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Stream ciphers are symmetric encryption primitives, which are used to
ensure confidentiality of messages in digital communications. Compared
to block ciphers, stream ciphers are often more efficient and allow a more
compact implementation—they are suitable especially for telecommunica-
tion applications. The security of stream ciphers has not been on the same
level with the most secure block ciphers, however. This is why the design
and analysis of stream ciphers has started to receive even more attention.
In this thesis, a survey of linear cryptanalysis of shift register-based stream
ciphers is performed, and attacks on two recently developed stream ciphers,
SOBER-128 and Shannon, are presented. The attacks are linear distin-
guishing attacks, which aim at distinguishing a keystream from a truly
random sequence using linear cryptanalytic techniques. A linear distin-
guishing attack is based on a linear transformation, which is able to detect
statistical bias in the keystream. The transformation that is used in the
distinguishing attack is formed by approximating the nonlinear parts in the
cipher with linear functions. In order to find a good transformation, we
present a new technique for analyzing linear approximations of T-functions
efficiently. This technique is used to construct the distinguishing attack on
SOBER-128, in which case the attack also gives information about the
secret constant that is used in SOBER-128. The distinguishing attack on
Shannon is based on a multidimensional linear transformation. A notable
benefit is gained from using a multidimensional transformation instead of
a one-dimensional transformation.
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Jonosalausmentelmät ovat symmetrisiä salausprimitiivejä, joilla pyritään
takaamaan viestien luottamuksellisuus digitaalisessa tietoliikenteessä. Loh-
kosalausmenetelmiin verrattuna jonosalausmenetelmät ovat usein suoritus-
tehokkaampia ja pienikokoisempia toteutukseltaan—ne soveltuvat erityi-
sesti langattoman tietoliikenteen sovelluksiin. Kehitettyjen jonosalaimien
turvallisuus ei ole kuitenkaan ollut samalla tasolla parhaiden lohkosalai-
mien kanssa. Siksi jonosalaimien suunnitteluun ja analyysiin on alettu
kiinnittää entistä enemmän huomiota. Tässä diplomityössä luodaan kat-
saus siirtorekisteripohjaisten jonosalausmenetelmien lineaariseen krypto-
analyysiin ja esitetään hyökkäykset kahdelle hiljattain kehitetylle jono-
salausmenetelmälle, jotka ovat SOBER-128 ja Shannon. Hyökkäykset
ovat lineaarista kryptoanalyysia hyödyntäviä erotteluhyökkäyksiä, joilla
pyritään erottamaan jonosalaimen tuottama avainjono satunnaisesta luku-
jonosta. Lineaarinen erotteluanalyysi perustuu syötelukujonoon käytet-
tävään lineaarimuunnokseen, joka pystyy erottelemaan tilastollisia poik-
keamia avainjonosta. Erotteluanalyysissä käytetty muunnos muodostetaan
approksimoimalla salauksen epälineaarisia osia lineaarisilla funktioilla. Hy-
vän muunnoksen löytämiseksi työssä on esitetty uusi tekniikka, jolla voi-
daan analysoida T-funktioiden lineaarisia approksimaatioita tehokkaas-
ti. Tätä käytetään hyökkäyksen muodostamiseen SOBER-128:lle, jonka
tapauksessa voidaan myös saada informaatiota rakenteessa olevasta sa-
laisesta vakiosta. Shannon-jonosalaimen erotteluanalyysi perustuu moni-
ulotteiseen lineaarimuunnokseen, jonka avulla saavutetaan selvä etu ver-
rattuna yksiulotteista muunnosta käyttävään hyökkäykseen.
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Chapter 1

Introduction

The proliferation of computers and communication systems during the last
decades has brought an increasing demand for methods to protect infor-
mation in digital form. The academic disciplines of computer security, in-
formation security, and information assurance all share the common goals
of ensuring security and reliability of information systems. Cryptology is
the science that examines and provides methods to assure the security of
information systems.

The research in cryptology is divided into cryptography and cryptanal-
ysis. Cryptography studies the design of cryptographic systems used to
preserve security of information systems. Modern cryptographic systems
commonly aim at providing a number of security services, such as confiden-
tiality, integrity, authenticity, and non-repudiation. Confidentiality stands
for ensuring that information cannot be accessed by unauthorized entities
or processes. Integrity is the assurance that information stays consistent,
correct, and accessible. Authenticity means verifying the author of the in-
formation, and non-repudiation refers to the concept of ensuring that a con-
tract cannot be later denied by either of the parties involved. The ability to
provide these security services is assessed within cryptanalysis. The objec-
tive of cryptanalysis is to attempt to circumvent the security of the system
being examined. The techniques in cryptography can be further divided into
symmetric and asymmetric techniques.

The topic of this thesis is cryptanalysis of stream ciphers, which are
symmetric encryption primitives that have recently attracted much attention
in the cryptographic community. In the following section, we give a short
introduction to design and analysis of stream ciphers. Then we give an
outline of this thesis.
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1.1 Stream Ciphers

Stream ciphers are a class of symmetric encryption primitives intended to
ensure confidentiality of messages in cryptograhic systems. They are widely
used in practice, especially in telecommunication applications. Block ci-
phers form another class of symmetric encryption algorithms. To paraphrase
Rueppel [1986] about the distinction between block and stream ciphers,
stream ciphers operate on invidual symbols with a time-varying transforma-
tion instead of on entire blocks with a fixed transformation.

Stream ciphers try to imitate the behaviour of a theoretically unbreak-
able cipher, the one-time pad. The one-time pad uses a sequence of truly
random bits as the secret key. The plaintext message is added bit-by-bit to
the key to produce the ciphertext. The remarkable feature about one-time
pads is its security: Shannon [1949] showed that an adversary cannot gain
information about the message from the ciphertext given infinite computing
power. The disadvantage of the one-time pad is key management, i.e., gen-
eration, exchange, and storage of the key. Stream ciphers try to overcome
these difficulties by generating a sequence of pseudo-random bits, called the
keystream, from a short secret key. Hence, the security of a stream cipher
is largely dependent on how random the keystream can be made to appear.
Statistical cryptanalytic attacks on stream ciphers often aim at detecting
statistical bias in the keystream. This sometimes allows gaining useful in-
formation about the cipher, such as its internal state. At worst, it can lead
to full key recovery [see, e.g., Fluhrer et al., 2001].

So far, block ciphers have been the most studied class of ciphers. The
publication of the Data Encryption Standard (DES) [FIPS PUB 46] in
1977 was an important step for development of cryptanalysis. The analysis
of DES has resulted in many important cryptanalytic techniques, which
have been applied to both block ciphers and stream ciphers. Probably the
most significant inventions have been differential [Biham and Shamir, 1990]
and linear [Matsui and Yamagishi, 1993, Matsui, 1994] cryptanalysis. Even
though these statistical techniques were introduced for block ciphers, they
have been applied on stream ciphers also. Another block cipher standard,
the Advanced Encryption Standard (AES) [FIPS PUB 197], was published
in 2001. The cipher was developed by Daemen and Rijmen, and it has been
extensively studied and is currently used widely in many applications.

Despite the success of block ciphers, there is a need for stream ciphers,
since stream ciphers seem to have some advantages over block ciphers.
Stream ciphers are often much more efficient and allow a more compact
implementation; however, their security has not been on the same level with
the most secure block ciphers. Since there does not seem to be any spe-
cific reason for this, design and analysis of stream ciphers have started to
receive more attention from the cryptographic community. Two recent Euro-
pean projects that have had influence in this direction are the NESSIE and
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eSTREAM projects. NESSIE was a project within the Information Soci-
ety Technologies Programme of the European Commission from 2000–2003.
Its main objective was to put forward a portfolio of strong cryptographic
primitives, including stream ciphers. However, weaknesses were found in
all stream cipher submissions, and therefore no stream cipher made it to
the final portfolio. One of the submissions was SOBER-128, which is also
analyzed in this thesis. After NESSIE came to an end, the eSTREAM

project was initiated by the European Network of Excellece for Cryptol-
ogy, ECRYPT, to identify new stream ciphers that might be suitable for
widespread adoption. The project is planned to be completed in 2008.

1.2 Outline of the Thesis

The subject of this thesis is linear distinguishing attacks on stream ciphers.
Distinguishing attacks are attacks on encryption primitives, in which an
adversary is able to distinguish the keystream generated by the stream ci-
pher from a sequence of truly random bits. In linear distinguishing attacks,
linear cryptanalytic techniques are used to formulate the distinguishing at-
tack. These attacks are based on application of linear transformation on the
keystream such that statistical bias is revealed from it. A linear distinguish-
ing attack is presented on two stream ciphers, which are SOBER-128 and
Shannon. The outline of the thesis is as follows.

Chapter 2 discusses stream ciphers. We give an overview of different
stream cipher types, common building blocks for stream ciphers, and clas-
sical stream cipher designs. Stream ciphers are usually classified as asyn-
chronous or synchronous stream ciphers. We describe these stream cipher
types and discuss their advantages and disadvantages. The building blocks
to be covered include Boolean functions, S-boxes, ω-narrow T-functions,
and two types of shift registers. Finally, a classical stream cipher design, the
nonlinear filter generator, is discussed.

Chapter 3 discusses application of linear cryptanalytic methods in stream
cipher cryptanalysis. We give an overview of different classes of cryptana-
lytic attacks, general distinguishing attacks, linear distinguishing attacks,
and their application to nonlinear filter generators. We consider linear dis-
tinguishing attacks, which make use of one-dimensional or multidimensional
linear transformations of the keystream. These transformations are formed
using biased approximations of nonlinear parts of the cipher with linear
functions. Computational techniques for facilitating this process are also
discussed. We present a technique for analyzing linear properties of T-
functions. This technique is used to help cryptanalysis of SOBER-128.

Chapter 4 presents a linear distinguishing attack on SOBER-128 [Hawkes
et al., 2003], which is a synchronous stream cipher. The keystream generator
of SOBER-128 is a nonlinear filter generator with a linear feedback shift
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register. The distinguisher for the attack is constructed by first approxi-
mating the nonlinear parts of the filter function with linear functions such
that an approximate relation involving keystream variables and shift register
state variables is formed. The recurrence relation of the shift register is then
used to cancel out the state variables such that an approximation involving
only keystream variables is obtained. We observe that the statistical bias
of the relation changes according to a secret key-dependent constant. This
fact is used to gain information about the constant based on a number of
linear approximations. To our current estimates, it takes on the average
2113.5 keystream terms to get one bit of information of the secret constant
and 2124.6 terms to get four bits of information.

Chapter 5 presents a linear distinguishing attack on Shannon [Hawkes
et al., 2007], which is a synchronous stream cipher like SOBER-128. Shan-
non is a nonlinear filter generator with a nonlinear feedback shift regis-
ter. Our attack on Shannon uses multiple linear transformations on the
keystream simultaneously. We construct the attack similarly as for SOBER-

128, but in addition to forming a linear approximation for the nonlinear
filter, we also form an approximation for the nonlinear recurrence relation
of the shift register. This is used for obtaining a linear approximation in-
volving keystream variables. The attack requires about 2106.996 keystream
terms to succeed.

Chapter 6 summarizes the contributions of the thesis and draws some
conclusions. Possible directions for future research are also discussed.

4



Chapter 2

Stream Ciphers

Stream ciphers are symmetric encryption primitives that are widely used
to preserve confidentiality of wireless communication. For example, A5 is
used to encrypt speech in GSM networks, SNOW has been standardized
for use in 3G communications, E0 is used in the Bluetooth protocol, and
RC4 is used (and unfortunately also misused) in the WEP protocol. In
comparison to block ciphers, stream ciphers operate on invidual symbols
with a time-varying transformation instead of on entire blocks with a fixed
transformation. This distinction is not always clear-cut, since—in certain
modes of operation—a block cipher can be used in such a way that it acts
as a stream cipher.

Stream ciphers try to imitate the behaviour of a theoretically unbreak-
able cipher, the one-time pad [Shannon, 1949]. The one-time pad uses a
sequence of random bits as the key. To produce the ciphertext, the key
is combined with the plaintext in a bit-by-bit fashion using the exclusive-
or (⊕) operation. Let the binary vectors P = (p0, . . . , pN−1) and K =
(k0, . . . , kN−1) denote the plaintext and the key, respectively. The cipher-
text C = (c0, . . . , cN−1) is given as

ct = pt ⊕ kt, t = 0, . . . , N − 1.

