Load Balancing by Distributed
Optimisation in Ad Hoc Networks*

André Schumacher, Harri Haanpéé, Satu Elisa Schaeffer, and Pekka Orponen

Laboratory for Theoretical Computer Science, Helsinki University of Technology,
P.O. Box 5400, F1-02015 TKK, Finland
Andre.Schumacher@tkk.fi, Harri.Haanpaa@tkk.fi,
Elisa.Schaeffer@tkk.fi, Pekka.Orponen@tkk.fi

Abstract. We approach the problem of load balancing for wireless
multi-hop networks by distributed optimisation. We implement an ap-
proximation algorithm for minimising the maximum network congestion
as a modification to the DSR routing protocol. The algorithm is based
on shortest-path computations that are integrated into the DSR route
discovery and maintenance process. The resulting Balanced Multipath
Source Routing (BMSR) protocol does not need to disseminate global
information throughout the network. Our simulations with the ns2 sim-
ulator show a gain of 14% to 69% in the throughput, depending on the
setup, compared to DSR for a high network load.

1 Introduction

Ad hoc networks are communication networks formed by a number of nodes,
which are small radio devices with limited computational capacity [I]. Perhaps
the most significant advantage of ad hoc networks — and simultaneously an im-
portant design goal — is the ease of deployment. Ideally, it should be possible to
deploy the nodes in the area of operation and have them self-organise to route
traffic as necessary. Such a setup would be useful in a variety of environments
ranging from military operations and disaster relief to commercial applications.

Ad hoc networks also present challenges. Nodes are usually battery-operated,
as they should not depend on an external energy supply, and battery life is often
a limiting factor. The radio transmission channel is limited in bandwidth and
shared among nearby nodes. Determining and maintaining the network topology
in a distributed fashion is a challenging problem, particularly if the network
topology changes during operation due to addition, removal, or mobility of nodes.

Two properties of algorithms are particularly desirable in an ad hoc context.
First, an algorithm should be mathematically justified. Analysing an algorithm
mathematically gives insight into when it can be expected to work and when
not. Linear and integer programming formulations can typically be applied in
this approach to gain optimal solutions for small problem instances or good

* This research was supported by the Academy of Finland under grants 209300 (AC-
SENT) and 206235 (ANNE).

J. Cao et al. (Eds.): MSN 2006, LNCS 4325, pp. 873-884] 2006.
© Springer-Verlag Berlin Heidelberg 2006

874 A. Schumacher et al.

approximate solutions for larger instances. Such methods have been applied to
optimisation of sensor-node coverage [2] and lifetime in energy-constrained net-
works [3], but these approaches typically require collecting state information to
a central location to perform the optimisation, adding undesired hierarchy and
a point of failure.

Second, an algorithm should be distributed and non-hierarchical. Each node
should follow a simple set of rules to cooperate in computing the optimum.
Neither the size nor the number of messages should grow rapidly with the size
of the network. Such approaches have been used for bandwidth optimisation [4].
Certain energy-aware modifications of routing protocols such as AODV or DSR
also fall into this category. However, formal analysis of heuristic optimisation
methods is difficult and usually only simulation-based analysis is applicable.

In mathematically justifiable distributed algorithms, the nodes typically com-
pute graph-based properties, such as shortest paths or spanning trees, in a dis-
tributed and iterative manner. This enables theoretic analysis of the expected
quality of the solution and the convergence of the algorithm towards the opti-
mum. Such methods have been applied to adjusting transmission power levels
based on lowest-cost energy paths [5] and routing around congested nodes based
on node potentials and the steepest gradient method [6].

In this paper, we present the Balanced Multipath Source Routing (BMSR)
protocol that extends the Dynamic Source Routing Protocol (DSR) [7] to use
multipath routing for balancing data traffic. Multipath extensions to DSR have
been previously studied: Nasipuri, Castaneda, and Das [§] introduce alternate
routes to the route discovery process, whereas Wu and Harms [9] propose a
heuristic redirection of RREP messages to gain alternative routes. The focus has
been primarily on the computation of node or link-disjoint paths, as they provide
a higher fault tolerance in the presence of failures. Ganjali and Keshavarzian [10]
state that multipath routing alone can not improve load balancing: as node den-
sity increases, the choice of shortest paths connecting any pair of nodes leads to
congestion in the centre of the network. They conclude that additional incentive
is needed to push traffic away from the centre.

