
Distributed Network Utility Maximization in Wireless
Networks With a Bounded Number of Paths

André Schumacher
∗

Dept. of Information and Computer Science
Helsinki University of Technology
Andre.Schumacher@tkk.fi

Harri Haanpää
Dept. of Information and Computer Science

Helsinki University of Technology
Harri.Haanpaa@tkk.fi

ABSTRACT
We consider the fair multicommodity flow problem in mul-
tihop wireless networks. We optimize the flow between a
number of source-destination pairs to achieve a fair alloca-
tion of network resources while satisfying node capacity con-
straints. To account for the limitations of wireless devices,
we use a path-based formulation and allow only a bounded
number of paths between each source-destination pair. We
develop a dual decomposition based distributed algorithm
for solving the problem, show the optimality of a station-
ary solution, and compare the performance of the algorithm
with a centralized branch-and-bound method.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communications

General Terms
Algorithms, Design, Performance

Keywords
Dual Decomposition, Multipath Routing, Congestion Con-
trol, Proportional Fairness, Multicommodity Flow

1. INTRODUCTION
The Network Utility Maximization (NUM) approach has

been recently applied to various problems in the context
of wired and wireless networks, and distributed systems in
general. In combination with dual decomposition techniques
from convex optimization theory, distributed algorithms for
practical problems were obtained, such as power assignment
and transmission scheduling in wireless networks [1], dis-
tributed coordination of cooperating agents [2], joint opti-
mization of network flow and resource allocation in wire-

∗Corresponding author. Research supported by the Helsinki
Graduate School in Computer Science and Engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PM2HW2N’08, October 31, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-239-9/08/10 ...$5.00.

less networks [3], and multipath routing with capacity con-
straints [4, 5, 6, 7, 8]. NUM models are especially suitable
for multihop wireless networks, as the resulting algorithms
often allow efficient distributed optimization of nontrivial
metrics. For an overview of dual decomposition and its ap-
plications see e.g. [9, 10] and the references therein.

We approach the fair multicommodity flow problem and
propose an algorithm that only considers a bounded num-
ber of paths between each source-destination pair at a given
time. The restriction on the number of paths is important in
practice. For instance, connectivity typically changes often
in wireless networks, and the amount of state information
used for routing should therefore be kept low. We model
user satisfaction with a fixed utility function and obtain a
resource allocation that achieves proportional fairness as a
special case when using a logarithmic utility function [11].

While similar problems have been considered in the liter-
ature, network utility maximization problems restricted to a
bounded number of paths between each source-destination
pair seem not to have received much attention. Lin and
Shroff [6] assume a fixed set of paths and only discuss briefly
how to incorporate finding alternate paths into their algo-
rithm. Lestas and Vinnicombe [12] propose an algorithm
that is based on the penalty function approach by Kelly
et al. [11]. Their algorithm shares the basic structure of
our proposed algorithm, the iterative optimization of path
rates and prices with a varying set of available paths that
are updated based on their price. However, as they note,
the penalty function based approach tends to distribute the
flow to a large number of paths, which is impractical.

We propose an algorithm based on the dual problem and
investigate its performance compared to a centralized algo-
rithm. Our algorithm provides for a distributed implemen-
tation, uses only simple arithmetic operations, and thus is
suitable for implementation in multihop wireless networks.
We show that if the number of paths allowed is sufficiently
large, a stationary solution of our algorithm represents an
optimal solution to the multicommodity problem. The rest
of the paper is organized as follows. Section 2 gives a for-
mulation of the fair multicommodity flow problem with path
constraints. Section 3 develops an edge-flow formulation and
presents a centralized algorithm for solving it. In Section 4,
we develop a path-based formulation, apply decomposition
techniques to obtain an algorithm suitable for distributed
implementation, and prove the optimality of a stationary
point. Section 5 contains simulation results for random
network topologies and Section 6 presents our conclusions.

96

2. FAIR MULTICOMMODITY FLOW
We consider the fair multicommodity flow problem, which

is a Network Utility Maximization problem.There are N dis-
tinct communication pairs (sn, tn) where sn is the source and
tn is the destination. For each pair (sn, tn) there is a util-
ity function Un which is strictly concave, differentiable, and
increasing. The network utility is the sum of the utilities of
each source-destination pair. We are given a directed graph
G(V, E) representing a wireless network, i.e., the vertices V
represent network nodes and edges (u, v) ∈ E if node u is
able to transmit to node v. Note that this model does not
take interference into account. Each node v ∈ V has a node
capacity cv, which may model transmission time, battery
power, etc. The goal is to maximize the sum of the utili-
ties of the total out-flow of the source nodes such that the
total amount of flow received and sent by each node v does
not exceed cv. We assume that there is at least one path of
non-zero capacity from each source to its destination.

Instead of the more usual edge-based formulation of the
multicommodity flow problem, we give a path-based formu-
lation. Rather than presenting the model and algorithms
in matrix notation, we use sums over variables in order to
emphasize the dependency of variables for sources, interme-
diate nodes, paths, etc. This representation simplifies a later
formulation as a distributed algorithm. Further, we limit the
number of paths to be used between each source-destination
pair by a constant K, resulting in the problem KNUM.

