
Key Replay Attack on Improved Bluetooth
Encryption

Kaarle Ritvanen and Kaisa Nyberg
Nokia Research Center

Helsinki, Finland
{kaarle.ritvanen,kaisa.nyberg}@nokia.com

Abstract— The Bluetooth encryption algorithm E0 is consid-
ered weak, and there are plans to extend the specification so
that it would support several algorithms. However, this does not
improve the overall security because an active attacker can set
up a previously used encryption key by a replay attack. In this
paper, we show how this vulnerability can be exploited to thwart
any improvement in the encryption method. We also investigate
alternative modifications to the Bluetooth security architecture
to overcome this problem.

Index Terms— ACO, Barkan–Biham–Keller attack, Bluetooth,
E0, key replay

I. INTRODUCTION

Bluetooth is a wireless communications standard intended
to be used in personal area networks. Many handheld devices,
such as mobile phones, personal digital assistants and laptop
computers incorporate a Bluetooth radio to enable low-cost
wireless data transmission.

Like all modern radio communications systems, Bluetooth
uses an encryption algorithm to protect the transmitted data
from eavesdroppers. The encryption algorithm is a stream
cipher called E0, which is based on Linear Feedback Shift
Registers (LFSRs) and so called summation combiner. The
length of the encryption key can be varied between 8 and 128
bits and there is a negotiation procedure by which it can be
agreed on. [1, Part H, Sect. 4]

However, some weaknesses have been discovered in the
E0 algorithm. There are incentives to introduce a stronger
encryption mechanism to Bluetooth, preferably based on the
Advanced Encryption Standard (AES) [2]. Nevertheless, sup-
port for E0 cannot be removed, in order to provide compati-
bility with legacy devices. This constraint combined with the
properties of the current key exchange procedure of Bluetooth
yields an active attacker a possibility to discover encryption
keys regardless of the algorithm used, assuming that he is able
to recover E0 encryption keys.

The fundamental cause of the problem is that it is possible to
replay encryption keys. Barkan et al. presented several attack
scenarios on the GSM network. The scenario of the attack
we are proposing is similar to one of them [3, Sect. 7.1].
Section IV presents the details on how the attack is carried
out in Bluetooth systems.

It should be noted that recovering encryption keys is not
the only exploit of the possibility for encryption key replay.
For instance, Gauthier presented a key replay attack applicable

against the EAP-AKA protocol [4] when a Bluetooth link is
used between the victim devices [5].

Before presenting the details of our attack, some background
information is covered. Section II reviews the state-of-the-art
attacks on E0. The Bluetooth encryption key exchange and
authentication procedures are described in Section III.

II. ATTACKS ON ENCRYPTION ALGORITHM E0

In 1999, Hermelin and Nyberg showed how it is possible
to recover the initial state of the LFSRs from 2

64 consecutive
keystream bits doing a work of 2

64 [6]. The amount of work
has later been reduced to 2

61 and the required knowledge of
keystream bits to 2

50 [7]. These attacks exploit linear correla-
tions in the summation combiner. Nevertheless, these attacks
are of theoretical nature since the LFSRs are reinitialized after
each packet and the length of the keystream never exceeds
2744 bits1 [1].

At the moment, algebraic attacks seem to be the most
effective attacks on E0. Krause devised an attack requiring
a work of 2

77 but only 128 consecutive bits of known
plaintext [8, Sect. 7]. That amount is eminently realistic for
an attacker to obtain. Later, Armknecht and Krause showed
how to recover the initial state from 2

23 keystream bits doing
a work of 2

68 [9]. By using a technique called fast algebraic
attack, which requires some precomputation, the amount of
work can be reduced to 2

55 [10].
The aforementioned attacks concentrate on discovering the

initial state of the LFSRs from the keystream bits. However, it
has been proven that having an effective algorithm for initial
state recovery yields an effective algorithm for recovering the
secret key [11, Sect. 4.2].

