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ABSTRACT: In this work, novel symbolic step encodings of the transition
relation for object based communicating state machines are presented. This
class of systems is tailored to capture the essential data manipulation features
of UML state machines when enriched with a Java-like object oriented ac-
tion language. The main contribution of the work is the generalization of
the ∃-step semantics approach, which Rintanen has used for improving the
efficiency of SAT based AI planning, to a much more complex class of sys-
tems. Furthermore, the approach is extended to employ a dynamic notion of
independence. To evaluate the encodings, UML state machine models are
automatically translated into NuSMV models and then symbolically model
checked with NuSMV. Especially in bounded model checking (BMC), the
∃-step semantics often significantly outperforms the traditional interleaving
semantics without any substantial blowup in the BMC encoding as a SAT
formula.

KEYWORDS: UML state machine, bounded model checking, step seman-
tics, verification
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1 INTRODUCTION

Bounded model checking (BMC) [3] has been introduced as an alternative
to binary decisions diagrams (BDDs) to implement symbolic model check-
ing. The main contributions of our work are symbolic step encodings of the
transition relation for object based communicating state machines. Similarly
to partial order reduction techniques such as stubborn, ample, persistent, or
sleep sets for explicit state model checking (see e.g., [22]) the idea is to exploit
the concurrency available in the analyzed system to make the model check-
ing for it more efficient. The main idea in the above mentioned partial order
reduction methods is to try to generate a reduced state space of the system by
removing some of the edges of the state space while still preserving the prop-
erty (such as the existence of a deadlock state) being verified. However, the
considerations for BMC are usually quite different from explicit state model
checking. Instead of removing edges from the state space trying to minimize
the size of the reduced state space, the idea is to try to minimize the bound
needed to reach each state of the system. Our approach will not remove any
edges but will instead add a number of “shortcut edges” to the state space
of the analyzed system, intuitively executing several actions at the same time
step, as allowed by the concurrency of the system being analyzed. The hope
is that by making more states reachable with smaller bounds, the worst case
exponential behavior of the bounded model checker wrt. the bound k can
be alleviated by allowing bugs to be found with smaller values of k. The de-
crease in the bound k needs of course to be balanced against the size of the
transition relation encoding as well as the efficiency of the SAT checker in
solving the generated BMC instances.

As the system model we consider object based communicating state ma-
chines, a model tailored to capture the essential data manipulation features
of UML state machines when enriched with a Java-like object oriented action
language. The work aims at analyzing object oriented data communications
protocol software designed using UML state machines, see [16]. The model
checking tool we have developed can also handle other aspects of UML state
machines not covered in this paper due to space considerations, see Sect. 4
for details.

This work can be seen as a generalization of the approach of Rintanen [21]
on artificial intelligence planning, where the notion of ∃-step semantics for
planning problems is employed. The intuitive idea is that a set of actions can
be executed at the same time step in ∃-step semantics if there exists at least
one order in which they can be executed. This is to be contrasted with the
classical ∀-step semantics which allows the concurrent execution only in the
case all permutations of the set of actions of a step are executable [21, 10].
In [21] the ∃-step approach has been shown to dramatically speed up SAT
based AI planning over all other suggested semantics mainly due to signifi-
cant reductions in the number of time steps needed to reach the goal state
of the plan. The setup here differs from the AI planning domain mainly
by having a much more complex class of systems with object oriented and
other non-trivial data handling features such as asynchronous communica-
tion through message queues. Our approach also introduces the novel use of
a dynamic dependency relation to optimize the encoding even further. We
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show that all of these extensions can be efficiently encoded, and thus the
approach can be extended to a more realistic model of software systems.

Related Work

In the area of SAT based BMC, Heljanko was the first to consider exploiting
the concurrency in encoding the transition relation [10]. That paper consid-
ers BMC for 1-bounded Petri nets using the ∀-step semantics (the classical
Petri net step semantics, see e.g. [2]). The intuitive idea is that a set of ac-
tions can be executed at the same time step in ∀-step semantics if they can
be executed in all possible orders. In the area of SAT based AI planning al-
ready the early papers of Kautz and Selman used ∀-step semantics [19] (see
also [21]). The work of Dimopoulos et al. was the first one to use an ∃-step
semantics like approach in hand optimized planning encodings of [6], the
idea of which was later formalized and automated in the SAT based plan-
ning system of Rintanen [21]. On the BMC side Ogata et al. [20] and Jussila
et al. [14, 17] both show other approaches to obtaining an optimized transi-
tion relation encoding for 1-bounded Petri nets and labeled transition systems
(LTSs), respectively. A nice overview of many optimized transition relation
encodings for LTSs is the doctoral thesis of Jussila [15]. We are currently
not aware of any published work employing classical partial order reductions
methods such as stubborn, ample, or persistent sets to improve the efficiency
of SAT based symbolic model checking.

2 SYSTEMS AND SEMANTICS

In this paper we consider a class of systems which are composed of a finite set
of asynchronously executing objects communicating with each other through
message passing and data attribute access. The behavior of each object is
defined by a state machine. For instance, Figures 1(a)-(c) show a part of
a simple heart beat monitor system described in UML with Java-like action
language annotations. The dynamic behavior of a system is captured by its
interleaving state space

M = 〈C, cinit, ∆〉,

where C is the set of all global configurations, cinit ∈ C is an initial global
configuration, and the transition relation ∆ ⊆ C × A × C describes how
configurations may evolve to others: 〈c, a, c′〉 ∈ ∆ iff the configuration c can
change to c′ by executing an action a ∈ A. As an example, Fig. 1(d) shows a
part of the state space (ignore the dashed arrow for a while) of the system in
Figures 1(a)-(c); if the action 〈o1, t22〉 (corresponding to the object o1 firing
its transition t22) is executed in the top left configuration, it changes to the
top right one.

We say that a configuration c′′ is reachable from a configuration c if there
exist a1, . . . , ak and c0, c1, . . . , ck for some k ∈ N such that (i) c = c0, (ii)
∀1 ≤ i ≤ k : 〈ci−1, ai, ci〉 ∈ ∆, and (iii) ck = c′′.

The basic idea in ∃-step semantics exploited in this paper is to augment
the state space with “shortcut edges” so that, under certain conditions, several
actions can be executed “at the same time step”. Formally, the ∃-step state
space corresponding to the interleaving state space M = 〈C, cinit, ∆〉 is the
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(d) A part of the state space with three actions and one shortcut edge

Figure 1: A part of a simple heart beat monitor system

tuple
M∃ = 〈C, cinit, ∆∃〉

where the transition relation ∆∃ ⊆ C × 2A × C consists of all tuples 〈c, S, c′〉
such that

1. the step S = {a1, . . . , ak} is finite and non-empty, and

2. there is a total ordering a1 ≺ · · · ≺ ak of S and a sequence of con-
figurations c0, c1, . . . , ck ∈ C such that (i) c = c0, (ii) ∀1 ≤ i ≤ k :
〈ci−1, ai, ci〉 ∈ ∆, and (iii) ck = c′.

Continuing the running example, the dashed arrow in Fig. 1(d) denotes the
∃-step S = {〈o1, t22〉, 〈o4, t7〉}. Note that the actions in the step can be
executed in the order 〈o4, t7〉 ≺ 〈o1, t22〉 but not in 〈o1, t22〉 ≺ 〈o4, t7〉 as
executing 〈o1, t22〉 disables 〈o4, t7〉.