Multipath-based network optimisation has been studied extensively for wired
networks. Vutukury and Garcia-Luna-Aceves [T1] propose an algorithm to min-
imise delay by heuristic redirection of flow over multiple paths. Basu, Lin and
Ramanathan [6] present a potential-based routing method that forwards pack-
ets using steepest gradient search and propose a traffic-aware routing algorithm.
This approach relies on a link-state routing algorithm for the dissemination of
link information throughout the entire network.

However, most proposals are not directly applicable to ad hoc networks due to
the aforementioned limitations. Our proposed BMSR protocol constitutes mod-
ifications of the DSR protocol and obtains multiple source-destination routes by
a linear programming approximation algorithm that minimises flow congestion
[12]. The algorithm relies on the computation of shortest paths determined by
an adaptive cost metric using link weights. Using distributed weight updates we

Load Balancing by Distributed Optimisation in Ad Hoc Networks 875

avoid dissemination of global information. In our simulations we achieve a gain
of 14% to 69% in the throughput, depending on the setup, compared to DSR.

The paper is organised as follows. In the next section, we describe the linear
programming approximation algorithm, followed by a brief overview of the basic
operation of DSR. Thereafter, we describe extensions that were made to DSR in
order to implement the approximation algorithm, which constitute the proposed
BMSR protocol. Section 3 presents simulation results with the ns2 [I3] network
simulator. Finally, Section 4 concludes the paper and outlines future research
directions.

2 Distributed Load Balancing

In this section we describe the BMSR protocol, which is an extension to DSR
for load balancing by multi-path routing. DSR normally uses one route from
the source node to the destination node. However, extending DSR to use more
routes is relatively easy and may improve reliability, throughput, and load bal-
ancing. We model choosing a set of source routes as a min-max congestion multi-
commodity flow problem and describe the implementation of the approximation
algorithm BMSR is based on.

2.1 Approximation Algorithm

We model the ad hoc network as a directed graph G = (V, E) with vertices
representing the radio nodes of the network and edges representing links between
the radio nodes. For two vertices 4, j € V, we have a directed edge (3,) € E if
there exists a link from radio node i to j.

We consider routing as a multicommodity flow problem: each commodity ¢
represents one data stream of traffic of volume v° from the source s® to the
destination d¢. When t¢(i) represents the supply of commodity ¢ at vertex i, we
have v¢ = t¢(s¢) = —t°(d°) and (i) = 0 for all other nodes i. The task is to find
flows z7; of commodity ¢ along each edge (i,7) that satisfy the flow requirements

) + X (yer T5i — 2 per s =0 (1)

for each commodity ¢ and vertex 7. Within these constraints we choose zf; to

minimise the maximum congestion:
minmax ;ye g fij/uij s (2)

where fi; =", z; is the total flow along edge (4,7) and u,; is its capacity.
Many algorithms exist for solving such linear optimisation problems when
the whole state of the network is known. In contrast, we need an optimisation
algorithm that can be implemented so that the individual nodes cooperate to
determine the optimum by passing only a reasonable number of messages of rea-
sonable size. The approximation algorithm that we use for min-max congestion
multi-commodity flow is from [12]; it computes a flow z over a set of paths,

876 A. Schumacher et al.

taking as input a graph G = (V, E) and a list of flows of volume v¢ from source
s¢ to destination d°, with parameters I and e.

1. Initialise w;; = 1 for each edge (4,j) € E. For each edge (4,j) and every
commodity ¢ (with source node s¢ and destination node d° € V), set the
flow zf; = 0.

2. For each of the I iterations, do the following computation:

(a) For each source-destination pair of nodes s¢ and d¢, compute the shortest
path p(s¢, d¢) with respect to the edge weights defined by w.

(b) Let y© be the flow vector resulting from routing v¢ units of flow on the
shortest path p(s®, d°). For each edge (i, j) € F, assign zf; := xf; + y§;

and
Wij = (1 +€nyj)wij . (3)

3. Scale the total flow by letting x := x/1.

In this formulation, each edge has the same capacity u. To obtain flows for
which the maximum congestion is at most (1 + ¢) times the optimal value, it
suffices to run the algorithm for

I > [4mlogm/é*] (4)

iterations, where m is the number of edges.