III. PROCEDURES FOR KEY EXCHANGE AND

AUTHENTICATION

This section presents the Bluetooth encryption key exchange
and authentication procedures as defined in [1]. The general
order in which the related activities take place is:

1) Change of link key

1The Bluetooth specifications state that the maximum size of payload is
2745 bits. This maximum is achieved by type DM5 packets with 228-byte
payload, which maps to 2745 bits due to error-correcting channel coding.
However, encryption is applied before channel coding and therefore the
maximal-length keystream is used with type DH5 packets having 343-byte
payload, which equals to 2744 bits.



2) Mutual authentication
3) Encryption key exchange
In Bluetooth networks, there is one master device, with the

clock of which the other devices synchronize. These other
devices are said to be slaves. The security protocols are always
performed only between the master and a slave but never
between two slaves. They are not symmetric and depend on
these roles, as we will see.

Mutual authentication and key exchange are allowed to
happen at any other time too. But they are mandatory after
link key renewal, when the master authenticates the slave first
and then vice versa. Link keys are discussed in Section III-A.
Section III-B explains how authentication works in Bluetooth
and Section III-C shows how encryption keys are agreed on.

A. Link Keys

Link key is a shared secret between the communicating
devices. In principle, there are four types of link keys:

• combination keys
• unit keys
• temporary keys2

• initialization keys
Unit keys are used by devices with limited memory re-

sources but their use is deprecated and they are ignored in this
discussion. Initialization keys are used when pairing devices.
The attack presented in Section IV assumes that the devices
have already been paired, so initialization keys neither are
interesting in this context.

Temporary keys are used in point-to-multipoint configura-
tions. As the name suggests, such configurations are usually
relatively short-lived. Applications may make the slaves use a
common encryption key derived from this common temporary
link key to allow encryption of broadcast traffic. Note that
also unicast traffic is encrypted with the common key if a
temporary link key has been set up. After the master has
finished broadcasting that needs encryption, the slaves can be
told to fall back to the previous link keys.

In most cases, the link key is a combination key. According
to the specifications, combination keys are semi-permanent,
in the sense that they can be changed but typically have long
lifetimes. In fact, the specifications suggest that combination
keys can be stored into non-volatile memory and used to
authenticate and generate encryption keys for future sessions.
So it is reasonable to assume that link keys do not change
very often in point-to-point configurations.

B. Authentication

Bluetooth uses a special algorithm named E1 to authenticate
other devices. It is based on the SAFER+ block cipher [13].
The inputs to E1 are:

• current link key
• device address of the claimant

2In [1], keys of this type are called master keys, but this term is a bit
misleading. In specifications of some other wireless communications systems,
such as those of Wireless Local Area Networks [12], this term refers to long-
term link keys (combination key equivalents).

• 128-bit challenge

The challenge is generated by the verifier and sent to the
claimant. Both parties run E1 and the claimant sends the re-
sponse to the verifier, which checks whether the results match.
E1 produces also another result, which is called Authenticated
Ciphering Offset (ACO). This 96-bit value is used in key
exchange and is discussed in Section III-C.

Authentication always takes place for both directions after
link key has been changed. This is also true, when a temporary
multipoint key is taken into use. It is up to the application
whether authentication is performed at other times. These ad-
ditional authentications do not necessarily have to be mutual.
In principle, authentication can be performed arbitrarily many
times and in arbitrary order unless the application imposes
some restrictions on that.

