
TKK Reports in Information and Computer Science

Espoo 2008 TKK-ICS-R4

INTERFACE SPECIFICATION METHODS FOR SOFTWARE COM-

PONENTS

Jani Lampinen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

TKK Reports in Information and Computer Science

Espoo 2008 TKK-ICS-R4

INTERFACE SPECIFICATION METHODS FOR SOFTWARE COM-

PONENTS

Jani Lampinen

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 451 1

Fax +358 9 451 3369

E-mail: series@ics.tkk.fi

©c Jani Lampinen

ISBN 978-951-22-9453-4 (Print)

ISBN 978-951-22-9454-1 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://www.otalib.fi/tkk/edoc/

TKK ICS

Espoo 2008

ABSTRACT: This report presents an interface specification language de-
veloped as a part of the LIME-project (LightweIght formal Methods for
distributed component-based Embedded systems) and a tool implemen-
tation to support it. The intention is to provide a methodology that is
lightweight and complementary to the existing means of quality assurance
in a software process.

The specification language provides a mechanism for specifying both
external usage of a software component, as well as the internal behavior
of a one. The former is referred to as interface specification, and the latter
to as library specification. Should the interface specification be breached
between two interacting components, the calling component is incorrect.
Likewise, if the called component does not obey library specification,
it will be the one to take the blame. Both types of specification can
be written using either propositional linear temporal logic (PLTL) or by
regular expressions, and may contain claims about the component’s state
or the currently executing method.

Java has been used as the implementation language on the approach
because of the preexisting metadata mechanism (Java annotations) and
good tool support. The tool implementation relies on aspect-oriented
programming developed by Gregor Kiczales and his team at Xerox PARC
in the late 90s. It employs annotation-guided generation of temporal
safety aspects to synthesize the defined properties as behavioral invariants
to the runtime execution of the program. The aspects simulate finite state
automata which keep track of the state of the interaction and signal an
exception in case of an error in it is observed.

KEYWORDS: Lightweight methods, Interface specification, Java, PLTL,
Aspect-oriented programming

CONTENTS

1 Introduction 1

2 Theoretical background 4
2.1 Propositional formulas . 4
2.2 Regular expressions . 5
2.3 PLTL . 7
2.4 Safety properties . 9

3 The specification language 11
3.1 Specifying interfaces and components – Running examples 11
3.2 Specification language . 14

3.2.1 Policies and notation 15
3.2.2 Triggering a checker 16
3.2.3 Data handling . 17

4 Technical background 20
4.1 Aspect-oriented programming 20
4.2 AspectJ . 20

4.2.1 Join points and pointcuts 21
4.2.2 Advices and aspects 22

5 The tool implementation 25
5.1 Programming interface . 25

5.1.1 Propositions . 25
5.1.2 Checkers . 25

5.2 Tool architecture . 27
5.2.1 Common . 29
5.2.2 Aspect monitor . 31

6 Experiments 36
6.1 An interface specification for a lock interface 36
6.2 A library specification for a file interface 37
6.3 PLTL specification with past time subformula 39

7 Conclusions and future work 43
7.1 Conclusions . 43
7.2 Future work . 44

Bibliography 46

CONTENTS v

1 INTRODUCTION

As software has become an irreplaceable part of our daily lives, the quality
and correctness of it is crucial to our society. Not only do we literally
trust systems such as cars, nuclear power plants, health care appliances
and airplanes with our lives, but we also put a huge financial trust to our
banking systems and data-communication satellites. Of course a failure
in a software system does not always have catastrophic consequences but
it may lose customers or tarnish the public image of its producer or of
the company which operates it.

The traditional approach to quality assurance and assessment in soft-
ware processes has been testing. Although testing is applied with a
planned and disciplined manner in many of the software organizations,
it is still somewhat ad-hoc by nature. Formal methods such as model
checking and model-based testing (see, e.g., [11, 18]) have been suggested
as methodologies for achieving better quality in software. These meth-
ods, however, impose considerable requirements for the software process
in which they are applied, and for the expertise of the people applying
them. They are also typically based on a complete model of the system
which might be difficult produce, especially for legacy systems that have
already been implemented.

The lightweight formal method presented here is based on formal inter-
face specifications and monitoring them during runtime execution. This
approach has been taken in order to gain benefits of both full-blown for-
mal methods and traditional testing while avoiding some of the pitfalls
[5]. Runtime monitoring can only, however, detect errors in execution
but can not provide correctness guarantees like model checking does.

One thing that combines the various formal specification languages
and their corresponding tool implementations is that they are in some
way based on mathematical formalism. The degree of complexity varies
greatly from simple propositional assertions to Turing equivalent lan-
guages (see, e.g., [29]) with more than enough expressive power for any
specification. In the lower end of the spectrum when it comes to expres-
sive power are the stateless design by contract (DBC) languages based on
the Hoare triple [17]. One of the modern implementations of this disci-
pline is Java Modeling Language (JML), see, e.g., [4]. The IEEE standard
Property Specification Language (PSL) [19] is one of the more expressive
languages with ω-regular expressiveness [6] designed for specifying prop-
erties of hardware systems. Graphical representations of formalisms, such
as Live Sequence Charts (LSC) and UML state machines have also been
used in specifications (see, e.g., [23, 32][8, 36]).

The understanding of how the underlying mathematics of specification
languages work is not the whole story – it is at least equally important to
understand what to specify. In [9, 10] Dwyer et al. present a pattern sys-
tem for finite state specifications analogous to that presented by Gamma
et al. for object-oriented design in [13]. Similar practical guidance for
specifying properties of concurrent systems have been given by Manna
and Pnueli in [30]. Specifications are artifacts that can also themselves

1. INTRODUCTION 1

be verified, Requirements Analysis Tool (RAT) has been presented for
analysis of functional requirements (specifications) in [34].

There are many runtime verification frameworks implemented for Java
programming language which are of particular interest here. For exam-
ple, Java PathExplorer (JPAX) can be used to analyze programs for
concurrency errors and for monitoring user provided specification with
either past time (ptLTL) or future time linear temporal logic (LTL) [16].
In JPAX the observer instrumentation is done into byte code [16]. The
Java Logic Observer (JLO) uses AspectJ [20] aspects to implement ob-
servation of formulas specified with LTL over join points [38]. Kiviluoma
et al. present a CASE tool that generates AspectJ aspects that simulate
state automatons from behavioral requirements given in UML Sequence
Diagrams [22]. Similar approach has been taken in [23, 32] but in these
the specifications are given as more expressive Live Sequence Charts.

Component-based design and verification of distributed embedded sys-
tems is a very hard task to accomplish with traditional development
methods. The working hypothesis in the LIME project and in this re-
port is that the required methodology should be more rigorous than the
traditional approaches which leads to the concept of lightweight formal
methods. In the presented approach, the focus is on extending the inter-
face specifications methods of components.

In traditional strongly typed programming languages the interpreta-
tion for correct interaction of two components is limited to the agreement
on number, order and type of the parameters between the caller and the
called component [7]. This correctness requirement in the interaction
can be extended to the cover stateful protocol behavior related to it.
The called component, e.g., a library, may require a certain order for
the function calls through its interface or make requirements for not only
types but also values of its parameters. Similarly, there may be require-
ments for the component to fulfill as well, for example, some explicitly
stated relation between received arguments and returned values which
the caller can rely on.

It is important to detect faulty interaction between components, but it
is equally necessary to point out which one of the components is to blame
for it. The basis for the model of interaction is presented in Fig. 1.1.
In this setting there is an application that is using a library through
an interface. The communication is always initiated by the application
component. The model of communication is divided into two parts – to
an interface specification (IF in Fig. 1.1) which specifies how a compo-
nent should be used, and to a library specification (LS in Fig. 1.1) which
specifies how the component should respond. Should the interface speci-
fication be breached, the calling component is incorrect, and if the library
does not obey its specification, it will be the one to take the blame.

The specification language combines two complementary ways for ex-
pressing the proper behavior of software objects – regular expressions
and propositional linear temporal logic (PLTL, see, e.g., [3]). The prop-
erties that are desirable to be described here include but are not limited
to correct orderings of function calls and the relation between arguments
and return values of functions. The former is understood to depict the

2 1. INTRODUCTION

IF LS

Library

Application

Figure 1.1: The interaction model

protocol aspect (call ordering) of interfaces, where as the latter describes
how the library should behave.

The interpretation of PLTL [3] for runtime monitoring can be seen
as a continuation of the work in [14] and [15]. The language employed
is extended in this work to also contain future time operators using the
SCheck tool [28].

This report presents an interface specification language developed as
part of the LIME project (LightweIght formal Methods for distributed
component-based Embedded systems), and a tool implementation to sup-
port its runtime monitoring. Automatic test generation is also a part of
the LIME project but it is not considered here. This report is struc-
tured as follows. Chapter 2 describes the theoretical foundation for the
specification language. Chapter 3 introduces the specification language
itself. Chapter 4 explains shortly aspect-oriented programming which
is used to implement the runtime monitoring. Chapter 5 describes the
programming interface for using the specification language and the tool
implementation to support it. Chapter 6 contains experimental runtime
observers generate with the tool. Finally, Chap. 7 concludes the report
and discusses the future of the specification language.