When K is small, the above problem becomes computa-
tionally complex. Wang et al. [13] show that NUM problems
that optimize the selection of a single path for each com-
munication pair are NP-hard. However, since any source-
destination flow can be decomposed into at most |E| paths
and cycles [14], for large enough K, an optimal solution to
KNUM is also an optimal solution of the multicommod-
ity problem. In practice the minimum number of paths re-
quired to decompose a given source-destination flow might
be much lower than |E|, but determining the minimum K
is NP-hard [15]. In the following, we solve the multicom-
modity flow problem by solving the KNUM problem while
assuming that K is large enough.

We introduce the variables and constants given in Table 1
and formulate the problem as follows.

KNUM max

N
X

n′=1

Un′ (yn′)

s.t.
X

p∈Pn

xp = yn (1)

X

p∈PS

2 rp
vxp ≤ cv ∀v ∈ V \ T (2)

X

p∈PS\Pn

2 rp
vxp +

X

p∈Pn

xp ≤ cv ∀v ∈ {sn, tn} (3)

|Pn| ≤ K, Pn ⊆ Pn (4)

yn ≥ 0, xp ≥ 0 ∀p ∈ PS,

where 1 ≤ n ≤ N and S = (P1, . . . , PN). Constraint (1)
requires that the total outgoing flow yn equals the sum of
the path rates xp over all paths p ∈ Pn, where Pn ⊆ Pn is a
set of selected paths and Pn is the set of all paths from sn to
tn. The binary constants rp

v equal 1 if node v lies on path p
and rp

v = 0 otherwise. Constraints (2) and (3) require that
the total flow processed by each node v does not exceed its

Un Utility function for pair (sn, tn).
Pn Set of all paths connecting source sn to sink tn.
P Set of all paths, i.e., P =

S

n
Pn; note that the

Pn are pairwise disjoint.
S Selection of paths, where S = (P1, . . . , PN) and

each Pn ⊆ Pn.
PS Set of selected paths, i.e., PS =

S

n
Pn, where

S = (P1, . . . , PN).
yn Total out-flow of source sn.
xp Flow over path p.
rp

v Binary constant that set to one indicates that
node v is on path p.

T Set of terminals that includes all source and des-
tination nodes, i.e., T =

S

n{sn, tn}.

Table 1: Notation for problem KNUM.

capacity cv. One needs to take into account that a node v
receives and transmits traffic if it lies on a path p, unless
p ∈ Pn and v ∈ {sn, tn}, in which case v either receives or
transmits. Equation (4) constraints the number of selected
paths to at most K for any pair. In our model the capacity
constraints are on the nodes, but it would be straightforward
to use edge capacity constraints instead.

In KNUM the number of possible paths from a source to
a destination can be exponential in the number of nodes |V |.
In Section 3, we develop a centralized algorithm that solves
the equivalent problem KNUM-E, which is based on edge
flow variables instead of path and path-rate variables. The
number of variables in KNUM-E is polynomial in N , |E|,
and K. In Section 4, we present an algorithm for KNUM

that iteratively solves KNUM-P, which uses a fixed selec-
tion of paths but is otherwise identical to KNUM. To avoid
oscillations in the path rates, observed earlier in e.g. [16], we
apply proximal minimization techniques to KNUM-P and
obtain problem KNUM-PQ, which has the same optimum.

3. CENTRALIZED ALGORITHM
We now reformulate problem KNUM so that an optimal

solution can be obtained by a centralized algorithm for any
K. The problem formulation and our branch-and-bound al-
gorithm are similar to those of Caramia and Sgalambro [17],
who propose a branch-and-bound algorithm for the maxi-

mum concurrent k-splittable flow problem, which is a variant
of the k-splittable flow problem that was first addressed by
Baier et al. [18]. In this problem, the objective is to maxi-
mize the fraction of demand that can be routed between the
source-destination pairs using a bounded number of paths
subject to link capacity constraints. Here, however, we max-
imize the total network utility, which is a concave function
of the path flows subject to node capacity constraints.

3.1 Problem Formulation
Denote an edge from node u to node v either by (u, v)

or e. For the edge-flow formulation of problem KNUM, we
introduce additional variables δnk

e , which determine whether
an edge e is available to route flow for the kth path of pair
(sn, tn) in a given solution. Let fnk

(u,v) denote the amount
of flow over edge (u, v) that originates from the kth path
from source sn to destination tn. We again denote the total
flow outgoing from sn by yn. Problem KNUM-E is then
formulated as a convex mixed-integer nonlinear program.

97

KNUM-E max
N
X

n′=1

Un′ (yn′)

s.t. yn =
X

1≤k′≤K

X

e∈O(sn)

fnk′

e −
X

e∈I(sn)

fnk′

e (5)

− yn =
X

1≤k′≤K

X

e∈O(tn)

fnk′

e −
X

e∈I(tn)

fnk′

e (6)

X

e∈O(v)

fnk
e −

X

e∈I(v)

fnk
e = 0 ∀v ∈ V \ {sn, tn} (7)

X

1≤n′≤N

X

1≤k′≤K

X

e∈I(v)∪O(v)

fn′k′

e ≤ cv ∀v ∈ V (8)

fnk
e ≤ δnk

e · cv ∀v ∈ V,∀e ∈ O(v) (9)
X

e∈O(v)

δnk
e ≤ 1,

X

e∈I(v)

δnk
e ≤ 1 ∀v ∈ V (10)

X

e∈O(v)

δnk
e −

X

e∈I(v)

δnk
e = 0 ∀v ∈ V \ {sn, tn} (11)

X

e∈I(sn)

δnk
e = 0,

X

e∈O(tn)

