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Abstract. In this paper we present new and more accurate estimates of the biases
of the linear approximation of the FSM of the stream cipher SNOW 2.0. Based on
improved bias estimates we also find a new linear distinguisher with bias2−86.9

that is significantly stronger than the previously found ones by Watanabe et al.
(2003) and makes it possible to distinguish the output keystream of SNOW 2.0 of
length2174 words from a truly random sequence with workload2174. This attack
is also stronger than the recent distinguishing attack by Maximov and Johansson
(2005). We also investigate the diffusion properties of the MixColumn transfor-
mation used in the FSM of SNOW 2.0 and present some evidence why much
more efficient distinguishers may not exist.
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1 Introduction

Key stream generators are widely used in practise for random number generation and
data encryption as stream ciphers. The history of this type of cryptographic primitive
has not always been glorious. Most recently, algebraic cryptanalysis method has been
successfully applied to a number of stream ciphers. On the other hand, there is no sci-
entific evidence that stream ciphers are inherently less secure than block ciphers. To
strengthen the scientific foundations of the security of stream ciphers the ECRYPT
NoE launched in November 2004 a new multi-year project eSTREAM, the ECRYPT
Stream Cipher Project, to identify new stream ciphers that might become suitable for
widespread adoption [8].

In this paper new results of the strength of the stream cipher SNOW 2.0 against
linear approximation are presented. SNOW 2.0 was proposed by Ekdahl and Johansson
in [3] as a strengthened version of SNOW 1.0, which was a NESSIE candidate. Cur-
rently SNOW 2.0 is considered as one of the most efficient stream ciphers. It is used for
benchmarking the performance of stream ciphers by the eSTREAM project. SNOW 2.0
has also been taken as a starting point for the ETSI project on a design of a new UMTS
encryption algorithm [4].

Linear methods have been widely used to analyse stream ciphers. In addition to the
traditional methods such as linear complexity and correlation analysis, attacks based on
linear cryptanalysis method have been succesfully launched against stream ciphers. One
of the reasons why SNOW 1.0 was rejected by the NESSIE project was its vulnerability
against a distinguishing attack using linear cryptanalysis [2, 3].

Distinguishing attacks using linear cryptanalysis (linear masking) were previously
applied to SNOW 2.0 by Watanabe et al., to see if the designers of the algorithm learnt



their lesson [11]. An efficient distinguisher can be used to detect statistical bias in the
key stream, and in some cases, also derive the key or initial state of the key stream
generator. In this paper we show that the estimates of the strength of the linear approxi-
mations given in [11] were not accurate. Their best masking was estimated to have bias
2−112.25, while the true value is closer to2−107.26. Further we find a linear masking of
the FSM of SNOW 2.0 with bias2−86.89. Using this masking a distinguishing attack on
SNOW 2.0 can be given which requires2179 bits of the key stream and2174 operations.
This attack also superceeds the attack by Maximov an Johansson in [7].

The paper is structured as follows. In Section 2 we present the details of SNOW
2.0 as needed in the investigations of this paper. Section 3 explains the linear masking
method on SNOW 2.0 and summarises our results. In Section 4 we analyse assumptions
under which the bias values in [11] were computed, and show that the assumptions do
not hold. We also give examples of large deviations from correct values and investigate
the behaviour of linear approximation of modular addition with three inputs. The main
too is an algorithm for computing the correlations for modular addition with an arbitrary
number of inputs, which we present in Annex A. In Section 5 we present our observa-
tions about the structure of SNOW 2.0 and other results from mask searches. Finally, in
Section 6 we give some results about resistance against linear distinguishing attacks for
SNOW 3G, which is a modification of SNOW 2.0 by ETSI SAGE intended to become
a second encryption algorithm for the UMTS system. A draft version of SNOW 3G can
be found in [4]. The description of the final version of SNOW 3G and rationale of its
design can be found in the design and development report [5].

2 The stream cipher SNOW 2.0

The structure of SNOW 2.0 is depicted in Figure 1. The running engine is a linear
feedback shift register (LFSR) consisting of 16 words of length 32 bits each. The LFSR
is defined overGF (232) with feedback polynomial

αx16 + x14 + α−1x5 + 1 ∈ GF (232)[x]

whereα ∈ GF (232) is a root of the polynomial

x4 + β23x3 + β245x2 + β48x+ β239 ∈ GF (28)[x]

andβ is a root of the polynomial

x8 + x7 + x5 + x3 + 1 ∈ GF (2)[x].

The bitwise xor of two 32-bit blocks is denoted by⊕ and addition modulo232 is denoted
by �. The LFSR feeds into a finite state machine (FSM). The FSM has two 32-bit
registersR1 andR2. The state of the LFSR at timet is denoted by(st+15, . . . , st). The
input to the FSM isst+15 andst+5 and the outputFt of the FSM is calculated as

Ft = (st+15 �R1t)⊕R2t,



for all t ≥ 0, where we have denoted byR1t andR2t the contents of the registersR1
andR2, respectively, at timet. Then the outputzt of the keystream generator is given
as

zt = Ft ⊕ st.

