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ABSTRACT: A compact symbolic encoding is described for the transition re-
lation of systems modeled with asynchronously executing, hierarchical UML
state machines that communicate through message passing and attribute ac-
cess. This enables the analysis of such systems by symbolic model checking
techniques, such as BDD-based model checking and SAT-based bounded
model checking. Message reception, completion events, and run-to-comple-
tion steps are handled in accordance with the UML specification. The size of
the encoding for state machine control logic is linear in the size of the state
machine even in the presence of composite states, orthogonal regions, and
message deferring. The encoding is implemented for the NuSMV model
checker, and preliminary experimental results are presented.

KEYWORDS: UML semantics, UML state machine, symbolic model check-
ing, verification
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1 INTRODUCTION

Model checking [7] is an automatic way of verifying that a hardware or soft-
ware system fulfills its behavioral requirements. In symbolic model checking,
the behavior of a system is analyzed by manipulating sets of states instead of
individual states, often leading to remarkable speedup in verification time.
A prerequisite for applying such techniques is a symbolic encoding for the
transition relation of the system.

The main contribution of this paper is a compact symbolic encoding for
the control logic of communicating UML state machines [22]. This directly
enables one to use state-of-the-art symbolic model checking techniques such
as BDD-based [17] and bounded model checking [4] to UML systems com-
posed of asynchronously executing, message passing state machines. The
encoding is implemented in a tool that translates UML models to the input
language of the symbolic model checker NuSMV [6]. In the perspective of
Model Driven Engineering (MDE), the presented encoding is in principle
sufficient for analyzing system models in early design phases when they do
not yet contain too many data structures but only a communication skeleton.
Analyzing models in later design phases requires in practice the use of model
reduction techniques such as slicing and abstraction in addition.

The second contribution is that we give an accurate semantics for the sub-
set of UML models we consider. The semantics is well suited for symbolic
model checking because it (i) fixes the atomicity level, (ii) does not contain
any pseudo-code but works directly on the state space level, and (iii) handles
asynchronously executing objects, classes, and data (including signal param-
eters often omitted in similar works) in an abstract yet exact level without
fixing the actual action description language or the type system. Special care
is taken to formalize run-to-completion steps in accordance with [22].

The main criterion for the selected UML subset is that it is suitable for
describing systems composed of asynchronously executing objects commu-
nicating with message passing, such as communication protocols. Therefore,
asynchronous signal events are included in the subset but synchronous call
events are not. Of UML state machine features we support (i) state hierar-
chy, which is important for compactness and clarity of models, (ii) deferring
of messages, (iii) completion events, (iv) concurrent composite states, and
(v) initial and choice pseudostates. The only restriction is that we do not al-
low concurrent substates to react to the same signal because we feel that it
is an inferior way of intra-object synchronization. As a result, the semantics
becomes easier to understand and to use as a basis for model checking and
code generation.

One way to deal with hierarchical state machines is to flatten the hierarchy
away as a preprocessing step. However, in the presence of concurrent com-
posite states, this can result in an exponential blowup in the number of states
of the flattened state machine. If there are no concurrent composite states (or
history pseudostates), then flattening will not add new states but the number
of transitions can become quadratic in the size of the original state machine.
The encoding presented here is not based on flattening but instead builds on
the hierarchical structure of states. As a result, the control logic encoding
can be represented in linear size w.r.t. the original state machine.
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1.1 Related Work

A lot of research has already been done both on the semantics and on sym-
bolic encodings of UML state machines, see e.g. [3, 8] for surveys. In the
following we compare our work to the most relevant works in these areas.

The semantics presented in this paper is most closely related to that in [16].
The main difference is that while [16] presents a pseudo-code algorithm that
executes UML models, the semantics in this paper is presented as a relation
between successive configurations of the system, making it explicit what a
single step of execution is. Such a transition relation is required for applying
symbolic model checking.

A semantics for hierarchical UML state machines is presented in [14],
but signal parameters and data manipulation are not discussed. In [23], the
semantics is refined and a superlinear size symbolic encoding is presented.
However, the processing of event queues is not thoroughly explained.

As a part of a larger EU project, [9] presents a symbolic transition relation
for UML state machines (including call events which are not considered in
this paper) but does not handle hierarchy or deferring of events.

In [2], a semantics for UML state machines and an approach for applying
an interactive theorem prover is given. Choice pseudostates, signal parame-
ters, and deferring of events are not supported, and the interaction between
concurrently executing state machines is not discussed. A translation from
UML state machines to NuSMV programs is sketched in [20], but com-
pletion events are not supported and signal parameters, deferring of events,
handling of transition priorities, concurrent composite states, or the exact
semantics of state machines are not discussed in detail.

The semantics in [13] is based on translating the full UML 2.0 state ma-
chine language to (superlinear size) “core state machines”. The granularity
of the execution semantics is much finer than in this work, and we do not
know of symbolic encodings based on [13].

Furthermore, none of [13, 9, 14, 20, 23] seem to handle completion
events in full accordance with [22]; see Sect. 2.2 on “quiescent states” be-
low.

2 A UML SUBSET AND ITS SEMANTICS

This section defines the class of UML systems considered in this paper. In
a nutshell, a UML system is composed of a finite set of objects that are in-
stances of classes in the underlying UML model. The objects can commu-
nicate with each other via asynchronous message passing and by accessing
each other’s attributes. The behavior of each object is described by the hier-
archical state machine associated with the class of the object.

