
Translating Parallel Circumscription into
Disjunctive Logic Programming?

Emilia Oikarinen

Helsinki University of Technology
Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science
P.O.Box 5400, FI-02015 TKK, Finland

Emilia.Oikarinen@tkk.fi

Abstract. The semantics of disjunctive logic programs is based on min-
imal models. This makes atoms appearing in a disjunctive program false
by default. In many cases this is highly desirable, but certain problems
become awkward to formalize if all atoms are subject to minimization.
Lifschitz’s parallel circumscription enables the use of varying and fixed
atoms which eases the task of knowledge presentation in certain cases. In
this paper we show how parallel circumscription can be embedded into
disjunctive logic programming using a linear translation.

1 Introduction

A rule-based language allowing disjunctions in the heads of rules is used for
knowledge representation in disjunctive logic programming. The semantics of
disjunctive logic programs is determined by stable models [4, 12]. Stable models
are minimal with respect to subset inclusion. Thus every atom appearing in a
disjunctive logic program is false by default. Often this is highly desirable, but
some problems are difficult to formalize if all atoms are minimized.

Parallel circumscription [10] is based on a refined notion of minimality and
enables the use of varying and fixed atoms in addition to the ones that are being
minimized. This eases the task of knowledge presentation in certain cases. For
example, it is very straightforward to formalize Reiter-style minimal diagnoses
[13] for digital circuits using parallel circumscription.

There have been several attempts to embed parallel circumscription into
disjunctive logic programming. Although fixed atoms are easy in this respect
[2, 5], varying atoms are not fully covered. Earlier approaches either deal with
syntactic subclasses of logic programs [3] or have exponential worst-case space
complexities [8, 14]. Cadoli et al. [1] achieve linear complexity, but their trans-
formation is about reducing circumscriptive inference to inference from minimal
models. Wakaki and Inoue [15] propose an approach for computing prioritized

? The research reported is funded by Helsinki Graduate School in Computer Science,
Academy of Finland (project #211025) and by grants from Nokia Foundation and
Finnish Cultural Foundation.

circumscription (a generalization of parallel circumscription) using a two-phased
generate and test method.

In this paper we discuss the approach presented in [7]. Contrarily to earlier
approaches the translation described is linear but non-modular and enables the
use of existing implementations of disjunctive logic programming such as dlv [9]
and GnT [6] for the actual search of minimal models.

2 Disjunctive Logic Programs

A (propositional) disjunctive logic program (DLP) Π is a set of rules of the form

a1 ∨ · · · ∨ an ← b1, . . . , bm,∼c1, . . . ,∼ck, (1)

where n,m, k ≥ 0 and a1, . . . , an, b1, . . . , bm, and c1, . . . , ck are propositional
atoms. The head of the rule a1 ∨ · · · ∨ an is interpreted disjunctively while the
rest – forming the body of the rule – is interpreted conjunctively. The symbol “∼”
denotes negation as failure. Intuitively, a rule of the form (1) acts as an inference
rule; any of the head atoms a1, . . . , an can be inferred given that the positive body
atoms b1, . . . , bm can be inferred and the negative body atoms c1, . . . , ck cannot.
We define literals in the standard way using ∼ as the connective for negation. For
any set of atoms A, we define a set of negative literals ∼A = {∼a | a ∈ A}. Since
the order of atoms is insignificant in a rule (1), we use a shorthand A← B,∼C
where A, B and C are the sets of atoms involved in (1). We drop the symbol
“←” in case of an empty body. An empty head (n = 0) is denoted by “⊥” and
a rule with an empty head is called an integrity constraint. A DLP Π is positive
(PDLP) if and only if k = 0 holds for every rule (1) of Π.

2.1 Stable Model Semantics

The Herbrand base Hb(Π) of a DLP Π is the set of atoms appearing in Π. An
interpretation I ⊆ Hb(Π) of Π determines which atoms a ∈ Hb(Π) are true
(a ∈ I) and which are false (a 6∈ I). An interpretation I is a (classical) model of
Π, denoted by I |= Π if and only if for every rule A← B,∼C of Π, B ⊆ I and
C ∩ I = ∅ imply A∩ I 6= ∅, i.e. the satisfaction of the rule body implies that one
of the head atoms must also be true.

An interpretation M ⊆ Hb(Π) is a minimal model of Π if and only if M |= Π
and there is no N ⊂M such that N |= Π. We denote the set of minimal models
of Π by MM(Π). If Π is a PDLP, then MM(Π) determines the standard minimal
model semantics of Π. The semantics of DLPs involving negation as failure is
defined through stable models [4, 12].

Definition 1. Given a DLP Π and an interpretation M ⊆ Hb(Π), the Gelfond-
Lifschitz reduct of Π is a PDLP

ΠM = {A← B | A← B,∼C ∈ Π and M ∩ C = ∅}. (2)

An interpretation M ⊆ Hb(Π) is a stable model of Π if and only if M ∈
MM(ΠM). The set of stable models of Π is denoted by SM(Π).