1. INTRODUCTION 3

2 THEORETICAL BACKGROUND

The purpose of this chapter is to present the theoretical background
needed for understanding the rest of this work.

As the protocol behavior of a software interface or component must
be unambiguously specified, well-studied formalisms are used to express
it. This forms a rigorous theoretical foundation for the language. Syntax
and semantics of the used formalisms, regular expressions and PLTL,
are presented in the following subsections, and their interpretation in
software is discussed in the subsequent chapters. The definition of PLTL
semantics is adapted from [3].

2.1 PROPOSITIONAL FORMULAS

Propositional formulas form a basis for both regular expressions and
PLTL formulas. Let AP be a finite non-empty set of atomic proposi-
tions. Intuitively, atomic propositions are statements that are either true
or false in a state of the system. The propositional connectives are defined
with their usual semantics, and their shorthand connectives adopted for
convenience of notation. We define propositional formulas over the set of
atomic propositions AP .

Definition 1 Proposition formulas over the set of atomic propositions
AP are inductively defined as:

• Each atomic proposition (p ∈ AP) is a propositional formula.

• Let p, p1 and p2 be propositional formulas, then

– ¬p (negation),

– p1 ∧ p2 (conjunction), and

– p2 ∨ p2 (disjunction) are also propositional formulas.

• There are no other propositional formulas.

Shorthand notations for propositional formulas are defined for conve-
nience of notation as follows:

Definition 2 Let p, p1 and p2 be propositional formulas. Then the fol-
lowing equivalences hold:

• > ≡ p ∨ ¬p (true literal) for some p ∈ AP.

• ⊥ ≡ ¬> (false literal).

• p1 ⇒ p2 ≡ ¬p1 ∨ p2 (implication).

• p1 ⇔ p2 ≡ (p1 ⇒ p2) ∧ (p2 ⇒ p1) (equivalence).

4 2. THEORETICAL BACKGROUND

Def. 3 defines the semantics of propositional formulas in a truth as-
signment a ∈ 2AP . A truth assignment a is said to model an atomic
proposition p iff p ∈ a, this is denoted by a |= p. Def. 3 gives an induc-
tive definition for semantics of propositional logic.

Definition 3 Semantics of propositional logic formulas are inductively
defined as follows:

• a |= p iff p ∈ a, for p ∈ AP .

• a |= ¬p iff p 2 a.

• a |= p1 ∧ p2 iff a |= p1 and a |= p2.

• a |= p1 ∨ p2 iff a |= p1 or a |= p2.

2.2 REGULAR EXPRESSIONS

Regular expressions are an intuitive and familiar convention for pattern
recognition widely used in the field of programming. They can also be
used as a specification language. Here, the execution of a program (w ∈
Σ∗) is viewed as a string of consecutive sets of atomic propositions that
hold in it [5], i.e., Σ = 2AP .

Definition 4 Regular expressions over propositional formulas are induc-
tively defined as follows:

• Each propositional formula (see Sect. 2.1) is a regular expression.

• Let r, r1 and r2 be regular expressions, then their

– r∗ (closure or Kleene star) are also regular expressions.

– r1 ◦ r2 (concatenation),

– r1 | r2 (union), and

• There are no other regular expressions.

Definition 5 The follow shorthand notation for regular expression r is
defined to hold:

• r+ ≡ r ◦ r∗ (iteration).

The syntax defined in Def. 4 can be extended to cover complement
and intersection of regular expressions. In this report these constructs
are referred to as extended regular expressions.

Definition 6 Extended regular expressions over propositional formulas
are inductively defined as follows:

• Each propositional formula is an extended regular expression.

• Let er, er1, and er2 be extended regular expressions, then their

2. THEORETICAL BACKGROUND 5

– er1 ◦ er2 (concatenation),

– er1 | er2 (union),

– er∗ (closure or Kleene star),

– er1&er2 (intersection), and

– er (complement) are also extended regular expressions.

• There are no other extended regular expressions.

Unfortunately the algorithms required for runtime monitoring with
extended regular expressions are too time and memory consuming to do
at runtime, see, e.g., [35]. Therefore the extended regular expressions are
not considered a prime candidate for a practical interface specification
language in the LIME project and left out from the scope of this report.
In this report regular expressions are supported only as defined in Def. 4.

Semantics of regular expressions in Def. 7 and Def. 8 has been adopted
from [29].

Definition 7 Let ε be the empty word. Kleene star, concatenation, and
union of a language L ⊆ Σ∗ are defined as follows:

• L∗ = { w ∈ Σ∗ | w = ε or w = w1 ◦ · · · ◦ wk for some k ≥ 1 and
some w1, . . . , wk ∈ L}.

• L1 ◦ L2 = { w1w2 ∈ Σ∗ | w1 ∈ L1 and w2 ∈ L2 }.

• L1 | L2 = { w ∈ Σ∗ | at least one of the following holds: (i) w ∈ L1,
or (ii) w ∈ L2 }.

Definition 8 Let � be the empty regular expression, ∅ be the empty
set and L(r) be the language represented by regular expression r. The
semantics of regular expressions are as follows:

• L(�) = ∅, and L(p) = {a ∈ Σ | a |= p} where p is a propositional
formula.

• Let r, r1 and r2 be regular expressions, then

– L(r∗) = L(r)∗.

– L(r1 ◦ r2) = L(r1) ◦ L(r2).

– L(r1 | r2) = L(r1) | L(r2).

In the monitoring context focus is on the execution trace observed so
far. Intuitively, it corresponds to a prefix which is formally defined in
Def. 9.

Definition 9 If w = vy for some v, y ∈ Σ∗ then v is a prefix of w ∈ Σ∗

[29].

If a correct execution trace of a program is observed then all prefixes
of that trace must also have been correct. This property is formalized in
Def. 10 as prefix closed language.

6 2. THEORETICAL BACKGROUND

Definition 10 Let w ∈ L ⊆ Σ∗ then the following holds. The set of
prefixes of w are prefL(w) = {v ∈ Σ∗ | w = vy for some y ∈ Σ∗} The
prefix closure of L is pref (L) =

⋃
w∈L prefL(w). The language L is prefix

closed iff pref (L) = L.

Example 1 - A prefix closed language

Let L ⊆ Σ∗ be a prefix closed language and abcd ∈ L, then ε ∈ L, a ∈ L,
ab ∈ L, and abc ∈ L.
�

2.3 PLTL

Propositional linear temporal logic (PLTL) is a commonly used specifi-
cation logic with both past and future temporal operators. The sublogic
consisting of only the future temporal operators is referred to as LTL and
the sublogic consisting of only the past temporal operator is referred as
ptLTL. The semantics of a PLTL formula is in this work defined along
finite paths π = s0s1 . . . sk−1 of states. Each state si is labelled with the
atomic propositions that hold in that state by a labelling function L such
that L(si) ∈ 2AP , where AP is a set of atomic propositions.

The temporal operators are divided to two groups: future time and
past time operators. The future time operators are Xψ (’next’), ψ1 U ψ2

(’until’) and ψ1 R ψ2 (’release’). The past time operators are Y ψ (’yes-
terday’), Zψ (’weak yesterday’), ψ1 S ψ2 (’since’) and ψ1 T ψ2 (’trigger’).
The syntactically legal PLTL formulas are given in Def. 11 and their se-
mantics in Def. 14.

Definition 11 PLTL formulas for the set of atomic propositions AP are
inductively defined as follows:

• If p ∈ AP , then p is a PLTL formula.

• Let ψ, ψ1 and ψ2 be PLTL formulas then

– ¬ψ1, ψ1 ∨ ψ2, and ψ1 ∧ ψ2,

– Xψ1, ψ1 U ψ2, and ψ1 R ψ2; and

– Y ψ, Zψ, ψ1 S ψ2, and ψ1 T ψ2 are PLTL formulas.

• There are no other PLTL formulas.

The following operators are defined as syntactic shorthands for fu-
ture time temporal operators: Fψ (’finally’), Gψ (’globally’), ψ1 Uw ψ2

(’weak until’) and ψ1 Sw ψ2 (’weak since’). Similarly, the following tem-
poral operators are defined as shorthands for past-time operators: Hψ
(’historically’), Oψ (’once’), ↑ ψ (’start’), ↓ ψ (’end’), [ψ1, ψ2)s (’inter-
val’) and [ψ1, ψ2)w (’weak interval’).

Definition 12 The here presented derived propositional and temporal
operators are adopted as abbreviations. The monitoring operators (↑ ψ,
↓ ψ, [ψ1, ψ2)w and [ψ1, ψ2)s) have been presented in [14].

