Distributed Access-Rights Management with
Delegation Certificates

Tuomas Aura

Abstract. New key-oriented discretionary access control systems are
based on delegation of access rights with public-key certificates. This pa-
per explains the basic idea of delegation certificates in abstract terms and
discusses their advantages and limitations. We emphasize decentraliza-
tion of authority and operations. The discussion is based mostly on the
SPKI certificates but we avoid touching implementation details. We also
describe how threshold and conditional certificates can add flexibility
to the system. Examples are given of access control between intelligent
networks services.

1 Introduction

New distributed discretionary access control mechanisms such as SPKI [14] and
PolicyMaker [8,9] aim for decentralization of authority and management oper-
ations. They do not rely on a trusted computing base (TCB) like traditional
distributed access control [22]. Instead, the participants are assumed to be un-
trusted the way computers on open networks (e.g. Internet) are in reality.

The decentralization, however, does not mean sliding back to anarchy such
as the PGP web of trust [26]. The new systems offer ways of building local rela-
tions and setting up local authorities that arise from the personal and business
connections of the participants. The access control mechanisms do not mandate
any hierarchical or fixed domain structure like, for example, Kerberos [18] and
DSSA [16]. All entities are equally entitled to distribute rights to the services in
their control and to act as an authority for those who depend on them for the
services.

The main mechanism used in the new access control systems is delegation
of access rights with signed certificates. The signing is done with public-key
cryptography. With a certificate, one cryptographic key delegates some of its
authority to another key. The certificates can form a complicated network that
reflects the underlying relations between the owners of the private signature
keys.

By taking the cryptographic keys as their principal entities, the systems avoid
dependence on trusted name and key services such as the X.500 directory [12].
If any names are used, they are not global distinguished names but relative to
the users [1,24].

This paper explains the principles behind the delegation certificates in an
abstract setting without exposing the reader to implementation details. The dis-
cussion is based primarily on the SPKI draft standard although we will not touch

0 1999 Springer-Verlag
Appeared in Secure Internet Programming (LNCS 1603).

212

certificate formats. We stress distribution, scalability and locality of policy deci-
sions. Application examples are given from the Calypso service architecture for
intelligent networks [19]. The emphasis is this paper is on practical issues. More
theoretical treatments of distributed access control can be found in [2,4]. Some
support from implementations is in [3,20]. Code libraries and products using
SPKI are expected to appear when the standardization work nears completion.

Sec. 2 introduces delegation certificates an explains how they aid decen-
tralization. Sec. 3 describes two enhancements, threshold schemes and validity
conditions, that add flexibility to the basic certificates. The limitations of the
certificate-based approach and ways to overcome them are the topic of Sec. 4.
Sec. 5 concludes the paper.

2 Access Control with Delegation Certificates

Sec. 2.1 introduces delegation certificates and some basic concepts. In Sec. 2.2, we
describe first how access rights are distributed and verified with certificates. Then
we consider redelegation and extend the verification procedure to cover chains
of delegation certificates. Sec. 2.3 explains why certificates are an appealing
alternative for other methods of distributed access control.

2.1 Basic Delegation Certificates

— Delegation certificate — authorization

subject——=t (Key2 hay access service S

during the period’\fflifz\.)eiVa|idity period

Signed: f\Réyi)

issuer

Fig. 1. With a delegation certificate, the issuer shares authority with the subject.

A delegation certificate (Fig. 1) is a signed message with which an entity
grants access rights that it has to another entity. We are interested in systems
where the certificates are signed with public-key cryptography and the entities
granting and receiving access rights are, with some exceptions, cryptographic
keys. A certificate has the meaning;:

Sk (During the validity period Ty — T, if I have any of the rights R,
I give them also to K'.)

(Sk(...) denotes a signed message that includes both the signature and the
original message.) The key that signed the certificate (K) is the issuer and

213

the key to whom the rights are given (K') is the subject of the certificate, and
the rights R given by the certificate are the authorization (following the SPKI
terminology). With the certificate, the issuer delegates the rights to the subject.

All delegation certificates have a wvalidity period (Ty — T») specified on them.
When the certificate expires, the subject loses the rights that the certificate may
have given to it. Together with the authorization field, this parameter is used
for regulating the amount of trust the issuer places on the subject. Extremely
short validity periods are used to force on-line connections to the issuer. (For
simplicity, we often omit the validity period in the text below.)

The authorization is usually the right to use certain services. Sometimes, it
can be an attribute that the subject uses as a credential to acquire access rights.
Such attributes can be interpreted as abstract rights that may not directly entitle
the subject to any services but help in acquiring such rights. The syntax of the
authorization is application dependent and each application must provide its
own rules for comparing and combining authorizations. (See [14] Sec. Examples
for some typical authorizations.)

Some characteristics of delegation certificates are that any key can issue
certificates, a key may delegate rights that it does not yet have but hopes to
obtain, and the issuer itself does not lose the rights it gives to the subject. In
the following, we will discuss these and other properties of delegation in detail.

Our view of the world is key-oriented. The entities possessing, delegating
and receiving access rights are cryptographic key pairs. The public key is used
to identify the key pair and to verify signatures. The private key can sign mes-
sages. It is held secret by some physical entity that uses the key and the rights
attributed to the key at its will. All keys are generated locally by their owners.
There is no limit on the number of keys one physical entity may own. On the
other hand, if a physical entity is to receive any rights from others, it must be
represented by at least one key. Most public-key infrastructures (e.g. X.509) are
identity-oriented. In them, access rights are given to names of entities and the
names are separately bound to keys.

Delegation certificates also differ from traditional access control schemes in
that any key may issue certificates. There is no central or trusted authority that
could control the flow of access rights. All keys are free to delegate access to
services in their control.

The delegation takes effect only to the extent that the issuer of a certificate
itself has the authority it is trying to delegate. Nevertheless, it is perfectly legal
to issue delegation certificates for rights that one does not yet have or for broader
rights than one has in the hope that the issuer may later obtain these rights.
Sometimes a key may delegate all of its rights to another key. The policy for
calculating the access rights received by the the subject when the issuer itself
does not possess all of the rights listed in the certificate depends on the type of
authorizations in question. In this paper, we consider only set-type authorizations
as most literature [4,14]. The subject gets the intersection of the rights held by
the issuer and the rights mentioned in the certificate. Since this limitation is

214

true for all delegation certificates, it is usually not explicitly mentioned. If we
also ignore the validity period, the certificate above can be written, in short,

Sk (K' has the rights R.)