3 Parallel Circumscription

We formulate parallel circumscription in the propositional case and assume that
the syntax of PDLPs is used instead of arbitrary propositional sentences. Parallel
circumscription is based on a refined notion of minimality partitioning atoms in
three disjoint categories.

Definition 2. Let Π be a PDLP and let V, F ⊆ Hb(Π) be the sets of varying
and fixed atoms, respectively, and V ∩F = ∅. A model M |= Π is 〈V, F 〉-minimal
if and only if there is no N |= Π such that (i) N \ (V ∪ F) ⊂M \ (V ∪ F) and
(ii) N ∩ F = M ∩ F .

The idea is that the atoms in Hb(Π) \ (V ∪ F) are minimized, while the truth
values of the atoms in V may vary freely and the truth values of the atoms in F
are kept fixed. Notice that the 〈∅, ∅〉-minimal models of a PDLP are its minimal
models.

4 Translating Parallel Circumscription into a DLP

In this section we consider the problem of translating parallel circumscription
into disjunctive logic programming. We proceed by introducing the subtransla-
tions TrF(·) and TrV(·) used to remove fixed and varying atoms, respectively.
The translations are then combined to obtain a bijective correspondence between
the 〈V, F 〉-minimal models of a PDLP and the stable models of its translation.

We use a technique proposed by De Kleer and Konolige [2] to remove the
fixed atoms. Let Π be a PDLP and V, F ⊆ Hb(Π). A new atom f ′ is introduced
for each f ∈ F . The translation for removing fixed atoms is

TrF(Π) = Π ∪ {f ∨ f ′. ⊥ ← f, f ′. | f ∈ F}

with (Hb(Π) \ V) ∪ {f ′ | f ∈ F} as the set of minimized atoms. There is a
bijective relationship between the 〈V, F 〉-minimal models of Π and the 〈V, ∅〉-
minimal models of TrF(Π). Furthermore, M ′ = M ∪ {f ′ | f ∈ F and f 6∈M} is
a 〈V, ∅〉-minimal model of TrF(Π) iff M is a 〈V, F 〉-minimal model of Π.

The translation TrV(·) for removing varying atoms is more involved. We use
a slightly optimized version of the translation proposed in [7]. It is worth notic-
ing that while the translation is linear with respect to the length of the original
program, it is non-modular. We assume that fixed atoms have already been re-
moved using the translation TrF(·). The goal is to obtain a bijective relationship
between the 〈V, ∅〉-minimal models of PDLP Π and the stable models of its
translation TrV(Π).

The translation function TrV(·) introduces new atoms not appearing in Hb(Π)
as follows. For each a ∈ Hb(Π), the complement a of a expresses the falsity of
a. Another renamed copy a∗ of each a ∈ Hb(Π) is needed in formulating a test
for 〈V, ∅〉-minimality along with a vector of new atoms d1, . . . , dn for the mini-
mized atoms P = Hb(Π)\V = {a1, . . . , an}. A new atom u for unsatisfiability is

needed for the unsatisfiability check used to encode the test for 〈V, ∅〉-minimality.
Given a set of atoms A ⊆ Hb(Π), we introduce shorthands A and A∗ for the
sets {a | a ∈ A} and {a∗ | a ∈ A}, respectively.

Definition 3. Let Π be a PDLP, V ⊆ Hb(Π) a set of varying atoms, and define
P = Hb(Π) \ V = {a1, . . . , an}. The translation TrV(Π) contains the following
rules:

1. a← ∼a for each a ∈ V and a← ∼a for each a ∈ Hb(Π);
2. (A \ V)← (B \ V),∼(A ∩ V),∼B ∩ V for each rule A← B in Π;
3. A∗ ∪ {u} ← B∗ for each rule A← B in Π;
4. d1 ∨ · · · ∨ dn ∨ u;
5. u← di,∼ai and u← a∗i ,∼ai for each 1 ≤ i ≤ n;
6. u← di, a

∗
i ,∼ai and u ∨ di ∨ a∗i ← ∼ai for each 1 ≤ i ≤ n;

7. a∗ ← u for each a ∈ Hb(Π);
8. di ← u for each 1 ≤ i ≤ n; and
9. ⊥ ← ∼u.

The translation works as follows. While taking into account that atoms in
P are minimized, the rules in items (1.) and (2.) choose an arbitrary model
candidate M such that M |= Π. The rules in item (3.) create a renamed copy of
Π for checking the 〈V, ∅〉-minimality of M . The rules in items (4.)–(6.) enforce
that any potential counter-model N for the 〈V, ∅〉-minimality of M (expressed in
Hb(Π)∗ rather than in Hb(Π)) satisfies N ∩P ⊂M ∩P . The atoms di represent
the difference between M ∩ P and N ∩ P , i.e., di is inferred if ai ∈ M and
ai 6∈ N . Finally, the rules in items (7.)–(9.) guarantee that no counter-models to
the 〈V, ∅〉-minimality of M exist.