2. THEORETICAL BACKGROUND 7

> ≡ p ∨ ¬p for some p ∈ AP
⊥ ≡ ¬>
ψ1 ⇒ ψ2 ≡ ¬ψ1 ∨ ψ2

ψ1 ⇔ ψ2 ≡ (ψ1 ⇒ ψ2) ∧ (ψ2 ⇒ ψ1)
Fψ ≡ >U ψ
Gψ ≡ ¬F¬ψ
Oψ ≡ > S ψ
Hψ ≡ ¬O¬ψ
ψ1 Uw ψ2 ≡ Gψ1 ∨ ψ1 U ψ2

ψ1 Sw ψ2 ≡ Hψ1 ∨ ψ1 S ψ2

↑ψ ≡ ψ ∧Y¬ψ
↓ψ ≡ ¬ψ ∧Y ψ
[ψ1, ψ2)s ≡ ¬ψ2 ∧ ((Y¬ψ2) S ψ1)
[ψ1, ψ2)w ≡ (H¬ψ2) ∨ [ψ1, ψ2)s

Def. 13 defines valuation as a function that maps a state into a truth
assignment of atomic propositions that hold in the state.

Definition 13 Let S be the set of states and s ∈ S. Valuation L(s) is a
function L : S → Σ with Σ = 2AP .

Definition 14 Let πi denote the path π = s0s1 . . . sk−1 with current state
indexed i. The semantics of PLTL formulas in a finite path of length k
is defined as follows [3]:

πi |=k ψ ⇔ ψ ∈ L(si), for ψ ∈ AP.
πi |=k ¬ψ ⇔ ψ /∈ L(si), for ψ ∈ AP.
πi |=k ψ1 ∨ ψ2 ⇔ πi |=k ψ1 or πi |=k ψ1.
πi |=k ψ1 ∧ ψ2 ⇔ πi |=k ψ1 and πi |=k ψ1.
πi |=k Xψ ⇔ i < k and πi+1 |=k ψ.
πi |=k ψ1 U ψ2 ⇔ ∃i ≤ j ≤ k such that πj |=k ψ2 and πn |=k ψ1

for all i ≤ n < j.
πi |=k ψ1 R ψ2 ⇔ ∃i ≤ j ≤ k such that πj |=k ψ1 and πn |=k ψ2

for all i ≤ n ≤ j.
πi |=k Y ψ ⇔ i > 0 and πi−1 |=k ψ.
πi |=k Zψ ⇔ i = 0 or πi−1 |=k ψ.
πi |=k ψ1 S ψ2 ⇔ ∃0 ≤ j ≤ i such that πj |=k ψ2 and πn |=k ψ1

for all j < n ≤ i.
πi |=k ψ1 T ψ2 ⇔ for all 0 ≤ j ≤ i : πj |=k ψ2 or πn |=k ψ1

for some j < n ≤ i.

Example 2 - Semantics of PLTL formulas in a finite path

Fig. 2.1 presents a finite path of consecutive states. The states 0-6 are
labeled with formulas ψ1 and ψ2 iff they hold in the corresponding state.
It can be seen for example that π0 |=5 ψ1 R ψ2 since π3 |=5 ψ1 and
πn |=5 ψ2 for all 0 ≤ n ≤ 3.
�

It is always possible to rewrite any formula to positive normal form,
where all negations appear only in front of atomic propositions. Note that

8 2. THEORETICAL BACKGROUND

0 1 2 3 4 5 6

ψ2 ψ2 ψ2 ψ1, ψ2

Figure 2.1: Semantics of ψ1 R ψ2 in a finite path

this is actually required to evaluate formulas with negations that are not
directly before atomic propositions. It can be accomplished by using
the dualities ¬(ψ1 ∧ ψ2) ≡ ¬ψ1 ∨ ¬ψ2, ¬(Xψ) ≡ X¬ψ, ¬ (ψ1 U ψ2) ≡
¬ψ1 R ¬ψ2 ¬(Y ψ) ≡ Z¬ψ, and ¬(ψ1 S ψ2) ≡ ¬ψ1 T ¬ψ2, see, e.g., [3].

Example 3 - Positive normal form of a PLTL formula

The formula ¬[ψ1, ψ2)w can be turned into positive normal form with the
following procedure. Def. 12 defines the interval operators as syntactic
shorthands for other PLTL operators and they can thus be replaced with
their PLTL counterparts.

[ψ1, ψ2)w ≡ (H¬ψ2) ∨ [ψ1, ψ2)s

[ψ1, ψ2)s ≡ ¬ψ2 ∧ ((Y¬ψ2) S ψ1)
[ψ1, ψ2)w ≡ (H¬ψ2) ∨ (¬ψ2 ∧ ((Y¬ψ2) S ψ1))

After this conversion the positive normal form can be derived as follows.

¬((H¬ψ2) ∨ (¬ψ2 ∧ ((Y¬ψ2) S ψ1))) ≡
¬(H¬ψ2) ∧ ¬(¬ψ2 ∧ ((Y¬ψ2) S ψ1)) ≡
(Oψ2) ∧ (ψ2 ∨ ¬((Y¬ψ2) S ψ1)) ≡
(Oψ2) ∧ (ψ2 ∨ (¬(Y¬ψ2) T ¬ψ1)) ≡
(Oψ2) ∧ (ψ2 ∨ ((Zψ2) T ¬ψ1))

Hence the positive normal form of ¬[ψ1, ψ2)w is Oψ2 ∧ (ψ2 ∨ ((Zψ2) T
¬ψ1)).
�

2.4 SAFETY PROPERTIES

When monitoring a system in execution, it is required that (i) an error
will occur after a finite execution of the system, and (ii) the possible
error can be observed. In this section the formal background for these
two requirements is introduced.

Informally, safety properties are the class of properties that intuitively
state“something bad never happens” [26]. In contrast, liveness properties
are identified as the class of properties state intuitively that “something
good must eventually happen” [26] but they are not considered here.
Every violation of a safety property occurs after a finite execution of the
system and monitoring can be used to detect these failures [28]. The finite
execution of a system that leads into an error is formalized in Def. 15 as
a bad prefix.

Definition 15 Let L ⊆ Σω be a language of infinite words over the al-
phabet Σ. A finite word x ∈ Σ∗ is a bad prefix for language L, if for every
y ∈ Σω : xy /∈ L [28].

2. THEORETICAL BACKGROUND 9

Definition 16 Given a language L, if all w ∈ Σω\L have a bad prefix
we call L a safety language [28].

A bad prefix is informative if it can demonstrate completely why a for-
mula has failed [28]. Safety properties are classified into three subclasses
according to the informativeness of their bad prefixes in [24].

1. Intentionally safe properties – all bad prefixes are informative.

2. Accidentally safe properties – for every computation that violates
the property, there is an informative bad prefix.

3. Pathologically safe properties – there is a computation that violates
the property with no informative bad prefix.

The Def. 14 for PLTL semantics actually matches the definition of
informative prefixes of [24] extended to all of PLTL. In [24], safety is
considered with the PLTL interpreted over infinite words π ∈ Σω, for the
semantics of PLTL in this setting, see [24, 3].

The method described in [28] produces counterexamples for both in-
tentionally and accidentally safe properties. We currently don’t know of
any implementation that would produce counterexamples for a patholog-
ically safe formula. The approach presented in [28] is suited for finding
a counterexamples for all non-pathological safety languages. Pathologi-
cal safety formulas are not practically important as they do not add any
expressiveness to the specification language, i.e., for every pathological
formula there is a non-pathological counterpart [24]. They can, however,
be detected using methodology described in [24].

Example 4 - Syntactic subsets that are non-pathologically safe

• A formula Gϕ, where ϕ contains only past modalities, is a safety
formula. Any safety property expressible with LTL is expressible
in this way [31].

• Every propositional formula is a safety formula, and if ψ and ϕ are
safety formulas then so are ψ ∨ϕ, ψ ∧ϕ, Xψ, Gψ and ψRϕ [37].

�
For deeper discussion about safety properties and their theory see,

e.g., [27].

10 2. THEORETICAL BACKGROUND

3 THE SPECIFICATION LANGUAGE

The purpose of this chapter is to introduce the reader to how interface
and library specifications can be done, and to define the mechanisms and
policies used in the language. In Sec. 3.1 the specifications are explained
through running examples, and although they are about the specification
language, they are written in Java form to put them in context of a real
programming language. In Sec. 3.2 the correctness requirements that the
specifications impose are defined, and the policies and mechanisms of the
language are discussed in detail.

3.1 SPECIFYING INTERFACES AND COMPONENTS – RUNNING EXAMPLES

Example 5 demonstrates how regular expressions can be used for defining
interface behavior.

Example 5 - Regular expression in interface specification

Consider a log file interface that expects the client first to open the file,
then use (read or write) it and finally close it. For describing this
behavior, claims about method calls are needed. The call proposition
open ::= open() declares a proposition open that is true iff the body of
method open() declared in the annotated interface is currently executing.
Notice that argument overloading is not yet considered, and that the
write proposition therefore refers to all write methods regardless of their
argument types.