2.2 DSR Operations

DSR [7] is an on-demand source routing protocol: the source includes the whole
route in every packet sent. This property eliminates the need for actively main-
taining routing information at intermediate nodes and enables an easy integra-
tion of multipath routing. Nodes keep routing information in their route cache,
which can also contain routing information that was overheard from neighbour-
ing nodes.

The basic DSR protocol consists of two operations: route discovery and route
maintenance. If a source node wishes to send a packet to a destination to which it
does not have a route in its route cache, it initiates the route discovery process by
broadcasting a route-request (RREQ) message to its neighbours. Upon receiving
the RREQ, nodes consult their route cache and can decide to send a route-reply
(RREP) message back to the source. If they do not know a route to the destination,
they append their own address to the list of nodes in the RREQ and forward
the request further, until it eventually reaches the destination. The destination
obtains a route from the source to itself by consulting the list of nodes that
forwarded the RREQ. In the presence of bidirectional links, it can simply reverse
this route and use it for sending a RREP message along this route to the source.

A sequence number mechanism ensures limited forwarding of RREQ’s by inter-
mediate nodes. In route discovery, a node only forwards each RREQ at most once.
Since shorter routes require fewer hops, the first RREQ to reach the destination
is likely to have taken a route that is (close to) minimal in terms of the hop

Load Balancing by Distributed Optimisation in Ad Hoc Networks 877

count. Therefore, DSR. chooses routes not much longer than the shortest route
between source and destination. Although in principle multiple routes to the
same destination may be contained in the route cache, e.g. by overhearing other
routes, the nodes always pick the shortest route from the cache.

The basic route maintenance includes reliable packet transmissions from one
hop to the next, e.g. utilising link-layer acknowledgements. Additionally, there
are other operations initiated on-demand. If a source route breaks, the source
is notified by an intermediate node detecting the break. The source can then
choose to select an alternative route to the destination by consulting its route
cache, or initiate a new route discovery. In the case that the intermediate node
has a different route to the destination in its own cache, it can initiate packet
salvaging and forward the packet using this alternative route.

2.3 The BMSR Protocol

The shortest-path methodology of the approximation algorithm enables a simple
extension to DSR; the computation of shortest paths is similar to that of the
original protocol. Our approach differs from DSR in that DSR initiates route
discovery when necessary, while BMSR uses an initial setup phase to proceed
through the iterations of the balancing algorithm. Each source obtains one bal-
anced route to the destination per iteration. Some routes may occur more than
once. After the setup phase, every packet sent by the source follows a randomly
chosen cached route. Unlike in DSR,, the routes are not removed from the cache
when link failures occur, as the failure may be due to temporary link congestion.

We implement BMSR by modifying DSR/’s route discovery and route mainte-
nance operations. The DSR route control messages RREQ and RREP are extended
to include iteration-inder, cost and flow-value fields. These fields correspond
to the variables needed for the algorithm of Section Il For clarity, we refer to
these modified messages by BREQ and BREP. Instead of computing shortest routes
based on hop-counts, the nodes compute the minimum-cost route for each iter-
ation of the balancing algorithm and each source and destination pair. The cost
of a route is the sum of the link costs w on that route. Each node keeps track
of the weight of and the flow on each incoming link (i.e., those links that it
may use to receive a BREQ message from a neighbour). BREQ messages carry, in
addition to the list of addresses of nodes that re-broadcasted the message, the
accumulated route cost from the source. An intermediate node adds the cost of
the incoming link on which it received the BREQ to the accumulated route cost
of the BREQ upon re-broadcasting it. Later, however, an intermediate node may
receive another BREQ packet with the same iteration index. If the new BREQ has
a lower-cost route from the source than the previous one, the intermediate node
re-broadcasts it.

When the destination receives a BREQ packet, it must wait a short period
for possible lower-cost BREQ packets. The destination only replies with a BREP
to the BREQ with lowest cost. The flows and weights are updated along the
route used when the destination sends the BREP packet back to the source. As
the link weights and therefore the least-cost routes are subject to change at

878 A. Schumacher et al.

each iteration, the balanced routing algorithm can not rely on DSR’s caching
mechanism to narrow down the dissemination of BREQ messages in the network.
Therefore, BREQ’s have to spread by flooding through the network. Since the
parameters € and I can be used for a trade-off between route-control overhead
and quality of the solution, this effect can be adjusted to the network setup.
Additionally, the setup phase is only performed once even for long data streams.