Since the signing of a certificate happens locally at the physical entity pos-
sessing the private issuer key, the act of signing does not invalidate any existing
certificates or affect existing rights. The subject of the certificate gets new rights
but the issuer does not lose any.

In this way, delegation is less powerful than transfer of rights where the
originating entity loses what it gives. On the other hand, delegation is far easier
to implement. The simplicity of the implementation (signing a certificate) in a
distributed environment is the reason why delegation is preferable to transfer as
an atomic access control primitive. (See Sec. 4.1 about implementing transfer.)

2.2 Certificate Chains

This section shows how the certificates are used as a proof of authority and how
the rights can be passed forward through several keys and certificates.

We begin by considering the simple case of access right verification where the
owner of a service has issued a certificate directly to the user of the service (like
K delegates to the public key K’ above). When the user wants to use its rights,
it signs a request with its private key (K') or in some other way authenticates
(e.g. by establishing an authenticated session) the access request with the private
key. This can be construed as redelegating the rights to the request. The user
attaches the delegation certificate to the access request and sends both to the
server.

Every service platform has either a single master public key that controls all
access to it or access control lists (ACL) that determine the privileged public
keys for each service. When the server receives an access request with an at-
tached delegation certificate, it first verifies that the certificate is signed by a
key controlling the requested service (K). It then checks that the authorization
in the certificate is for the service and that the key requesting the service is
the same as the subject of the certificate (K'). In this scenario, the certificate
behaves like a capability. The signature protects the capability from falsification
and binds it to the subject key.

Just as a key may delegate rights to services it directly controls, it may also
redelegate rights it received by delegation from other keys. In this paper we
assume that redelegation is always allowed unless a certificate explicitly forbids
it.

When a key delegates to another key and this key in turn redelegates to a
third one, and so on, the delegation certificates form a chain. In the chain, the
access rights flow from issuers through certificates to subjects. The original issuer
is usually the service producer and the final subject is a client of the service.

If all the certificates in the chain delegate the same access rights and specify
the same validity period, these rights are passed all the way from the first issuer

215

to the subject of the last certificate. But it is not necessary for the certificates
to have the same authorization field and validity period. We remember that the
rights obtained by the subject key are the intersection of the rights possessed
by the issuer and the authorization field of the certificate. Consequently, the
rights passed through the chain of certificates can be computed by taking the
intersection of the rights possessed by the first issuer with the authorizations
on all the certificates in the chain. (Sometimes the intersection can be empty
meaning that no rights are passed all the way.) Likewise, the validity period
of the of the chain is the intersection of the periods specified on the individual
certificates. For example, in the chain of Fig. 2, Keyj receives the right to the
web pages “http://S/file” for today only from key Key!.

Delegation certificate Delegation certificate Delegation certificate
% Key2 may read web % Key3 may read web :% Key4 may read any %\
X server S this year. X pages http://Sffile always. X web servers today. X

Signed: Keyl Signed: Key2 Signed: Key3
T
AN | .
N , .
N ! ;
S 1 ’
attach certificates to request
<~ Accessrequest—_ _ _ ______________
Read http://Sifile.
Server S Signed: Key4 Client
controlled by Keyl owner of Key4

Fig. 2. A chain of delegation certificates

Since the certificates can be issued by anyone to anyone, they do not neces-
sarily form simple chains. Instead, the certificates form a graph structure called
delegation network. In the delegation network, there may be many chains of cer-
tificates between the same pair of keys. Naturally, the rights passed between two
keys are the union of the rights passed by all individual chains between them.
(Set-type authorizations are combined with the union operator. Other policies
are possible for other types of authorizations.)

When a key requests a service and it has obtained the access rights through
a chain of certificates, it attaches the entire chain to its request (Fig. 2). The
server will verify that the chain originates from a key controlling access to the
requested service, that it ends to the key making the request, that each certificate
in the chain is signed by the subject of the previous certificate, and that each
certificate in the chain authorizes the request. Several chains of certificates can
be attached if the combined rights delegated by them are needed for the access.

The signing of an access request can also be thought of as redelegation to
the request. Furthermore, the request may be program code. In that case, it is
natural to think that the last key in a chain redelegates to the code and the code
makes the actual requests. Consequently, delegation certificates should be used

216

to express this delegation. This is done so that the last key signs a delegation
certificate where the subject is not a key but a hash value of the program code.
We will see an example of this in Sec. 2.4.

In a way, the delegation certificates behave like signed requests for capability
propagation (see e.g [17]). The requests are honored only if the signer itself has
the capability. However, it is not necessary for the server or for a trusted party
to process each propagation before the next one is made, and no new capabilities
need to be produced before the rights are used. Instead, the information is stored
in the form of the delegation certificates.

Although the most obvious way of managing certificates is to accumulate
them along the chain of delegation and to attach them to the service requests,
there is no compelling reason to do this. The certificates can be stored and
managed anywhere as long as the verifier gets them in the end. The accumulation
is not always even possible if the certificates are not issued and renewed in the
order of their positions in a particular chain.

Managing long chains of certificates can become a burden. A technique called
certificate reduction saves work in verifying the certificate chains. We observe
that two certificates forming a chain

Sk, (K5 has the rights R;.) and Sk, (K3 has the rights R».)
imply a direct delegation from K; to Kjs:
Sk, (K3 has the rights Ry N Rx.)

The third certificate is redundant and signing it will have no effect of the access
rights of any entity. Hence, K; can sign it after verifying the chain of signatures.
Continuing the process inductively, a chain of any length can be reduced into a
single certificate. If the reduced certificate is used repeatedly as a proof of access
rights, savings in the verification time can be substantial. In order to compute
the intersection of the authorizations, the issuer of the reduced certificate must
have some understanding of the contents of the authorization fields. Other than
that, the reduction is a mechanical procedure that does not involve any decision
making. Certificate reduction is the main technique of certificate management
in SPKI.

2.3 Distribution of Authority and Operations

This section explains the rationale behind delegation with certificates. We em-
phasize suitability for open distributed systems with no globally accepted au-
thority. The advantages center around the high level of distribution achieved
both in authority and management work load.