The interface defines a checker to enforce its expected use. The checker
keeps track of the call orderings through the interface and in case the
protocol is violated it signals an exception. In this example a regular
expression expresses the previously described call order. You may notice
that concatenation(◦) is denoted by ; and Kleene star(∗) is expressed
with * (see Table 3.1 for the rest of the annotations). It is necessary to
tie the checker into events (method calls) in the interface. This is done
by annotating the desired methods to trigger the corresponding checker
either when body of the method is entered, or when it is exited depending
of its type. Interface checkers will trigger on entry and library checkers
on exit of the method.

@InterfaceCheckers(
callPropositions = {
"open ::= open()",
"close ::= close()",
"read ::= read()",
"write ::= write()"

},
regexpCheckers = {
"FileUsage ::= (open ; (read | write)* ; close)*"

}
)

3. THE SPECIFICATION LANGUAGE 11

public interface LogFile {
@TriggeredCheckers(checkers = {"FileUsage"})
public void open();
@TriggeredCheckers(checkers = {"FileUsage"})
public void close();
@TriggeredCheckers(checkers = {"FileUsage"})
public String read();
@TriggeredCheckers(checkers = {"FileUsage"})
public void write(String entry);
public long length();

}

It is noteworthy that in the given example calls to length() do not
violate the FileUsage specification. The corresponding checker is not
triggered when it is called, hence the checker is perfectly oblivious of the
method’s existence and any calls made to it.
�

Example 6 introduces default policies that conform to the natural
interpretation the specification making their declaration less verbose.

Example 6 - Less verbose specifications with default triggering

The specification seems too verbose to describe such a simple behavior
and therefore default policies are adopted to make the language more
succinct. Firstly, open() in a checker declaration means a call proposi-
tion, which true iff open() is being executed (see Def. 19). This happens
when a checker is triggered on entry or on exit depending on the checker
type of the open() procedure. Secondly, if a checker contains a call
proposition the checker is automatically triggered in the corresponding
procedure (see Def. 20). These policies are enforced for the remainder of
this work.

After adopting these policies the interface specification can be ex-
pressed in the following form:

@InterfaceCheckers(
regexpCheckers = {
"FileUsage ::= (open() ; (read() | write())* ; close())*"
}

)
public interface LogFile {
public void open();
public void close();
public String read();
public void write(String entry);
public long length();

}

�

Example 7 introduces PLTL as a specification formalism. PLTL spec-
ification are sometimes more succinct and natural way of describing the
desired behavior than regular expressions.

12 3. THE SPECIFICATION LANGUAGE

Example 7 - Extending interface specification with a PLTL for-
mula

The file interface may also expect that the write method is never called
with a null argument. This can be described as another checker. Now,
the property is expressed in a PLTL checker (see annotation details in
Table 3.2) which states “always when write is called, it receives a proper
String”. With the adopted default enforcement policy, the checker is
automatically trigger on entry of the write procedure. In the example
entry has a special ’#’ sign in front of it. This is the convention for
referring to argument values in the specification language. This is purely
something made necessary to simplify the implementation and could be
avoided if the Java expression could be parsed properly (requiring a full
fledged Java parser).

@InterfaceCheckers(
regexpCheckers = {
"FileUsage ::= (open() ; (read() | write())* ; close())*"

},
valuePropositions = {
"properData ::= (#entry != null)"

},
pltlCheckers = {
"ProperData ::= G (write() -> properData)"

}
)
public interface LogFile {
public void open();
public void close();
public String read();
public void write(String entry);
public long length();

}

�

Example 8 combines interface specifications with library specifications.
Data handling is introduced as a new feature in the library specification.

Example 8 - A library specification with data handling

Now that interface has established boundaries in which it operates, it
may give guarantees as well. Let us assume that the write operation is
specified to append the file with String in the entry argument.

@InterfaceCheckers(
regexpCheckers = {
"FileUsage ::= (open() ; (read() | write())* ; close())*"

},
valuePropositions = { "properData ::= (#entry != null)" },
pltlCheckers = { "ProperData ::= G (write() -> properData)" }

)
@LibraryCheckers(

3. THE SPECIFICATION LANGUAGE 13

valuePropositions = {
"okLength ::= "+
"#this.length() == #pre(#this.length() + #entry.length())"

}
pltlCheckers = { "ProperWrites ::= G (write() -> okLength)" }

)
public interface LogFile {
public void open();
public void close();
public String read();
public void write(String entry);
public long length();

}

These kinds of specifications require data handling from the specifica-
tion language. In this approach, primitive values can be stored on method
call entry to be used in evaluation at the method exit using a special #pre
expression. The user must supply a type for this value if it is not an in-
teger which is considered to be the default type. This is done by adding
the type to the expression as follows: #pre.boolean(#this.length() >

0).
�

3.2 SPECIFICATION LANGUAGE

The core idea of the specification language is to provide a declarative
mechanism for defining component interactions in a manner that their
correctness can be verified. The verification is done at runtime by ob-
serving the defined specifications (call orderings and relation between ar-
guments and return values in function calls, for example). In a nutshell,
the specification language consists of:

1. A mechanism to make claims about program execution or state.
These claims are referred to as atomic propositions and subdivided
to two classes:

• valuePropositions – Claims about program state or values
of arguments (e.g., #this.x == 0). A value proposition is
true if and only if the native language expression evaluates
true.

• callPropositions – Claims about function execution (e.g.,
the body of open() is executing). A call proposition is true if
and only if the named method is executing.

2. A mechanism to combine propositions to describe expected prop-
erties of a software components. These are referred to as checkers
and subdivided to classes according to the underlying formalism.

• regexpCheckers – Checkers expressed with regular expres-
sions.

14 3. THE SPECIFICATION LANGUAGE

• pltlCheckers – Checkers expressed with PLTL.

3. A mechanism to tie checkers to the program flow. This is referred
to as triggering a checker. A checker can be triggered by the default
enforcement policy presented in Def. 19 or by an explicit annota-
tion.

One of the benefits of using formal specification methods is that there
is a well defined basis for deciding is a particular property holds or not.
The concept of when a program does not obey its PLTL specification is
formalized in Def. 17.

Definition 17 Let π = s0s1 . . . sk−1 denote the program trace observed
by the checker so far. A PLTL specification ϕ is broken after π iff π0 |=k

¬ϕ.

Recall the definition of a prefix closure of a language L in Def. 10 on
the page 7. Let pref (L) denote prefix closure of L, i.e., the union of
prefixes of all the words in L. Def. 18 formalizes the breach of regular
expression specification.

Definition 18 Let π = s0s1 . . . sk−1 denote the program trace observed
by the checker so far, r be a regular expression specified in a regular
expression checker, and L = L(r) be the language it accepts. A regular
expression specification is broken iff holds: π /∈ pref (L).

In the subsequent subsections the specification language, and its poli-
cies and mechanisms are examined in detail.

3.2.1 Policies and notation

The considered interaction model (see Fig. 1.1 on page 3) suggests that
there are two kinds, interface and library, specifications to consider. From
the specification language standpoint, the two are very similar, yet not
the same. In the interface specifications the return values are not under
consideration, but rather the call orderings and argument values. In the
library specifications, however, the typical specification does make claims
about return values. The default triggering policies (Def. 19) reflect this
observation.

Definition 19 If a method is mentioned in a checker through a call
proposition, the checker is implicitly enforced in the corresponding method.
The checker is triggered on entry, if the checker is an interface checker,
and on exit, if the checker is a library checker.

While the specification could require each proposition to be explicitly
declared, it would lead to a cumbersome and verbose notation. There-
fore, the language allows special forms to represent both call and value
propositions directly in checker definitions.

Definition 20 The call propositions can be inlined to a checker defini-
tion by referring to a function or a procedure by name in a checker and
adding () to denote it is an inlined call proposition.

3. THE SPECIFICATION LANGUAGE 15

expression annotation expression annotation

r ◦ s r ; s r | s r | s

r∗ r* r+ r+

Table 3.1: Regular expressions and their corresponding annotations

Definition 21 The value propositions can be inlined, i.e., host language
boolean expressions can be used in a checker by using <{ boolean expres-
sion }> notation (for example <{ #this.x > 0 }>).

It is possible to specify a checker that contains a value proposition
which is not defined in all methods in which it is triggered. This may
happen, for example, when one of the methods takes an argument when
others do not. One could trigger checker that states G (write() -> <{

#entry != null }>) (where #entry it the argument of write(String

entry)) in read() method which takes no arguments and therefore does
not know the value of #entry. This would make sense since the left
hand side of the implication (call proposition write() would be always
false when read() method is executing thus making it true regardless of
what is on the right hand side. This observation leads to the following
definition:

Definition 22 If a checker contains a value proposition which is not
defined in some method it is triggered in, the undefined propositions are
defined to be false. If the value proposition is not defined in any method
it is triggered in, this is considered to be an error.

