
TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R14

CHECKING BOUNDED REACHABILITY

IN ASYNCHRONOUS SYSTEMS

BY SYMBOLIC EVENT TRACING

Jori Dubrovin

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

TKK Reports in Information and Computer Science

Espoo 2009 TKK-ICS-R14

CHECKING BOUNDED REACHABILITY

IN ASYNCHRONOUS SYSTEMS

BY SYMBOLIC EVENT TRACING

Jori Dubrovin

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 451 1

Fax +358 9 451 3369

E-mail: series@ics.tkk.fi

©c Jori Dubrovin

ISBN 978-951-22-9847-1 (Print)

ISBN 978-951-22-9848-8 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://lib.tkk.fi/Reports/2009/isbn9789512298488.pdf

TKK ICS

Espoo 2009

ABSTRACT: This report presents a new symbolic technique for checking
reachability properties of asynchronous systems by reducing the problem to
satisfiability in restrained difference logic. The analysis is bounded by fixing
a finite set of potential events, each of which may occur at most once in any
order. The events are specified using high-level Petri nets. The logic encod-
ing describes the space of possible causal links between events rather than
possible sequences of states as in Bounded Model Checking. Independence
between events is exploited intrinsically without partial order reductions, and
the handling of data is symbolic. On a family of benchmarks, the proposed
approach is consistently faster than Bounded Model Checking. In addition,
this report presents a compact encoding of the restrained subset of difference
logic in propositional logic.

KEYWORDS: formal verification, Bounded Model Checking, partial order
method, Coloured Petri Nets, difference logic

CONTENTS

1 Introduction 1

2 Bounded Event Tracing by Example 1

3 Semantics of Unwindings 5
3.1 Colored Contextual Unweighted Petri Nets 6
3.2 Unwindings and One-Off Executions 8
3.3 Token Traces . 8
3.4 Mappings Between Token Traces and One-Off Executions . . 9

4 Encoding Token Traces 15
4.1 Interpreting the Encoding 16
4.2 Specialized Encoding for Safe Places 17
4.3 Properties of the Encodings 22

5 Encoding Restricted Difference Logic in SAT 23
5.1 The Encoding Algorithm . 25

6 Comparison to Related Work 27

7 Experiments 29

8 Conclusions and Future Work 30

References 31

CONTENTS v

1 INTRODUCTION

Design errors in concurrent software systems are notoriously difficult to find.
This is due to the tremendous number of possible interleavings of events and
combinations of data values. Symbolic model checking methods [10] attack
the problem by expressing the actual and desired behavior of a system as
formulas and using the tools of computational logic to search for a possible
failure.

In this report, we develop a new symbolic technique for verifying bounded
reachability properties of asynchronous discrete-event systems. Instead of ma-
nipulating executions as sequences of states, we take an event-centered view-
point. First, one fixes a collection of transitions, each of which describes one
discrete step of execution. This collection is called an unwinding of the sys-
tem. We only consider finite-length executions in which each transition of
the unwinding occurs at most once, in whichever order. From the unwind-
ing, we generate automatically a formula that is satisfiable if and only if a pre-
defined condition, e.g. division by zero, can be reached within this bounded
set of executions. For satisfiability checking, any SAT or SMT solver [9] can
be used as long as it can handle the data constraints of transitions. If the
reachability property holds within the bound, a witness execution can be ex-
tracted from an interpretation that satisfies the formula. Otherwise, longer
executions can be covered by adding more transitions to the unwinding and
generating a new formula. This technique will be called Bounded Event
Tracing.

The approach is similar to Bounded Model Checking (BMC) [2]. Both
methods can find bugs and report no false alarms, but they cannot be used
as such to prove the absence of bugs in realistic systems. Unlike BMC, the
new technique directly exploits the defining aspect of asynchronous systems:
each transition accesses only a fraction of the global state of the system. In
controlled experiments with a family of simple concurrent systems, model
checking with Bounded Event Tracing is approximately ten times faster than
with BMC.

In the next section, we will go through the central concepts with an ex-
tensive example. Section 3 defines unwindings as a class of high-level Petri
nets [16] that allows concise modeling of concurrency and software features.
The conciseness carries on to the encoding as a formula, which is presented
in Sect. 4. The encoding falls in a subset of what is known as difference logic.
This subset can be further encoded in propositional logic as shown in Sect. 5.
Section 6 discusses the relationship to other model checking approaches, and
Sect. 7 reports the experiments.

The generation of unwindings is not yet automated in this work. We will
sketch a straightforward unwinding scheme, but optimizations are left for
future work.

2 BOUNDED EVENT TRACING BY EXAMPLE

Figure 1a presents a system with three concurrent processes that run indef-
initely. Suppose the reachability property in question is whether the system

2 BOUNDED EVENT TRACING BY EXAMPLE 1

a) Initially: j ← 3 ; x← 2 ; y ← 5

Process F : Process G: Process H :
while true: while true: while true:

y ← 9 x← x + j ; j ← j + 1 if x = y: print “equal”

b) c)

3

2

5

j

x

y

3

2

9f

4

5

9

g1
5

9

9

g2
5

9

9
h

M1 M2 M3 M4 M5

f

init

h
[xh=yh]

g1

g2

py : Z 5

yf
9

yh
yh

px : Z

2

xh

xh

x1

x2+j2

pj : Z3

j1+1

j2
x1+j1

x2

j1

j2+1

d) e)

f

init

h
[xh=yh]

g1

g2

py : Z 5

yf
9

yh
yh

px : Z

2

xh

xh

x1

x2+j2

pj : Z3

j1+1

j2
x1+j1

x2

j1

j2+1

5

9
9

2

5

99

3
4

5

f

init

h
[xh=yh]

g1

g2

py : Z 5

yf
9

yh
yh

px : Z

2

xh

xh

x1

x2+j2

pj : Z3

j1+1

j2
x1+j1

x2

j1

j2+1

5
5

2

55

3

4

f) g)

f

init

h
[xh=yh]

g1

g2

py : Z 5

yf
9

yh
yh

px : Z

2

xh

xh

x1

x2+j2

pj : Z3

j1+1

j2

5

9
5

2

3

x1+j1

x2

j1

j2+16

9

4

5

f

init

h
[xh=yh]

g1

g2

py : Z
5

o

yf
9 e

yh

px : Z

2

xh

x1
x1+3

x2

x2+4

pg0

pg1o′

pg2

5

9

2

5

9

• •

•

Figure 1: An example system and illustrations of its behavior.

can ever print “equal”. The execution in Fig. 1b shows that the property
holds: after one cycle of process F and two cycles of G, both x and y have
the value 9, and process H then runs the print statement. The circles rep-
resent the values of variables in states M1,M2, . . ., and the rectangles f , g1,
g2, and h represent the atomic execution of one cycle of process F , G, G,
and H , respectively.

Figure 1c shows a related high-level Petri net. We can interpret Fig. 1b
as a finite execution of the Petri net as follows. The transition (rectangle)
named init occurs first, producing a token in each of the places (circles) pj ,
px , and py , which correspond to the variables of the system. This leads to a
state M1, in which each place pj , px , and py contains one token that carries
a value 3, 2, or 5, respectively. Transition f occurs next, consumes the token
from place py and produces a new token with value 9. This results in a state
M2. Then, transition g1 simultaneously consumes a token from each place pj

and px , and uses their values to produce new tokens. Finally, the state M5 is
reached.

This is an example of a one-off execution of the Petri net. Generally, a

2 2 BOUNDED EVENT TRACING BY EXAMPLE

one-off execution is a finite sequence that starts with a state in which no place
contains a token. Then, a transition occurs, consuming exactly one token
with each input arc (an arrow from a place to the transition) and producing
exactly one token with each output arc (an arrow from the transition to a
place) while fulfilling the data constraints. This leads to a new state, and so
on. The only distinctive requirement is that each transition occurs at most
once in the sequence. The transitions that occur in a one-off execution are
its events.

A Petri net whose set of one-off executions specifies a bounded set of be-
havior of a system is called an unwinding of the system. We assume that we
are given an unwinding whose one-off executions map easily to finite-length
executions of the original system. The unwinding of Fig. 1c has another
one-off execution consisting of the sequence init , g2, h of events. This corre-
sponds to process G running one cycle and then process H printing “equal”.
In total, this unwinding covers all executions of the system in which pro-
cess F runs at most one cycle, process G at most two cycles, and H at most
one cycle, in any possible order.

We observe that every token consumed during a one-off execution has
been previously produced. Figure 1d illustrates this idea for the one-off exe-
cution of Fig. 1b. Transition g1 consumes the token with value 2 produced
by init , whereas the token with value 5 in place pj is not consumed at all.
The numeric values and dashed arrows inside the big circles in Fig. 1d con-
stitute an example of what we call a token trace of the unwinding. The token
trace tells us some facts about the course of events. By following the arrows,
we see that init occurs before g1, which occurs before g2, but we cannot infer
whether f occurs before or after, say, g2. A token trace generally fixes only a
partial order of events. Figure 1e illustrates another token trace of the same
unwinding. This time, transitions f and g1 do not occur at all. We can check
that this token trace describes the second one-off execution discussed above.

It turns out that by specifying a set of rules for constructing a token trace of
a fixed unwinding, we can characterize the set of all one-off executions of the
unwinding. In other words, an unwinding induces a set of one-off executions
and a set of token traces, and there is a meaningful correspondence relation
between the two sets. We can thus reduce the search for a one-off execution
with a certain property to finding a corresponding token trace. Given an
unwinding, the rules are as follows.

1. A token trace consists of events, links (dashed arrows), and data values.

2. A subset of the transitions of the unwinding are chosen to be events.

3. Each output arc of each event is associated with a single token with a
value.

4. Each input arc of each event is linked to an output arc of an event.

5. No two input arcs are linked to the same output arc.

6. The data constraints of all events are fulfilled by the values of tokens.

7. The links impose a partial order on the events.

2 BOUNDED EVENT TRACING BY EXAMPLE 3

Figure 1f contains a third attempt at a token trace of the same unwinding.
However, there are several problems. First, transitions f and h are consum-
ing the same token at place py . This breaks rule 5—an input arc denotes a
destructive read operation. Second, transition h poses as an event although it
gets no input from place px , breaking rule 4. Third, there is an illegal cycle,
illustrated in thick arrows, that breaks rule 7. Event g1 produces a token with
value 6, then g2 consumes it and produces a token with value 4, which in turn
is consumed by g1. No chronological ordering of the occurrences agrees with
the picture. Any of these three mistakes suffices to tell that Fig. 1f does not
represent a valid token trace.

A model checking procedure. The discussion above suggests the following
procedure for checking reachability properties of an asynchronous system.
Generate an unwinding such that one-off executions of the unwinding map
to finite executions of the system, and the reachability property corresponds
to the occurrence of a transition t�. Generate automatically a formula that
encodes the rules for a token trace of the unwinding and add the constraint
that t� is an event. Feed the formula to an off-the-shelf satisfiability solver. If
the formula is satisfiable, convert the satisfying interpretation to a token trace
and further to an execution that witnesses the property. If the formula is
unsatisfiable, expand the unwinding to cover more executions of the system,
and start over.

Constructing unwindings. Figure 1c demonstrates a rudimentary way of
obtaining unwindings: define a place for every variable of the system, add
an initial transition that produces the starting values, and add a transition for
each atomic action that the system can perform. To expand the unwinding,
make distinct copies of some of the transitions.

This results in unwindings of a certain shape, but we will see that unwind-
ings can be much more versatile. Namely, one can set up input and output
arcs in arbitrary cyclic or acyclic configurations, decoupling the production
of tokens from the consumption. In general, a place can contain any num-
ber of tokens during a one-off execution. Consequently, unwindings follow
conventional Petri net semantics with the restriction that the transitions of an
unwinding are treated as potential events: each of them occurs once or not
at all.