The first key to the distribution is that the entities are represented by their
cryptographic keys instead of names. Names are a natural way of specifying
entities for humans but they are less suitable for cryptographically secure au-
thentication. Ellison [13] discusses the complicated connection between keys and
identities. In a key-oriented world, we don’t need trusted third parties to certify

217

the binding between a name and a public key. Instead, the public key is used
directly to specify an entity. Thus, the centralized or hierarchical certification
authorities (CA) that are the heart of traditional identity-based access control
lose their role in key-oriented systems. This is a major security advantage. For
example in X.509, the name certificates come from a global hierarchy of offi-
cials (CAs) who must all be trusted with respect to any access control decision
whose security depends on the correct mapping between a key and a name.
Key-oriented access control avoids such obvious single points of failure. Fig. 3
illustrates the difference. It becomes even more obvious when we remember that,
in a truly name-oriented system, the mapping from name to key must be done
also for the service owner and for every key in a chain of delegation.

Identity-oriented Key-oriented

Bob has the
right to use
service S.

K has the
right to use

service S.

Owner of service S. Bob’s public

key is K. Owner of service S.

OK. | allow
access for K.

Certification authority
OK. | allow

access for K.

H\

Service S.

Service S.

Fig. 3. In an identity-oriented system, security of all access control depends on trusted
authorities. Key-oriented systems avoid this.

The omission of names also results in savings in communication and cer-
tificate processing. There is no need to contact a CA. The verification of the
certificates in a chain is a straight-forward, mechanical procedure that involves
no communication or policy decisions.

Sometimes we, nevertheless, need bindings between names and keys. This
is usually because of the need to refer to legal persons or because names are a
natural form of human input. In such cases, we must either trust name certificates
from a some CA or, preferably, resort to SDSI-type linked name spaces [1,24]
whose relativity is explicit. But when feasible, the most robust practice is to
pass the correct public key from the subject to the issuer at the time when a
delegation certificate is created and to issue the certificate directly to the key.

The effect of delegation on the distribution of authority, however, is greater
than only eliminating the CA. Delegation-based access control does not con-

218

ceptually differentiate between keys that are allowed to grant access and ones
that only use services. From technical point of view, all keys are equal regard-
less of the importance of rights they handle. Any key may issue certificates to
others and distribute access rights to the services in its control without asking
permission from any other entity.

The bottom-up formation of policy is the most distinguishing property of
certificate-based access control. The certificates are issued locally by the entities
that produce the services and, therefore, should be responsible for granting ac-
cess to them. The certificates are formal documents of local trust relationships
that arise from voluntary personal, technical and business relations between the
entities possessing private keys. Nothing is mandated by global authorities. In a
chain of delegation certificates, every link is a result of a local policy decision.
Because of redelegation, the local decisions by individual key owners have global
consequences.

The lack of enforced hierarchical structure makes the system open and scal-
able. Setting up new a new entity is as simple as generating a signature key. New
keys may be created locally as new physical entities or services are introduced.
In comparison, most traditional access control systems achieve scalability with
a hierarchy of trusted entities or domains and require meta-level maintenance
operations for changes in the hierarchy [12,16,18].

An important observation in the certificate management is that the storage
and distribution of certificates is a separate concern from their meaning [8,9]. The
integrity of the certificate data is protected by the signatures. Thus, untrusted
entities can be allowed to handle them. Often, organizations will want to set
up certificate databases for access-right acquisition and management. Similarly,
most application software packages are unlikely to include their own certificate
management. Most of the tasks can be done for them by untrusted servers or
helper software. Nikander and Viljanen [23] describe a way of storing certificates
in the Internet domain name service and a discovery algorithm based on [3].

The certificates should be considered as sets or graphs rather than as chains.
This is because the order of issuance of the certificates does not necessarily have
any correlation to their order in a particular chain. The time of issuance and the
validity periods depend on the local trust relations behind the certificates. These
are independent of whatever chains may be formed globally. If one certificate in
a chain expires, only that one needs to be refreshed immediately. The other
certificates in the chain remain valid. In this way, the system is distributed not
only in space but also in time. It is even possible that the private keys or the
owners of the keys who issued some of the certificates have ceased to exist by
the time the certificates are used as a part of a chain. This is commonly so when
temporary key pairs are used for anonymity or when a old system delegates its
tasks and rights to a replacing one.

Certificate reduction allows a trade-off between communication and certifi-
cate processing cost. Reduction requires one to contact the issuer of the reduced
certificate. This means that the entity must be on-line at the time of the re-

219

duction and that this on-line system must be secure enough to hold the private
signature key. Luckily, the reduction engine can be fairly simple to build. If all
the certificates in the chain delegate the same rights or if the application has
straightforward rules for computing intersections of the authorizations, the re-
duction is a purely syntactical transformation and it can be fully automated. The
issuer of the reduced certificate does not need to fully understand the meaning
of the certificates. The reduction may save significantly in the costs of certificate
transfer and verification.

Unlike mandatory access control mechanisms, delegation does not have a
central reference monitor to supervise access and distribution of the access rights.
Neither is there a trusted computing base (TCB) to monitor the actions of the
distributed entities. This is because there is no global policy to enforce on the
parts of the system. In open environments like the Internet, it would not be
possible to implement any global controls. Instead, the policy is determined
locally by the parts.

Delegation leaves more to the discretion of the participants than many other
DAC mechanisms. The system does not enforce any policies to protect users from
bad decisions. All the verifier of a certificate sees is public keys and signatures.
It has no way of telling if the private keys belong to legitimate entities in the
system. The certificate issuer at the time of signing should, of course, have a
solid reason for trusting the subject with the delegated rights. But the systems
leaves it to each key owner to judge by itself who can be trusted. The issuer
may or may not know the name or identity of the subject key owner. Moreover,
redelegation creates a new degree of freedom. When redelegation is allowed,
anyone can share his rights with others. This is equal to universal grant rights
from anyone to anyone.

It may seem that redelegation should be controlled. It is, indeed, possible to
add conditions on the certificates limiting redelegation. In SPKI, the choices are
to allow or forbid redelegation completely. A certificate that forbids redelegation
can only be the last certificate in a certificate chain.

There are, however, appealing arguments for allowing free redelegation. It
may be convenient for the client to authorize someone else to use the rights on
its behalf, or the client may want to redelegate the rights to one of its subsidiaries.
The internal organization of the clients of a service should not be a concern to
the service providers. Free redelegation makes the internals of the system parts
more independent thus furthering distribution.

The key-oriented nature of the system also obscures the semantical meaning
of the restrictions on redelegation. Only in special circumstances does the issuer
of a certificate know that the private part of the subject key is held permanently
secret by a certain physical entity. In many cases, the issuer accepts any key given
by the entity that is to receive the rights. In general, there is no guarantee that
the corresponding private key will not be revealed to others. Giving out the key
would spread the rights as effectively as redelegation but, unlike in redelegation,
the rights and their validity period could not be limited. Usually, there are also

220

other ways to redistribute the services without the agreement of the originator,
e.g. establishing proxy servers and outright duplication of the server data.