Propositions, named or inlined, are combined into PLTL formulas or
regular expressions in the checkers. Regular expressions, as defined in
Def. 4 can be expressed with annotations given in Table 3.1. Note that
propositional formulas can appear in the regular expressions and their
corresponding annotations can be found in Table 3.2. Similarly, cor-
responding annotations for PLTL are presented in Table 3.2. When
specifying PLTL checkers precedence rules presented in Table 3.3 ap-
ply. Therefore, for example, p -> q || r is parsed p -> (q || r) and
p <-> q S r is parsed (p <-> q) S r. It is not advised to specify the
checkers in manner that leaves their interpretation open regardless of the
precedence rules, e.g., p S t T u but rather use parentheses to make the
specification explicit, e.g., p S (t T u).

3.2.2 Triggering a checker

As the incremental approach for interface specification suggests, all the
created checkers are independent from each other. Thus, adding a new
rule which limits the behavior of a software component will in no way
interfere with the previously declared rules.

The independence of checkers implies also one important feature about
them: they can perceive time or advance in their input string of consecu-
tive program states only when they themselves are triggered. This has a

16 3. THE SPECIFICATION LANGUAGE

Past time Future time Propositional
formula annotation formula annotation formula annotation

Y p Y p X p X p p ⇔ q p <-> q

Z p Z p p⇒ q p -> q

O p O p F p F p p ∧ q p && q

H p H p G p G p ¬p ! p

p S q p S q pU q p U q p ∨ q p || q

p Sw q p Sw q pUw q p Uw q ⊥ FALSE

pR q p R q pT q p T q > TRUE

[p, q)s [p, q)s p p

[p, q)w [p, q)w

↑ p Start(p)

↓ p End(p)

Table 3.2: PLTL formulas and their corresponding annotations

1. [ψ1, ψ2)s, [ψ1, ψ2)w

2. ψ1 S ψ2, ψ1 Sw ψ2, ψ1 T ψ2, ψ1 U ψ2, ψ1 Uw ψ2, ψ1 R ψ2

3. ψ1 ⇔ ψ2

4. ψ1 ⇒ ψ2

5. ψ1 ∧ ψ2

6. ψ1 ∨ ψ2

7. ¬ψ, Y ψ, Zψ, Hψ, Oψ, Xψ, Gψ, Fψ, ↑ ψ, ↓ ψ

Table 3.3: Precedence of logic operators

concrete interpretation when it comes to, e.g., the semantics of the tem-
poral operators next (Xψ) and yesterday (Y ψ). The previous (or the
next) moment in time is understood to be the previous (or next) time
when a particular checker is triggered in a particular object instance.

Fig. 3.1 illustrates how time is perceived to pass by FileUsage (an
interface checker) and ProperWrites (a library checker) checkers of the
earlier examples (see Chap. 3.1) over a sequence of method invocations
through the interface. FileUsage checker is ran before executing the
bodies of open(), read(), write() or close() where as ProperWrites
checker executes after the body of write().

3.2.3 Data handling

Library specifications, and the checkers that enforce them, are included
into the specification language to establish the correct responses for the
method invocations. The responses are not known until the method has
been executed, hence the enforcement must happen at the method exit.

3. THE SPECIFICATION LANGUAGE 17

open()

length()

write()

Method calls ProperWrites

read()

length()

write()

close()

write()

close()

open()

write()

FileUsage

S0

S1

S2

S3

S4

S5

S6

S7

S8

T3

T2

T1

T0

Figure 3.1: Time, as observed by two different checkers

18 3. THE SPECIFICATION LANGUAGE

The relation between input parameters and return values is not trivial
to establish as the method body may have altered the arguments given
to it.

We employ a history variable mechanism to store values as they were
when execution of a method started to enable the comparison of these
pre values to the post values at exit. This was used already in the Log-

File interface example presented in Chap. 3.1. There we specified a
proposition okLength to be equivalent to expression #this.length()

== #pre(#this.length() + #entry.length()). This proposition was
used in library checker ProperWrites which stated G (write() -> ok-

Length). One could read this “for writing to a log file to be successful, its
length should be incremented by length of the new log entry”. To make
this comparison, the sum of lengths for the appended file and the new
entry are stored to a new history variable which is guaranteed to remain
unchanged during the execution of the method. Note that as can be
seen from Fig. 3.1, the storing of prevalues to the history variables does
not induce a new state. Thus the previous time step for ProperWrites

checker is always the preceding invocation of write().
The specification language supports only primitive values to be stored

this way since, in the general case, it is not possible to store an object
in this way. Storing an object reference would not prevent the body of
the method from altering it. Furthermore, the type of the stored value
should be announced in the #pre statement, e.g., #pre.char(#c) or
#pre.integer(#this.length()). If type is not announced it is expected
to be integer. Note that storing the #pre history value does not induce
a time step into the checker.

3. THE SPECIFICATION LANGUAGE 19

4 TECHNICAL BACKGROUND

The purpose of this chapter is to introduce enough technical aspects for
the reader to understand the implementation of the tool described in
Chap. 5.

4.1 ASPECT-ORIENTED PROGRAMMING

Aspect-oriented programming (AOP) is a programming paradigm origi-
nally developed by Gregor Kiczales et al. in Xerox Palo Alto Research
Center. It was developed to capture and modularize concerns that cross-
cut the traditional programming constructs such as objects. Such cross-
cutting concerns tend to be important parts of the program behavior that
are not directly included into its functionality, such as failure handling
strategy, communication strategy and behavioral invariants. [21]

Robert E. Filman and Daniel P. Friedman define the structural essence
of aspect-oriented programming in [12]:

“AOP can be understood as the desire to make quantified
statements about the behavior of programs and to have these
quantifications hold over programs that have no explicit ref-
erence to the possibility of additional behavior.”

They further classify AOP to black-box and clear-box AOP accord-
ing to its quantification mechanism. In black-box AOP the quantifica-
tion happens over public interfaces of components, where as in clear-box
AOP the quantification can be done over parsed structure of compo-
nents. They also identify the concept of incomplete obliviousness which
used to describe the sometimes relevant need of communication between
the application programmer and the aspect. [12]

The quantifications can be made over the public interfaces of compo-
nents but the specification language also allows accessing private data
of software components. The implementation relies on predescribed (See
Chap. 3) annotations for communication between aspects and the ap-
plication programmer. In terms of the forementioned definitions, the
approach taken in this work is establishment of behavioral invariants
through clear-box AOP with incomplete obliviousness.

4.2 ASPECTJ

AspectJ is a general purpose AOP extension to Java which has a join
point model does allow clear-box AOP [12]. It is distributed by the
Eclipse Foundation under Eclipse Public License (EPL). AspectJ allows
two kinds of crosscutting: dynamic and static. The former allows aspects
to define additional implementations to run at certain well-defined points
of program execution. The latter allows aspects to define new operations
to already existing types. [20]

20 4. TECHNICAL BACKGROUND

aspect LockAspect {

private boolean opened = false;

before(): call (public void Lock+.open()) {

if(opened)

throw new RuntimeException("bad open");

opened = true;

}

before(): call (public void Lock+.close()) {

if(!opened)

throw new RuntimeException("bad close");

opened = false;

}

}

Figure 4.1: Lock safety aspect

In this work and in the LIME project, the purpose is to generate
dynamically cross-cutting aspects such as presented in Fig. 4.1.

4.2.1 Join points and pointcuts

In AOP, join points are well-defined points in program execution. The
join point model of an AOP language defines interactions of aspect and
non-aspect code can have [20]. In this work, the main interest is on
joining aspect code to method calls.

A pointcut consists of a set of join points and optionally also of values
in program execution context [20]. In Fig. 4.1, call (public void

Lock+.open()) is a pointcut designator, a predicate over join points
which selects the join points of interest. This designator expresses the
set of calls to open() method in any object which implements the Lock
interface or any interface that extends it (this is the case because of the +
sign). In particular, since the designator is of the form call(signature)
the execution is still on the caller side. Should execution(signature) be
used instead the callee would have started executing.

Pointcut designators such as call and execution (formerly calls and
executions) are called primitive pointcut designators. Compound point-
cuts can be formed using and (&&), or (||) and not (!) operators [20]. For
example, the compound pointcut call (public void Lock+.open())

|| call (public void Lock+.close()) selects the set of join points
matching either of the designators. Furthermore, AspectJ allows users
to form user-defined pointcut designators. By defining:

pointcut lockCalls():

call (public void Lock+.open()) ||

call (public void Lock+.close());

the user introduces a new pointcut designator, lockCalls(), which could
be used to instead of the compound designator.

4. TECHNICAL BACKGROUND 21

4.2.2 Advices and aspects

With the join point model and pointcuts explained the AspectJ advices
and aspects are discussed here.