Figure 1g shows another unwinding of our system. The labels o, o′, and e
do not contribute to the semantics—they only name some arcs for later ref-
erence. A token in place pg0 denotes the fact that process G has not started.
The token carries a meaningless value denoted by •. Transition g1 represents
the first cycle of process G, and as variable j is essentially local to G, we
can inline its initial value j = 3 in g1. A token in pg1 means that G has
executed exactly 1 cycle, or equivalently that j equals 4, and so on. Essen-
tially, we have unwound the while loop twice, which results in a control flow
graph with three control locations represented by places pg0, pg1, and pg2.
The new unwinding covers exactly the same set of executions as the one in
Fig. 1c. We consider the control flow based solution superior, since it breaks
the symmetry of transitions g1 and g2 and avoids the arithmetic on the loop
counter j. Development of this idea is left for future work.

4 2 BOUNDED EVENT TRACING BY EXAMPLE

Another change in Fig. 1g is that transition h is incident to two test arcs
(lines with a cross bar close to each end). A test arc represents an ordinary,
non-destructive read operation. It is like an input arc but does not consume
the token, and it is usually behaviorally equivalent to a pair of input and
output arcs. The use of test arcs is optional, but they may result in a more
efficient encoding. The following rules need to be added for token traces.
Each test arc is linked to an output arc, and multiple test arcs plus at most
one input arc can be linked to the same output arc. The partial order must
be such that a transition that tests a token occurs after the transition that
produces the token. A third transition can consume the token, but it must
occur after the testing transition. The token trace in Fig. 1g obeys these rules.
In particular, transition h occurs after g1 and before g2.

3 SEMANTICS OF UNWINDINGS

We will use the following notations for formalizing unwindings and token
traces.

For a function f : X → Y , sets A ⊆ X , B ⊆ Y , and an element y ∈ Y ,
we callX the domain of f and Y the codomain of f , and we adopt the usual
notation f(A) := {f(x) | x ∈ A}, f−1(B) := {x ∈ X | f(x) ∈ B}, and
f−1(y) := f−1({y}). The function is injective iff |f−1(y)| ≤ 1 for all y ∈ Y .
The function f |A : A→ Y defined as f |A(x) := f(x) for all x ∈ A is called
the restriction of f to A.

We will use types, variables, and expressions to model data manipulation
in systems. Each type is identified with the set of elements of the type; in par-
ticular, the Boolean type is B = {false, true}. Every variable v and expres-
sion φ has a type type(v) or type(φ). The set of variables in an expression or
a set of expressions φ is denoted by vars(φ). A binding of a set V of variables
maps each variable v ∈ V to a value d ∈ type(v). If φ is an expression and b is
a binding of (a superset of) vars(φ), the value of φ in b, denoted by φb, is ob-
tained by substituting b(v) for each occurrence of a variable v ∈ vars(φ) in
the expression and evaluating the result. We will not fix a concrete language
for expressions—the choice of a proper language depends on the problem
domain and on the capabilities of the solver used.

A multiset M over a set U is a function U → N, interpreted as a collection
that contains M(u) indistinguishable copies of each element u ∈ U . A mul-
tisetM is finite iff the sum

∑

u∈U M(u) is finite. When the base set U is clear
from the context, we will identify an ordinary set A ⊆ U with the multiset
χA over U , defined as χA(u) = 1 if u ∈ A and χA(u) = 0 otherwise. If M1

and M2 are multisets over U , then M1 is a subset of M2, denoted M1 ≤ M2,
iff M1(u) ≤ M2(u) for all u ∈ U . Multiset M contains an element u ∈ U ,
denoted u ∈ M , iff M(u) ≥ 1. If M1,M2, . . . are multisets over U , we
will use M1 + M2 and M2 − M1 with their usual meanings (as functions)
to denote multiset union and multiset difference, respectively. The latter is
defined only if M1 ≤ M2.

A binary relation ≺ over a set X is a strict partial order iff it is irreflexive,
asymmetric, and transitive, that is, iff for all x, y, z ∈ X (i) x ≺ y implies not
y ≺ x and (ii) x ≺ y and y ≺ z together imply x ≺ z. A strict total order

3 SEMANTICS OF UNWINDINGS 5

is a strict partial order that additionally fulfills for all x, y ∈ X (iii) x ≺ y
or y ≺ x.

3.1 Colored Contextual Unweighted Petri Nets

Colored Petri Nets [16] are a powerful language for the design and analysis of
distributed systems. In this work however, we use Petri nets with restricted se-
mantics to specify a bounded portion of the behavior of a system. Our variant
is called Colored Contextual Unweighted Petri Nets, or “nets” for short. The
word contextual means that nets can contain test arcs [5], allowing compact
modeling of non-destructive read operations. By unweighted we mean that
each arc is associated with a single token instead of a multiset of tokens as in
Colored Petri Nets. This restriction is crucial for the encoding, but does not
seriously weaken the formalism. Places can still contain multisets of tokens,
and multiple arcs can be placed in parallel to move several tokens at the same
time.

Definition 1. A net is a tuple N = 〈Σ, P, T, Ain , Atest , Aout , place, trans,
colors, guard , expr〉, where

1. Σ is a set of non-empty types (sometimes called color sets),

2. P is a set of places,

3. T is a set of transitions,

4. Ain is a set of input arcs,

5. Atest is a set of test arcs,

6. Aout is a set of output arcs,

7. P , T , Ain , Atest , and Aout are all pairwise disjoint,

8. place is a place incidence function Ain ∪Atest ∪ Aout → P ,

9. trans is a transition incidence function Ain ∪ Atest ∪Aout → T ,

10. the set trans−1(t) is finite for all t ∈ T ,

11. colors is a color function P → Σ,

12. guard is a guard function over T such that for all t ∈ T , guard(t) is an
expression with type(guard(t)) = B and type(vars(guard(t))) ⊆ Σ,

13. expr is an arc expression function over Ain ∪Atest ∪ Aout such that
for all arcs a, expr(a) is an expression with
type(expr(a)) = colors(place(a)) and type(vars(expr(a))) ⊆ Σ,

6 3 SEMANTICS OF UNWINDINGS

A net is finite iff P and T are finite sets. For a transition or a set of transi-
tions t and a place or a set of places p, we use the shorthand notations

in(t) := Ain ∩ trans−1(t) , in(p) := Ain ∩ place−1(p) ,

test(t) := Atest ∩ trans−1(t) , test(p) := Atest ∩ place−1(p) ,

out(t) := Aout ∩ trans−1(t) , out(p) := Aout ∩ place−1(p) ,

vars(t) := vars(guard(t)) ∪
⋃

a∈trans−1(t)

vars(expr(a)) .

In particular, the variables of a transition are the variables that appear either
in its guard or in the arc expression of any incident arc.

Figure 1g shows a net where place(o) = py , trans(o) = init , test(py) =
{e}, out(pg1) = {o′}, place(in(g2)) = {px , pg1}, and colors(py) = Z.
Some of the data constraints are expr(e) = yh and guard(h) = (xh=yh),
with vars(h) = {xh, yh} and vars(init) = ∅. We omit vacuously true guards,
so guard(f) = true implicitly. Also, colors(pg1) is implicitly the type {•}
with only one meaningless value, and expr(o′) is the constant expression •.

A token element is a pair 〈p, d〉, where p ∈ P is a place and d ∈ colors(p)
is a value. A marking M is a finite multiset over the set of token elements.
Markings represent states of the system. The interpretation of the multiset M
is that ifM(〈p, d〉) = n, then in stateM , place p contains n tokens of value d.

A binding element is a pair 〈t, b〉, where t ∈ T is a transition and b is a
binding of vars(t). Let us use the following shorthand notations represent-
ing the multisets of token elements consumed and produced by a binding
element.

consumed 〈t,b〉 :=
∑

c∈in(t)

{

〈place(c), expr(c)b〉
}

,

produced 〈t,b〉 :=
∑

o∈out(t)

{

〈place(o), expr(o)b〉
}

.

Definition 2. A binding element 〈t, b〉 is enabled in a marking M iff the
following conditions hold.

1. consumed 〈t,b〉 ≤M ,

2. 〈place(e), expr(e)b〉 ∈
(

M − consumed 〈t,b〉

)

for all e ∈ test(t), and

3. guard(t)b = true.

The binding element can occur in the marking iff it is enabled in the mark-
ing, leading to a new marking M ′ = M − consumed 〈t,b〉 + produced 〈t,b〉.

We denote by M [t, b〉M ′ the fact that the binding element is enabled
in M and leads from M to M ′ if it occurs. A finite occurrence sequence
of a net is a finite sequence M0 [t1, b1〉M1 · · · [tk, bk〉Mk such that k ≥ 0
and Mi−1 [ti, bi〉Mi holds for each 1 ≤ i ≤ k. The length of the finite
occurrence sequence is k, and the final marking is Mk.

3 SEMANTICS OF UNWINDINGS 7

3.2 Unwindings and One-Off Executions

We define an unwinding to be any net N = 〈Σ, P, T, . . . , expr〉 that fulfills
the two constraints below. Those constraints are just technicalities—the true
restriction is that we allow each transition of an unwinding to occur at most
once. Thus, a one-off execution of an unwinding is a finite occurrence se-
quence M0 [t1, b1〉M1 · · · [tk, bk〉Mk such that M0 = ∅ and ti 6= tj for all
1 ≤ i < j ≤ k. The set {t1, . . . , tk} is the event set of the one-off execu-
tion. A transition t ∈ T is one-off reachable iff it is an event in some one-off
execution.

The informal requirement for constructing an unwinding is that there is
an easily computable projection from the one-off executions of an unwinding
to some finite executions of the system under verification. Furthermore, the
reachability property in question should hold if a specific transition t� ∈ T is
one-off reachable. If the original property is expressed in terms of the state of
the system, the property must be somehow mapped to the enabledness con-
dition of t�. The technical requirements for an unwinding N are as follows.

1. Transitions do not share variables: when t ∈ T and u ∈ T are dis-
tinct, vars(t) ∩ vars(u) = ∅. We can always achieve this by renaming
variables if necessary, as done in Fig. 1c by using subscripts.

2. Every place is incident to an output arc: out(p) 6= ∅ for all p ∈ P . As
places with no incident output arcs are useless, they can be eliminated.

One possible one-off execution of the unwinding of Fig. 1c is the sequence
M0 [init , binit〉M1 [f, bf 〉M2, where M2 = {〈pj , 3〉, 〈px , 2〉, 〈py , 9〉}, the
binding binit is empty, and yf

bf = 5. The initial marking M0 is fixed to be
empty, but we work around this by specifying the starting conditions with a
transition init that necessarily occurs once in the beginning of any non-trivial
one-off execution.

3.3 Token Traces

Let us formalize the rules presented in Sect. 2 for a token trace.

Definition 3. A token trace of an unwinding N = 〈Σ, P, T, . . . , expr〉 is a
tuple R = 〈E, src, b〉, where

1. E ⊆ T is a finite set of events,

2. src is a source function in(E) ∪ test(E)→ out(E) such that

(a) place(a) = place(src(a)) for all arcs a ∈ in(E) ∪ test(E) and

(b) src(c1) 6= src(c2) for all input arcs c1, c2 ∈ in(E) such that
c1 6= c2,

3. b is a binding of vars(E), called the total binding, such that

expr(a)b = expr(src(a))b for all arcs a ∈ in(E) ∪ test(E),

4. guard(t)b = true for all events t ∈ E,

8 3 SEMANTICS OF UNWINDINGS

5. there exists a strict partial order ≺ over the set E such that

(a) trans(src(a)) ≺ trans(a) for all arcs a ∈ in(E) ∪ test(E) and

(b) trans(e) ≺ trans(c) for all test arcs e ∈ test(E) and input arcs
c ∈ in(E) such that src(e) = src(c).