We feel that a detailed formal definition such as the one below is justified
and valuable in order to ensure correct handling of non-trivial features of
UML state machines including hierarchy, deferring and implicit consump-
tion of messages, message parameter reception, completion events, and qui-
escing.
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2.1 Types, Signals, and Classes

As the focus of this report is on UML state machines, other relevant parts
of UML models, e.g. data attribute manipulation, are defined only in a very
abstract way.

To capture data types in UML models, a finite set T of types is assumed,
each type T ∈ T being associated with a non-empty domain set dom(T ). In
particular, the Boolean type B with dom(B) = {false, true} belongs to T . A
typed variable is a name x associated with a type type(x) ∈ T . The guards
and effects appearing in state machines are expressed with a strongly typed
action language L over the types; LB ⊂ L denotes the set of side-effect free
Boolean valued expressions and LStmt ⊂ L the set of (possibly compound)
statements. One example of such an action language is given in [10].

As usual, the set of all finite sequences over a set X is denoted by X∗.
If a = 〈a1, . . . , ak〉 ∈ X∗, b = 〈b1, . . . , bl〉 ∈ X∗, and x ∈ X , then
append(a, x) = 〈a1, . . . , ak, x〉, dequeue(a) = 〈a2, . . . , ak〉 (undefined if
k = 0), and concat(a, b) = 〈a1, . . . , ak, b1, . . . , bl〉.

Objects can communicate with each other by sending messages built over
a finite set Sigs of signals. Each signal sig ∈ Sigs is associated with a list
params(sig) = 〈Tsig ,1, . . . , Tsig,ksig

〉 ∈ T ∗ of parameter types. A message is
of the form sig [v1, . . . , vksig

], where sig ∈ Sigs and each vi ∈ dom(Tsig ,i); the
set of all messages is denoted by Msgs . Message reception in state machines
is denoted by signal triggers of the form sig(x1, . . . , xksig

), where sig ∈ Sigs

and each xi is a typed variable with type(xi) = Tsig ,i. The set of all signal
triggers is denoted by Trigs .

A class is a pair C = 〈attrs, sm〉, where Attrs(C) = attrs is a finite set
of typed variables called attributes and SM (C) = sm is the state machine of
the class.

2.2 State Machines

The behavior of an instance of a class (i.e. an object) is described by the
associated state machine. Formally, a hierarchical UML state machine is a
structure

sm = 〈S,R, top, container , T , defers〉,

where

• S is a finite set of state vertices partitioned into simple states Ssi , com-
posite states Sco , final states Sfi , initial pseudostates Sin , and choice
pseudostates Sch ;

• R is a finite set of regions (disjoint from S);

• top ∈ R is the unique top region;

• container : (S ∪ R \ {top}) → (S ∪ R) describes the state hierarchy
of the state machine;

• T is a finite set of transitions; and
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Figure 1: A UML state machine.

• defers : (Ssi ∪ Sco) → 2Sigs assigns each state a (possibly empty) set of
deferrable signals.

For each state vertex or region v ∈ S ∪ R of the state machine, define
the functions children(v) = {v′ ∈ S ∪R \ {top} | container(v′) = v} and
descendants(v) =

{

v′ ∈ S ∪ R \ {top} | ∃i > 0 : container i(v′) = v
}

. It is
required that the container of each non-top region is a composite state, and
that the container of each state vertex is a region. The state hierarchy must
be a connected tree, i.e. descendants(top) = S ∪ R \ {top} must hold.
Furthermore, each region must contain exactly one initial state, i.e. ∀r ∈
R : |children(r) ∩ Sin | = 1, and each composite state at least one re-
gion, i.e. ∀s ∈ Sco : children(s) 6= ∅. If a composite state contains more
than one region, then it is called concurrent. Two state vertices s1, s2 ∈ S
are orthogonal, denoted s1 ⊥ s2, if there are distinct regions r1, r2 ∈ R,
r1 6= r2 such that container(r1) = container(r2), s1 ∈ descendants(r1),
and s2 ∈ descendants(r2). A set S ⊆ S of states is consistent iff for any two
distinct state vertices s1, s2 ∈ S either s1 ⊥ s2, s1 ∈ descendants(s2), or
s2 ∈ descendants(s1).

As an example, consider the state machine in Fig. 1. A2 is a concurrent
composite state with container(A2) = top and children(A2) = {r1, r2},
where r1 and r2 are regions. B2 is a simple state with defers(B2) = {e} and
container(B2) = r1. The choice pseudostate B3 and the final state C4 are
orthogonal. The state set {A2, B1, C2} is consistent while {A3, D2, D3} is
not.

A transition t in the set T of transitions is a tuple

〈s, σ, g, e, s′〉 ∈ (S \ Sfi) × (Trigs ∪ {τ}) × LB × LStmt × (S \ Sin).

We define source(t) = s, guard(t) = g, effect(t) = e, and target(t) = s′.
The container container(t) of t is the smallest (w.r.t. the partial order in-
duced by container) region such that {s, s′} ⊆ descendants(r). If σ = τ ,
we say that t is a completion transition and define triggersig(t) = τ . Oth-
erwise, σ = sig(. . .) and we define triggersig(t) = sig . In UML only
completion transitions can leave pseudostates: source(t) ∈ Sin ∪ Sch im-
plies triggersig(t) = τ . We require that transitions originating from or-
thogonal states are not triggered by the same signal: for all t1, t2 ∈ T , if
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triggersig(t1) = triggersig(t2) 6= τ , then source(t1) ⊥ source(t2) must not
hold.

