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Abstract— In a private similarity search (PSS) protocol, a client
receives from the database the entry, closest to her query, without
either the client or the database getting to know more information
than necessary. PSS protocols have potentially wide application
in areas like bioinformatics, where precise queries might be
impossible. We show that the previously proposed PSS protocols
by Du and Atallah have serious weaknesses; in particular, some
of their protocols can be broken by a semi-honest third party who
observes a relatively small amount of traffic. In several cases, we
show that even maximally securified versions of these protocols—
when used as proposed by Du and Atallah—are not private in
the sense, needed in the practice. We propose a few protocols that
are better from the privacy viewpoint, but none of the proposed
protocols is really efficient.

Index Terms—Cryptanalysis, cryptographic protocols, privacy-
preserving data-mining, private similarity search.

I. I NTRODUCTION

In a private similarity search (PSS) protocol [1], a client
receives from the database (the index of the) the entry, closest
to her query, without either the client or the database getting
to know more information. Similarity search is used in many
cases where, e.g., finding the exact match is impossible or
infeasible, when the data is corrupted by noise or the user
is really interested in similar objects. A canonical application
area of the PSS is bioinformatics, together with related fields
like biometrics. A motivating task could be, given a DNA
sample of a criminal, to find the closest match in the genome
database without compromising the safety of honest citizens.
To implement such applications, one must address the privacy
concerns. Otherwise, both clients and database maintainers
would be discouraged to participate in such services.

One can expect private similarity search to be a hard
problem, in particular since at some point during the PSS
protocol, the participants have to find minimum over non-
public distances. Private minimum finding is a well-known
cryptographic hard problem and only generic inefficient pro-
tocols for it are known [2].

Thus, one cannot expect to design really practical protocols
for the PSS that are secure in the sense of secure two-party
computations [3]. The main goal of published research on
the PSS [1] has been to proposeefficientPSS protocols that
are secure according to somewhat less stringent notions. For
example, in [1] the authors propose several PSS protocols that
are relatively efficient but make use of a conditionally trusted
third party Ursula, who is assumed to follow the protocol and
not to collaborate with any other party. Moreover, the protocols

from [1] are only claimed to be secure againstciphertext-only
attack.
Our contributions. We show that several protocols in [1] are
insecure even following the weak security definitions of their
authors. First, [1] proposes protocols for the PSS with respect
to the Euclidean distance. This protocol essentially employs
a private minimal scalar product (PMSP) protocol, using the
help of Ursula to find the minimum. The PMSP protocol masks
the real distances by usingadditive masking functions.

We show that the PMSP protocol of Du and Atallah [1] is
completely insecure against ciphertext-only attacks. Namely,
we show that a conditionally trusted third party Ursula can
recover the queries by observing a small amount of traffic and
using a straightforward matrix equations. Our attack against
this protocol succeeds with a very high probability as soon as
the database has a reasonable size. As a consequence, the full
PSS protocol becomes insecure in practice.

After that, we show that all PMSP protocols, that are
computed by using additive masking functions, must reveal
the differences between the scalar products. We then propose
two new SMSP protocols that do not reveal anything else,
except these differences, in the security-model proposed by
Du and Atallah (security against ciphertext-only attacks with
the help of a semi-honest third party Ursula). This protocol is
as efficient as the Du-Atallah PMSP protocol and quantifiably
more secure.

However, ciphertext-only security is not sufficient in many
practical applications, since additional public information
about the database may easily disclose private information.
We argue that practical PSS protocol must at least withstand
statistical attacks (where the attacker knows something non-
trivial about the database) and known-plaintext attacks. We
show that any PMSP protocol, where Ursula learns distance
differences, is insecure against very simple statistical attacks.
While a refinement to the additive masking (the use of order-
preserving affine transformation, defined later in this paper)
can resist simple statistical attacks, it is not sufficient for more
elaborate attacks. Finally, in Sect. IV, we propose the divide
and conquer technique that provides more security, but it is
also computationally more demanding.

We stress that also the protocols, proposed in this paper,
are applicable only in limited environments, e.g., when only
the ciphertext-only attacks are allowed. Still, the provably
secure alternative of using Yao’s alternative garbled circuit
evaluation [4] is computationally too costly for large databases,
and therefore our new protocols could be used in the practice



when a trade-off between security and efficiency is desired. It
is a major open problem to design a PSS protocol that is both
secure and efficient.
Road-map. Section II introduces the reader to notation and
preliminaries. Section III describes our attacks against MIN-
DASP protocol and improved PSS protocols. Section IV
gives a brief overview of other possible attack scenarios and
solutions.