The one-time pad provides perfect secrecy [Shannon, 1949], if the key is
perfectly random, kept secret, and used only once. Perfect secrecy means
that an adversary is unable to obtain any information of the plaintext from
the ciphertext, even if he or she has infinite computing power. Since the key
is a sequence of random bits, the plaintext is statistically independent of the
ciphertext, i.e., Pr[pt | ct] = Pr[pt], for t = 0, . . . , N−1. Thus, the ciphertext
is completely meaningless without any knowledge of the key. Despite this
advantage, the one-time pad is not a suitable choice for many applications.
Since the key must be at least the same length as the message, it is difficult
to distribute it to the correct parties. Careful treatment is also required
to prevent the key from being reused or revealed to an adversary. Stream
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ciphers try to overcome these disadvantages by using a short key to produce
a sequence of pseudo-random bits, called the keystream.

Stream ciphers have advantages over block ciphers in certain applica-
tions. Since stream ciphers operate on invidual symbols, there is no need for
padding. Indeed, stream ciphers are often used in applications, where the
length of the plaintext is not known before encryption. Another advantage
compared to block ciphers is that there is very little error propagation. These
advantages make stream ciphers a good choice for securing wireless commu-
nication. Stream ciphers provide more flexibility in other applications also.
For example, it is possible to produce the keystream separately of the plain-
text. In software-oriented stream ciphers, the symbol size is often chosen
to correspond the word size of the CPU of the system. This allows a more
efficient use of available operations in the CPU. In hardware environments,
bit-oriented stream ciphers outdo block ciphers in throughput.

An overview of stream ciphers is given in this chapter. Stream ciphers
are usually classified into two types: asynchronous and synchronous stream
ciphers. In Section 2.1, we discuss properties of these stream cipher types.
Common building blocks for stream ciphers are discussed in Section 2.2. A
classical stream cipher design, the nonlinear filter generator, is discussed in
Section 2.3. Since both of the stream ciphers in this thesis are synchronous
stream ciphers and nonlinear filter generators, the emphasis is put on related
subjects.

2.1 Types of Stream Ciphers

In this thesis, a stream cipher is viewed as a function A that takes a plaintext
message P , a key K, and an initialization vector IV as inputs. The output
of the function is the ciphertext C. In other words, the interface of the
stream cipher A can be written as

C = A(P,K, IV ).

It is common that stream ciphers operate in two phases: the setup phase
and the encryption/decryption phase.

1. Setup phase The setup phase initializes the cipher using the key
K and the initialization vector IV . The aim is to produce a random
looking initial state, denoted σ0, by mixing the keybits and the initial-
ization vector bits together. This is achieved by executing the cipher
a predefined number of rounds.

2. Encryption/decryption phase In the encryption/decryption phase,
a stream cipher generates a keystream symbol zt at each time step
t ≥ 0 based on the internal state σt and the key K. If the stream
cipher is used for encryption, the keystream symbol zt is combined
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with the plaintext symbol pt to produce the ciphertext ct; when used
for decryption, zt is combined with the ciphertext ct to produce the
plaintext pt. The state of the stream cipher is then updated to σt+1

based on the current state σt, the key K, and sometimes the ciphertext
ct.

Stream ciphers are often classified based on how the internal state σt

is updated. If the state is updated independently of the ciphertext ct, the
stream cipher is classified as synchronous. In contrast, if the state is updated
based on previous ciphertext symbols ct−k, . . . , ct−1, the cipher is called asyn-
chronous or self-synchronizing. In addition, there exists some designs that
fall into both categories. For example, the eSTREAM candidate Phelix
is one such recent design. The differences between the update functions of
synchronous and self-synchronizing ciphers have some relevance on how the
cipher operates in practice. A closer look to these stream cipher types is
taken in the following sections.

2.1.1 Synchronous Stream Ciphers

Synchronous stream ciphers produce a keystream independently of the ci-
phertext. A synchronous stream cipher can be described as a finite state
machine that has an internal state and an update function. In addition,
synchronous stream ciphers have a keystream function that is used to pro-
duce the keystream, and an output function that is used to combine the
keystream with the plaintext.

• Internal state The internal state of a synchronous stream cipher at

time t is the vector σt = (σ
(0)
t , . . . , σ

(l−1)
t ) of l invidual components

σ
(i)
t , i = 0, . . . , l − 1.

• State update function The state update function G produces the
next state σt+1 from the current state σt and the key K:

σt+1 = G(σt,K).

• Keystream function The keystream function F produces a new
keystream symbol zt from the key K and the internal state σt:

zt = F (σt,K).

• Output function The output function H is an injective function
that combines a plaintext symbol pt and a keystream symbol zt, and
outputs a ciphertext symbol ct:

ct = H(pt, zt).
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The function H has to be injective for a fixed zt so that it is possible
to determine the plaintext pt for which H(pt, zt) = ct based on the
ciphertext ct and the keystream zt.

The output functionH is usually chosen to be the bitwise exlusive or (⊕),
in which case the ciphertext symbol is produced as ct = pt ⊕ zt. Such syn-
chronous stream ciphers are often refered to as additive synchronous stream
ciphers. The exclusive-or is its own inverse. Therefore, the encryption and
decryption processes are the same with additive synchronous stream ciphers.

Since each plaintext symbol is encrypted independently of other plaintext
symbols, a corruption of a ciphertext symbol in case of a transmission error
does not affect the decryption of other ciphertext symbols. In other words,
synchronous stream ciphers have no error propagation. This might appear
as a desirable property; however, it also means that it is harder to detect
transmission errors. For an attacker, it is easier to make controlled changes
to parts of the ciphertext knowing fully how they affect the corresponding
plaintext. Also, to decrypt the ciphertext with a synchronous stream ci-
pher the keystream has to be completely in sync with the corresponding
ciphertext. Resynchronization of the keystream and the ciphertext is often
achieved by using markers, which contain information of the position in the
ciphertext. This technique allows the keystream to be resynchronized after
the next marker position. An advantage of synchronous stream ciphers is
that the keystream can be created separately of the plaintext and used later
for encryption.

2.1.2 Self-Synchronizing Stream Ciphers

A self-synchronizing stream cipher produces a keystream depending on a
fixed number of previous ciphertext symbols. Denote by l the number of
previous ciphertext symbols that each keystream symbol depends on. The
operation of a self-synchronizing stream cipher can be described by the fol-
lowing equations:

σt = (ct−l, . . . , ct−1),

zt = F (σt,K),

ct = H(pt, zt).

As synchronous stream ciphers, self-synchronizing stream ciphers have a
setup phase and an encryption/decryption phase. In the setup phase, the IV
is used to initialize the initial state σ0. In the encryption/decryption phase,
previous l ciphertext symbols ct−l, . . . , ct−1 are used directly as the state
σt. Otherwise, the encryption/decryption phase works as with synchronous
ciphers.

Since the internal state σt is defined by the l previous ciphertext sym-
bols ct−l, . . . , ct−1, a corruption of a single ciphertext symbol affects the
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decryption of the next l ciphertext symbols also. On the other hand, this
also means that the keystream is resynchronized after receiving l ciphertext
symbols without errors. Hence, self-synchronizing ciphers are able to resume
the correct decryption automatically. Self-synchronizing stream ciphers have
at least the following drawbacks. Since the state of the cipher depends on
some previous ciphertext symbols, the attacker always knows all values that
determine the next state—even worse, the attacker can control a part of the
values that define the next state in a chosen plaintext attack. These facts
make it difficult to assess the security of a self-synchronizing stream cipher
in comparison to a synchronizing stream cipher.

2.2 Building Blocks for Stream Ciphers

In this section, we discuss a few widely used building blocks in stream ci-
phers. Two subjects are considered: shift registers and Boolean functions.
With Boolean functions, the emphasis is put on a class of Boolean functions,
called T-functions.

2.2.1 Boolean Functions

We use F
n
2 to denote the n-dimensional vector space formed by binary vectors

x = (x0, . . . , xn−1) of n coordinates xi ∈ F2, i = 0, . . . , n − 1. A function
f : F

n
2 → F2 is called a Boolean function. In this section, we introduce basic

concepts related to Boolean functions and their usage in this thesis. Boolean
functions are generally represented using a truth table or an algebraic normal
form.

• Truth table A truth table of a Boolean function f of n variables is a
table in which all possible input vectors for f are listed together with
the corresponding output value.

• Algebraic normal form An algebraic normal form is a method for
representing every Boolean function in a standard form. Any Boolean
function f of n variables has a unique polynomial representation in
F2[x0, . . . , xn−1]/〈x

2
0 + x0, . . . , x

2
n−1 + xn−1〉:

f(x) =
∑

u∈F
n
2

aux
u, au ∈ F2,

where we denote xu =
∏n−1

i=0 x
ui

i . This is called the algebraic normal
form of f .

S-boxes

A vector-valued Boolean function f : F
n
2 → F

k
2 is commonly called as a

substitution box (S-box). An S-box can be considered to consist of k Boolean
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functions fi, i = 0, . . . , k − 1, called the coordinate functions of f . By
coordinate functions every S-box can be expressed in the following way:

f(x)0 = f0(x0, . . . , xn−1)

f(x)1 = f1(x0, . . . , xn−1)

...

f(x)k−1 = fk−1(x0, . . . , xn−1).

S-boxes are fundamental building blocks in contemporary cryptography
and typically the only source of nonlinearity in ciphers. Several cryptan-
alytic methods exploiting linearity properties have been developed, most
prominently differential and linear cryptanalysis and their variations [see,
e.g., Pasalic, 2003].

T-functions

T-functions [Klimov and Shamir, 2003, 2004, 2005] are a class of vector-
valued Boolean functions, where the jth output bit is uniquely determined
by the first j bits of each input word. They are highly efficient and have been
claimed to have desirable cryptographical properties [Klimov and Shamir,
2003]. Many stream ciphers employ T-functions in their structure. For ex-
ample, the eSTREAM candidates ABC, VEST, TSC, and Mir-1 are built
upon different types of T-functions. SOBER-128 also employs T-functions
in its structure. Therefore, it is useful to examine general properties of these
functions before considering a specific T-function more closely. We use the
following terminology and notation to discuss T-functions in this thesis.

Let n, m and d be positive integers, and let f be a multivariate mapping
that has m n-bit input words and d n-bit output words. The multivariate
input is represented by the m× n matrix x = (xi,j) over F2 with the input
words organized as the rows of the matrix. We use x(i−1) to denote the ith
row vector of x and xj−1 to denote the jth column vector of x. The output
of f is defined similarly as a matrix in F

d×n
2 . Multivariate T-functions are

defined as follows:

Definition 1. A function f : F
m×n
2 → F

d×n
2 is called a T-function, if the

jth column f(x)j−1 of the output depends only on the first j columns
x0, . . . , xj−1 of the input.

We use the notation f(x) = (f0(x), . . . , fn−1(x)) to refer to the coor-
dinate functions fj of f . T-functions may be evaluated recursively using a
parametric expression. First, let us define parametric functions [Klimov and
Shamir, 2003] as follows:

Definition 2. A parametric function is a function g(x1, . . . , xa;α1, . . . , αb),
whose arguments are separated by a semicolon into inputs xi and parameters
αj .

10



For j = 1, . . . , n − 1, let αj be a parametric function that depends on
the first j input columns x0, . . . , xj−1 and has the functions α0, . . . , αj−1

as parameters. Note that the parameters α0, . . . , αj−1 are obviously not
needed, since every parameter can be determined completely with the pre-
vious columns. We will include them in the expression, however, because
they allow us to simplify certain T-functions later. The α function is a spe-
cial type of T-function, which is generally called a parameter [Klimov and
Shamir, 2005]. By using parameters, every T-function can be expressed as
a parametric function in the following way:

f(x)0 = f0(x0;α0)

f(x)1 = f1(x1;α1(x0;α0))

f(x)2 = f2(x2;α2(x1, x0;α1, α0))

...

f(x)n−1 = fn−1(xn−1;αn−1(xn−2, . . . , x0;αn−2, . . . , α0)).

where the parameters α0, . . . , αn−1 are defined according to f . Not all T-
functions, however, need all previous input columns and parameters during
evaluation. By treating T-functions as well as their parameters as parametric
functions, some T-functions may be defined with a parameter αj(xj−1;αj−1)
that depends only on the previous column xj−1 and the previous parameter
αj−1. Therefore, we adapt the concept of ω-narrow T-functions introduced
by Daum [2005], but extend the definition to include noninteger values of ω
also.

Definition 3. Let f : F
m×n
2 → F

d×n
2 be a T-function. The T-function f is

called ω-narrow, if there exists parameters αj : F
m
2 ×V → V , j = 1, . . . , n−1,

such that ω = log2|V | and αj depends on the previous input column xj−1

and parameter αj−1 so that f can be recursively evaluated as

f(x)0 = f0(x0;α0)

f(x)1 = f1(x1;α1(x0;α0))

f(x)2 = f2(x2;α2(x1;α1))

...

f(x)n−1 = fn−1(xn−1;αn−1(xn−2;αn−2)).

The narrowness of f is the smallest ω such that f is still ω-narrow.

Therefore, the process of evaluating a ω-narrow T-function may be viewed
as a Markov chain, where—given an input—the jth parameter and input
column determines the (j + 1)th parameter.

