Connect Now to MitM

Kaisa Nyberg
Helsinki University of Technology
Nokia Research Center
Finland
Crypto 06 Rump Session 22 August 2006
Microsoft Windows Rally

- Allows easy and secure setup of networks of devices particularly for home users
- Windows Vista Connect Now-NET implements a snapshot of
 Simple Config by WiFi Alliance
 (work still in progress)
- Allows different configuration technologies, one method is **Diffie-Hellman Key Agreement** authenticated by a device password entered by the user and
 Device Password Proof-of-Possession (DPwPoP) protocol by Simple Config
- For more information, see http://www.microsoft.com/whdc/rally/
DPwPoP Protocol

Enrollee → Registrar:
\(M1 = \text{Version} \ || \ N1 \ || \ Description \ || \ PKE \)

Enrollee ← Registrar:
\(M2 = \text{Version} \ || \ N1 \ || \ N2 \ || \ Description \ || \ PKR \ || \ \text{HMACAuthKey}(M1 \ || \ M2^*) \)

Enrollee → Registrar:
\(M3 = \text{Version} \ || \ N2 \ || \ E-Hash1 \ || \ E-Hash2 \ || \ \text{HMACAuthKey}(M2 \ || \ M3^*) \)

Enrollee ← Registrar:
\(M4 = \text{Version} \ || \ N1 \ || \ R-Hash1 \ || \ R-Hash2 \ || \ \text{ENCKeyWrapKey}(R-S1) \ || \ \text{HMACAuthKey}(M3 \ || \ M4^*) \)

Enrollee → Registrar:
\(M5 = \text{Version} \ || \ N2 \ || \ \text{ENCKeyWrapKey}(E-S1) \ || \ \text{HMACAuthKey}(M4 \ || \ M5^*) \)

Enrollee ← Registrar:
\(M6 = \text{Version} \ || \ N1 \ || \ \text{ENCKeyWrapKey}(R-S2) \ || \ \text{HMACAuthKey}(M5 \ || \ M6^*) \)

Enrollee → Registrar:
\(M7 = \text{Version} \ || \ N2\ || \ \text{ENCKeyWrapKey}(E-S2) \ || \ \text{HMACAuthKey}(M6 \ || \ M7^*) \)

Enrollee ← Registrar:
\(M8 = \text{Version} \ || \ N1 \ || \ \text{HMACAuthKey}(M7 \ || \ M8^*) \)
DPwPoP Protocol

- Simple protocol using commitments with interleaving opening
- Commitments are hiding, but not for short data that can be searched exhaustively (offline dictionary attack)
- Security against MitM achieved ONLY IF fresh random passkey used for each execution of the protocol.
 BUT this does not always seem to be the case in Windows Rally… a recommended option is to use static password.
Find 8-digit Password on Sticker
DPwPoP Protocol & MitM (1)

1st Attempt:
Enrollee → MitM → Registrar:
\(M1 = \text{Version} || N1 || \text{Description} || \text{PKE} \)
Enrollee ← MitM ← Registrar (†):
\(M2 = \text{Version} || N1 || N2 || \text{Description} || \text{PKR} || \text{HMACAuthKey}(M1 || M2*) \)
Enrollee → MitM → Registrar (†):
\(M3 = \text{Version} || N2 || \text{E-Hash1} || \text{E-Hash2} || \text{HMACAuthKey}(M2 || M3*) \)
Enrollee ← MitM ← Registrar (†):
\(M4 = \text{Version} || N1 || \text{R-Hash1} || \text{R-Hash2} || \text{ENCKeyWrapKey}(R-S1) || \text{HMACAuthKey} (M3 || M4*) \)
Enrollee → MitM → Registrar:
\(M5 = \text{Version} || N2 || \text{ENCKeyWrapKey(E-S1)} || \text{HMACAuthKey} (M4 || M5*) \)
Verification fails at the Registrar (with high probability)

Execution of the protocol is aborted.
MitM learns the first 4 digits of the password.

(†) MitM uses different AuthKeys and KeWrapKeys with Enrollee and Registrar
DPwPoP Protocol & MitM (2)

2nd Attempt:

Enrollee → MitM → Registrar:

\(M1 = \text{Version} || \text{N1} || \text{Description} || \text{PKE} \)

Enrollee ← MitM ← Registrar (†):

\(M2 = \text{Version} || \text{N1}|| \text{N2} || \text{Description} || \text{PKR} || \text{HMACAuthKey}(M1 || M2^*) \)

Enrollee → MitM → Registrar (†):

\(M3 = \text{Version} || \text{N2} || \text{E-Hash1} || \text{E-Hash2} || \text{HMACAuthKey}(M2 || M3^*) \)

Enrollee ← MitM ← Registrar (†):

\(M4 = \text{Version} || \text{N1} || \text{R-Hash1} || \text{R-Hash2} || \text{ENCKeyWrapKey}(R-S1) || \text{HMACAuthKey}(M3 || M4^*) \)

Enrollee → MitM → Registrar (†):

\(M5 = \text{Version} || \text{N2} || \text{ENCKeyWrapKey}(E-S1) || \text{HMACAuthKey}(M4 || M5^*) \)

Enrollee ← MitM ← Registrar:

\(M6 = \text{Version} || \text{N1} || \text{ENCKeyWrapKey}(R-S2) || \text{HMACAuthKey}(M5 || M6^*) \)

\textit{Verification fails at the Enrollee (with high probability)}

\textbf{Execution of the protocol is aborted.}

\textbf{MitM learns the second 4 digits of the password.}
DPwPoP Protocol & MitM (3)

Third attempt:
M1 ... M2 ... M3 ... M4... M5... M6 ... M7 ... M8 ...

Third time lucky!
User finally succeeds connecting the devices ... to the Man-in-the-Middle!