The contents ofR1 is updated asst+5 � R2t and the contents ofR2 is updated as
S(R1t) where the transformationS is composed of four parallel AES S-boxes followed
by the AES MixColumn transformation. For the purposes of this paper only the details
of the LFSR and the FSM are needed. For a complete description of SNOW 2.0 we
refer to the paper [3] by Ekdahl and Johansson.
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Fig. 1.SNOW 2.0

3 The linear masking method on SNOW 2.0

3.1 Linear masking of the FSM

We denoteF2 = GF (2). Let n be a non-negative integer. Given two vectorsx =
(an−1, . . . , a0) andy = (bn−1, . . . , b0) ∈ Fn2 , letx·y denote the standard inner product
x·y = an−1bn−1⊕. . .⊕a0b0. A constant vector which is used to compute inner product
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Fig. 2.Linear masking of SNOW 2.0

with inputs (outputs) of a function is called a linear input (output) mask of the function.
Given a linear maskΓ ∈ Fn2 and an elementα ∈ Fn2 , we denote byΓα the linear mask,
which satisfies the following equality

Γα · x = Γ · αx, for all x ∈ Fn2 ,

where the productαx is taken inGF (232). Letm andn be positive integers. Given a
functional dependencyF : Fn2 → Fm2 , a linear input maskΛ ∈ Fn2 and a linear output
maskΓ ∈ Fm2 , the strength of the linear approximate relationΓ · F (x) = Λ · x, for
x ∈ Fn2 , is measured using its correlation

corF (Λ, Γ ) = cor(Γ · F (x)⊕ Λ · x)
= 2−n(#{x ∈ Fn2 : Γ · F (x)⊕ Λ · x = 0} −#{x ∈ Fn2 : Γ · F (x)⊕ Λ · x = 1}).

For the purposes of this paper we use a derived valueεF (Λ, Γ ) = |corF (Λ, Γ )/2| and
call it the bias of the linear approximate relationΓ · F (x) = Λ · x.

The linear masking method was applied to SNOW 2.0 in [11]. The linear approx-
imation of the FSM of SNOW 2.0 used in [11] is depicted in Figure 2 in a slightly
generalised form. In [11], it was always assumed that the output masksΓ at timet and
Λ time t + 1 are equal, for allt ≥ 0. In case when they are allowed to be different, it
is straightforward to verify that the main distinguishing equation, [11], Equation (12),



takes the following form

Γ · (zt+16 ⊕ zt+2)⊕ Γα · zt ⊕ Γα−1 · zt+11 ⊕
Λ · (zt+17 ⊕ zt+3)⊕ Λα · zt+1 ⊕ Λα−1 · zt+12 = 0, (1)

for all t ≥ 0. This relation is obtained by using the approximation depicted in Figure 2
four times: firstly, two times with the mask pairΓ,Λ at timet+ 2 andt+ 16, then once
with the mask pairΓα,Λα at timet, and finally once with the mask pairΓα−1, Λα−1

at timet+11. Given the biases, these four approximations can be combined and the total
bias value computed using the Piling Up Lemma [6]. Similarly as in [11] we denote by
εFSM (Λ, Γ ) the bias of the linear approximate relation of Figure 2. Hence the total bias
ε(Λ, Γ ) of the linear distinguisher (1) is calculated as

ε(Λ, Γ ) = 8εFSM (Λ, Γ )2εFSM (Λα, Γα)εFSM (Λα−1, Γα−1).

We also introduce a new maskΦ, see Figure 2, whose role will be explained in
subsection 4.2.

3.2 Our Results

We implemented a new wider mask search over the FSM SNOW 2.0 to achieve more
accurate and improved estimates of the total bias of the linear distinguisher (1). In par-
ticular,

– we allow output masksΓ andΛ be different; and
– we improve the accuracy of the estimates of the bias values.

The effect of the first change turns out not to be significant. Suitable candidates for
Γ were searched by first identifyingΓ such that it performs reasonably well withΛ in
the linear approximation. Here algorithms from [10] were used. Still, for a givenΛ, the
total bias of the distinguisher of Equation (1) is usually higher withΓ = Λ than with
anyΓ 6= Λ. In some cases higher biases where obtained withΓ 6= Λ but the achieved
bias values were far from the best. Two show that such cases exist we give an example
in Table 1.

Λ Γ ε(Λ, Γ )

0x04400240 0x04400240 0
0x04400240 0x04400360 2−122.29

0x08400280 0x08400280 2−140.67

0x08400280 0x084003a0 2−124.41

Table 1.Two masksΛ with higher bias withΓ 6= Λ.

The strongest linear approximation of the FSM of SNOW 2.0 found in our search is
using the distinguisher (1) withΛ = Γ = 0x00018001 . The values of the biases of



mask value εFSM
Λ 0x00018001 2−15.496

Λα 0xc7000180 2−27.676

Λα−1 0x0180015c 2−31.221

Table 2.The maskΛ = Γ with the highest bias2−86.89 for the linear distinguisher (1).

mask value εFSM εFSM
estimate in [11]our estimate

Λ 0x0303600c 2−27.61 2−24.48

Λα 0x0c030360 2−27.61 2−24.49

Λα−1 0x03600c63 2−32.42 2−36.82

Table 3. Improved estimates of the biases for the best mask in [11]

the linear approximation of the FSM are given in Table 2. They result in the total bias
value of2−86.89. This value is significantly higher than the bias value2−112.25 achieved
using the best linear mask0x0303600 reported in [11]. The difference of results is
due to the fact that Watanabe et al., used different and less accurate estimates of bias
values as will be explained in more detail in Section 4. In Table 3 we give the new and
more accurate bias values for the best mask in [11] which show that its strength was
originally underestimated. Our new estimate of the total bias is2−107.26.