Instead of forbidding redelegation, the issuer of a certificate should consider
changing the authorization and validity period. Minimizing the scope of dele-
gated rights is the most natural way to express limited trust in the subject. The
certificates make it easy to reconsider the rights and validity in each step of a
delegation chain.

All in all, delegation does well the part of access control that is easy to im-
plement: maximally discretionary distribution of access rights. Mechanisms for
identity certification, limits on redistribution, rights transfer and revocation can
be added where they are required. However, such features in principle require
a more complex infrastructure with a TCB, tamper-resistant modules, trusted
third parties or on-line communication. Therefore, the basic access control sys-
tem should not require their use. We believe that there are many instances where
pure delegation is a sufficient mechanism and corresponds well to the real-life
access-control needs.

2.4 Access Control for IN Services

Delegation certificates are most suitable for use in distributed systems with no
globally accepted security policy or authority and in open systems with no central
registration of the servers and clients. They are unlikely to find applications in
high-security environments where mandatory access control and trusted systems
are a rule. Although most applications will be on the Internet, we will look at
an example from the telecommunications world.

Calypso [19] is a distributed service architecture for intelligent networks (IN).
It is designed for ATM access networks where a workstation running the Calypso
service platform controls an ATM switch. Calypso provides flexible distribution
of service and network control functions among service clients, servers and net-
work nodes. The same architecture could also reside on top of other types of
network equipment such as IP switches and firewalls.

Calypso is based on a business model where the network operator who owns
the infrastructure offers network resources to service providers (SP). These re-
sources are the lowest level of Calypso services. Service providers can either
market the right to use their services to end users or they can sell them to other
SPs for reselling or for use as building blocks of more sophisticated services.
Complex services and their components form tree-like structures (Fig. 4).

All Calypso services are implemented as Java packages. A service may use
other services by calling methods of the classes that belong to them. Hence, the
network nodes must have an access control system that facilitates execution of
code from mutually distrusting SPs and contracting of services between them.
The Calypso security requirements and a tentative architecture for satisfying
them were outlined in [6].

The IN access control mechanisms should encourage free formation of busi-
ness relations between service producers and merchants distributing access rights

221

Servicel SP1
. Delegate
‘. Service2 ./ Delegate
ST Service4
Service2 SP2 Delegate
Service3
[Service?D [ServiceéD Delegate SP4

SP3
Service5 A\
Service5 SP5
Cj Delegate
Services

Delegate Delegate
Services Services
\ /
@) [Low-level network services] (b) Network operator

Fig. 4. Calypso service composition and delegation between SPs

to the services. Delegation, in a natural way, allows complex relations between
the entities without forcing too much predefined structure on the service market.

Calypso uses SPKI certificates to delegate access rights between SP keys. The
Calypso system differs from the standard scenario in that the last certificate
in the chain always delegates the rights to (a hash value of) a Java package
implementing the service that will use the access rights.

Fig. 5 shows how a service provider delegates access rights for its service
to another SP that in turn delegates them to its service code. (This is the
circled delegation step in Fig. 4(b).) When the code package is installed into
the network nodes, it is accompanied by the certificates. In Fig. 6, the access
rights are delegated through a service broker adding another link to the chain
of certificates.

The delegated authorizations are always rights to access a Calypso service.
Since services in the Calypso architecture are encapsulated into Java classes and
packages, this gives a natural level of granularity for the access control.

Each service has exactly one key associated with it: the key of the service
author or owner. This key distributes the access rights by issuing delegation
certificates. The decision to delegate depends on the relations between the enti-
ties possessing the private keys. However, the service producers do not actually
need to think in terms of access control policies. Instead, they sell and buy the
certificates with business relations in mind.

The network operator or a service provider may want to review the client
service implementation before granting access. This is because the access control
mechanisms cannot effectively prevent denial of service, bad publicity and many
other potential problems created by malicious or low quality services. The review

222

Delegation certificate —

Service _ Service
prowder 2 Keyl may access Service2. m—— prowder 1
holds private Key2. Signed: Key?2 holds private Key1l.
|
|
i Delegation certificate

|
author or
owner

|

hash(Servicel code)
may access Service2.

Signed: Keyl

Service platform

Service?2

owned by Key2. access

Servicel

Fig. 5. Delegation to another service provider (SP) in Calypso

Service
broker

holds private KeyB.

% \

Delegation certificate
Delegation certificate Keyl may access Service2.
KeyB may access Service2. Signed: KeyB
Signed: Key2
Service Service
provider 2 provider 1

holds private Key2.

holds private Key1l.

Fig. 6. Delegation through a service broker in Calypso

223

process is not easy to organize because the aim is to allow fast development of
services by a large number of independent SPs. A possible solution is to use
independent quality-control (QC) units that certify services if they meet some
minimum quality criteria. In Fig. 7, the network operator grants access rights to
SP1’s code only after receiving the review results. If the QC writes a certificate
to Keyl instead, that means it has reviewed the production process of SP1 and
the network operator can trust SP1 to do its own quality control.

Network
operator

holds private KeyN.

Delegation certificate

hash(Servicel code) may
access Network services.
Signed: KeyN

\
Network operator must see
the quality certificate from

KeyQ before signing.

\
\
\

r Delegation certificate
Quai“t% — hash(Servicel code))
contro passed quality check. Servicel
holds private KeyQ. Signed: KeyQ

Fig. 7. Code quality control for IN services with basic delegation certificates

The example reveals a major limitation of the basic delegation certificates.
The quality check must be passed before the network operator makes its decision.
If changes are made to the code, the network operator must renew its certificate.
But the network operator clearly does not make any new policy decision at that
time. It only follows a fixed rule: if the quality check is ok, it will sign. In the
following sections we will see how the requirement for quality check and other
rules for deriving new access rights from old ones can be encoded into certificates.

3 Threshold and Conditional Delegation

The following sections introduce certificates with more complex structure than
the ones we have seen so far. The enhancements increase significantly the flexi-
bility of certificates as an access control tool. Threshold certificates are a means
of dividing authority. Instead of giving the rights to a single subject, they are
given to a group of subjects who must co-operate to use the rights. Sec. 3.1
describes the certificates and Sec. 3.2 explains how they are used. Conditional
delegation is a way of expressing simple access control policy rules in certificates.