According to Klimov and Shamir [2005], all Boolean operations and most
of the arithmetic operations available on modern computers are T-functions.
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In particular, bitwise and (∧), or (∨), exclusive-or (⊕) and complementa-
tion (·), and addition (⊞), subtraction (binary ⊟), negation (unary ⊟) and
multiplication (⊡) modulo 2n are univariate or bivariate T-functions. These
operations are called primitive operations [Klimov and Shamir, 2003]. Note
that right shifts (≫) or rotations (≪ and ≫) are not T-functions. Left
shifts (≪) are allowed, however, since x≪ k equals x⊡2k. The composition
of two T-functions is a T-function, and hence, an arbitrary composition of
primitive operations is also a T-function. Maximov and Johansson [2005]
use the term pseudo-linear functions modulo 2n to refer to the following T-
functions: compositions of Boolean operations, and additions, subtractions
and negations of n-bit integers.

It is obvious that the parameter αj in the recursive definition of addition,
subtraction and negation modulo 2n may be determined completely by the
jth column xj−1 and the jth parameter αj−1. For example, addition modulo
2n with m inputs can be evaluated with fj(xj ;αj) = x0,j ⊕ · · · ⊕ xm−1,j ⊕
αj(xj−1;αj−1), where the parameters are computed with the function

αj(xj−1;αj−1) = ⌊(wH(xj−1) + αj−1)/2⌋, j = 1, . . . , n− 1,

where α0 := 0, and wH(x) denotes the Hamming weight of x, i.e., the number
of nonzero components of x. In this case, the parameter αj−1 may be viewed
as the carry from the previous round. The maximum carry value for addition
modulo 2n with m inputs is m − 1, which is obviously also the maximum
parameter value. Thus, the range of the parameter is V = {0, . . . ,m − 1},
and the narrowness of addition modulo 2n with m inputs is log2m. Apart
from multiplication, the narrowness of primitive operations is not dependent
on the length n of the input words. In this thesis, we concentrate only on
T-functions that have this property.

2.2.2 Shift Registers

In cryptography, shift registers are used to generate pseudo-random se-
quences from a seed value. The majority of current stream ciphers use
shift registers as basic building blocks. In this section, we introduce two
shift register types: linear feedback shift registers (LFSRs) and nonlinear
feedback shift registers (NLFSRs). Stream ciphers are often constructed
using LFSRs, since much of their mathematical properties can be readily
determined. They are also efficient and easy to implement in hardware.

Linear Feedback Shift Registers

An LFSR consists of a state and a linear recurrence relation that defines how
the state is updated at each time step t ≥ 0. The state consists of r memory
cells, each of which holds one symbol. A symbol is an element from the
finite field Fq, where q = pk for prime p and an integer k. Denote the state
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at time t ≥ 0 by St = (st, . . . , st+r−1), where each st+i ∈ Fq, i = 0, . . . , r−1,
corresponds the contents of one memory cell. The initial state of the shift
register is S0 = (s0, . . . , sr−1). An LFSR produces a sequence s0, s1, . . . that
satisfies a linear recurrence relation

st+r = a0st + a1st+1 + · · · + ar−1st+r−1, t ≥ 0,

where a0, . . . , ar−1 ∈ Fq are the feedback coefficients. The sequence s0, s1, . . .
is uniquely determined by the linear recurrence relation and by the initial
values s0, . . . , sr−1. Since the recurrence relation is linear, one can form a
system of linear equations from 2r successive sequence terms such that the
unknown feedback coefficients can be uniquely solved from it. Thus, it is
possible to determine the linear recurrence relation that generates the se-
quence. If r is unknown, the Berlekamp-Massey algorithm can be used to re-
cover the shortest linear recurrence relation that will generate the sequence.
Given at least 2r sequence terms, the algorithm gives a unique recurrence
relation; otherwise, a non-unique recurrence relation is given. The original
algorithm is due to Berlekamp [1968], and its application to linearly recur-
rent sequences was noted by Massey [1969]. Examples of recent LFSR-based
stream ciphers are SOBER-128 and the eSTREAM candidates Sfinks and
WG. The most common ways of describing a linear recurrence relation of
an LFSR are using a feedback polynomial or a characteristic polynomial.

• Feedback polynomial Describes the linear recurrence relation as a
polynomial Q over Fq.

Q(x) = 1 − ar−1x− · · · − a1x
r−1 − a0x

r.

• Characteristic polynomial The characteristic polynomial Q∗ is the
reciprocal of the feedback polynomial Q over Fq.

Q∗(x) = xrQ(x−1) = −a0 − a1x− · · · − ar−1x
r−1 + xr.

Nonlinear Feedback Shift Registers

Several recent stream cipher proposals use NLFSRs as building blocks. For
example, Shannon and the eSTREAM candidates Grain, Trivium, Dragon,
and NLS make use of NLFSRs in their structure. The sequence s0, s1, . . .
generated by an NLFSR satisfies a nonlinear recurrence relation instead of
a linear one. The advantage of NLFSRs over LFSRs is that there exists
no short linear recurrence relation that is always satisfied. This property
has been used to attack stream ciphers based on LFSRs. It is also used
in our analysis of SOBER-128. In our analysis of Shannon, the nonlinear
recurrence relation of the NLFSR is replaced with a linear one, which holds
with certain probability. Even though NLFSRs have been a widely studied
[see, e.g., Menezes et al., 1997], their properties are not nearly as understood
as the properties of LFSRs. For example, construction of NLFSRs with
guaranteed long periods remains an open problem.
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2.3 Stream Cipher Designs

Stream ciphers are often constructed using shift registers. LFSRs are a
popular choice, because they can be easily analyzed mathematically and
implemented in hardware. While shift registers are efficient in hardware,
they are not as efficient in software implementations. RC4 is an example
of a software-oriented stream cipher that does not use shift registers, but
operations that are efficient especially in software. Since LFSRs alone do
not provide sufficient security, various schemes have been proposed to make
LFSR-based stream ciphers more secure. Some widely used designs are
nonlinear combining functions, clock-controlled generators, and nonlinear
filter generators. Sometimes, NLFSRs are used instead of LFSRs to make
certain attacks infeasible. In the following section, we give a description of
nonlinear filter generators, since Shannon and SOBER-128 are both of this
type.

2.3.1 Nonlinear Filter Generators

A nonlinear filter generator consists of a shift register and a nonlinear func-
tion that is commonly refered to as the nonlinear filter (NLF). Let St denote
the state of shift register at time t ≥ 0. The state update function of the
shift register works as the state update function G of the stream cipher. The
NLF is used as the keystream function F of the stream cipher. It produces
one keystream symbol zt based on the shift register state St and the key K
at each time instance t ≥ 0. The purpose of the NLF is to hide linearity of
the sequence generated by the shift register.

NLFs in filter generators are essentially vector-valued Boolean functions,
i.e., S-boxes. In certain ciphers, such as SOBER-128, some parts of the
NLF can be viewed as T-functions. This fact is used in the analysis of
SOBER-128 in this thesis.
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Chapter 3

Linear Cryptanalysis of

Stream Ciphers

Cryptanalysis is the study of methods aimed at compromising cryptosys-
tems. Cryptanalytic methods are used to evaluate the security of a cryp-
tosystem against certain security criteria. In cryptanalysis of symmetric
encryption primitives, an adversary typically strives to obtain information
of the secret key that is used in the primitive. An adversary may also have
other objectives than key recovery. For example, the ability to recover the
initial state of a stream cipher would be disastrous even though the secret
key would not be revealed in the attack.

The security of a stream cipher is largely dependent on how random the
keystream can be made to appear. To analyze this property, statistical and
algebraic distinguishing attacks have been developed. Distinguishing attacks
on stream ciphers are attacks, in which the attacker is able to tell whether
a sequence has been generated by the cipher or not. The difference between
distinguishing attacks and general statistical tests is that a distinguishing
attack is usually formulated using the knowledge of how the keystream gener-
ator has been constructed. Statistical distinguishing attacks make often use
of linear [Matsui and Yamagishi, 1993, Matsui, 1994] or differential [Biham
and Shamir, 1990] cryptanalytic techniques. Linear and differential crypt-
analysis are two of the most powerful statistical techniques for cryptanalysis
of symmetric ciphers proposed to date, and resistance against these attacks
is held as one of the most important standard design goals for current ci-
phers. Linear cryptanalysis studies biased linear approximate relations over
the components of the cipher, whereas differential cryptanalysis is based on
differential propagation through the components. Distinguishing attacks on
stream ciphers can be constructed based on biased linear approximate rela-
tions involving keystream terms only. In such case, the distinguishing attack
is performed by testing the approximate relation with empirical data. This
type of an attack is called a linear distinguishing attack.
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This chapter gives an overview of linear distinguishing attacks on non-
linear filter generators. The techniques in this chapter are used to analyze
Shannon and SOBER-128. In Section 3.1, we discuss classification of crypt-
analytic attacks in general. An introduction to distinguishing attacks and
distinguishers is given in Section 3.2. In Section 3.3, we give an overview
of linear distinguishing attacks and introduce the main terminology. Sec-
tion 3.4 deals exclusively with linear distinguishers for filter generators. Im-
portant computational techniques are discussed in Section 3.5. As before,
we use F2n to denote the finite field with 2n elements, i.e., the integers
modulo 2n. The integers in {0, . . . , 2n − 1} are identified with the vectors
x = (x0, . . . , xn−1) in F

n
2 using the natural correspondence x ↔

∑n−1
j=0 xj2

j .
For the vectors u = (u0, . . . , un−1) ∈ F

n
2 and x = (x0, . . . , xn−1) ∈ F

n
2 , we let

u · x denote the standard inner product u · x = u0x0 ⊕ · · · ⊕ un−1xn−1 ∈ F2.

3.1 Classification of Attacks

Cryptanalytic attacks are characterized according to how much threat they
pose to a cryptosystem. We give a classification of attacks on symmetric
encryption primitives in the following sections. Typically, the importance of
an attack is done by considering

1. what knowledge and capabilities are needed as a prerequisite,

2. how much secret information is revealed, and

3. how much effort is required to perform the attack.

3.1.1 Attack Scenarios

Cryptanalysis of encryption primitives can be performed under a number
of asumptions about how much can be observed about the primitive. The
most common assumption is known as Kerckhoffs’ principle, according to
which the encryption algorithm is known to the attacker. Other common
assumptions are:

• Ciphertext-only The attacker has access to a collection of cipher-
texts.

• Known-plaintext The attacker has a set of plaintexts, for which he
knows the corresponding ciphertexts.

• Chosen-plaintext The attacker can choose any plaintext and obtain
the corresponding ciphertext.

• Adaptive chosen-plaintext A chosen-plaintext attack, in which the
attacker chooses plaintexts based on the previously obtained cipher-
texts.
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For the latter three attack scenarios, there exists corresponding attacks,
in which the assumptions are made for ciphertext instead of plaintext. In
addition to these attack scenarios, other scenarios, such as chosen-IV and
known-IV, are also used.

3.1.2 Success of the Attack

The main objective in the cryptanalysis of encryption primitives is recovery
of the secret key, since this makes it possible to decrypt any messages en-
crypted with the same key. There exists also several other attacks, which
might give important information to the adversary without revealing the
entire secret key. Knudsen [1999] classified various attacks on block ciphers
according to the amount and quality of previously unknown information
that the attack reveals:

• Total break The attacker recovers the secret key.

• Global deduction The attacker finds an algorithm equivalent to
encryption and decryption without learning the secret key.

• Instance deduction The attacker is able to produce previously un-
known plaintexts (or ciphertexts).

• Information deduction The attacker is able to gain previously un-
known (Shannon) information about the secret key, the IV , the plain-
texts or the ciphertexts.

• Distinguishing algorithm The attacker is able to detect statistical
anomalies that should not be present in the cipher should by applying
an algorithm.

This classification is hierarchial, i.e., total break allows global deduction,
global deduction allows instance deduction, and so on. In attacks on stream
ciphers, one could classify internal state recovery as instance deduction and
initial state recovery as global deduction. The focus of the thesis is on
distinguishing attacks, but information deduction from the secret key is also
studied.

3.1.3 Complexity of the Attack

Another characterization of attacks is based on the resources they require:

• Time The number of primitive operations that are needed to execute
the attack.

• Memory The amount of storage required to perform the attack.
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• Data The amount of data (e.g. plaintexts, ciphertexts, or keystream)
required for the attack.

For the attacks presented in this thesis, we hold data complexity as the
most important indicator for the computational complexity. A distinguish-
ing attack is commonly considered successful, if the keystream can be dis-
tinguished from 2|K| keystream terms, where |K| is the bit-length of the key
K.

