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Abstract. The function F of Dragon plays an important role on both the keystream
generation and the internal state update. We analyze the function F of Dragon by lin-
ear cryptanalytic methods. Thanks to an efficient algorithm on linear approximations
of the modular addition, we observed that there were a large number of approxi-
mations with significant correlations in the nonlinear components of the function F .
Using linear approximations of the modular addition with correlations up to 2−20, we
estimate that the distinguisher for Dragon has a correlation of 2−66.45.
Keywords : Stream Ciphers, eSTREAM, Dragon, Modular Addition, Distinguishing
Attacks.

1 Introduction

In 2004, the ECRYPT project launched a new multi-year project eSTREAM, the ECRYPT
Stream Cipher project, to identify new stream ciphers that might become suitable for
widespread adoption as an international industry standard [?]. In Phase 3 of eSTREAM,
eight stream ciphers have been selected as focus stream ciphers in the software category
(Profile 1) and Dragon is one of those stream ciphers.

Dragon is a word oriented stream cipher. It has a 1024-bit internal state and a 64-bit internal
memory.

It employs a function F which is a carefully designed nonlinear function whose output is
used for the internal state update and the keystream generation. Hence, the cryptographic
strength of the function F is one of important assumptions for the Dragon stream cipher.

In this paper, the function F of Dragon is analyzed by linear cryptanalytic methods. First,
the nonlinear components of the function F such as modular addition and S-boxes are
analyzed and their linear approximations are derived. Second, we observed that there were
a large number of approximations with significant correlations in the components. To achieve
an accurate estimate for the correlation of the function F, one should take multiple linear
chains among the components into account.

The first distinguisher for the Dragon stream cipher was reported in [?] and then, its ef-
ficiency was improved in [?]. Here in this paper, we will show that the correlation of the
distinguisher, which was reported in [?] as 2−75.32, was quite underestimated. Using the
efficient algorithm for linear approximations of the modular addition that was developed by
Wallen [?], we were able to search the linear approximations of the components extensively.
We investigated correlations of the components by using linear approximations of the mod-
ular addition with correlations up to 2−20. As a result, our computer simulation shows that
the correlation of our distinguisher is around 2−66.45. Therefore, we claim that the Dragon
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stream cipher is distinguishable from a random cipher by observing around 2133 keystream
words under the assumption that 259 memory bits are guessed. This is the best cryptanalytic
result for Dragon in the open literature.

This paper is organized as follows. Section 2 presents a brief description of the function F

of Dragon. In Section 3, the correlations of nonlinear components of Dragon are discussed.
And then, a set of linear approximations of the function F are derived and a distinguisher
is built by combining these approximations in Section 4. Section 5 concludes the work.

2 The Function F of Dragon

The function F is the nonlinear state update function of Dragon [?]. The function F defined
in Dragon is a nonlinear function that plays double role, first it updates the internal state of
the cipher and its second role is to generate the keystream. The function F takes six 32-bit
words, denoted as (a, b, c, d, e, f), as the input and produces six 32-bit words, denoted as
(a′, b′, c′, d′, e′, f ′), as the output. Among the six output words, two words (b′, c′) are used
as new state words, two words (a′, e′) are the output of a 64-bit keystream word and the
remaining two words (d′, f ′) are discarded.

The function F consists of xors, modular additions, and six nonlinear functions that are
called as G1, G2, G3, H1, H2 and H3. The detailed structure of the function F is shown in
Figure 1. Note that all the components are operated in GF (232). The essential components
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Fig. 1. F function

of the functions G and H are the two S-boxes: S1 and S2. Both S1 and S2 transform 8-bit
inputs into 32-bit outputs, that is, Z28 → Z232 . The functions G and H use both S-boxes
selectively four times. Hence, G and H take a 32-bit input and produce a 32-bit output,
that is, G,H : Z232 → Z232 . The structure of the functions G and H is described as follows:

G1(x) = S1(x0) ⊕ S1(x1) ⊕ S1(x2) ⊕ S2(x3)
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G2(x) = S1(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S1(x3)

G3(x) = S1(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S1(x3)

H1(x) = S2(x0) ⊕ S2(x1) ⊕ S2(x2) ⊕ S1(x3)

H2(x) = S2(x0) ⊕ S2(x1) ⊕ S1(x2) ⊕ S2(x3)

H3(x) = S2(x0) ⊕ S1(x1) ⊕ S2(x2) ⊕ S2(x3)

where the 32-bit input x is divided into four bytes xi; i = 0, 1, 2, 3; such that x = (x0, x1, x2, x3).
The byte x0 denotes the most significant byte of the word.