224

We will introduce the new type of certificates in Sec. 3.3 and look at applications
in Sec. 3.4.

3.1 Threshold Certificates

Threshold certificates are an extension of the basic certificate structure. Instead
of having only a single subject, they divide the authorization between several
subjects. In order to use the rights given by a certificate, the subjects must co-
operate. The certificate has a threshold number that determines how many of
the subjects must agree.

A (k,n)-threshold certificate is a signed message like the following:

Sk (During the validity period Ty — T», if I have any of the rights R,
I give them also to {K1, Ko, ..., K},
k of whom must co-operate to use or redelegate the rights.)

The usual way for the subjects to co-operate is to redelegate the rights to
one of them or to some other single entity. In Fig. 8, KeyC receives the right
R from KeyS because two subjects of the (2, 3)-threshold certificate co-operate
to pass it to KeyC. When KeyC wants to use the right R, it must attach all
three certificates to its access request. It should be noted that the subjects of
the threshold certificate do not need to delegate directly to the same key as in
the figure. The delegation could go through independent or partially dependent
chains of certificates and even through other threshold certificates before the
shares are accumulated to a single key. The general structure of such networks
was studied in [4].

The threshold certificates can also be used in some situations where there
is no real threshold trust scheme. An example below will show how they may
improve distribution and flexibility of the system.

(k, k)-threshold certificates where all subjects are required to co-operate are
sometimes called joint-delegation certificates. Open threshold certificates [4] are
a variation of the threshold certificates where each subject is given a separate
certificate and new subjects can be added later.

3.2 Threshold Certificates and IN Access Control

There may be intelligent network services controlled by a group of SPs so that
two or more are needed to grant access to the services. Such conditions can be
directly expressed with threshold certificates from the service master key to the
service providers’ keys. A single SP may also want to ease the burden of storing
its private key securely by distributing the authority between several keys. This
is exactly what is pictured in Fig. 8. The SP generates three new keys K;, K»
and K3. It then signs a the following kind of certificate with its master key K.

Sk (Any 2 of {K1, K5, K3} have all my rights.)

225

S Service master key,
erased after signing.
(2,3)-threshold certificate

Any 2 of {Keyl,Key2,Key3}
have all my rights.

Signed: KeyS
/ \y \ Keys that share the
Keyl Key?2 Key3 authority of KeysS.

Delegation certificate
KeyC has right R.
Signed: Key2

KeyC has right R.

Delegation certificate
(Signed: Key3

KeyC

Fig. 8. A threshold certificate (KeyC gets right R from KeyS)

This certificate allows any two of the new keys to operate on behalf of the
original master key. The new private keys are stored in separate places while the
old private master key is destroyed or stored in a safe place and never accessed.
This protects both against theft and accidental loss of the private master key.
If one share is compromised, it alone is not enough to misuse the service, and if
one share of the three is lost, the other two can still grant access to the service.
The SP can still advertise its old public key (K or KeyS) and receive new rights
delegated to that key. The threshold certificate passes all these rights to the
share keys who can authorize others. This kind of protection of private keys
may prove to be a much more common reason to use threshold certificates than
actual threshold trust schemes between business associates.

There is another, rather unexpected, application for the threshold certificates.
We will see that flexibility can be added to systems like that of Fig. 7 by encoding
an implication rule in a certificate. If Fig. 9, the quality-control key (KeyQ)
certifies the code by granting the code all its rights. The network operator issues
a (2,2)-threshold certificate for SP1 and QC. Thus, SP1 needs the agreement of
the QC before it can use the network services. The three certificates together
convey the right to access Network services from KeyN to Servicel. With these
certificates, Servicel can prove its access rights when installed into a network
node.

The QC key is never used for any other purpose than for certifying entities

that have passed the quality check. A quality certificate can be issued to code
or to service providers whose own quality control has passed an audit. In the

226

quality certificates, the QC delegates all its rights so that it does not need to
know what kind access the quality certificates are used for. This means that the
QC key should never be given any other rights than one share of a threshold
certificate for the purposes of a quality check on whoever gets the other share.

Service
provider 1

holds private Key1.

Network
operator

holds private KeyN.

N\

(2,2)-threshold certificate — Delegation certificate
Keyl and KeyQ together may hash(Servicel code) may
access Network services. access Network services.

Signed: KeyN Signed: Keyl

r Delegation certificate
CQOUT%II”(:% —n | hash(Servicel code) .
) has all my rights. Servicel
holds private KeyQ. Signed: KeyQ

Fig. 9. Code quality control for IN services with threshold certificates

Compared to the use of basic delegation certificates (Fig. 7), the threshold
certificate has the advantage that dependences between the quality control and
the granting of access to the services have been reduced to minimum. It is not
necessary to involve the network operator every time code is changed and the
certificates can be signed in any order. The three certificates can be issued and
renewed independently of each other.

Admittedly, this is a somewhat inelegant way to use threshold certificates.
The rights delegated by the certificate are not encoded in the the authorization
part (“all my rights”) but in the signing key (“Key@ is the quality-control key”).
If there are several different authorizations (e.g. several types of quality check),
the QC unit must have an equal number of signature keys. Moreover, comparing
different levels of authorization becomes difficult when the authorizations are
encoded in the keys. We observe that the threshold certificate in Fig. 9, in effect,
carries the meaning

“Keyl may access the network services if it also has
a quality certificate from Key@.”

In section 3.4, we will introduce a new type of certificate that explicitly in-
cludes such conditions. The reason why we have described in length how to
encode the same meaning into a threshold certificate is that only threshold del-
egation is currently supported by SPKI.

227

3.3 Conditional Certificates

Conditional certificates are like the basic delegation certificates except that they
state additional conditions that have to be satisfied before the certificate is con-
sidered valid. A conditional certificate is a signed message with the following
contents:

Sk (During the validity period P, if T have any of the rights R,
I give them also to K’ if it also has
the right R; from K, and
the right Ry from K, and
the right R3 from K3, ...)

The certificate gives the rights to the subject only if all the conditions in the
list are satisfied. The conditions always take the same form: they require the
subject key of the certificate to have a certain authorization from a certain key.
This is natural because any attribute that the subject may have can be verified
only if it is expressed as an attribute certificate from a proper authority.

In order to use the certificate, the subject must provide a proof that the
conditions are fulfilled. It does this by attaching appropriate certificate chains,
one for each condition. The certificates in the proof of access rights form a tree
(or a directed acyclic graph) rather than a chain.