II. N OTATION AND PRELIMINARIES

Notation. A PSS database can consist of either discrete,
continuous or hybrid vectors. For example, genome data can
be represented over discrete alphabet, whereas biometric data
is inherently continuous. For discrete data, we use elements of
some quotient ringZt, and we think of continuous parameters
as fixed point real numbers that are mapped intoZt by using
a suitable affine transform.

For n-dimensional vectors, two standard distance functions
are the Euclidean distanced2(x,y) :=

[∑
i(xi − yi)2

]
1/2

and the Manhattan distanced1(x,y) :=
∑

i |xi − yi|, where
all calculations are done inR. (If made in Zt, no modular
reductions should appear in the computations.)
Cryptographic background. A public-key cryptosystemΠ is
a triple (G, E, D) of probabilistic polynomial-time algorithms
for key-generation, encryption and decryption. A cryptosystem
Π is homomorphic ifEK(m1; r) · EK(m2; s) = EK(m1 +
m2; r ·s), where+ is a group operation and· is a groupoid op-
eration, and semantically secure if no probabilistic polynomial-
time adversary can distinguish between random encryptions of
two elements, chosen by herself. See, e.g., [5], for an efficient
semantically secure homomorphic public-key cryptosystem.
Linear-algebraic background. The next results are necessary
to quantify our attacks in the next section. For the sake of
completeness, we present them together with proofs.

First, let us denote the ring ofm×n matrices over the ring
Zt by Matm×n(Zt). Recall that a matrix equationMx = y
over the finite fieldGF(q) = Zq can have at mostqn−rank(M)

solutions. Generally, whenZt is a ring, the solution ofMx =
y is unique iff the matrixM is left-invertible. LetL be the
set of left-invertible matrices. DefinePm×n(t) := Pr[M ←
Matm×n(Zt) : M ∈ L].

Lemma 1:Let m ≥ n, let q, q1, . . . , q` be some
primes. Then the following claims hold: (a)Pm×n(q) =∏n−1

k=0

(
1− q−m+k

)
;

(b) Pm×n(qr) = Pm×n(q);
(c) Pm×n(qr1

1 · · · q
r`

` ) =
∏`

i=1 Pm×n(qi).
Proof: (a) Since Zq is a finite field, a matrixM

over Zq is left-invertible iff all columns ofM are linearly
independent. Now, if the firstk columns ofM are linearly
independent, they span a vector space of dimensionk and size
qk. The probability that the next column avoids this space is
1−qk/qm and thus probability that alln columns are linearly
independent is

∏n−1
k=0(1− q−m+k).

(b) Follows directly sinceM has a left-inverse moduloqr iff
M mod q has a left-inverse moduloq. (c) By the Chinese
remainder theorem, matricesMi ≡ M mod qri

i for every

i have left-inverses iffM does. Random sampling inZt is
equivalent to random sampling moduloqri

i for every i, and
thus the probability in this case is just a product of the
probabilities given by case (a).
Private similarity search. A private similarity search (PSS)
protocol has two parties, the querier Alice and the database
owner Bob. Alice’s private input is a vector (query)x;
Bob’s private input is the database with vector elements
y1, . . . ,ym. Assume that the similarity between two vectors
is determined by a public distance (score) functiond(·, ·).
During a PSS protocol, Alice learns thematch indexb,
s.t. yb = arg minyi

d(x,yi). and the correspondingmatch
score d(x,yb) = mini d(x,yi). If b is not unique, Bob
may return a randomly chosen index that minimisesb. Alice
must gain no new information, except her private output (the
match index and the match score). Bob must gain no new
information. Some PSS protocols use a conditionally trusted
third party Ursula, who must gain no new information during
the protocol.
Du-Atallah protocol for finding minimal Euclidean dis-
tance.The task of finding the closest match can be simplified
when d(·, ·) is the Euclidean distance. Then one can ignore
the square root and computed2(x,yi) :=

∑n
j=1(xj − yij)2,

where yi = (yi1, . . . , yin). Moreover, sinced2(x,yi) =
x2 − 2x · yi + yi

2 andx2 is a constant known to Alice, it is
sufficient for Alice to learn the minimal value of−2x·yi+yi

2

over all i-s. The latter task can be reduced to the private
minimal scalar product problem by defining new vectorsx′ :=
(−2x1, . . . ,−2xn, 1) and y′

i := (yi1, . . . , yin,
∑n

j=1 y2
ij) for

all i-s; thenx′ · y′
i = −2x · yi + yi

2.
Since only generic inefficient protocols are known for the

minimum finding [2], the hardest part of any reasonable
PSS protocol is to find the minimum over the distances.
To overcome this issue Du and Atallah proposed in [1] to
use a trusted third party Ursula. Their proposed protocol,
M INDASP, is depicted by Protocol 1.