Relating to Sect. 2, the source function forms the links between the arcs,
while the total binding takes care of the data constraints. According to item 3,
the arc expression at each end of a link must evaluate to the same value,
i.e. the value of the token. As vars(E) is a disjoint union of the variables
of each event, b can bind the variables of each event independently. Item 5
above says that the events can be ordered in such a way that each token is
produced before any event consumes or tests it, and a token is not tested
during or after its consumption. Any strict partial order over (a superset of) E
that fulfills item 5 will be called a chronological partial order of the token
trace.

Figure 1g portrays a token trace where E = T , yf
b = xh

b = 5, src(e) = o,
src(in(E)) ∩ out(g2) = ∅, and necessarily h ≺ g2 and init ≺ g2. One of
f ≺ g2 and g2 ≺ f can be true, or both can be false, but not both true.

3.4 Mappings Between Token Traces and One-Off Executions

From a one-off execution M0 [t1, b1〉M1 · · · [tk, bk〉Mk, we can construct a
token trace by conjoining b1, . . . , bk to a total binding and tracing each con-
sumed or tested token to its source. The interleaving t1 ≺ t2 ≺ · · · ≺ tk then
gives a chronological partial order. Conversely, we can take a token trace and
linearize its chronological partial order to obtain a one-off execution. These
constructions constitute the proof of the following theorem.

Theorem 1. Given an unwindingN and a finite subsetE of transitions, there
is a one-off execution ofN with event setE if and only if there is a token trace
of N with event set E.

Before going to the proof, we need to define a few more concepts. The set
of residual producers of a token trace is the set

out res(R) := out(E) \ src(in(E)) ,

that is the set of output arcs that produce a token that is not consumed by
any input arc. The residual marking of a token trace is the corresponding
multiset of token elements

∑

o∈outres(R)

{

〈place(o), expr(o)b〉
}

.

The residual marking of the token trace of Fig. 1d is the same as marking M5

in Fig. 1b.
A subset E ′ of events E is downward closed in ≺ iff t ≺ t′ implies t ∈ E ′

for all t ∈ E and t′ ∈ E ′. A downward closed subset can be used to construct
a “prefix” of a token trace as shown by the following lemma.

3 SEMANTICS OF UNWINDINGS 9

Lemma 2. LetR = 〈E, src, b〉 be a token trace of an unwinding N and let≺
be a chronological partial order of R. If E ′ is a subset of E that is downward
closed in ≺, then the tuple R′ := 〈E ′, src ′, b′〉 is a token trace of N , where
src ′ is the restriction of src to in(E ′) ∪ test(E ′) and b′ is the restriction of b
to vars(E ′). Furthermore, ≺ is a chronological partial order of R′.

Proof. Assume E ′ is a downward closed subset of E, and let src′, b′, and R′

be defined as stated in the lemma. For src ′ to be a valid source function,
it must map in(E ′) ∪ test(E ′) onto out(E ′). Let a be an arbitrary arc in
in(E ′) ∪ test(E ′). Then trans(src(a)) ≺ trans(a) holds because ≺ is a
chronological partial order of R. Because trans(a) ∈ E ′ and E ′ is downward
closed, also trans(src(a)) is in E ′, in other words src(a) is in out(E ′). Thus
src ′ is a mapping from in(E ′) ∪ test(E ′) onto out(E ′).

All other requirements of Definition 3 follow directly forR′ and≺ because
R is a token trace.

The following two lemmas state that we can get a token trace from any
one-off execution, and vice versa. Theorem 1 then follows immediately.

Lemma 3. If M0 [t1, b1〉M1 · · · [tk, bk〉Mk is a one-off execution of an un-
winding N , then there is a token trace of N with event set E = {t1, . . . , tk}
and residual marking Mk.

Proof. Proof by induction over k. If k = 0, then Mk = M0 = ∅, and we can
pick the empty token trace, which has event set ∅ and residual marking ∅.

Let k > 0. Assume X := M0 [t1, b1〉M1 · · · [tk, bk〉Mk is a one-off
execution and let E := {t1, . . . , tk}. Let

consumedk :=
∑

c∈in(tk)

{

〈place(c), expr(c)bk〉
}

, (1)

producedk :=
∑

o∈out(tk)

{

〈place(o), expr(o)bk〉
}

(2)

be the token elements consumed and produced by 〈tk, bk〉.
It follows immediately from the definition of one-off execution that X ′ :=

M0 [t1, b1〉M1 · · · [tk−1, bk−1〉Mk−1 is also a one-off execution. By the in-
ductive hypothesis, there is a token trace R′ = 〈E ′, src′, b′〉 with event set
E ′ := E \ {tk} and residual marking Mk−1. By the definition of residual
marking, we have

Mk−1 =
∑

o∈outres(R′)

{

〈place(o), expr(o)b′〉
}

. (3)

Because the binding element 〈tk, bk〉 is enabled in marking Mk−1, we
have consumedk ≤ Mk−1. Replace consumedk with its definition and Mk−1

with the right-hand side of (3) to obtain

∑

c∈in(tk)

{

〈place(c), expr(c)bk〉
}

≤
∑

o∈outres(R′)

{

〈place(o), expr(o)b′〉
}

.

Because in(tk) is a finite set, we can by this multiset inclusion pick for
every input arc c ∈ in(tk) an output arc in out res(R

′), call it srcin(c),

10 3 SEMANTICS OF UNWINDINGS

such that 〈place(c), expr(c)bk〉 = 〈place(srcin(c)), expr(srcin(c))b′〉. Fur-
thermore, we can construct this mapping in such a way that no two input
arcs are mapped to the same output arc. This way, we obtain an injective
function srcin : in(tk)→ out res(R

′) that satisfies

place(c) = place(srcin(c)) for all c ∈ in(tk), and (4)

expr(c)bk = expr(srcin(c))b′ for all c ∈ in(tk). (5)

Now, consumedk can be expressed as

consumedk =
∑

c∈in(tk)

{

〈place(c), expr(c)bk〉
}

=

∑

c∈in(tk)

{

〈place(srcin(c)), expr(srcin(c))b′〉
}

=

∑

o∈srcin (in(tk))

{

〈place(o), expr(o)b′〉
}

. (6)

Let U be the set out res(R
′) \ srcin(in(tk)), i.e. the set of output arcs that are

residual producers of R′ but are not matched to any input arc of tk. Then it
can be seen from (3) and (6) that

Mk−1 − consumedk =
∑

o∈U

{

〈place(o), expr(o)b′〉
}

. (7)

Definition 2, when applied to 〈tk, bk〉 which is enabled in Mk−1, says that

for all test arcs e ∈ test(tk), the token element 〈place(e), expr(e)bk〉 is in
the multiset Mk−1 − consumedk. By (7), we can thus map each test arc

e ∈ test(tk) to an output arc srctest(e) inU such that 〈place(e), expr(e)bk〉 =

〈place(srctest(e)), expr(srctest(e))
b′〉. This way, we define another new func-

tion srctest : test(tk)→ U that satisfies

place(e) = place(srctest(e)) for all e ∈ test(tk), and (8)

expr(e)bk = expr(srctest(e))
b′ for all e ∈ test(tk). (9)

The domains of the functions srcin , srctest , and src ′ are pairwise disjoint
and they cover the set in(E)∪test(E). The codomains of these functions are
contained in out(E). Thus, we can conjoin the functions as a new source
function src : in(E) ∪ test(E)→ out(E) defined by

src(a) :=

srcin(a) if a ∈ in(tk),

srctest(a) if a ∈ test(tk),

src ′(a) if a ∈ in(E ′) ∪ test(E ′).

Similarly, we define a new total binding b of the variables vars(E) by

b(v) :=

{

bk(v) if v ∈ vars(tk),

b′(v) otherwise.

The claim is now that R := 〈E, src, b〉 is a token trace of N . We will prove
the claim step by step by going through the items of Definition 3.

3 SEMANTICS OF UNWINDINGS 11

1. E is a finite subset of transitions of N as it is the event set of a one-off
execution of N .

2. As stated above, src is a function from in(E) ∪ test(E) to out(E).

(a) By (4) and (8), we have place(a) = place(src(a)) for all arcs
a ∈ in(tk) ∪ test(tk). For a ∈ in(E ′) ∪ test(E ′), the equality
place(a) = place(src(a)) holds because src ′ is the source func-
tion of a token trace R′.

(b) Assume c1, c2 ∈ in(E) and c1 6= c2. If c1 and c2 are both in
in(E ′), then src(c1) 6= src(c2) because src′ is a valid source func-
tion. If c1 and c2 are both in in(tk), then src(c1) 6= src(c2) be-
cause srcin is injective by construction. The remaining case is
that c1 ∈ in(E ′) and c2 ∈ in(tk). Then src(c1) is in src′(in(E ′))
and src(c2) is in out res(R

′) = out(E ′) \ src′(in(E ′)), and hence
src(c1) 6= src(c2). Thus, src restricted to in(E) is injective.

3. Binding b gives values to vars(t) for all transitions t ∈ E, and the

equality expr(a)b = expr(src(a))b follows for all a ∈ in(E) ∪ test(E)
from (5), (9), and the fact that b′ is the total binding of a token trace R′.

4. We have guard(tk)
b = guard(tk)

bk = true because 〈tk, bk〉 is enabled
in a marking Mk−1. For t ∈ E, t 6= tk, the guard value guard(t)b =

guard(t)b′ is true because b′ is the total binding of R′.

5. Let ≺′ be a strict partial order over E ′ that is a chronological partial
order of R′. Define ≺ as the relation ≺′ ∪ {(t, tk) | t ∈ E ′}. It is
straightforward to check that ≺ is a strict partial order over E. Let us
verify that ≺ is a chronological partial order of R.

(a) Assume a ∈ in(E) ∪ test(E). If trans(a) is in E ′, then we have
trans(src′(a)) ≺′ trans(a) and thus trans(src(a)) ≺ trans(a)
holds. If, on the other hand, trans(a) = tk, then src(a) is in
out res(R

′) ⊆ out(E ′) and thus trans(src(a)) is in E ′. Therefore
trans(src(a)) ≺ trans(a).

(b) Assume arcs e ∈ test(E) and c ∈ in(E) such that src(e) =
src(c). We cannot have trans(e) = tk, because this would imply
src(c) = src(e) = srctest(e) ∈ U = out res(R

′) \ srcin(in(tk)) =
out(E ′)\src(in(E ′))\src(in(tk)) = out(E ′)\src(in(E)), which
entails the contradiction src(c) /∈ src(in(E)). Therefore trans(e)
is in E ′. Now if trans(c) is in E ′, then trans(e) ≺′ trans(c)
holds because ≺′ is a chronological partial order of R′, and con-
sequently trans(e) ≺ trans(c) is true. On the other hand, if
trans(c) = tk, then trans(e) ≺ trans(c) follows directly from
trans(e) ∈ E ′ and the definition of ≺. In either case, we have
trans(e) ≺ trans(c).

It is now established that R is a token trace of N . We still have to show

12 3 SEMANTICS OF UNWINDINGS

that the residual marking of R is Mk. First, the residual producers of R are

out res(R) = out(E) \ src(in(E)) =

out(tk) ∪ out(E ′) \ src ′(in(E ′)) \ srcin(in(tk)) =

out(tk) ∪ out res(R
′) \ srcin(in(tk)) = out(tk) ∪ U.

The union is disjoint because tk does not share output arcs with E ′. By
Definition 2, the final marking Mk is Mk−1 − consumedk + producedk. Ap-
plying (7) and (2), we get

Mk =
∑

o∈U

{

〈place(o), expr(o)b′〉
}

+
∑

o∈out(tk)

{

〈place(o), expr(o)bk〉
}

=

∑

o∈outres (R)

{

〈place(o), expr(o)b〉
}

.