Using the F function, the keystream is generated as follows. Note that the states of a
nonlinear shift register is denoted as B0, B1, . . . , B31 where Bi is a 32-bit word and an
internal memory is denoted by M = (ML||MR), where ML and MR are 32-bit words,
respectively.

1. Input : {B0, B1, . . . , B31} and M = (ML||MR)
2. a = B0, b = B9, c = B16, d = B19, e = B30 ⊕ ML, f = B31 ⊕ MR.
3. (a′, b′, c′, d′, e′, f ′) = F (a, b, c, d, e, f)
4. B0 = b′, B1 = c′ and Bi = Bi−2, 2 ≤ i ≤ 31,M = M + 1
5. Output : k = (a′||e′)

For a complete description of Dragon, we refer the reader to the paper [?].

3 Components of Function F

Let n be a non-negative integer. Given two vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1)
where x, y ∈ GF (2n), let x ·y denote a standard inner product defined as x ·y = x0y0⊕ . . .⊕
xn−1yn−1. A linear mask is a constant vector that is used to compute an inner product of a
n-bit string.

Let us assume that we have a function f : {0, 1}m → {0, 1}n for some positive integers m

and n. Given a linear input mask Λ ∈ GF (2m) and a linear output mask Γ ∈ GF (2n), the
correlation of an approximation Λ · x = Γ · f(x) is measured as follows.

εf (Λ, Γ ) = 2−n(#(Λ · x ⊕ Γ · f(x) = 0) − #(Λ · x ⊕ Γ · f(x) = 1))

where x ∈ GF (2m) and runs through all possible values. Then, Pr[Λ · x = Γ · f(x)] = 1

2
(1 +

εf (Λ, Γ )). Specially, the correlation on modular addition + : {0, 1}n × {0, 1}n → {0, 1}n is
denoted as ε+(Λ1, Λ2, Γ ) where both Λ1, Λ2 are input masks and Γ ∈ GF (2n) is an output
mask.

3.1 Approximations of Modular Addition and S-boxes

We discuss the modular addition and the S-boxes that are the elementary nonlinear com-
ponents of the function F . Then, linear approximations on the function F are developed.

Modular addition We consider a modular addition with two inputs operated in GF (232).
In the paper of [?], Wallen developed an efficient algorithm to generate a whole set of linear
approximations of the modular addition where their correlations are given. Table 1 contains
results obtained using Wallen’s algorithm and shows the relation between the correlations
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of modular addition and the number of all linear approximations that hold such correlation.
This algorithm is specially useful to find linear approximations when modular additions are
combined with other nonlinear components such as S-boxes. We will discuss this in the next
section. In [?], Nyberg and Wallen presented a generalized algorithm that produces linear
approximations when the modular addition has arbitrary number of inputs. It is important
to note that linear approximations with low Hamming weights tend to be highly correlated.

correlation 2−1 2−2 2−3 2−4 2−5 2−6 2−7

# of linear approx. 28 213.9 219.1 223.9 228.4 230.7 228.0

Table 1. Correlations and the number of linear approximations of modular addition

The S-boxes S1 and S2 Suppose we try to find linear approximations of S1 and S2

by exhaustive search. Since S1 and S2 are 8 × 32 S-boxes, the total number of linear ap-
proximations for each S-box becomes 28+32 − 1 = 240 − 1. The correlation of each linear
approximation is also determined by feeding 28 inputs on the S-boxes.

However, due to the structure of the function F , we are interested in some linear approxima-
tions that hold with strong biases over both S-boxes (and thereby, the functions G and H)
and the modular addition. This means that ”good” linear approximations of the S-boxes,
if they exist, could be found among the linear approximations of modular addition and
choose one by one starting from the approximations with the highest biases Table 2 shows
an example of such linear approximations.

S-box εS ε+

S1 εS1
(0, 0x61300000) = −2−1.83 ε+(0x41200000, 0x41a00000, 0x61300000) = 2−3

S2 εS2
(0, 0x60020300) = −2−1.83 ε+(0x40020200, 0x40030200, 0x60020300) = 2−3

Table 2. An example of linear approximations of S1 and S2

3.2 Functions G, H and Modular Addition

According to the structure of the function F , there are two types of combinations between
modular addition and the function G or H. Both types are depicted in Figure 2. In Type 1,
the output z is determined by a linear addition of the output of modular addition and that
of the function T . Hence, the correlation of Λ1 · x ⊕ Λ2 · y = Γ · z is computed as follows.