INPUT: A query x and a databasey1, . . . , ym.
OUTPUT: The indexb and the scorex · yb.

1) Alice and Bob jointly generate two random numbersrA, rB .
2) For every rowi:

a) Alice and Bob jointly generate two random vectors
RA

i , RB
i .

b) Alice sendswA
i ← x + RA

i andsA
i ← x ·RB

i + rA

to Ursula.
c) Bob sendswB

i ← yi + RB
i andsB

i ← RA
i ·wB

i + rB

to Ursula.
d) Ursula computes and storesvi ← wA

i ·wB
i − sA

i − sB
i .

3) Ursula finds an indexb for which vb = mini vi. She sendsb
andvb to Alice. Alice outputsvb + rA + rB .

Protocol 1: M INDASP protocol.

During this protocol, for everyi, Ursula learns the value
vi = x·yi−rA−rB for rA andrB unknown to her. Therefore,
provided that Ursula is honest, Alice learns the correct answer.
Though Ursula gains new non-trivial information about the
query, the authors of [1] argue that it is not sufficient to



reveal either the match scores, the queries or the database.
However, [1] does not give any further analysis. It also does
not specify how to choose random values. In the case of a
discrete search space, we should useZt with t being larger
than any intermediate scalar product. More precisely, let∆ :=
max{x · yi − x · yj}; then we must havet > 2∆ since
otherwise, Ursula cannot determine the smallestvi. Thus, in
the discrete case, Alice and Bob first agree on a safeZt,
perform all calculations inZt and choose all necessary random
numbers uniformly fromZt. If the vectors are continuous,
Alice and Bob have to embed real numbers into large enough
Zt. More precisely, they should first fix the precision parameter
p and use transformationx 7→ bp · xe. Therefore, we must
have t > p2∆, since otherwise Ursula cannot determine the
minimum.
Du-Atallah security model. In the security model of Du and
Atallah, only ciphertext-only attacks with the next restrictions,
are allowed: Ursula colludes with nobody and has no prior
information about queries and a database. A protocol is
considered secure in this model if Ursula cannot restore any
queries, database vectors or corresponding match scores. It
is still required that Bob must learn no new information
and Alice must only learn the match index and the match
score. It is easy to see that during the MINDASP protocol,
Ursula can trivially learn distance differences. This does not
directly imply that ciphertext-only attacks are dangerous to this
protocol in the Du-Atallah security model, as the differences
themselves do not reveal any vectors or match scores.

III. A NALYSIS OF SMSP PROTOCOLS

Efficient ciphertext-only attack against MIN DASP. Recall
that m is the number of database elements andn is the
dimension of the vectors.

Lemma 2:Assume that the MINDASP protocol is executed
over the ring Zt. If m > n, a semi-honest Ursula can
reconstructx with probability P(m−1)×n(t).

Proof: For anyi, sB
i = (wA

i − x) ·wB
i + rB and thus

wB
i ·x = wA

i ·wB
i + rB − sB

i . Hence, Ursula obtainsm− 1
equations(wB

i −wB
1 ) ·x = wA

i ·wB
i −wA

1 ·wB
1 −(sB

i −sB
1 ).

The claim now follows from Lemma 1.
As an example, ift = 10, n = 6 and m = 7, the success

probability is roughly0.22, while m = 11 raises it to0.94. If
m > 2n, the success rate will be almost1.
Improved protocols. Next, we propose two alternative PMSP
protocols that achieve the security goal, proposed by Du and
Atallah: namely, Alice learns exactly the closest match and the
match index, Bob gains no new information and Ursula learns
only the distance differencesdij := d(x,yi)− d(x,yj).

The MINTSP protocol, depicted by Protocol 2, is a simple
tweak to MINDASP that achieves the required security level.
(Note that scalar products in the MINTSP protocol represent
distances up to an additive constant.)

Lemma 3:Assume the participants are semi-honest. During
a single run of Protocol 2, Alice learns only the match score
and match index, Bob learns nothing and Ursula learns only
the scalar product differencesdij := x · yi − x · yj .

INPUT: A query x and a databasey1, . . . , ym.
OUTPUT: The indexb and the scorex · yb.