3.2 Distinguishing Attacks

Distinguishing attacks are attacks in which an adversary tries to determine
whether a sequence has been produced by a specific cipher or seems to be
a random sequence. Distinguishing attacks can be applied to both block
ciphers and stream ciphers. They are used to detect statistical anomalies
in the primitive; however, they may help in key recovery in some cases.
Linear or differential cryptanalytic techniques are widely used to construct
a distinguishing attack for a specific cipher. A distinguishing attack with a
very high complexity may not pose a threat in itself, but indicates a weakness
in the primitive.

A statistical distinguisher is essentially an implementation of a statistical
hypothesis test. It can be viewed as a function that takes a sequence as input
and outputs either cipher or random. A distinguisher should be able to give
the correct answer at high confidence level. Denote by DU the uniform dis-
tribution and by DC the distribution of a sample sequence generated by the
cipher. Let x0, . . . , xN−1 be a realization of random variables X0, . . . , XN−1

from an unknown distribution DX . A distinguisher performs a hypothesis
test, where it decides whether the sequence x0, . . . , xN−1 is a sample from
DC or DU . In other words, it tries to determine if the distribution DX is
more likely to be DC or DU . Usually, distinguishers can be divided into two
classes: general distinguishers and cipher-specific distinguishers.

• General distinguisher A general distinguisher does not consider
the internal structure of the cipher. The cipher is viewed as a black
box that outputs a keystream, whose randomness properties are ex-
amined. General distinguishers are useful especially for cipher design-
ers who want to examine statistical properties of the cipher. Exam-
ples of general distinguishers are the NIST statistical test suite, the
Diehard tests, and Crypt-X. These distinguishers include several sta-
tistical tests, which evaluate randomness properties of sequences.

• Cipher-Specific Distinguisher A cipher-specific distinguisher uses
knowledge of the internal structure of the cipher to decide whether the
sequence has been generated by the cipher or is a random sequence.
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The distinguishers in this class operate in two phases: the input se-
quence is transformed in some way and the resulting sequence is then
fed into the statistical inference part, which makes the final decision.

A cipher-specific distinguisher can be constructed by finding a relation
that results in biased samples. The relation is usually achieved by
examining the inner structure of the cipher. In linear cryptanalysis,
one uses linear functions to approximate all nonlinear parts in the
cipher, in which case the final relation will be a biased linear relation.
The goal is often to find a relation that holds with as high probability as
possible. Biased linear relations are usually called linear distinguishers.
Cipher-specific distinguishers based on general statistical tests also
have been developed [see, e.g., Vaudenay, 1996].

3.3 Linear Distinguishing Attacks

Linear cryptanalysis [Matsui and Yamagishi, 1993, Matsui, 1994] is a gen-
eral form of statistical cryptanalysis based on finding linear approximate
relations over the nonlinear components of the cipher. The idea of linear
cryptanalysis for block ciphers was introduced by Matsui and Yamagishi
[1993] in an attack on FEAL. The technique was then refined and applied
on DES by Matsui [1994]. Let fK : F

n
2 → F

n
2 be a Boolean function that

depends on a key K ∈ F
n
2 , and let u, v, w ∈ F

n
2 be vectors. Linear cryptanal-

ysis for block ciphers is a known-plaintext attack, in which one examines
linear approximate relations of form

v · fK(x) ⊕ u · x = w ·K,

that hold with certain probability. The intention is usually to find constants
u, v, w ∈ F

n
2 such that this relation holds (or does not hold) with high prob-

ability. This allows finding out whether w ·K equals 0 or 1, when enough
sample pairs (x, fK(x)) have been given. Thus, we get one bit of information
of K ∈ F

n
2 .

Several generalizations of linear cryptanalysis of block ciphers have been
presented since its introduction. For example, Kaliski and Robshaw [1994]
gave a form of linear cryptanalysis using multiple linear approximate rela-
tions concurrently. This has also been examined by Biryukov et al. [2004]
and by Baignères et al. [2004]. Linear statistical distinguishers on stream
ciphers were introduced by Golić [1995]. This work is based on an algorithm
for finding nonbalanced linear functions of the keystream, which is called
linear sequential circuit approximation and was also introduced by Golić
[1993]. Linear distinguishing attacks can be considered to be a technique
of linear cryptanalysis, since one uses linear approximate relations to form
linear distinguishers. If the distribution of the nonbalanced linear functions
of the keystream are key-dependent, then one gets information of the key
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similarly as with block ciphers. Otherwise, linear distinguishing attacks can
be used to assess randomness properties of the stream cipher. Linear crypt-
analysis has been succesfully applied to distinguish the output keystream
from a truly random sequence [see, e.g., Coppersmith et al., 2002, Watan-
abe et al., 2004, Nyberg and Wallén, 2006]. In this thesis, the focus is on
linear cryptanalysis as the method for distinguishing output sequences of
nonlinear filter generators.

This concept of linear approximations is formalized in Section 3.3.1. Lin-
ear approximations of iterated vector-valued Boolean functions is discussed
in Section 3.3.2.

3.3.1 Linear Approximations

Let n and m be positive integers. In this thesis, we consider a component of
the cipher to be a mapping f : F

m×n
2 → F

n
2 , i.e., a mapping that takes m n-

bit input words and maps them to a single n-bit output word. A component
can also be written as a univariate mapping, where the input words have
been concatenated such that the input is a single mn-bit word. A constant
vector or matrix that is used to select what input (output) bits will be used
in a linear approximate relation of a function is called a linear input (output)
mask of the function. A linear approximation of a functional dependency
f : F

m×n
2 → F

n
2 is a relation of the form

v · f(x) =

m−1⊕

i=0

u(i) · x(i),

where the row vectors u(0), . . . , u(m−1) ∈ F
n
2 are the linear input masks for

the input words and v ∈ F
n
2 is the linear output mask. The linear input mask

for f is the matrix u = (ui,j) ∈ F
m×n
2 with u(0), . . . , u(m−1) as the rows. The

efficiency of a linear approximation of f is measured by its correlation

cf (v, u) = 2 Pr

[
v · f(x) =

m−1⊕

i=0

u(i) · x(i)

]
− 1,

where the probability is taken over the uniformly distributed x ∈ F
m×n
2 .

We use ǫf (v, u) = cf (v, u)/2 to denote the bias of a linear approximation
of f . The linear approximation of f with the input mask u and the output
mask v is denoted with the tuple (v, u) ∈ F

n
2 ×F

m×n
2 . A comma is used for

separating the output mask to the left and the input mask(s) to the right.
Given a linear mask u ∈ F

n
2 and an element a ∈ F

n
2 , we denote by ua the

linear mask, which satisfies the equality

ua · x = u · ax, for all x ∈ F
n
2 ,

where the products ua and ax are taken in F2n .
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3.3.2 Linear Chains

In linear cryptanalysis, the aim is generally to find linear approximations
of iterated mappings with high bias. Let f = fN−1 ◦ · · · ◦ f0 be an iter-
ated mapping, where each fi is a function between vector spaces over F2,
fi : F

ni

2 → F
ni+1

2 , i = 0, . . . , N − 1. Denote by cfi
(ui+1, ui) the correlation

of a linear approximation of fi with the output mask ui+1 ∈ F
ni+1

2 and the
input mask ui ∈ F

ni

2 . A linear chain is a linear approximation of f such that
the correlation is determined from invidual linear approximations (ui+1, ui)
of fi. The correlation cf of a linear chain is defined to be

cf =

N−1∏

i=0

cfi
(ui+1, ui).

This is actually an estimate of the true correlation as we will show next.
Let g : F

n0

2 → F
n1

2 and h : F
n1

2 → F
n2

2 be Boolean functions, and let u ∈ F
n0

2

and v ∈ F
n2

2 be linear masks. Using a framework based on the Walsh-
Hadamard transform, Daemen et al. [1995] showed that the correlation of a
linear approximation (v, u) of h ◦ g is

ch◦g(v, u) =
∑

w∈F
n1
2

ch(v, w)cg(w, u). (3.1)

Denote u = u0 and v = uN . For iterated mappings f = fN−1 ◦ · · · ◦ f0, it
follows that

cf (v, u) =
∑

u1,...,uN−1

N−1∏

i=0

cfi
(ui+1, ui).

If the sum is dominated by a single linear chain with the masks u0, . . . , uN ,
one can estimate that

cf (uN , u0) ≈
N−1∏

i=0

cfi
(ui+1, ui). (3.2)

This estimate should be interpreted carefully, since several linear chains con-
tribute to the same linear approximations, some with negative and some with
positive correlation. Also, if the iterated mapping depends on a constant,
then the correlation may change with the constant. We give a few examples
of this further in the thesis. One can get information from a secret constant,
if it is known how different constant values affect the correlation. This is
used in our analysis of SOBER-128. In addition to (3.1), there exist other
explicit formulas for the correlation of some linear approximations [see, e.g.,
Nyberg, 2001]. Further in this thesis, we show how one can derive an explicit
expression for cf (v, u) of certain linear approximations (v, u), when f is a
T-function.
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The estimate (3.2) can also be concluded from the Piling-Up Lemma [Mat-
sui, 1994]. Suppose that X0, . . . , XN−1 are independent binary random vari-
ables such that Pr[Xi = 0] = 1

2 + ǫi, i = 0, . . . , N − 1. Denote Pr[X0 ⊕ · · · ⊕
XN−1 = 0] = 1

2 + ǫ. The Piling-Up Lemma states that

ǫ = 2N−1
N−1∏

i=0

ǫi. (3.3)

Now assume that each linear approximation (ui+1, ui) of fi is statistically
independent of other approximations and denote Xi = ui+1 · fi(x) ⊕ ui · x.
It follows that ǫi = ǫfi

(ui+1, ui), and using the Piling-Up Lemma we get

ǫ = 2N−1
N−1∏

i=0

1

2
cfi

(ui+1, ui) =
1

2

N−1∏

i=0

cfi
(ui+1, ui).

The estimate (3.2) follows by denoting ǫ = cf (uN+1, u1)/2.

3.4 Linear Distinguishers for Filter Generators

In this section, we discuss linear distinguishers for a nonlinear filter generator
that consists of a shift register and an NLF F . Suppose that the shift
register has r memory cells with elements from the finite field F2n . Let
St = (st, . . . , st+r−1) ∈ F

r
2n denote the state of the shift register at time t ≥ 0,

and suppose that the NLF F is a function of the keystream state St and a
secret key K such that F : F

r
2n ×F2n → F2n . The output of the generator

at time t ≥ 0 is denoted by zt = F (St,K). In basic linear distinguishing
attacks on a filter generator, one studies linear approximate relations of the
form ⊕

j∈J

vj · zt+j = 0, t ≥ 0, (3.4)

where vj ∈ F
n
2 is the linear mask used in the approximation of the output

word zt+j ∈ F
n
2 , and J is the index set that defines which output words

are included in the approximation. The probability that (3.4) holds is a
conditional probability taken over uniform St+j ∈ F

r
2n , for all j ∈ J , given a

constant K ∈ F2n . For simplicity, we will first discuss linear distinguishers,
where the output zt is independent of the value of K. This assumption leads
to distinguishers that do not give information of K. A linear distinguisher
for a filter generator operates in two phases. In this thesis, we refer to these
phases as the transformation phase and the statistical inference phase.

1. Transformation phase In the transformation phase, one applies a
transformation to the input sequence z0, z1, . . . to get a new sequence
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ẑ0, ẑ1, . . . . With linear distinguishers for filter generators, the following
linear transformation is used:

ẑt =
⊕

j∈J

vj · zt+j , t ≥ 0,

which is the same transformation as in the linear approximation (3.4).

2. Statistical inference phase In the statistical inference phase, a sta-
tistical hypothesis test is performed to the sequence ẑ0, ẑ1, . . . , ẑN−1 in
order to decide whether the input sequence ẑ0, ẑ1, . . . , ẑN−1 is from the
cipher or appears to be a random sequence. If the sequence z0, z1, . . .
is from the filter generator, then the sequence ẑ0, ẑ1, . . . , ẑN−1 has—at
least in theory—a bias that is close to the bias of the linear approx-
imate relation (3.4). The hypothesis test makes the decision based
on a test statistic, which is usually a function of the biases. In this
thesis, we use the log-likelihood ratio statistic so that the number N of
input sequence terms required to make the decision at high confidence
level is inversely proportional to the square of the bias ǫ of (3.4), i.e.,
O(ǫ−2). This is a common choice for evaluating how efficient a linear
distinguishing attack is. The exact number of needed samples depends
on how accurate we want the distinguisher to be.