In Fig. 1, transition t10 = 〈B2, e(p), p>3, x=0;, D3〉 has container(t10) =
top. The completion transition t15 has container(t15) = r2, guard(t15) is
implicitly true, and effect(t15) = skip, where skip is a pseudostatement
that does nothing.

State Configurations. A state configuration of the state machine is a pair

sc = 〈A, Q〉,

where the set A of active state vertices is a maximal consistent subset of S
and Q ⊆ A is a set of quiescent states. The intuition is that a state is in Q if
it has already consumed its implicit completion event. A completion event
of a state is consumed either by firing an outgoing completion transition or,
if the guards of all completion transitions evaluate to false, by quiescing the
state, after which the completion transitions will not become enabled even
if the guards become true. This construction (from [16]) accurately models
the requirement [22, p. 659] that the guards of completion transitions will
not be evaluated again without re-entering the state. For example, state C3

in Fig. 1 can become quiescent if x==3 does not hold, and then t18 will not
become enabled even if the value of x is changed to 3.

Because completion events are only relevant for states with outgoing com-
pletion transitions, we only define quiescence status for the set of comple-
tion sensitive states SCS = {s ∈ Ssi ∪ Sco | ∃t ∈ T s.t. source(t) =
s and triggersig(t) = τ}. Thus, Q is always a subset of A ∩ SCS . We say
that a state s ∈ SCS is ready to consume its completion event in sc, denoted
by ceready(sc, s), if

1. it is active but not quiescent: s ∈ A \ Q, and

2. it is either (i) a simple state: s ∈ Ssi , or (ii) a composite state with all
its regions in final states: s ∈ Sco and ∀s′ ∈ A : container2(s′) = s ⇒
s′ ∈ Sfi .

A state configuration sc = 〈A, Q〉 is

• in compound transition, denoted by inct(sc), if it contains an active
pseudostate: A ∩ (Sin ∪ Sch) 6= ∅,

• in run-to-completion (RTC) step, denoted by inrtc(sc), if (i) it is in
compound transition, or (ii) there is a completion sensitive state that is
ready to consume its completion event in it, and

• stable, denoted by stable(sc), if it is not in RTC step.

A UML state machine consumes messages from its input queue only when
it is in a stable state configuration.

Consider again the state machine in Fig. 1. The state C3 is the only com-
pletion sensitive state in it. The pair 〈{A2, B2, C3}, {C3}〉 is a stable state
configuration, while the state configuration 〈{A2, B3, C3}, {C3}〉 is in com-
pound transition. The state configuration 〈{A2, B2, C3}, ∅〉 is in RTC step
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(but not in compound transition) because the state C3 is ready to consume
its completion event in it.

The default entry completion of a state vertex s ∈ S, denoted by dec(s), is
the smallest maximal consistent subset of Sco∪Sin∪{s} such that s ∈ dec(s).
In the state machine in Fig. 1, dec(A3) = {A3, D1}, dec(D3) = {A3, D3},
dec(C3) = {A2, B1, C3}, and dec(A2) = {A2, B1, C1}.

Given a state configuration sc = 〈A, Q〉 and a transition t ∈ T with
source(t) ∈ A, the t-successor of sc is

succ-conf (sc, t) = 〈A′, Q′〉,

where A′ = (A \ D) ∪ (dec(target(t)) ∩ D), Q′ = Q \ D, and D is a
shorthand for descendants(container(t)). In the state machine in Fig. 1,
the t10-successor of the state configuration sc = 〈{A2, B2, C3}, {C3}〉 is
〈{A3, D3}, ∅〉 while the t11-successor of sc is 〈{A3, D1}, ∅〉.

2.3 Systems and State Spaces

We consider a UML system to consist of a finite set of objects O, each object
o ∈ O being associated with the class Class(o) that it is an instance of. A
global configuration of the system is a tuple

gc = 〈stateconf gc, attrvalsgc, inputqgc , deferqgc〉,

where

• stateconf gc maps each object o to the current state configuration of its
state machine SM (Class(o)),

• attrvalsgc maps each object o to a function giving each attribute x ∈
Attrs(Class(o)) its current value in dom(type(x)), and

• inputqgc, deferqgc : O → Msgs∗ describe the contents of the input and
deferred queues, respectively, of each object.

For convenience, let StateConf (gc, o) = stateconf gc(o), AttrVal(gc, o, x) =
attrvalsgc(o)(x), InputQ(gc, o) = inputqgc(o), and let DeferQ(gc, o) =
deferqgc(o). The set of all global configurations is denoted by GC.

Given a side-effect free Boolean expression φ in LB, eval(gc, o, φ) evalu-
ates it in the context of a global configuration gc and an object o, and returns
false or true. Given a statement γ in LStmt, exec(gc, o, γ) executes it in the
context of gc and o, and returns a new global configuration gc ′ with the re-
strictions that, for each o′ ∈ O, (i) the state configuration is not modified:
StateConf (gc′, o′) = StateConf (gc, o′), (ii) messages cannot be removed
from the input queue: InputQ(gc, o′) is a prefix of InputQ(gc′, o′), and (iii)
the deferred queue is not modified: DeferQ(gc ′, o′) = DeferQ(gc, o′).

