Distributed Computation of Maximum Lifetime
Spanning Subgraphs in Sensor Networks*

Harri Haanpéad, André Schumacher, Thorn Thaler, and Pekka Orponen

Lab. for Theoretical Computer Science, TKK — Helsinki University of Technology,
P.O. Box 5400, F1-02015 TKK, Finland
Harri.Haanpaa@tkk.fi, Andre.Schumacher@tkk.fi,
Thorn.Thaler@tkk.fi, Pekka.Orponen@tkk.fi

Abstract. We present a simple and efficient distributed method for de-
termining the transmission power assignment that maximises the lifetime
of a data-gathering wireless sensor network with stationary nodes and
static power assignments. Our algorithm determines the transmission
power level inducing the maximum-lifetime spanning subgraph of a net-
work by means of a distributed breadth-first search for minmax-power
communication paths, i.e. paths that connect a given reference node to
each of the other nodes so that the maximum transmission power re-
quired on any link of the path is minimised. The performance of the
resulting Maximum Lifetime Spanner (MLS) protocol is validated in a
number of simulated networking scenarios. In particular, we study the
performance of the protocol in terms of the number of required con-
trol messages, and compare it to the performance of a recently proposed
Distributed Min-Max Tree (DMMT) algorithm. For all network scenar-
ios we consider, MLS outperforms DMMT significantly. We also discuss
bringing down the message complexity of our algorithm by initialising it
with the Relative Neighbourhood Graph (RNG) of a transmission graph
rather than the full graph, and present an efficient distributed method
for reducing a given transmission graph to its RNG.

1 Introduction

Maximising the lifetime of a network, most commonly in terms of connectiv-
ity, is a key design goal in wireless sensor networks. Network longevity can be
affected by many methods, ranging from hardware design to energy-aware rout-
ing [1]. We focus on topology control, specifically on assigning transmission power
levels to the battery-operated nodes so that under a uniform traffic load the net-
work remains connected for a maximum length of time [2]. We consider the case
where the nodes are non-mobile and the power levels, once fixed, stay the same
throughout the operating life of the network. An application scenario would be
a sensor network whose main purpose is to provide sporadic status messages to
a common sink node. Consider for example a sensor network that is deployed in
a forest region to detect fire.

* Partially supported by the Academy of Finland under grant 209300 (ACSENT).

H. Zhang et al. (Eds.): MSN 2007, LNCS 4864, pp. 445 2007.
© Springer-Verlag Berlin Heidelberg 2007

446 H. Haanpaa et al.

It is apparent that under our assumptions of stationary nodes and uniform
traffic load, maximising the lifetime of a network is equivalent to finding the
lowest possible transmission power levels for the nodes that suffice to make
the network connected. This problem of minimising the maximum transmission
power required to establish connectivity has been considered previously in the
literature several times. One of the earliest papers on the topic is by Ramanathan
and Rosales-Hain [3], who address the problem in the setting of maximising the
lifetime of a single-session broadcast. They propose a centralised algorithm for
finding the minimum maximum (minmax) transmission power level that main-
tains network connectivity, as well as two simple distributed heuristics that aim
at achieving the same. Their distributed heuristics, however, are suboptimal and
do not necessarily guarantee connectivity in all cases.

Kang and Poovendran [4] discuss several problems related to dynamic life-
time maximisation, such as non-uniform energy levels. They also emphasise the
importance of considering the minmax energy metric rather than the more often
addressed minimum total energy metric for maximising network lifetime. For a
distributed implementation, Kang and Poovendran rely on distributed methods
for constructing minimum spanning trees (MST), such as the algorithm of Gal-
lager, Humblet and Spira [B]. These techniques are, however, rather involved,
and we complement this work by suggesting a much simpler distributed method
for constructing general spanning subgraphs with minmax edge costs.

