexb and the scorer - ys.
INITIAL STAGE
1) Bob randomly permutes the database and divides itknto
random almost equally-sized block$®, ..., y®)
2) Foreveryj € {1,...,k}:
a) Run a minimal scalar product protocol on inputand
y©, so that Ursula obtains the match indexand
Vb, min; @ - yfg .
b) Ursula generates two random vallb;% mod k and
df mod t, and sends them to Bob. She sends
bi —b; —bF mod k andd} «— v,, —dJ mod ¢ to

to Bob. Omitting unnecessary details, Bob receivgs- Qy;
where @ is a random invertible matrix known only to Alice.
Each query vector is in forny = Q '’ so that Bob can
computev; = q - z; =z’ - y..

In the SSO protocok’ and y; is chosen so that; =
(x—y;)%+r for all i-s. Therefore, the leakage 9f,, . . ., v,
has a devastating effect. Bob can solve the linear equations
Vi), —Vig +yio2_yik2 = _2w.(yik_yi0) and determine query
vectors. Then he can use revealed query vectars. ., xs
to reconstruct the database.

In the SSCO protocol, Bob obtaing = s(x — y;)% + 7.
Thus Bob can treat equality;, — v;, = —2s - (s, — Yi,) +
s(yi,? — yi,2) as linear equation with unknowns, = sz

Alice.
SECOND STAGE

1) Alice and Bob jointly generate a random permutatian

2) Alice and Bob choose a random key

3) For every indexj, Ursula learns(;) = df}(j) + df<j) + 7.

4) Ursula sends minimising index := argmin; v.(;y to Alice.

5) Alice uses private information retrieval to géf andb? and
computed, andb.

ands. Similarly, the revealed query vectars, . ..,z enable

to reconstruct the database. To conclude, both protocols are

insecure in practice—only a small leakage of database vectors

compromises the entire garbled database.
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This protocol is computationally more demanding since
computationally-private information retrieval protocols are not
cheap computationally or communicationally. (The currently
most communication-efficient protocol [6] has communication
complexity®(log? n - k +log n - £), wheren is the size of the
databasek is the security parameter arfdis the bit-length
of transferred strings.) Still, it is several orders of magnitude
more efficient than Yao’s garbled circuit evaluation [2]. The
latter requires roughly one oblivious transfer per input bit and
a large garbled circuit description.

Attacks against some other PSS protocols from [LRandom

permutations are not always applicable and thus known-
plaintext attacks can be dangerous. For example, Du and
Atallah proposed two protocols (see sections 4.4.1 and 4.5.1
from [1]) for PSS for Euclidean distance, when the database
itself is outsourced to potentially hostile party. In both cases,
Alice outsources her databasge, ..., y.. in a garbled form