The last sum is exactly the residual marking of R.

Lemma 4. If R = 〈E, src, b〉 is a token trace of an unwinding N , then there
is a one-off execution M0 [t1, b1〉M1 · · · [tk, bk〉Mk of N such that E =
{t1, . . . , tk} and the residual marking of R is Mk.

Proof. Proof by induction over k = |E|. If k = 0, then we have the empty
token trace whose residual marking is ∅, and we can pick the zero-length
one-off execution M0 where M0 = ∅.

Let k > 0 and assumeR = 〈E, src, b〉 is a token trace with k = |E|. Let≺
be a chronological partial order of R. Because E is finite and nonempty, it
has a maximal element, call it tk, with respect to ≺.

LetE ′ := E\{tk}. AsE ′ is downward closed in≺, we can apply Lemma 2
to obtain a new token trace R′ = 〈E ′, src′, b′〉. By the inductive hypothesis,
there is a one-off execution X ′ = M0 [t1, b1〉M1 · · · [tk−1, bk−1〉Mk−1 such
that E ′ = {t1, . . . , tk−1} and the residual marking of R′ is Mk−1. Let bk be
the restriction of b to vars(tk), and define

consumedk :=
∑

c∈in(tk)

{

〈place(c), expr(c)bk〉
}

, (10)

producedk :=
∑

o∈out(tk)

{

〈place(o), expr(o)bk〉
}

. (11)

We claim that X ′ can be extended to a one-off execution X of length k by
appending an occurrence of the binding element 〈tk, bk〉 and that the final
marking of X is the residual marking of R. For this, we need to show that
Mk−1 [tk, bk〉Mk holds, when Mk is the residual marking of R. According to
Definition 2, we have to prove the following four items.

P1. consumedk ≤Mk−1,

P2. 〈place(e), expr(e)bk〉 ∈ (Mk−1 − consumedk) for all e ∈ test(tk),

P3. guard(tk)
bk = true, and

P4. the residual marking of R is Mk−1 − consumedk + producedk.

3 SEMANTICS OF UNWINDINGS 13

By items 2 and 3 of Definition 3, we know that for all c ∈ in(tk), we have

place(c) = place(src(c)) and expr(c)bk = expr(c)b = expr(src(c))b, and
that src restricted to in(tk) is injective. We can thus rewrite (10) as

consumedk =
∑

o∈src(in(tk))

{

〈place(o), expr(o)b〉
}

. (12)

Furthermore, Mk−1 is the residual marking of R′:

Mk−1 =
∑

o∈outres (R′)

{

〈place(o), expr(o)b〉
}

. (13)

To prove item P1, i.e. that consumedk ≤ Mk−1, it suffices by (12) and (13)
to show that src(in(tk)) ⊆ outres(R

′). Recall that out res(R
′) = out(E ′) \

src(in(E ′)). The set src(in(tk)) must be a subset of out(E ′) because oth-
erwise there would be an input arc c ∈ in(tk) such that src(c) ∈ out(tk),
which by item 5a of Definition 3 would imply tk ≺ tk, a contradiction. Also,
src(in(tk)) is disjoint from src(in(E ′)) because src restricted to input arcs is
injective. Thus src(in(tk)) ⊆ out(E ′) \ src(in(E ′)), and item P1 is proved.

Let U be the set of output arcs U := out res(R
′) \ src(in(tk)) = out(E ′) \

src(in(E ′)) \ src(in(tk)) = out(E ′) \ src(in(E)), and let

MU :=
∑

o∈U

{

〈place(o), expr(o)b〉
}

. (14)

By (12) and (13), MU = Mk−1 − consumedk.
To prove item P2, we fix an arbitrary test arc e ∈ test(tk) and show that

the token element 〈place(e), expr(e)bk〉 is in Mk−1 − consumedk, or equiv-
alently, in MU . Because R is a token trace, that token element is the same

as 〈place(src(e)), expr(src(e))b〉, so by (14) suffices to show that src(e) ∈ U .
First, src(e) is in out(E ′) because otherwise src(e) would be in out(tk), and
this, together with item 5a of Definition 3, would imply the contradiction
tk ≺ tk. Second, src(e) is not in src(in(E)). Namely, if this were the case,
there would be an input arc c ∈ in(E) such that src(e) = src(c), and by
item 5b of Definition 3, this would mean that tk = trans(e) ≺ trans(c), con-
tradicting the choice of tk as a maximal element with respect to≺. Therefore,
src(e) ∈ out(E ′) \ src(in(E)) = U , and item P2 is established.

Item P3 follows directly by Definition 3, item 4 from the fact that tk is an
event of the token trace R.

Because the set of residual producers of R is out res(R) = out(E) \
src(in(E)) = out(tk) ∪ out(E ′) \ src(in(E)) = out(tk) ∪ U , where the
union is disjoint, the residual marking of R is

∑

o∈out(tk)∪U

{

〈place(o), expr(o)b〉
}

=

MU +
∑

o∈out(tk)

{

〈place(o), expr(o)bk〉
}

=

(Mk−1 − consumedk) + producedk,

and item P4 holds. This completes the proof.

14 3 SEMANTICS OF UNWINDINGS

4 ENCODING TOKEN TRACES

Let N = 〈Σ, P, T, . . . , expr〉 be a finite unwinding. We are interested in
whether a transition t� ∈ T is one-off reachable, or equivalently, whether
there is a token trace ofN whose event set contains t�. In this section, we will
construct a formula that is satisfiable if and only if such a token trace exists.
In Sect. 4.2, we will revise the encoding to potentially speed up satisfiability
checking.

A formula φ is satisfiable iff there is an interpretation I such that φI is true.
In this context, an interpretation is a binding of the symbols in the formula.
In propositional satisfiability (SAT), the formula only contains propositional
(Boolean) symbols and Boolean connectives. Extensions known as SMT [9]
also allow non-Boolean constraints. For example, an interpretation I satisfies
the formula

∧

j∈J(Xj < Yj), where the Xj and Yj are symbols of real type, if

and only if Xj
I is less than Yj

I for all j ∈ J .
The formula will be built using the following set of symbols:

• for each t ∈ T , a propositional symbol Occurt (“transition t occurs”),

• for each t ∈ T , a symbol Timet of type R (“when transition t occurs”),

• for each pair o ∈ Aout , a ∈ Ain ∪ Atest such that place(o) = place(a),
a propositional symbol Linko,a (“arc a is linked to arc o”), and

• for each v ∈ vars(T), a symbol Valv of type type(v) (“the value of v”).

We get an interpretation from a token trace 〈E, src, b〉 by setting Occurt
I to

true iff t ∈ E, setting Linko,a
I to true iff o = src(a), letting Valv

I := vb, and
assigning the values Timet

I according to some chronological partial order ≺.
The detailed construction and its reverse are presented in Sect. 4.1.

For a guard or arc expression φ, we will use the special notation φvals to
denote the substitution of each variable v ∈ vars(T) with the symbol Valv.

The formula ε∅ below encodes the rules for a token trace in terms of the
symbols presented above. Checking the existence of a token trace containing
the event t� then reduces to checking the satisfiability of the formula ε∅ ∧
Occurt� .

ε∅ :=
∧

t∈T

γt ∧
∧

a∈Ain∪Atest

(

βa ∧
∧

o∈out(place(a))

ψo,a

)

∧
∧

p∈P

δp . (15)

The subformulas γt and βa encode items 4 and 2a of Definition 3.

γt := Occurt → guard(t)vals , (16)

βa := Occurtrans(a) →
∨

o∈out(place(a))

Linko,a . (17)

The subformula ψo,a places constraints on linking arc a to output arc o,
namely that trans(o) must be an event, and items 5a and 3 of Definition 3
must hold.

ψo,a :=
(

Linko,a → Occurtrans(o)

)

∧
(

Linko,a → (Timetrans(o) < Timetrans(a))
)

∧
(

Linko,a → (expr(o)vals = expr(a)vals)
)

.

(18)

4 ENCODING TOKEN TRACES 15

The symbol < above has a fixed interpretation as the less-than relation of real
numbers. The symbol = denotes equality, interpreted as the identity relation
in the domain of the type colors(place(o)). If the type happens to be the

singleton type {•}, then the formula (expr(o)vals = expr(a)vals) is vacuously
true, and the third conjunct of (18) is omitted in practice.

The constraints in δp are required to make sure that tokens consumed from
a place p are indeed removed. We encode items 2b and 5b of Definition 3 as

δp :=
∧

o∈out(p)

AtMostOne
({

Linko,c

∣

∣ c ∈ in(p)
})

∧

∧

o∈out(p)

∧

e∈test(p)

∧

c∈in(p)

ρo,e,c ,
(19)

ρo,e,c := Linko,e ∧ Linko,c → (Timetrans(e) < Timetrans(c)) , (20)

where AtMostOne (Φ) denotes a formula that is true iff exactly zero or one
formulas in the finite set Φ are true. This can be expressed in size linear
in |Φ| as follows. Letting Φ = {φ1, . . . , φn}, write the formula as

AtMostOne (Φ) = (φ1 → ¬φ2) ∧

((φ1 ∨ φ2)→ ¬φ3) ∧

...

((φ1 ∨ · · · ∨ φn−1)→ ¬φn).

With maximal sharing of the subformulas φk and φ1 ∨ · · · ∨ φk for each
1 ≤ k ≤ n, the size of AtMostOne (Φ) is O(n) plus the total size of the
formulas in Φ.

4.1 Interpreting the Encoding

There is a correspondence between interpretations satisfying ε∅ and token
traces, although it is not strictly one-to-one. Below, we will show explicitly
how to construct a token trace from a satisfying interpretation and vice versa.

Construction 1. Let N = 〈Σ, P, T, . . . , expr〉 be a finite unwinding and
let I be an interpretation that satisfies the formula ε∅. A tupleR = 〈E, src, b〉
and a binary relation ≺ over E are constructed as follows.

1. Define E := {t ∈ T | Occurt
I = true}.

2. For each input or test arc a ∈ in(E) ∪ test(E), define src(a) := any
output arc o ∈ out(place(a)) such that Linko,a

I = true.

3. For each variable v ∈ vars(E), define vb := Valv
I .

4. For all elements t, u ∈ E, define t ≺ u iff (Timet < Timeu)
I .

We justify item 2 by noting that for any input or test arc a ∈ in(E) ∪
test(E), the formulas βa and Occurtrans(a) are both true in I , and by (17),
there is at least one output arc o ∈ out(place(a)) such that Linko,a is true
in I . Thus, a suitable arc src(a) can always be selected. Moreover, by (18),

16 4 ENCODING TOKEN TRACES

Occurtrans(src(a)) is true in I , and thus src(a) is in out(E). Therefore, Con-
struction 1 defines a function src from in(E) ∪ test(E) to out(E).

Item 3 defines a total binding b such that the values φb and (φvals)
I

are
equal for any guard or arc expression φ. The relation ≺ from item 4 is a
strict partial order over E since <I is the less-than relation of real numbers.
Relation≺ is not necessarily a strict total order, because Timet and Timeu may
be equal in I even if t 6= u.

Let us present the construction in the opposite direction.

Construction 2. Let N = 〈Σ, P, T, . . . , expr〉 be a finite unwinding and let
R = 〈E, src, b〉 be its token trace with a chronological partial order ≺. Con-
struct an interpretation I of the symbols Occurt, Timet, Linko,a,Valv as follows.

First, if E is nonempty, pick an element of E that is minimal in ≺ and
call it t1. If E \ {t1} is nonempty, pick a minimal element t2 of E \ {t1}, and
so on. Finally, there will be a sequence t1, . . . , t|E| consisting of the events in
E such that ti ≺ tj implies i < j. Extend the sequence to cover T entirely
by adding the elements of T \E in arbitrary order. Then define I as follows.