δnk
e = 0 (12)

yn ≥ 0, fnk
e ≥ 0, δnk

e ∈ {0, 1} ∀e ∈ E,

where 1 ≤ n ≤ N and 1 ≤ k ≤ K. Problem KNUM-E has
several edge-flow variables for a single edge: each commod-
ity corresponding to a single source-destination pair consists
of K subcommodities. For each commodity n and path in-
dex k, there is a network flow layer fnk. A value of 1 for δnk

e

indicates that edge e lies on the kth path from sn to tn, i.e.,
that flow of the kth layer of (sn, tn) may be routed over e.
Constraint (5) requires that the total outgoing flow yn of sn

equals the sum over all K flow layers, where I(v) and O(v)
denote incoming and outgoing edges incident to v, respec-
tively. Equation (6) states that the total incoming flow of tn

has to equal yn, and (7) is the flow-balance constraint, which
has to be satisfied for each flow layer, except at source and
destination nodes. Equation (8) is the capacity constraint
and (9) guarantees that only selected edges carry flow.

As the δnk
e indicate edges that form the kth path of pair

(sn, tn), they must satisfy certain constraints. Nodes on
a path have at most one incoming or outgoing edge (10).
Also, any node other than the source and destination must
have an outgoing edge if and only if it has an incoming edge
(11). Finally, sources must have no incoming edges and
destinations no outgoing edges (12).

Problems KNUM and KNUM-E are equivalent. One can
obtain from a solution to KNUM-E a solution to KNUM

by following the δnk
e variables with value 1 starting at the

sources and setting the path rates according to the fnk
e .

Although a solution to KNUM-E may contain isolated cy-
cles, these do not affect optimality or constraint satisfiability.
Conversely, a solution to KNUM-E is obtained by setting
the δnk

e of edges e that are incident to consecutive nodes on
the kth path from sn to tn to 1 (ordering the paths in Pn

arbitrarily) and setting all others to 0. However, KNUM-E

has O(KN |E|) variables, while the number of paths selected
in KNUM can be exponential in |V |.

3.2 Branch-and-Bound Algorithm
The formulation above lends itself to a branch-and-bound

(BNB) algorithm that operates on a binary search tree con-

taining values for the δnk
e . The algorithm employs a bound-

ing heuristic that solves the problem with relaxed integrality
constraints for the δnk

e at intermediate nodes in the search
tree, i.e., with δnk

e ∈ {0, 1} replaced by 0 ≤ δnk
e ≤ 1. To re-

duce the number of calls to the convex programming solver,
the algorithm checks constraints (10)–(12) to prune branches
leading to infeasible solutions.

Algorithm 1 is a fairly standard branch-and-bound method
for finding the optimal paths. Initially, the integrality con-
straints for δnk

e are relaxed and the corresponding labels lnk
e

are set to variable. The optimal solution for the relaxed
problem is computed, and if all δnk

e are integral, we are
done; otherwise we choose a δnk

e variable to branch on, set
the corresponding lnk

e to fixed, and optimize the two sub-
problems where the δnk

e chosen for branching is set to 0 and
1, respectively. If at any point in the search the optimal
value for a relaxed problem is worse than the best solution
with all δ variables integral that has been found so far, that
search branch is pruned, since introducing additional inte-
grality constraints to the relaxed problem cannot improve
the value of the optimum. For branching, we choose the δnk

e

variable that is furthest away from being integral.
In Algorithm 1, delta_feasible(δ, l) checks for satisfi-

ability of constraints (10)–(12), compute_upper_bound(δ, l)
solves the relaxation of problem KNUM-E, and the check for
integrality of δnk

e is performed by is_integer_solution(δ).

3.3 Implementation
We implemented Algorithm 1 in C++ and used the Mosek

solver [19] to obtain an optimal solution of the relaxation of
KNUM-E. Several practical aspects needed to be consid-
ered. Firstly, we set a fractional value of δnk

e to 0, if the
solver returns a zero value for fnk

e . This rule can reduce
the number of fractional δnk

e values for a given solution and
does not break feasibility. Secondly, the values returned for

initially :
for all 1 ≤ n ≤ N, 1 ≤ k ≤ K, e ∈ E

lnk
e ← variable

best value ← −∞
current bound ← compute upper bound(δ, l)
if (is integer solution (δ))

best value ← current bound
best solution ← δ

else
branch and bound(δ, l)

function branch and bound(δ, l)
choose e, n, k such that min{δnk

e , 1− δnk
e } is maximized

for val ∈ {0, 1}
δnk

e ← val; lnk
e ← fixed

if (delta feasible (δ, l))
current bound ← compute upper bound(δ, l)
if (current bound > best value)

if (is integer solution (δ))
best value ← current bound
best solution ← δ

else
branch and bound(δ, l)

lnk
e ← variable

Algorithm 1: Branch-and-Bound for KNUM-E

98

the δnk
e are typically only close to optimal, depending on the

convergence criterion of the solver. Consequently, one needs
to tolerate a certain amount of non-integrality in the δnk

e .

4. DISTRIBUTED ALGORITHM
We next develop a distributed algorithm for KNUM using

the technique of dual decomposition. We start with the case
of a fixed set of paths. In Section 4.2, we present a method
for maintaining a selection of paths based on their flow and
dual cost, and prove optimality of a stationary solution. In
Section 4.3, we propose a distributed implementation.