The problem of minimising the total, as opposed to minmax, network trans-
mission power required for connectivity has been studied extensively (cf. e.g. [2]
and the references therein). Rodoplu and Meng [6] present a distributed algo-
rithm for this problem that is based on the concept of relay regions: each node is
aware of its own geographic location and the location of its neighbours. Based on
a path-loss model, nodes can locally determine to which neighbour they should
forward the message to minimise the total energy consumption. The algorithm
proposed in [6] is optimal but requires extensive assumptions, such as the avail-
ability of location information and a specific path-loss model.

Wattenhofer, Li, Bahl, and Wang [7] propose a distributed algorithm for the
same problem. Their algorithm, which relies on a geometric cone-based forward-
ing scheme, requires that nodes can measure exactly the direction of incoming
radio transmissions (angle of arrival). It also makes further assumptions on ge-
ometric properties of the underlying graph model.

Furthermore, several researchers have proposed distributed algorithms that
construct minimum spanning trees and can potentially be used for lifetime max-
imisation, e.g. the algorithm proposed in [5] or the self-stabilising algorithm
by Gupta and Srimani [8]. An MST based problem formulation seems appro-
priate for minimising the total energy expenditure. However, the distributed
construction of an MST is usually more involved than the distributed search for
a spanning subgraph with minmax edge cost. In Section [B, we present a very
simple and efficient distributed algorithm that finds such a spanning subgraph.
For a discussion of the two different objectives, minimising total transmission
power and minimising maximum transmission power, see e.g. [214].

Distributed Computation of Maximum Lifetime Spanning Subgraphs 447

Our Maximum Lifetime Spanner (MLS) protocol is based on an approach
similar to the distributed MST algorithm of Gupta and Srimani [§], viz. the
construction of paths with minmax edge cost by breadth-first search similar
to the asynchronous Bellman-Ford algorithm. However, as we do not consider
the construction of an MST, we obtain several simplifications of the resulting
scheme. Furthermore, we observe that before running the algorithm we can prune
the network according to an algebraic formulation of relative neighbourhood
graphs (RNG), for the purpose of avoiding traversal of redundant edges.

Recently Guo, Yang, and Leung [9] proposed a distributed algorithm DMMT
(Distributed Min-Max Tree) for constructing minmax edge cost multicast trees,
in the style of Prim’s MST algorithm. Since their technique can easily be adapted
also to sensor network lifetime maximisation, and seems to be the proposal
in the literature closest to our MLS approach, we conducted an experimental
comparison of the runtime behaviour of the two algorithms DMMT and MLS.

The rest of the paper is organised as follows. Section 2l gives a formal descrip-
tion of the lifetime maximisation problem. Section 3 describes our distributed
method for finding a spanning subgraph with minmax transmission cost in a
given network. Section 4 discusses a generalisation of RNGs and how they can
be utilised for improvements of our algorithm. Section 5 presents a distributed
algorithm for finding the RNG as an initial step of the algorithm proposed in
Section 3. In Section 6 we evaluate our proposed Maximum Lifetime Spanner al-
gorithm in terms of the number of required control messages, and compare it to
the performance of the Distributed Min-Max Tree algorithm [9] proposed by Guo
et al. using the ns2 network simulator [I0]. Section 7 presents our conclusions
and outlines future research directions.

2 Lifetime Maximisation and Optimal p-Spanners

We model a sensor network as a graph G(7) = (V, E(7)), where the set of vertices
V corresponds to the nodes of the network, 7 : V +— RT is a transmission power
assignment, and the set E(7) represents the directed links between nodes induced
by a given transmission power assignment 7. We assume distinct node identifiers.

Each node has a finite energy budget that is consumed during the operation
of the network. We assume that the initial value is the same for all nodes.
We consider a scenario where the energy consumed by wireless communication
dominates over energy consumed by computation or sensing. The minimum
power a node u can use to maintain a link to a neighbouring node v is denoted
by 6(u,v), where § : V x V +— RT is the representative link cost function. We as-
sume that the link costs are symmetric, i.e. 6(u,v) = (v, u) for all u,v € V; this
is the case for example if the costs represent signal attenuation resulting from
a deterministic path-loss model that only depends on the pairwise distance of
nodes. In practice, one would expect a number of unidirectional communication
links between the nodes and choose the maximum of the edge costs for ¢ such
that bidirectional communication can be supported. We consider the notion of

448 H. Haanpaa et al.

lifetime that regards all nodes as equally important, so that the objective is to
maximise the time span after which the first node runs out of energy [11].

