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Unsatisfiable instances. For a positive in-
teger n ≥ 2, let A be a 2n × 3n incidence
matrix of a random 2n-vertex 3-regular graph,
and select b = (b1, b2, . . . , b2n) ∈ {0, 1}2n uni-
formly at random so that

∑2n
i=1 bi ≡ 1 (mod 2).

The resulting system Ax ≡ b (mod 2) clearly
has no solution (take the sum of the equa-
tions). We then transform the system into a
CNF formula by introducing for every equa-
tion xi1 + xi2 + xi3 ≡ bj (mod 2) a set of four
clauses that forbid the combinations of truth
values that violate the equation; for example,
the equation x1 + x2 + x3 ≡ 0 (mod 2) trans-
forms into the clauses {x̄1, x̄2, x̄3}, {x̄1, x2, x3},
{x1, x̄2, x3}, and {x1, x2, x̄3}. The resulting for-
mula has v = 3n variables and c = 8n clauses
of length 3. The construction is illustrated in
Fig. 1.
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{{x̄1, x̄2, x3}, {x̄1, x2, x̄3}, {x1, x̄2, x̄3}, {x1, x2, x3},
{x̄1, x̄5, x̄6}, {x̄1, x5, x6}, {x1, x̄5, x6}, {x1, x5, x̄6},
{x̄2, x̄7, x9}, {x̄2, x7, x̄9}, {x2, x̄7, x̄9}, {x2, x7, x9},
{x̄3, x̄4, x7}, {x̄3, x4, x̄7}, {x3, x̄4, x̄7}, {x3, x4, x7},
{x̄4, x̄5, x̄8}, {x̄4, x5, x8}, {x4, x̄5, x8}, {x4, x5, x̄8},
{x̄6, x̄8, x̄9}, {x̄6, x8, x9}, {x6, x̄8, x9}, {x6, x8, x̄9}}

Figure 1: Constructing an unsatisfiable instance
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Satisfiable instances. For an integer n ≥ 3,
select a random 2n-vertex 3-regular bipartite
graph G. Labeling the vertices suitably, we can
assume that the adjacency matrix of G has the
form

M =
[

0 A
AT 0

]
,

where A is an n × n matrix with exactly three
ones in every row and every column. After
the matrix A has been constructed, we select
uniformly at random a z ∈ {0, 1}n and let
b ∈ {0, 1}n such that b ≡ Az (mod 2). Then,
we transform the system Ax ≡ b (mod 2) into a
CNF formula as above. The formula has v = n
variables and c = 4n clauses of length 3. The
construction is illustrated in Fig. 2. If an in-
stance with a unique satisfying truth assignment
is required, then the matrix A must be invertible
modulo 2.
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{{x̄1, x̄2, x̄4}, {x̄1, x2, x4}, {x1, x̄2, x4}, {x1, x2, x̄4},
{x̄2, x̄3, x̄4}, {x̄2, x3, x4}, {x2, x̄3, x4}, {x2, x3, x̄4},
{x̄1, x̄3, x4}, {x̄1, x3, x̄4}, {x1, x̄3, x̄4}, {x1, x3, x4},
{x̄1, x̄2, x̄3}, {x̄1, x2, x3}, {x1, x̄2, x3}, {x1, x2, x̄3}}

Figure 2: Constructing a satisfiable instance

Hiding Linearity. A system of linear equa-
tions modulo 2 cannot in itself be considered
hard; both the existence and nonexistence of
a solution can easily be demonstrated through
Gaussian elimination. There exist specialized
SAT solvers that recognize the linear structure
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in a set of clauses and apply a form of Gaussian
elimination and/or equivalence reasoning to ex-
pedite the solution process. However, it appears
that a simple disguise suffices to fool contempo-
rary SAT solvers. In this connection we camou-
flage the instance as follows.

