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Abstract. In this paper we present new and more accurate estimates of the biases
of the linear approximation of the FSM of the stream cipher SNOW 2.0. Based on
improved bias estimates we also find a new linear distinguisher witr2bigs’

that is significantly stronger than the previously found ones by Watanabe et al.
(2003) and makes it possible to distinguish the output keystream of SNOW 2.0 of
length2'™ words from a truly random sequence with workladd*. This attack

is also stronger than the recent distinguishing attack by Maximov and Johansson
(2005). We also investigate the diffusion properties of the MixColumn transfor-
mation used in the FSM of SNOW 2.0 and present some evidence why much
more efficient distinguishers may not exist.
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1 Introduction

Key stream generators are widely used in practise for random number generation and
data encryption as stream ciphers. The history of this type of cryptographic primitive
has not always been glorious. Most recently, algebraic cryptanalysis method has been
successfully applied to a number of stream ciphers. On the other hand, there is no sci-
entific evidence that stream ciphers are inherently less secure than block ciphers. To
strengthen the scientific foundations of the security of stream ciphers the ECRYPT
NoE launched in November 2004 a new multi-year project eSTREAM, the ECRYPT
Stream Cipher Project, to identify new stream ciphers that might become suitable for
widespread adoption [8].

In this paper new results of the strength of the stream cipher SNOW 2.0 against
linear approximation are presented. SNOW 2.0 was proposed by Ekdahl and Johansson
in [3] as a strengthened version of SNOW 1.0, which was a NESSIE candidate. Cur-
rently SNOW 2.0 is considered as one of the most efficient stream ciphers. It is used for
benchmarking the performance of stream ciphers by the eSTREAM project. SNOW 2.0
has also been taken as a starting point for the ETSI project on a design of a new UMTS
encryption algorithm [4].

Linear methods have been widely used to analyse stream ciphers. In addition to the
traditional methods such as linear complexity and correlation analysis, attacks based on
linear cryptanalysis method have been succesfully launched against stream ciphers. One
of the reasons why SNOW 1.0 was rejected by the NESSIE project was its vulnerability
against a distinguishing attack using linear cryptanalysis [2, 3].

Distinguishing attacks using linear cryptanalysis (linear masking) were previously
applied to SNOW 2.0 by Watanabe et al., to see if the designers of the algorithm learnt



their lesson [11]. An efficient distinguisher can be used to detect statistical bias in the
key stream, and in some cases, also derive the key or initial state of the key stream
generator. In this paper we show that the estimates of the strength of the linear approxi-
mations given in [11] were not accurate. Their best masking was estimated to have bias
2~ 12:25 \while the true value is closer @ 1°7-26, Further we find a linear masking of

the FSM of SNOW 2.0 with bia2 8689, Using this masking a distinguishing attack on
SNOW 2.0 can be given which requirgs™ bits of the key stream artd7* operations.

This attack also superceeds the attack by Maximov an Johansson in [7].

The paper is structured as follows. In Section 2 we present the details of SNOW
2.0 as needed in the investigations of this paper. Section 3 explains the linear masking
method on SNOW 2.0 and summarises our results. In Section 4 we analyse assumptions
under which the bias values in [11] were computed, and show that the assumptions do
not hold. We also give examples of large deviations from correct values and investigate
the behaviour of linear approximation of modular addition with three inputs. The main
too is an algorithm for computing the correlations for modular addition with an arbitrary
number of inputs, which we present in Annex A. In Section 5 we present our observa-
tions about the structure of SNOW 2.0 and other results from mask searches. Finally, in
Section 6 we give some results about resistance against linear distinguishing attacks for
SNOW 3G, which is a modification of SNOW 2.0 by ETSI SAGE intended to become
a second encryption algorithm for the UMTS system. A draft version of SNOW 3G can
be found in [4]. The description of the final version of SNOW 3G and rationale of its
design can be found in the design and development report [5].

2 The stream cipher SNOW 2.0

The structure of SNOW 2.0 is depicted in Figure 1. The running engine is a linear
feedback shift register (LFSR) consisting of 16 words of length 32 bits each. The LFSR
is defined ovelG F'(23?) with feedback polynomial

az'S + 21 4 a2’ + 1 € GF(2%)[2]
wherea € GF(23?) is a root of the polynomial
x4 +ﬁ23$3 +ﬂ245$2 +648x +5239 c GF(QS)[x]
andg is a root of the polynomial
P +a” + 2%+ 23+ 1€ GF(2)z].
The bitwise xor of two 32-bit blocks is denoted #yand addition modul@3? is denoted
by BH. The LFSR feeds into a finite state machine (FSM). The FSM has two 32-bit
registersk1 andR2. The state of the LFSR at tintés denoted bys; 15, ..., s:). The

input to the FSM iss; 15 ands;.5 and the outpuF; of the FSM is calculated as

Fy = (s¢415 B R1;) ® R2y,



for all ¢t > 0, where we have denoted %1, and R2; the contents of the registefal
and R2, respectively, at time¢. Then the output, of the keystream generator is given
as

Zt = Ft@St.