Advices
An advice is the additional implementation to be attached to a join point
or join points expressed by a pointcut designator. In Fig. 4.1,

before(): call (public void Lock+.open()) {

if(opened)

throw new RuntimeException("bad open");

opened = true;

}

defines additional behavior to be run before the program execution may
enter a join point in the designated pointcut. This advices simply checks
if the lock is already open before it allows the execution of open() method
to start.

Sometimes it is necessary to run the advice not before or after but
around a join point. Consider Example 8 on page 13 and the library
checker ProperWrites defined in it. The checker states that “after write
method is called the log file’s length will be its length before the call plus
the length of the given argument”. This clearly implies that the program
state should be observed on two separate times before and after the call
to establish the truth value of the claim. The resulting advice could be
written as:

void around(LogFile f, String e) :
call(public void LogFile+.write(String entry)) && args(e) &&
target(f) {

int preLength = e.length() + f.length();
proceed(f, e);
if(!(f.length() == preLength))
throw new RuntimeException("ProperWrites checker fails");

}

Here, the primitive pointcut designators args and target are used
to bind arguments of the call, i.e., the new entry, and the target of the
call, i.e., the log file, within the namespace of the advice. This allows
reference to them in the advice code. This is called passing context from
a join point to the advice [25]. The advice also illustrates how around
advices differ from before and after advices. Whereas before and after
advices are strictly additional behavior, around advice is run instead of
the join point. AspectJ offers the special proceed() syntax to run the
next advice of lower precedence (or ultimately the method itself). The
context exposed to the around advice’s pointcut, e.g., arguments and call
target, are given to proceed as parameters. In the presented example,
the reader may assume that the actual write method is executed during
proceed instruction.

22 4. TECHNICAL BACKGROUND

aspect LockAspect pertarget(lock() || close()) {

private boolean opened = false;

pointcut open() : call (public void Lock+.open());

pointcut close() : call (public void Lock+.close());

before(): open() {

if(opened)

throw new RuntimeException("bad open");

opened = true;

}

before(): close() {

if(!opened)

throw new RuntimeException("bad close");

opened = false;

}

}

Figure 4.2: Lock safety aspect with pertarget instantion

Aspects
Aspects are class-like components which encapsulate other AOP elements
such as pointcuts and advices. Like Java classes, AspectJ aspects can
contain also regular object elements like fields and methods, and also
form inheritance hierarchies. They can be declared abstract like it is the
case with classes or as concrete aspects. They cannot, however, be used
interchangeably with classes.

Aspects are instantiated via per clauses (in contrast to objects which
are instantiated with new operator). If an aspect contains no per clause
it uses the default issingleton() instantiation, i.e. there only will one
instance of it. In the presented example, Fig. 4.1, there would only be
one aspect for all instances of that implement the Lock interface. It
is clear that this not something that is wanted but rather there should
instead be an aspect instance for each Lock instance. In Fig. 4.2, pertarget
instantiation ensures that there is an aspect instance for every instance
of a Lock that is used.

Privileged aspects
The expressiveness of AspectJ aspects is not, however, limited to this.
Declaring an aspect to be a privileged aspect allows it to access private
fields and methods in classes, and this feature is employed in this work. It
would also be possible to declare new parents or implemented interfaces
for classes but this feature is not needed in this work.

Aspect precedence
It is sometimes imperative that advices are executed in a particular order
in a given join point. AspectJ provides declare precedence construct
for this purpose which can be used inside aspect declarations [25].

declare precedence : IFChecker*, LSChecker*;

4. TECHNICAL BACKGROUND 23

The concrete aspects of the form IFChecker* are now said to dominate
the concrete aspects of the form LSCheckers*. In case of an around ad-
vice the higher-precedence aspect encloses the lower-precedence aspect’s
advice [25].

Weaving
Aspect code and non-aspect code is combined by a compilation process
called weaving and the processor doing the job is called a weaver. Weav-
ing can be done straight into the source or byte code, or it can be done
by loading the compiled aspects into the Java Virtual Machine (JVM)
and performed in just-in-time style. In all cases, the resulting program
is a valid Java program and will run in any conformant virtual machine.
[25]

24 4. TECHNICAL BACKGROUND

5 THE TOOL IMPLEMENTATION

In this chapter the tool implementation for the specification language is
described. Java has been chosen as the host language due to ease of in-
strumentation and preexisting metadata mechanism (Java annotations).
First part of this chapter (Sec. 5.1) describes the tool for its potential
users, whereas the second part (Sec. 5.2) discusses the architecture of the
implementation.

5.1 PROGRAMMING INTERFACE

Annotations are used for specifying the desired behavior which is then
synthesized as monitors for runtime verification. This section describes
the tool interface from users’ point of view. The focus here is on the
language dependent details of the implementation such as the lexical
form of propositions and checkers, and the description of annotations
used.

5.1.1 Propositions

The propositions have been divided into two categories, to claims about
method invocations (or calls), and to claims about object’s state. As
discussed in Chap. 3 the former is referred to as call propositions, and
the latter to as value propositions. Def. 23 defines the proper lexical form
for named propositions that the tool expects. Notice that the semicolon
(;) is left out of the set of proper characters since it serves as statement
terminator in Java. Value propositions that contain side effects should
be avoided.

Definition 23 The lexical form for atomic propositions is defined as
(where Σ is the set of proper host language characters):

• "[a-z]([a-zA-Z])∗ ::= (Σ− {;})+", where the left side gives a
name for the proposition, and the right side is name of the method
(followed by parentheses, e.g., open()) in case of a call proposition,
or a boolean expression in case of a value proposition.

The named propositions start with a lower case letter because that
makes them easily detectable in lexical analysis. The host language in-
dependent syntax by which propositions are declared is discussed in Sec.
3.2.

5.1.2 Checkers

Both interface and library checkers are declared by respective annota-
tions, @InterfaceCheckers (Fig. 5.1) and @LibraryCheckers (Fig. 5.2).
These annotations can be targeted (attached) to a Java type (an inter-
face or a class). The annotations have source retention policy, i.e., they
will not be present in the compiled byte code.

5. THE TOOL IMPLEMENTATION 25

The current implementation limits the way how checkers can be de-
clared using PLTL. It is not possible to have future time formulas as
subformulas for past time operators (this means that, e.g., O (G (p)) is
of illegal form).

Definition 24 Lexically, regular expression and PLTL checkers is spec-
ified as (where Σ is the set of proper host language characters):

• "[a-zA-Z]+ ::= Σ+"

The host language independent syntax for declaring regular expression
checkers is given in Table 3.1 on page 16. The syntactic rules for declaring
PLTL checkers are given in Table 3.2 on page 17 and the precedence rules
for operators in Table 3.3 on page 17.

package fi.hut.ics.aspectmonitor.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(value = RetentionPolicy.SOURCE)
@Target(value = ElementType.TYPE)
public @interface InterfaceCheckers {
String[] valuePropositions() default {};
String[] callPropositions() default {};
String[] pltlCheckers() default {};
String[] regexpCheckers() default {};

}

Figure 5.1: Annotation for declaring interface checkers

package fi.hut.ics.aspectmonitor.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(value = RetentionPolicy.SOURCE)
@Target(value = ElementType.TYPE)
public @interface LibraryCheckers {
String[] valuePropositions() default {};
String[] callPropositions() default {};
String[] pltlCheckers() default {};
String[] regexpCheckers() default {};

}

Figure 5.2: Annotation for declaring library checkers

26 5. THE TOOL IMPLEMENTATION

Triggering checkers
A property can be enforced by triggering its corresponding checker in a
method. The default enforcement policy defined in Def. 19 on page 15
is employed, i.e., if a checker contains a call proposition it is automati-
cally triggered in the corresponding method. However, it is possible to
explicitly trigger a checker in a method. This is done with an annotation
@TriggeredCheckers (see Fig. 5.3). Note that this annotation can be
used for changing the exception thrown when a checkers notices an er-
ror (default exception is fi.hut.ics.aspectmonitor.CheckerException). The

package fi.hut.ics.aspectmonitor.annotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import fi.hut.ics.aspectmonitor.CheckerException;

@Retention(value = RetentionPolicy.SOURCE)
@Target(value = { ElementType.METHOD })
public @interface TriggeredCheckers {
String[] checkers() default {};
Class<? extends Exception> exception()
default CheckerException.class;

}

Figure 5.3: Annotation for triggering checkers

annotation consists the following fields:

• checkers – the list of checkers to be run in the annotated method.
Interface checkers will be run before and library checkers after the
method invocation.

• exception – the class of the exception thrown when a property is
violated (name of the checker is given as parameter to the excep-
tion).

5.2 TOOL ARCHITECTURE

The implementation is built using the Spoon framework [33] and op-
erates by visiting the abstract syntax tree (AST) produced by the Sun
Microsystems Java-compiler. The instrumentation program is to be dis-
tributed as a Spoonlet. Spoonlets contain AST visitors which can be
used for program analysis and transformation at compile-time. They are
also attractive in the sense that they can be integrated into Maven 2
compiler (http://maven.apache.org/) and Eclipse development envi-
ronment (http://www.eclipse.org/) with respective plug-ins.