We also looked at other linear approximations of SNOW 2.0 FSM than the one
depicted in Figure 1. These will be discussed in Section 5.

4 Improved approximation over dependent functions

In [11] the biases of the linear approximations of the FSM were calculated under the
assumption that all linear approximations over various nonlinear functions involved in
the approximation depicted in Figure 2, the S-box ensembleS and the three additions
modulo232, are independent. Such an assumption is often reasonable in practise since
there is no evidence of dependency although it is not possible to prove the opposite
either. However, in the linear approximation of the FSM of SNOW 2.0, see Figure 2,
there are two cases where combinations of two subsequent approximations are strongly
dependent. The first such case is when one approximates over two subsequent additions
modulo232, that is, the output from the first addition is an input to the second addition.
We will show in the next subsection that this must be handled as addition modulo232

with three inputs and not as two independent additions with two inputs. The second case
is due to the fact that the value in registerR1 is both an input to the modular addition
� and an input to the S-box ensembleS.



4.1 Linear approximation over two subsequent modular additions

In this section we investigate the behaviour of two consecutive modular additions with
two inputs each, where the output from the first addition is input to the second one.
Clearly such a composition is equivalent to one modular addition with three inputs.
Previously, results and algorithms for computing biases of linear approximations have
been presented only for the case with two inputs, see [10]. The basic algorithm for com-
puting the bias for given input and output masks can be straightforwardly generalised to
the case with an arbitrary finite number of inputs, and is given in Annex A. Our results
show that the behaviour of modular addition under linear approximation depends to a
large extent on the number of inputs. As a first result we demonstrate in Table 4 the
reasons why the best linear mask found by us was not found by Watanabe et al. We
denote byε+ the bias of linear approximation of modulo232 addition with two inputs
and byε++ the same value with three inputs using the same given mask value for all
input and output masks. The value2ε2+ in the middle is the one used in [11] in place
of ε++.

mask value ε+ 2ε2+ ε++

Λ 0x00018001 2−2 2−3 2−2.58

Λα 0xc7000180 2−26 2−51 2−6.75

Λα−1 0x0180015c 2−7 2−13 2−7.71

Table 4.Biases of linear approximation of addition with 2 inputs and 3 inputs for the best mask.

mask value ε+ ε++

0x00000010 2−5 2−2.61

0x00000100 2−9 2−2.59

0x00001000 2−13 2−2.58

0x00010000 2−17 2−2.58

0x00100000 2−21 2−2.58

0x01000000 2−25 2−2.58

Table 5. Biases of linear approximation of addition with 2 inputs and 3 inputs for some 1-bit
masks.

It is also interesting to observe how differently linear approximation with one-bit
masks behave over modular addition. In the two input case, the strength of the linear
approximation degrades when moving towards the most significant bits. For addition
with three inputs the bias values are almost the same in all positions as shown in Ta-
ble 5. Moreover, we observed that linear approximation over modular addition with



three inputs is more flexible and gives better bias values also when not all input masks
are the same. The same holds in general for very sparse masks. Therefore we made an
exhaustive search over all masksΛ with at most five non-zero bits. The results are given
in Section 5.

4.2 Linear approximation over composition of different functions

The modular addition� and an input to the S-box ensembleS have the contents of
registerR1 as common inputs. SinceS is invertible, we can compose these functions
as follows:

f : y, z 7→ S−1(y)� z,

for all y that are output from the S-box ensemble and for allz = st+15. The task is to
compute the correlation between the following linear combination of inputs and linear
combination of outputs

cor(Γ · f(y, z)⊕ Γ · z ⊕ Λ · y).

By applying a well-known theorem about correlations over composed functions, see
e.g. [9], Theorem 3, we get that the correlation can be computed as a sum of partial
correlations over all intermediate linear masksΦ as follows:

cor(Γ · f(y, z)⊕ Γ · z ⊕ Λ · y)

=
∑
Φ

cor(Γ · (w � z)⊕ Φ · w ⊕ Γ · z)cor(Φ · S−1(y)⊕ Λ · y) (2)

=
∑
Φ

cor(Γ · (w � z)⊕ Φ · w ⊕ Γ · z)cor(Φ · x⊕ Λ · S(x)).

Considering the addition modulo232 and the S-box ensembleS as independent
functions is equivalent of taking just one term in the sum (2). Moreover, in [11] this one
term was selected withΦ = Λ = Γ . We observed that this may cause large deviations
from the true value. On the other hand, including all terms of the sum would mean
unnecessarily large amount of work. It turns out that including all terms withcor(Γ ·
(w � z) ⊕ Φ · w ⊕ Γ · z) ≥ 2−24 yields sufficiently accurate estimates of the total
correlation over the composed function. To search for all such linear masksΦ we used
the algorithms by Walĺen [10] (see Annex A). This explains the role of the linear mask
Φ in Figure 2.