UML requires that for each pseudostate, there is always at least one outgo-
ing transition whose guard is true:∀gc ∈ GC, ∀o ∈ O, ∀s ∈ Sin∪Sch : ∃t ∈ T
s.t. source(t) = s and eval(gc, o, guard(t)) = true.
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State Spaces. The actual semantics of a UML system is given by its state
space that describes how the system may evolve from one global configura-
tion to another. Each atomic step between global configurations corresponds
to one object either firing one transition, deferring a message, or implicitly
consuming a message or a completion event. The UML run-to-completion
semantics for individual state machines is followed as messages can only be
consumed in stable state configurations. Formally, the state space of a UML
system is the tuple

〈GC, gcinit, ∆〉,

where gc init ∈ GC is the initial configuration, and ∆ ⊆ GC × A× GC is
the minimal transition relation defined by the following rules (A being a set
of possible annotations). Assume an object o ∈ O, that SM (Class(o)) =
〈S,R, top, container , T , defers〉 and let sc = 〈A, Q〉 = StateConf (gc, o).

• Signal Triggered Transitions. Let t = 〈s, sig(x1, . . . , xk), g, e, s′〉 ∈
T be a transition. The transition instance 〈o, t〉 is enabled in gc, de-
noted by enabled(gc, 〈o, t〉), if

– the state configuration is stable: stable(sc),

– the source state is active: s ∈ A,

– InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,

– eval(gc⋆, o, g) = true, where gc⋆ is equal to gc except that in o,
the message sig [v1, . . . , vk] has been received: InputQ(gc⋆, o) =
dequeue(InputQ(gc, o)) and ∀1 ≤ i ≤ k : AttrVal(gc⋆, o, xi) =
vi (the formal parameters in the signal trigger are required to be
attributes in the class of o),

– no prioritized transition is enabled [22, p. 608], i.e. there is no en-
abled transition deeper in the hierarchy: ∄t′ ∈ T : source(t′) ∈
descendants(s) ∩ A ∧ enabled(gc, 〈o, t′〉), and

– the message is not being deferred by a state at a deeper level:
∄s′′ ∈ descendants(s) ∩ (Ssi ∪ Sco) ∩ A : sig ∈ defers(s′′).

If enabled(gc, 〈o, t〉) holds, then 〈gc, 〈o, t〉, gc′〉 ∈ ∆, where the global
configuration gc′ is equal to gc′′ = exec(gc⋆, o, e) except that the state
configuration is updated: StateConf (gc ′, o) = succ-conf (sc, t), and
the deferred queue is flushed to the input queue: DeferQ(gc ′, o) = 〈〉
and InputQ(gc ′, o) = concat(DeferQ(gc, o), InputQ(gc ′′, o)).

• Deferring. If no transition instance is enabled, then the first message
in the input queue can be deferred. Formally, the deferring instance
〈o, DEFER〉 is enabled in gc, denoted by enabled(gc, 〈o, DEFER〉), if

– the state configuration is stable: stable(sc),

– InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,

– ∄t ∈ T : enabled(gc, 〈o, t〉), and

– there is an active state deferring the message:
∃s ∈ (Ssi ∪ Sco) ∩ A : sig ∈ defers(s).
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If enabled(gc, 〈o, DEFER〉) holds, then 〈gc, 〈o, DEFER〉, gc′〉 ∈ ∆, where
gc′ is equal to gc except that InputQ(gc′, o) = dequeue(InputQ(gc, o))
and DeferQ(gc′, o) = append(DeferQ(gc, o), sig[v1, . . . , vk]).

• Implicit consumption. If the first message in the input queue is not
consumed by a transition or deferred, it can be implicitly consumed.
Formally, enabled(gc, 〈o, IMPCONS〉) holds if

– the state configuration is stable: stable(sc),

– InputQ(gc, o) = 〈sig [v1, . . . , vk], . . .〉,

– ∄t ∈ T : enabled(gc, 〈o, t〉), and

– enabled(gc, 〈o, DEFER〉) does not hold.

If enabled(gc, 〈o, IMPCONS〉) holds, then 〈gc, 〈o, IMPCONS〉, gc ′〉 ∈ ∆,
where gc′ is equal to gc except that the first message has been con-
sumed: InputQ(gc′, o) = dequeue(InputQ(gc, o)).

• Completion transitions. Implicit completion events are consumed
until a stable state configuration is reached. Formally, for each transi-
tion t = 〈s, σ, g, e, s′〉 ∈ T such that σ = τ , the completion transition
instance 〈o, t〉 is enabled in gc, denoted by enabled(gc, 〈o, t〉), if

– the source is active: s ∈ A,

– either (i) the source is a pseudostate: s ∈ Sin ∪ Sch or (ii) the
state configuration is in RTC step but not in compound transition
and the source state s ready to consume its completion event:
¬inct(sc) ∧ inrtc(sc) ∧ s ∈ Ssi ∪ Sco ∧ ceready(sc, s), and

– the guard condition holds: eval(gc, o, g) = true.

If enabled(gc, 〈o, t〉) holds, then 〈gc, 〈o, t〉, gc′〉 ∈ ∆, where gc ′ is
equal to exec(gc, o, e) except that the state configuration is updated:
StateConf (gc ′, o) = succ-conf (sc, t).

• Quiescing. If a completion sensitive state s ∈ SCS is ready to consume
its completion event but no outgoing completion transition is enabled,
the state can quiesce (i.e. implicitly consume the completion event).
Formally, enabled(gc, 〈o, QUIESCEs〉) holds if

– the state configuration is in RTC but not in compound transition:
inrtc(sc) ∧ ¬inct(sc),

– the state is active and ready to consume its completion event:
s ∈ SCS ∩ A ∧ ceready(sc, s), and

– ∄t ∈ T : source(t) = s ∧ triggersig(t) = τ ∧ enabled(gc, 〈o, t〉).