The stable models of TrV(Π) are in a bijective correspondence with the
〈V, ∅〉-minimal models of Π. Furthermore, N is a stable model of TrV(Π) if
and only if M = N ∩ Hb(Π) is a 〈V, ∅〉-minimal model of Π [7]. Composing
the translations TrF(·) and TrV(·) we obtain a bijective correspondence between
the 〈V, F 〉-minimal models of a program Π and the stable models of the trans-
lation TrV(TrF(Π)). Our approach has been implemented and the tool called
circ2dlp [11] along with examples and a set of diagnosis benchmarks is avail-
able at http://www.tcs.hut.fi/Software/circ2dlp/.

Example 1. Consider the program Π = {f ∨ ab.} (a simplified version of Lifs-
chitz’s ostrich example [10]). Π has a unique 〈{f}, ∅〉-minimal model M = {f}.
The translation TrV(Π) for computing 〈{f}, ∅〉-minimal models of Π is the fol-
lowing:

1. f ← ∼f. f ← ∼f. ab← ∼ab.
2. ab← ∼f.
3. f∗ ∨ ab∗ ∨ u.
4. d ∨ u.
5. u← d,∼ab. u← ab∗∼ab.

6. u← d, ab∗,∼ab. u∨d∨ab∗ ← ∼ab.
7. ab∗ ← u. f∗ ← u.
8. d← u.
9. ⊥ ← ∼u.

The translation TrV(Π) has one stable model N = {f, ab, f∗, ab∗, d, u} and it
holds that N ∩Hb(Π) = M .

5 Conclusions

In this paper we have discussed a linear translation from parallel circumscription
into disjunctive logic programming such that a bijective correspondence between
the 〈V, F 〉-minimal models of a PDLP Π and the stable models of its translation
is obtained. This enables the systematic use of varying and fixed atoms in order
to develop more compact formulations of problems as disjunctive logic programs.

References

1. M. Cadoli, T. Eiter, and G. Gottlob. An efficient method for eliminating varying
predicates from a circumscription. Artificial Intelligence, 54(2):397–410, 1992.

2. J. de Kleer and K. Konolige. Eliminating the fixed predicates from a circumscrip-
tion. Artificial Intelligence, 39(3):391–398, July 1989.

3. M. Gelfond and V. Lifschitz. Compiling circumscriptive theories into logic pro-
grams. In Proceedings of the 7th National Conference on Artificial Intelligence,
pages 455–449, St. Paul, MN, August 1988. AAAI Press.

4. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

5. K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic Pro-
gramming, 35(1):39–78, 1998.

6. T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J.-H. You. Unfolding partiality
and disjunctions in stable model semantics. ACM Transactions on Computational
Logic, 2005. To appear, see http://www.acm.org/tocl/accepted.html.

7. T. Janhunen and E. Oikarinen. Capturing parallel circumscription with disjunctive
logic programs. In José Júlio Alferes and João Leite, editors, Proceedings of the 9th
European Conference on Logics in Artificial Intelligence, JELIA’04, pages 134–146,
Lisbon, Portugal, September 2004. Springer-Verlag. LNAI 3229.

8. J. Lee and F. Lin. Loop formulas for circumscription. In D.L. McGuinness and
G. Ferguson, editors, Proceedings of 19th National Conference on Artificial Intel-
ligence, pages 281–286, San Jose, California, USA, July 2004. The MIT Press.

9. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, and F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM Transactions on Com-
putational Logic, 2005. To appear, see http://www.acm.org/tocl/accepted.html.

10. V. Lifschitz. Computing circumscription. In Proceedings of the 9th International
Joint Conference on Artificial Intelligence, pages 121–127, Los Angeles, California,
USA, August 1985. Morgan Kaufmann.

11. E. Oikarinen. CIRC2DLP 1.1 — software for translating parallel circumscription
into disjunctive logic programming, 2005.

12. T.C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing, 9:401–424, 1991.

13. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–
95, 1987.

14. C. Sakama and K. Inoue. Embedding circumscriptive theories in general disjunctive
programs. In Proceedings of the 3rd International Conference on Logic Program-
ming and Nonmonotonic Reasoning, pages 344–357. Springer-Verlag, 1995.

15. T. Wakaki and K. Inoue. Compiling prioritized circumscription into answer set
programming. In B. Demoen and V. Lifschitz, editors, Proceedings of the 20th In-
ternational Conference on Logic Programming, pages 356–370, Saint-Malo, France,
September 2004. Springer-Verlag.