The focus of this thesis is on the transformation phase, i.e., on con-
structing efficient transformations for the keystream sequence z0, z1, . . . and
estimating its data-complexity. In order to construct an efficient distin-
guisher, one needs to find a linear approximation for z0, z1, . . . such that the
approximation has a large bias |ǫ|. Linear approximations for the keystream
can be formed by constructing a linear approximation for the nonlinear filter
F and using a time-invariant relation to cancel out the input variables of
the approximation of F . In Sections 3.4.1 and 3.4.2, we show how to do
this for nonlinear filter generators with linear and nonlinear feedback. In
these sections, we assume that the output zt is independent of the key K,
i.e., zt = F (St) and st+r = G(St), for t ≥ 0. In Section 3.4.3, we discuss
distinguishers that make use of multiple linear approximations concurrently.
In Section 3.4.4, we consider the case, in which the output zt depends on
the key K.

3.4.1 Filter Generators with Linear Feedback

We use the recurrence relation of an LFSR as the time-invariant relation
that is used to cancel out the input variables to an approximation of the
NLF. Recall that the linear recurrence relation of an LFSR with the state
St = (st, . . . , st+r−1) ∈ F

r
2n can be written as

a0st ⊕ a1st+1 ⊕ · · · ⊕ ar−1st+r−1 ⊕ arst+r = 0, t ≥ 0, (3.5)
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where a0, . . . , ar−1 ∈ F2n , ar = 1, and the product aist+i is taken in F2n

for i = 0, . . . , r. We assume that the elements of the state St have uniform
distribution and are statistically independent for all t ≥ 0. Let 0 ≤ j ≤ r
and denote by

vj · zt+j =
r−1⊕

i=0

u(i)aj · st+j+i (3.6)

a linear approximation of zt+j = F (St+j) with the output mask vj ∈ F
n
2 and

the input masks u(0)aj , . . . , u
(r−1)aj ∈ F

n
2 . If aj = 0, we can choose vj = 0.

Summing up the approximations (3.6) for j = 0, . . . , r gives

r⊕

j=0

vt · zt+j =
r⊕

j=0

r−1⊕

i=0

u(i)aj · st+j+i.

Since u(i)aj · x = u(i) · ajx, for all x ∈ F2n , it follows that

r⊕

j=0

vj · zt+j =
r−1⊕

i=0

u(i) ·

[
r⊕

j=0

ajst+j+i

]
= 0. (3.7)

The last equivalence holds, since
⊕r

j=0 ajst+j+i = 0 is the recurrence re-
lation (3.5) at time t := t + i. Denote the correlation of the approxima-
tion (3.6) by cF (vj , uj), where uj = (u(0)aj , . . . , u

(r−1)aj). The final ap-
proximation (3.7) is formed by taking the exclusive-or of the binary random
variables vj · zt+j , j = 0, . . . , r. Assuming that these random variables are
statistically independent, the correlation c of (3.7) can be estimated with
the Piling-Up Lemma (3.3) as

c ≈
r∏

j=0

cF (vj , uj),

which is the same value for all t ≥ 0. The correlation c is stronger the less
is the number of nonzero coefficients aj in the recurrence relation, because
cF (vj , uj) = 1, for vj = 0 and uj = (0, . . . , 0). At most, r + 1 nonzero
masks (vj , uj) are needed. If we denote by J ⊆ {0, . . . , r} the index set that
defines which coefficients aj are nonzero, the linear approximation (3.7) can
be written as (3.4).

3.4.2 Filter Generators with Nonlinear Feedback

Generating a linear distinguisher for a filter generator with nonlinear feed-
back is similar as with linear feedback. Cho and Pieprzyk [2006b] called this
type of linear distinguishing attacks as crossword-puzzle attacks. Denote by
G the nonlinear state update function and recall that the recurrence relation
of the NLFSR can be written as st+r = G(St), t ≥ 0. Suppose that—as
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in the previous section—we have a linear approximation of zt+j = F (St+j)
with the output mask vj ∈ F

n
2 and the input masks u(0)aj , . . . , u

(r−1)aj ∈ F
n
2 .

Since the linear relation
⊕r

j=0 ajst+j+i = 0 does not hold with nonlinear
feedback, we form a linear approximation

u(i) ·

[
r⊕

j=0

ajst+j+i

]
= 0, (3.8)

for i = 0, . . . , r−1, in order to derive the final approximation
⊕r

j=0 vj ·zt+j =

0 as in (3.7). By approximating G(St+i) with u(i)ar as the output mask and
u(i)a0, . . . , u

(i)ar−1 as the input masks we get

u(i)ar · st+r+i =
r−1⊕

j=0

u(i)aj · st+j+i, (3.9)

which is equivalent to the approximation (3.8). Hence, by forming suitable
linear approximations for the nonlinear state update function, one can con-
struct a linear distinguisher for a filter generator with nonlinear feedback.
Since the approximation (3.9) has been used to derive the final approx-
imate relation, the correlation of the distinguisher gets additional terms
compared to the correlation in the linear case. Denote the correlation of
(3.9) by cG(u(i), û(i)), where û(i) = (u(i)a0, . . . , u

(i)ar−1). The final approxi-
mation is formed by taking the exclusive-or of the binary random variables
u(i) ·

[⊕r
j=0 ajst+j+i

]
, i = 0, . . . , r − 1, and vj · zt+j ⊕

⊕r−1
i=0 u

(i)aj · st+j+i,
j = 0, . . . , r. Assuming that these random variables are independent, the
correlation c can be estimated with the Piling-Up Lemma (3.3) as

c ≈

[
r∏

j=0

cF (vj , uj)

]
×

[
r−1∏

i=0

cG(u(i), û(i))

]
.

3.4.3 Multiple Linear Approximations

It is possible to improve a linear distinguishing attack by using multiple
linear approximations concurrently. Let s and r be positive integers such
that s ≤ r. In a distinguishing attack with s linear approximations, one
studies a system of approximate relations





⊕r−1

j=0
v0,j · zt+j = 0,

...
⊕r−1

j=0
vs−1,j · zt+j = 0,

where z0, z1, . . . is a sequence over F
n
2 and vi,j is a linear mask for j =

0, . . . , r − 1, i = 0, . . . , s − 1. Thus, by applying the transformation of the
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distinguisher to the input sequence z0, z1, . . . we obtain a sequence of tuples
Ẑt = (ẑ0,t, . . . , ẑs−1,t), t = 0, . . . , N − 1, where ẑi,t is defined as

ẑi,t =
r−1⊕

j=0

vi,j · zt+j ,

for i = 0, . . . , s. The distribution of the sequence Ẑ0, . . . , ẐN−1 is studied in
the statistical inference phase to decide whether the input sequence z0, z1, . . .
is from the cipher or appears to be random. Denote w = (w0, . . . , wr−1) ∈
(Fn

2 )r and let c(w) be the correlation of a linear approximation
⊕r−1

j=0 wj ·
zt+j = 0. According to Baignères et al. [2004], if the input sequence is
from the cipher, the sequence Ẑ0, . . . , ẐN−1 should have a variance close to
2−s

∑
w c(w)2, where the sum is taken over all nonzero linear combinations

(w0, . . . , wr−1) of the mask tuples (vi,0, . . . , vi,r−1), i = 0, . . . , s − 1. If s =
r, the sum is taken over nonzero 2r − 1 mask tuples. Yet again, we use
the log-likelihood ratio as the test statistic for comparing the variances, so
the number N of required samples to make decision reliably is inversely
proportional to the squared Euclidean imbalance, i.e., O(1/

∑
w c(w)2). This

requirement can be a significant improvement over a distinguisher with one
linear approximation, which needs O(1/c(w)2) samples. If the distribution
of the correlations is uniform, we have

∑
w c(w)2 = (2s−1)c(w)2, and hence

the distinguisher with r linearly independent masks needs approximately
2r times less samples compared to a distinguisher that relies on one linear
approximation. For further details of using multiple statistically dependent
linear approximations and the log-likelihood ratio, we refer to Baignères
et al. [2004].

3.4.4 Constants in the Nonlinear Filter

Suppose that the output zt of the NLF F is given by zt = F (St,K), where
K ∈ F2n is a secret constant. In this case, the linear approximation (3.4)
involving keystream variables holds with a probability conditional on K.
If these probabilities are known for all K ∈ F2n , it is possible to gain in-
formation about the value of K in the linear distinguishing attack. The
transformation phase in such attacks is done as usual to obtain a sequence
ẑ0, . . . , ẑN−1. The bias of this sequence is compared to the conditional bi-
ases of approximations (3.4) for all K ∈ F2n using the log-likelihood ratio
statistic. Given enough empirical data, one can determine the constants K,
which are likely to have been used in F to generate the original keystream
sequence.

It is possible that the conditional bias of (3.4) is the same for multiple
constantsK. One can form an equivalence class for each bias value consisting
of those constants that induce the same bias. Another possible classification
is to classify constants based on the sign of the bias such that constants with

26



positive, negative, and zero biases are put in separate classes. Constant
classes can be described as relations on the constant bits. In the linear
distinguishing attack on SOBER-128, we show that the constants K =
(k0, . . . , kn−1) ∈ F

n
2 are divided into two classes according to a linear relation

such that the linear approximation (3.4) can be rewritten as

⊕

j∈J

vj · zt+j = w ·K, t ≥ 0.

This attack is comparable to the basic linear cryptanalytic attack due to
Matsui [1994]. In Section 4.2.4, we give an example of a linear approximation
of the function fK(x) = ((x(0) ⊞ x(1)) ⊕ K) ⊞ x(2), for which the constant
classes are defined by nonlinear relations on K. From Definition 1, it is
easy to see that the following theorem regarding linear approximations of
T-functions holds.

Theorem 1. Let (v, u) be a linear approximation of a T-function f : F
m×n
2 →

F
n
2 that contains a constant K ∈ F

n
2 . Denote the number of most signif-

icant bits that are zeros in all masks v, u(0), . . . , u(m−1) by n0, and use K
to denote the set of all constant classes. The number of constant classes is
1 ≤ |K| ≤ 2n−n0. Moreover, the constants, whose n − n0 least significant
bits are the same, have the same correlation.

3.5 Computational Techniques

It is generally a difficult task to find useful linear approximations (v, u) ∈
F

n
2 ×F

m×n
2 of an arbitrary Boolean function f : F

m×n
2 → F

n
2 . Moreover,

finding the best linear approximation is even more difficult. Some compu-
tational techniques have been established to make these tasks easier. For
example, Wallén [2003] presented a linear time algorithm for computing the
correlation of a linear approximation of addition modulo 2n. In addition,
he presented an optimal algorithm for generating all linear approximations
for a given nonzero correlation coefficient. An efficient algorithm for com-
puting the correlation of a linear approximation of addition modulo 2n with
several inputs was presented by Nyberg and Wallén [2006]. With respect to
differential cryptanalysis, similar results have been established. Lipmaa and
Moriai [2001] and Lipmaa [2002] examined exclusive-or differential proper-
ties of addition. Additive differential properties of exclusive-or have been
examined by Lipmaa [2004].

In this section, we discuss two techniques that make searching for useful
linear approximations of the nonlinear parts of the cipher easier. The first
topic is linear approximations of the form (v, 0), i.e., approximations with
zero as the input mask. Another topic is linear approximations of ω-narrow
T-functions. We generalize the technique shown by Nyberg and Wallén
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[2006] and present an efficient algorithm for determining the correlation of
an ω-narrow T-function with small ω.

3.5.1 The Walsh-Hadamard Transform

The Walsh-Hadamard transform (WHT) is a transform that is often used to
examine properties of Boolean functions. Techniques based on the WHT can
also be used to reduce the amount of computational work in some problems.
In this thesis, it is used to facilitate the search of useful linear approxima-
tions.

Definition 4. Given a mapping f : F
mn
2 → R the WHT of f is a real-valued

function F(f) : F
mn
2 → R defined as

F(f)(u) =
∑

x∈F
mn
2

f(x)(−1)u·x, u ∈ F
mn
2 . (3.10)

The WHT is easily inverted. Given the transform F (u) = F(f)(u) for
all u ∈ F

mn
2 the values of f can be determined from the inverse transform

f(x) = 2−mn
∑

u∈F
mn
2

F (u)(−1)u·x, x ∈ F
mn
2 . (3.11)

Let f : F
mn
2 → F

n
2 be a Boolean function, and consider a linear approxima-

tion
v · f(x) = 0,

where v ∈ F
n
2 is the linear output mask. Suppose we want to find out the

linear approximation (v, 0), v 6= 0, with the highest bias. Since there are
2n−1 choices for v and 2mn values for x, it takes about 2n(m+1) steps to find
out the bias for each linear mask v ∈ F

n
2 , v 6= 0, using the näıve technique.