5 More searches

5.1 Reducing the number of active S-boxes

One strategy to increase the total bias of the linear approximation would be to limit the
number of active S-boxes in the S-box ensembleS. Given an output maskΛ of S let



us denote byΩ the mask such thatΩ · x = Λ ·Mx, for all 32-bit valuesx, whereM
denotes the MixColumn transformation of the AES. Our best maskΛ = 0x00018001
corresponds to the maskΩ = 0x0041c01 . It means that only three S-boxes are active
in the approximation of the FSM. However, in linear approximation withΛα andΛα−1

all four S-boxes are active. This means that in our best approximation of relation (1) the
total number of active S-boxes is 14.

The MixColumn transformation is known to have good diffusion properties, more
precicely, the total number of nonzero octets in(Ω,Λ) mask pairs is at least five. For
linear approximation of SNOW 2.0 the diffusion properties of MixColumn must be in-
vestigated in combination with multiplication byα andα−1. More precisely, it would
be interesting to know exactly how many S-boxes at least are involved in the linear ap-
proximation (1). For this purpose, we studied all masksΛ such that the correspondingΩ
has at most two non-zero octets. For each suchΛwe computed the masksΛα andΛα−1

and their relatedΩ-masks, for which the number of non-zero octets was determined. Fi-
nally the total number of non-zero octets involved in the four FSM approximations in (1)
was computed for eachΛ. The same search was performed also for allΛ such that the
input mask toM corresponding toΛα (Λα−1, respectively) has at most two non-zero
octets. The minimum number of active S-boxes was found to be 7, and there are four
masksΛ having this property. They are0x64ad5846 , 0xad584664 , 0x55bcc50d
and0x0d55bcc5 , and their respective one-octet input masks to MixColumnM are:
0xd7000000 , 0x000000d7 , 0x00210000 and0x00002100 . However, none of
these four masksΛ has a second maskΓ with a non-zero total bias over approximation
(1). This follows from the results of a wider search we explain next.

We made a comprehensive search over all masksΛ such that the input maskΩ to
M has at most two non-zero octets. This means limiting the search for such masksΛ
that in approximation over the S-box-ensembleS at most two S-boxes are active. For
any suchΛ there was noΓ such that the linear approximate relation (1) would have a
non-zero bias. This is obviously a strength in the structure of SNOW 2.0. We can only
give a heuristic explanation of the reasons why this happens. AssumeΛ is such that
only two S-boxes are active. Then one can find an approximation over the FSM with
a pretty good bias. ThenΓ typically has two or three nonzero octets. Four non-zero
octets may be possible in theory (we could not find any examples) but then in two of
the octets only the least or the most significant bit is non-zero. In other words, the mask
is sparse. Also when modified byα (or α−1) the sparse structure is preserved. On the
other hand, whenΛ is modified byα (orα−1) then almost always all four S-boxes will
be active, and consequenty, the maskΦ has four nonzero octets. Therefore in about all
cases, if not all, the maskΓα and the maskΦ that fits over the S-box ensemble withΛα
have different structure. The same holds for the approximation of the FSM withΓα−1

andΛα−1. Since both of them should work to make the entire approximation work, the
chances are negligible.

5.2 Sparse masks

As explained above we were not able to significantly reduce the number of S-boxes that
are active in the linear approximate relation (1). On the other hand, we observed that the
modular addition with three inputs can be efficiently approximated using sparse masks.



This is also well exemplified by the best linear distinguisher we found, which is based
on a three-bit linear mask. Motivated by this observation we made a complete search
over all masksΛ with at most five non-zero bits, allowing as in all our searches the
maskΓ to be different fromΛ. For one and two-bit masks there were no results. For the
three-bit masks it turned out that we already found the best one. The best masks with
four or five nonzero bits and their respective bias values are given in Table 6. The total
bias of the linear distinguisher (1) with the four-bit maskΛ = Γ = 0x40100060 is
2−89.95, and with the five-bit maskΛ = Γ = 0x00040701 it is 2−89.25.

mask value εFSM
Λ 0x40100060 2−18.49

Λα 0x02401000 2−26.94

Λα−1 0x10006029 2−29.02

Λ 0x00040701 2−18.72

Λα 0x75000407 2−27.47

Λα−1 0x04070100 2−27.35

Table 6.The best four-bit and five-bit linear masksΛ

5.3 Three-round distinguisher

Also other more complex distinguishers were investigated. In particular, we looked at
the distiguisher which involves output at timet − 1, t andt + 1, two instances of the
S-box ensembleS and five (or four, ifΠ = 0) modular additions� out of which two
collapse into one addition with three inputs, see Figure 4 in Annex B. The resulting lin-
ear approximative relation is given in equation (3) in Annex B. Such a three-round dis-
tinguisher could compete with the two-round one only if the number of active S-boxes
could be significantly reduced. However, this does not seem to be possible, for the same
reason why the two-round distinguisher does not have non-zero bias with small num-
ber of active S-boxes as explained above in Section 5.1. Moreover, in approximations
for (3), approximation over the latter S-box ensemble involves at least seven active S-
boxes. The absolute minimum for the first S-box ensemble is four active S-boxes. Since
the largest achievable bias of linear approximation over the AES S-box is2−4 we get
a theoretical upperbound of210(2−4)11 = 2−34 to the bias of (3) for SNOW 2.0. The
largest bias for the approximation (3) we have seen in practise is2−202.17. In this case,
the masksΓ , Π andΛ had 2,3 and 4 non-zero octets, respecively. In the first S-box
ensemble, totally 6 S-boxes were active, and in the second S-box ensemble 10 S-boxes
were active.