The simple camouflage is obtained by select-
ing a minimal set of variables such that every
clause contains at least one selected variable.
For each selected variable, x, we introduce a new
variable, y, and then substitute each occurrence
of x (respectively, x̄) in the clauses with x ∧ y
(respectively, x ∧ y ≡ x̄ ∨ ȳ). After all the sub-
stitutions have been performed, we expand any
conjuncts inside the clauses out of the clauses
to obtain a camouflaged set of clauses. For the
family of unsatisfiable instances, an appropri-
ate set of variables is computed using an algo-
rithm for maximum matching in the underlying
(regular bipartite) graph. For the satisfiable in-
stances, the greedy approximation algorithm for
the set cover problem is employed; each vertex
in the underlying graph associated with a vari-
able covers the adjacent vertices associated with
linear equations/clauses.

Available Benchmarks. The following set of
benchmarks are available at

http://www.tcs.hut.fi/~mjj/benchmarks/.

• mod2-rand3bip-sat

Satisfiable instances with the number of
variables v = 200, 210, . . . , 300. For each v
there are 15 instances. Each instance has
a unique satisfying truth assignment. The
underlying graphs are random 3-regular
bipartite graphs with.

• mod2c-rand3bip-sat

As mod2-rand3bip-sat but with ”simple
camouflage” applied on the instances.

• mod2-3g14-sat.cnf

A satisfiable instance with 192 variables.
The underlying graph is the smallest
known 3-regular graph with girth1 14.

• mod2c-3g14-sat.cnf

As mod2-3g14-sat but with ”simple cam-
ouflage” applied on the instance. The
number of variables is 266.

1The girth of a graph is the length of its shortest
cycle.

• mod2-rand3bip-unsat

Unsatisfiable instances with the number of
variables v = 90, 105, 120, 135, 150. For
each v there are 15 instances. The un-
derlying graphs are random 3-regular bi-
partite graphs.

• mod2c-rand3bip-unsat

As mod2-rand3bip-unsat but with ”simple
camouflage” applied on the instances.

• mod2-3cage-unsat

The underlying graphs are (3, g)-cages2

with girth g ∈ {9, 10, 11, 12}. 18 (3, 9)-
cages, 3 (3, 10)-cages, 1 (3, 11)-cages, and
1 (3, 12)-cage exist.

• mod2c-3cage-unsat

As mod2-3cage-unsat but with ”simple
camouflage” applied on the instances.

On Instance Hardness. Our experiments
suggest the following. For instances based on
random 3-regular graphs, unsatisfiable instances
with 120 variables and satisfiable instances with
240 variables already require in the order of 220

decisions to solve. This includes state-of-the-art
DPLL-based solvers as well as the local search
solver WalkSAT. Reflecting this to run times, the
run times in seconds as reported by zChaff ver-
sion 2004.5.13 on the randomly generated mod2-
rand3bip-sat instances with 220 variables on a
machine with a 1.667GHz AMD Athlon proces-
sor and 1 GB of RAM are shown Table 1. The
mean of the run times is approximately 100 min-
utes.

Compared to random graphs, instances
based on cages are still harder. Moreover,
while e.g. march eq can solve uncamouflaged in-
stances in a matter of seconds due to Gaus-
sian elimination -type equivalence reasoning,
the camouflaged instances seems at least as hard
for equivalence reasoners as the uncamouflaged
instances are for solvers with no equivalence rea-
soning.

More detailed experiments appear in [1].
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2For d, g ≥ 3, a (d, g)-cage is a d-regular graph of
girth g with the minimum possible number of vertices.
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Table 1: zChaff on mod2-rand3bip-sat in-
stances with 220 variables on a 1.667GHz AMD
Athlon processor with 1-GB RAM.

instance time (s)
1 5595.81
2 9852.17
3 421.08
4 489.38
5 8858.91
6 1554.91
7 3087.83
8 2900.33
9 8428.14
10 21338.50
11 12418.90
12 18320.80
13 1217.79
14 856.29
15 12302.10

instances from random regular graphs. 2005.
Manuscript.
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