The amount of computational work can be reduced using the fast Walsh-
Hadamard transform (FWHT) as follows. Denote by p(y) the probability
that f(x) = y taken over x ∈ F

mn
2 . The correlation of the approximation

can be written as

cf (v, 0) = Pr [v · f(x) = 0] − Pr [v · f(x) 6= 0]

=
∑

y∈F
n
2

v·y=0

p(y) −
∑

y∈F
n
2

v·y 6=0

p(y) =
∑

y∈F
n
2

p(y)(−1)v·y

Hence, the correlation cf (v, 0) is given by the transform F(p) on point
v ∈ F

n
2 . The FWHT of f requires about mn2mn computations in general;

so determining F(p)(v), for all v ∈ F
n
2 , can be done in n2n computations. It

takes 2mn steps to determine the value distribution of f , and thus 2mn +n2n

computations are needed to determine cf (v, 0), for all v ∈ F
n
2 . Significant
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improvements to the computation time are thus achieved. Note that this
technique can also be applied with the same complexity to compute the cor-
relation of all linear approximations, which use the same mask v to mask the
input and output of f . In these cases, the approximation can be rewritten
as

v · (f(x) ⊕ x(0) ⊕ · · · ⊕ x(m−1)) = 0,

for which we can compute the correlation using WHT.

3.5.2 Linear Approximations of T-functions

Let f : F
m×n
2 → F

n
2 be a T-function with narrowness ω and denote by x ∈

F
m×n
2 the input matrix that consists of m n-bit input words. We denote

by u ∈ F
m×n
2 the input mask and by v ∈ F

n
2 the output mask for a linear

approximation of f . We suppose that the narrowness of f is not dependent
on n and that the parameter αj for f is the same function for j = 1, . . . , n−1.

Recursive evaluation of an ω-narrow T-function can be viewed as a
Markov chain. We generalize the technique presented in Nyberg and Wallén
[2006] and make use of the Markov property to generate a set of substochas-
tic transition matrices for the linear approximation (v, u) of f . This set
of matrices allows us to compute the correlation cf (v, u) by n matrix mul-
tiplications with small matrices instead of the näıve approach that would
always take at least 2m+n steps to complete. For j = 0, . . . , n − 1, there is
a transition matrix (or correlation matrix), whose elements represent prob-
abilities Pr[vjfj(xj , αj) =

⊕m−1
i=0 ui,jxi,j , αj+1 = d | αj = c] over uniformly

distributed xj given the linear approximation (v, u) of f . These matrices
enable us to determine the correlation of a linear approximation by going
through the tuples (fj , vj , um−1,j , . . . , u0,j), j = 0, . . . , n − 1, in order and
making a matrix multiplication in each step with the matrix that represents
the current transition. The set of correlation matrices and the two vectors
that are used for calculating the correlation for a certain linear approxi-
mation is called the linear representation [Nyberg and Wallén, 2006] of the
correlation. In the next section, we show how these matrices are formed for
all linear approximations (v, u) of f .

Linear Representation

Suppose that f has k different functions fj and αj is the same function for
j > 0. We identify every component fj with a unique number in {0, . . . , k−
1}. Each tuple (fj , vj , um−1,j , . . . , u0,j) is written as a character bj that
belongs to the alphabet {0, . . . , k2m+1 − 1}, where bj = fj2

m+1 + vj2
m +∑m−1

i=0 ui,j2
i. We will show that there are at most k2m+1 2ω × 2ω matrices

over rationals, a row vector L and a column vector C such that

cf (v, u) = LAbn−1
· · ·Ab1Ab0C
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for all linear approximations (v, u) of f with m n-bit input words. We say
that the matrices L,Abn−1

, . . . , Ab1 , Ab0 , C form a linear representation of
the correlation with the dimension 2ω.

Theorem 2. Let f : F
m×n
2 → F

n
2 be a T-function with narrowness ω that

has k different functions fj. Let L = (1, 1, . . . , 1) and C = (1, 0, . . . , 0)T

be row and column vectors of dimension 2ω respectively. For each r ∈
{0, . . . , k2m+1 − 1} define a 2ω × 2ω matrix Ar such that

(Ar)d,c = 21−m|{x̂ ∈ F
m
2 | v̂fj(x̂; c) = û · x̂, α(x̂; c) = d}| − 1,

where r = fj2
m+1 + v̂2m +

∑m−1
i=0 ûi2

i, j ∈ {0, . . . , k − 1}, v̂ ∈ F2, û ∈ F
m
2 ,

and c, d ∈ {0, . . . , 2ω − 1}. Let (v, u) be a linear approximation of f . Let
b = bn−1 . . . b1b0 be the word associated with the approximation. We then
have

cf (v, u) = LAbn−1
· · ·Ab1Ab0C.

Proof. The proof is essentially the same as in Nyberg and Wallén [2006].
Denote by x = (xi,j) the input matrix over F2 that contains m uniformly
distributed n-bit input words as the rows of the matrix. Set β0 = 0 and let

βk =
k−1⊕

j=0

(uj · xj ⊕ vjfj(xj ;αj)),

for all k = 1, . . . , n. Let P (b, j) be a column vector of dimension 2ω and
M(b, j) be a 2ω × 2ω matrix such that

P (b, j)c = Pr[βj = 0, αj = c] − Pr[βj 6= 0, αj = c] and

M(b, j)d,c = Pr[uj · xj ⊕ vjfj(xj ;αj) = 0, αj+1 = d | αj = c]

− Pr[uj · xj ⊕ vjfj(xj ;αj) 6= 0, αj+1 = d | αj = c]

for j = 0, . . . , n− 1 with c, d ∈ F
ω
2 . We then have

2ω−1∑

c=0

M(b, j)d,cP (b, j)c = P (b, j + 1)d,

and thus
P (b, j + 1) = M(b, j)P (b, j).

Note that

P (b, 0)c = Pr[β0 = 0, α0 = c] − Pr[β0 6= 0, α0 = c] =

{
1, c = 0,

0, c 6= 0.
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At the other end we have

LP (b, n) =

2ω−1∑

c=0

(Pr[βn = 0, αn = c] − Pr[βn 6= 0, αn = c])

= Pr[βn = 0] − Pr[βn 6= 0]

= cf (v, u)

as desired. Since Abj
= M(b, j) and C = P (b, 0), it follows that

cf (v, u) = LAbn−1
· · ·Ab1Ab0C .

The correlation of a linear approximation of the T-function f with nar-
rowness w can be thus computed by doing n multiplications of a 2ω × 2ω

matrix and a column vector, and 2ω additional additions. For a fixed ω,
this is a linear-time algorithm, and for a small ω efficient in practice. The
number of 2ω×2ω matrices to be stored in memory is k2m+1 at most. Hence,
the precomputation time grows exponentially with respect to m and linearly
with respect to the number of values of the parameter. It is quite obvious
that this technique extends to cases, where αj is not the same function for
all j > 0. We can also apply it for any ω-narrow T-function f , even if the
narrowness of f is unknown. This might be helpful in practice, since it is
not necessary to find the exact narrowness of f . Linear representation leads
also to an efficient method for generating all relevant masks for addition
modulo 2n with two inputs [Nyberg and Wallén, 2006, Wallén, 2003]. There
does not seem to be any simple way for generating masks for more complex
T-functions, however.

By allowing only certain linear approximations (v, u) to be used for f , the
correlation cf (v, u) can be determined by using a subset of the matrices in
the linear representation. In some cases, one can derive an explicit formula
for the correlation. For example, consider a linear approximation of f , where
f does not contain any constants or the constants are fixed. Let v ∈ F

n
2 be

the output mask and u(0), . . . , u(m−1) ∈ F
n
2 be the input masks such that

v = u(0) = · · · = u(m−1) and wH(v) > 0. Set e = wH(v) and i−1 = −1, and
denote the indices of the set bits of v by i0, . . . , ie−1 such that i0 < · · · < ie−1.
Denote δj = ij−ij−1−1, for j = 0, . . . , e−1, so that δj represents the number
of zero bits between the set bits ij and ij−1 in v, when 0 < j ≤ e − 1, and
the number of trailing zero bits, when j = 0. Let b = bn−1 . . . b1b0 be
the word associated with the approximation. This word consists of only
two alphabets, one for the characters bi, i ∈ {i0, . . . , ie−1}, and one for the
characters bi, i ∈ {0, . . . , n − 1} \ {i0, . . . , ie−1}. Hence, using the linear
representation of the correlation cf (v, u) we can write

cf (v, u) = LA1A
δe−1

0 · · ·A1A
δ1
0 A1A

δ0
0 C, (3.12)
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where A1 is the transition matrix used for the characters bi0 , . . . , bie−1
, and

A0 is the transition matrix used for all other characters. The eigen decom-

position of A0 allows simplifying the terms A
δj

0 , j = 0, . . . , e − 1, so that
one can derive a matrix-free expression for the correlation cf (v, u). This
expression is obviously a function of i0, . . . , ie−1. The leading zero bits in
the masks do not affect the correlation, since f is a T-function. This is why
the term A

n−ie−1−1
0 has been omitted from (3.12).
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Chapter 4

Cryptanalysis of SOBER-128

SOBER-128 is a synchronous stream cipher designed by Hawkes, Pad-
don, and Rose [2003] of Qualcomm Australia. It is an improved version of
SOBER-t32 [Rose and Hawkes, 1999] that was submitted to the NESSIE

program. SOBER-128 generates a keystream of 32-bit words based on a
128-bit secret key. Originally, it also contained message authentication func-
tionality, but that has been removed due to vulnerabilities to forgery attacks.
According to the homepage of Qualcomm Australia [2006], the first attack
by Watanabe and Furuya [2004] turned out to be easy to address; however,
the designers themselves later found out a similar forgery attack that still
applied to SOBER-128. In our analysis of SOBER-128, we concentrate
only on the keystream generator.

The best known attack on the keystream generator part of SOBER-128

is due to Cho and Pieprzyk [2006a]. It uses an application of linear crypt-
analysis for LFSR-based nonlinear filter generators as discussed in Chap-
ter 3. First, linear approximate relations over nonlinear functions are derived
which involve terms from the LFSR state variables and the keystream. Then
a linear time-invariant relation originating from the LFSR recurrence rela-
tion is used to cancel out the internal LFSR state variables to obtain an
approximate linear relation involving keystream variables only. The linear
time-invariant relation involving six LFSR state variables used by Cho and
Pieprzyk [2006a] is due to Ekdahl and Johansson [2002]. The resulting linear
distinguishing attack requires 2103.6 terms of the keystream.

Our attack on SOBER-128 is also a linear distinguishing attack. To con-
struct the distinguisher, we use the linear recurrence relation of the LFSR

directly to cancel out the LFSR state variables. One part of the NLF of
SOBER-128 is a pure T-function involving a secret key-dependent constant.
We derive approximate linear relations over the NLF and show how the re-
sulting approximate linear relation of the keystream variables can be used,
not only to distinguish the output keystream from a purely random sequence
but also to determine one bit of information of the secret constant. However,
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it seems that the complexity increases slightly. To our current estimates it
takes on the average 2113.5 terms of the keystream to get one bit of infor-
mation of the secret constant, and 2124.6 terms to get four bits of the secret
constant. This cryptanalytic technique is not specific to SOBER-128. It
can be applied whenever linear approximations are taken over cryptographic
functions involving secret constants. One linear approximation divides the
constants into two classes depending on whether the bias of the keystream
relation is positive or negative. In general, this information of the constants
cannot be given in a form of a linear equation of the secret bits as is typically
the case in linear cryptanalysis, e.g., in the seminal work of Matsui [1994].

The structure of the chapter is as follows. In Section 4.1, we give a
description of the keystream generator part of SOBER-128. For a more
detailed specification of SOBER-128, refer to Hawkes et al. [2003]. In
Section 4.2, we describe our attack on SOBER-128.

4.1 Description of SOBER-128

The structure of the SOBER-128 keystream generator is a combination
of an LFSR and an NLF. An illustration of this structure is depicted in
Figure 4.1. The LFSR consists of 17 memory cells, each containing an
element from F

32
2 . We use the vector St = (st, . . . , st+16) to define the state

of the LFSR at time t ≥ 0. The new state at time t+ 1 is determined with
the characteristic polynomial

x17 + x15 + x4 + a ∈ F232 [x], (4.1)

where a ∈ F232 is a constant. We use polynomials in F28 [y] to represent
the elements in the field F232 . Likewise, the elements in F28 are treated as
polynomials over the binary field F2. If we encode the coefficients of a poly-
nomial over F2 as a hexadecimal number, the constant a can be represented
as 0x01y in F28 [y]. The NLF, denoted by FK , is a function of the LFSR

state St and a key-dependent constant K ∈ F
32
2 . At time t ≥ 0, the NLF

produces a 32-bit keystream word zt as

zt = FK(st, st+1, st+6, st+13, st+16)

= g((((g(st ⊞ st+16) ≫ 8) ⊞ st+1) ⊕K) ⊞ st+6) ⊞ st+13.