The set E(7) of edges in G(7) is induced by the transmission power assign-
ment 7 by the rule that an edge (u,v) is an element of E(7) if and only if the
transmission power 7(u) at node w is at least §(u,v). Each node has the same
maximum transmission power pmax that must not be exceeded. We assume that
the nodes can form a connected network by using full power, i.e., that G(Tmax)
With Tiax (%) = Pmax for all u is a connected graph.

We consider the problem of finding a static transmission power assignment
7 : V = [0, pmax] that maximises the lifetime of the network while retaining
connectivity. In this context, the desired power assignment 7 obviously induces
a spanning subgraph with minmax edge cost . Although this condition generally
does not uniquely determine 7, choosing 7(u) = « for all nodes u does not reduce
the lifespan of the node that first runs out of energy. The power assignment 7
is considered to be fixed after it has been once determined during the initial
network setup. This property distinguishes this problem formulation from the
computationally more complex problem of dynamically assigning transmission
power levels [12].

Definition 1. Given a set of nodes V and an edge cost function § : VxV +— RT,
a graph G = (V, E) is a p-spanner if G is connected and 6(u,v) < p for each edge
(u,v) € E. If no p'-spanner with p' < p exists, then we say that the p-spanner
s optimal.

In other words, a p-spanner is a connected spanning graph for the nodes in V'
where no edge has cost greater than p. Note that for any network a py,.x-spanner
exists exactly when the network can be connected by the nodes sending at full
power. The lifetime maximisation problem is formulated as follows:

Definition 2. Given a set V representing sensor network nodes and an edge cost
function 6, find an optimal p-spanner G = (V, E) for V and 6 and determine
a transmission power assignment T : V +— [0, Pmas] such that max,ecy 7(v) < p
and T(u) > 6(u,v) for each link (u,v) € E.

3 A Distributed Algorithm for Optimal p-Spanners

In the following, we describe a distributed algorithm that, given a graph G,
finds a spanning subgraph of G with some minmax edge cost, i.e. an optimal
p-spanner of G. Initially, we assume that each node v knows its neighbours in G
and the cost between v and each of them. We assume that the links and costs are
symmetric. Our algorithm finds a spanning subgraph — indeed, a spanning tree —
with minmax edge cost as long as the original graph is connected. Following the
reasoning presented in Section 2 the algorithm can then be used to determine
the minmax transmission power that is required to maintain connectivity in a
wireless sensor network. In this setting it would be run once during an initial
setup phase of the network to distributively determine the transmission power

Distributed Computation of Maximum Lifetime Spanning Subgraphs 449

for node v with local variables «, f, a[], status][]
at start:
a «— o0; f « undefined
for v € N(v):
afu] «— oo; statusu] < ready
enter state SLEEP
in state SLEEP or state SEARCH:
if (a’) with o’ < « is received from some node u then:
if f is defined: send NAK(«) to f
f—u
for win N(v)\ {u}:
if max(o/,6(v,w)) < afw]:
send (max(a’, §(v,w))) to w
aw] « max(a’, 6(v, w)); status[w] «— wait
enter state SEARCH
if () with @’ > «a is received from some node u then: send NAK(a') to u
in state SEARCH:
whenever status[w]=ready for all w € N(v)\ {f}:
send ACK(«) to f
enter state SLEEP
if ACK(c) or NAK(c') is received from u and afu] = o' then: status[u] « ready

Algorithm 1. Distributed algorithm for finding an optimal p-spanner

level for each node. The graph G(7max) is then an obvious candidate for a graph
to start from. Beneficial alternatives are discussed in Section 4 and 5.