By definition it holds that the ∃-step state space includes the interleav-
ing state space in the sense that 〈c, a, c′〉 ∈ ∆ implies 〈c, {a}, c′〉 ∈ ∆∃.
Conversely, if a 〈c, S, c′〉 belongs to ∆∃, then there is a finite sequence of
configurations leading from c to c′ in the interleaving state space. Therefore,
the set of configurations reachable from a given configuration is equal for the
interleaving and the ∃-step state space. Note that the definition of ∃-step se-
mantics is a truly semantic one; in the symbolic encoding given later, not all
possible non-unit steps will be considered but only those that follow conve-
niently without complicating and growing the size of the encoding too much
w.r.t. the one for the interleaving semantics. For example, similarly to [21],
we require all actions of a step to be enabled already in the current configu-
ration c = c0. However, all unit steps will be included in order to preserve
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the soundness and completeness of the resulting encoding for the purpose of
checking the reachability of desired/unwanted configurations. For complex-
ity results on the semantic definition of ∃-step semantics in the AI planning
domain, see [21], which also similarly only soundly underapproximates the
∃-step semantics in its implementation.

2.1 Object Based State Machine Models

We next give a brief description of the class of systems analyzed in this paper.
Refer to Appendix A for the formal definitions.

We consider systems composed of a finite set O of objects. Each object
is an instance of a class, and each class is composed of a finite set of typed
attributes and a state machine. A state machine consists of a finite set of
states, one of which is the initial state, and a finite set of transitions. Each
transition has a source state and a target state, a trigger, a guard, which is an
action language expression of Boolean type, and an effect, which is a list of
action language statements. A trigger is of the form sig(x1, . . . , xk), where
sig is a signal from a finite set Sigs, and the xi are attributes of the class
owning the state machine. The number and types of the xi must match the
predefined parameter types of the signal. A special signal δ ∈ Sigs with no
parameters models spontaneously triggered transitions. For example, state
measuring is both the source and the target of transition t22 in Fig. 1(c). The
trigger of t22 is tick(bps), and the guard of t22 is implicitly true.

Objects can send and receive messages of the form sig[v1, . . . , vk], where
sig 6= δ is a signal and the values vi are message arguments. The number and
types of arguments correspond to the parameter types of sig. We denote the
set of all messages by Msgs. During execution, messages sent to an object are
placed in a queue, and an object can consume a message from its queue ei-
ther by firing a transition triggered by the corresponding signal or by implicit
consumption, which means discarding a message that is not triggering any
transitions. Spontaneously triggered transitions are fired without consuming
messages.

A global configuration c of the system consists of, for each object o, (i)
the currently active state of o, which is one of the states in the state machine
of the class of o, (ii) the value of the instance o.x of each attribute x of the
class of o, (iii) the contents of the input queue of o, which is a sequence
of messages. We will call the frontmost (oldest) message in the queue the
current message of o. The initial configuration cinit is such that all objects
are in their initial states and all input queues are empty.

The actions of the system are the transition instances 〈o, t〉 and the im-
plicit consumption actions 〈o, IMPCONS〉, where o is an object and t is a
transition in the state machine of o. A transition instance 〈o, t〉 is enabled in
a global configuration c if (i) the source state of t is active in o, (ii) the guard
of t evaluates to true in the context of o, and (iii) either the trigger of t is δ()
or o has a current message whose signal matches the trigger signal of t. Of
the global configurations in Fig. 1(d), 〈o4, t6〉 is only enabled in the top right
one, in which the current message of o4 is refresh() and o2.inval ≤ 2.

An enabled action can be executed in a global configuration. Firing tran-
sition t in object o, or more formally, executing an enabled transition in-
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stance 〈o, t〉 in a global configuration c, leads to a new global configuration
c′ that is obtained from c by (i) assigning the argument values of the current
message of o to the attributes mentioned in the trigger of t, (ii) removing the
current message from the input queue of o, (iii) executing the effect of t in
the context of o, and (iv) making the target of t the new active state of o. If t

is a spontaneously triggered transition, i.e. the trigger of t is δ(), then points
(i) and (ii) above are not performed.

An implicit consumption action 〈o, IMPCONS〉 is enabled if (i) the in-
put queue of o is not empty, and (ii) there is no enabled transition instance
〈o, t〉 such that the trigger of t is not δ(). Executing an enabled implicit con-
sumption action 〈o, IMPCONS〉 in a global configuration c leads to a global
configuration c′ that is equal to c except that the current message of o is re-
moved.

The interleaving state space is now defined as the tuple M = 〈C, cinit, ∆〉,
where C is the set of all global configurations, cinit ∈ C is the initial config-
uration, and the transition relation ∆ ⊆ C × A × C consists of the triples
〈c, a, c′〉 such that the transition instance or implicit consumption action a is
enabled in c and executing a in c leads to c′ by the above rules.

Action Language

In the sequel, we fix a simple Java-based action language [7]. The type system
consists of the Boolean type B, the 32-bit signed integer type, and for each
class C the reference type TC with domain {o ∈ O | class of o is C}∪{null}.
As in Java, static typing rules apply. The supported expressions are: (i) literals
true, false, null, and 32-bit signed integer literals, (ii) the this refer-
ence, (iii) attribute access expressions of the form refexpr.x, where the type
of refexpr is TC and x is an attribute of class C, and (iv) infix expressions
leftexpr op rightexpr , where op is one of +, -, *, /, %, &, ^, |, >, <, >=,
<=, ==, or !=, with Java semantics [9]. The only data accessible to expres-
sions is attribute values reachable by following references. In particular, an
expression cannot read the active state or the input queue of any object. An
unqualified attribute name x is shorthand for this.x.

Statements of the language are: (i) assignments of the form refexpr.x

= rhsexpr;, (ii) send statements of the form send sig(arg1, . . . , argk) to

targetexpr;. When a send statement is executed, the input queue of the
object referred by targetexpr is appended with the message sig[v1, . . . , vk],
where each vi is the value of arg i, and (iii) assertions of the form assert

condexpr;. We want to check that condexpr is never false when an assertion
is executed.

The effect of a transition is an arbitrary list of statements. However, we
require that for each transition t and class C, there is at most one send state-
ment in the effect of t whose targetexpr has type TC . The reason for this is
that the symbolic encoding relies on the fact that in one step, at most one
message is sent to each object.
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3 SYMBOLIC ENCODING

The encoding of a transition relation is based on constraints involving state
variables, whose valuation represents a global configuration, next-state vari-
ables, whose valuation represents the global configuration after a step, input
variables whose values are only limited by the constraints, and derived func-
tions that are defined over the variables. The basic idea is that all constraints
are satisfied if and only if there is a step from the configuration represented by
the values of state variables to the configuration represented by the next-state
variables. The desired properties of the system are encoded as a set of invari-
ants that are to be verified using model checking. Many of the variables and
functions have values in the Boolean domain. Non-Boolean variables and
functions have a finite domain and thus can be booleanized to enable the
use of SAT- and BDD-based techniques.

To keep the state space finite, we restrict the analysis to bounded global
configurations, setting an upper limit QSIZE to the number of messages in
any queue. Let M = 〈C, cinit, ∆〉 be an interleaving state space, and let CB

be the set of configurations c ∈ C such that the length of the input queue
of o in c is at most QSIZE for all objects o. The bounded interleaving state
space is MB = 〈CB, cinit, ∆

B〉, where ∆B = {〈c, a, c′〉 ∈ ∆ | c, c′ ∈ CB}.

Fixed Ordering of Actions in Steps

We fix an arbitrary total order ≺ of the set of actions A. The intuitive idea is
that instead of considering all possible orderings of actions as the ∃-step se-
mantic definition allows, ≺ gives us one static order in which the executabil-
ity of actions at a time step will be guaranteed. To do this, the encoding must
capture the state changes done by each action, and disallow all steps where a
value modified by some action is (explicitly or implicitly) read by an action
that is greater wrt. the order ≺. By doing this, we ensure that all of the ∃-steps
allowed by the encoding are executable in the order given by ≺.