The contents of?1 is updated as;. 5 B R2; and the contents oR2 is updated as
S(R1:) where the transformatiafi is composed of four parallel AES S-boxes followed

by the AES MixColumn transformation. For the purposes of this paper only the details
of the LFSR and the FSM are needed. For a complete description of SNOW 2.0 we
refer to the paper [3] by Ekdahl and Johansson.
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Fig. 1. SNOW 2.0

3 The linear masking method on SNOW 2.0

3.1 Linear masking of the FSM

We denoteF, = GF(2). Let n be a non-negative integer. Given two vectars=
(apn—1,...,a0)andy = (bp_1,...,b) € F3, letx-y denote the standard inner product
Ty = ap_1b,_1D. . .Dagbg. A constant vector which is used to compute inner product
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Fig. 2. Linear masking of SNOW 2.0

with inputs (outputs) of a function is called a linear input (output) mask of the function.
Given alinear mask’ € F3 and an element € F3, we denote by "« the linear mask,
which satisfies the following equality

I'a-x=1I" «az, foralzeFy,

where the product.r is taken inG F'(232). Let m andn be positive integers. Given a
functional dependency : F — F1*, a linear input maski € F1 and a linear output
maskl” € F7*, the strength of the linear approximate relatibn F(z) = A - z, for

x € FZ, is measured using its correlation

corp(A, ') =cor(I" - F(z) ® A x)
=2""#{zeFy . I Fla)oAd-2=0}—#{zeFy: I Flx)oA -z=1}).

For the purposes of this paper we use a derived val¢d, I') = |corp(A,1")/2| and
call it the bias of the linear approximate relatibh F(z) = A - .

The linear masking method was applied to SNOW 2.0 in [11]. The linear approx-
imation of the FSM of SNOW 2.0 used in [11] is depicted in Figure 2 in a slightly
generalised form. In [11], it was always assumed that the output niasksimet and
Atimet 4 1 are equal, for alt > 0. In case when they are allowed to be different, it
is straightforward to verify that the main distinguishing equation, [11], Equation (12),



takes the following form

I (216 ® 2042) @ Ta- 2@ Fa™b - 24011 @
A . (Zt+17 () Zt+3) D AO[ © Zt41 D AOZ71 * 2412 = 0, (1)

for all ¢ > 0. This relation is obtained by using the approximation depicted in Figure 2
four times: firstly, two times with the mask pdit A at timet + 2 and¢ + 16, then once

with the mask paitl"«, A« at timet, and finally once with the mask paita—!, Aa~!
attimet+11. Given the biases, these four approximations can be combined and the total
bias value computed using the Piling Up Lemma [6]. Similarly as in [11] we denote by
ersm (4, I') the bias of the linear approximate relation of Figure 2. Hence the total bias
e(A, I') of the linear distinguisher (1) is calculated as

G(A,F) = 8€FSI\4(A7F)2EFS]\4(AO[,FOé)GFSM(AOéil,FOéil).

We also introduce a new magk see Figure 2, whose role will be explained in
subsection 4.2.

3.2 Our Results

We implemented a new wider mask search over the FSM SNOW 2.0 to achieve more
accurate and improved estimates of the total bias of the linear distinguisher (1). In par-
ticular,

— we allow output mask$’ and A be different; and
— we improve the accuracy of the estimates of the bias values.

The effect of the first change turns out not to be significant. Suitable candidates for
I" were searched by first identifying such that it performs reasonably well within
the linear approximation. Here algorithms from [10] were used. Still, for a giehe
total bias of the distinguisher of Equation (1) is usually higher wWith= A than with
anyI" # A. In some cases higher biases where obtained With A but the achieved
bias values were far from the best. Two show that such cases exist we give an example
in Table 1.

A r e(A,T)
0x04400240 |0x04400240 0
0x04400240 |0x04400360 |27 122:29
0x08400280 |0x08400280 |2 1707
0x08400280 |0x084003a0 |2~ 12441

Table 1. Two masksA with higher bias withl” £ A.