1. Occurt
I := true if t ∈ E and Occurt

I := false if t ∈ T \ E.

2. Timeti
I := i for each transition ti in the sequence t1, . . . , t|T |.

3. Linko,a
I := true if a ∈ in(E) ∪ test(E) and src(a) = o, otherwise

Linko,a
I := false.

4. Valv
I := vb if v ∈ vars(E), otherwise Valv

I is fixed to an arbitrary value
in type(v).

The following lemmas state that the formula ε∅ encodes the set of all to-
ken traces of a finite unwinding. From the constructions, we see that the
correspondence between token traces and satisfying interpretations of ε∅ is
meaningful. In particular, because Occurt

I corresponds to t ∈ E, we can use
the encoding for finding a token trace with a specified set of events.

Lemma 5. IfR and≺ are built by Construction 1 from a finite unwindingN
and a satisfying interpretation of its encoding ε∅, then R is a token trace of N
and ≺ is a chronological partial order of R.

Lemma 6. If I is an interpretation built by Construction 2 from a finite
unwinding N , a token trace R of N , and a chronological partial order ≺
of R, then I satisfies the encoding ε∅ of N .

Proving Lemma 5 or 6 involves matching the items of Definition 3 to the
conjuncts of ε∅. The process in both cases is solely mechanical, so the details
are omitted.

4.2 Specialized Encoding for Safe Places

A place p of an unwinding is one-off safe iff there is no one-off execution
M0 [t1, b1〉M1 · · · [tk, bk〉Mk, an index 0 ≤ i ≤ k, and a pair of values
d1, d2 ∈ colors(p) such that {〈p, d1〉} + {〈p, d2〉} ≤ Mi. In other words,
a one-off safe place is one that cannot contain more than one token in any
one-off execution.

4 ENCODING TOKEN TRACES 17

If we know beforehand that a place p̂ of an unwinding is one-off safe
“by construction”, we can modify the encoding formula for the part related
to p̂. The resulting formula encodes the same set of token traces but uses a
more specialized set of constraints in an attempt to better guide the solver.

Let P̂ ⊆ P be a set of places that are known to be one-off safe, and define the
encoding by

εP̂ :=
∧

t∈T

γt ∧
∧

a∈Ain∪Atest

(

βa∧
∧

o∈out (place(a))

ψo,a

)

∧
∧

p∈P\P̂

δp ∧
∧

p̂∈P̂

δ̂p̂ . (21)

We can see that (21) is a generalization of (15), with the constraint δp̂ re-

placed by δ̂p̂ for all assuredly one-off safe places p̂. The new subformula δ̂p̂ is
defined by

δ̂p̂ :=
∧

o∈out(p̂)

∧

c∈Gp̂

¬Linko,c ∧

∧

o∈out(p̂)

∧

c∈in(p̂)

trans(c)6=trans(o)

∧

a∈in(p̂)∪test(p̂)

trans(a)6=trans(c)

ρ̂o,c,a ,
(22)

where the set

Gp̂ :=
{

c ∈ in(p̂)
∣

∣ trans(c) ∈ trans(test(p̂) ∪ in(p̂) \ {c})
}

(23)

is the set of input arcs c that are incident to place p̂ such that there is another
input or test arc also incident to both p̂ and trans(c). This means that the
transition trans(c) tries to read two distinct tokens in place p̂ at the same time.
As p̂ is one-off safe, such a transition cannot occur, and therefore Linko,c must
be false for any output arc o.

The subformula ρ̂o,c,a is defined for triplets consisting of an output arc o,
an input arc c, and an input or test arc a, such that all three are incident to
the same place, and c is not incident to the same transition as o or a (see
Fig. 2). The meaning of the formula is roughly that if o produces a token and
later a reads it, then the input arc c cannot consume any token between the
occurrences of trans(o) and trans(a).

ρ̂o,c,a := Linko,a →
(

Timetrans(c) < Timetrans(o)

)

∨
(

Timetrans(a) < Timetrans(c)

)

.
(24)

All places in Figs. 1c and 1g are one-off safe, and Gp̂ is an empty set for
all p̂.

The correspondence between satisfying interpretations and token traces
applies to εP̂ as well as ε∅. The same Constructions 1 and 2 still apply like
before, but the correctness argument is more involved and requires three
more lemmas. We will first see an example and a related lemma that states a
set of conditions under which a place cannot be one-off safe.

Example 1. Figure 2 presents an unwinding and its token traceR. A chrono-
logical order of R must satisfy to ≺ tc ≺ ta and tz ≺ tc. The two one-off
executions corresponding to R are

M0 [tz, bz〉M1 [to, bo〉M2 [tc, bc〉M3 [ta, ba〉M4 and

M0 [to, bo〉M
′
1 [tz, bz〉M2 [tc, bc〉M3 [ta, ba〉M4.

18 4 ENCODING TOKEN TRACES

tz

to

tc

ta

p : Z

11

c
x

11

o
12

a y

12

• •

Figure 2: A token trace showing that place p is not one-off safe.

In both cases, marking M2 has the multiset {〈p, 11〉, 〈p, 12〉} as a subset, so
either of these executions reveals that place p is not one-off safe.

We could also infer this fact directly from the structure of R with respect
to the arcs o, c, and a. Namely, since trans(src(a)) ≺ trans(c) ≺ trans(a),
there must be two distinct tokens present in place p right before trans(c)
occurs: one token that c is about to consume, and another that src(a) has
produced but a has not yet tested. Thus, any execution corresponding to R
has an intermediate marking (the one preceding the occurrence of trans(c))
that shows p not to be one-off safe.

The following lemma generalizes the example and gives a sufficient (but
not necessary) condition for a place not to be one-off safe.

Lemma 7. Let p be a place of an unwinding N and let R = 〈E, src, b〉
be a token trace of N with a chronological partial order ≺. If there is an
input arc c ∈ in(E) and an input or test arc a ∈ in(E) ∪ test(E) such that
place(c) = place(a) = p and trans(src(a)) ≺ trans(c) ≺ trans(a), then p
is not one-off safe.

Proof. Assume place(c) = place(a) = p and trans(src(a)) ≺ trans(c) ≺
trans(a). Let E ′ := {t ∈ E | t ≺ trans(c)}. Then trans(src(c)) is in E ′

because ≺ is a chronological partial order. Also trans(src(a)) is in E ′ by
assumption, but trans(c) and trans(a) are not.

Because ≺ is transitive, E ′ is downward closed in ≺, and Lemma 2 ap-
plies. Let R′ = 〈E ′, src′, b′〉 be the token trace of Lemma 2.

Let us verify that there is no input arc c′ ∈ in(E) such that trans(c′) ≺
trans(a) and src(c′) = src(a). In other words, no input arc that precedes a
consumes the token that a tests. Namely, if a is an input arc, src maps the
two distinct input arcs c′ and a to distinct output arcs, i.e. src(c′) 6= src(a).
On the other hand, if a is a test arc, the equality src(c′) = src(a) would
imply trans(a) ≺ trans(c′) by item 5b of Definition 3, in violation of the
assumption trans(c′) ≺ trans(a). Therefore, src(a) is distinct from src(c′)
for every input arc c′ such that trans(c′) ≺ trans(a). In particular, src(a)
is distinct from src(c), and src(a) is also distinct from src(c′) for every input
arc c′ ∈ in(E ′).

Furthermore, src(c) is not in src(in(E ′)) because trans(c) /∈ E ′ and no
two input arcs share a source.

Since trans(src(a)) and trans(src(c)) are both in E ′ as stated above, and
neither src(a) nor src(c) is in src(in(E ′)), it follows that both src(a) and
src(c) are residual producers of R′. These output arcs are distinct, and they

4 ENCODING TOKEN TRACES 19

produce the token element 〈place(src(a)), da〉 = 〈p, da〉 and the token ele-

ment 〈place(src(c)), dc〉 = 〈p, dc〉, respectively, where da = expr(src(a))b

and dc = expr(src(c))b. Therefore, the residual marking M of R′ has the
multiset {〈p, da〉}+ {〈p, dc〉} as a subset. By applying Lemma 4 to R′, there
is a one-off execution of N whose final marking is M . Because the final
marking satisfies {〈p, da〉}+ {〈p, dc〉} ≤ M , place p is not one-off safe.

The next lemma says that the subformula δ̂p̂ introduced for a one-off safe
place p̂ is not too restricting. The proof is partly based on the previous lemma.

Lemma 8. Let N = 〈Σ, P, T, . . . , expr〉 be a finite unwinding, let R be a
token trace of N , let ≺ be a chronological partial order of R, and let p̂ ∈ P
be a one-off safe place. Then, any interpretation I built by Construction 2

from R and ≺ satisfies δ̂p̂.

Proof. Assume that the claim does not hold: there is a one-off safe place p̂,
a token trace R = 〈E, src, b〉 of N with a chronological partial order ≺, and

an interpretation I built fromR and ≺ by Construction 2 such that δ̂p̂ is false
in I . Then, according to (22), at least one of the following is true:

C1. there is an output arc o ∈ out(p̂) and an input arc c ∈ Gp̂ such that
Linko,c is true in I , or

C2. there is an output arc o ∈ out(p̂), an input arc c ∈ in(p̂), and an
input or test arc a ∈ in(p̂)∪ test(p̂) such that trans(c) 6= trans(o) and
trans(a) 6= trans(c) and ρ̂o,c,a is false in I .

We will show that C1 leads to contradiction, and so does C2. We will ab-
breviate the symbol Timetrans(a), where a denotes an arc, to the shorthand
notation a.

First, assume that C1 holds. Then, by (23), there is an input or test arc
a ∈ test(p̂) ∪ in(p̂) \ {c} such that trans(a) = trans(c). Because I is the
result of Construction 2 and Linko,c

I is true, trans(c) is in E. As 〈E, src, b〉
is a token trace, there is a one-off execution X in which trans(c) occurs
(Theorem 1). We can thus write X as a sequence

X = M0 [t1, b1〉 · · · Mi−1 [ti, bi〉Mi · · · [tk, bk〉Mk ,

where i is the index such that ti = trans(c). As the binding element 〈ti, bi〉
is enabled in the marking Mi−1, and ti has two incident arcs c ∈ Ain and
a ∈ Ain ∪ Atest such that place(c) = place(a) = p̂, by Definition 2 of
enabledness, place p̂ must contain two distinct tokens in the marking Mi−1.
Thus, p̂ is not a one-off safe place, in contradiction with the assumptions.
This rules out the possibility of C1.

Then, assume that C2 holds. As ρ̂o,c,a is false in I , by (24) we have

Linko,a
I = true, (c < o)I = false, and (a < c)I = false. By Construction 2,

interpretation I assigns distinct time values to distinct transitions. Therefore,

as trans(c) 6= trans(o) and (c < o)I = false, we must have (o < c)I = true.
Similarly, (c < a) is true in I . By item 3 of Construction 2, it follows from
Linko,a

I that a ∈ in(E) ∪ test(E) and src(a) = o. Also by the construc-
tion, since trans(a) ∈ E, the value aI is less than Timet

I for any t ∈ T \ E.
Therefore, as aI is not less than cI , we must have trans(c) ∈ E.

20 4 ENCODING TOKEN TRACES

Let us define a strict partial order ≺′ over E by setting for each t, u ∈ E,

t ≺′ u if and only if (Timet < Timeu)
I . Then, t ≺ u implies t ≺′ u, so

it follows immediately from Definition 3 that ≺′ is another chronological
partial order of R.

We have shown that c is in in(E), a is in in(E)∪test(E), and the relation
trans(src(a)) ≺′ trans(c) ≺′ trans(a) holds. We can then apply Lemma 7
to R,≺′, c, a, and p̂, leading to the conclusion that place p̂ is not one-off safe.
This contradicts the assumption on p̂. Case C2 is thus refuted, so the claim
must hold.