If enabled(gc, 〈o, QUIESCEs〉) holds, then 〈gc, 〈o, QUIESCEs〉, gc
′〉 ∈

∆, where gc ′ is equal to gc except that state s has become quiescent:
StateConf (gc ′, o) = 〈A, Q ∪ {s}〉.

8 2 A UML SUBSET AND ITS SEMANTICS



3 ENCODING SYSTEM BEHAVIOR

The symbolic encoding of the state space transition relation is based on con-
straints involving state variables, whose valuation represents a global config-
uration, next-state variables, whose valuation represents the global configura-
tion after executing one step, input variables used to capture non-determinism
and whose values are only limited by the constraints, and auxiliary derived
functions defined over the variables. All variables and functions have Boolean
values unless otherwise stated. To keep the state space finite, we assume that
dom(T ) is finite for each type T and restrict the analysis to bounded global
configurations, where for each object, the total number of messages in its in-
put and deferred queues is limited by the constant QSIZE. This implies that
all non-Boolean variables have finite domains and thus can be booleanized
to enable the use of SAT- and BDD-based techniques.

More specifically, we define an encoding such that, given a valuation
for state variables that represents a bounded global configuration gc and
an arbitrary valuation for next-state variables, there exists a valuation for in-
put variables that satisfies all the constraints if and only if the valuation for
next-state variables represents a bounded global configuration gc′ such that
〈gc, a, gc′〉 ∈ ∆ for some annotation a.

3.1 State Variables

Let gc be a bounded global configuration. Let the state configuration of
an object o ∈ O be 〈A, Q〉 = StateConf (gc, o), and let the numbers d

and n and messages M0, . . . , Mn−1 be such that the deferred queue of o is
〈M0, . . . , Md−1〉 = DeferQ(gc, o) and the input queue is 〈Md, . . . , Mn−1〉 =
InputQ(gc, o). Because gc is bounded, we have 0 ≤ d ≤ n ≤ QSIZE. For
each object, the set of state variables contains five kinds of elements, with
values derived from gc as follows.

• Active(o, s), where s is a state vertex in the state machine of o, is true if
and only if s is active, i.e. s ∈ A.

• Quiescent(o, s), where s is a completion sensitive state in the state ma-
chine of o, is true if and only if s ∈ Q.

• AttrVal(o, x), where x ∈ Attrs(Class(o)), has domain dom(x) and
value AttrVal(gc, o, x). We omit all details of data handling and do
not reference these variables in the encoding.

• Queue(o, k), where 0 ≤ k < QSIZE, has domain Msgs ∪ none. Its
value is Mk if k < n, and none otherwise. In other words, the sequence
〈Queue(o, 0), . . . , Queue(o, QSIZE − 1)〉 consists of the deferred queue,
followed by the input queue, followed by zero or more none entries.

• QPos(o) has domain {0, 1, . . . , QSIZE} and value d.

The corresponding next-state variables are denoted by next (Active(o, s)),
next (Quiescent(o, s)), etc.
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3.2 Queues and Messages

Let o ∈ O be an object. We restrict the model so that one transition can send
at most one new message to each object (this can be circumvented by split-
ting non-complying transitions to segments and adding choice pseudostates
between them). The function QNewMsg(o) with values in Msgs ∪ {none}
evaluates to the message being sent to o during the step 〈gc, a, gc′〉, or none
if no message is being sent. The definition of QNewMsg(o) depends on the
action language statements, which are not considered here.

The function CurrentMsg(o) with domain Msgs ∪ {none} contains the
first message in the input queue, or none if the input queue is empty:

CurrentMsg(o) := if























QPos(o) = 0 : Queue(o, 0)
...

...

QPos(o) = QSIZE − 1 : Queue(o, QSIZE − 1)

else : none.

(1)

The input variable Dispatch(o) with domain Sigs ∪ {none} determines the
signal in the message (if any) being consumed by o. The signal must be
present in the first message in the input queue, so we add for each sig ∈ Sigs

the constraint

(Dispatch(o) = sig) ⇒ (CurrentMsg(o) = sig [. . .]) . (2)

The queues interface with other parts via the following operations: (i) re-
moving the first message from the input queue and discarding it, triggered by
the predicate QRem(o), (ii) moving the first message from the input queue to
the deferred queue, triggered by QDefer(o), (iii) flushing the entire contents
of the deferred queue to the input queue, triggered by QFlush(o), and (iv)
adding the new message QNewMsg(o) to the input queue. Any combination
of operations is allowed to occur in the same step as long as their order re-
spects the list above, and cases (i) and (ii) do not occur in the same step. The
functions QRem(o), QDefer(o), and QFlush(o) are defined in Sect. 3.3.

Operation (iii) above corresponds to resetting QPos(o) to zero, and opera-
tion (ii) corresponds to incrementing QPos(o), formalized by the constraint

next (QPos(o)) = if











QFlush(o) : 0

QDefer(o) : QPos(o) + 1

else : QPos(o).

(3)

Operation (i) removes the element at index QPos(o) from the queue, shift-
ing the elements at QPos(o) + 1, . . . , QSIZE − 1 one position to the left. Op-
eration (iv) adds the new message to the first free position, i.e. the position
k such that Queue(o, k − 1) 6= none and Queue(o, k) = none. However,
if operation (i) has been performed in the same step, the position must be
decremented by 1. The new queue contents for 0 ≤ k < QSIZE is thus
determined by

next (Queue(o, k)) = if











No(k) : QNewMsg(o)

QRem(o) ∧ QPos(o) ≤ k : Queue(o, k + 1)

else : Queue(o, k),

(4)
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where

No(k) := (QRem(o) ⇔ (Queue(o, k) 6= none))∧

(Queue(o, k − 1) 6= none) ∧ (Queue(o, k + 1) = none) .