6 Linear distinguishers for SNOW 3G

During its still relatively short lifetime SNOW 2.0 has gained confidence as demon-
strated by the fact that it has been selected as a starting point for a few new designs,



see [8]. Most prominently, a draft for a new encryption algorithm for the UMTS system
was recently made public in [5]. It is called SNOW 3G in and is depicted in Figure 3.
This design preserves all features of SNOW 2.0, e.g.S1 = S, but adds a third regis-
terR3 to the FSM and a transform denoted byS2. The functionS2 has been selected
to strengthen the FSM against algebraic cryptanalysis as response to the concerns ex-
pressed in [1, 5].

 st+15  st+11 st+5 st 

R1 R2  S1 

zt 

R3  S2 

 st+2 

× -1 ×

Fig. 3.SNOW 3G

The first, later rejected, choice forS2 was a non-bijective 32-to-32-bit S-box [4].
It was constructed from a single eight-to-one bit Boolean functionV 8 by selecting for
each output bit a set of eight input bits. Then the output bit value is computed from the
selected input bits usingV 8. The input sets are selected in such a way that any two sets
has at most three bits in common. The Boolean functionV 8 is not balanced, henceS2
is not a bijection.

The simplest distinguisher for this version of SNOW 3G is obtained by using linear
masking over two and half rounds of the FSM and it is depicted in Figure 5. The linear
approximate relation is the same as in (1). In addition to the linear distinguisher depicted
in Figure 2 it involves approximations overS2, where the input mask is all-zero. The
mask search is very similar to the two round distinguisher for SNOW 2.0. We just need
to add the bias of approximation overS2 to it. Hence it is no surprise that the bestΛ,
Γ pair we found for this distinguisher is the same as for SNOW 2.0, that is,Λ = Γ =
0x00018001 . The total bias of the linear approximation of Figure 5 is2−137.01.

In the final version of SNOW 3G the transformationS2 is otherwise identical toS1
but the AES S-box is replaced by a bijective mapping derived from a Dickson polyno-



mial. This S-box has maximum linear bias of2−3. A three-round linear distinguisher
for SNOW 3G is depicted in Figure 6. We showed in Section 5.3 that the minimum
number of S-boxes in the approximations overS2 is at least seven. The same holds for
the second instance ofS1. However, the input and output masks of the first instance of
S1 are not modified byα orα−1. Nevertheless, at least four active S-boxes are needed.
Hence there are always at least eleven active AES S-boxes and seven activeS2 S-boxes,
giving an upper bound of217(2−4)11(2−3)7 = 2−48 to the bias of any three-round lin-
ear approximation of SNOW 3G. This bound is not tight. The true bias values will
most likely be significantly reduced due to the biases of linear approximations over the
modular additions.

7 Conclusions

It is well known that the Piling Up Lemma cannot be applied to combine linear ap-
proximations over consecutive functions in cipher constructions unless there is some
evidence that the output from the first function is practically independent of the input
to the second function. We showed that in [11] the Piling Up Lemma was used in case
where the output from the first function is identical to the input to the second function.
We showed not only how to compute correctly the estimates of the bias values but also
implemented wide mask searches to find new and significantly stronger distinguishers
that escaped the searches by Watanabe et al.

Some mask searches that were limited to certain types of linear masks failed to
produce any results with non-zero bias. For example, we could demonstrate that it is
impossible to significantly reduce the number of active S-boxes when approximating
over the S-box ensembleS of SNOW 2.0. The same holds to other more complex
distinguishers of SNOW 2.0 as well as to the recently presented new SNOW variant
SNOW 3G, and is preserved as long as the feedback polynomial does not have a low
degree multiple, which is a trinomial or a four-term polynomial with only two different
coefficients. This gives some evidence about the strength of the SNOW design against
cryptanalysis using the linear masking method.
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A Linear Approximation of Addition Modulo 2n

A.1 Notation

We identify the integers in{0, . . . , 2n − 1} with the vectors inFn2 by the natural
correspondence that identifies the integer whose binary expansion is

∑n−1
i=0 ai2

i with
the vector(an−1, . . . , a1, a0). Given k n-bit integersx(h), h = 1, . . . , k, the sum
(x(1) + · · · + x(k)) mod 2n carries over to a function from (Fn2 )k to Fn2 . Addition
in F2 andFn2 is always denoted by⊕.