The final lemma of this section shows that the encoding εP̂ is at least
as strict as ε∅. Thus, every interpretation that satisfies εP̂ , also satisfies ε∅,
and it translatable to a token trace. We will collect this and the previous
intermediate results in the correctness proof in Sect. 4.3.

Lemma 9. Let N = 〈Σ, P, T, . . . , expr〉 be a finite unwinding and let P̂ be
any subset of the places of N . Then, ε∅ is a logical consequence of εP̂ .

Proof. Assume that the claim does not hold: there is an interpretation I such
that εP̂

I is true and ε∅
I is false. From εP̂

I = true, it follows by (21) that γt,
βa, and ψo,a are all true in I for all choices of t, a, and o, and δp is true in I

when p is in P \P̂ . Therefore, the only way ε∅ can be false is by δp̂
I being false

for some place p̂ ∈ P̂ . Let us pick one place p̂ ∈ P̂ such that δp̂
I = false.

According to (19), at least one of the following holds:

C1. AtMostOne
({

Linko,c

∣

∣ c ∈ in(p̂)
})

is false in I for some output arc
o ∈ out(p̂), or

C2. ρo,e,c is false in I for some arcs o ∈ out(p̂), e ∈ test(p̂), c ∈ in(p̂).

We will show that C1 leads to contradiction, and so does C2. For brevity,
we will abbreviate the symbol Timetrans(a), where a denotes an arc, to the
shorthand notation a.

First, assume that C1 holds. That is, there is an output arc o ∈ out(p̂)
and a pair of distinct input arcs c, c′ ∈ in(p̂) such that Linko,c and Linko,c′ are
both true in I . As ψo,c

I and ψo,c′
I are true (because εP̂

I is true), equation (18)
gives us

(o < c)I and (o < c′)
I
. (25)

In particular, this means that trans(o) 6= trans(c) and trans(o) 6= trans(c′).
If c and c′ were incident to the same transition, then c would be in the setGp̂,

and because δ̂I
p̂ is true, we would deduce from (22) that Linko,c is false in I ,

a contradiction. Therefore, trans(c) 6= trans(c′). As trans(o), trans(c), and
trans(c′) are three distinct transitions, the formulas ρ̂o,c,c′ and ρ̂o,c′,c are both
defined and true in I by (22). Since Linko,c and Linko,c′ are also true in I , the
definition (24) yields

(

c < o ∨ c′ < c
)I

and
(

c′ < o ∨ c < c′
)I
. (26)

Contradiction then follows from (25) and (26), and case C1 is thus disproven.
Let us then assume that C2 holds. According to the definition (20),

there is an output arc o ∈ out(p̂), a test arc e ∈ test(p̂), and an input arc

4 ENCODING TOKEN TRACES 21

c ∈ in(p̂) such that Linko,e and Linko,c are true in I and (e < c) is false
in I . If e and c were incident to the same transition, then c would be in
the set Gp̂, and (22) would imply Linko,c

I = false, a contradiction. Thus,

trans(e) 6= trans(c). From ψo,c
I and Linko,c

I , we get (o < c)I , which also

implies trans(c) 6= trans(o). This means that δ̂p̂ has the subformula ρ̂o,c,e,
which is then true in I . Together with Linko,e

I , this implies by (24) that
(

c < o ∨ e < c
)

is true in I , contradicting the previous assertions that
(e < c) is false and (o < c) is true in I . Case C2 is thus also refuted, which
concludes the proof.

4.3 Properties of the Encodings

The principal motivation for formula (21) and its special case (15) is that they
can be used for model checking reachability properties.

Theorem 10. Let N = 〈Σ, P, T, . . . , expr〉 be a finite unwinding, let t� ∈ T

be a transition, and let P̂ ⊆ P be any subset of the one-off safe places of
N . Then, t� is one-off reachable if and only if the formula εP̂ ∧ Occurt� is
satisfiable.

Proof. First, we will show that if the formula is satisfiable, then a one-off
execution with event t� exists. Assume that εP̂ ∧ Occurt� has a satisfying in-
terpretation I . By Lemma 9, I also satisfies ε∅ ∧ Occurt� . Therefore, we can
apply Construction 1 to I to build a tuple R = 〈E, src, b〉. By Lemma 5, R
is a token trace, and by item 1 of Construction 1, E contains t�. Theorem 1
then gives us a one-off execution whose event set contains t�.

For the other direction, assume that there is a one-off execution in which
t� occurs. According to Theorem 1, there is a token traceR ofN whose event
set E contains t�. Build an interpretation I fromR using Construction 2. By

Lemma 6, I satisfies ε∅, and by Lemma 8, I satisfies δ̂p̂ for all p̂ ∈ P̂ . By the
structure of (21), I satisfies εP̂ . By construction, Occurt� is true in I . Thus,
the formula εP̂ ∧ Occurt� has a satisfying interpretation I .

The proof is constructive and can be used to extract witness executions.
We point out that knowing which places are one-off safe is not a prerequisite

for applying the result. For example, setting P̂ = ∅ is always a valid choice.

Concerning compactness, the formula εP̂ contains one instance of each
guard and arc expression of the unwinding, so there is no duplication of
transitions involved in the encoding phase. The rest of the encoding adds
a term O(|out(p)| (1 + |in(p)|)(1 + |test(p)|)) to the size for each place p,

plus O(|out(p̂)| |in(p̂)|2) for each p̂ ∈ P̂ . The encoding is thus locally cubic
in the number of arcs incident to a place, or quadratic if the place is not in

P̂ and there are no test arcs.

Apart from the inner parts of guards and arc expressions, our encodings are
examples of difference logic formulas. Section 5 discusses the satisfiability of
such formulas.

22 4 ENCODING TOKEN TRACES

5 ENCODING RESTRICTED DIFFERENCE LOGIC IN SAT

In the encoding of Sect. 4, we are interested in deciding the satisfiability of
formulas that contain ordinary propositional symbols, additional symbols u,
w of real type from a set V of symbols of type R, and strict inequalities of the
form u < w. We will show a way to solve the decision problem by reducing
it to propositional satisfiability (SAT) using a compact encoding.

The encoding formulas also contain guard expressions and equalities be-
tween arc expressions, but we assume that they are either separately con-
verted to propositional logic or handled with another decision procedure.

We are trying to decide satisfiability in a restricted subset of difference
logic. In full difference logic, predicates have the form u − w ≤ c, where u
and w are uninterpreted real or integer symbols, c is an interpreted constant
(a real or integer number), and the symbols − and ≤ have their usual math-
ematical meaning. In our case, c is always zero and the inequality predicates
are expressed in a complemented form (u < w is equivalent to¬(w−u ≤ 0)).

The satisfiability problem of difference logic formulas is well studied. Be-
low, three common approaches based on SAT solver techniques are briefly
presented.

1. Eager small-domain encoding. In an eager approach, the difference
logic formula is translated to a purely propositional formula such that
the two formulas are equisatisfiable (one is satisfiable if and only if the
other is satisfiable). The resulting formula is then sent to a SAT solver.
In the small-domain encoding, one defines a bounded integer symbol
ordv for each symbol v ∈ V . Each inequality of the form u− w ≤ c is
then replaced by a bounded integer comparator ordu ≤ ordw + c. The
bounded integers and comparators are then binary encoded using only
propositional symbols. If the constant term c is always zero, a sufficient
number of bits for representing the bounded integers is dlog2 |V |e, so
that every symbol in V can potentially be assigned a unique integer
value. The small-domain encoding is studied in [4, 25] for full differ-
ence logic over integers.

2. Eager per-constraint encoding. In another eager approach, the idea
is to treat each inequality as an individual proposition. As the depen-
dencies between inequalities are lost, the SAT solver may end up with
an illegal interpretation, for example assigning the value true to both
u − w ≤ −1 and w − u ≤ −1. Additional transitivity constraints
are placed to rule out interpretations that contain illegal cycles like
this. A per-constraint encoding for difference logic is presented in [24],
and [23] combines this with the small-domain approach.

3. Lazy approach. In Jussila’s thesis [17], a set of similar transitivity con-
straints is used to prevent cyclic dependencies of executed actions in
the context of SAT-based BMC of labeled transition systems. It turns
out that in some analyzed test cases, the end result is the same even
if the transitivity constraints are dropped from the formula. This can
speed up the SAT solving process, since sometimes the transitivity con-
strains dominate the total formula size. If the solver returns an interpre-

5 ENCODING RESTRICTED DIFFERENCE LOGIC IN SAT 23

tation that entails an illegal cycle, new transitivity constraints are added
on demand to narrow the search iteratively. This method is taken fur-
ther in many SMT solvers that implement a decision procedure for dif-
ference logic, with various techniques for coupling the Boolean search
with the discovery of illegal cycles of inequalities [8, 21, 1, 3, 26].

In the following, a per-constraint encoding is presented for the formulas
of Sect. 4. We apply an eager encoding to SAT because that allows us to treat
the SAT solver as a black box and to make a balanced comparison between
our approach to the bounded reachability problem and SAT-based bounded
model checking in Sect. 7. Experimentation with alternative encodings and
the lazy approach are left for future work.

Our encoding is similar to the one presented by Strichman et al. in Sect. 4
of [24] based on chordal graphs. We will call that approach the CAV’02 en-
coding. However, our formulas are restricted to the case where the constant
term c is zero in each inequality u < w + c. With this restriction, the num-
ber of additional transitivity constraints using CAV’02 is O(|V |3) in the worst
case, and not superpolynomial in |V | as in the general case [24]. Further-
more, in our difference logic formulas there is another syntactic restriction
that we will exploit. The predicates u < w occur only positively in the for-
mulas. A positive occurrence of a subformula is one that is nested only in an
even number of negations. This means that the formulas can be expressed in
conjunctive normal form (CNF) according to the following definition.

Definition 4. A CNF-formula with positive strict inequalities over symbol
sets P and V , or a <-formula for short, is a conjunction of clauses, where
each clause is a disjunction of literals, and each literal is either a proposi-
tional symbol p ∈ P , a negated propositional symbol ¬p, or a positive strict
inequality u < w, where u and w are distinct symbols in V .

The distinctness requirement of u and w is immaterial, since an inequality
of the form v < v would be trivially equivalent to false.

An interpretation I in this context maps each propositional symbol p ∈ P
to pI ∈ {false, true}, and each real symbol v ∈ V to a real number vI . The
symbol < has a fixed interpretation as the less-than relation over reals. An
interpretation I is a model of a formula f iff f I is true, and f is satisfiable iff
it has a model.

The expressive power of <-formulas is limited. In particular, a <-formula
cannot express the equality of two reals, since this would require using nega-
tions in front of inequalities (u = w is expressible as ¬(u < w)∧¬(w < u)).
Therefore we only need to distinguish between two cases (u < w or w < u)
instead of the usual three (u < w or u = w or w < u). The CAV’02 algo-
rithm of [24] uses two propositional symbols p, q to encode the inequalities
u < w and w < u. The negations ¬p and ¬q then represent non-strict in-
equalities w ≤ u and u ≤ w, respectively. We will use only one symbol ruw

to encode the inequality u < w, and its negation ¬ruw to encode w < u. The
number of propositional symbols is thus reduced by exploiting the one-sided
expressibility of <-formulas. We will see that also the number of transitivity
constraints can be significantly reduced on similar grounds.