4.1 Fixed Selection of Paths
We use the notation in Table 1. Consider first a fixed

selection of paths S = (P1, . . . , PN). The problem becomes

KNUM-P max
N
X

n′=1

Un′ (yn′)

s.t.
X

p∈Pn

xp = yn (13)

X

p∈PS

2 rp
vxp ≤ cv ∀v ∈ V \ T (14)

X

p∈PS\Pn

2 rp
vxp +

X

p∈Pn

xp ≤ cv ∀v ∈ {sn, tn} (15)

yn ≥ 0, xp ≥ 0 ∀p ∈ PS,

where 1 ≤ n ≤ N . The difference between KNUM and
KNUM-P is that in the latter the selection of paths is fixed.
The objective function of KNUM-P is strictly concave in yn

but not in xp, so the dual function may not be differentiable
and a subgradient may result in oscillations [16]. To avoid
this, we use proximal minimization and introduce additional
variables x̄ and a quadratic term to the objective function.
This technique is discussed in [20, p. 232] and has been ap-
plied previously to NUM problems with fixed paths, e.g., by
Lin and Shroff [21] and Wang et al. [16].

By introducing the x̄, we obtain an objective function that
is strictly concave in x and y for fixed x̄ and the dual function
becomes differentiable [20, p. 669]. We also replace each
equality constraint by two inequality constraints.

KNUM-PQ max
N
X

n′=1

Un′ (yn′)−
1

2D

X

p∈PS

(xp − x̄p)2

(16)

s.t.
X

p∈Pn

xp − yn ≤ 0, yn −
X

p∈Pn

xp ≤ 0 (17)

X

p∈PS

2 rp
vxp ≤ cv ∀v ∈ V \ T (18)

X

p∈PS\Pn

2 rp
vxp +

X

p∈Pn

xp ≤ cv ∀v ∈ {sn, tn} (19)

yn ≥ 0, xp ≥ 0, x̄p ≥ 0 ∀p ∈ PS, (20)

where 1 ≤ n ≤ N , and D is a positive scaling constant.
KNUM-PQ is then identical to KNUM-P except for the
quadratic term that equals zero at optimality. That is, if
(x∗, y∗) be an optimum of KNUM-P, then (x∗, x̄∗, y∗) with
x̄∗ = x∗ is an optimum of KNUM-PQ.

We now apply the Gauss-Seidel method [20, p. 219] to
KNUM-PQ. Every iteration, we first optimize KNUM-PQ

with x, y variable and x̄ fixed; second, we optimize KNUM-

PQ with x̄ variable and x and y fixed to their previous val-
ues. The second step is trivial, as (16) is maximized at x̄ = x
for fixed x and y, so it only remains to consider the first.

KNUM-PQ for fixed x̄ has a strictly concave objective
function and linear constraints. Therefore, it has a unique
solution, the corresponding dual function is differentiable,
and dual decomposition techniques can be readily applied.
Let us formulate the (partial) Lagrangian for KNUM-PQ

for fixed x̄ by introducing multipliers λv for the node capac-
ity and µ+

n and µ−
n for the total out-flow constraints.

L(x, x̄, y, λ, µ+, µ−) =
N
X

n=1

Un(yn)−
1

2D

X

p∈PS

(xp − x̄p)2

−
X

v∈V \T

λv

“

X

p∈PS

2rp
vxp−cv

”

−
N
X

n=1

(µ+
n−µ−

n)
“

yn−
X

p∈Pn

xp
”

−
X

1≤n≤N

X

v∈{sn,tn}

λv

„

X

p∈PS\Pn

2rp
vxp +

X

p∈Pn

xp−cv

«

(21)

By grouping terms, we now obtain

L(x, x̄, y, λ, µ+, µ−) =
N
X

n=1

"

Un(yn)− (µ+
n − µ−

n)yn

−
X

p∈Pn

„

1

2D
(xp−x̄p)2− (µ+

n − µ−
n)xp

+ xp
“

λsn
+ λtn

+
X

v∈V \{sn,tn}

2λvrp
v

”

«

#

+
X

v∈V

λvcv .

(22)

The value of the dual function g(λ,µ+, µ−, x̄) to problem
KNUM-PQ with fixed x̄ is obtained by maximizing L over
x and y for the given dual values and x̄. We obtain

g(λ,µ+, µ−, x̄) = sup
x≥0,y≥0

˘

L(x, x̄, y, λ, µ+, µ−)
¯

. (23)

The dual problem then becomes

min g(λ,µ+, µ−, x̄) (24)

subject to λ ≥ 0, µ+ ≥ 0, µ− ≥ 0. (25)

Note that x̄ is constant. We denote by γp(λ) the cost of a
path p ∈ Pn for the source-destination pair n and by ρv(x)
the load – sum of incoming and outgoing flow – of a node v.

γp(λ) = λsn
+ λtn

+
X

v∈V \{sn,tn}

2 λvrp
v

ρv(x) =

(

P

p∈PS\Pn
2 rp

vxp +
P

p∈Pn
xp ∀v ∈ {sn, tn}

P

p∈PS
2 rp

vxp ∀v ∈ V \ T

As the dual function is differentiable, we obtain the following
partial derivatives for the dual function g(λ,µ+, µ−, x̄).