For vectorsx = (an−1, . . . , a0) andy = (bn−1, . . . , b0) ∈ Fn2 , let x · y denote
the standard inner productx · y = an−1bn−1 ⊕ · · · ⊕ a0b0. For k tuples of vectors
in Fn2 , x(1), . . . , x(k) and y(1), . . . , y(k), we set(x(1), . . . , x(k)) · (y(1), . . . , y(k)) =
x(1) · y(1) ⊕ · · · ⊕ x(k) · y(k). A linear approximation of the sum modulo2n with k
inputs is an approximate relation of the form

u · (x(1) � · · ·� x(k)) = (x(1), . . . , x(k)) · (w(1), . . . , w(k))

whereu ∈ Fn2 andw(h) ∈ Fn2 , h = 1, . . . , k are the mask vectors. The strength of the
approximation is measured by the correlation

cor(u;w(1), . . . , w(k))
= 2Pr[u · (x(1) � . . .� x(k)) = (x(1), . . . , x(k)) · (w(1), . . . , w(k))]− 1,



where the probability is taken over uniformly distributedx(1), . . . , x(k).

A.2 Linear representation

We will derive a linear representation for the correlation of linear approximations of
addition modulo2n. Towards this end, we write the linear approximation with mask
vectorsu = (un−1, . . . , u0) andw(1), . . . , w(k), wherew(h) = (w(h)

n−1, . . . , w
(h)
0 ),

as a wordzn−1 . . . z1, z0 over the alphabet{0, . . . , 2k+1 − 1}, wherezi = ui2k +∑k
h=1 w

(h)
i 2h−1. We will then show that there are2k+1 k × k matrices over rationals,

a row vectorL and a column vectorC such that

cor(u;w(1), . . . , w(k)) = LAzn−1 . . . Az1Az0C,

for all n and all linear approximations(u;w(1), . . . , w(k)) of addition modulo2n of k
n-bit integers. We say that the matricesL,Ar, r = 0, . . . , 2k+1−1, andC form a linear
representation of the correlation with dimensionk.

For a vectorx ∈ Fn2 (or integerx ∈ {0, . . . , 2n − 1}), we letwH(x) denote the
Hamming weight ofx, that is,wH(x) is a non-negative integer less than or equal ton,
which is the number of non-zero components ofx.

Theorem 1. Let k > 1 be a fixed integer. LetL be the row vector of dimensionk with
all entries equal to 1, and letC be the column vector of dimensionk with a single 1 in
row 0 and zero otherwise. LetA0, . . . , A2k+1−1 be thek × k matrices

(Ar)d,c = 2−k(|{x ∈ Fk2 : u · g(x, c) = x · v, f(x, c) = d}| −
|{x ∈ Fk2 : u · g(x, c) 6= x · v, f(x, c) = d}|),

where

r = u2k +
k∑
h=1

vh2h−1, v = (v1, . . . , vk), x = (x1, . . . , xk),

c, d ∈ {0, . . . , k − 1},
f : {0, . . . , k − 1}2 → {0, . . . , k − 1}, f(x, c) = b(wH(x) + c)/2c,
g : {0, . . . , k − 1}2 → {0, 1}, g(x, c) = (wH(x) + c) mod 2.

Let n ≥ 1 be an integer and let(u;w(1), . . . , w(k)) be a linear approximation of
addition modulo2n with k inputs. Letz = zn−1 . . . z1, z0 be the word associated with
the approximation. We then have

cor(u;w(1), . . . , w(k)) = LAzn−1 · · ·Az1Az0C.

Note that the functionsf andg are the carry and sum functions for the basic school-
book method for addingk integers in binary.



Proof. We denote by(x(1), . . . , x(k)) then-bit integers that are added modulo2n. We
use the simple school-book method. We set the first carry bitc0 = 0. Then the carries
ci and the sum bitssi at each stepi = 0, . . . , n− 1 are computed as follows

si = g((x(1)
i , . . . , x

(k)
i ), ci),

ci+1 = f((x(1)
i , . . . , x

(k)
i ), ci)

We setb0 = 0 and, for allj = 1, . . . , n, let

bj =
j−1⊕
i=0

(uisi ⊕ w(1)
i x

(1)
i ⊕ · · · ⊕ w

(k)
i x

(k)
i ).

Let P (z, j) be the column vector

P (z, j)c = Pr[bj = 0, cj = c]−Pr[bj = 1, cj = c]

for j = 0, . . . , n andc = 0, . . . , k − 1. LetM(z, i) be thek × k matrix

M(z, i)d,c = Pr[(uisi ⊕ w(1)
i x

(1)
i ⊕ · · · ⊕ w

(k)
i x

(k)
i ) = 0 andci+1 = d | ci = c]−

Pr[(uisi ⊕ w(1)
i x

(1)
i ⊕ · · · ⊕ w

(k)
i x

(k)
i ) = 1 andci+1 = d | ci = c],

for i = 0, . . . , n− 1. Then we have

k−1∑
c=0

M(z, i)d,cP (z, i)c = P (z, i+ 1)d,

and thus

P (z, i+ 1) = M(z, i)P (z, i).

Note that

P (z, 0)0 = Pr[b0 = 0, c0 = 0]−Pr[b0 = 1, c0 = 0] = 1, and

P (z, 0)c = Pr[b0 = 0, c0 = c]−Pr[b0 = 1, c0 = c] = 0, for c 6= 0.