We will thus get a different encoding for each choice of ≺. The only re-
quirement is that if o1, o2 ∈ O and t2 is a transition in the state machine
of o2, then 〈o1, IMPCONS〉 ≺ 〈o2, t2〉 must hold. In words, all implicit con-
sumption actions must precede all transition instances in the total order. The
reason for this will be discussed in Sect. 3.4.

The choice of a good total order is an interesting question that we have left
for further study. A set of actions is independent if no action reads any part of
the system state modified by another action. Notice that an independent set
of enabled actions can always be executed in all orders, and thus the ∃-step
semantics always allows a set of independent actions to form an ∃-step for any
selection of the total order ≺.

Three Alternative Encodings

We present three different symbolic encodings, namely an interleaving en-
coding, a static ∃-step encoding and a dynamic ∃-step encoding. All three
encodings contain all interleaving steps in the sense that if 〈c, a, c′〉 ∈ ∆B

and the valuations of state and next-state variables represent c and c′ respec-
tively, then there is a valuation of input variables such that the constraints
are satisfied. Conversely, nothing but ∃-steps that respect the order ≺ are
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... ... ...

Active=update
InputQ=〈. . .〉
succ=o12

data=65

o11:Node

Active=update
InputQ=〈. . .〉
succ=o13

data=70

o12:Node

Active=update
InputQ=〈. . .〉
succ=o13

data=75

o13:Node ...

update ready

t3: δ() /
succ.data = succ.data + 1;

(a) Global configuration (b) State machine of class Node

Figure 2: An example for illustrating static and dynamic ∃-steps

allowed by the encodings. Let MB
∃

= 〈CB, cinit, ∆
B
∃
〉 be the state space ob-

tained from MB by the definition of ∃-step semantics with the further restric-
tion that the total ordering of each step S respects the fixed order ≺. If the
valuation of state variables represents a bounded configuration c ∈ CB and
the constraints are satisfied, then the valuation of next-state variables repre-
sents a bounded configuration c′ ∈ CB and there is a step S ⊆ A such that
〈c, S, c′〉 ∈ ∆B

∃
. Furthermore, in the interleaving encoding, S only contains

one action, and thus every step is an interleaving step.
The definitions of the three encodings overlap for the most part, and the

differences are stated explicitly. The difference between static and dynamic
steps is that in static steps, whether actions a1 and a2 can be executed con-
currently depends only on a1 and a2. In dynamic steps, it also depends on
the current global configuration, in particular, on the values of attributes.
Consider the global configuration in Fig. 2(a) consisting of three objects of
class Node. Transition t3 is enabled both in object o11 and in o12. Because
the action 〈o11, t3〉 increments attribute data in o12 and 〈o12, t3〉 increments
data in o13, neither action reads a value written by the other. The dynamic
step encoding allows 〈o11, t3〉 and 〈o12, t3〉 to be executed concurrently in
this global configuration. However, in some other global configuration the
succ attribute in o11 and o12 might refer to the same object, so the two ac-
tions might read and modify the same attribute. As a safe statically computed
approximation, the static step encoding never allows executing 〈o11, t3〉 and
〈o12, t3〉 concurrently.

3.1 State Variables

The set of state variables contains three kinds of elements for each object o.

1. Active(o, s), where s is a state in the state machine of o, is true iff s is
the current active state in o.

2. AttrVal(o, x), where x is an attribute of the class of o, determines the
current value of o.x and has the same domain as the type of x.

3. InputQ(o) with domain Msgs0∪· · ·∪MsgsQSIZE determines the contents
of the input queue of o.

Given a bounded global configuration, the values of state variables can be
derived in the obvious way. The corresponding next-state variables are de-
noted by next (Active(o, s)), next (AttrVal(o, x)), and next (InputQ(o)), re-
spectively.
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3.2 State Machines and Queues

This sections gives a rough overview of the encoding of state machine control
logic. A more detailed definition can be found in Appendix B.

The control logic constraints are responsible for ensuring that in the con-
text of a single object o ∈ O, (i) at most one transition instance or implicit
consumption action is executed, (ii) an action is executed only if it is en-
abled in the global configuration represented by the state variables, and (iii)
the variables next (Active(o, s)) correctly reflect the active state after the step.

Let o ∈ O be an object. The input variable Dispatch(o) with domain Sigs∪
{none} determines which message sig[. . .], if any, is being consumed by o.
For each transition t in the state machine of o, the input variable Fire(o, t)
determines whether t is being fired in o. We define the current step S ⊆ A

as the set consisting of all transition instances 〈o, t〉 such that Fire(o, t) is
true, and all implicit consumption actions 〈o, IMPCONS〉 such that Fire(o, t)
is false for all t but Dispatch(o) 6= none.

For example in the state machine of Fig. 1(c), the next-state variable re-
lated to state showAvgBps is fixed by the constraint

next (Active(o, showAvgBps)) ⇔

Fire(o, t8) ∨
(
¬Fire(o, t9) ∧ Active(o, showAvgBps)

)
,

and the enabledness check for the action 〈o, t8〉 is encoded in the constraint

Fire(o, t8) ⇔ (Dispatch(o) = fbutton) ∧ Active(o, showBps).

Object o is scheduled if it is consuming a signal, formalized in the func-
tion definition

Scheduled(o) :=
(
Dispatch(o) 6= none

)
. (1)

To rule out an empty step, we require that at least one object is scheduled in
each step by the constraint

∨{
Scheduled(o) | o ∈ O

}
. (2)

Furthermore, there are queue constraints ensuring that consumed mes-
sages are removed from the front of the input queue and received messages
are added to the back of the queue. The input variable NewMsg(o) with do-
main Msgs ∪ {none} denotes the message possibly being sent to o. Queue
overflows are prevented by specialized constraints, disallowing transitions
into global configurations that are not in CB .

3.3 Effects and Data

Expressions
All data manipulation in the effects of transitions is based on evaluating ex-
pressions. We define a function Eval(expr) that gives the value of expression
expr . For clarity, we leave out the context in which the expression is evalu-
ated; a more rigorous treatment can be found in Appendix B. Evaluation of
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constant and infix expressions is straightforward, given the encodings for all
infix operators. In the context of an object o, the value of Eval(this) is o. At-
tribute access expressions of the form refexpr.x̂ are encoded as case switches
over all objects of the type of refexpr . For example, the expression succ.data

in Fig. 2(b) translates in the context of o11 to the formula

Eval(succ.data) := if






AttrVal(o11, succ) = o11 : AttrVal(o11, data)

AttrVal(o11, succ) = o12 : AttrVal(o12, data)

AttrVal(o11, succ) = o13 : AttrVal(o13, data)

else : 0.

Effects
The effects of transitions can modify the global configuration by assigning
values to attributes and by sending messages to objects. For each transition
instance 〈o, t〉, each object ô, and each attribute x̂ of the class of ô, we define
functions Sendo,t(ô) and Writeo,t(ô, x̂) that evaluate to true if the transition
instance is executed and sends a message to ô or assigns to ô.x̂, respectively.
Assignment can occur explicitly by an assignment statement or implicitly by
message argument reception.

These functions are used for determining the next global configuration in
the following way. If the effect of a transition t in the state machine of a class
C contains a send statement send sig(arg1, . . . , argm) to targetexpr;, we
add for each object o of class C and each object ô of the type of targetexpr

the constraint

Sendo,t(ô) ⇒
(
NewMsg(ô) = sig[Eval(arg1), . . . , Eval(argm)]

)
, (3)

which fixes the message received by ô in case 〈o, t〉 is executed. Similarly, the
value assigned to ô.x̂ by a transition instance 〈o, t〉 is fixed by the constraint

Writeo,t(ô, x̂) ⇒
(
next (AttrVal(ô, x̂)) = Tempo,t(ô, x̂)

)
, (4)

where Tempo,t(ô, x̂) evaluates to the value of ô.x̂ after executing the effect of t

in object o. This is defined using the Eval function. For example in Fig. 2(b),

Tempo11,t3(o12, data) := if

{
AttrVal(o11, succ) = o12 : Eval(succ.data + 1)

else : AttrVal(o12, data).