Our Algorithm [for finding an optimal p-spanner is based on distributed
breadth-first search similar to the asynchronous Bellman-Ford algorithm [I3]
Sec. 15.4]. However we use the properties of the minmax edge cost function to
reduce the complexity of the search. First, a given reference node sends to each
of its neighbours a message that contains the cost of the connecting edge. Upon
first receiving the request, each node makes note of the node from which the
message was received and rebroadcasts the request to its neighbours, updating
the maximum edge cost « indicated in the request accordingly. Each node also
remembers the best « sent to each neighbour. If a node that has already received
and rebroadcast a request receives a request that indicates a better route from
the reference node, it rebroadcasts the latter request to its neighbours if this
leads to obtaining a route with a lower «, to those neighbours. In a typical data
gathering scenario, the natural choice for the reference node is the node that
collects the data.

Moreover, the nodes collect acknowledgements from their neighbours. When
a node receives the request, it forwards it to its neighbours, and waits for each
neighbour to either accept (ACK) or reject (NAK) it. When acknowledgements
have been received from each neighbour, the node sends an ACK to the node
from which it received the request. A NAK is sent if the node receiving the

450 H. Haanpaa et al.

1 — 2:(3.0), 3 — 2:NAK,

1 — 5:(1.1), 3 — 2:(1.4),

2 — 3:(3.0), 2 — 1:NAK,

2 4:53.0;, 12 3,404, 06

5 — 6:(1.3), 4 — 2:NAK,

3 4:(3.0) _05> 2 s 4:(1.4), 405_
4 — 3:NAK, . 4 — 2:NAK, .

4 — 3:(3.0), ‘ 14 4 — 2:(1.4), + 1.4

3 — 4:NAK, 2 — 4:NAK,

3 — 6:(3.0), @ 3.0 2 — 1:(1.4), @ 3.0
6 — 3:NAK, 1 — 2:NAK,

3 — 2:ACK, * 1.3 4 — 3:ACK, + 1.3

4 — 2:ACK, 3 — 6:ACK,

2 — 1:ACK, 1.1 6 — 5:ACK, 1.1

6 — 3:(1.4), 5 — 1:ACK

Fig. 1. Sample execution of Algorithm [l from reference node 1; messages listed as
source— destination:message. Initial state, intermediate state and final state with mes-
sages listed between states.

request already knows of a better path, or if a node learns of a better path while
waiting for the acknowledgements from its neighbours. In this way, an ACK re-
sponse means that the responding node has accepted the other node as its father
in the tree being constructed, while a NAK signifies refusal. It can happen that
a node will first respond with an ACK but later send a NAK; however, when
the reference node has received acknowledgements from its neighbours, the algo-
rithm has finished. To notify the remaining nodes about the termination of the
algorithm, the reference node can then initiate a network-wide broadcast using
the edges of the computed spanning tree. Each node v receiving this broadcast
message can then decrease its transmission power 7(v) to the minimum power
required to reach its father f, and the neighbouring nodes that have chosen v
to be their father. A sample run of Algorithm [l is given in Figure [I

In Algorithm [« is the current estimate of the minmax cost of a path from
the reference node to each node v; and f is the node from which v has received
the last accepted message. Initially, f is undefined and o = oo for each v. The
optimal p-spanner is defined by the f variables of each node after the algorithm
has terminated.

To justify the algorithm, we firstly observe that it always terminates. Let A
be the number of distinct edge costs in the graph; no node can learn of a new
route with better a more than A times.

Secondly, at the end each node has a correct a,: if from some node v there
would exist a path of max cost ag < «,, to the reference node, then on the path
there is some edge of cost at most oy where exactly one endpoint would have
a maximum edge cost estimate higher than «g. This cannot happen, since the
endpoint with cost at most ag should send a message along that edge. Thirdly, it
cannot happen that a node would remain in the wait state, since its neighbours
will respond to the queries either by an immediate NAK, if the cost was too large,

Distributed Computation of Maximum Lifetime Spanning Subgraphs 451

a delayed ACK once the neighbour has received responses from its children, or
a delayed NAK in case the neighbour later learns of a lower max cost path.