The boundaries are defined as we substitute true for both Queue(o, QSIZE) =
none and Queue(o,−1) 6= none. To forbid transitions to global configura-
tions that are not bounded, we prevent the queue from overflowing by setting
the constraint

(QNewMsg(o) 6= none) ⇒ (Queue(o, QSIZE − 1) = none)∨QRem(o). (5)

3.3 Control Logic of State Machines

Next we describe a compact symbolic encoding for the semantics of UML
state machines as described in Sect. 2.3. Let o ∈ O be an object with the
state machine 〈S,R, top, container , T , defers〉.

State Configuration Classification. As defined in Sect. 2.2, a completion
sensitive state s ∈ SCS is ready to consume its completion event if it is active,
not quiescent, and all its regions (if any) are in final states:

CEReady(o, s) := Active(o, s) ∧ ¬Quiescent(o, s) ∧
∧

{F (o, r) | r ∈ children(s)}, (6)

where F (o, r) :=
∨

{Active(o, s′) | s′ ∈ children(r) ∩ Sfi} is true iff the ac-
tive child state of the region r is a final state.

Based on this, it is easy to define the predicates InCT(o) and InRTC(o)
telling whether the state configuration is in compound transition or in RTC
step, respectively:

InCT(o) :=
∨

{Active(o, s) | s ∈ Sin ∪ Sch}, and (7)

InRTC(o) := InCT(o)∨
∨

{CEReady(o, s) | s∈SCS}. (8)

Because an object can consume events from the input queue only if its state
configuration is stable, we add the constraint

InRTC(o) ⇒ (Dispatch(o) = none) . (9)

Enabledness Conditions for Transitions. We associate with each transi-
tion t ∈ T of the state machine an input variable Fire(o, t) that determines
whether t is being fired in o. According to the semantics, firing a transition t

requires that (i) the source state is active, and (ii) the guard evaluates to true,
captured by the constraint

Fire(o, t) ⇒ Active(o, source(t)) ∧ EvalGuard(o, t). (10)

We assume that EvalGuard(o, t) encodes the function eval(gc⋆, o, guard(t))
(or eval(gc, o, guard(t)) if t is a completion transition) in Sect. 2.3, and omit
its formula.
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If t is a completion transition whose source is a simple or composite state,
it is also required that (i) the state configuration is not in a compound transi-
tion and (ii) the source state is ready to consume its completion event:

Fire(o, t) ⇒ ¬InCT(o) ∧ CEReady(o, source(t)). (11)

If t is not a completion transition, then we have to ensure that there is no
enabled prioritized transition and no active descendant state can defer the
message. For this purpose we define an auxiliary function

Feasible(o, s, sig) := Active(o, s) ∧

¬DescFeasible(o, s, sig) ∧ ¬DescDeferring(o, s, sig) ∧
∨

{EvalGuard(o, t) | t ∈ R(s, sig)} (12)

with R(s, sig) = {t∈T | source(t)=s ∧ triggersig(t)=sig}. Feasible(o, s,
sig) evaluates to true iff (i) there is at least one sig -triggered transition with
source s and guard satisfied, and (ii) there is neither an active descendant
of s that can defer sig nor a prioritized enabled sig -triggered transition. The
function DescFeasible(o, v, sig) is defined simply by

DescFeasible(o, v, sig) :=
∨

{

Feasible(o, v′, sig) ∨

DescFeasible(o, v′, sig) | v′ ∈ children(v)
}

, (13)

with Feasible(o, v, sig) := false for v ∈ Sin ∪ Sch ∪ Sfi ∪ R. The function
DescDeferring(o, s, sig) is defined later. Now we only have to constrain that if
a message with signal sig is to be consumed from the input queue and there
are enabled sig -triggered transitions leaving from an active state s ∈ Ssi∪Sco ,
then one of them is fired:

∨

{

Fire(o, t) | t ∈ Ro(s, sig)
}

⇔

(Dispatch(o) = sig) ∧ Feasible(o, s, sig). (14)

Constraint (20) below ensures that at most one such transition is fired. Due
to (9), a signal triggered transition can only be fired in a stable state configu-
ration.

State Configuration Change due to Transition Firing. Perhaps the most
complicated part in the symbolic encoding is the computation of successor
state configurations as defined in Sect. 2.2. A state vertex s ∈ S becomes
active in the next configuration if it is entered by firing a transition, and it
remains active if it is not exited by a transition:

next (Active(o, s)) ⇔ Enter(o, s) ∨ (Active(o, s) ∧ ¬Exit(o, s)) . (15)

A non-initial state vertex is entered if it is the target of a transition being fired,
or if it is a composite state whose region is being broken in by a transition.
We say that a fired transition t breaks in a region r if the transition cuts
in through the boundary of the region in the diagram, or formally, if r ∈
descendants(container(t)) and target(t) ∈ descendants(r). In Fig. 1, the
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only such transition is t10, which breaks in region r3. For each vertex s ∈
S \ Sin ,

Enter(o, s) :=
∨

{Fire(o, t) | t ∈ T ∧ target(t) = s} ∨
∨

{BreakIn(o, r) | r ∈ children(s)}, (16)

and for each region r ∈ R,

BreakIn(o, r) :=
∨

{Enter(o, s) | s ∈ children(r)\Sin} ∧

¬
∨

{Fire(o, t) | t ∈ T ∧ container(t) = r}. (17)