ε1(Λ1, Λ2, Γ ) = ε+(Λ1 · x ⊕ Λ2 · y = Γ · (x + y))εT (Γ · T (r) = 0)

For example, in the function F , a linear approximation such as Λ1 ·(a⊕b)⊕Λ2 ·c = Γ ·(b′⊕c′)
is a Type 1 combination.

On the other hand, in Type 2, modular addition and the function T are dependent since the
output of modular addition becomes the input of the function T . Hence, by the correlation
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Fig. 2. Two types of combinations between modular addition and the function G or H

theory [?], the correlation of Λ1 · x ⊕ Λ2 · y = Γ · z is equal to a sum of all the partial
correlations as follows.

ε2(Λ1, Λ2, Γ ) =
∑

Φ

ε+(Λ1 · x ⊕ Λ2 · y = Φ · (x + y))εT (Φ · (x + y) = Γ · z).

Table 3 exemplifies how the dependency affects the correlation of linear approximations.
In next section, we search the linear approximations of the function F by extending the

type components Γ ε+(Γ, Γ, Γ ) εT (Γ, Γ ) ε+ × εT εi(Γ, Γ, Γ )

Type 1 + , H 0x0x0600018d 2−3
−2−8.58

−2−11.58
−2−11.58

Type 2 + , G1 0x0x30303001 2−3 2−10.66 2−13.66 2−12.19

Type 2 + , G2 0x0x28018001 2−3 2−10.44 2−13.44 2−12.96

Type 2 + , G3 0x0x60006002 2−3
−2−11.22

−2−14.22
−2−13.51

Table 3. Correlations of linear approximations of Type 1 and 2

dependency of the components.

4 Linear Approximation of Function F and Distinguisher

As described earlier, the function F transforms a 6-word string (a, b, c, d, e, f) into a 6-word
string (a′, b′, c′, d′, e′, f ′) by using xors, modular additions, the function G and H. According
to the structure of F shown in Figure 1, six output words of the function F are expressed
as a function of input words in the following way.

a′ = [(a + (e ⊕ f)) ⊕ H1] ⊕ [(e ⊕ f ⊕ G2) + (H2 ⊕ ((a ⊕ b) + c))]

b′ = [(a ⊕ b ⊕ G3] + [((c ⊕ d) + e) ⊕ H3]

c′ = [(a ⊕ b) + c] ⊕ H2 ⊕ b′

d′ = (c ⊕ d ⊕ G1) + ([a + (e ⊕ f)] ⊕ H1)



6 J. Y. Cho

e′ = [((a + (e ⊕ f)) ⊕ H1) + (c ⊕ d ⊕ G1)] ⊕ [H3 ⊕ ((c ⊕ d) + e)]

f ′ = [(e ⊕ f ⊕ G2) + [(a ⊕ b) + c] ⊕ H2]

If we apply repeatedly the following three types of linear approximation:

Υ1 · (x + y) = Υ2 · x ⊕ Υ3 · y

Υ4 · G(a) = Υ5 · a

Υ6 · H(b) = 0

Type 1 and 2 then, each output word of the function F can be approximated by input words
in two types that are shown in Figure 3. The approximations of the output words a′, c′ and e′

are classified into type A and the others are type B. Hence, we can compute the correlations
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Fig. 3. Linear approximations of the function F

of two types of approximations by counting linear approximations of the components and
summing up their correlations. For example, the correlation of Φ · a = Λ2 · a′ listed in the
Table 4 is expressed as follows:

εa(Φ,Λ2) = εH1
(0, Λ2)

∑

Λ1

ε+(Φ,Λ1, Λ2)
∑

Λ3

ε+(Λ1, Λ3, Λ2)εG2
(Λ1, Λ3)εH2

(0, Λ3). (1)

Due to the symmetric structure of the function F , the correlations of Φ · e = Λ2 · e′ can
be computed by substituting H1,H2 and G2 for H3,H1 and G1 functions, respectively. By
experiments, we searched the best linear approximation of each output word of the function
F and the results are listed in Table 4. We note that the approximations of b′ and c′

are not used for the distinguisher. It is an open question, however, whether these linear
approximation can be used for other attacks. Since d′ and f ′ are not reused in next cycle,
we omit their linear approximations.
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type linear approximation correlation

A 0x1800000d · a′ = 0x1800000d · a −2−38.47

B 0x0600018d · b′ = 0x0600018d · (a ⊕ b) 2−21.47

A 0x0600018d · c′ = 0x0600018d · c −2−36.04

A 0x0600018d · e′ = 0x0600018d · e 2−36.69

Table 4. Best linear approximations of the function F

4.1 Distinguisher

From the results discussed in the previous section, a distinguisher for Dragon can be easily
derived by combining two linear approximations of the function F . According to the state
update rule, the following relation holds:

B0[t] = B30[t + 15], t = 0, 1, . . . . (2)

Since a keystream word a and e correspond to B0 and B30 ⊕ ML, respectively, it is easy to
see that a distinguisher is constructed as

Γ · a′[t] ⊕ Γ · e′[t + 15] = Γ · a[t] ⊕ Γ · e[t + 15] = Γ · ML[t + 15]. (3)

By guessing the initial value of M [0] = ML[0]||MR[0], we can calcuate ML[t + 15] according
to the memory update rule. Note that we do not need to guess the whole 64-bit M [0]
since Γ = 0x0600018d does not use five most significant bits. Hence, we need to guess 27
bits of ML[0] and 32 bits of MR[0]. For correctly guessed M [0] (and thereby, ML[t + 15]),
Γ ·a′[t]⊕Γ · e′[t+15] shows an estimated correlation. This enables us to distinguish Dragon
from a random function. Moreover, this means that a 59-bit initial value of the memory M

can be retrieved by using our distinguisher.

We note that this distinguisher was also presented in the paper [?] without the improve-
ment of the correlation. However, thanks to the efficiency of our implementation, the linear
approximations of the nonlinear components of function F have been extensively searched.
The collection of these approximation is of Type A and shown in Figure 3.

First, we generate a pair of input masks (Φ,Λ1) and an output mask Λ2 of modular addition
holding with the correlation of up to 2−20. Then, given Φ and Λ2, we generate again all input
masks Λ1 of modular addition satisfying ε+(Φ,Λ1, Λ2) ≥ 2−20. Then, given Λ1 and Λ2, we
generate all input masks Λ3 of modular addition satisfying ε+(Λ1, Λ3, Λ3) ≥ 2−20. For each
Λ1 and Λ3, we compute εH2

(0, Λ3) and εG2
(Λ3, Λ1), respectively. Hence, we can compute∑

Λ3
ε+(Λ1, Λ3, Λ2)εH2

(0, Λ3)εG2
(Λ3, Λ1). We can also compute εH1

(0, Λ2) using Λ2. Hence,
for given Φ and Λ2, we compute the correlation of Φ · a = Γ2 · a

′ according to Equation (1).

We repeat this procedure to compute the correlation of Φ · e = Γ · e′ by choosing new
linear masks and replacing H1,H2 and G2 by H3,H1 and G1, respectively. Thus, we get the
correlation

εe(Φ,Λ2) = εH3
(0, Λ5)

∑

Λ4

ε+(Φ,Λ4, Λ5)
∑

Λ6

ε+(Λ4, Λ6, Λ5)εH1
(0, Λ6)εG1

(Λ6, Λ4).

Finally, we can compute more accurate correlation of Distinguisher (3) which is denoted by
εD, by the following equation:

εD =
∑

Φ

εa(Φ,Λ2)εe(Φ,Λ2). (4)
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We searched the mask Λ2 that could build the best correlation of the distinguisher. The result
of computer simulation is displayed in Table 5. We can see that εD > εa(Λ2, Λ2)× εe(Λ2, Λ2)
due to a large number of approximations with diffrent Φ.

Λ2 εa(Λ2, Λ2) εe(Λ2, Λ2) εD

0x0600018d 2−39.35 2−36.69 2−66.45

Table 5. Correlation of the distinguisher

4.2 Experiments

We performed a few experiments to verify our results. First, we investigated the correlation
of a′[t] and e′[t + 15]. We counted the number of linear approximations of modular addition
that have a correlation with up to 2−20 when the output mask is set to 0x0600018d. We
found that there are around 224.6 such pairs. Since for both a’[t] and e’[t=15], we have used
Type A approximations as shown in Figure 3, it is expected that many input mask pairs ,
which correspond to Φ and Γ1, affect the correlation of the distinguisher in a non-negligible
way.

Next, we verified the correctness of our implementation by testing a simple combination
of the modular addition and the function G1. We set two input masks of the modular
addition and an output mask of the function G1 by 0x30303001, as listed in Table 3, and
examined its real correlation by experiments. Figure 4 shows that our estimation is close to
the experimental result.
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Fig. 4. Experimental results on the correlation of the components of the function F
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5 Conclusion

In this paper, we analyzed the function F of Dragon by linear cryptanalytic methods. We
found that the correlation of the linear distinguisher that was reported in the previous
research was underestimated. We computed an accurate correlation of the distinguisher
by searching extensively the linear approximations with significant correlations. Our result
showed that the correlation is higher than the previous result by a factor of 29. Our technique
can be also used as a tool to analyze other nonlinear functions that retain correlations with
linear functions.
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