For each transition instance 〈o, t〉 and each assertion assert condexpr;

in the effect of t, we check that the invariant Fire(o, t) ⇒ Eval(condexpr)
holds.

Frame Conditions
Let Θ ⊆ A be the set of all transition instances. The only situation when
NewMsg(ô) is not fixed by (3) is when Sendo,t(ô) is false for all transition
instances 〈o, t〉 ∈ Θ. Similarly, next (AttrVal(ô, x̂)) is not fixed when all
functions Writeo,t(ô, x̂) are false. To fix these, we add the constraints

¬
∨ {

Sendo,t(ô) | 〈o, t〉 ∈ Θ
}
⇒

(
NewMsg(ô) = none

)
, (5)

¬
∨{

Writeo,t(ô, x̂) | 〈o, t〉 ∈ Θ
}
⇒

(
next (AttrVal(ô, x̂)) = AttrVal(ô, x̂)

)
.

(6)
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3.4 Step Constraints

In the interleaving encoding, at most one object is scheduled at a time, as
required by the constraint

AtMostOne ({Scheduled(o) | o ∈ O}) . (7)

Consequently, at most one action is executed in each step. A predicate of
the form AtMostOne (P ) evaluates to true if and only if zero or one of the
predicates in set P evaluates to true. This can be expressed with O(|P |)
binary Boolean connectives.

In the ∃-step encodings, (7) is replaced by more liberal constraints as fol-
lows. We require that an action must not send a message to an object if a
preceding action has already done so, and it must not read an attribute that a
preceding action has written. This is formalized in the constraints

∨{
Sendo−,t−(ô) | 〈o−, t−〉 ≺ 〈o, t〉

}
⇒ ¬Sendo,t(ô), (8)

∨ {
Writeo−,t−(ô, x̂) | 〈o−, t−〉 ≺ 〈o, t〉

}
⇒ ¬Reado,t(ô, x̂). (9)

Constraints (9) say that a transition instance 〈o, t〉 that reads an attribute ô.x̂

can only be executed (denoted by Reado,t(ô, x̂)) if that attribute is not modi-
fied by any concurrently executed transition instance that precedes 〈o, t〉 in
the total order. This means that in the global configuration that would re-
sult from executing the preceding transition instances, the value of ô.x̂ is still
the same as in the starting configuration represented by the state variables.
This justifies the use of AttrVal(ô, x̂) in evaluating the expressions in the ef-
fect of 〈o, t〉. Also notice that (4) forbids executing two transition instances
that would assign a different value to the same attribute, and (8) prevents two
transition instances from sending to the same object.

Implicit consumption actions cannot send messages or modify attributes.
However, an implicit consumption action 〈o, IMPCONS〉 can implicitly read
an attribute because the enabledness of 〈o, IMPCONS〉 might depend on the
enabledness of a transition instance 〈o, t〉, which in turn might depend on
an attribute that is mentioned in the guard of t. By setting the requirement
that implicit consumption actions precede all transition instances in the to-
tal order, we rule out the possibility of 〈o, IMPCONS〉 implicitly reading an
attribute that has been written by a preceding action.

Static and Dynamic Steps
The difference between the two ∃-step encodings is in the definitions of Send,
Write, and Read. In dynamic steps, these functions are evaluated accurately
using the input and state variables. For example, Sendo,t(ô) is defined as
Fire(o, t) ∧

(
Eval(targetexpr) = ô

)
, and Reado,t(ô, x̂) is true iff Fire(o, t) is

true and Eval(refexpr) = ô is true for any subexpression of the form refexpr .x̂

in the guard or effect of t. The same definitions are used in the interleaving
encoding.

In static steps, overapproximations are used. If the guard or effect of tran-
sition t does not contain x̂ in any subexpression, then Reado,t(ô, x̂) is trivially
false for all o and ô. Otherwise, Reado,t(ô, x̂) is defined as Fire(o, t). Concep-
tually this means that when 〈o, t〉 is executed, it reads the attribute x̂ of all

10 3 SYMBOLIC ENCODING



objects that contain it. Equivalently, Sendo,t(ô) is defined as Fire(o, t) if the
effect of t contains any send statement to an object of the same class as ô and
false otherwise, and similarly for Write. This approximation strengthens the
step constraints (8) and (9) and also makes the constraints static in the sense
that they no longer refer to the state variables. As an optimization, if transi-
tion t only accesses x̂ using the expression this.x̂, then it is known that the
action 〈o, t〉 does not read ô.x̂ if ô 6= o, and therefore Reado,t(ô, x̂) is defined
as false in these cases. The same optimization is applied to Send and Write.

Because the function Sendo,t(ô) is an approximation in the static step en-
coding, it may evaluate to true even though no message is being sent to ô.
For this reason, in static steps we replace (3) with two constraints

Sendo,t(ô) ∧
(
Eval(targetexpr) = ô

)
⇒

(
NewMsg(ô) = sig[. . .]

)
, (10)

Sendo,t(ô) ∧ ¬
(
Eval(targetexpr) = ô

)
⇒

(
NewMsg(ô) = none

)
. (11)

A similar correction does not need to be made to (4) because Tempo,t(ô, x̂) is
evaluated accurately even in the static step encoding.

Consider again the setting of Fig. 2. Assuming that 〈o11, t3〉 ≺ 〈o12, t3〉 are
the two first transition instances in the total order, we get from (9) the step
constraint

Writeo11,t3(ô, data) ⇒ ¬Reado12,t3(ô, data) (12)

instantiated for each ô ∈ {o11, o12, o13}. In dynamic steps, these expand to

Fire(o11, t3) ∧
(
AttrVal(o11, succ) = ô

)
⇒

¬
(
Fire(o12, t3) ∧ (AttrVal(o12, succ) = ô)

)
,

allowing, for example, executing 〈o11, t3〉 and 〈o12, t3〉 concurrently in the
global configuration of Fig. 2(a). In static steps, all three instantiations of (12)
reduce to the same constraint Fire(o11, t3) ⇒ ¬Fire(o12, t3), which disallows
concurrent execution of the two actions in any global configuration. In this
example, static ∃-step semantics yields a smaller encoding, but dynamic ∃-
step semantics permits more concurrency in a single step.

Steps and Bounded Queues
In some cases, the constraints presented above allow a step that has an inter-
leaving in the interleaving state space M but not in the bounded interleaving
state space MB . In particular, there may be a step {a1, a2} where action a1

sends a message to a queue that already contains QSIZE messages, action a2

consumes a message from the same queue, and a1 ≺ a2. To remove spurious
steps like this, we add extra constraints in the step encodings. The details are
in Appendix B.

3.5 Size of the Encodings

Let |M | be the size of the model, containing the definition of every class,
attribute, signal, and state machine, and the textual definitions of guards and
effects. Assuming that common subformulas are shared between constraints,
the size of all three encodings is O(|M |(QSIZE · |O| + |O|2) log |O|). The
term log |O| is the required number of bits to represent the values of attributes
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and expressions of reference type. The term |O|2 appears because objects
can refer to each other arbitrarily, and it seems unavoidable in the presence
of dynamic references. The total size of queue and state machine encodings
without data or transition effects is O(|M | · QSIZE · |O| log |O|).