The strongest linear approximation of the FSM of SNOW 2.0 found in our search is
using the distinguisher (1) witd = I" = 0x00018001 . The values of the biases of



mask value EFSM
A 0x00018001 |2~ 1>-%98
Ao |0xc7000180 |227-676
Aa~1|0x0180015¢c 2731221

Table 2. The maskA = I" with the highest biag8~8%-% for the linear distinguisher (1).

mask value €EFSM €EFSM
‘ estimate in [11]our estimate
A 0x0303600c 2~27.61 92418
Ao |0x0c030360 2—27.61 272449
Aa~1|0x03600c63 93242 2736.82

Table 3.Improved estimates of the biases for the best mask in [11]

the linear approximation of the FSM are given in Table 2. They result in the total bias
value 0f2—36-39 This value is significantly higher than the bias vatué!'2-2> achieved

using the best linear mask0303600 reported in [11]. The difference of results is

due to the fact that Watanabe et al., used different and less accurate estimates of bias
values as will be explained in more detail in Section 4. In Table 3 we give the new and
more accurate bias values for the best mask in [11] which show that its strength was
originally underestimated. Our new estimate of the total bi@s 18726,

We also looked at other linear approximations of SNOW 2.0 FSM than the one
depicted in Figure 1. These will be discussed in Section 5.

4 Improved approximation over dependent functions

In [11] the biases of the linear approximations of the FSM were calculated under the
assumption that all linear approximations over various nonlinear functions involved in
the approximation depicted in Figure 2, the S-box enserfildad the three additions
modulo23?, are independent. Such an assumption is often reasonable in practise since
there is no evidence of dependency although it is not possible to prove the opposite
either. However, in the linear approximation of the FSM of SNOW 2.0, see Figure 2,
there are two cases where combinations of two subsequent approximations are strongly
dependent. The first such case is when one approximates over two subsequent additions
modulo232, that is, the output from the first addition is an input to the second addition.
We will show in the next subsection that this must be handled as addition mtfulo

with three inputs and not as two independent additions with two inputs. The second case
is due to the fact that the value in registet is both an input to the modular addition

H and an input to the S-box ensemble



4.1 Linear approximation over two subsequent modular additions

In this section we investigate the behaviour of two consecutive modular additions with
two inputs each, where the output from the first addition is input to the second one.
Clearly such a composition is equivalent to one modular addition with three inputs.
Previously, results and algorithms for computing biases of linear approximations have
been presented only for the case with two inputs, see [10]. The basic algorithm for com-
puting the bias for given input and output masks can be straightforwardly generalised to
the case with an arbitrary finite number of inputs, and is given in Annex A. Our results
show that the behaviour of modular addition under linear approximation depends to a
large extent on the number of inputs. As a first result we demonstrate in Table 4 the
reasons why the best linear mask found by us was not found by Watanabe et al. We
denote by, the bias of linear approximation of modutd? addition with two inputs

and bye, , the same value with three inputs using the same given mask value for all
input and output masks. The val@e? in the middle is the one used in [11] in place

Of [SHETN

mask value | e; |21 | eyt
A ]0x00018001 [272[273[2725¢
Ao |0xc7000180 |2726|2—5t|2—6-75
Aa~1|0x0180015¢c |27 7 |27 13|2— 7L

Table 4.Biases of linear approximation of addition with 2 inputs and 3 inputs for the best mask.

mask value | ey | ey
0x00000010 |27° [27%°1
0x00000100 |29 |272:59
0x00001000 (2718|2258
0x00010000 (2717|2258
0x00100000 |272![272:58
0x01000000 (2725|2258

Table 5. Biases of linear approximation of addition with 2 inputs and 3 inputs for some 1-bit
masks.

It is also interesting to observe how differently linear approximation with one-bit
masks behave over modular addition. In the two input case, the strength of the linear
approximation degrades when moving towards the most significant bits. For addition
with three inputs the bias values are almost the same in all positions as shown in Ta-
ble 5. Moreover, we observed that linear approximation over modular addition with



three inputs is more flexible and gives better bias values also when not all input masks
are the same. The same holds in general for very sparse masks. Therefore we made an
exhaustive search over all masksvith at most five non-zero bits. The results are given

in Section 5.

4.2 Linear approximation over composition of different functions

The modular additioii and an input to the S-box ensemifiehave the contents of
registerR1 as common inputs. Sincg is invertible, we can compose these functions
as follows:

fry 287Ny Bz,

for all y that are output from the S-box ensemble and fora# s; 5. The task is to
compute the correlation between the following linear combination of inputs and linear
combination of outputs

cor(I' f(y,z) @I -z A-y).