5. THE TOOL IMPLEMENTATION 27

http://maven.apache.org/
http://www.eclipse.org/

Fig. 5.4 describes the layered architecture of the implementation. An
upper layer module may use lower level module if they have a dashed line
between them. The implementation effort here consists of the Common
(fi.hut.ics.common) and Aspect Monitor (fi.hut.ics.aspectmonitor) mod-
ules. Spoon (fr.inria.gforge.spoon), Automaton (dk.brics.automaton) and
SCheck are adopted as third-party software:

• Spoon is used for analyzing the program and interfacing to existing
tools (Maven 2 and Eclipse).

– CeCILL-C license - French equivalent to LGPL.

• dk.brics.automaton is used for internal representation and ma-
nipulation of regular expression checkers.

– BSD license.

• SCheck is used for converting temporal logic formulas into finite
state automata.

– GPL license.

SCheckdk.brics.automaton

fr.inria.gforge.spoon

Common

Aspect Monitor

Figure 5.4: Basic modular decomposition

Fig. 5.5 gives an overview of transforming an annotated type into an
aspect. The process consists of two main passes – analysis and synthe-
sis. The products of the analysis pass are specification objects that are
used as the internal representation of a checker. A specification cor-
responds to a checker annotated into a type (e.g., an interface). The
AbstractSpecification class is subclassed into PltlSpecification

and RegExpSpecification classes to accommodate their structural dif-
ferences.

28 5. THE TOOL IMPLEMENTATION

If a type has two checker declarations there will be two specification
objects created to represent them. The two will share namespace in terms
of named call and value propositions which are extracted from the anno-
tations. Specifications are enforced in the methods mentioned in them via
call propositions or explicitly annotated with @TriggeredCheckers (see
Fig. 5.3). Before aspects can be synthesized from specifications, named
propositions in formulas are replaced with their corresponding call or
value propositions. Also, the annotated methods are made to trigger the
checker.

In the synthesis pass the specification objects are turned into aspects.
Code generation is discussed in more detail in Sect. 5.2.2.

Triggered

Methods

synthesisanalysis
AspectSpecificationAnnotated type

replace

extract

Named propositions

extract

add

Figure 5.5: Generating temporal safety aspect from an annotated class

5.2.1 Common

The common module (fi.ics.hut.common) offers library services for
representing, constructing and manipulating regular expressions, finite
state automata and temporal logic formulas. It is subdivided into three
packages each corresponding to a particular model of representation:

• fi.ics.hut.common.logic

• fi.ics.hut.common.regexp

• fi.ics.hut.common.pltl

The logic package (fi.ics.hut.common.logic) contains the functionality
for representing and handling propositional and temporal logic formulas.
One of the key services that the package offers is illustrated in Fig. 5.6.
It contains a lexical analyzer (lexer) which identifies the lexical tokens
of a formula from a string representation and transforms it into a list

5. THE TOOL IMPLEMENTATION 29

of identified tokens, or rejects a bad input. After lexical analysis, the
structure of the formula can be derived from the list of tokens. This is
done by a syntactic analyzer (parser).

Syntactic analysis produces an unambiguous tree representation of the
formula. In this form visitor pattern [13] can be employed for analyzing
and modifying the formula. It is noteworthy that the parser is for full
PLTL, i.e., any valid PLTL can be identified by it. However the tool
can not translate past-time formulas with future time subformulas into
aspects. Therefore a semantic analysis pass is performed to identify and
reject these types of formulas. The same parser is also used to propo-
sitional formulas in regular expressions. In that context the semantic
criteria is that the formulas may not contain any temporal operators.
For more about lexical, syntactic and semantic analysis in context of
programming languages see, e.g., [1].

Example 9 - On lexical, syntactic and semantic analysis of PLTL
formulas

Consider the following examples of strings and their analysis.

• "Nonsense" is lexically incorrect (named propositions start with
small letters).

• "! -> G" is lexically correct since it can identified into a list of
tokens (¬, ⇒, G) but syntactically incorrect since it cannot be
parsed into a formula.

• "O (G p)" is both lexically and syntactically correct (a valid PLTL
formula) but it cannot be interpreted by the tool into an aspect and
therefore it is considered semantically incorrect.

• "G (write() -> <{ #data.length() > 0 }>)" is a syntactically
and semantically valid PLTL formula.

�
The regular expression package (fi.ics.hut.common.regexp) serves as

an adapter package for dk.brics.automaton module (referred to as the
Automaton module from now on). It is responsible for the lexical analy-
sis of regular expressions. Propositional formulas in regular expressions
are identified as single tokens at this stage, and their further analysis is
done by the logic package as mentioned earlier. The alphabet in the Au-
tomaton module regular expressions are characters and not propositional
formulas like in the specification language. Therefore the propositional
logic formulas must be replaced with characters. The replacement is done
by using the union of characters, that each represent a truth assignment
of atomic propositions in which the propositional formula is true. The
empty language is used if the formula is not true in any truth assign-
ment. The syntactic analysis and automaton operations are done by the
Automaton module.

The PLTL package (fi.ics.hut.common.pltl) serves as an adapter pack-
age for the SCheck module. The main function for this package is to

30 5. THE TOOL IMPLEMENTATION

String representation

List of lexical tokens

Syntax tree

→

G

write()all proposition
→ #data.length() > 0value proposition

G (write() -> <{ #data.length() > 0}>)

value propositionwrite()all proposition #data.length() > 0

Lexial analysis

Syntati analysis
G ()

Figure 5.6: Lexical and syntactic analysis of a logic formula

transform a tree representation of the formula produced by the logic
package into an automaton. This is done by transforming the tree rep-
resentation into the format accepted by SCheck. In SCheck the atomic
propositions are not handled as they are represented in this tool, there-
fore a mapping between the two representations must be saved over the
conversion process. After SCheck is done with the conversion to an au-
tomaton, the propositions are replaced into it. Note that the values of
past time subformulas are treated here as propositions, more about this
in Sec. 5.2.2.

5.2.2 Aspect monitor

Aspect monitor is the main module of this application which turns anno-
tations in Java types into AspectJ aspects for monitoring their behavior.
To accomplish this, the module uses the program analysis services pro-
vided by Spoon framework and the formalism services provided by the
common module. As presented in Fig. 5.5 this transformation is done in
two phases – analysis and synthesis. These phases have corresponding
packages in the implementation:

• fi.hut.ics.aspectmonitor.specification

• fi.hut.ics.aspectmonitor.aspect

The specification package implements analysis phase, whereas the aspect
package is responsible for synthesis phase.

5. THE TOOL IMPLEMENTATION 31

Combining future and pasts formulas
In [14, 15], Havelund and Roşu describe the synthesizing procedure for
formulas of the GP , where P is a ptLTL formula. Here this procedure is
extended to the subset of PLTL where past-time operators may not have
future-time operators in their subformulas.

Consider the PLTL specification G (start() → O ignite()). It
asserts that whenever start() is called there has once been a call to
ignite(). Intuitively, synthesizing this property would require one extra
boolean variable which would keep track if ignite() has been called.
The variable would be initialized to be false and a call to ignite() would
set it to be true. Then whenever start() is called an assertion is made to
check if the extra variable is true. The formula is represented on the left
in Fig. 5.7, and what was effectively done to it by the introducing a new
variable on the right. Now the variable temp stands for the evaluation of
the ptLTL formula on a given time.

The approach of [14, 15] generalizes this principle for all formulas
of the form GP , where P is a ptLTL formula. In the approach there
is, however, not one but two variables for every past-time operator –
one for the current evaluation of the corresponding subformula and one
evaluation in the previous state. Let nowi(ψ) be the evaluation of past-
time subformula ψ at time i and let previ−1(ψ) be its evaluation at time
i− 1. Table 5.1 presents the initial values of past-time subformulas and
update rules according to their operator.

G G

→start() tempO

→start()
ignite()

Figure 5.7: Representing past-time subformulas in PLTL

Now coming back to the example, prev0(O ignite()) is initialized to
be ⊥ (see Table 5.1) because the formula is of the form O p. As a new
state is observed, the new truth values are:

• now1(O ignite()) = ignite()∨prev0(O ignite()) = ignite()∨
⊥.

• prev1(O ignite()) = now1(O ignite()).

Now the upper level formulas may treat the subformula O ignite as just
another proposition which evaluates to nowi(O ignite()). This true
for all past time formulas (see Table 5.1) because their truth values are
dependent only from their initial values and update rules.