As mentioned above, routes that are broken due to temporarily congested links
stay in the cache and do not get invalidated. For a larger number of iterations the
effect of a single link failure diminishes, as the source randomly selects balanced
routes from the cache.

3 Experiments

We consider a stationary grid network with source and destination pairs. The
chosen traffic pattern resembles a mesh-network scenario, where a large amount
of constant bit rate (CBR) data is transfered through an already congested
network. When a sudden demand arises for transmitting a large amount of data
between a dedicated pair of nodes, e.g. between a control centre and rescue
teams, one aims to deliver as much of the critical data as possible. For this
purpose one must balance the traffic among the nodes and utilise the network
capacity to maximise throughput over source-destination pairs.

We compare BMSR to DSR by using ns2 to simulate it on a 10 by 10 square
grid with two CBR flows, from s; to d; and from ss to do; see Fig. [for the
network setup. Both CBR sources are transmitting with a previously determined
rate and packet size. See Table [Il for the particular parameter values. Prior to
initiating the CBR traffic, we run the balancing algorithm of Section 2] for a
chosen value of € and a chosen number of rounds I to select routes that give an
approximately balanced flow in the sense of minimising the maximum congestion.
We run a series of long simulations to obtain estimates of the throughput of the
network, defined as the average rate of CBR data that was received by the
destinations. In the following we will refer to this metric as the performance for
the particular choice of parameters. We use the same source-destination setup
to transmit data using the DSR implementation provided in ns2.

Table 1. The parameters used in ns2 simulations

CBR packet size 256, 512,1024, 2048 MAC bandwidth 1 Mbit
(B)

CBR data rate 160 Kbit /s MAC protocol 802.11 with RTS/CTS
Antenna type OmniAntenna Propagation model TwoRayGround
Max. IFQ length 50 Max. route length 22

Network size 2.4km x 2.4km Node count 100

Simulation time 1500s Balancing setup 500s

Load Balancing by Distributed Optimisation in Ad Hoc Networks 879

do
000
000
000
0000
5100000
000000
000000000
00000606000
0000000000
0000800000
2

CO@0000

0000000

0000000

000000

00000

ocooedax
(@]

Fig. 1. The simulation setup: two source-destination pairs (s1,d1) and (s2,d2) are
placed “off-by-one” on the opposite sides of the grid. The source nodes s; and s2 send
data packets at constant rate to their respective destination nodes di and ds. Each
node may communicate with the nodes beside, above or below it.

In addition to throughput, we study the distribution of routes over the nodes
by calculating the number of forwarded CBR, packets at each node. We expect
most packets to be forwarded by nodes located near the centre of the network,
as these routes are shortest and the algorithm initially prefers shorter routes
over longer ones. However, the central nodes should not be loaded much more
heavily than those on slightly longer paths.

A balanced network load should also reduce collisions and interface queue
(IFQ) overflows in the network. The IFQ contains packets that are scheduled
to be transmitted over the network interface. Hou and Tipper [14] observed that
one of the main reasons for the decline in throughput for congested networks
running DSR is the overflow of the IFQ of congested nodes. Besides queue
overflows, collisions of the media access control (MAC) layer control messages
and CBR packets are expected to degrade the performance. Although we do
not expect the number of collisions to be significantly lower compared to the
DSR route selection, we would expect a more even distribution over the nodes,
preventing bottleneck formation. Figure 2l shows simulation results for two CBR
packet sizes.

We use the following measures: CBR packet load; the number of CBR, packets
sent by the MAC layer of the node. Note that there are in total 20000 and 10000
packets per source for packet sizes of 1024 and 2048 bytes respectively. This value
does not correspond to the actual number of successfully forwarded packets, as
drops and collisions have to be subtracted. Sources were excluded from Fig.
for clarity. CBR packet collisions; the number of CBR MAC layer collisions
caused by interference that occurred at each node, excluding the sources. These
numbers do not necessarily coincide with the number of dropped packets, as
the MAC layer uses a retransmission scheme. IFQ overflows caused by CBR
packets; the number of IFQ overflow events that occurred at each node.