C. Key Exchange

E0 encryption keys are generated by an algorithm called E3,
which produces a 128-bit result. If the encryption key is to be
shorter than that, the key is shortened by a binary polynomial
modulo operation. The inputs to E3 are:

• current link key
• 128-bit random number
• Ciphering Offset number (COF)

The random number is generated by the master and is
supplied to the slave with the control message that requests
starting encryption. The last input, namely COF, takes the
following value:

• the device address of the master repeated twice, if the
link key is a temporary key

• ACO produced by the latest authentication, otherwise

IV. ACTIVE ATTACK ON STRONG ENCRYPTION

ALGORITHM

Let us now assume that another, alternative encryption
algorithm will be inserted to the Bluetooth specifications. We
also make the following additional assumptions:

1) A cipher negotiation mechanism is inserted to the Link
Manager Protocol (LMP) so that the devices can agree
on a common algorithm.

2) The original E0 algorithm is mandatory to implement
for backward compatibility.

3) Given N bits of E0-encrypted data, the attacker can
recover the encryption key.

4) The same E3 algorithm is used to generate the en-
cryption keys for all encryption algorithms. This is
reasonable since most modern block ciphers such as
AES use 128-bit keys.

5) The application used does not restrict the order of
execution of authentication procedures.

6) The link key is not changed often (i.e. it remains the
same throughout all sessions involved in the attack).

7) The attacker can impersonate the master and send con-
trol messages to the slave and by those means obtain N

bits of ciphertext.



We show that if these assumptions hold, then the attacker
can decrypt any ciphertext created using the new encryption al-
gorithm, assuming he knows the authentication challenge and
the master-supplied random number. At first, in Section IV-
A we consider a simple case involving only combination-type
link keys. In Section IV-B, we make one additional assumption
and show that then even stronger attack is possible. Section IV-
C discusses whether the attack can be extended to sessions
containing point-to-multipoint transmissions.

A. Basic Attack

In case of point-to-point configurations, which we are now
considering, the value of ACO is directly used as COF, the
input to the encryption key generation algorithm E3. If au-
thentication is performed for both parties, the ACO produced
by the latest authentication is used. Hence the factors that
determine the encryption key are:

• current link key
• master-supplied random number
• challenge supplied by the verifier of the last authentica-

tion
• device address of the claimant of the last authentication

As stated in Section I, our attack is just the Barkan–Biham–
Keller attack adapted to Bluetooth. At first, the attacker records
a session that is encrypted by using a strong algorithm. The
attacker also observes the challenge used in authentication
prior to the generation of the encryption key and the random
number attached to the encryption start request.

Later, at a moment best suitable for him, the attacker
becomes active and impersonates the master to the slave.
The old link key is used, so there is no need for mutual
authentication. However, due to assumption 5, the attacker can
request the slave to authenticate itself. Being unaware of the
real link key, the attacker of course cannot verify the identity
of the slave, but the result is that the challenge supplied by
him defines the COF when a new encryption key is derived.

It is important to note that if the master is the verifier in
the last authentication, the encryption key solely depends on
values supplied by him.3 The slave has then no opportunity
to affect the key. This enables the attacker to set up the same
encryption key by replaying these values. This is dangerous
because the attacker can claim being able to use only E0

cipher, enforce the use of the same key as was used in previous
session, record some ciphertext, recover the key and finally use
that key to decrypt the previously recorded session.

B. Stronger Attack

A stronger attack may be possible if the same ACO is
allowed to be used for several key computations. If the same
ACO were used, COF would remain constant for long periods
of time, just like the link key. Then we are again in the
situation where the master is the only one who affects the

3Indeed, the encryption key depends on the current link key the attacker
does not know. But because of assumption 6, it is constant throughout the
attack and in that sense does not affect the encryption key. As regards to the
device address, the same holds.

encryption key. The specifications do not forbid reusing ACOs.
In fact, they encourage using the same ACO for several key
computations in certain situations. When discussing mutual
authentication after a temporary key has been distributed, they
say [1, Part H, Sect. 3.2.8]:

The ACO values from the authentications shall not
replace the current ACO, as this ACO is needed to
(re)compute a ciphering key when the master falls
back to the previous (non-temporary) link key.