When certain attributes are required before granting access to a service, a
conditional certificate offers two advantages compared to the basic delegation
certificates. First, the certificate is an unambiguous, standard-form statement of
what kind of attribute certificates are still needed for the access. Secondly, the
conditional certificate can be signed before obtaining the attribute certificates.
Without conditional certificates, the client in need of access rights would first
contact the issuer to find out what are the prerequisites, then try to acquire them
and, in the end, return to the issuer with the collection of credentials in order
to get the new certificate. When the decision rule is encoded in a certificate,
the issuer needs to be contacted only once. The client may obtain the attributes
before or after this contact. Thus, communication and synchronization between
the entities is greatly reduced.

The conditional certificates express simple policy rules but they are, by no
means, a general language for defining policies. For example, the certificates pre-
sented here cannot express symbolic rules. A more general language for express-
ing conditions, policies and limits on redelegation is a topic of active research.

3.4 Conditional Certificates and IN Access Control

Conditional certificates are just the right tool for the kind of situations where we
slightly abused threshold certificates in Sec. 3.2. The code quality check for an
IN service can be expressed as a condition. Fig. 10 reformulates the certificates
of Fig. 9 with conditions. The result is functionally the same but the system is
much more intuitive for a designer or an observer.

228

With the threshold certificates, the quality certificate told only indirectly
what kind of authority it gives to the subject. The authorization was encoded
in the signature key. In addition to being cumbersome to understand, this en-
coding has the disadvantage that the authorizations are not comparable. The
conditional certificates, on the other hand, explicitly state the rights or attributes
in the authorization field of the certificate and the authorizations can be com-
pared. For example, we can let the IN Network operator write the required level
of quality in the conditional certificate. If the QC issues a quality certificate with
the same or higher level to Servicel, the code will get the access rights.

Conditional certificate — Service
Network Keyl may access Network ~ —=— provider 1

op Qrator service if it has "passed
holds private KeyN. | g jality check” from KeyQ.
Signed: KeyN

holds private Key1l.

r— Delegation certificate

hash(Servicel code) may
access Network service.
Signed: Keyl

r Delegation certificate 7
Qua;[l It% hash(Servicel code))
contro passed quality check. Servicel

holds private KeyQ. Signed: KeyQ

Fig. 10. Code quality control made simple with conditional certificates

4 Limitations

The flexibility of the certificates does not come completely without a price. There
are many security goals that require centralized control and cannot be realized
only with signed messages. We will consider such goals and see what kind of
central or trusted services they imply. Sec. 4.1 discusses policies that require
additional infrastructure. Sec. 4.2 brings up the issue of quantitative rights. In
Sec. 4.3 we consider revocation and in Sec. 4.4 anonymity and auditing,.

4.1 Expressive Power

The certificates are a form of discretionary access control. They cannot express
mandatory policies like the Bell-LaPadula model [7] because we do not assume

229

any mechanism for enforcing a policy globally. A mandatory policy would require
all equipment on the system to be under the control of some authority so that
they can be trusted to follow the policy.

Another limitation is that the certificates can only convey policies where
the rights of the entities grow monotonically as they acquire new certificates. It
is impossible to verify that someone does not have a certificate. Consequently,
separation-of-duty policies like the Chinese Wall policy [11] cannot be expressed
with only certificates. They need some mechanism for keeping track of the previ-
ously granted rights. Moreover, if several distributed issuers give out certificates
for different conflicting rights, these issuers must share a single view of the sub-
jects’ histories. The histories must be updated in real time when new certificates
are issued. An equally difficult problem is that in a key-oriented system, one
physical entity might use several keys to gain conflicting rights. We must first
identify the entities whose duties we want to separate and then find a way of
mapping keys to unique identities. For example, a trusted official could certify
the keys to be unique personal keys of the participating persons. Altogether, sep-
aration of duty appears to be one of the greatest challenges for certificate-based
access control.

A related problem is the separation of access rights and grant rights. In a
key-oriented architecture, someone with only grant rights could easily subvert
the protection mechanism by issuing the rights to a key held by himself [15].
Therefore, every key in practice has the rights that it is allowed to delegate to
others. Like the separation of duty, separate policies for granting and using rights
cannot be securely implemented unless each entity has a unique identity and
keys owned by the entity are bound to the identity. Consequently, key-oriented
systems usually do not even try to implement pure grant rights.

An occasionally needed access control feature is a proxy that can issue cer-
tificates with longer life-times than its own existence. For example, a manager
on a vacation should be able to delegate authority to a stand-in only for the time
of the leave but the decisions made by the stand-in should stay valid longer than
that. Unfortunately, the proxy can create valid-looking certificates even after
losing its authority. He simply writes false dates on them so that they appear
to be signed at the time when he was authorized. The problem can be solved
with the help of a trusted time-stamping service if such a centralized authority
exists. Often it is easiest to let the certificates expire when the mandate of the
proxy does and have the master entity revalidate them.

The above limitations are due to fundamental properties of the access control
mechanism. There are, however, some other respects in which we have deliber-
ately satisfied us with less than the maximal expressive power. For example,
symbolic expressions could be allowed in conditional certificates. The extension
would make it possible to express general rules while the certificates proposed in
this paper can only speak of fixed keys. The reason for presenting the less gen-
eral model here is that it solves the practical problems with the basic delegation
certificates that we have met in applications. Future work on symbolic condi-
tions will determine the extent to which they are worth the increased complexity.

230

The question of the optimal expressive power for the certificates involves issues
of computational and communication complexity and typical usage patterns in
applications.

A question that we will leave open is the exact structure of the authoriza-
tions. The types of access rights and the policies for combining them depend
on the application. In PolicyMaker [8,9], the authorizations are expressed as
small programs of a safe programming language and certificates can communi-
cate with each other. This maximally generic approach leads to concerns about
the tractability of access control decisions [10]. But no matter how the authoriza-
tions are encoded, certificates have one general limitation in this respect: they
can effectively express qualitative authorizations but not quantitative. That is
the topic of the next section.

4.2 Accounting and Redelegation

Accounting of service usage is an essential function in many commercial appli-
cations. The delegation certificates themselves do not support accounting in any
way. They are inherently reusable and can be combined with any number of
access requests without losing their validity. For example, there is no use-once
certificate or quota on the number of times a service can be used. Such fea-
tures can, of course, be built with additional infrastructure but they cannot be
encoded into certificates.

If accounting is difficult, a natural alternative is to charge a flat rate per
client. But as we argued in Sec. 2.3, it is an equal challenge to keep the subjects
from sharing their rights with others. By sharing their access rights, the clients
can frustrate the flat rate charging policy.