The function g : F
32
2 → F

32
2 is defined as

g(x) = g1(x31,...,24) ‖ (g2(x31,...,24) ⊕ x23,...,0), (4.2)

where ‖ denotes concatenation of two vectors, g1 : F
8
2 → F

8
2 is the Skip-

jack S-box [FIPS PUB 185], and g2 : F
8
2 → F

8
2 is a tailor-designed ISRC

S-box [Dawson et al., 1999]. To simplify our analysis, we define a function
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Figure 4.1: The SOBER-128 keystream generator.
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fK : F
3×n
2 → F

n
2 as fK(x) = ((x(0)⊞x(1))⊕K)⊞x(2). Thus, if we set n = 32,

the output zt of the NLF can be written as

zt = g(fK((g(st ⊞ st+16) ≫ 8), st+1, st+6)) ⊞ st+13, t ≥ 0.

4.2 Linear Masking of SOBER-128

We form a linear distinguisher for the SOBER-128 keystream generator
using heuristic search methods. Our purpose is to search multiple approx-
imations that partition the constant K ∈ F

32
2 into different classes based

on the correlation. This would allow us to gain information from K by
using linearly independent linear approximate relations as described in Sec-
tion 3.4.4. We are especially interested in how the constants are partitioned
based on the sign of the correlation, since then it is possible to get larger
correlation differences between constant classes.

Let v and u denote the output and input masks of a linear approximation
of FK respectively. The characteristic polynomial (4.1) for the LFSR yields
the linear recurrence relation

st+17 ⊕ st+15 ⊕ st+4 ⊕ ast = 0,

which can be used for forming the main distinguishing equation that consists
of output words from the keystream generator. To form this distinguishing
equation, we proceed as in Chapter 3. A linear approximation of FK is used
four times: three times with the masks v, u at times t + 4, t + 15, t + 17
and one time with the masks va, ua at time t. This procedure results in the
following distinguishing equation:

vzt+17 ⊕ vzt+15 ⊕ vzt+4 ⊕ vazt = 0. (4.3)

Let ǫFK
(v, u) denote the bias of a linear approximation (v, u) of FK with a

fixed K ∈ F
32
2 . Using the Piling-Up Lemma (3.3), the total bias ǫK(v, va) of

the distinguishing equation (4.3) can be estimated to be

ǫK(v, va) = 8ǫFK
(v, u)3ǫFK

(va, ua).

We determine the linear approximations (v, u) and (va, ua) by searching
two linear chains of approximations over FK , one to determine the mask
pair (v, u) and one to determine the mask pair (va, ua). The linear chains
are searched with the constant K set to zero. A detailed description of the
searching process is given in Section 4.2.2. The effect of K to the correlation
is examined after the linear chains have been formed. We do this by calcu-
lating the correlation of a linear approximation of fK with different K. The
masks of this approximation are chosen to be the same as in the linear chain.
Since fK is a T-function, one can determine the correlation efficiently by us-
ing the linear representation technique from Section 3.5.2. By enumerating
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all K ∈ F
32
2 , it is easy to determine how the constants are partitioned into

classes based on the correlation. We give the linear representation for linear
approximations of fK in Section 4.2.4. Our results are given in the next
section. In Section 4.2.3, we discuss how the constant a in the characteristic
polynomial affects linear distinguishing attacks on SOBER-128.

4.2.1 Results

We determined four independent linear distinguishers for the keystream gen-
erator. These distinguishers partition the constants K ∈ F

32
2 into two classes

of the same size based on the sign of the correlation. Hence, each dis-
tinguisher allows extracting one bit of information from K. The constant
classes are defined by linear relations of form w ·K = 0, w ∈ F

32
2 , such that

ǫK(v, va) > 0 if and only if w ·K = 0. These constant classes are pairwise
orthogonal, which means that we get 16 constant classes of the same size
by combining these classes together. Our distinguishers are presented in
Table 4.1 with their maximum, minimum, and average biases taken over K,
and the constant classes defined by the vector w.

Table 4.1: Linear distinguishers for SOBER-128.

v va
|ǫK(v, va)| w

max avg min

0x01980000 0x00011000 2−53.288 2−56.735 2−62.001 0x01991000

0x00000181 0x24000001 2−55.385 2−58.290 2−62.385 0x0c40600c

0x0040000c 0x08006000 2−57.701 2−61.155 2−66.112 0x41000180

0x000000c0 0x21000000 2−58.959 2−62.279 2−66.638 0xa04000c0

Using the best linear approximation given in Table 4.1, one bit of in-
formation from K can be obtained from 2113.5 keystream words on average.
For obtaining two bits of information, also the second best mask is used.
Therefore, we need 2116.6 keystream words on average for gaining two bits of
information. We need not to pay attention only to the distinguisher with the
best bias as with pure distinguishing attacks—multiple distinguishers with
good biases give the possibility of gaining more information of the constant.
The idea is comparable to Algorithm 1 in [Matsui, 1994], which applies for
DES and other block ciphers. In this case, however, the constant is placed
within a T-function and we do not always get a linear relation for differ-
ent constant bits; indeed, some relations can be nonlinear as is shown in
Section 4.2.4.
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4.2.2 Searching the Masks

We search useful linear masks by using the techniques presented in Chap-
ter 3 and also by using the algorithm by Wallén [2003]. We specifically take
advantage of the possibility to generate all linear masks with a given cor-
relation for one addition modulo 232. In this section, the term correlation
is used to refer to the absolute value of correlation unless otherwise speci-
fied. The linear distinguisher (4.3) makes use of the mask pairs (v, u) and
(va, va). Two linear chains of approximations over the NLF are created to
determine these mask pairs. The linear chains are created concurrently for
one nonlinear component at a time. We progress to the next component,
when we have found an approximation with correlation that is higher than
the preset limits. During this process, we keep track of the total correlation
using the Piling-Up Lemma. Since we assume here that different compo-
nents of the cipher are statistically independent, the results are only rough
estimates. More analysis is needed to assess their accuracy.

Used masks are depicted in Figure 4.1. The subscript a is used to denote
masks that work when the LFSR variable si has been multiplied with a. We
start by generating masks for the addition with st+1 as an input. All masks
ust+1

, η, and µ are generated with a correlation ≥ 2−3. For each us1
a, we

generate ηa and µa with a correlation ≥ 2−4. The three least significant bytes
of η and ηa are also the three least significant bytes of ζ and ζa. Previous
experiences show that large correlations are achieved with masks that have
a low Hamming weight [Wallén, 2003, Watanabe et al., 2004]. Hence, we
iterate all values with a Hamming weight ≤ 4, for the most significant byte
of ζ, and generate ust and ust+16

with a correlation ≥ 2−3. We continue
with masks that have a nonzero correlation over g. For the input masks
usta and ust+16

a, we iterate all values with a Hamming weight ≤ 4, for the
most significant byte of ζa, and compute the correlation for the addition and
g. We continue with masks that have a correlation ≥ 2−6 over the addition
and a nonzero correlation over g. We continue from the addition with st+6

as an input. Using µ we generate all masks ust+6
and ξ with a correlation

≥ 2−3. For each ust+6
a and µa, we generate ξa with a correlation ≥ 2−4.

These approximations fix the three least significant bytes of ρ and ρa. We
iterate all values for the most significant byte with a Hamming weight ≤ 4
and generate ust+13

and v with a correlation ≥ 2−3. For the ust+13
a, we

generate va with a correlation ≥ 2−4 by iterating again all values with a
Hamming weight ≤ 4, for the most significant byte of ρa. A linear chain of
approximations over the NLF has now been created.

4.2.3 Effect of a in the Characteristic Polynomial

Without a in the characteristic polynomial (4.1), the distinguishing equa-
tion (4.3) is formed using the same linear approximation (v, u) four times.
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Hence, we get the same equation as (4.3) but with va replaced with v. The
bias is determined as

ǫK(v) = 8ǫFK
(v, u)4.

In this case, the sign of ǫFK
(v, u) would cancel out, which makes it harder

to find constant classes that have large correlation differences. We con-
sidered this case for the purpose of showing how a affects the security of
the keystream generator. The distinguisher v = 0x03000001 with (average)
bias ǫFK

(v) = 2−36.771 was the best that we found. The results show that we
get a distinguisher with much higher bias than with a in the characteristic
polynomial. It is harder, however, to gain information from K, since the dis-
tinguishing equation has only nonnegative correlations and thus, correlation
differences between constant classes cannot be as large.

4.2.4 Linear Approximations of fK

Recall that the function fK : F
3×n
2 → F

n
2 is defined as fK(x) = ((x(0) ⊞

x(1)) ⊕ K) ⊞ x(2), where K = (k0, . . . , kn−1) ∈ F
n
2 is a constant. This is

obviously a T-function, for which the parameter αj is the same function for
j = 1, . . . , n− 1. In this section, we present the linear representation of the
correlation cfK

(v, u). We also show how the correlation can vary depending
on the value of K.

The Linear Representation for fK

It is easy to see that the function fK is 2-narrow. It has three input words
and two different components fK,j , since ki ∈ {0, 1}, for i = 0, . . . , n − 1.
We set α0 = 0 and use the parameter αj = (φj , ψj) with

{
φj = ⌊(x0,j−1 + x1,j−1 + φj−1)/2⌋,

ψj = ⌊((x0,j−1 ⊕ x1,j−1 ⊕ kj−1 ⊕ φj−1) + x2,j−1 + ψj−1)/2⌋,

for j = 0, . . . , n−1. Hence, the linear representation of cfK
(v, u) has dimen-

sion 22 = 4 and consists of vectors L = (1, 1, 1, 1) and C = (1, 0, 0, 0)T , and
2 · 23+1 = 32 correlation matrices Ar. For clarity, we denote by A0

er and A1
er

the matrices that correspond to the cases kj = 0 and kj = 1, respectively.
The subscript r̃ is only used to denote the linear approximation part of r,
i.e., r̃ = r mod 24, for any r ∈ {0, . . . , 31}. The matrices Ar are given in
Table 4.2.

Examples of Constant Classes

We give two small examples of how the constants K ∈ F
n
2 are partitioned

into classes with a fixed linear approximation (v, u) of fK . In our examples,
n = 5, and the constants are of form K = (k0, k1, k2, k3, k4) ∈ F

5
2. The
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Table 4.2: The matrices for the linear representation of cfK
(v, u).

A0
0 =

1

8

0
BB@

4 1 1 0
2 5 1 2
2 1 5 2
0 1 1 4

1
CCA A0

1,2 =
1

8

0
BB@

2 1 1 0
−2 −1 −1 0
0 1 1 2
0 −1 −1 −2

1
CCA

A0
3 =

1

8

0
BB@

0 1 1 0
2 −3 1 −2
−2 1 −3 2
0 1 1 0

1
CCA A0

4 = −A0
8 =

1

8

0
BB@

2 1 1 0
0 1 1 2
−2 −1 −1 0
0 −1 −1 −2

1
CCA

A0
5,6 = −A0

9,10 =
1

8

0
BB@

0 1 1 0
0 −1 −1 0
0 −1 −1 0
0 1 1 0

1
CCA A0

7 = −A0
11 =

1

8

0
BB@

−2 1 1 0
0 1 1 −2
2 −1 −1 0
0 −1 −1 2

1
CCA

A0
12 =

1

8

0
BB@

0 −1 −1 0
2 3 −1 −2
−2 −1 3 2
0 −1 −1 0

1
CCA A0

13,14 =
1

8

0
BB@

2 −1 −1 0
−2 1 1 0
0 −1 −1 2
0 1 1 −2

1
CCA

A0
15 =

1

8

0
BB@

4 −1 −1 0
2 −5 −1 2
2 −1 −5 2
0 −1 −1 4

1
CCA

A1
0 =

1

8

0
BB@

5 2 2 1
1 4 0 1
1 0 4 1
1 2 2 5

1
CCA A1

1,2 =
1

8

0
BB@

1 2 0 1
−1 −2 0 −1
1 0 2 1
−1 0 −2 −1

1
CCA

A1
3 =

1

8

0
BB@

−3 2 −2 1
1 0 0 1
1 0 0 1
1 −2 2 −3

1
CCA A1

4 = −A1
8 =

1

8

0
BB@

1 0 2 1
1 2 0 1
−1 0 −2 −1
−1 −2 0 −1

1
CCA

A1
5,6 = −A1

9,10 =
1

8

0
BB@

1 0 0 1
−1 0 0 −1
−1 0 0 −1
1 0 0 1

1
CCA A1

7 = −A1
11 =

1

8

0
BB@

1 0 −2 1
1 −2 0 1
−1 0 2 −1
−1 2 0 −1

1
CCA

A1
12 =

1

8

0
BB@

3 2 −2 −1
−1 0 0 −1
−1 0 0 −1
−1 −2 2 3

1
CCA A1

13,14 =
1

8

0
BB@

−1 2 0 −1
1 −2 0 1
−1 0 2 −1
1 0 −2 1

1
CCA

A1
15 =

1

8

0
BB@

−5 2 2 −1
−1 4 0 −1
−1 0 4 −1
−1 2 2 −5

1
CCA
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Table 4.3: The constant classes for the linear approximation with masks
v = 00011, u(0) = 00011, u(1) = 00011, u(2) = 00011 of fK , when n = 5.

cfK
−2−1 0 2−1

K

00001 00000, 10000 00011
00101 00010, 10010 00111
01001 00100, 10100 01011
01101 00110, 10110 01111
10001 01000, 11000 10011
10101 01010, 11010 10111
11001 01100, 11100 11011
11101 01110, 11110 11111

Table 4.4: The constant classes for the linear approximation with masks
v = 11101, u(0) = 10111, u(1) = 11110, u(2) = 11101 of fK , when n = 5.

cfK
−2−4 0 2−4

K

00010 00000, 10000 00011
00111 00001, 10001 00110
01000 00100, 10100 01001
01101 00101, 10101 01100
10011 01010, 11010 10010
10110 01011, 11011 10111
11001 01110, 11110 11000
11100 01111, 11111 11101
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partitions are presented in Tables 4.3 and 4.4, where the constants under
certain correlation belong to the same class. For clarity, we denote the
vectors in F

5
2 as binary numbers.