Therefore, it is highly probable that several implementations
do not require a fresh ACO for each key derivation. Attacking
on such implementations necessitates only replaying the ran-
dom number input for E3, not the authentication challenge.
Thus it is not even necessary for the attacker to know the last
challenge.

C. Point-to-Multipoint Configurations

Let us assume that the application allows the master to
make the slaves switch to temporary link and encryption
keys, and the attacker has recorded a session that contains
such encrypted broadcast episodes. It is clear that the attacker
is able to recover such parts of the recorded session that
were encrypted using a point-to-point key since he can replay
separately all authentications and key exchanges he has seen.
But could the attacker somehow recover broadcast encryption
keys too?

Before broadcast encryption can be started, a new temporary
link key is created and transmitted to the slaves, in encrypted
form of course. But as mutual authentication always occurs
after this, there is no way for the attacker to remain unde-
tected since he does not know the new link key. [1, Part H,
Sect. 3.2.8]

However, there can be applications that constantly use
the temporary link key. In that case, the temporary key is
never relinquished and the attack works well, just like in the
point-to-point case. Note that in this case, the stronger attack
without ACO replay is always applicable, independently of
the implementation, since COF is derived from the master’s
address.

D. Possible Counter-Measures

Assumption 6 stated that the link key is not changed often.
However, if the specifications dictated that the link key must
be changed regularly, that would offer some protection against
this replay attack. Replaying the challenge and the random
number would no longer yield the same encryption key, had
the link key been changed. Moreover, as mutual authentication
always must occur just after that, changing link keys frequently
would certainly offer protection against attacks of this kind.
Point-to-multipoint applications constantly switching between
combination and temporary group keys naturally use this
means of protection.

Another possibility to protect against replay attacks is
to make the slave always supply the last challenge. LMP
definition rules that the slave supplies the last challenge in
mutual authentication after the link key has been changed [1,



Part C, Sect. 4.2]. However, this does not by itself prevent the
master from initiating new authentication and key exchange
procedures immediately after that. And even the slave supply-
ing the last challenge does not by itself thwart the stronger
attack discussed in Section IV-B unless using fresh ACOs is
required.

We implicitly assumed that the attacker can freely select
the encryption algorithms in protocol negotiation phase. This
assumption is based on the fact that currently there is no other
integrity protection mechanism than encryption in Bluetooth,
and encryption cannot be used before the algorithm has been
agreed on. In theory, using message authentication codes based
on link keys to protect the negotiation would prevent this
attack. However, it would not prevent other types of encryption
key replay attacks, such as the Gauthier attack4 mentioned in
Section I.

Another counter-measure that prevents the same encryption
key from being used for two different encryption algorithms
is to break assumption 4, that is, not to use the same E3

algorithm for all encryption algorithms but specify a new one
for each. But again, other types of replay attacks would not
be neutralized.

V. CONCLUSION

Under certain assumptions, Bluetooth data encryption can
be beaten regardless of the encryption algorithm. The root
cause of the problem is that it is possible for masters to replay
authentication and key exchange.

All assumptions made in Section IV are realistic, perhaps
except for assumptions 3 and 7 to hold simultaneously for
any N . The current attacks on E0 are somewhat theoretical
since their complexity or the required amount of ciphertext are
pretty high. Nevertheless, the key replay problem should not
be neglected. It is useless to replace E0 if this problem is not
tackled. Otherwise an active attacker can reduce the problem
of breaking the new cipher to breaking E0.

Four alternative approaches to protect against the attack
discussed in Section IV were proposed:

• The link key is changed frequently.
• Bluetooth application profiles force the slave to provide

the last authentication challenge and forbid using a single
ACO to derive several encryption keys.