24 5 ENCODING RESTRICTED DIFFERENCE LOGIC IN SAT

5.1 The Encoding Algorithm

The encoding of a <-formula as an equisatisfiable propositional formula is
based on adding a sufficient number of triangular transitivity constraints of
the form (u < v) ∧ (v < w) → (u < w). This is done by executing a series
of elimination steps. In each step, a symbol s ∈ V is chosen for elimination.
For each pair a, b ∈ V such that the inequalities a < s and s < b occur
in the formula, the transitivity constraint (a < s) ∧ (s < b) → (a < b) is
added. Then, all inequalities a < s and s < b are replaced by propositional
symbols as discussed above. The result is a <-formula with no occurrences of
the symbol s. This elimination process is repeated for all symbols in V , and
in the end we will have a propositional CNF-formula that is equisatisfiable
with the original formula and can be sent to a SAT solver.

A more rigorous formulation of the algorithm is given below.

Procedure ELIM(f : a <-formula)

1. 〈P, V 〉 := the set of propositional and real symbols in f

2. if V = ∅ then return f

3. s := a symbol in V

4. A := {a ∈ V | a < s occurs in f},
B := {b ∈ V | s < b occurs in f}

5. R := a set of fresh propositional symbols {rus | u ∈ A ∪B}

6. g := a copy of f with the substitutions (a < s) 7→ ras and
(s < b) 7→ ¬rbs for all a ∈ A, b ∈ B

7. h :=
∧

a∈A

∧

b∈B\{a}

(

¬ras ∨ rbs ∨ (a < b)
)

8. f̃ := g ∧ h

9. return ELIM(f̃)

The formula h on line 7 contains all triangular transitivity constraints in-
volving s. The number of constraints is in the worst case quadratic in the
number of inequalities with s on either side. Furthermore, the transitivity
constraints may introduce new inequalities a < b that did not occur in f
before, making later elimination steps more expensive. The size of the final
formula is thus sensitive to the order of elimination. In practice, a heuristic
is used on line 3 to choose the next symbol to be eliminated. In the experi-
ments of Sect. 7, a greedy heuristic is used that locally minimizes the number
of constraints in h.

It is straightforward to check that the formula f̃ on line 8 is a <-formula
without occurrences of the symbol s. Thus, the procedure terminates and re-
turns a propositional formula. The most interesting property is that f and
ELIM(f) are equisatisfiable, as shown by Theorem 11 below. The proof
is constructive in nature and therefore, if a SAT solver returns a model of
ELIM(f), we can use the proof to build a concrete interpretation that satis-
fies f .

Theorem 11. If f is a <-formula, then f and ELIM(f) are equisatisfiable.

5 ENCODING RESTRICTED DIFFERENCE LOGIC IN SAT 25

Proof. We will show that each single elimination step preserves satisfiability:
on line 8 in procedure ELIM, the formula f̃ is equisatisfiable with the input
formula f . The claim then follows directly by an inductive argument. Let us
show that the satisfiability of f implies the satisfiability of f̃ and vice versa.

First, let us assume that f has a model I and construct a model of f̃ . As
before, eI denotes the valuation of expression e under interpretation I . Let Ĩ
be an interpretation that coincides with I and extends it to the symbols R by

defining rus
Ĩ := (u < s)I for all u ∈ A ∪ B. Let us show that Ĩ is a model

of f̃ , that is, Ĩ satisfies every clause of g and h. First, let C̃ be an arbitrary
clause of h, i.e., C̃ =

(

¬ras∨rbs∨(a < b)
)

. By the definition of Ĩ , the clause

evaluates to C̃ Ĩ =
(

¬(a < s) ∨ (b < s) ∨ (a < b)
)I

, which is true since <I

is the less-than relation over reals. Then, let D̃ be an arbitrary clause in g
and let D be the corresponding clause in f . Because I satisfies f , there is
a literal l in D such that lI is true. There are three cases. (i) If that literal
is a propositional symbol p ∈ P or a negated propositional symbol ¬p or an
inequality u < w such that u and w are distinct from s, then D̃ contains

the same literal l, and thus D̃Ĩ is true because lĨ is true. (ii) If the satisfied
literal l is a < s for some a ∈ A, then D̃ contains the literal ras, and D̃ is
satisfied by Ĩ because ras

Ĩ is true. (iii) If the satisfied literal l is s < b for some

b ∈ B, then (s < b)I is true, hence (b < s)I = rbs
Ĩ is false, and D̃ contains

the literal ¬rbs satisfied by Ĩ . Thus, Ĩ satisfies every clause of g and h, and f̃
is satisfiable.

For the other direction, assume that Ĩ is a model of f̃ . Define the aux-
iliary sets A′ := {a ∈ A | ras

Ĩ is true} and B′ := {b ∈ B | rbs
Ĩ is false}.

Intuitively, A′ is the set of symbols that should be interpreted as numbers less
than s, and B′ is the set of symbols that should evaluate to numbers greater
than s. We note that for any pair a ∈ A′, b ∈ B′, the interpretation Ĩ satisfies

the clause ¬ras ∨ rbs ∨ (a < b) in h, and because ras
Ĩ is true and rbs

Ĩ is false,

(a < b)Ĩ must be true. In other words, if A′ and B′ are both nonempty, then

amax := maxa∈A′(aĨ) is less than bmin := minb∈B′(bĨ). Let us define a new
interpretation I that coincides with Ĩ and interprets s as

sI :=

(amax + bmin)/2 if A′ 6= ∅ and B′ 6= ∅,

amax + 1 if A′ 6= ∅ and B′ = ∅,

bmin − 1 if A′ = ∅ and B′ 6= ∅,

0 if A′ = ∅ and B′ = ∅.

This ensures that (a < s)I is true for all a ∈ A′ and (s < b)I is true for
all b ∈ B′. It remains to show that I satisfies every clause in f . Let C be an
arbitrary clause in f , and let C̃ be the corresponding clause in g. As Ĩ satisfies

g, there is a literal l̃ in C̃ such that l̃Ĩ is true. Again, there are three cases.
(i) If that literal is a propositional symbol p ∈ P or a negated propositional
symbol ¬p or an inequality u < w, then C contains the same literal and thus

CI is true. (ii) If the satisfied literal l̃ is ras for some a ∈ A, then ras
Ĩ is true

and thus a ∈ A′. The corresponding literal in C is a < s, which evaluates to
true in I as noted above. (iii) If the satisfied literal l̃ is ¬rbs for some b ∈ B,
then rbs

Ĩ is false and thus b ∈ B′. The corresponding literal in C is s < b,
which evaluates to true in I . Thus, f is satisfiable as it has a model I .

26 5 ENCODING RESTRICTED DIFFERENCE LOGIC IN SAT

The following examples show that by exploiting the fact that only positive
occurrences of inequalities are allowed, the size of the resulting propositional
formula can be substantially reduced. We will compare to the CAV’02 en-
coding [24] that uses a similar elimination procedure as presented above,
resulting in transitivity constraints over 2 or 3 symbols each.

Example 2. Let f be a <-formula with subformulas u < v, v < w, and
u < w, and with no other inequalities. With the elimination order u, v, w,
procedure ELIM adds no transitivity constraints. Thus, ELIM(f) is the same
as f with the inequalities replaced by fresh propositional symbols. With
the CAV’02 algorithm, we would get two transitivity constraints: one that
is equivalent to (u < v) ∧ (v < w) → (u < w) and another equivalent to
(u < w)→ (u < v) ∨ (v < w).

More generally, if V = {v1, . . . , vn}, and f only contains inequalities
vi < vj such that i < j, then the greedy heuristic will find an elimination
order such that no transitivity constraints are produced in ELIM(f).

The next example shows that in the worst case, the procedure adds a cu-
bic number of constant-size clauses as transitivity constraints. However, the
number of added clauses is less than one seventh of the clauses that would
be added by the CAV’02 algorithm.

Example 3. Let V be a finite set of real symbols with |V | = n ≥ 3, and
let f be a <-formula with at least one (positive) occurrence of every possible
inequality u < w, where u, w ∈ V and u is not w. There are n(n − 1) dif-
ferent inequalities in total. In ELIM(f), these are encoded using n(n− 1)/2
propositional symbols, and there are n(n − 1)(n − 2)/3 triangular transitiv-
ity constraints. In contrast, the CAV’02 encoding uses n(n−1) propositional
symbols and produces 7n(n−1)(n−2)/3+n(n−1)/2 transitivity constraints.

More specifically, we can see the set of transitivity constraints in ELIM(f)
as consisting of all possible instantiations of the constraint ¬

(

(u < v) ∧ (v <
w) ∧ (w < u)

)

. The transitivity constraints produced by CAV’02 include all
these, and in addition all constraints of the form ¬

(

(u < v)∧(v < w)∧(w ≤
u)

)

, all constraints of the form ¬
(

(u < v) ∧ (v ≤ w) ∧ (w ≤ u)
)

, and all
constraints of the form ¬

(

(u < w) ∧ (w < u)
)

. Procedure ELIM avoids
these extra constraints because, essentially, a <-formula cannot distinguish
between strict inequalities u < w and non-strict inequalities u ≤ w.

6 COMPARISON TO RELATED WORK

A straightforward way to apply Bounded Model Checking [2] to an asyn-
chronous system is to unroll its interleaving transition relation k times to
cover all executions of k steps [18]. Consider a system that performs one of
n possible atomic actions in each execution step. The BMC view of execu-
tions corresponds to Fig. 1b. The long horizontal lines in Fig. 1b represent
the realizations of frame conditions, which are parts of the formula that say
when a variable must maintain its value. Because of unrolling, the BMC
formula describes kn potential events, and only k of them are scheduled to
occur. Furthermore, the notion of fixed time points adds spurious synchro-
nization between the potential events. Consider changing the order of the

6 COMPARISON TO RELATED WORK 27

events of Fig. 1b into g1, g2, f , h. The reordering is insignificant with respect
to our reachability property, but from the BMC point of view, results in a
completely different execution.

In contrast, the encoding of token traces contains no frame conditions
for conveying data over time steps. Instead, the inputs and outputs of tran-
sitions are directly linked to each other. The selection of links is nondeter-
ministic, which incurs some encoding overhead. Spurious synchronization is
not generated between transitions that are not connected to the same place.
However, there are additional, potentially costly constraints for ordering the
transitions. Using kn potential events, we can cover executions up to length
kn instead of k, but this depends on the unwinding. Generally, unwindings
allow finer tuning of the bound than adjusting the parameter k in BMC.

There have been several proposals for making BMC better suited to asyn-
chronous systems. Using alternative execution semantics [18, 11], several
independent actions can occur in a single step of BMC, allowing longer ex-
ecutions to be analyzed without considerably growing the encoding. In [27],
partial order reductions are implemented on top of BMC by adding a con-
straint that each pair of independent actions can occur at consecutive time
steps only in one predefined order. An opposite approach [15] is to start BMC
with some particular interleaving and then allow more behavior by iteratively
removing constraints. As Bounded Event Tracing is inherently a partial order
method, there is no need for retrofitted reductions.

Ganai and Gupta present a concurrent BMC technique [14] based on a
similar kind of intuition as this report. Processes are unrolled independently
of each other, and all globally visible operation of all processes are poten-
tially linked pairwise, with constraints that prevent cyclic dependencies. In
the encodings of single processes, various BMC techniques are needed to
avoid blowup. Bounded Event Tracing uses places to localize interprocess
communication, but [14] does not allow this. Instead, there is a single token
that carries all global data.

The CBMC approach [7] unwinds (up to a bound) the loops of a sequen-
tial C program, converts it to static single assignment form, and encodes
the constraints on the resulting set of variables. A version for threaded pro-
grams [22] is based on bounding the number of context switches and syn-
chronizing globally visible operations by conditioning them on the number
of context switches that have occurred so far.