∂g

∂λv

= cv−ρv(x̃),
∂g

∂µ+
v

=
X

p∈Pn

x̃p−ỹn,
∂g

∂µ−
v

= ỹn−
X

p∈Pn

x̃p,

(26)

where x̃p = arg max
x≥0

L(x, x̄, y, λ, µ+, µ−) (27)

ỹn = arg max
y≥0

L(x, x̄, y, λ, µ+, µ−). (28)

99

The projected gradient method and the explicit solution to
the primal subproblem result in the following update equa-
tions for all 1 ≤ n ≤ N and v ∈ V . Assuming the derivative
U ′

n of Un is invertible, we obtain

xp(k + 1) = [x̄p + D(µ+
n (k)− µ−

n (k)

− γp(λ(k)))]+ ∀p ∈ Pn (29)

yn(k + 1) = [U ′
n
−1

(µ+
n (k)− µ−

n (k))]+ (30)

λv(k + 1) = [λv(k) + α(ρv(x(k))− cv)]+ (31)

µ+
n (k + 1) =

"

µ+
n (k) + α

yn −
X

p∈Pn

xp(k)

!#+

(32)

µ−
n (k + 1) =

"

µ−
n (k)− α

yn −
X

p∈Pn

xp(k)

!#+

, (33)

where k is the iteration number, α is a sufficiently small step
size, [·]+ is the projection on the non-negative orthant, and

U ′
n
−1

is the inverse function of the derivative of Un. These
update equations are suitable for distributed implementa-
tion, as long as each source sn is aware of the cost γp(λ(k))
for each path p ∈ Pn. The other dual variables, µ+

n (k) and
µ−

n (k) can be maintained by the sources themselves.
As strong duality holds, it can be shown that the solutions

updated according to (29)–(33) converge to an optimal so-
lution of KNUM-PQ with fixed x̄ for any given selection of
paths and x̄, if the step size α is sufficiently small and the Un

are differentiable, strictly concave and increasing [22]. The
optimality of a stationary point of the Gauss-Seidel method
for KNUM-PQ with variable x̄ then follows directly from
the results for the Gauss-Seidel method.

4.2 Adaptive Path Selection
Until now, the path selection has been fixed in advance.

Now we utilize the Lagrangian multipliers for the capacity
constraints to select paths. Suppose we had chosen the set
of all possible paths Sc = (P1, . . . ,PN) as fixed set of paths
for solving KNUM-PQ. Recall that Pn consists of all paths
from sn to tn. KNUM-PQ with selection Sc is equivalent
to KNUM. Although |Pn| can be exponential in |V |, from
the Lagrangian (22) and the dual function (23) one can see
that at an optimal solution only minimum cost paths from
each sn to tn can have non-zero flow. Following this idea,
we add a layer that iteratively updates a selection of paths
by adding minimum cost paths and removing maximum cost
paths if the maximum number of allowed paths K has been
exceeded. The new values for the primal and dual variables
are then determined by solving KNUM-PQ for the current
choice of paths.

More precisely, let Si = (P i
1 , . . . , P i

N) be the path selec-

tion in iteration i and let (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−) be an optimal
solution to KNUM-PQ with selection Si. Denote by γi

p the

cost of path p and by ρi
v the load of node v at the optimum.

We update the selection according to the following rule. For
a pair (sn, tn) let pmin be a minimum cost path from sn to
tn under the current prices. Let pmax be a maximum cost
path from sn to tn currently in P i

n. If several paths in P i
n

have the same maximum cost, choose a path with the least
flow. Now P i+1

n is obtained by adding pmin to P i
n, and if

that would violate the maximum number of paths allowed

(P1, . . . , PN)← (p1, . . . , pN), where pn is the shortest
hop−count path from sn to tn

pick some initial solution (x(0), x̄(0), y(0), λ(0), µ(0))
while true

until convergence of (x(t), x̄(t), λ(t), µ(t)) do
until convergence of (λ(k), µ(k)) do

for each pair (sn, tn) do
for each path p ∈ P i

n do
xp(k + 1)← [x̄p(t) + D(µ+

n (k)− µ−
n (k)

−γi
p(λ(k)))]+

yn(k + 1)← [U ′
n
−1

(µ+
n (k)− µ−

n (k))]+

µ+
n (k + 1)← [µ+

n (k) + α(yn −
P

p∈Pn
xp(k))]+

µ−
n (k + 1)← [µ−

n (k)− α(yn −
P

p∈Pn
xp(k))]+

for each node v ∈ V do
λv(k + 1)← [λv(k) + α(ρi

v(x(k))− cv)]+

let (x(t), y(t), λ(t), µ(t)) be a stationary point of the
update equations above

x̄(t + 1)← x(t)

let (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−) be a stationary point of the
update equations above

for each pair (sn, tn) do
let pmin be a minimum cost path from sn to tn

let pmax be a maximum cost path
of minimum flow in P i

n

if |P i
n ∪ {p

min}| > K then
P i+1

n ←
`

P i
n \ {p

max}
´

∪ {pmin}
else P i+1

n ← P i
n ∪ {p

min}

Algorithm 2: Algorithm for solving KNUM.

in P i+1
n , then we remove pmax:

P i+1
n =

(

`

P i
n \ {p

max}
´

∪ {pmin} if |P i
n ∪ {p

min}| > K

P i
n ∪ {p

min} otherwise.

(34)

The complete method is given in Algorithm 2. To prove
that a stationary point (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−), which satisfies
(17)–(20), represents an optimum for KNUM-PQ with vari-
able paths, note that conditions (35)–(39) suffice for opti-
mality [22, p. 322] for any selection of paths S = (P1, . . . , PN).