By applying a well-known theorem about correlations over composed functions, see
e.g. [9], Theorem 3, we get that the correlation can be computed as a sum of partial
correlations over all intermediate linear magkas follows:

cor(I"- f(y,2) T - 2d A-y)
:Zcor(F-(wEﬂz)@@~w®r'z)cor(@'5_l(y)@A'y) 2
@

:Zcor(F-(wEEIz)@45~w69f-z)cor(@-x@A-S(x)).
@

Considering the addition moduf®*? and the S-box ensemblg as independent
functions is equivalent of taking just one term in the sum (2). Moreover, in [11] this one
term was selected with = A = I'. We observed that this may cause large deviations
from the true value. On the other hand, including all terms of the sum would mean
unnecessarily large amount of work. It turns out that including all terms swithl” -
(wBz2)od - wal -z) > 272 yields sufficiently accurate estimates of the total
correlation over the composed function. To search for all such linear rdaglesused
the algorithms by Wadin [10] (see Annex A). This explains the role of the linear mask
@ in Figure 2.

5 More searches

5.1 Reducing the number of active S-boxes

One strategy to increase the total bias of the linear approximation would be to limit the
number of active S-boxes in the S-box ensenmfhl&iven an output masHK of S let



us denote by? the mask such tha? - © = A - M«, for all 32-bit valuesr, where M
denotes the MixColumn transformation of the AES. Our best miask0x00018001
corresponds to the mask = 0x0041c01 . It means that only three S-boxes are active

in the approximation of the FSM. However, in linear approximation wiithand Aa.~!

all four S-boxes are active. This means that in our best approximation of relation (1) the
total number of active S-boxes is 14.

The MixColumn transformation is known to have good diffusion properties, more
precicely, the total number of nonzero octetg §&, A) mask pairs is at least five. For
linear approximation of SNOW 2.0 the diffusion properties of MixColumn must be in-
vestigated in combination with multiplication by anda—!. More precisely, it would
be interesting to know exactly how many S-boxes at least are involved in the linear ap-
proximation (1). For this purpose, we studied all maglssich that the corresponditig)
has at most two non-zero octets. For each stiele computed the maskky andAa !
and their related?-masks, for which the number of non-zero octets was determined. Fi-
nally the total number of non-zero octets involved in the four FSM approximations in (1)
was computed for each. The same search was performed also forladluch that the
input mask taM corresponding tola (Aa~*, respectively) has at most two non-zero
octets. The minimum number of active S-boxes was found to be 7, and there are four
masksA having this property. They afix64ad5846 , 0xad584664 , 0x55bcc50d
and0x0d55bcc5 |, and their respective one-octet input masks to MixColuvirare:
0xd7000000 , 0x000000d7 , 0x00210000 and0x00002100 . However, none of
these four maskd has a second madkwith a non-zero total bias over approximation
(2). This follows from the results of a wider search we explain next.

We made a comprehensive search over all maskach that the input mas to
M has at most two non-zero octets. This means limiting the search for such rhasks
that in approximation over the S-box-ensembBlat most two S-boxes are active. For
any such/ there was nd” such that the linear approximate relation (1) would have a
non-zero bias. This is obviously a strength in the structure of SNOW 2.0. We can only
give a heuristic explanation of the reasons why this happens. Asduimeuch that
only two S-boxes are active. Then one can find an approximation over the FSM with
a pretty good bias. Thef' typically has two or three nonzero octets. Four non-zero
octets may be possible in theory (we could not find any examples) but then in two of
the octets only the least or the most significant bit is non-zero. In other words, the mask
is sparse. Also when modified lay (or ') the sparse structure is preserved. On the
other hand, whewr is modified bya (or «—1) then almost always all four S-boxes will
be active, and consequenty, the maskas four nonzero octets. Therefore in about all
cases, if not all, the maska and the mas® that fits over the S-box ensemble witla
have different structure. The same holds for the approximation of the FSMIwith
andAa~1. Since both of them should work to make the entire approximation work, the
chances are negligible.

5.2 Sparse masks

As explained above we were not able to significantly reduce the number of S-boxes that
are active in the linear approximate relation (1). On the other hand, we observed that the
modular addition with three inputs can be efficiently approximated using sparse masks.