1) Alice and Bob jointly a random query keyr.
2) For every rowi:

a) Alice and Bob randomly choose vectorsRA
i , RB

i and
a scalarri.

b) Alice sendswA
i ← x + RA

i andsA
i ← x ·RB

i + ri to
Ursula.

c) Bob sendswB
i ← yi + RB

i and
sB

i ← RA
i ·wB

i − r − ri to Ursula.
d) Ursula computes and storesvi ← wA

i ·wB
i − sA

i − sB
i .

3) Ursula finds the minimising indexb such thatvb = mini vi.
Then sendsb andvb to Alice, who finds the scorevb − r.

Protocol 2: The MINTSP protocol

Proof: Correctness is clear, sincewA
i ·wB

i −sA
i −sB

i =
(x + RA

i ) · (yi + RB
i )− (x ·RB

i + ri)− (RA
i · (yi + RB

i )−
r − ri) = x · yi + r. It is straightforward to simulate the
views of Alice and Bob, and therefore nothing will be leaked
to them. To prove that nothing else, except the valuesdij , is
leaked to Ursula, we show how to perfectly simulate views
of Ursula by a simulator who knows all the differencesdij .
Consider the view of Ursula. In a valid protocol run, Ursula
sees tuples(wA

i ,wB
i , sA

i , sB
i ), such thatwA

i ·wB
i −sA

i −sB
i =

x · yi + r. SinceRA
i ,RB

i , ri are chosen uniformly, the triple
(wA

i ,wB
i , sA

i ) has also a uniform distribution. Consequently,
the simulator can choosēv1, w̄

A
i , w̄B

i , s̄A
i at random and

computes̄B
i = w̄A

i · w̄B
i − s̄A

i − v̄1 − di1.
To reduce the number of required random bits and the com-

munication, Alice and Bob can use a pseudo-random generator
for generatingr, RA

i ,RB
i , ri. Then they have to agree only on

random seeds and only send the tuple(wA
i ,wB

i , sA
i , sB

i ) to
Ursula. This reduces the communication between Alice and
Bob to a few hundred bits.

Provided that vectors belong or can be safely embedded into
Zn

t , whereZt is the plaintext space of the used semantically
secure homomorphic public-key cryptosystemΠ = (G, E, D),
one can alternatively use the next communication-efficient
M INHSP protocol, depicted by Protocol 3. Note that the same
key K can be used in multiple protocols.

ALICE’ S INPUT: A query x = (x1, . . . , xn)
BOB’ S INPUT: A databasey1, . . . , ym, whereyi = (yi1, . . . , yin).
OUTPUT: The indexb and the scorex · yb.

1) Ursula generates a new private-public key pair forΠ and
sends the public keyK to Alice and Bob.

2) Alice and Bob choose a randomr from the plaintext space of
Π.

3) For eachj ∈ [n], Alice sendscj ← EK(xj ; tj) to Bob,
wheretj is a fresh random number.

4) For each rowi, Bob sendssi ←
Q

c
yij

j · EK(r; t), for a
fresh random numbert, to Ursula.

5) Ursula decrypts the result and sends the match indexb and
vb ← DK(sb) to Alice. Alice computes the scorevb − r.

Protocol 3: The MINHSP protocol

Alice’s and Bob’s privacy in the MINHSP protocol relies on
the semantical security ofΠ. The security proof for Protocol 3



is very standard and therefore omitted. The MINHSP protocol
requires n encryptions by Alice, andmn exponentiations
by Bob. The number of exponentiations can be amortised.
For example, if vectorsyi consist of binary data, Bob will
not have to perform any exponentiations. Hence, the most
demanding computational burden ofm decryptions is placed
on Ursula. The communication of the MINHSP protocol is
only m+n ciphertexts, whereas the MINTSP protocol requires
sending at least2m(n+1) scalars. Since the MINTSP protocol
is computationally more efficient, we will have a trade-off
between communicational and computational complexity.

IV. SECURITY AGAINST MORE ELABORATED ATTACKS

To avoid the costly minimum finding operation, the previous
protocols make use of a trusted third party Ursula. However,
Ursula learns some non-trivial information—namely, the dis-
tance differences—about the queries and the database. Next,
we will analyse how Ursula can abuse this information and
what could be the possible counter-measures.
Known-plaintext attacks. As Ursula obtains the list of dis-
tance differencesdij = x·yi−x·yj , the knowledge ofx·yi for
any singlei reveals all scalar products. If Ursula knowsr > n
database elementsyi0 , . . . ,yir

, she will obtainr equations
diki0 = x · (yik

− yi0). Consequently, she can restore all
query vectorsx, provided thatyi1 − yi0 , . . . ,yir − yi0 are
linearly independent. The latter holds for a random database
with probability, given by Lemma 1. By a similar argument,
the knowledge ofr > n linearly independent query vectors to
the same database reveals all differencesyj − y1.