One might expect DSR to favour shorter routes, yielding an increased net-
work load within the centre of the grid that results in interference and a low net-
work throughput. BMSR should recognise areas of higher congestion and after

880 A. Schumacher et al.

CBR packet load CBR packet collisions IFQ overflows caused
by CBR packets
1024 B 2048 B 1024 B 2048 B 1024 B 2048 B
X W% X QC g %
b}
;; § 10000 ’% i«. § 1000
7500 &8) 0 750
it 5000 e 5 co%e 500

2500 QXX
0

DO 000 0

lessccssse
(=]
"
05009
(=]

¢
é”*ﬁ& OO0

Fig. 2. Averages over five runs for the performance measures of DSR and BMSR for
I = 160 iterations and € = 0.05 for two CBR packet sizes; variations were negligible.
Source and destination nodes are indicated by dashed circles.

initially selecting shorter routes, select routes that avoid the potentially con-
gested areas. In Fig. Bl we only observe minor differences for BMSR and DSR.
Depending on the averaging of packet load over the rather long simulation run,
the load for DSR appears to be well balanced. The reason is that within the
congested network, rediscovered routes will typically be different from recently
broken routes. There is a slightly higher utilisation of boundary nodes by DSR,
but the overall network load for BMSR is higher than for DSR, which can be
explained by the higher throughput, discussed later in this section.

Due to higher load, BMSR encounters more collisions compared to DSR. A
remarkable effect is the concentration in the quadrant of the network formed
by the square with the sources on its diagonal. The effect is apparent for both
algorithms and packet sizes, but emphasised for BMSR and 1024-byte packets.
Nodes within this part of the network may be relaying packets from both sources
in roughly opposite directions. Hence they have to transmit packets in more
diverse directions than nodes within the vicinity of the destinations.

As the MAC layer transmission of a CBR packet includes a request to send
(RTS)/clear to send (CTS) handshake, collisions are more likely to occur when
nodes are transmitting in different directions than when the packets travel
roughly in the same direction. DSR always uses the shortest known route to
the destination. Therefore, subsequent packets for the same destination are less
likely to interfere with each other. The distribution of IFQ overflows follows
basically the same principle. We, however, observe a major difference between
BMSR and DSR: the single-path routing of DSR leads to the formation of bot-
tleneck nodes due to congestion in the bottom left quadrant of the network. As
DSR prefers shorter paths, such overloading of nodes is restricted to the band
of nodes between the sources. The effect is stronger for smaller packet sizes,
explained by the increased MAC layer overhead. BMSR shows hardly any IFQ
overflows at all, except within the vicinity of the sources.

Figure [B] shows the performance of both routing protocols over time. Com-
paring throughput for BMSR and DSR, one observes larger fluctuations for

Load Balancing by Distributed Optimisation in Ad Hoc Networks 881

DSR. A major reason for the throughput stability of BMSR is that broken
links do not cause route invalidation. Therefore, its performance is determined
during the initial setup phase of the algorithm. To compensate the fluctuations
of DSR, we consider the throughput over 1000 s from the time when CBR trans-
missions have been initiated to compare both algorithms in the following. For
both packet-sizes BMSR clearly outperforms DSR.

Packet size 1024 Packet size 2048
14 - T T T T] T T T T] 14
12 A L) IM AMAA/\m/\J\ M § 12
5 10 Al e TR T M 4o
‘ ' -
s A AV,M V,:‘; v V‘\//, ,“_,‘\/,V Cb U T
Ml I 1 I S 1 1h 1y \ I
2 s AT A B i R L R 8
o Lmlid AL A L Lewfl 11 1 | In IR [ATRT]
< J- it o= £ pine - Bt e R M St DA
BMSR ——— £ 6 v iny TV AR A T S v e D i T 8
DSR ------- it AR I AR A
' !
4t ! P y 41 wy 4 4
2 b L I I I] I I I L 4 2

0 200 400 600 800 1000/0 200 400 600 800 1000
Simulation time Simulation time

Fig. 3. Average throughput of both source-destination pairs in KB/s versus simulation
time for a single run of BMSR and DSR. Note that the setup stage for BMSR is
omitted from the plot. The parameter values for the balancing algorithm were I = 160
and € = 0.05. The horizontal lines are averages over the entire simulation.