The worst-case size for the data and step encoding can be seen in (4). For
each assignment statement (quantity bounded by |M |), there are O(|O|2) in-
stantiations of (4), each of size O(log |O|) because of the comparison of ob-
ject references. Thus the total size sums up to O(|M | · |O|2 log |O|) even in
the interleaving encoding. In the ∃-step encodings, there are O(|M | · |O|2)
additional step constraints, but they do not seem to dominate the total encod-
ing size. We also point out that the left-hand sides of the step constraints (8)
and (9) do not add extra size to the step encodings because they are already
present as subformulas of the frame constraints (5) and (6).

4 EXPERIMENTAL RESULTS

We have implemented the symbolic encoding described above. The imple-
mentation1 assumes the system models to be described with a subset of UML,
the main additions to the above encoding being that state machines also sup-
port (i) hierarchy, (ii) completion events via the busy-quiescent construction
given in [16], (iii) deferring of events, and (iv) initial and choice pseudostates
(see [8] for a symbolic interleaving semantics encoding of such extended
state machines). Currently the tool supports model checking queries for
deadlocks, implicit consumption of messages, assertion violations, and action
language run-time errors. The encoder is implemented in the Python pro-
gramming language, uses the Coral toolkit [1] to read the UML models given
in XMI format, and outputs the symbolic encoding as a NuSMV [5] pro-
gram. The following experiments were run on a PC machine with a 2 GHz
AMD Athlon 64 processor, 2 GB of memory, and Debian Linux operating
system. We used version 2.4.3 of NuSMV and limited the available memory
to 1.5 GB and time to ten minutes. The width of integer attributes in the
encoding was 32 bits and the input queue size was two.

We used the following models. (i) SCP is a simple communication proto-
col with three active objects (environment, sender, and receiver) and three
cycling phases (connection establishment, data transfer, connection release).
(ii) travel is an essentially sequential resource allocation process modeling a
travel agent accessing a database, involving 4 active objects. (iii) mtravel is
a variant of travel with 3 competing travel agents and databases organized in
a ring. (iv) giop1_2 has been adapted from the General Inter-ORB Protocol
model [18], with an uninitialized variable introduced in the adaptation.

Table 1 shows our preliminary results. The column “sem.” gives the se-
mantics (interleaving, static ∃-steps, or dynamic ∃-steps) and the length of the
shortest counterexamples under it, “SBMC zchaff” gives the minimum and
maximum running time (in seconds) of 10 runs of the incremental BMC al-
gorithm [11, 4] (the NuSMV command check_ltlspec_sbmc_inc) when
ZChaff is used as the SAT solver, “SBMC minisat” is the same with MiniSat
as the SAT solver, and “BDD invar” gives the running times of a BDD-based

1Available at http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
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Table 1: Results
model + sem. k SBMC zchaff SBMC minisat BDD invar Spin DFS Spin DFS -i
property time time time time |cex| time |cex|
travel interl. 15 0.59–0.64 0.46–0.55 1.19–1.20 0.01–0.01 17–24 0.03–0.05 15–15
deadlock s.step 11 0.32–0.36 0.30–0.34 1.91–1.93

d.step 11 0.31–0.35 0.31–0.34 1.69–1.71
mtravel interl. 36 T.O.(21–22) T.O.(23–24) M.O. 0.01–43.58 71–103576 T.O.
deadlock s.step 14 5.87–10.73 3.26–5.03 M.O.

d.step 11 2.01–2.26 1.56–1.67 M.O.
SCP interl. 13 2.17–2.70 1.21–1.51 174.05–174.89 0.02–0.03 13–104 0.04–0.74 13–13
deadlock s.step 7 0.37–0.41 0.37–0.40 107.04–107.42

d.step 6 0.38–0.40 0.37–0.40 T.O.
SCP interl. 7 0.46–0.49 0.42–0.45 n.a. 0.01–0.01 12–24 0.02–0.04 7–7
implicit s.step 6 0.38–0.41 0.37–0.41 n.a.
cons. d.step 5 0.37–0.39 0.36–0.40 n.a.
giop1_2

runtime
interl. 14

293.09–338.47
[79.06–124.39]

250.15–261.90
[36.30–48.49]

n.a. 0.29–580.96 30–64 T.O.

errors
s.step 9

162.59–174.98
[6.71–9.73]

156.94–165.81
[2.16–3.34]

n.a.

d.step 8
156.57–162.53

[4.04–5.13]
154.23–158.20

[1.19–2.30]
n.a.

invariant checking algorithm (check_invar in NuSMV). The numbers in
square brackets are the times used by the SAT solvers instead of the total run-
ning times of NuSMV (especially on the model giop1_2, the total running
time is dominated by some kind of preprocessing overhead). M.O. means
that all runs exceeded the memory limit, and T.O.(x–y) means that all runs
timed out; x and y give the minimum and maximum, respectively, of the
bounds that were reached before timeout. We check (i) deadlocks of the
models SCP, mtravel, and travel, (ii) whether implicit consumption of mes-
sages is possible in the model SCP, and (iii) if the model giop1_2 has run-time
errors. The latter two properties are only checked with BMC but not with
BDDs because the invariant involves input variables; this is not accepted by
the NuSMV BDD invariant checking command.

Analyzing the sizes of SAT instances generated by NuSMV shows that
the proportion of ∃-step constraints in an instance is between 4 and 8 %
when static steps are used, and between 5 and 15 % when dynamic steps are
used, depending on the model. This verifies the presumption that using step
semantics does not substantially increase the size of the encoding.

From the results we see that using ∃-step semantics instead of interleaving
can (i) drop the bound required to find a counterexample, and (ii) more
importantly, quite radically reduce the running times of BMC algorithms.
This is especially true with models that contain lots of concurrency. E.g. on
the model mtravel using interleaving semantics, BMC could not reach the
required bound 36 even if we gave 1 hour of time, while using step semantics
a corresponding counter-example is found within seconds. With BDDs, the
situation is not at all that clear; it seems in fact that the interleaving semantics
is quite competitive with the step semantics. We also experimented with the
BDD-based breadth-first enumeration of reachable states in NuSMV and the
preliminary findings were that the step semantics indeed covered more states
than the interleaving semantics with the same number of iterations but it
took more time to do so.

We also ran tests with the state-of-the-art explicit state model checker
Spin [13] that is designed especially for the analysis of this kind of mod-
els. The UML models were automatically translated to the input language
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of Spin by a translation based on that of [16]. The last two columns in Ta-
ble 1 give the running times and lengths of produced counter-examples of
Spin with (i) the default depth-first search mode (“Spin DFS”), and (ii) the
same with counter-example minimization option “-i” enabled. Partial order
reductions and the state compression (“COLLAPSE”) were enabled in both
modes. As expected, Spin is superior on models with relatively small state
spaces (SCP and travel). On the models mtravel and giop1_2 containing more
concurrency Spin sometimes consumed more time and, more importantly,
produced counter-examples that are substantially longer than the minimal
ones produced by BMC based methods; such long counter-examples are not
as useful in debugging the system as it becomes much harder to locate the
real source of the bug.

To sum up, symbolic model checking, especially with step semantics, can
potentially provide a competitive approach for model checking of communi-
cation protocols, which has traditionally been the strong area of explicit state
model checkers.

5 CONCLUSIONS AND FUTURE WORK

We have shown how to exploit the concurrency in the transition relation
encoding for object based communicating state machines. Especially in
bounded model checking, the proposed ∃-step semantics significantly out-
perform the traditional interleaving semantics approach, without any consid-
erable blowup in the encoding as a SAT formula.