Some simple attacks can be avoided by randomly permuting
the database elements before each query. This forces Ursula
to determine the valuesvj0 , . . . , vjr

that are paired with
yi0 , . . . ,yir . Since the number of valid pairings ism(m −
1) · · · (m−r+1), wherem is the number of database elements,
such attacks become infeasible for most databases, at least if
assuming that Ursula does not have any extra knowledge about
the database.
Statistical attacks. However, the random permuting of the
database rows does not provide absolute protection since
Ursula still learns the multi-set{d(x,yi) + r}. If n is large
and the database vectors contain enough entropy, then one can
approximate the empirical distance distribution with a data-
independent distribution (this is caused by thecurse of high
dimensions). This statement is of course purely qualitative;
quantitative estimates require the knowledge of the distribution
of query and database vectors. For example, if the database
and query vectors are uniformly and at random chosen from
{0, 1}n, then the distribution ofd2

2 can be approximated with
the Gaussian distributionN (n

2 , n
4 ). Similar results can be

obtained if the vector components are assumed to be (weakly)
independent; then the desired results follow from the theorems
of weak convergence.

Assume now that the distance distributionD is known to
Ursula and for a single query, all distances are independently
sampled fromD. Consequently, Ursula can compute several
point estimators like the mean value, the median or the

variance and then use the obtained knowledge to reconstruct
the match score. For example, in the case of the MINTSP
and the MINHSP protocols, one can compute the expected
value ofvi, Exp(vi) := 1

m

∑m
i=1 vi = Exp(di) + r. Therefore,

d(x,yb) = vb − Exp(vi) + Exp(di). Since by assumption,
all di-s are sampled randomly fromD, then the standard
central limit theorem assures thatExp(di) has the Gaussian
distributionN (µ, σ2/m), whereµ andσ are the mean and the
variance of the distributionD. Let d∗ = vb−Exp(vi)+µ, then
one can use standard results from statistics to show that the
match scored(x,yb) is in the intervald∗ ± σ2/

√
m with the

probability 68%. For example, ifn = 100, µ = 50 andm >
σ2 = 625, Ursula can with probability68% infer the match
score with precision±1. Ursula can estimate the variance
σ2 ≈ Exp((vi−Exp(vi))2) = 1/m

∑
i(vi−Exp(vi))2 directly

from the multi-set{d(x,yi) + r} and thus also compare the
different match scores without knowing the distribution.
Detection of identical queries. In all presented protocols,
Ursula can detect identical queries, since identical (or even
just similar) queries have identical (resp., similar) distance
multi-sets{d(x,yi)}. Thus, with a high probability, Ursula
can decide whether two queries were equal or not. The rate of
false positives—two different queries that have have identical
or similar distance multi-sets—depends on database vectors,
but is certainly small. E.g., this rate can be computed if all
distances are sampled independently fromD. If the queries
are similar,d(x1,x2) < τ , then |d(x1,yi)− d(x2,yi)| < τ .
If v1

i andv2
i are ordered lists of the valuesvi obtained in the

PSS protocols then for similar queries,|v1
i −v2

i −v1
1 +v2

1 | < τ .
Order preserving transformations. The previously described
protocols make use of the simplest order preserving transfor-
mationdi 7→ di + r. This map corresponds to the use of one-
time pad, and thus the knowledge of a single distance compro-
mises all distances. If say a randomised affine transformation
di 7→ sdi + r + ε, with a random distortionε, is used, we get
a bit more security but the database can still be completely
determined by a known distance pair.

In the MINTSP and MINHSP protocols, it is straightfor-
ward to replace the additive masking function with an affine
transformation. First note that not all affine transformations
preserve order: (a)∆ := max{x · yi − x · yj} < t/(2s)
must hold to avoid modular reduction; (b)0 < ε < s must
hold to avoid local re-ordering. Thus, to implement affine
masking, Alice must chooses randomly from valid interval
s ∈ [smin, smax], wheresmin and smax are chosen so that
the resulting transformation would preserve order, and then
use sx instead ofx, while Bob must user + ε instead of
r. However, as not all values ofs are valid, Ursula knows
that di − dj ∈ [(vi − vj)/smax, (vi − vj)/smin]. Hence, the
ratio smax/smin classifies the maximum uncertainty, though
the knowledge of∆ sometimes allows to exclude part of the
interval. Therefore, the knowledge of the mean valueµ of D
does not reveal the match score ifsmax/smin > µ/(µ−dmin),
wheredmin = mini di.
Divide-and-conquer technique. The underlying idea of
divide-and-conquer approach (see Protocol 4) is to find mini-



mum in several stages with a tournament scheme.