λ̃ ≥ 0, µ̃+ ≥ 0, µ̃− ≥ 0 (35)

µ̃+
n (
X

p∈Pn

x̃p − ỹn) = 0, µ̃−
n (ỹn −

X

p∈Pn

x̃p) = 0 (36)

λ̃v(ρv(x̃)− cv) = 0 ∀v ∈ V (37)

ỹ = arg max
y≥0

L(x, x̄, y, λ̃, µ̃+, µ̃−) (38)

(x̃, ˜̄x) = arg max
(x,x̄)∈RN

≥0
×RN

≥0

L(x, x̄, y, λ̃, µ̃+, µ̃−), (39)

where 1 ≤ n ≤ N .

Lemma 1. For a fixed selection of paths, any stationary

point (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−) of the algorithm described in Section

4.1 is optimal for KNUM-PQ.

Proof. First observe that every stationary point is pri-
mal feasible, i.e., satisfies constraints (17)–(20), because oth-

erwise (λ̃, µ̃+, µ̃−) would not be stationary according to up-
date rules (31)–(32). The solution is also dual feasible due

100

to the projection rule. From (31) we have

ρv(x̃(k))− cv ≤ 0, ρv(x̃(k)) < cv ⇒ λ̃v = 0 ∀v ∈ V,

so the complementary slackness condition (37) is satisfied
and similarly for µ̃+ and µ̃− due to (32) and (33), respec-
tively. What remains to be shown is that x̃, ˜̄x, and ỹ max-
imize the Lagrangian with respect to λ̃, µ̃+, and µ̃−. Since
the Lagrangian (22) is strictly concave in y, we have

∂L(x, x̄, ỹ, λ̃, µ̃+, µ̃−)

∂yn

= 0

only at the unique optimum; this is equivalent to equality
holding in (30). Also note that at convergence we need to
have x̃ = ˜̄x. For x̃p > 0 it thus follows from (29) that

µ̃+
n − µ̃−

n − γp(λ̃) = 0 (40)

and therefore

∂L(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

∂xp
= 0,

∂L(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

∂x̄p
= 0.

For x̃p = 0 it follows from (29) that µ̃+
n − µ̃−

n − γp(λ̃) ≤ 0
and therefore

∂L(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

∂xp
≤ 0,

∂L(x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−)

∂x̄p
= 0.

Thus, conditions (38) and (39) are also satisfied.

Consider now the general case where the path update is
performed according to (34).

Lemma 2. Upon convergence, for each source-destination

pair (sn, tn), all paths p ∈ Pn with non-zero flow have cost

γp(λ̃) = µ̃+
n − µ̃−

n , which is minimum among sn–tn paths.

Proof. Claim follows from (34) and (40).

Proposition 1. If Algorithm 2 converges, it converges

to an optimal path selection and rate allocation for KNUM.

The resulting source-destination flows are optimal for the

multicommodity flow formulation without path constraints.

Proof. Consider two path selections SA and SB, where
SA = (P1, . . . , PN) results from Algorithm 2 and SB =
(P1, . . . ,PN) contains all possible paths between each pair.
Problem KNUM-PQ with selection SB is obviously equiva-
lent to KNUM. Let (x̃, ˜̄x, ỹ, λ̃, µ̃+, µ̃−) be the optimal solu-
tion with selection SA. We extend that solution to a solution
for KNUM-PQ with path selection SB by adding new vari-
ables: for each path in SB \ SA, we let x̃p = ˜̄xp = 0. We
show that the new solution is stationary, so that its opti-
mality follows from Lemma 1.

Consider any pair (sn, tn) and a path p from sn to tn in
SB \ SA. In our construction, x̃p = ˜̄xp = 0. From Lemma 2
it follows that there cannot be any paths that have a lower
cost than the paths in Pn, that is, γp(λ̃) ≥ µ̃+

n − µ̃−
n for all

p ∈ SB \ SA. From the update rule (29) it then follows that
x̃p = ˜̄xp = 0 is stationary. Also, adding new path variables
xp and x̄p does not affect the update rules for the other
variables as long as the new path variables have value 0,
which they do. Therefore, any solution resulting from the
algorithm is an optimal solution for KNUM-PQ with path
selection SB and, equivalently, for KNUM.

Corollary 1. If the parameter K is too small to admit

a solution to KNUM with the same objective value as an

optimal solution for the multicommodity flow formulation,

then Algorithm 2 does not converge.

4.3 Distributed Implementation
The operations nodes perform in Algorithm 2 are purely

local and only require information on the total outgoing path
flow at each source node and the load ρv at each node v. If
the traffic originated from sources can be approximated by a
continuous network flow, then one can replace explicit mes-
sage passing by passive measurements in order to estimate
the load ρ. The path update according to (34) can be imple-
mented efficiently as a distributed algorithm (see e.g. [23]).

In the algorithm as described, however, the primal vari-
ables x and y and the dual variables λ, µ+, and µ− must
converge before updating x̄. This would require careful syn-
chronization between all source-destination pairs. To cir-
cumvent this problem, one can consider a modified version
of the algorithm that updates x̄ at the same time scale as
λ, µ+, and µ− with a different step size β. In the limit, for
β/α→ 0, the two versions are then equivalent. For a similar
algorithm it was shown in [6] that convergence for a fixed
set of paths is guaranteed for sufficiently small β. Also, our
proof of optimality of a stationary solution still applies to
the modified algorithm.