An initial pseudostate sin ∈ Sin is entered if its containing state is entered
but its containing region is not broken in:

Enter(o, sin) := Enter(o, container2(sin)) ∧

¬BreakIn(o, container(sin)). (18)

As a special case, Enter(o, sin) := false if sin ∈ Sin ∩ children(top). For each
s ∈ S, the value of Exit(o, s) is true iff s or one of its ancestors is being exited
by a transition, defined by

Exit(o, s) := Exit(o, container2(s)) ∨
∨

Xo(s), (19)

where Xo(s) is the set consisting of each Fire(o, t) such that t ∈ T and s ∈
children(container(t)) and source(t) ∈ {s} ∪ descendants(s). Intuitively,
Fire(o, t) is in the set Xo(s) iff s is the outermost state vertex exited when
t is fired. For example in Fig. 1, Xo(A2) = {Fire(o, t10), Fire(o, t11)} and
Xo(B2) = {Fire(o, t8)}.

To avoid firing several transitions from the same state at the same time, for
each s ∈ S the constraint

AtMostOne
(

{Exit(o, container2(s))} ∪ Xo(s)
)

(20)

is added that allows at most one of the disjuncts in (19) to be true. A predicate
of the form AtMostOne (P ) evaluates to true if and only if zero or one of the
predicates in set P evaluates to true. This can be expressed with O(|P |) bi-
nary Boolean connectives. In (19) and (20), the term Exit(o, container2(s))
is omitted if container(s) = top.

Quiescing. We associate with each completion sensitive state s ∈ SCS an
input variable Quiesce(o, s) that indicates whether s is becoming quiescent.
The state s becomes quiescent when Quiesce(o, s) is true, and it remains
quiescent until it is exited:

next (Quiescent(o, s)) ⇔ ¬Exit(o, s) ∧ (Quiesce(o, s) ∨ Quiescent(o, s)) .

(21)

The following constraint ensures that quiescing can only happen when (i)
there are no active pseudostates and (ii) the state is ready to consume its
completion event but none of the outgoing completion transitions is enabled:

Quiesce(o, s) ⇒¬InCT(o) ∧ CEReady(o, s) ∧

¬
∨

{EvalGuard(o, t) | t ∈ Rτ (s)} (22)
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with Rτ (s) = {t ∈ T | source(t) = s ∧ triggersig(t) = τ}. Together with
(8) this ensures that quiescing can only happen in an RTC step: Quiesce(o, s)
implies InRTC(o).

Deferring. For each signal sig ∈ Sigs and each simple or composite state
s ∈ Ssi ∪ Sco , the function

Deferring(o, s, sig) :=

{

Active(o, s) if sig ∈ defers(s),

false otherwise
(23)

is true iff s is active and can defer the signal sig . Define Deferring(o, v, sig) :=

false if v ∈ Sin ∪ Sch ∪ Sfi ∪R. Now for each v ∈ S ∪R,

DescDeferring(o, v, sig) :=
∨

{

Deferring(o, v′, sig) ∨

DescDeferring(o, v′, sig) | v′ ∈ children(v)
}

(24)

is true iff v has an active descendant that can defer sig .
The object o defers the first message in its input queue if the message is

dispatched, there is an active deferring state, and no transition is consuming
the message:

Defer(o, sig) := DescDeferring(o, top, sig) ∧

¬DescFeasible(o, top, sig) ∧ (Dispatch(o) = sig) ,

QDefer(o) :=
∨

{Defer(o, sig) | sig ∈ Sigs}.

Note that QDefer(o) implies Dispatch(o) 6= none and thus (9) ensures that de-
ferring can only happen in a stable state configuration, i.e. QDefer(o) implies
¬InRTC(o).

Putting it All Together. The constraints so far do not prevent simultaneous
firing of completion transitions or quiescing of states. This is fixed by the
constraint

AtMostOne (Co ∪ Qo) , (25)

where Co = {Fire(o, t) | t ∈ T ∧ triggersig(t) = τ} corresponds to o firing
a completion transition and Qo = {Quiesce(o, s) | s ∈ SCS} corresponds to o

quiescing a state.
When examining the system as a whole, an object is scheduled if it is

consuming a message, firing a completion transition, or quiescing a state.
The object is ready for execution if one of these occurrences is enabled. The
system is in a deadlock if no object is ready. These are formalized below.

Scheduled(o) := (Dispatch(o) 6= none) ∨
∨

(Co ∪ Qo) ,

Ready(o) := (CurrentMsg(o) 6= none) ∨ InRTC(o),

Deadlock() := ¬
∨

{Ready(o) | o ∈ O}.
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The functions needed by input queue encoding, presented in the previous
section, are defined as follows:

QFlush(o) :=
∨

{

DescFeasible(o, top, sig) ∧

(Dispatch(o) = sig) | sig ∈ Sigs
}

,

QRem(o) := (Dispatch(o) 6= none) ∧ ¬QDefer(o).

To obtain an interleaving execution semantics, we must constrain that
exactly one object is scheduled at a time:

∨

{Scheduled(o) | o ∈ O}, and (26)

AtMostOne ({Scheduled(o) | o ∈ O}) . (27)

Using this transition relation encoding, we can now use symbolic model
checking tools such as NuSMV [6] to check properties of UML systems.
For example, to check that a deadlock cannot be reached, we use a model
checker to check that ¬Deadlock() is an invariant in all executions.