To consider the communication complexity of the algorithm, observe that the
number of distinct edge costs is bounded by A < |E| and with practical radio
equipment, the number of distinct power levels is typically not large. In this
regard the minmax edge cost spanner problem is different from finding minimum
cost routes, where the number of routes with different total cost between two
nodes can be exponential in the number of nodes [13, Sec. 15.4]. When a node
learns of a better «, it will send a message to its neighbours, who will eventually
answer with an ACK or a NAK. Since the requests sent by a node to its neighbour
are in order of decreasing a, each of the |F| edges participates in at most 2A
updates, and the total communication complexity is O(A |E|).

4 Relative Neighbourhood Graphs

Algorithm [[] requires nodes to exchange messages with all neighbours. In a dense
sensor network where the number of nodes within transmission range may be
large, it is beneficial to limit the number of nodes that need to be contacted, while
maintaining network connectivity at the same minmax transmission cost. For
this purpose, we use relative neighbourhood graphs [14]. Relative neighbourhood
graphs and related structures have been used for topology control [T516], mostly
in a geometric context, where nodes are placed in a plane and §(u,v) depends
only on the Euclidean distance between u and v. However, we only assume that
path loss is symmetric, i.e. §(u,v) = §(v,u). We will find, though, that when the
nodes are placed in the Euclidean plane, our algorithm runs much faster.

Definition 3. Given a graph G = (V, E) and an edge cost function §, the rela-
tive neighbourhood graph of G is the graph with vertex set V' and edge set {{u,v} |
{u,v} € E, Aw s.t. {u,w},{w,v} € E,6(u,w) < é(u,v),d(w,v) < é(u,v)}.

In effect, the relative neighbourhood graph is obtained by deleting from each
triangle in the original graph the edge with the highest cost. Such a generalisation
of the concept of RNG has been already successfully applied to other problems,
such as searching and broadcasting in peer-to-peer networks [17].

Proposition 1. For any p, the RNG of G contains a p-spanner if G does.

Proof. Consider an optimal p-spanner in the original graph. Order the k edges re-
moved from the original graph in constructing the relative neighbourhood graph
in increasing order of cost as ey, es,...,ex. Let Ey denote the edge set of the
RNG, and let E; = E;_1 U{e;} for 0 < i < k. Suppose for contradiction that
Ey admits no p-spanner. Since Fj, admits a p-spanner, there must be some least
0 < i* < k such that E;» admits a p-spanner. By definition of the RNG, in
FE;«_1 the endpoints of e; are connected by a path of two edges shorter than e;,
so E;«_1 also admits a p-spanner — a contradiction.

452 H. Haanpaa et al.
5 Distributed Algorithms for RNGs

In this section, we describe a distributed method for constructing RNGs. We
do not assume that a node initially knows about the cost of the edges to its
neighbours, but we assume that a node can estimate the strength of arriving
radio signals, e.g. using Received Signal Strength Indication (RSST) for a system
with IEEE 802.11 network interfaces.

To construct the RNG, each node beacons at maximum power, sending out
a message that contains its distinct node identifier. Nodes learn about their
neighbours by receiving beaconing messages from them. They also estimate the
path loss from the received signal strength. Path loss is used to estimate the
b-cost of a particular edge. We assume that path loss is symmetric; e.g. all path
loss functions where the path loss depends only on the distance between the
nodes fall into this category. In this manner all nodes can learn about their
neighbours in O(]V]) beaconed messages of O(1) size.

After having learned about their neighbours, the nodes prune unnecessary
edges from the graph formed by the nodes and radio links. To this end, the
nodes again send beaconing messages. In addition to the identity of the beaconing
node, this time the messages also contain the list of neighbours of the beaconing
node, and the associated ¢ costs. If a node u learns, upon receiving a message
from node v, that for some third node w it holds that é(u,w) > é6(u,v) and
6(u,w) > 6(v,w), then u can determine that the edge (u,w) is not in the RNG,
as per Definition [l Thus the nodes can prune their neighbourhood so that only
the RNG remains in O(|V|) messages, the size of each of which is proportional
to the number of neighbours the beaconing node has, and O(|E|) in total.