The path updates depend on the node prices λ and should
be executed only when the prices have converged. In princi-
ple, one could include a convergence test in the shortest-path
method. Instead, we choose a low path-update frequency so
that the λ have time to converge. To account for the possibly
numerous nodes with zero price, we add a small constant so
that among paths of equal cost shortest ones are preferred.

Algorithm 3 is executed by each source node sn continu-
ously. The functions prim_local_conv and dual_local_conv

evaluate the convergence criterion of the primal and dual
variables of source sn, respectively. The convergence crite-
rion for the node prices is evaluated by calling lambda_conv

but could also be, in principle, integrated in the shortest-
path algorithm. Additionally, in order to avoid race con-
ditions that could lead to unfairness among the sources in
terms of path-update intervals, a minimum number of iter-

for each path p ∈ Pn do
xp(t + 1) = [x̄p(t) + D(µ+

n (t)− µ−
n (t)− γp(λ(t)))]+

x̄p(t + 1) = [(1− β

D
)x̄p(t + 1) + β

D
xp(t + 1)]+

yn(t + 1) = [U ′
n
−1

(µ+
n (t)− µ−

n (t))]+

µ+
n (t + 1) = [µ+

n (t) + α(yn −
P

p∈Pn
xp(t))]+

µ−
n (t + 1) = [µ−

n (t)− α(yn −
P

p∈Pn
xp(t))]+

if [prim local conv(xn(t), x̄n(t), yn(t))
and dual local conv(µ+

n (t), µ−
n (t)) and lambda conv(λ(t))

and it since path update ≥ min it before path update)]
let pmin be a minimum cost path from sn to tn

let pmax be a maximum cost path
of minimum flow in P i

n

if |P i
n ∪ {p

min}| > K then
P i+1

n ←
`

P i
n \ {p

max}
´

∪ {pmin}
else P i+1

n ← P i
n ∪ {p

min}

Algorithm 3: Algorithm running at the sources.

λv(t + 1) = λv(t + 1) = [λv(t) + α(ρv(x(t))− cv)]+

Algorithm 4: Algorithm running at all nodes.

101

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

(a) K = 2

 0

 1

 2

 3

 4

 5

 0 10000 20000 30000 40000 50000

(b) K = 3

Figure 1: Evolution of path rates for each source-

destination pair for the network in Figure 2.

ations is required to pass before a new path update. The
update rule that affects all nodes, including the sources, is
given in Algorithm 4. It only requires that each node mea-
sures the load it experiences in the network.

5. SIMULATIONS
In a distributed implementation of the methods described

in the previous section, Algorithms 3 and 4 run concurrently.
As a first step to validate convergence and estimate the im-
pact of parameter K on the algorithm, we implemented a
combined version of the updates performed by the source
and intermediate nodes using Matlab. We leave the dis-
tributed implementation of the algorithm using network sim-
ulations and practical implementations for future work.

Consider the following simulation setup. A random disk
graph G(V, E) is generated by scattering |V | nodes in the
plane of unit dimensions. Initially V = {1, . . . , |V |}, and E
will contain (u, v) for any two nodes u and v whose distance
is not larger than the transmission range, which is chosen
to be close to 0.31. The node capacities cv are drawn in-
dependently from the interval [5, 10] uniformly at random.
We choose Un = log(yn), therefore seeking a proportionally
fair allocation of total outgoing-flow rates for the sources.
We run the algorithm for various values of K and observe
the evolution of path rate xp for each path p ∈ Pn and pair
(sn, tn). We also calculate an optimal solution using Algo-

1

21

2

22

3

12

4

11

5

6

7

8

9

10

13

14

15

16

17

18

19

20

(a) Input Graph; pairs are colored in different shades of
gray; edges are drawn without direction for simplicity.

1

21

2

22

3

12

4

11

5

6

7

8

9

10

13

14

15

16

17

18

19

20

(b) Results for K = 3; saturated nodes are marked with
inner circles; thickness of lines is proportional to the
amount of flow colored according to its pair. One pair
uses one, two pairs use two, and one pair uses three paths.

Figure 2: Disk graph with 22 nodes and 4 pairs.

rithm 1. If the graph is unconnected or if the Algorithm 1
does not terminate within four hours computing time on a
2GHz machine, the graph is discarded and the process is
repeated. We let α = 10−3, β = 10−2, and D = 2−1.

Figure 1 shows the evolution of path rates for each of the
4 pairs in the network of Figure 2 for K = 2 and K = 3.
For K = 2 one can see that the solution does not converge
within 5 · 104 iterations and path rates oscillate. For all
choices K ≥ 3, however, the path rates xp converge and also
the yn converge to the optimal total outgoing flow allocation.
Note that not all of the paths for K = 3 actually carry flow.

For small enough network instances, we can run Algo-
rithm 1 with various values for K starting at K = 1 to find
Km, the least K such that the optimal objective value of
KNUM-E is equal to the optimal objective value of prob-
lem KNUM, which lacks constraints on the number of paths
with non-zero flow. We continue increasing K to find Kconv,
the smallest K for which our algorithm achieves convergence
for a given network. The value Kconv − Km equals to the
number of additional paths our algorithm requires to con-

102

 0

 2

 4

 6

 8

 10

 0 1 2 3

N
um

be
r o

f I
ns

ta
nc

es

Figure 3: Number of additional paths Kconv − Km

Algorithm 2 requires to achieve objective value UKm

over a set of 21 random graph instances.

verge to the optimal utility for the multicommodity problem.
Recall that Kconv ≥ Km follows from Corollary 1. Figure 3
shows a histogram for Kconv−Km over a set of 21 networks
generated randomly as described above with |V | = 22. One
can see that the number of additional paths seems generally
small and does not exceed 2 in any of our instances.