The reason behind these problems is again the lack of unique identities for
the individuals in the system and the lack of a global authority that could police
the actions of the individuals. There are three main approaches for overcoming
the problems with accounting and charging:

1. Make the charging recursive. Every reseller will be responsible for collecting
payments from the clients it delegated rights to or for dividing quotas be-
tween them. Apart from physical control of the clients, there are two ways in
which the reseller can divide the services and the costs between its clients.
(a) The reseller divides the service capacity at its disposal into smaller time

slots and more specific methods of access. Because the authorizations
are refined to be suitable only for very narrow purposes, the clients must
repeatedly request new certificates from the reseller who collects usage
data.

(b) The authorized clients may use the services at any time and the server
collects usage data. The usage statistics and the certificate chains that
were used as proof of access rights are propagated from the server down
the tree of resellers.

2. Require the client keys in the system to be certified by a trusted entity that
guarantees their payments or gives them a credit rating. The server verifies

231

the credit before allowing access and collects payments directly from the
clients. This may not stop the sharing of access rights but it means there is
someone to pay for the metered usage.

3. Require the participants to incorporate a tamper-resistant police module on
their systems. Only keys on the tamper-resistant modules are allowed to
participate in the distribution of the access rights. The module can do the
accounting or enforce whatever limitations are wanted.

All these techniques incur a cost in that they require additional infrastructure
and make parts of the system less independent. But these costs are inherent to
any accounting and charging mechanism. With delegation certificates, we can
decide separately for each application if such measures are needed and if their
cost is acceptable.

In Calypso, we have chosen the approach 1(b) because the delegation chains
between SPs are relatively short (often only one step) and the charging for
component services is arranged in the same tree-like manner. Access rights and
payments flow in the opposite directions in the service composition tree (Fig. 4).

A problem related to accounting is access rights transfer where an entity giv-
ing rights to others loses them itself. From a chain of certificates, it is not possible
to see if the chain ends there or if the rights have been redelegated further. Thus,
an entity that has redelegated its rights can still use them. Implementing trans-
fer in a distributed system requires a TCB or tamper-resistant police modules.
(The tamper-resistant module can, in fact, be thought of as a TCB.) One such
system for the transfer of software licenses between tamper-resistant smart cards
is described in [5].

4.3 Certificate Revocation

Sometimes an entity distributing access rights may want to reverse its decision
after the rights have already been granted. The change in mind may be due
to changed circumstances or more accurate information about the subject. In
a certificate-based architecture, this means invalidating certificates after they
have been issued but before their expiration dates. In general, any decrease in
the trust placed on the subject may require the issuer to sign and new certificate
and to cancel the old one.

In systems where all access is controlled by one reference monitor, access-right
revocation is a simple matter. It suffices to update the access control lists or to
store information on the exceptions at the place where the rights are verified.

In a distributed system, ACLs are stored and decisions to grant access are
made in more than one place. It is necessary to propagate the information on re-
voked access rights to all these places. The communication causes unpredictable
delays and, consequently, real-time revocation cannot be achieved like in a cen-
tralized system. An efficient infrastructure for propagating the revocation infor-
mation is a central part of many access control systems (for example [17,21]).
Some options are to broadcast revocation events or to notify only the interested

232

parties, to immediately propagate every single revocation or to periodically up-
date exception lists, and to transfer the information in push or pull fashion.

All the revocation methods add complexity to the access control architecture.
They imply frequent communication and on-line presence of servers and clients.
On open networks, it would be unreasonable to require all entities to set up the
infrastructure for efficient revocation. Therefore, we prefer to avoid revocation as
far as possible. Instead, we suggest limiting the validity time and authorization
of a delegation certificate. They should reflect the level at which the subject can
be trusted not to misuse the rights. If revocation is needed frequently, it may
be just as feasible to require frequent refreshing of the certificates. The TAOS
[25] operating system is an example of an architecture that relies completely on
expiration dates instead of revocation.

If revocation is nevertheless needed, the implementation should follow two
principles. First, the cost of the additional infrastructure should be paid only by
the entities that want the service and only when it is strictly needed. If the issuer
of a certificate wants to be able to revoke it, he should be responsible for setting
up the distribution channels for the notification. This may be a simple task if
the certificates for the rights in question are always verified in a fixed set of
servers and extremely complex if there are unregistered off-line verifiers. Second,
no system should completely abandon expiration times in favor of revocation. If
expired certificates are not purged from the revocation lists, the lists can grow
uncontrollably. The more frequently revocation occurs, the shorter the validity
periods should be. Finding the right balance that minimizes the costs requires
careful analysis of each individual system.

SPKI certificates can include instructions for downloading a lists of revoked
certificates or for asking confirmation from an on-line server. If the issuer of
a certificate wants to be able to revoke it, he must explicitly state this in the
certificate. This way the cost of the revocation lists is paid only when it is strictly
needed. Moreover, there is no centralized system for maintaining and distributing
the lists. Instead, each certificate can have a reference to the particular server
and the signature key that provide the lists.

With conditional certificates, the confirmation from an on-line server can
be implemented in the same way as the quality check in Fig. 10. Normally the
validity period of the quality certificates from the QC is long or infinite. Making
it very short would be the same as asking the SP to get a frequent on-line
confirmation from the QC.

4.4 Auditing and Anonymity

Designers of secure access control have traditionally emphasized audit capabili-
ties. That is, every action should be traceable to an entity that can be held re-
sponsible for it. The shift from closed military networks to open commercial ones
has brought a conflicting need, privacy. Although auditability and anonymity
are both desirable security goals, it is not easy to achieve both simultaneously.
Hence, we must try to balance the requirements according to the application.

233

The signature key does not directly reveal who is responsible for a signed
request which makes it difficult to trace the responsible parties. For auditing,
the keys must be bound to the persons or legal entities that are liable for their
actions. That kind of bindings can be created by identity-escrow agents that
guarantee to find a responsible person if the need should arise. The escrow agents
issue certificates to the keys whose identities they have escrowed. The services
that require auditing only accept clients with the escrow certificates.

The key-oriented system protects the users’ privacy by not explicitly revealing
their names. However, the keys are easily recognizable identifiers that can be used
to combine data collected from different sources. Therefore, further measures
are needed for reliable privacy protection. The certificate reduction (see Sec.
2.2) helps in some cases. A chain of certificates may reveal the identities of the
intermediate entities but when the chain is reduced, that information is hidden.
SPKI puts great emphasis on privacy aspects and relies mostly on the reduction.