At the other end we have

LP (z, n) =
k−1∑
c=0

(Pr[bn = 0, cn = c]−Pr[bn = 1, cn = c])

= Pr[bn = 0]−Pr[bn = 1] = cor(u;w(1), . . . , w(k))

as desired. SinceAzi = M(z, i), it follows that

cor(u;w(1), . . . , w(k)) = LAzn−1 · · ·Az1Az0C.

ut



The correlation of a linear approximation of addition modulo2n with k inputs can
thus be computed by doingn multiplications of ak × k matrix and a column vector,
andn additional additions. For a fixedk, this is a linear -time algorithm, and for small
k efficient in practice. Note that the number of matrices to be stored in memory is2k+1.
We remark that an analogous method can be used to compute the differential probability
of addition modulo2n with k inputs.

Using Theorem 1 we get the following matrices fork = 3.

A0 =
1
8

4 1 0
4 6 4
0 1 4

 ,

A1 = A2 = A4 = −A8 =
1
8

 2 1 0
−2 0 2
0 −1 −2

 ,

A3 = A5 = A6 = −A9 = −A10 = −A12 =
1
8

0 1 0
0 −2 0
0 1 0

 ,

A7 = −A11 = −A13 = −A14 =
1
8

−2 1 0
2 0 −2
0 −1 2

 , and

A15 =
1
8

4 −1 0
4 −6 4
0 −1 4

 .

A.3 Searching for masks for a given correlation

In this section, we briefly describe the method used to search for all relevant masks
for addition modulo2n with two inputs. Using Theorem 1, we get a linear repre-
sentationL′, A′0, . . . , A′7, C of dimension2 for the correlation of linear approxi-
mations of addition modulo2n with two inputs. The matrixA′0 has the Jordan form
diag(1, 1/2) = H2A

′
0H
−1
2 , whereH2 =

(
1 1
1 −1

)
is the2×2 Hadamard matrix. We get a

new linear representation by making the change of basisL = R′H−1
2 ,Ai = H2AiH

−1
2

andC = H2C
′. This gives the matricesL =

(
1 0
)
, C =

(
1 1
)t

,

A0 =
1
2

(
2 0
0 1

)
, A1 = A2 = −A4 =

1
2

(
0 0
1 0

)
,

A7 =
1
2

(
0 2
1 0

)
, −A3 = A5 = A6 =

1
2

(
0 0
0 1

)
.

Let e0 =
(
1 0
)

ande1 =
(
0 1
)
. Thene0A0 = e0, e0A7 = e1, e0Ai = 0 for i 6= 0, 7,

e1A0 = e1A5 = e1A6 = 1
2e1, e1A1 = e1A2 = e1A7 = 1

2e0, e1A3 = − 1
2e1 and

e1A4 = − 1
2e0. It follows that the computation ofLAwn−1 · · ·Aw0C by multiplication



from left to right can be described by the following automaton.

start // ?>=<89:;e0

0
��

7 //

1,2,3,4,5,6
��

?>=<89:;e1

0,3,5,6

ii

ECD@GF
1,2,4,7

__

?>=<89:;0

0,...,7

kk

When readingw from left to right, if the automaton ends up in state0,LAwn−1 · · ·Aw0C =
0. If the automaton ends up in statee0 or e1, LAwn−1 · · ·Aw0C = ±2−k, wherek is
the number of transitions marked by a solid arrow, and the sign is determined by the
number of occurrences of{3, 4}: LAwn−1 · · ·Aw0C > 0 if and only if the number of
occurrences is even. For example, whenw = 736208, we have the state transitions

?>=<89:;e0
7 // ?>=<89:;e1

3 // ?>=<89:;e1
6 // ?>=<89:;e1

2 // ?>=<89:;e0
0 // ?>=<89:;e0

and thusLA7A3A6A2A0 = −2−3. Clearly,LAwn−1 · · ·Aw0C = 0 if and only if w
matches the regular expression(

0 + 7(0 + 3 + 5 + 6)∗(1 + 2 + 4 + 7)
)∗(1 + 2 + 3 + 4 + 5 + 6)Σ∗ ,

whereΣ = 0 + 1 + · · ·+ 7.
Let S0(n, k) andS1(n, k) denote the formal languages

S0(n, k) = {w | |w| = n, e0Awn−1 · · ·Aw0 = ±2−ke0} and

S1(n, k) = {w | |w| = n, e0Awn−1 · · ·Aw0 = ±2−ke1}

for n > 0. ThenS0(n, k) + S1(n, k) is the set of words of lengthn > 0 corresponding
to linear approximations of addition with two inputs that have correlation±2−k. The
languages are clearly given recursively by (juxtaposition denotes concatenation, and+
denotes union)

S0(n, k) = S0(n− 1, k)0 + S1(n− 1, k − 1)(1 + 2 + 4 + 7) and

S1(n, k) = S0(n− 1, k)7 + S1(n− 1, k − 1)(0 + 3 + 5 + 6)

for all 0 ≤ k < n. The base cases areS0(1, 0) = 0 andS1(1, 0) = 7. If k < 0 or
k ≥ n, S0(n, k) = S1(n, k) = ∅.

These recursive descriptions immediately give an efficient algorithm for finding all
input and output masks for addition with a given correlation. Moreover, one or two of
the three masks can optionally be fixed. Using generating functions, it is also straight-
forward to determine the distribution of the correlation coefficients—that is, count the
number of input/output masks with a given correlation. These results where proved
using different methods in [10].