Pruning the connection graph down to the RNG before running Algorithm [I]
can give very considerable savings in complexity. With an arbitrary path loss
function, the RNG can still contain O(|V|*) edges. However, when the nodes
are in a plane and path loss is an increasing function of distance, the RNG is a
subgraph of the Delaunay triangulation of the original graph and contains only
O(|V]) edges [14]. Thus in the Euclidean plane the communication complexity of
the entire algorithm, including beaconing to determine neighbours, determining
the RNG and computing an optimal p-spanner is O(|E| + A |V]).

6 Simulations

We experimentally validated Algorithm [Iland compared its runtime behaviour to
the Distributed Min-Max Tree (DMMT) algorithm by Guo, Yang, and Leung [9]
for a number of different scenarios using the ns2 network simulator.

6.1 The DMMT Algorithm

Although DMMT was recently proposed for constructing maximum lifetime
multicast trees in wireless ad hoc networks, it can be readily applied to solve
the lifetime maximisation problem as formulated in Section 2. We focus on the

Distributed Computation of Maximum Lifetime Spanning Subgraphs 453

version of DMMT proposed in [9] for omnidirectional antennas. DMMT is based
on Prim’s well-known MST algorithm. The idea is to grow a subtree starting
from the reference node, such that in each step the minimum cost edge is added
that connects one node in the tree and another node not yet in the tree. After
all nodes are added, the MST results.

The DMMT algorithm finds an optimal p-spanner (that is a tree) by adding
an additional step to each iteration: after the minimum outgoing-edge-cost has
been found, it is propagated to all tree nodes contained in a join request message.
The tree nodes then forward this message to all adjacent nodes that are not yet
in the tree using edges of cost at most the minimum outgoing edge-cost. Each
node only forwards a join request once, and requests are identified by iteration
counters. After a non-tree node is added via an edge incident to the tree node,
the tree node becomes the parent of the added node which becomes a child of its
parent. This is called the growth phase. After the growth phase has terminated,
the next minimum outgoing edge-cost is determined in the subsequent search
phase. In the search phase, each leaf node initiates a join reply message, which is
forwarded along the tree towards the reference node. This message contains an
estimate of the minimum outgoing-edge-cost in this iteration, which is updated
as the message proceeds along the edges of the tree: each intermediate non-leaf
node waits for all its children to send a join reply and then forwards a single
join reply to its parent, that contains the minimum cost of the replies received
from its children and the cost of its incident edges to non-tree nodes.

Guo et al. [9] have each node use timers to estimate the termination of the
growth phase. However, to make DMMT more resilient against packet drops, we
considered a more synchronised method where the source commands the nodes
to switch from the growth to the search phase. The additional control messages
required by our modification were not taken into account in comparison to MLS.

6.2 Experimental Evaluation of MLS

In evaluating MLS, we consider the number of control messages and the simula-
tion time required. In our simulations, we use the disk graph model: the networks
are created by randomly scattering nodes onto a square area with given dimen-
sions, and connectivity is defined by the ns2 default maximum transmission
range. We discard disconnected graphs. Simulation parameters are summarised
in Table[Il The dimensions of the square area were chosen to yield an expected
density of one node per square of side length 130 m.

Table 1. Simulation parameters

ns2 version: 2.31 Square dimension: 919 mx919m,1300 mx 1300 m,
1592 mx 1592 m,1838 mx 1838 m

Transmission range: 250 m Number of nodes: 50, 100, 150, 200

Interference range: 550 m MAC protocol: 802.11 with RTS/CTS

Antenna type: OmniAnt. Propagation model: TwoRayGround

454 H. Haanpaa et al.

We implemented Algorithm [Il as a protocol for setting up a wireless network
in ns2. We refer to this implementation as the Maximum Lifetime Spanner
(MLS) protocol. MLS consists of Algorithm [Il and the method of setting the
transmission power levels of each node after running Algorithm [Il as described
in Section Bl At start, each node is assumed to know link cost to each of its
neighbours. This input can be obtained by the beaconing algorithm in Section
For simplicity, we use Euclidean distance as link cost in the simulation. As the
result of the algorithm, each node has a list of neighbours for whose reachability
it is responsible, which the node then uses to set its transmission power.