One avenue for further study is the use of SAT modulo theories (SMT)
solvers to improve the performance of bounded model checking of systems
containing data. Our encoding can be fairly easily adjusted to do that. Also
requiring further study are the details of the way the ∃-semantics needs to be
restricted in order to soundly accommodate the model checking of liveness
properties along the lines of [12, 4]. And as the choice of the total ordering
between actions in the encoding affects which steps are considered, how to
statically choose a good ordering needs further investigation.
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A FORMAL EXECUTION SEMANTICS

We next give a formal definition of the class of systems analyzed in this pa-
per. We consider systems composed of a finite set O of objects. Each object
o ∈ O is an instance of a class Class(o) and each class C is composed of
a finite set of attributes Attrs(C) and a state machine SM(C). An attribute
x ∈ Attrs(C) is a typed variable, i.e. is associated with a type Type(x) in a set
T of types. Each type T ∈ T has a non-empty domain set Dom(T ) and a
default value default(T ) ∈ Dom(T ). In particular, the Boolean type B ∈ T
has Dom(B) = {false, true}. A strongly typed action language L over the
types is assumed; LB ⊂ L denotes the set of side-effect free Boolean valued
expressions and LStmt ⊂ L the set of (possibly compound) statements.

The asynchronous passing of messages builds on a finite set Sigs of signals,
each sig ∈ Sigs having a list params(sig) = 〈Tsig,1, . . . , Tsig,ksig〉 ∈ T ∗ of
parameter types. We assume a special signal δ ∈ Sigs with params(δ) = 〈〉 to
model spontaneous transitions. A trigger is of the form sig(x1, . . . , xksig) such
that sig ∈ Sigs and x1, . . . , xksig are distinct typed variables with Type(xi) =
Tsig,i for 1 ≤ i ≤ ksig . The set of all triggers is denoted by Triggers. A
message has the form sig[v1, . . . , vksig ] such that sig ∈ Sigs \ {δ} and each
vi ∈ Dom(Tsig,i); the set of all messages is denoted by Msgs.

A state machine SM(C) is composed of

1. a non-empty, finite set States(SM(C)) of states,

2. an initial state InitialState(SM(C)) ∈ States(SM(C)), and

3. a finite set Trans(SM(C)) ⊆ States(SM(C))×Triggers×LB ×LStmt×
States(SM(C)) of transitions.

For each transition t = 〈s, sig(x1, . . . , xk), g, e, s′〉 ∈ Trans(SM(C)), we
define Source(t) = s, TriggerSig(t) = sig, Trigger(t) = sig(x1, . . . , xk),
Guard(t) = g, Effect(t) = e, and Target(t) = s′. Parameters of trig-
gers must be attributes of the owning class: 〈s, sig(x1, . . . , xk), g, e, s′〉 ∈
Trans(SM(C)) ⇒ ∀1 ≤ i ≤ k : xi ∈ Attrs(C).

A global configuration c of a system maps each object o ∈ O to a triple
〈Active, AttrVal, InputQ〉, where (i) c(o).Active ∈ States(SM(Class(o))) is
the current active state, (ii) c(o).AttrVal is a function that maps each at-
tribute x ∈ Attrs(Class(o)) to its current value in Dom(Type(x)), and (iii)
c(o).InputQ ∈ Msgs∗ describes the current contents of the input queue. The
action language L is always interpreted in the context of a global configu-
ration c and an object o. For a side-effect free Boolean expression φ in LB,
eval(c, o, φ) evaluates it in the context of c and o, and returns false or true.
Given a statement γ in LStmt, execute(c, o, γ) executes it in the context of c

and o, and returns a new global configuration c′.

The interleaving state space of a system is the tuple M = 〈C, cinit, ∆〉,
where C is the set of all global configurations, cinit ∈ C is the initial config-
uration, and the transition relation ∆ ⊆ C × A × C is the minimal relation
fulfilling the following rules:
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1. Case: spontaneous transitions.

If t = 〈s, δ(), g, e, s′〉 ∈ Trans(SM(Class(o))) for an object o ∈ O,
then the “spontaneous transition instance” 〈o, t〉 is enabled in c, de-
noted by enabled(c, 〈o, t〉), if (i) the source is active: c(o).Active = s,
and (ii) the guard holds: eval(c, o, g) = true.

If enabled(c, 〈o, t〉) holds, then 〈c, 〈o, t〉, c′〉 ∈ ∆, where c′ is equal to
execute(c, o, e) except that c′(o).Active = s′.

2. Case: message triggered transitions.

If t = 〈s, sig(x1, . . . , xk), g, e, s′〉 ∈ Trans(SM(Class(o))) for an object
o and a normal signal sig 6= δ, then the “message triggered transi-
tion instance” 〈o, t〉 is enabled in c, denoted by enabled(c, 〈o, t〉), if
(i) c(o).Active = s, (ii) c(o).InputQ = 〈sig[v1, . . . , vk], . . .〉, and (iii)
eval(c⋆, o, g) = true, where c⋆ is equal to c except that the first message
has been received: c⋆(o).InputQ = dequeue(c(o).InputQ), and ∀1 ≤
i ≤ k : c⋆(o).AttrVal(xi) = vi. We define dequeue(〈m1, . . . , mn〉) =
〈m2, . . . , mn〉.

If enabled(c, 〈o, t〉) holds, then 〈c, 〈o, t〉, c′〉 ∈ ∆, where c′ is equal to
execute(c⋆, o, e) except that c′(o).Active = s′.

3. Case: implicit consumption of messages.

If no message triggered transition is enabled for an object o, the first
message in its input queue can be implicitly consumed. Formally, the
“implicit consumption action” 〈o, IMPCONS〉 is enabled in c, denoted
by enabled(c, 〈o, IMPCONS〉), if (i) c(o).InputQ 6= 〈〉, and (ii) there
is no t ∈ Trans(SM(Class(o))) for which enabled(c, 〈o, t〉) holds and
Trigger(t) 6= δ().

If enabled(c, 〈o, IMPCONS〉) holds, then 〈c, 〈o, IMPCONS〉, c′〉 ∈ ∆,
where c′ is equal to c except that c′(o).InputQ = dequeue(c(o).InputQ).

The initial configuration cinit is such that all state machines are in their initial
states and all input queues are empty.
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B DETAILED ENCODING

The three symbolic encodings of the transition relation of state machine
models are shown below in more detail. The definitions and constraints
already included in Sect. 3 are repeated here for completeness, and some are
reformulated with more detail.

B.1 State Variables

Let c ∈ CB be a bounded global configuration. The set of state variables
contains three elements for each object o ∈ O, with values derived from c as
follows.

1. Active(o, s), where s ∈ States(SM(Class(o))), determines whether s is
the current active state in o, i.e. Active(o, s) =

(
c(o).Active = s

)
.

2. AttrVal(o, x) with domain Dom(Type(x)), where x ∈ Attrs(Class(o)),
determines the current value of x: AttrVal(o, x) = c(o).AttrVal(x).

3. InputQ(o) with domain Msgs0∪· · ·∪MsgsQSIZE determines the contents
of the input queue: InputQ(o) = c(o).InputQ.

The corresponding next-state variables are denoted by next (Active(o, s)),
next (AttrVal(o, x)), and next (InputQ(o)), respectively.