Unfortunately, there does not seem to be any simple way to obtain the same results
for addition with three inputs, since it seems impossible to obtain an equally simple
linear representation with a change of basis.



B Other linear distinguishers—figures and equations

B.1 A three-round linear distinguisher for SNOW 2.0

A three-round linear distinguisher for SNOW 2.0 is depicted in Figure 4 and the corre-
sponding linear approximate relation is given by equation (3).

st + 16

st + 5

zt +1 st + 1

S

R1 R2

st + 15

zt st 
S

zt -1 st - 1

st + 14

st + 4

Fig. 4.Linear masking of SNOW 2.0 over three rounds

Γ · (zt+15 ⊕ zt+1)⊕ Γα · zt−1 ⊕ Γα−1 · zt+10 ⊕
Π · (zt+16 ⊕ zt+2)⊕Πα · zt ⊕Πα−1 · zt+11 ⊕
Λ · (zt+17 ⊕ zt+3)⊕ Λα · zt+1 ⊕ Λα−1 · zt+12 = 0. (3)

B.2 A two-and-half-round linear distinguisher for SNOW 3G with non-bijective
S2

In this distinguisher it is assumed that the linear masking byΛ of the output fromS2
is approximated by zero, see Figure 5. Then the linear approximate relation of this
distinguisher is identical to (1).

B.3 A three-round linear distinguisher for SNOW 3G

The resulting linear approximate relation involving keystream termszi only, is the same
as (3). This can be seen as follows. Letx denote the input to the first (in time) instance
of S1, y denote the input toS2, andw the input to the second instance ofS1. In addition
to the mask values given in Figure 6 we denote by∆ andΨ the input and output masks



st + 16

st + 5

zt +1 st + 1

S2S1

R1 R2 R3

st + 15

zt st 

S2S1

Fig. 5.Linear masking of SNOW 3G with non-bijectiveS2

for the firstS1, Θ the input mask to the secondS1, and finally, byΣ1, Σ2 andΣ3

the three masks used to maskst+14, st+15 andst+16, respectively. Then we have the
following approximate relations:

Ψ · S1(x) = ∆ · x (4)

Φ · S2(y) = Γ · y
Λ · S1(w) = Θ · w
Γ · (st+14 � x) = Σ1 · st+14 ⊕∆ · x
Π · (st+15 � w) = Σ2 · st+15 ⊕Θ · w
Λ · (st+16 � S1(x)� (st+5 ⊕ S2(y)))
= Σ3 · st+16 ⊕ (Ψ ⊕Π) · S1(x)⊕ Φ · (st+5 ⊕ S2(y)).

The three auxiliary variablesx, y andw cancel due to the following three equalities:

x� st+14 = y ⊕ zt−1 ⊕ st−1

z � st+15 = S1(x)⊕ zt ⊕ st
S1(x)� (S2(y)⊕ st+5))� st+16 = S1(w)⊕ zt+1 ⊕ st+1

Then we have:

Γ · (zt−1 ⊕ st−1)⊕Π · (zt ⊕ st)⊕ Λ · (zt+1 ⊕ st+1)
⊕Σ1 · st+14 ⊕Σ2 · st+15 ⊕Σ3 · st+16 ⊕ Φ · st+5 = 0,

or what is the same:

Γ · zt−1 ⊕Π · zt ⊕ Λ · zt+1
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Fig. 6.Linear masking of SNOW 3G

= Γ · st−1 ⊕Π · st ⊕ Λ · st+1 ⊕ Φ · st+5 ⊕Σ1 · st+14 ⊕Σ2 · st+15 ⊕Σ3 · st+16.

This equation is used four times. First two times fort = t + 2 andt = t + 16. Then
once witht = t and with allzi andsi variables multiplied byα. Finally, the equation
is used fort = t + 11 with all zi andsi variables multiplied byα−1. Since theαst ⊕
st+2 ⊕ α−1st+11 ⊕ st+16 = 0, for all t, thesi variables cancel and we get:

Γ · zt+1 ⊕Π · zt+2 ⊕ Λ · zt+3 ⊕ Γ · zt+15 ⊕Π · zt+16 ⊕ Λ · zt+17 ⊕ Γ · αzt−1

⊕Π · αzt ⊕ Λ · αzt+1 ⊕ Γ · α−1zt+10 ⊕Π · α−1zt+11 ⊕ Λ · α−1zt+12 = 0

which is the same as (3). When allsi variables are multiplied byα the approximations
over invidual functions take the following forms:

Ψ · S1(x) = ∆ · x
Φα · S2(y) = Γα · y
Λα · S1(w) = Θ · w
Γα · (st+14 � x) = Σ1α · st+14 ⊕∆ · x
Πα · (st+15 � w) = Σ2α · st+15 ⊕Θ · w
Λα · (st+16 � S1(x)� (st+5 ⊕ S2(y)))
= Σ3α · st+16 ⊕ (Ψα⊕Πα) · S1(x)⊕ Φα · (st+5 ⊕ S2(y)).

To get approximations with multiplication byα−1 just replaceα by α−1. In both
cases the masksΨ , ∆ andΘ can be chosen independently of the masks denoted using
the same symbol for approximations (4).