The constants are divided into classes according to the following rela-
tions. In Table 4.3, the constants belong to a class with a zero or nonzero
correlation depending on whether k0 = 0 or 1. Furthermore, depending on
whether k1 = 0 or 1, the constants belong to the class with a negative or
positive correlation. This linear approximation also serves as an example of
Theorem 1: the three most significant bits—k2, k3, and k4—do not affect the
correlation. In Table 4.4, the constants belong to the class with a zero corre-
lation if the nonlinear relation k1⊕k3⊕k1k2⊕k0k1k2⊕k1k2k3⊕k0k1k2k3 = 0
holds. The rest of the constants belong to the class with a negative or posi-
tive correlation depending whether k0 ⊕ k1 ⊕ k2 ⊕ k3 ⊕ k4 = 1 or 0. Hence,
the classes are not always determined by linear relations, when the constant
is within a T-function.
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Chapter 5

Cryptanalysis of Shannon

Shannon is a synchronous stream cipher designed by Hawkes, McDonald,
Paddon, Rose, and de Vries [2007] of Qualcomm Australia. It has been de-
signed according to PROFILE 1 of the ECRYPT call for stream cipher
primitives [2005]—but well after the call. Although Shannon is refered to as
a software-oriented stream cipher in the specification [Hawkes et al., 2007],
the authors add that Shannon should be at home in simple hardware im-
plementations as well. In addition to keystream generation, Shannon also
offers message authentication functionality that is directly incorporated into
its structure. In our analysis of Shannon, we consider only the keystream
generator part, however.

Our attack on Shannon is a linear distinguishing attack, where the dis-
tinguisher uses multiple linear approximations. Since Shannon is a NLFSR-
based nonlinear filter generator, we consctruct the distinguisher as described
in Chapter 3. A linear chain of approximations is created for both the NLF

and the nonlinear recurrence relation of the NLFSR. The approximation
of the recurrence relation is used to cancel out the NLFSR state variables
in order to obtain an approximate linear relation involving keystream vari-
ables only. As with SOBER-128, there is a secret key-dependent constant
in Shannon. Our attack is a pure distinguishing attack in the sense that it
does not gain any information from the constant. It is able to distinguish
the keystream of Shannon from about 2106.996 keystream words.

The structure of the chapter is as follows. A short description of Shannon
is given in Section 5.1. In Section 5.2, we show how the linear distinguisher
is constructed and estimate its efficiency.

5.1 Description of Shannon

The keystream generator of Shannon produces a keystream of 32-bit words
based on a 256-bit secret key. It is based on a single NLFSR and an NLF.
The NLFSR of Shannon consists of 17 memory cells, each containing an
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element from F
32
2 . We use (Rt, st+1, . . . , st+15) to denote the state at time

t ≥ 0. The state of Shannon is updated according to the following relations:
{
st+16 = f1(st+12 ⊕ st+13 ⊕K) ⊕ (Rt ≪ 1),

Rt+1 = st+1 ⊕ f2(st+3 ⊕ st+16),
(5.1)

where f1, f2 : F
32
2 → F

32
2 are nonlinear Boolean functions, and K ∈ F

32
2 is

a 32-bit secret constant that is derived in the initialization process. The
output zt at time t ≥ 0 is given as

zt = st+9 ⊕ st+13 ⊕ f2(st+3 ⊕ st+16), (5.2)

for all t ≥ 0. The functions f1 and f2 are defined as
{
f1(x) = g(g(x, 5, 7), 19, 22),

f2(x) = g(g(x, 7, 22)), 5, 19),
(5.3)

with the function g defined as

g(x, a, b) = x⊕ ((x ≪ a) ∨ (x ≪ b)). (5.4)

It follows straight from the definition of f1 and f2 that fi(x) ≪ a = fi(x ≪

a), for i = 1, 2. The functions f1 and f2 are not surjective. According to the
specification of Shannon [Hawkes et al., 2007] they cover about 84.74% and
84.34% of the codomain F

32
2 respectively. For further details of Shannon,

such as the initialization procedure and message authentication functional-
ity, we refer to the specification [Hawkes et al., 2007].

5.2 Linear Masking of Shannon

To build a linear distinguisher for Shannon we need to linearize both the
nonlinear update procedure (5.1) and the NLF (5.2). We rewrite the update
procedure (5.1) as follows:

st+16 = f1(st+12 ⊕ st+13 ⊕K) ⊕ ((st ⊕ f2(st+2 ⊕ st+15)) ≪ 1). (5.5)

We combine the relations (5.5) and (5.2) to get a linear approximate relation,
whose distribution reflects the distribution of the keystream z0, z1, . . . . The
objective is to find a relation, whose distribution differs from the uniform
distribution as much as possible. To this end, we try to include as few
nonlinear terms as possible into the relation. The best relation that we
found was formed by first treating the arguments to f1 and f2 as uniformly
distributed independent random variables xi and then adding zt ≪ 1 and
zt+16 together. Using the relation (5.5), it follows that

(zt ≪ 1) ⊕ zt+16 = (st+9 ⊕ st+13 ⊕ f2(x1)) ≪ 1

⊕ st+25 ⊕ st+29 ⊕ f2(x2)

= (f2(x1) ≪ 1) ⊕ f2(x2) ⊕ f1(x3) ⊕ (f2(x4) ≪ 1)

⊕ f1(x5) ⊕ (f2(x6) ≪ 1).
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Since xi’s are uniformly distributed and independent, and fi(x) ≪ a =
fi(x ≪ a) for i = 1, 2, we get

(zt ≪ 1)⊕zt+16 = f2(x1)⊕f2(x2)⊕f1(x3)⊕f2(x4)⊕f1(x5)⊕f2(x6). (5.6)

Hence, we get a linear distinguisher for Shannon by using (zt ≪ 1) ⊕ zt+16

as the transformation for the input sequence in the transformation phase.
Note that this is a multidimensional linear transformation, which could be
written using multiple one-dimensional transformations as in Section 3.4.3.
The distribution of (zt ≪ 1) ⊕ zt+16 is time-invariant, and independent of
the constant K and the initialization procedure. Thus, information from
K is not gained by using this linear distinguisher. As was discussed in
Section 3.4.3, the keystream requirement of the distinguisher, which uses
multiple one-dimensional linear approximations, can be determined from
the correlations of all nonzero linear combinations of the one-dimensional
approximations. Hence, we need to determine the correlation of the approx-
imation

v · ((zt ≪ 1) ⊕ zt+16) = 0, (5.7)

for all v ∈ F
32
2 , in order to determine the keystream requirement. The terms

v ·fi(xj) are independent binary random variables so the correlation of (5.7)
can be determined from the correlations of the approximations v · f1(x) = 0
and v · f2(x) = 0 using the Piling-Up Lemma (3.3). Hence, we determine
the correlations of the approximations v · f1(x) = 0 and v · f2(x) = 0 for all
v ∈ F

32
2 . To facilitate the computations, we use techniques from Chapter 3.

By Section 3.5.1, these correlations can be computed within reasonable time
using the FWHT. Roughly 232 steps are needed to determine the distri-
butions of each f1(x) and f2(x). The FWHT requires n2n computations,
and therefore about 237 steps are needed to compute the correlations of
v · f1(x) = 0 and v · f2(x) = 0, for all v ∈ F

32
2 . Let cf1

(v, 0) and cf2
(v, 0)

denote the correlations of the approximations v ·f1(x) = 0 and v ·f2(x) = 0,
respectively. The correlation c(v) of the linear approximation (5.7) is given
by

c(v) = cf1
(v, 0)2cf2

(v, 0)4.

In order to estimate the advantage of using a multidimensional transforma-
tion over a one-dimensional transformation in the distinguisher, we search
for the mask v ∈ F

32
2 , which gives the highest correlation c(v).

5.2.1 Results

To distinguish the correlation c(v) in the keystrem, one needs O(1/c(v)2)
keystream words zt. To distinguish the distribution of (zt ≪ 1)⊕zt+16 from
uniform distribution, O(1/

∑
v 6=0 c(v)

2) keystream words zt are needed. The
largest value of |c(v)| for the approximation v · ((zt ≪ 1) ⊕ zt+16) = 0 is
achieved with the mask v = 0x0410a4a1 or with any of its rotated versions
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v ≪ i, i = 1, . . . , 31. Linear distinguishing equations (5.7) with these
masks have the correlation c(v) = 2−56. To distinguish such correlation in
v · ((zt ≪ 1) ⊕ zt+16) = 0, we need approximately 2112 keystream words
zt. Approximately 2106.996 keystream words zt are needed to distinguish
the full distribution of ((zt ≪ 1) ⊕ zt+16). Hence, the distinguisher with
only one linear approximation needs about 25 times the keystream than the
distinguisher with multiple linear approximations. If all nozero masks would
induce the same correlation as the masks 0x0410a4a1 ≪ i, i = 0, . . . , 31, the
keystream requirement would reduce by a factor of 232. Since the reduction
factor is 25.004, all other masks have a negligible effect on the requirement:
they reduce it by a factor of 20.004.

Keystream generation in Shannon is limited to 264 words for one key
and to 240 words for one initialization vector. Since the distribution of
((zt ≪ 1) ⊕ zt+16) does not depend on either—the key or the IV—these
limitations do not matter even though the keystream requirement for the
distinguisher is much larger: in theory, one could generate enough keystream
for the distinguisher by initializing the cipher with a new key or IV when it
is necessary.
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Chapter 6

Conclusions

In this thesis, we studied linear cryptanalysis of stream ciphers and pre-
sented linear distinguishing attacks on SOBER-128 and Shannon. Our
focus was on techniques for finding useful linear transformations, which are
applied on the input sequence in linear distinguishers. We studied linear ap-
proximations of a class of vector-valued Boolean functions, called ω-narrow
T-functions, and presented a technique for determining the correlation of a
linear approximation efficiently for a small ω. A second topic discussed in
this thesis was the analysis of secret constants in T-functions using linear
approximations. We observed that the correlation of a linear approximation
varies with the constant, and used this fact in a linear distinguishing at-
tack on SOBER-128, which has a T-function with a secret, key-dependent
constant in its output filter. It was shown that a number of bits from the
secret constant can be recovered with a slight overhead in the complex-
ity compared to a pure distinguishing attack. In the attack on Shannon,
we took advantage of multidimensional approximation to reduce the attack
complexity. Using 32 linearly independent approximations the data com-
plexity could be reduced by a factor of 25 compared to the attack with one
linear approximation.

In his paper on narrow T-functions, Daum [2005] concluded that a sub-
class of T-functions with small narrowness appears to be weak for crypto-
graphic purposes, since the efficiency of the proposed algorithm for solving
equation systems given by T-functions depends significantly on the nar-
rowness of the involved T-functions. The results in this thesis are similar:
linear approximation of T-functions with small narrowness can be studied
more efficiently. T-functions, whose narrowness grows with the length of the
input, seem to be the most difficult T-functions to analyze with our current
techniques. It would be desirable to find a technique for studying linear
approximations of T-functions from this class also.

One possible direction for future research is linear approximation of func-
tions with secret constants. It would be useful to develop more techniques
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to analyze linear approximations of such functions. This has applications
in linear cryptanalysis of stream ciphers and block ciphers, since secret con-
stants are used in ciphers of both classes. A second possible topic for future
research is further development of the attack on SOBER-128 from using
multiple single linear approximations to full-fledged multidimensional at-
tack.
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J. D. Golić. Correlation via linear sequential circuit approximation of com-
biners with memory. In Advances in Cryptology—Eurocrypt 1992, vol-
ume 658 of Lecture Notes in Computer Science, pages 113–123. Springer-
Verlag, 1993.
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