• Encryption algorithm negotiation is authenticated.
• Different key derivation algorithms are specified for each

encryption algorithm.
The first is a bit contradictory to the idea of link keys.
According to the specifications, combination keys are semi-
permanent, although changing them frequently would really
increase security against active attacks. The second approach
is neither in line with the specifications. The specifications
should encourage avoiding ACO reuse under all circumstances
rather than telling the implementors to store it for future

4In [5], no solution to the problem described is suggested. It is just assumed
that the attacker can always supply the last authentication challenge, although
breaking this assumption in the application profile definition would almost be
a complete solution to the problem.

use. The last two would only thwart the key recovery attack
presented in this paper. The key replay attack by Gauthier
would still remain valid. But either of the first two counter-
measures would also work against that attack, and therefore
are the recommended options.

REFERENCES

[1] “Core System Package [Controller volume],” Volume 2 of Specification
of the Bluetooth System, Version 1.2. Promoter Members of Bluetooth
SIG, Nov. 2003.

[2] “Specification for the Advanced Encryption Standard (AES),” NIST
FIPS Publication 197, Nov. 2001.

[3] E. Barkan, E. Biham, and N. Keller, “Instant ciphertext-only cryptanal-
ysis of GSM encrypted communications,” in Advances in Cryptology —
Proceedings of CRYPTO 2003, ser. Lecture Notes in Computer Science,
D. Boneh, Ed., vol. 2729. Springer, Aug. 2003, pp. 600–616.

[4] J. Arkko and H. Haverinen, “Extensible Authentication Protocol Method
for UMTS Authentication and Key Agreement (EAP-AKA),” Internet
Draft (draft-arkko-pppext-eap-aka-12.txt), Apr. 2004.

[5] E. Gauthier, “A man-in-the-middle attack using Bluetooth in a WLAN
interworking environment,” 3GPP TSG SA WG3 Meeting #32, S3-
040163, Feb. 2004.

[6] M. Hermelin and K. Nyberg, “Correlation properties of the Bluetooth
combiner,” in Proceedings of ICISC ’99, ser. Lecture Notes in Computer
Science, vol. 1787. Seoul, South Korea: Springer, Dec. 1999, pp. 17–
29.

[7] P. Ekdahl and T. Johansson, “Some results on correlations in the
Bluetooth stream cipher,” in Proceedings of 10th Joint Conference on
Communications and Coding, Obertauern, Austria, 2000.

[8] M. Krause, “BDD-based cryptanalysis of key stream generators,” in
Advances in Cryptology — Proceedings of EUROCRYPT 2002, ser.
Lecture Notes in Computer Science, L. R. Knudsen, Ed., vol. 2332,
Technical University of Eindhoven. Amsterdam, The Netherlands:
Springer, 2002, pp. 222–237.

[9] F. Armknecht and M. Krause, “Algebraic attacks on combiners with
memory,” in Advances in Cryptology — Proceedings of CRYPTO 2003,
ser. Lecture Notes in Computer Science, D. Boneh, Ed., vol. 2729.
Springer, Aug. 2003, pp. 162–176.

[10] F. Armknecht, “Algebraic attacks on stream ciphers,” in Proceedings of
4th European Congress on Computational Methods in Applied Sciences
and Engineering, P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate,
J. Périaux, and D. Knörzer, Eds. University of Jyväskylä, July 2004.

[11] J. Lano and B. Preneel, “Extending the framework of the resynchroniza-
tion attack,” in Proceedings of 11th Annual Workshop on Selected Areas
in Cryptography, ser. Lecture Notes in Computer Science, University of
Waterloo. Ontario, Canada: Springer, Aug. 2004.

[12] “Information Technology; Telecommunications and information ex-
change between systems; Local and metropolitan area networks; Specific
requirements; Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications: Amendment 6: Medium
Access Control (MAC) Security Enhancements,” IEEE P802.11i,
Draft 10.0, Apr. 2004.

[13] J. L. Massey, G. H. Khachatrian, and M. K. Kuregian, “Nomination of
SAFER+ as Candidate Algorithm for the Advanced Encryption Standard
(AES),” 1st AES Conference, Ventura, California, USA, Aug. 1998.