6. CONCLUSIONS
We studied the fair multicommodity flow problem and ap-

plied techniques from Network Utility Maximization theory
to obtain an algorithm that maintains a path selection and
updates the flow rate for each selected path. The number
of selected paths is bounded by a constant K. If K is suf-
ficiently large, we show that a stationary point of the algo-
rithm corresponds to the multicommodity flow maximizing
global network utility. This problem, contrary to the formu-
lation with given paths where one optimizes only path rates,
has only been rarely addressed in the literature. Our algo-
rithm provides for a distributed implementation and there-
fore is suitable for implementation, e.g., in multihop wireless
networks. We also present a centralized branch-and-bound
algorithm, which we use for performance comparison.

7. REFERENCES
[1] Soldati, P., Johansson, B., Johansson, M.:

Proportionally fair allocation of end-to-end bandwidth
in STDMA wireless networks. In: Proc. 7th ACM Int.
Symp. on Mobile ad hoc netw. and comp. (MobiHoc),
New York, NY, USA, ACM Press (2006) 286–297

[2] Raffard, R., Tomlin, C., Boyd, S.: Distributed
optimization for cooperative agents: application to
formation flight. In: Proc. 43rd IEEE Conf. on
Decision and Control. (2004) 2453–2459

[3] Xiao, L., Johansson, M., Boyd, S.P.: Simultaneous
routing and resource allocation via dual
decomposition. IEEE Trans. on Comm. 52 (2004)
1136–1144

[4] Presti, F.L.: Joint congestion control: routing and
media access control optimization via dual
decomposition for ad hoc wireless networks. In: Proc.
8th ACM Int. Symp. on Modeling, analysis and sim.
of wireless and mobile sys. New York, NY, USA,
ACM Press (2005) 298–306

[5] Low, S.: Multipath optimization flow control. In:
Proc. 8th IEEE Int. Conf. on Networks, Washington,
DC, USA, IEEE Comp. Soc. (2000) 39–43

[6] Lin, X., Shroff, N.B.: An optimization-based approach
for QoS routing in high-bandwidth networks.
IEEE/ACM Trans. Netw. 14(6) (2006) 1348–1361

[7] He, J., Bresler, M., Chiang, M., Rexford, J.: Towards
robust multi-layer traffic engineering: Optimization of
congestion control and routing. IEEE J. Sel. Areas in
Comm. 25 (2007) 868–880

[8] Paganini, F.: Congestion control with adaptive
multipath routing based on optimization. In: Proc.
40th Ann. Conf. on Inf. Sci. and Sys. (2006) 333–338

[9] Chiang, M., Low, S.H., Calderbank, A.R., Doyle, J.C.:
Layering as optimization decomposition: A
mathematical theory of network architectures. Proc.
IEEE 95 (2007) 255–312

[10] Johansson, B., Soldati, P., Johansson, M.:
Mathematical decomposition techniques for
distributed cross-layer optimization of data networks.
IEEE J. Sel. Areas in Comm. 24(8) (2006) 1535–1547

[11] Kelly, F., Maulloo, A., Tan, D.: Rate control in
communication networks: shadow prices, proportional
fairness and stability. J. Op. Res. Soc. 49 (1998)
237–252

[12] Lestas, I., Vinnicombe, G.: Combined control of
routing and flow: a multipath routing approach. In:
Proc. 43rd IEEE Conf. on Decision and Control.
(2004) 2390–2395

[13] Wang, J., Li, L., Low, S., Doyle, J.: Can shortest-path
routing and TCP maximize utility. In: Proc. 22nd
Ann. Joint Conf. IEEE Comp. and Comm. Soc.
(INFOCOM). (2003) 2049–2056

[14] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network
Flows: Theory, Algorithms, and Applications.
Prentice Hall, Englewood Cliffs, NJ (1993)

[15] B. Vatinlen, F. Chauvet, P.C., Mahey, P.: Simple
bounds and greedy algorithms for decomposing a flow
into a minimal set of paths. Europ. J. Operational
Research 185 (2008) 1390–1401

[16] Wang, W.H., Palaniswami, M., Low, S.H.: Optimal
flow control and routing in multi-path networks.
Perform. Eval. 52(2-3) (2003) 119–132

[17] Caramia, M., Sgalambro, A.: An exact approach for
the maximum concurrent k-splittable flow problem.
Optimization Letters (2007)

[18] Baier, G., Köhler, E., Skutella, M.: On the
k-splittable flow problem. In: Proc. 10th Ann. Europ.
Symp. on Algorithms, London, UK, Springer-Verlag
(2002) 101–113

[19] MOSEK ApS: The MOSEK optimization tools
manual. Version 5.0. (2008) Avail. for download at
http://www.mosek.com.

[20] Bertsekas, D., Tsitsiklis, J.: Parallel and distributed
computation: Numerical methods. Prentice Hall
(1989)

[21] Lin, X., Shroff, N.B.: Utility maximization for
communication networks with multipath routing.
IEEE Trans. Automatic Control 51 (2006) 766–781

[22] Bertsekas, D.P.: Nonlinear Programming, second edn.
Athena Scientific (1999)

[23] Haldar, S.: An ’all pairs shortest paths’ distributed
algorithm using 2n2 messages. J. Algorithms 24(1)
(1997) 20–36

103