This is also well exemplified by the best linear distinguisher we found, which is based
on a three-bit linear mask. Motivated by this observation we made a complete search
over all masksA with at most five non-zero bits, allowing as in all our searches the
maskI" to be different fromA. For one and two-bit masks there were no results. For the
three-bit masks it turned out that we already found the best one. The best masks with
four or five nonzero bits and their respective bias values are given in Table 6. The total
bias of the linear distinguisher (1) with the four-bit magk= I" = 0x40100060 is
2-89-95 "and with the five-bit mask = I" = 0x00040701 it is 2739-25,

mask value | epsnys
A | 0x40100060 [2~ &%
Aa | 002401000 |[2726:94
Aa~t| 0x10006029 |2729:02
A | 0x00040701 [27 1872
Aa | 075000407 |272747
Aa~1|0x04070100 |2727-35

Table 6. The best four-bit and five-bit linear masKs

5.3 Three-round distinguisher

Also other more complex distinguishers were investigated. In particular, we looked at
the distiguisher which involves output at time- 1, ¢t andt + 1, two instances of the
S-box ensemblé& and five (or four, ifIf = 0) modular additiongH out of which two
collapse into one addition with three inputs, see Figure 4 in Annex B. The resulting lin-
ear approximative relation is given in equation (3) in Annex B. Such a three-round dis-
tinguisher could compete with the two-round one only if the number of active S-boxes
could be significantly reduced. However, this does not seem to be possible, for the same
reason why the two-round distinguisher does not have non-zero bias with small num-
ber of active S-boxes as explained above in Section 5.1. Moreover, in approximations
for (3), approximation over the latter S-box ensemble involves at least seven active S-
boxes. The absolute minimum for the first S-box ensemble is four active S-boxes. Since
the largest achievable bias of linear approximation over the AES S-tibx'isve get

a theoretical upperbound at°(2=4)1t = 2734 to the bias of (3) for SNOW 2.0. The
largest bias for the approximation (3) we have seen in practize?&-'7. In this case,

the masksl”, IT and A had 2,3 and 4 non-zero octets, respecively. In the first S-box
ensemble, totally 6 S-boxes were active, and in the second S-box ensemble 10 S-boxes
were active.

6 Linear distinguishers for SNOW 3G

During its still relatively short lifetime SNOW 2.0 has gained confidence as demon-
strated by the fact that it has been selected as a starting point for a few new designs,



see [8]. Most prominently, a draft for a new encryption algorithm for the UMTS system
was recently made public in [5]. It is called SNOW 3G in and is depicted in Figure 3.
This design preserves all features of SNOW 2.0, 81g= S, but adds a third regis-

ter R3 to the FSM and a transform denoted §9. The functionS2 has been selected

to strengthen the FSM against algebraic cryptanalysis as response to the concerns ex-
pressedin[1,5].
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Fig. 3. SNOW 3G

The first, later rejected, choice féi2 was a non-bijective 32-t0-32-bit S-box [4].

It was constructed from a single eight-to-one bit Boolean functirby selecting for
each output bit a set of eight input bits. Then the output bit value is computed from the
selected input bits using 8. The input sets are selected in such a way that any two sets
has at most three bits in common. The Boolean functiéris not balanced, hencg2

is not a bijection.

The simplest distinguisher for this version of SNOW 3G is obtained by using linear
masking over two and half rounds of the FSM and it is depicted in Figure 5. The linear
approximate relation is the same as in (1). In addition to the linear distinguisher depicted
in Figure 2 it involves approximations ovéR, where the input mask is all-zero. The
mask search is very similar to the two round distinguisher for SNOW 2.0. We just need
to add the bias of approximation ov&®e to it. Hence it is no surprise that the bekt
I pair we found for this distinguisher is the same as for SNOW 2.0, that is,I” =
0x00018001 . The total bias of the linear approximation of Figure 8133701,

In the final version of SNOW 3G the transformatiff is otherwise identical t&'1
but the AES S-box is replaced by a bijective mapping derived from a Dickson polyno-



mial. This S-box has maximum linear biasf3. A three-round linear distinguisher

for SNOW 3G is depicted in Figure 6. We showed in Section 5.3 that the minimum
number of S-boxes in the approximations o$@ris at least seven. The same holds for
the second instance 6fl. However, the input and output masks of the first instance of
S1 are not modified byy or o« —*. Nevertheless, at least four active S-boxes are needed.
Hence there are always at least eleven active AES S-boxes and sevelsa@nhmxes,
giving an upper bound af'7(274)11(273)7 = 278 to the bias of any three-round lin-

ear approximation of SNOW 3G. This bound is not tight. The true bias values will
most likely be significantly reduced due to the biases of linear approximations over the
modular additions.

7 Conclusions

It is well known that the Piling Up Lemma cannot be applied to combine linear ap-
proximations over consecutive functions in cipher constructions unless there is some
evidence that the output from the first function is practically independent of the input
to the second function. We showed that in [11] the Piling Up Lemma was used in case
where the output from the first function is identical to the input to the second function.
We showed not only how to compute correctly the estimates of the bias values but also
implemented wide mask searches to find new and significantly stronger distinguishers
that escaped the searches by Watanabe et al.