3.4 Analysis

Assuming that the state variables represent a bounded global configuration
and all constraints are satisfied, there is by (26) and (27) a unique object
o such that Scheduled(o) holds. There are five mutually exclusive cases:
(i) QFlush(o) is true, consequently QRem(o) is true, there is a unique t ∈ T
such that Fire(o, t) is true, and triggersig(t) = Dispatch(o) 6= none. This
corresponds to the step 〈gc, 〈o, t〉, gc′〉 ∈ ∆. (ii) QDefer(o) is true, corre-
sponding to 〈gc, 〈o, DEFER〉, gc′〉 ∈ ∆. (iii) QFlush(o) and QDefer(o) are both
false and Dispatch(o) 6= none, which corresponds to implicit consumption
〈gc, 〈o, IMPCONS〉, gc′〉 ∈ ∆. (iv) Dispatch(o) = none and Fire(o, t) is true for
some t, in which case triggersig(t) = τ , corresponding to 〈gc, 〈o, t〉, gc′〉 ∈
∆. (v) Dispatch(o) = none and Quiesce(o, s) is true for a state s ∈ SCS ,
corresponding to the quiescing step 〈gc, 〈o, QUIESCEs〉, gc

′〉 ∈ ∆.

The size of the encoding is linear in the size |M| of the input model,
which includes the definition of all signals, state vertices, transitions, and de-
ferrable signals. We assume that all trivial definitions have been eliminated,
i.e. those derived functions that are vacuously true or false or equal to another
function or variable, and constraints that are vacuously true. The queue en-
coding of Sect. 3.2 for a single object has size O(QSIZE · W ), where W is
the maximum bit width of a message. Consider the control logic encoding
of Sect. 3.3 for an object o. The definitions (16), (17), and (19) are designed
so that each variable Fire(o, t) appears in exactly one definition of each kind,
so these are O(|S| + |T |) in size. The total size of nontrivial definitions of
the form (12) and (13), summed over all s ∈ S and sig ∈ Sigs , is O(|T |).
The total size of (23) and (24) is O(Σs∈S |defers(s)|). Other definitions are
O(|S| + |T | + |Sigs|) in size. Summing up, the total size of the encoding of
a model without data is O(|O|(QSIZE · W + |M|)).
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Table 1: Symbolic model checking of a hierarchical vs. flattened TV model.

BMC ZChaff BMC MiniSat BDD Invar
time time time

original 16.49–54.60 29.29–90.00 0.63–0.67
flattened 30.12–77.94 25.16–300.63 1.06–1.09

3.5 Preliminary Evaluation

We have implemented the symbolic encoding described above. The imple-
mentation1 reads a UML model, stored in the XMI file format supported by
the open-source meta-modeling tool Coral [1], and translates it to the input
language of the NuSMV symbolic model checking tool [6]. For the experi-
ments here we use NuSMV version 2.4.3.

To evaluate whether allowing hierarchy in the encoding is helpful, we
use a variant of the TV model in [18] that is one of the standard example
systems in UML model checking literature. We try to measure only the hier-
archy aspect by model checking a deadlock-freedom property of a modified
model in which the property does not hold—the TV stops working after it
has been switched off 50 times. The symbolic encoding is evaluated on both
the original hierarchical model and the corresponding flattened model; the
original state machine has 12 state vertices and 13 transitions while the flat-
tened state machine has 11 state vertices and 25 transitions. The results in
Table 1 show the minimum and maximum CPU times of ten runs of (i) a
state-of-the-art incremental BMC algorithm [15, 5] when ZChaff (version
64bit.2007.3.12) [19] and MiniSat2 (version 061208) [12] are applied as the
SAT solver, and (ii) the basic BDD-based invariant checking algorithm. For
this model it is clearly beneficial not to flatten the hierarchy as a preprocess-
ing step. Our hypothesis for this behavior is that because flattening increases
the number of transitions in the model, it also increases the search space of
the SAT solver.

Furthermore, the experiments in [11] compare explicit-state model check-
ing using Spin to BMC using the queue and control logic encoding pre-
sented here. The results indicate that symbolic model checking can comple-
ment explicit-state model checking even when analyzing asynchronous pro-
tocol models. Symbolic model checking also has the favorable feature that
when a property violation is found, the returned counterexample execution
is always short, making it simpler for the user to analyze.

Obviously, a more thorough evaluation of efficiency and bottlenecks in
symbolic model checking of asynchronous message passing UML systems is
needed.

1Available at http://www.tcs.hut.fi/Research/Logic/SMUML.shtml
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4 CONCLUSIONS

In this paper we have defined a semantics and a compact symbolic encoding
for a class of UML models composed of asynchronously executing, message
passing hierarchical state machines. This enables the use of state-of-the-art
symbolic model checking techniques for the analysis of such models. Ex-
perimental results indicate that it may be beneficial to maintain the state
machine hierarchy in the encoding instead of flattening the state machine
before encoding.

The encoding presented in this paper uses the standard interleaving se-
mantics, i.e. at most one object can fire at most one transition during one
time step. It is also possible to extend the encoding to use so-called ∃-
step semantics [21] so that independent transitions in several objects can
be executed at the same time step; see [11] for such an encoding for non-
hierarchical state machines.

There are probably many ways to optimize the state machines or the en-
coding to make symbolic model checking more efficient. For instance, tran-
sitions leaving the initial state of a region could in many cases be eliminated
in the encoding phase. Furthermore, in order to analyze systems with more
data attributes, reduction techniques such as slicing and data abstraction
should also be applied.
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