A completely different symbolic technique for concurrent systems is based
on unfoldings [13], which are partial-order representations of state spaces as
(infinite) low-level Petri nets of a fixed form. Model checking is performed
by taking a suitable finite prefix of an unfolding and encoding its behavior
and the desired property in SAT. As unfoldings are acyclic, the encoding
is simple. Although an unfolding represents interleavings implicitly, every
possible control path and every nondeterministic choice of data is explicitly
present, and in practice, the generation of the unfolding prefix is the most
expensive part. We could obtain unwindings directly from unfoldings, but
this would mean to abandon the flexibility of symbolic data and arbitrary
connections between places and transitions.

Merged processes [19] diminish the problem of diverging paths in unfold-
ings. A merged process is obtained from an unfolding prefix by conjoining its

28 6 COMPARISON TO RELATED WORK

places and transitions using a deterministic procedure. The result may con-
tain cycles, but unlike the semantics of our unwindings, merged processes
also restrict each place to be used at most once in an execution. The ap-
proach is thus fundamentally different from the one presented here, despite
the apparent similarities in the encodings.

7 EXPERIMENTS

As a proof of concept, we test an implementation of Bounded Event Trac-
ing against Bounded Model Checking using the system in Figure 3. In one
atomic action, either process moves from one label, e.g. lf1 , to the next. The
property is whether the value of x equals D when both processes have termi-
nated. By varying the integer parameter C between 4 and 9, and D between
0 and C3 + 2C2 − C (the highest possible value of x), we get a family of 2498
instances. The last line is reached in a fixed number of steps in each instance,
so we can perform complete reachability analysis using either approach.

A parameterized unwinding and interleaving transition relation for BMC
were constructed by hand. The BMC bound was fixed to 4C and the prob-
lems were given to the NuSMV 2.4.3 model checker [6] that uses the MiniSat
v1.14 SAT solver. The unwinding has 4C + 3 places and 4C + 2 transitions,
and the values of i and j are inlined like in Fig. 1g. The encoding (21) was

applied with P̂ = P , and the inequality constraints were translated to propo-
sitional logic using the per-constraint encoding of Sect. 5. The formulas were
then checked for satisfiability using NuSMV by technically disguising them
as BMC instances. This way, the same machinery for Boolean circuit simpli-
fication and bit-vector arithmetic encoding was employed for both BMC and
Bounded Event Tracing.

Each marker in Fig. 4 represents the time spent by MiniSat when solving
an instance once with BMC and once with Bounded Event Tracing, running
in one core of an Intel Xeon 5130 processor. With BMC, 26 instances hit
the timeout of 2 hours. We can see that Bounded Event Tracing works out
in practice, and gives roughly a tenfold speedup over interleaving BMC on
this problem family. Using the encoding ε∅ instead of εP̂ would increase the
run time closer to that of BMC.

Initially: x← 0

Process F : Process G:
i← 0 j ← 0
while i < C: while j < C:

lf1 : t← x lg1 : u← x

lf2 : x← t + C + (C + 1)× i lg2 : x← u + C + (C + 1)× j

i← i + 1 j ← j + 1

Finally:
if x = D: print “match”

Figure 3: A test system.

7 EXPERIMENTS 29

10
-2
2

5
10

-1
2

5
1
2

5
10

2

5
10

2
2

5
10

3
2

5

B
ou

nd
ed

E
ve

nt
T

ra
ci

ng
,s

ol
ve

r
tim

e
/s

10
-2

2 5 10
-1

2 5 1 2 5 10 2 5 10
2

2 5 10
3

2 5

BMC, solver time / s

Figure 4: Results for satisfiable (◦) and unsatisfiable (×) cases.

8 CONCLUSIONS AND FUTURE WORK

Bounded Event Tracing is a new symbolic technique for checking reacha-
bility properties of asynchronous systems. The analysis is bounded by a fi-
nite unwinding that fixes a collection of potential events that may occur but
leaves the order of occurrences open. Unwindings are formalized as high-
level Petri nets because the semantics of Petri nets rises naturally from the
used concepts. The reachability problem is translated to a fragment of differ-
ence logic, which in turn can be reduced to propositional logic. The hard
work is done by a SAT or SMT solver.

The technique incorporates ideas from Bounded Model Checking and
unfoldings. Like in BMC, data handling is symbolic, but we avoid many
pitfalls of BMC caused by viewing an execution of an asynchronous system
as a sequence synchronized by fixed time steps. Like unfolding methods,
Bounded Event Tracing has partial order reductions built in, but without the
advance cost of explicit branching at every choice point.

The method is unfinished in that we do not define a procedure for con-
structing or expanding unwindings. This is the most crucial topic for further
research. The expansion presumably enables incremental SAT solving [12],
and it might be guided using e.g. unsatisfiable cores [15]. Successful model
checking of software systems is likely to require some form of abstraction
techniques [20].

It is remarkable that although the analysis covers executions in which
places contain multisets of values, the encoding only talks about single val-
ues. This opens up the possibility of encoding collections such as arrays or
message queues efficiently using a place that contains index-value pairs.

30 8 CONCLUSIONS AND FUTURE WORK

Acknowledgements

The author gives many thanks to Dr. Tommi Junttila for discussions and in-
spiration.

Financial support from Hecse (Helsinki Graduate School in Computer
Science and Engineering) is gratefully acknowledged.

REFERENCES

[1] Alessandro Armando, Claudio Castellini, Enrico Giunchiglia, and
Marco Maratea. The SAT-based approach to separation logic. J. Au-
tom. Reasoning, 35(1-3):237–263, 2005.

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic model checking without BDDs. In TACAS 1999,
volume 1579 of Lecture Notes in Computer Science, pages 193–207.
Springer, 1999.

[3] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A.
Junttila, Peter van Rossum, Stephan Schulz, and Roberto Sebastiani.
An incremental and layered procedure for the satisfiability of linear
arithmetic logic. In TACAS 2005, volume 3440 of Lecture Notes in
Computer Science, pages 317–333. Springer, 2005.

[4] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling
and verifying systems using a logic of counter arithmetic with lambda
expressions and uninterpreted functions. In CAV 2002, volume 2404
of Lecture Notes in Computer Science, pages 78–92. Springer, 2002.

[5] Søren Christensen and Niels Damgaard Hansen. Coloured Petri Nets
extended with place capacities, test arcs and inhibitor arcs. In ATPN
1993, volume 691 of Lecture Notes in Computer Science, pages 186–
205. Springer, 1993.

[6] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV version 2: An
opensource tool for symbolic model checking. In CAV 2002, volume
2404 of Lecture Notes in Computer Science, pages 359–364. Springer,
2002.

[7] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ANSI-C programs. In TACAS 2004, volume 2988 of Lecture
Notes in Computer Science, pages 168–176. Springer, 2004.

[8] Scott Cotton and Oded Maler. Fast and flexible difference constraint
propagation for DPLL(T). In SAT 2006, volume 4121 of Lecture Notes
in Computer Science, pages 170–183. Springer, 2006.

[9] Leonardo Mendonça de Moura, Bruno Dutertre, and Natarajan
Shankar. A tutorial on satisfiability modulo theories. In CAV 2007,

REFERENCES 31

volume 4590 of Lecture Notes in Computer Science, pages 20–36.
Springer, 2007.

[10] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey of
automated techniques for formal software verification. IEEE Trans. on
CAD of Integrated Circuits and Systems, 27(7):1165–1178, 2008.

[11] Jori Dubrovin, Tommi Junttila, and Keijo Heljanko. Symbolic step en-
codings for object based communicating state machines. In FMOODS
2008, volume 5051 of Lecture Notes in Computer Science, pages 96–
112. Springer, 2008.

[12] Niklas Eén and Niklas Sörensson. Temporal induction by incremental
SAT solving. Electr. Notes Theor. Comput. Sci., 89(4), 2003.

[13] Javier Esparza and Keijo Heljanko. Unfoldings — A Partial-Order Ap-
proach to Model Checking. Springer, 2008.

[14] Malay K. Ganai and Aarti Gupta. Efficient modeling of concurrent
systems in BMC. In SPIN 2008, volume 5156 of Lecture Notes in
Computer Science, pages 114–133. Springer, 2008.

[15] Orna Grumberg, Flavio Lerda, Ofer Strichman, and Michael
Theobald. Proof-guided underapproximation-widening for multi-
process systems. In POPL 2005, pages 122–131. ACM, 2005.

[16] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods,
and Practical Use, volume 1. Springer, 1997.

[17] Toni Jussila. On bounded model checking of asynchronous systems.
Research Report A97, Helsinki University of Technology, Laboratory
for Theoretical Computer Science, 2005. Doctoral dissertation.

[18] Toni Jussila, Keijo Heljanko, and Ilkka Niemelä. BMC via on-the-fly
determinization. STTT, 7(2):89–101, 2005.

[19] Victor Khomenko, Alex Kondratyev, Maciej Koutny, and Walter Vogler.
Merged processes: a new condensed representation of Petri net be-
haviour. Acta Inf., 43(5):307–330, 2006.

[20] Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV
2006, volume 4144 of Lecture Notes in Computer Science, pages 123–
136. Springer, 2006.

[21] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with exhaustive
theory propagation and its application to difference logic. In CAV 2005,
volume 3576 of Lecture Notes in Computer Science, pages 321–334.
Springer, 2005.

[22] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of
concurrent programs. In CAV 2005, volume 3576 of Lecture Notes in
Computer Science, pages 82–97. Springer, 2005.

32 REFERENCES

[23] Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A hybrid
SAT-based decision procedure for separation logic with uninterpreted
functions. In DAC 2003, pages 425–430. ACM, 2003.

[24] Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant. Deciding sepa-
ration formulas with SAT. In CAV 2002, volume 2404 of Lecture Notes
in Computer Science, pages 209–222. Springer, 2002.

[25] Muralidhar Talupur, Nishant Sinha, Ofer Strichman, and Amir Pnueli.
Range allocation for separation logic. In CAV 2004, volume 3114 of
Lecture Notes in Computer Science, pages 148–161. Springer, 2004.

[26] Chao Wang, Franjo Ivancic, Malay K. Ganai, and Aarti Gupta. Decid-
ing separation logic formulae by SAT and incremental negative cycle
elimination. In LPAR 2005, volume 3835 of Lecture Notes in Com-
puter Science, pages 322–336. Springer, 2005.

[27] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole
partial order reduction. In TACAS 2008, volume 4963 of Lecture Notes
in Computer Science, pages 382–396. Springer, 2008.

REFERENCES 33

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R4 Jani Lampinen

Interface Specification Methods for Software Components. June 2008.

TKK-ICS-R5 Matti Koskimies

Applying Model Checking to Analysing Safety Instrumented Systems. June 2008.

TKK-ICS-R6 Alexander Ilin, Tapani Raiko

Practical Approaches to Principal Component Analysis in the Presence of Missing Values.

June 2008.

TKK-ICS-R7 Kai Puolamäki, Samuel Kaski

Bayesian Solutions to the Label Switching Problem. June 2008.

TKK-ICS-R8 Abhishek Tripathi, Arto Klami, Samuel Kaski

Using Dependencies to Pair Samples for Multi-View Learning. October 2008.

TKK-ICS-R9 Elia Liitiäinen, Francesco Corona, Amaury Lendasse

A Boundary Corrected Expansion of the Moments of Nearest Neighbor Distributions.

October 2008.

TKK-ICS-R10 He Zhang, Markus Koskela, Jorma Laaksonen

Report on forms of enriched relevance feedback. November 2008.

TKK-ICS-R11 Ville Viitaniemi, Jorma Laaksonen

Evaluation of pointer click relevance feedback in PicSOM. November 2008.

TKK-ICS-R12 Markus Koskela, Jorma Laaksonen

Specification of information interfaces in PinView. November 2008.

TKK-ICS-R13 Jorma Laaksonen

Definition of enriched relevance feedback in PicSOM. November 2008.

ISBN 978-951-22-9847-1 (Print)

ISBN 978-951-22-9848-8 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