INPUT: A query x and a databasey1, . . . , ym.
OUTPUT: The indexb and the scorex · yb.
INITIAL STAGE

1) Bob randomly permutes the database and divides it intok
random almost equally-sized blocksy(1), . . . , y(k).

2) For everyj ∈ {1, . . . , k}:
a) Run a minimal scalar product protocol on inputsx and

y(j), so that Ursula obtains the match indexbj and
vbj ← mini x · y(j)

i .
b) Ursula generates two random valuesbB

j mod k and
dB

j mod t, and sends them to Bob. She sends
bA
j ← bj − bB

j mod k anddA
j ← vbj − dB

j mod t to
Alice.

SECOND STAGE

1) Alice and Bob jointly generate a random permutationπ.
2) Alice and Bob choose a random keyr.
3) For every indexj, Ursula learnsvπ(j) = dA

π(j) + dB
π(j) + r.

4) Ursula sends minimising indexτ := arg minj vπ(j) to Alice.
5) Alice uses private information retrieval to getdB

τ andbB
τ and

computedb andb.

Protocol 4: Divide and conquer algorithm

As the minima are taken over smallerk-element blocks,
the scheme is more resistant against statistical attacks and the
empirical point estimates are less precise. It also makes harder
to detect identical (similar) queries, since Ursula sees only a
small random fraction sharesvi1 , . . . , vik

in every stage.
It is easy to generalise this protocol to an arbitrary number

of stages. Again, instead of the additive masking, Alice and
Bob can use more complex order-preserving transformations,
for example affine transformation. Consider for example the
extreme case, where there are only two values in each block.
Then statistical attacks are not applicable and the distance
difference is bounded to interval[(v1 − v2)/smax, (v1 −
v2)/smin]. Moreover, Ursula cannot link different stages—
for each comparison there are two equiprobable ways to
assign winner. Consequently, it is infeasible to look through
all possible tournament trees. Therefore, the scheme is secure
against statistical attacks.

This protocol is computationally more demanding since
computationally-private information retrieval protocols are not
cheap computationally or communicationally. (The currently
most communication-efficient protocol [6] has communication
complexityΘ(log2 n · k + log n · `), wheren is the size of the
database,k is the security parameter and̀is the bit-length
of transferred strings.) Still, it is several orders of magnitude
more efficient than Yao’s garbled circuit evaluation [2]. The
latter requires roughly one oblivious transfer per input bit and
a large garbled circuit description.
Attacks against some other PSS protocols from [1].Random
permutations are not always applicable and thus known-
plaintext attacks can be dangerous. For example, Du and
Atallah proposed two protocols (see sections 4.4.1 and 4.5.1
from [1]) for PSS for Euclidean distance, when the database
itself is outsourced to potentially hostile party. In both cases,
Alice outsources her databasey1, . . . ,ym in a garbled form

to Bob. Omitting unnecessary details, Bob receiveszi = Qy′
i

whereQ is a random invertible matrix known only to Alice.
Each query vector is in formq = Q−1x′ so that Bob can
computevi = q · zi = x′ · y′

i.
In the SSO protocolx′ and y′

i is chosen so thatvi =
(x−yi)2+r for all i-s. Therefore, the leakage ofyi0 , . . . ,yir

has a devastating effect. Bob can solve the linear equations
vik
−vi0+yi0

2−yik
2 = −2x·(yik−yi0) and determine query

vectors. Then he can use revealed query vectorsx1, . . . ,xs

to reconstruct the database.
In the SSCO protocol, Bob obtainsvi = s(x − yj)2 + r.

Thus Bob can treat equalityvik
− vi0 = −2sx · (yik

−yi0)+
s(yik

2 − yi0
2) as linear equation with unknownsx∗ = sx

ands. Similarly, the revealed query vectorsx1, . . . ,xk enable
to reconstruct the database. To conclude, both protocols are
insecure in practice—only a small leakage of database vectors
compromises the entire garbled database.
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