T T T T T T T

1 F

£=0.05 —=— . 10
€=0.20 ---x--- 2

€=0.01 +--%--- S5 9t
£=0.80 +—8 3

Random +--m-— = 8
DSR ---o--! =

7 -

6 -

lterations

Fig.4. Performance in KB/s as a function of I and € for CBR packet size 2048:
BMSR, DSR, and random route selections of I routes between source-destination
pairs. All values are averages over at least 15 repetitions (standard deviations shown).
The legend ordering corresponds to the throughput value at I = 160.

We also studied the effect of the I and e parameters on the performance.
The results are summarised in Fig. @ and are mostly as expected; already for a
modest number of iterations we obtain throughput superior to DSR. There is
a dependency of the throughput on € and I: for larger values of ¢, fewer iterations

882 A. Schumacher et al.

are needed to obtain a good throughput, but running a large number of iterations
with a small value of € yields a slightly better throughput.

A curious phenomenon in the results is that for a given value of €, the through-
put first increases rapidly as I increases but after reaching a maximum, the
throughput starts to decline gradually. We can only offer a heuristic explanation
of this phenomenon. As the optimisation algorithm progresses, the weights of the
most congested edges will come to completely dominate the search for the least
cost route from the source to the destination. With a large enough iterations
count, the algorithm only seeks to balance the flow on those edges without any
regard for the traffic situation in the rest of the network. We also ran the tests
for other values of €, but omitted some from the figure for clarity; for e < 0.05,
the peak performance had not yet been reached for I = 160.

However, in our experiments we ran considerably fewer iterations than rec-
ommended by (). For small values of ¢, in the first iterations the weight of each
edge remains at approximately 1, and thus the paths found by BMSR will be
essentially fewest hop paths. It seems plausible that instead of only optimising
the hop count, or only balancing the flow along the most congested edges, good
results could be obtained by taking both factors into consideration — and we
hypothesise that this is what happens when the number of iterations I is less
than recommended by (@).

The results shown in Fig.] indicate that there is a qualitative difference in
the performance of BMSR and DSR for different packet sizes. Figure [§] shows
throughput and packet delay for various packet sizes. The throughput perfor-
mance of DSR seems to increase until a critical packet size, after which increas-
ing the packet size further decreases DSR’s performance. We assume this to be
caused by the interdependence of the two main reasons of packet loss: collisions
of CBR packets due to interference and IFQ overflows.

BMSR aims at decreasing link congestion; it reduces the number of TFQ
overflows, as shown in Fig.[2l We conclude that increasing the packet size reduces
the negative effect of collisions on throughput for BMSR: increasing packet size

PR b 40 e

d L,

3 35 | A

g 10 — sl DSR e~ |

T ° O BMSR —*— -

> > - L -

g 8 3 20| - g

> 7 -

=1 0 45t o 4

o -

< 6 10 F — .

[== ¢ —
5, I 1 I 5 I 1 1]

256 512 1024 2048 256 512 1024 2048
Packet size Packet size

Fig. 5. On the left, throughput in KB/s versus packet size, and on the right, delay in
seconds versus packet size, for parameter values I = 160 and € = 0.05. All values are
averages over at least 15 repetitions. Note the logarithmic scale for the packet size and
that the CBR rate is 160 Kbit/s for all runs.

Load Balancing by Distributed Optimisation in Ad Hoc Networks 883

for a constant CBR rate reduces the number of packets and therefore the total
MAC layer overhead. However, the time frame required for the transmission of a
single packet increases correspondingly and retransmissions become more costly.
Still the effect of losing larger packets due to IFQ overflows seems to outweigh
the impact of collisions.

As Fig. Bl indicates, DSR packet delay grows nearly linearly with packet size,
whereas BMSR shows a clearly lower, approximately constant delay. This is
most likely due to the fact that after the initial setup phase BMSR uses a static
routing scheme.

4 Conclusions and Future Work

We studied the application of a linear programming approximation algorithm
to distributively optimise network bandwidth in a wireless multi-hop network.
The algorithm aims at minimising the maximum flow over any edge in the input
graph. We integrated it into the DSR route-discovery process in a distributive
manner and obtained significant increase in throughput for the studied topology.
The topology considered was static and regular. As future work we are inter-
ested to consider more general network topologies, non-uniform spatial node
distributions, and to incorporate mobility.