Some mask searches that were limited to certain types of linear masks failed to
produce any results with non-zero bias. For example, we could demonstrate that it is
impossible to significantly reduce the number of active S-boxes when approximating
over the S-box ensemblg of SNOW 2.0. The same holds to other more complex
distinguishers of SNOW 2.0 as well as to the recently presented new SNOW variant
SNOW 3G, and is preserved as long as the feedback polynomial does not have a low
degree multiple, which is a trinomial or a four-term polynomial with only two different
coefficients. This gives some evidence about the strength of the SNOW design against
cryptanalysis using the linear masking method.
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A Linear Approximation of Addition Modulo 2™

A.1 Notation

We identify the integers iH0,...,2" — 1} with the vectors inF} by the natural
correspondence that identifies the integer whose binary expans@ﬁj§ a; 2" with
the vector(a,_1,...,a1,a). Given k n-bit integersz™, h = 1,...,k, the sum
(z® 4+ .- 4 2()) mod 2" carries over to a function fromF¢)* to F3. Addition
in Fo andF% is always denoted bg.

For vectorse = (ap—1,...,a9) andy = (b,—1,...,b9) € F%, letz - y denote
the standard inner produet- y = a,_1b,_1 ® - - - D agbg. For k tuples of vectors
in Fz, 2 . 2® andy™, ... y®), we set(z™,... ). (y1) .. yF) =
Wy g .o @z® .y ) A linear approximation of the sum modut® with %
inputs is an approximate relation of the form

w- (M B Ba®) = (W, 2®) s (w® L w®)

whereu € F3 andw™ € F3, h = 1,...,k are the mask vectors. The strength of the
approximation is measured by the correlation

cor(u;w(l), . 7w(k))
=2Prfu- (zVB.. Bz®) =W, . 2Py (D, w®)] -1,



where the probability is taken over uniformly distributed), . .., (%),

A.2 Linear representation

We will derive a linear representation for the correlation of linear approximations of
addition modulo2™. Towards this end, we write the linear approximation with mask
vectorsu = (up_1,...,up) andw®, ... w® wherew® = (w™, . w),

as awordz, ...z, z over the alphabefo, ..., 281 — 1}, wherez; = u;2% +
Zﬁf:l w,ﬁh’)thl. We will then show that there a@*! k x k matrices over rationals,

a row vectorL and a column vectaf' such that

cor(u;w(l),...,w(k)) =LA AL ALC

Zn—1
for all n and all linear approximation@:; w(®, ..., w®)) of addition modul®” of k
n-bit integers. We say that the matricesA,., r = 0, ..., 281 —1, andC form a linear
representation of the correlation with dimensian

For a vectorr € F (or integerz € {0,...,2" — 1}), we letwy(z) denote the
Hamming weight ofr, that is,wy () is a non-negative integer less than or equal to
which is the number of non-zero components:of

Theorem 1. Letk > 1 be a fixed integer. Let be the row vector of dimensignwith
all entries equal to 1, and lef’ be the column vector of dimensiérwith a single 1 in
row 0 and zero otherwise. Lety, .. ., Ayx+1_; be thek x k& matrices

(A)age=2""({z € FE :u-g(z,c) =z -0, f(x,c) = d}| -
{z e F5:u-g(x,c) # - v, f(z,c) = d}]),

where
k

r:u2k+20h2h*1, v=(v1,...,0%), T=(x1,...,2k),

h=1
c,de€{0,...,k—1},
Fed0, ok =1} = {0, k =1}, f(z,0) = [(wn(2) +¢)/2],
g:{0,....,k—1}* —{0,1}, g(x, c) = (wg(x) + ¢) mod 2.

Letn > 1 be an integer and letu; w(™, ..., w*)) be a linear approximation of

addition modul®™ with k inputs. Let: = z,,_1 ... 21, 29 be the word associated with
the approximation. We then have

cor(u; w ... wk) =LA AL ALC

Zn—1 '

Note that the functiong andg are the carry and sum functions for the basic school-
book method for adding integers in binary.