B.2 Queues and Messages

Let o ∈ O be an object. The input variable Dispatch(o) with domain Sigs ∪
{none} determines which message sig[. . .] is being consumed by o. For each
signal sig ∈ Sigs \ {δ}, we add the constraint

(
Dispatch(o) = sig

)
⇒

(
CurrentSig(o) = sig

)
, (13)

where CurrentSig(o) with domain (Sigs \ {δ})∪ {none} holds the first signal
of InputQ(o), or the value none if InputQ(o) is empty. Let the queue after
possible dequeuing be

ConsumedQ(o) := if

{
Dequeue(o) : dequeue(InputQ(o))

else : InputQ(o),
(14)

where

Dequeue(o) :=
∨{

Dispatch(o) = sig | sig ∈ Sigs \ {δ}
}
. (15)

The domain of ConsumedQ(o) is Msgs0 ∪ · · · ∪ MsgsQSIZE. Let the input vari-
able NewMsg(o) with domain Msgs ∪ {none} denote the message possibly
being sent to o. Using the shorthands Recv(o) := (NewMsg(o) 6= none) and
Space(o) := (length(ConsumedQ(o)) < QSIZE), the contents of the queue in
the next configuration is fixed by the constraint

next (InputQ(o)) = if

{
Recv(o) ∧ Space(o) : ConsumedQ(o) + NewMsg(o)

else : ConsumedQ(o),

(16)
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where + denotes list concatenation. If Recv(o) is true but Space(o) is not,
the capacity of the queue is being exceeded. We rule out this case with the
constraint

Recv(o) ⇒ Space(o). (17)

B.3 Control Logic of State Machines

Let o ∈ O be an object and let States = States(SM(Class(o))) be its set
of states and Trans = Trans(SM(Class(o))) its set of transitions. For each
transition t ∈ Trans, an input variable Fire(o, t) determines whether t is being
fired in o.

A state s ∈ States becomes active in the next configuration if it is entered
by firing a transition, and it remains active if it is not exited by a transition,
i.e.

next (Active(o, s)) ⇔ Enter(o, s) ∨
(
¬Exit(o, s) ∧ Active(o, s)

)
, (18)

Enter(o, s) :=
∨{

Fire(o, t) | t ∈ Trans and Target(t) = s
}
, (19)

Exit(o, s) :=
∨{

Fire(o, t) | t ∈ Trans and Source(t) = s
}
. (20)

To avoid firing several transitions in o at the same time, the constraint

AtMostOne ({Fire(o, t) | t ∈ Trans and Source(t) = s}) (21)

is added that allows at most one of the disjuncts in (20) to be true.
Let Ro(s, sig) = {t ∈ Trans | Source(t) = s and TriggerSig(t) = sig} be

the set of transitions leaving state s ∈ States with signal sig ∈ Sigs. For each
nonempty Ro(s, sig), define

Feasible(o, s, sig) := Active(o, s) ∧
∨{

EvalGuard(o, t) | t ∈ Ro(s, sig)
}
.

(22)
The function EvalGuard(o, t) is defined later in Sect. B.4. The constraint

∨{
Fire(o, t) | t ∈ Ro(s, sig)

}
⇔

(
Dispatch(o) = sig

)
∧ Feasible(o, s, sig)

(23)
for each nonempty Ro(s, sig) ensures that if sig is consumed and some tran-
sition in Ro(s, sig) is enabled, then one of the transitions will be fired. To
prevent a non-enabled transition from firing, we add for all t ∈ Trans the
constraint

Fire(o, t) ⇒ EvalGuard(o, t). (24)

To avoid implicit consumption of the special signal used in the trigger of
spontaneous transitions, we add the constraint

(
Dispatch(o) = δ

)
⇒

∨{
Feasible(o, s, δ) | s ∈ States ∧ Ro(s, δ) 6= ∅

}
,

(25)
which says that if δ is consumed, then a spontaneous transition must be fired.

Object o is scheduled if it is consuming a signal, and the object is ready
for execution if there is a signal it can consume. The system is in a deadlock
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if no object is ready.

Scheduled(o) :=
(
Dispatch(o) 6= none

)
, (26)

Ready(o) :=
(
CurrentSig(o) 6= none

)
∨

∨{
Feasible(o, s, δ) | s ∈ States ∧ Ro(s, δ) 6= ∅

}
,

(27)

Deadlock() := ¬
∨{

Ready(o) | o ∈ O
}
. (28)

We require that at least one object is scheduled in each step by the constraint
∨{

Scheduled(o) | o ∈ O
}
. (29)

B.4 Effects and Data

Consider a transition instance 〈o, t〉 with Effect(t) = stmt1 . . . stmtn. For
each stmt i, each object ô, and each attribute x̂ ∈ Attrs(Class(ô)), the func-
tion Assigni

o,t(ô, x̂) evaluates to true if stmt i writes to ô.x̂ in case the transition
instance is executed. Because the written value may be used later in the same
effect, we define the function Tempi

o,t(ô, x̂) with domain Dom(Type(x̂)) that
holds the intermediate value of attribute x̂ in ô right after stmt i has been ex-
ecuted. Similarly, function Evalio,t(expr) gives the value of expression expr

evaluated in the context of object o right after stmt i has been executed.

Message arguments
Let Trigger(t) = sig(x1, . . . , xk). If CurrentSig(o) = sig, then let the first
message in InputQ(o) be sig[v1, . . . , vk]. Otherwise, let each vi have the
dummy value default(Type(xi)). We view the implicit assignment of argu-
ments v1, . . . , vk to attributes x1, . . . , xk as the zeroth statement of the effect
and define

Assign
0
o,t(ô, x̂) :=

{
true if ô = o and x̂ = xi for some i = 1, . . . , k,

false otherwise,
(30)

Temp
0
o,t(ô, x̂) :=

{
vi if ô = o and x̂ = xi for some i = 1, . . . , k,

AttrVal(ô, x̂) otherwise.

(31)

According to the definition of executing message triggered transitions (Ap-
pendix A), guards are evaluated after the implicit assignment of message ar-
guments, therefore

EvalGuard(o, t) := Eval
0
o,t(Guard(t)). (32)

Expressions
If expr is one of the expressions true, false, null, this, or an integer
literal, then Evalio,t(expr) has the constant value true, false, null, o, or the
value of the integer, respectively. If expr is an infix expression leftexpr op

rightexpr , let ◦op be the semantic equivalent for operator op (e.g. signed
addition modulo 32) and define

Eval
i
o,t(expr) := Eval

i
o,t(leftexpr) ◦op Eval

i
o,t(rightexpr). (33)
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If expr = refexpr.x̂ is an attribute access expression and Type(refexpr) =

T bC
, then let ô1, . . . , ôm be the objects of class Ĉ and define

Eval
i
o,t(expr) := if






Evalio,t(refexpr) = ô1 : Tempi
o,t(ô1, x̂)

...

Evalio,t(refexpr) = ôm : Tempi
o,t(ôm, x̂)

else : default(Type(x̂)).

(34)

The step encodings rely on information about which attributes are being read
or written by transition instances. We use a function MayReferi

o,t(refexpr , ô)
to see whether the expression refexpr , evaluated after the ith statement in the
effect of the transition instance 〈o, t〉, refers to object ô. In the interleaving
encoding and the dynamic ∃-step encoding, we evaluate this accurately by
setting

MayRefer
i
o,t(refexpr , ô) :=

(
Eval

i
o,t(refexpr) = ô

)
. (35)

In the static ∃-step encoding, we use a statically evaluated over-approximation

MayRefer
i
o,t(refexpr , ô) :=

{
false if refexpr = this and ô 6= o,

true otherwise.
(36)

Assignment Statements
If stmt i is an assignment statement of the form refexpr.x̂ = rhsexpr;, then
for all objects ô such that Type(refexpr) = TClass(ô)

Assign
i
o,t(ô, x̂) := MayRefer

i
o,t(refexpr , ô), (37)

Temp
i
o,t(ô, x̂) := if

{
Eval

i−1
o,t (refexpr) = ô : Eval

i−1
o,t (rhsexpr)

else : Temp
i−1
o,t (ô, x̂).

(38)

If stmt i is not an assignment statement or ô is not an object of the class refer-
enced by refexpr , then trivially Assigni

o,t(ô, x̂) := false and Tempi
o,t(ô, x̂) :=

Temp
i−1
o,t (ô, x̂).