Both MLS and DMMT give trees that form optimal p-spanners by setting
transmission power levels as described above, for each of the network instances.
In our ns2 simulations, both algorithms converged despite a number of con-
trol packets being dropped by the MAC layer due to different reasons, such as
network interference. Figure 2] shows the total (simulated) times required by
the algorithms for convergence, where MLS is run on both the original disk
graph (ODG) and on the RNG of the graph. As DMMT was insensitive to
which input graph is used, for it only results on the original disk graph are
given.

Our results indicate that MLS outperforms DMMT both in runtime and in
the number of control messages transmitted, in particular when run on the RNG.
MLS scales well with the number of nodes in the network, while DMMT shows
a significant increase in the number of control messages required. However, the
runtime of DMMT depends heavily on the values used to initialise the timers
in the protocol, although the number of required control messages is unchanged.

Running MLS on the RNG instead of the original graph reduces the number
of messages required, as indicated by Fig. @ but it also removes paths with
low minmax cost and a small hopcount. Indeed, the experiments show a slightly
higher running time, as propagating ACKs and NAKs along the tree takes longer.

10000 T T T T T T T T3 T T T T T T T T
DMMT & ODG +——+— E DMMT & ODG +——+— 250.0 K
MLS & RNG +--%--~] I MLS & ODG ~--x--- - 250.
MLS & ODG :--*--- 1 MLS & RNG :-----:
1000 ¢ E 200.0 K
150.0 K
100 E
% 100.0 K
[o g R]
0pE 50.0 K
1 1 1 1 1 1 1 1 1 0.0K
40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 200
(a) Total running time (b) Total number of messages

Fig. 2. Simulated running time (s) and number of messages required by MLS and
DMMT on networks of varying size. Errorbars represent the standard deviation; for
MLS results are shown for runs on the original disk graph (ODG) and on the RNG.
Note the logarithmic scale in (a).

Distributed Computation of Maximum Lifetime Spanning Subgraphs 455

(a) Initial transmis- (b) Tree con- (¢) RNG of original (d) Tree con-
sion graph structed by MLS graph structed by MLS
on initial graph on RNG

Fig. 3. Resulting minmax-power paths from the reference to the sensor nodes for a
graph with 100 nodes; the remaining edges of the p-spanner induced by the corre-
sponding transmission power are omitted for clarity

Figure Bl depicts one transmission graph instance, its RNG, and the tree that
is constructed by MLS to calculate the transmission power levels for an optimal
p-spanner for a network of 100 nodes.

7 Conclusions

We formulate the problem of lifetime maximisation in wireless sensor networks as
a search for spanning subgraphs with minmax edge costs, which we call optimal
p-spanners. We propose the MLS network protocol that determines the paths
with minimum maximum edge cost. The algorithm is based on breadth-first
search and is substantially simpler than methods relying on distributed minimum
spanning tree algorithms. The ns2 network simulator was used to compare the
performance of MLLS and DMMT in constructing minmax trees. In all scenarios
considered MLS clearly outperforms DMMT in terms of number of control
messages and execution time.

We also propose a distributed algorithm for extracting proximity graph struc-
tures. It uses beaconing to construct the RNG of the transmission graph of the
network. We discuss the application of the algorithm to lifetime maximisation by
integrating into a pre-processing stage before running the algorithm for finding
optimal p-spanners. The resulting pruning of edges suggests significant gain in
the efficiency of the original algorithm for dense networks.

To obtain meaningful results in practice, nodes must estimate the path loss
for transmissions to their neighbours to a high accuracy. Furthermore, the path
loss between neighbouring nodes has to be close to symmetric, as the edges in
the spanning subgraph resulting from Algorithm [are likely to be used in the
opposite direction than they were added during the construction of the optimal
p-spanner. A pairwise exchange of link cost information would remove the need
for this assumption.