Proof. We denote by(z("), ... z(*)) then-bit integers that are added mod@t. We
use the simple school-book method. We set the first carrgybit 0. Then the carries
¢; and the sum bits; at each step=0,...,n — 1 are computed as follows

k)

si=g((af”,....2"),e0),
Ciy1 = f((.’L‘Z(-l), ... 7901(-16)), i)
We sethy = 0 and, forallj = 1,...,n, let
j—1
b; = P(uis; & wgl)xgl) D---D wgk)xgk)).
=0

Let P(z, j) be the column vector
P(Z,j)c = Pr[bj = O,Cj = C] - Pr[bj = l,Cj = C]
forj=0,...,nandec=0,...,k — 1. Let M(z,) be thek x k matrix

M(z,i)qc = Prl(u;s; ® wl(l)a:gl) D.-P wfk):vgk)

):OandCH_l :d|Cl :C} —
Pr{(u;s; ® wgl)xz(-l) ® --® wgk):cgk)) =1landc;y; =d|e¢; =],

fori =0,...,n — 1. Then we have

k—1
> M(z,8)acP(2,0)c = P(z,i+1)a,
c=0
and thus
P(z,i+1) = M(z,i)P(z,1).
Note that

At the other end we have

k—1
LP(z,n) =Y (Prlb, =0,c, = c] = Prb, = 1,¢, = c)
c=0
= Pr[b, = 0] — Pr[b, = 1] = cor(u; w, .. ,w(k))

as desired. Sincd,, = M(z, 1), it follows that

cor(w; wV, .. w*)y =LA, - A, A,C.



The correlation of a linear approximation of addition modefowith k inputs can
thus be computed by doing multiplications of ak x k& matrix and a column vector,
andn additional additions. For a fixefd, this is a linear -time algorithm, and for small
k efficient in practice. Note that the number of matrices to be stored in mem2fyis
We remark that an analogous method can be used to compute the differential probability
of addition modul®™ with k inputs.

Using Theorem 1 we get the following matrices for= 3.

1 410
Ag==-1464 ],
014
2 1 0
A1=A2=A4=—A8=§ -20 2 1,
0 —1-2
1 010
A3:A5=A6=—A9=—A10=—A12=§ 0-20],
010
1 -21 0
A7——A11:—A13:—A14:§ 2 0 =2 ,and
0 -1 2
4-10
Ais=-14-64
0-14

A.3 Searching for masks for a given correlation

In this section, we briefly describe the method used to search for all relevant masks
for addition modulo2™ with two inputs. Using Theorem 1, we get a linear repre-
sentation’, Aj, ..., A%, C of dimension2 for the correlation of linear approxi-
mations of addition modul@” with two inputs. The matrix4;, has the Jordan form
diag(1,1/2) = HyA\H,; ', whereH, = (} 1, ) is the2x 2 Hadamard matrix. We get a
new linear representation by making the change of basisR' H, *, A; = Hy A; Hy *

andC = H,C'. This gives the matrices = (1 0), C' = (1 1)t,

1/20 00
A02(01)) A1:A2:7A4: <10)7

1 /02

Leteg = (1 O) andel = (0 1). Thenevo = ep, egld7 = e1,e04; =0 for ¢ 7’5 0,7,
e1Ag = e1As = e1dg = %61, e1A] = e1As = e] A7 = %60, e1As = —%61 and

e1Ay = —%eo. It follows that the computation ot A4, _, - - - A, C by multiplication



from left to right can be described by the following automaton.

@ ST >0

,2,3,4,5,6

0,3,5,6

When readingv from left to right, if the automaton ends up in statd.A,,, , --- A, C =

0. If the automaton ends up in statgor e;, LA, _, --- A,,C = +27F, wherek is

the number of transitions marked by a solid arrow, and the sign is determined by the
number of occurrences ¢8,4}: LA, , --- Ay, C > 0if and only if the number of
occurrences is even. For example, wher- 736205, we have the state transitions

7 3 6 2 0
@5@D>D 4@ @

and thusLA7 A3 Ag A2 Ag = —273. Clearly,LA,,, , -+ A,,C = 0 if and only if w
matches the regular expression

(0+7(0+3+5+6)"(1+2+4+7) (1 +2+3+4+5+6)2",

whereX =0+4+1+---+7.
Let S°(n, k) andS*(n, k) denote the formal languages

SO, k) = {w | |w| = n, egAuw, , - Aw, = £27%¢o} and
Stn, k) = {w | |w| =n,e0lw, | - Aw, = 2 e}

for n > 0. ThenS°(n, k) + S'(n, k) is the set of words of length > 0 corresponding

to linear approximations of addition with two inputs that have correla#i@n”. The
languages are clearly given recursively by (juxtaposition denotes concatenation, and
denotes union)

SOn, k) =Sn —1,k)0+S'(n—1,k—1)(1+2+4+7) and
Stn, k) =8°(n—1,K)7+S'(n — 1,k —1)(04+3+5+6)

forall 0 < k < n. The base cases a®(1,0) = 0 andS'(1,0) = 7. If k < O or
k>n,S%n, k) = St(n, k) =0.