Send Statements
Let ô be an object and Ĉ its class. We restrict the model so that at most one
statement among stmt1, . . . , stmtn sends a signal to class Ĉ. If there is no
such statement, we set Sendo,t(ô) := false. Otherwise, let stmt i be such a
statement send sig(arg1, . . . , argm) to targetexpr;, and define

Sendo,t(ô) := Fire(o, t) ∧ MayRefer
i−1
o,t (targetexpr , ô). (39)

Let M be the message sig[Eval
i−1
o,t (arg1), . . . , Eval

i−1
o,t (argm)]. In the inter-

leaving and dynamic ∃-step encoding, Sendo,t(ô) is true if and only if the
transition instance 〈o, t〉 is executed and it sends M to ô. Therefore, we set
the constraint

Sendo,t(ô) ⇒
(
NewMsg(ô) = M

)
. (40)

In the static ∃-step encoding, MayRefer
i−1
o,t (targetexpr , ô) is only an approxi-

mation. We take the actual value of targetexpr into account by introducing
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two constraints

Sendo,t(ô) ∧
(
Eval

i−1
o,t (targetexpr) = ô

)
⇒

(
NewMsg(ô) = M

)
, (41)

Sendo,t(ô) ∧ ¬
(
Eval

i−1
o,t (targetexpr) = ô

)
⇒

(
NewMsg(ô) = none

)
. (42)

In all three encodings, NewMsg(ô) is fixed by a constraint when Sendo,t(ô) is
true.

Assert Statements
If stmt i is a statement of the form assert condexpr;, then we add the fol-
lowing to the set of invariants to be checked:

Fire(o, t) ⇒ Eval
i−1
o,t (condexpr). (43)

Attribute Access
An attribute x̂ in object ô is written if the transition instance is executed
and the attribute is assigned either by an assignment statement or by implicit
assignment of message parameters. Therefore we define

Writeo,t(ô, x̂) := Fire(o, t) ∧
∨ {

Assign
i
o,t(ô, x̂) | i = 0, . . . , n

}
(44)

and add the constraint

Writeo,t(ô, x̂) ⇒
(
next (AttrVal(ô, x̂)) = Temp

n
o,t(ô, x̂)

)
. (45)

Even though Assigni
o,t(ô, x̂) may be an approximation and Writeo,t(ô, x̂) may

be true even if the attribute is not assigned, the constraint (45) fixes the cor-
rect value for the attribute in the next configuration because Tempn

o,t(ô, x̂) is
evaluated accurately.

In both ∃-step encodings, we need to track reading as well as writing. We
define a function that is true (at least) if x̂ in ô is being read by the transition
instance, either in the guard or in a statement:

Reado,t(ô, x̂) := Fire(o, t) ∧
∨

Po,t(ô, x̂), (46)

where the set Po,t(ô, x̂) consists of (i) the functions MayRefer0
o,t(refexpr , ô) for

every expression refexpr such that refexpr.x̂ is a subexpression of Guard(t)
and (ii) the functions MayRefer

i−1
o,t (refexpr , ô) for every refexpr and i such

that refexpr.x̂ is a subexpression of stmt i.

Frame Conditions
Let Θ be the set of all transition instances. The only situation when NewMsg(ô)
is not fixed by one of the constraints (40), (41), or (42), is when Sendo,t(ô) is
false for all 〈o, t〉 ∈ Θ. Similarly, next (AttrVal(ô, x̂)) is not fixed when all
functions Writeo,t(ô, x̂) are false. To fix these, we add the constraints

¬
∨ {

Sendo,t(ô) | 〈o, t〉 ∈ Θ
}
⇒

(
NewMsg(ô) = none

)
, (47)

¬
∨{

Writeo,t(ô, x̂) | 〈o, t〉 ∈ Θ
}
⇒

(
next (AttrVal(ô, x̂)) = AttrVal(ô, x̂)

)
.

(48)
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B.5 Step Constraints

In the interleaving encoding, at most one object is scheduled at a time:

AtMostOne ({Scheduled(o) | o ∈ O}) . (49)

In the ∃-step encodings, this is replaced by other constraints as follows. We
require that a transition instance must not send a message to an object if a
preceding transition instance has already done so, and it must not read an
attribute that a preceding transition instance has written. Hence the con-
straints

∨{
Sendo−,t−(ô) | 〈o−, t−〉 ≺ 〈o, t〉

}
⇒ ¬Sendo,t(ô), (50)

∨ {
Writeo−,t−(ô, x̂) | 〈o−, t−〉 ≺ 〈o, t〉

}
⇒ ¬Reado,t(ô, x̂). (51)

In addition, a message cannot be consumed from a queue whose capacity
has already been exceeded by a preceding transition instance. Let 〈o, t〉 be
a transition instance such that TriggerSig(t) 6= δ. In the dynamic ∃-step
encoding, we add the constraint

∨ {
Sendo−,t−(o) | 〈o−, t−〉 ≺ 〈o, t〉

}
∧ QueueFull(o) ⇒ ¬Fire(o, t), (52)

where QueueFull(o) := (length(InputQ(o)) = QSIZE). In the static ∃-step
encoding, we replace QueueFull(o) with a static approximation true, and the
constraint strengthens to

∨ {
Sendo−,t−(o) | 〈o−, t−〉 ≺ 〈o, t〉

}
⇒ ¬Fire(o, t). (53)

B.6 Analysis

Assume that the state variables represent a configuration c ∈ CB and that the
input variables and next-state variables fulfill all constraints. We define the
current step S ⊆ A as the set consisting of all transition instances 〈o, t〉 such
that Fire(o, t) is true, and all implicit consumption actions 〈o, IMPCONS〉
such that o consumes a message without firing a transition, i.e. Dispatch(o) 6=
none but Fire(o, t) is false for all t ∈ Trans(SM(Class(o))).

Constraints (13)–(25) allow an object o to appear in at most one action
a ∈ S. If 〈o, t〉 ∈ S for some t, then enabled(c, 〈o, t〉) holds, assuming that
eval(c⋆, o, Guard(t)) = EvalGuard(o, t). By (18), next (Active(o, s)) holds
if and only if s = Target(t). If S contains an implicit consumption ac-
tion 〈o, IMPCONS〉, then Dispatch(o) cannot be δ because that would vio-
late (23) or (25). Also by (23), Feasible(o, s, Dispatch(o)) must be false for
all s and thus enabled(c, 〈o, t〉) is false for all transitions t and therefore
enabled(c, 〈o, IMPCONS〉) is true. The constraints also allow the case where
no action is executed in object o, i.e. Dispatch(o) = none and Fire(o, t) =
false for all t.

Correctness of the step encodings is based on the following arguments. (i)
Constraint (29) forbids an empty step. (ii) Step constraints (49)–(53) cannot
be broken in any encoding if the step S contains only one action. (iii) The
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encoding ensures that a ∈ S implies enabled(c, a). (iv) In ∃-steps, con-
straints (50) and (51) make sure that if a1, . . . , ak ∈ S and a1 ≺ · · · ≺ ak,
then enabled(c, ak) is still true if c is replaced by the configuration that re-
sults from executing a1, . . . , ak−1. This property requires that all implicit
consumption actions precede transition instances in the order ≺. (v) If the
capacity QSIZE of the input queue of some object o would be exceeded by
executing a step S, then constraint (17) is violated. Constraints (52) and (53)
forbid the case where (17) is fixed again by augmenting S with a transition
instance 〈o, t〉 that consumes a message from the queue. (vi) In all cases,
the next-state variables are fixed when the state ant input variables are fixed,
and they reflect the changes made by executing all actions a ∈ S, where S is
obtained from the input variables as described above.
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