In the future we will integrate the RNG construction by beaconing into the
MLS protocol. We also hope to consider distributed approximation algorithms

456 H. Haanpaa et al.

for dynamic transmission power assignment. One extension that readily lends
itself to the problem of dynamic power assignment is an iterative method based
on single scaled subproblems for the static case.

References

1. Ephremides, A.: Energy concerns in wireless networks. IEEE Wireless Comm. 9(4),
48-59 (2002)

2. Lloyd, E.L., Liu, R., Marathe, M.V., Ramanathan, R., Ravi, S.: Algorithmic as-
pects of topology control problems for ad hoc networks. Mobile Networks and
Appl. 10(1-2), 19-34 (2005)

3. Ramanathan, R., Hain, R.: Topology control of multihop wireless networks using
transmit power adjustment. In: Proc. 19th Annual Joint Conf. IEEE Comp. and
Comm. Societies, pp. 404-413 (2000)

4. Kang, 1., Poovendran, R.: Maximizing network lifetime of broadcasting over wire-
less stationary ad hoc networks. Mobile Networks and Appl. 10(6), 879-896 (2005)

5. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. on Programming Languages and Systems 5(1),
66-77 (1983)

6. Rodoplu, V., Meng, T.H.: Minimum energy mobile wireless networks. IEEE J. on
Selected Areas in Comm. 17(8), 1333-1344 (1999)

7. Wattenhofer, R., Li, L., Bahl, P., Wang, Y.M.: Distributed topology control for
power efficient operation in multihop wireless ad hoc networks. In: Proc. 20th
Annual Joint Conf. IEEE Comp. and Comm. Societies, pp. 1388-1397 (2001)

8. Gupta, S.K.S., Srimani, P.K.: Self-stabilizing multicast protocols for ad hoc net-
works. J. of Parallel and Distributed Computing 63(1), 87-96 (2003)

9. Guo, S., Yang, O.W.W., Leung, V.C.M.: Tree-based distributed multicast algo-
rithms for directional communications and lifetime optimization in wireless ad hoc
networks. EURASIP J. on Wireless Comm. and Networking 2007, 10 (2007) Article
ID 98938

10. McCanne, S., Floyd, S., Fall, K., Varadhan, K.: The network simulator ns2 (1995)
The VINT project, available for download at http://www.isi.edu/nsnam/ns/

11. Chang, J.H., Tassiulas, L.: Energy conserving routing in wireless ad-hoc networks.
In: Proc. 19th Annual Joint Conf. IEEE Comp. and Comm. Societies, pp. 22-31
(2000)

12. Floréen, P., Kaski, P., Kohonen, J., Orponen, P.: Lifetime maximization for mul-
ticasting in energy-constrained wireless networks. IEEE J. on Selected Areas in
Comm. 23(1), 117-126 (2005)

13. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, USA (1996)

14. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recognition 12, 261-268 (1980)

15. Borbash, S., Jennings, E.: Distributed topology control algorithm for multihop
wireless networks. In: Proc. 2002 Intl. Joint Conf. on Neural Networks (2002)

16. Bhardwaj, M., Misra, S., Xue, G.: Distributed topology control in wireless ad hoc
networks using J-skeletons. In: Workshop on High Performance Switching and
Routing, pp. 371-375 (2005)

17. Escalante, O., Pérez, T., Solano, J., Stojmenovic, I.. RNG-based searching and
broadcasting algorithms over internet graphs and peer-to-peer computing systems.
In: The 3rd ACS/IEEE Intl. Conf. on Computer Systems and Appl., pp. 47-54
(2005)

http://www.isi.edu/nsnam/ns/

	Distributed Computation of Maximum Lifetime Spanning Subgraphs in Sensor Networks
	Introduction
	Lifetime Maximisation and Optimal p-Spanners
	A Distributed Algorithm for Optimal p-Spanners
	Relative Neighbourhood Graphs
	Distributed Algorithms for RNGs
	Simulations
	The DMMT Algorithm
	Experimental Evaluation of MLS

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