These recursive descriptions immediately give an efficient algorithm for finding all
input and output masks for addition with a given correlation. Moreover, one or two of
the three masks can optionally be fixed. Using generating functions, it is also straight-
forward to determine the distribution of the correlation coefficients—that is, count the
number of input/output masks with a given correlation. These results where proved
using different methods in [10].

Unfortunately, there does not seem to be any simple way to obtain the same results
for addition with three inputs, since it seems impossible to obtain an equally simple
linear representation with a change of basis.



B Other linear distinguishers—figures and equations

B.1 A three-round linear distinguisher for SNOW 2.0

A three-round linear distinguisher for SNOW 2.0 is depicted in Figure 4 and the corre-
sponding linear approximate relation is given by equation (3).

Rl R2 S+14
! . r
@/ 419 §.1
Eﬂ‘_ S+a
HV—‘S(MS
[N I1
@ 495
Ez“i S+s
S+16
A
- A\ 441941

Fig. 4. Linear masking of SNOW 2.0 over three rounds

I (2315 ® 20401) @ Ta- 21 @ Tt - 24410 ®
IT - (z4416 ® 2t42) @ - 2, & o™t Zey11 D
A . (Zt+17 EB Zt+3) @ AO[ . Zt+1 EB Aa_l . Zt+12 = 0 (3)

B.2 A two-and-half-round linear distinguisher for SNOW 3G with non-bijective
S2

In this distinguisher it is assumed that the linear maskingllnf the output fromS?2
is approximated by zero, see Figure 5. Then the linear approximate relation of this
distinguisher is identical to (1).

B.3 A three-round linear distinguisher for SNOW 3G

The resulting linear approximate relation involving keystream tefryosily, is the same
as (3). This can be seen as follows. kedenote the input to the first (in time) instance
of S1, y denote the input t6'2, andw the input to the second instance$f. In addition

to the mask values given in Figure 6 we denotebgnd¥ the input and output masks
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Fig. 5. Linear masking of SNOW 3G with non-bijectivs2

for the first.S1, © the input mask to the secortil, and finally, by >, X5 and X5
the three masks used to mask 14, s:+15 ands;116, respectively. Then we have the
following approximate relations:

U.Sl(x)=A-x (4)
P-92(y)=1I"y

A-Sl(w)=6-w

I' (sg1aBa)=%1 54014 A-x

I (spp15 Bw) = Xy - 81415 DO - w

A+ (st416 B S1(z) B (st45 @ 52(y)))

=X5- 51416 DB I) - S1(x) P (St45 D S2(y)).-

The three auxiliary variables, y andw cancel due to the following three equalities:

THsi414a=yD 21D s
zH sp115 = S1(x) D 2t B s¢
S].(ZL’) H (S2(y) D St+5)) H St+16 = S].(’U)) &) Zt4+1 D St+1

Then we have:

I (21 ®85-1) DI - (2 @ 5) DA (2041 D Sp41)
DX - 1414 D Yo - S4415 D X3 - S1416 DD - 5145 = 0,

or what is the same:

F'Zt_l@H'Zt@A'Zt+1



S+16
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N

Fig. 6. Linear masking of SNOW 3G

=15 10 50N 511 PP 545D Y5414 P Yo 84415 ® X3 - 54116

This equation is used four times. First two times fox ¢ 4+ 2 andt = ¢ + 16. Then
once witht = ¢ and with allz; ands; variables multiplied byy. Finally, the equation
is used fort = t + 11 with all z; ands; variables multiplied byx~!. Since thews; @
Sip0 @ atsii11 @ sir16 = 0, for all t, the s; variables cancel and we get:

Iizg 1 @I 240 @A 2030 - 24415 B I 2416 @A 2417 DT -z
S -azg ®A-azep1 T - oflzt_s_lo @ IT - oflzt+11 DA oflztﬂg =0

which is the same as (3). When ajlvariables are multiplied by the approximations
over invidual functions take the following forms:

U-Sl(z)=A-x
P S2(y) =Ta-y
Aa - S1(w) =6 -w
IFa-(str1aB2)=Y1a-s4114D A2
Ho - (sip15 Bw) = Yoo - 51415 DO - w
Aa - (se416 B S1(z) B (se45 & 52(y)))
=X3a- 81116 ® (Pad Ha) - S1(x) @ Pa - (si45 B S2(y)).
To get approximations with multiplication by~! just replacen by a~*. In both

cases the maskg, A and® can be chosen independently of the masks denoted using
the same symbol for approximations (4).