We believe that optimising link congestion proves successful also for other
topologies with a uniform distribution of nodes and a relatively regular graph
structure. For non-uniform topologies we expect the optimisation for node-based
metrics to work better. We plan to study the effect of node-based metrics on the
balancing algorithm, such as optimising for node congestion. We would expect
edge congestion to serve well in uniform topologies, but a node-based approach
to give better results in non-uniform topologies, where the load on single hubs
may get heavy due to a high number of neighbouring nodes.

The static-network and the uniform-node-distribution assumptions are essen-
tial in the current formulation of the algorithm. Besides considering node-based
optimisation metrics, we want to consider a steady-state formulation of the algo-
rithm, e.g. by enabling a calculation of the edge weights depending on the present
edge flow. Further applications of the BMSR protocol, such as energy-efficient
routing, are to be considered as well.

The results presented in this paper show the potential of using mathematically
justified distributed optimisation techniques for ad hoc networks. By utilising
shortest-path computations integrated into the DSR route discovery, we obtain
an improvement in throughput of 14% to 69% compared to DSR for a network
with high load. The assumption of a static network with a uniform spatial dis-
tribution of nodes does not seem too restrictive. We are convinced that it can
serve as a starting point for further investigating the potential of distributed
optimisation for ad hoc networks.

884 A. Schumacher et al.

References
1. Perkins, C., ed.: Ad Hoc Networking. Addison Wesley, Reading, MA, USA (2001)
2. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage prob-

10.

11.

12.

13.

14.

lems in wireless ad-hoc sensor networks. In: Proc. 20th Annual Joint Conf. of the
IEEE Computer and Communications Societies. (2001) 1380-1387

Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Lifetime maximization for multi-
casting in energy-constrained wireless networks. IEEE J. Selected Areas in Com-
munications 23(1) (2005) 117-126

Aggelou, G., Tafazolli, R.. RDMAR: A bandwidth-efficient routing protocol for
mobile ad hoc networks. In: Proc. 2nd ACM Int’l Workshop on Wireless Mobile
Multimedia. (1999) 26-33

. Kawadia, V., Kumar, P.: Power control and clustering in ad hoc networks. In:

Proc. 22nd Annual Joint Conf. of the IEEE Computer and Communications Soci-
eties. (2003)

Basu, A., Lin, A., Ramanathan, S.: Routing using potentials: A dynamic traffic-
aware routing algorithm. In: Proc. Conf. Applications, Technologies, Architectures,
and Protocols for Computer Communication, (2003) 37-48

Johnson, D., Maltz, D., Hu, Y.: The dynamic source routing protocol for mobile
ad hoc networks (DSR). Tech. report, IETF (2003) IETF Draft, July 2004.
Nasipuri, A., Castafieda, R., Das, S.: Performance of multipath routing for on-
demand protocols in mobile ad hoc networks. Mobile Networks and Applications
6(4) (2001) 339-349

Wu, K., Harms, J.: Performance study of a multipath routing method for wireless
mobile ad hoc networks. In: Proc. 9th Int’l Symposium in Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, Washington, DC, USA,
IEEE Computer Society (2001) 99-107

Ganjali, Y., Keshavarzian, A.: Load balancing in ad hoc networks: Single-path
routing vs. multi-path routing. In: Proc. 23rd Annual Joint Conf. of the IEEE
Computer and Communications Societies. (2004)

Vutukury, S., Garcia-Luna-Aceves, J.: A simple approximation to minimum-delay
routing. In: Proc. Conf. Applications, Technologies, Architectures, and Protocols
for Computer Communication, New York, ACM Press (1999) 227238

Bienstock, D.: Potential Function Methods for Approximately Solving Linear Pro-
gramming Problems: Theory and Practice. Volume 53 of International Series in
Operations Research & Management Science. Kluwer, Norwell, MA, USA (2002)
McCanne, S., Floyd, S., Fall, K., Varadhan, K.: The network simulator ns2 (1995)
The VINT project, available for download at http://www.isi.edu/nsnam/ns/|
Hou, X., Tipper, D.: Impact of failures on routing in mobile ad hoc networks using
DSR. In: Proc. Communication Networks and Distributed Systems Modeling and
Simulation Conf. (2003)

http://www.isi.edu/nsnam/ns/

	Introduction
	Distributed Load Balancing
	Approximation Algorithm
	DSR Operations
	The BMSR Protocol

	Experiments
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