An alternative anonymity technique is to create temporary keys that do
not reveal their owner. When a subject entity wants its anonymity protected,
it provides the issuer of a new certificate with a freshly generated public key.
The temporary keys cannot be recognized and connected to the owner or to
each other. This is often preferable to certificate reduction because the entity
responsible for generating the temporary keys is the one whose anonymity is at
risk. Although the generation of the temporary keys is costly, it can be done
off-line in advance. With both techniques, however, the cost of privacy is an
increase in communication and synchronization between entities.

5 Conclusion

This paper described delegation certificates and some of their applications in
distributed access control. The goal was an abstract understanding of the basic
ideas without implementation details. We found that the main advantages of
the certificates lie in decentralization. We also introduced conditional certificates
that help in further distribution of management operations in the system.

Delegation catches well the spirit of what is natural to access control of
distributed digital services. Some access control policies require additional in-
frastructure such as a TCB or trusted servers. We feel that such costs should
be avoided wherever possible. When their limitations are kept in mind, the del-
egation certificates can satisfy many every-day access control needs and can be
used as a uniform basis for distributed discretionary access control.

Acknowledgements

The work was funded by Helsinki Graduate School for Computer Science and
Engineering (HeCSE) and Academy of Finland. In am thankful to professor Olli
Martikainen and to Petteri Koponen and Juhana Résénen for allowing the use
of Calypso as a case study. Part of the work was done while the author was at
UC Davis Computer Security Laboratory.

234

References

1.

10.

11.

12.

13.

14.

15.

16.

Martin Abadi. On SDSI’s linked local name spaces. In Proc. 10th IEEE Computer
Security Foundations Workshop, pages 98-108, Rockport, MA, June 1997. IEEE
Computer Society Press.

. Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus

for access control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706-734, September 1993.

Tuomas Aura. Fast access control decisions from delegation certificate databases.
In Proc. 8rd Australasian Conference on Information Security and Privacy ACISP
’98, volume 1438 of LNCS, pages 284-295, Brisbane, Australia, July 1998. Springer
Verlag.

Tuomas Aura. On the structure of delegation networks. In Proc. 11th IEEE
Computer Security Foundations Workshop, pages 14-26, Rockport, MA, June 1998.
IEEE Computer Society Press.

Tuomas Aura and Dieter Gollmann. Software license management with smart
cards. In Proc. USENIX Workshop on Smartcard Technology, Chicago, May 1999.
USENIX Association.

Tuomas Aura, Petteri Koponen, and Juhana Résdnen. Delegation-based access
control for intelligent network services. In Proc. ECOOP Workshop on Distributed
Object Security, Brussels, Belgium, July 1998.

D. Elliott Bell and Leonard. J. LaPadula. Secure computer systems: Unified ex-
position and Multics interpretation. Technical Report ESD-TR-75-306, The Mitre
Corporation, Bedford MA, USA, March 1976.

Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The role
of trust management in distributed systems security. In J. Vitek and C. Jensen,
editors, Secure Internet Programming: Security Issues for Distributed and Mobile
Objects, LNCS. Springer, 1999.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management.
In Proc. 1996 IEEE Symposium on Security and Privacy, pages 164-173, Oakland,
CA, May 1996. IEEE Computer Society Press.

Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance checking in the
PolicyMaker trust management system. In Proc. Financial Cryptography 98, vol-
ume 1465 of LNCS, pages 254-271, Anguilla, February 1998. Springer.

David F. Brewer and Michael J. Nash. The Chinese wall security policy. In Proc.
IEEE Symposium on Research in Security and Privacy, pages 206—214, Oakland,
CA, May 1989. IEEE Computer Society Press.

Recommendation X.509, The Directory - Authentication Framework, volume VIII
of CCITT Blue Book, pages 48-81. CCITT, 1988.

Carl M. Ellison. Establishing identity without certification authorities. In Proc.
6th USENIX Security Symposium, pages 67-76, San Jose, CA, July 1996. USENIX
Association.

Carl M. Ellison, Bill Franz, Butler Lampson, Ron Rivest, Brian M. Thomas, and
Tatu Ylénen. SPKI certificate theory, Simple public key certificate, SPKI examples.
Internet draft, IETF SPKI Working Group, November 1997.

Carl M. Ellison, Bill Franz, Butler Lampson, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI certificate theory. Internet draft, IETF SPKI Working Group,
October 1998.

M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The digital distributed
system security architecture. In Proc. National computer security conference, pages
305-319, Baltimore, MD, USA, October 1989.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

235

Li Gong. A secure identity-based capability system. In Proc. 1989 IEEE Sympo-
stum on Research in Security and Privacy, pages 56—63, Oakland, CA, May 1989.
IEEE, IEEE Computer Society Press.

J. Kohl and C. Neuman. The Kerberos network authentication service (V5). RFC
1510, IETF Network Working Group, September 1993.

Petteri Koponen, Juhana Réasdnen, and Olli Martikainen. Calypso service architec-
ture for broadband networks. In Proc. IFIP TC6 WG6.7 International Conference
on Intelligent Networks and Intelligence in Networks. Chapman & Hall, September
1997.

Tlari Lehti and Pekka Nikander. Certifying trust. In Proc. First International
Workshop on Practice and Theory in Public Key Cryptography PK(C’98, volume
1431 of LNCS, Yokohama, Japan, February 1998. Springer.

Nataraj Nagaratnam and Doug Lea. Secure delegation for distributed object envi-
ronments. In Proc. 4th USENIX Conference on Object-Oriented Technologies and
Systems (COOTS), pages 101-115, Santa Fe, NM, April 1998. USENIX Associa-
tion.

A guide to understanding discretionary access control in trusted systems. Technical
Report NCSC-TG-003 version-1, National Computer Security Center, September
1987.

Pekka Nikander and Lea Viljanen. Storing and retrieving Internet certificates.
In Proc. 8rd Nordic Workshop on Secure IT Systems NORDSEC’98, Trondheim,
Norway, November 1998.

Ronald L. Rivest and Butler Lampson. SDSI — A simple distributed security
infrastucture. Technical report, April 1996.

Edward P. Wobber, Martin Abadi, Michael Burrows, and Butler Lampson. Authen-
tication in the Taos operating system. ACM Transactions on Computer Systems,
12(1):3-32, February 1994.

Philip Zimmermann. The Official PGP User’s Guide. MIT Press, June 1995.