32 5. THE TOOL IMPLEMENTATION

ψ prev0(ψ) nowi(ψ) previ(ψ)
Y p ⊥ previ−1(ψ) p
Z p > previ−1(ψ) p
O p ⊥ p ∨ previ−1(ψ) nowi−1(ψ)
H p > p ∧ previ−1(ψ) nowi−1(ψ)
p1 S p2 ⊥ p2 ∨ (p1 ∧ previ−1(ψ)) nowi−1(ψ)
p1 T p2 > p2 ∧ (p1 ∨ previ−1(ψ)) nowi−1(ψ)

Table 5.1: Initial values and update rules for ptLTL formulas

The prev and now are implemented as boolean arrays with an element
for each past-time operator in the formula. A formula traversal is applied
to the tree representation of the formula which assigns each past time
formula a larger index than any of its subformulas. The update rules are
applied in ascending order of indices so that when evaluating any formula
all of its subformulas have already been updated. An aspect conversion
for the example formula used in this section is presented in Sec. 6.3 on
page 39.

Semantics of value propositions
Call propositions and value propositions are easily identifiable in a for-
mula from the lexical form, see Def. 20 on page 15 and Def. 21 on page
16. This coarse distinction is done by the common module during lexical
analysis of the formula. In value propositions there are, however, reserved
words that give special semantics for the propositions. In Chap. 3 the
following reserved words were introduced:

• #this for referencing an instance of the annotated interface.

• #result for referencing the return value of the method.

• #pre[.primitive type](boolean expression) for referencing an
on entry value in library specifications after the actual method has
executed.

• #<argument> for referencing the arguments given to the annotated
method.

The semantics these reserved word are given as follows. The call target
can be passed for the advice by #this from the join point context. Note
that #this always refers to the annotated type which is the call target
and is not to be confused with the primitive pointcut designator this()
which refers to the calling component. The value returned by proceed()

instruction can referenced by using #result. If #result is not defined,
i.e., used in context of a void method the corresponding value proposi-
tion is defined to be false. If #result is not defined in any context a
specification is enforced it is interpreted to be an error. Similar policy
holds for the use of #<argument>. For the use of #pre see Sec. 3.2.3 on
page 17.

5. THE TOOL IMPLEMENTATION 33

Analyzing a PLTL specification
The main goal for analysis phase is to generate a deterministic automa-
ton which can then be synthesized. For PLTL specifications SCheck is
used to produce the automaton. The input for the analysis string repre-
sentation of the property and a mapping from name to propositions to
represented named propositions. The individual steps to accomplish this
are as follows:

1. Lex the property into a token list.

2. Parse token list into a tree representation.

3. Perform semantic analysis for the tree representation.

4. Rewrite formula to remove operators which do not have dual operators
in the language.

5. Modify the formula to be in positive normal form.

6. Replace named propositions in formula with corresponding call and
value propositions.

7. Transform the tree representation into a directed acyclic graph (DAG)
so that common subtrees appear only once in the representation.

8. Assign indices for possible ptLTL operators.

9. Use SCheck to create an automaton from the formula.

Note that the automatons produced by SCheck (version 1.1 or newer)
are deterministic and minimized.

Analyzing a regular expression specification
As with PLTL formulas, the goal with regular expression specifications
is to produce a deterministic automaton from a string representation of
a property.

1. Lex the property into a token list.

2. Build a regular expression adapter from the token list:

(a) In lexical analysis, propositional formulas are identified into single
tokens which are then parsed with PLTL parser.

(b) Propositional formulas are replaced with the language consisting of
the union of the truth assignments in which the formula in question
is true (see Def. 7 on page 6).

(c) The resulting property is turned into a dk.brics.RegExp.

3. The regular expression is generated into a deterministic automaton.

4. The automaton is prefix closed.

5. The automaton is complemented.

6. All transitions from accepting states are removed.

7. The automaton is minimized.

34 5. THE TOOL IMPLEMENTATION

Although the automaton is minimized, the transitions in the current
implementation do contain some redundancy. This is because the way
that propositional formulas represented (see 2b). Consider a regular ex-
pression contains two atomic propositions p, q ∈ AP and a transition is
enable if p holds. Then the guard for the transition is a disjunction of
the truth assignments in which p holds, i.e., (p ∧ q) ∨ (p ∧ ¬q). Now
both truth assignments are mapped to a different character and it is not
possible for the Automaton module to minimized this redundancy. This
can be seen in the aspect presented in Fig. 6.2 on page 38.

Synthesizing specifications as aspects
Both types of specification are synthesized following the same baseline.
For PLTL formulas initialization and update code for past-time subfor-
mulas are generate as well.

1. The current state of the automaton is held in state (integer) variable
which is initialized to be the initial state.

2. A refreshState() method is add to handle the state transitions. The
takes the evaluations of atomic propositions as parameters and updates
the state based on them and the current state.

3. If the specification is a library specification and contains propositions
that have prevalues, store the prevalues before the actual method call.

4. For each enforced method an advice is create which passes the evalua-
tions of atomic propositions to refreshState() method:

(a) before the actual method call if the specification is an interface
specification, or

(b) after the actual method call if the specification is a library speci-
fication.

5. After refreshState() if the current state is an accepting throw the
specified exception with the specification’s name as argument.

In this section the modular decomposition (Fig. 5.4) and the work
flow (Fig. 5.5) of the tool was presented. Also the purpose and roles for
third-party software (Spoon, Automaton, and SCheck) was identified.
The work flow of transforming an annotated type into an aspect that
monitors the specified behavior was divided into two phases – analysis
and synthesis, and a basic outline was given for both. This section also
showed how past time subformulas can be treated as atomic propositions
with truth values that are dependent on the initial values and update
rules given in Table 5.1. Also the way of how propositional formulas in
regular expressions are handled was discussed.

5. THE TOOL IMPLEMENTATION 35

6 EXPERIMENTS

The purpose of this chapter is to demonstrate generated safety aspects
from example specifications. Sect. 6.1 demonstrates a basic interface
specification written with a regular expression. A library specification
that employs history variable mechanism is considered in Sect. 6.2. Fi-
nally Sect. 6.3 demonstrates the technique to capture past-time subfor-
mulas in PLTL specifications.

6.1 AN INTERFACE SPECIFICATION FOR A LOCK INTERFACE

Thomas Ball et al. present the proper use of spinlocks as one of the API
usage rules for Windows XP kernel in [2]. This simple enough rule as-
sumes that locks are initialized as open, and then it requires a strict
alternation of lock()s and unlock()s to follow. In Fig. 6.1 the automa-
ton on the left corresponds to the complement language of the rule, i.e.,
should automaton end up in an accepting state during execution the rule
is broken.

lock()

unlock()

unlock() lock()

2

01

p0

!p0 !p1

p1

Figure 6.1: Proper use of a lock

This behavior has already been handwritten into an aspect in Fig. 4.2.
Now the tool is used to automatically generate an aspect from an interface
checker declaration. Clearly in the terminology of the LIME specification
language the guards on the transitions translate into call propositions in
the checker. Therefore a Lock interface is written as follows:

package example_lock;

import fi.hut.ics.aspectmonitor.annotation.InterfaceCheckers;

@InterfaceCheckers(
regexpCheckers = {
"StrictAlternation ::= (lock() ; unlock())*"

}
)
public interface Lock {
public void lock();
public void unlock();

36 6. EXPERIMENTS

}

In Fig. 6.1 the automaton on the right illustrates the automaton syn-
thesized in generated safety aspect (Fig. 6.2). In the aspect p0 corre-
sponds to call to unlock() and p1 corresponds to lock(). These values
are passed from the advice that capture calls to refreshState(boolean

p0, boolean p1) method performing the state transition. The guards
for transitions are represented as disjunctions of truth assignments in
which the transition is enabled, and contain some redundancy.

Now consider the following program contains an erroneous use of the
Lock interface. Two implementations of the interface are instantiated
both having their own instance of IFCheckerLockStrictAlternation

aspect monitoring method calls to them. On the ninth line of the main

method there is a second consecutive call to unlock() which is by this
specification considered an error.

package example_lock;

public class Main {
public static void main(String[] args) {
Lock lock = new LockImpl();
Lock lock2 = new LockImpl();
lock.lock();
lock.unlock();
lock2.lock();
lock.unlock(); // Line 9

}
}

After the safety aspect corresponding to the interface checker has been
generated by the tool. It can be woven into the program to monitor its
execution. Indeed running the resulting program yields an exception
on the line 9 which informs that StrictAlternation property has been
violated:

Exception in thread "main" fi.hut.ics.aspectmonitor.CheckerException:
StrictAlteration
at example_lock.Main.unlock_aroundBody7$advice(Main.java:120)
at example_lock.Main.main(Main.java:9)

6.2 A LIBRARY SPECIFICATION FOR A FILE INTERFACE

The following library specification experiment is based on Example 8
given on page 13 and demonstrates the history variable mechanism in
practice. In this scenario, the LogFile interface is specified to ensure
that each write increments its size. The required interface specification,
i.e., that write is not called with null argument, to ensure as well as the
redundant methods to the library specification have been left out from
this experiment.

6. EXPERIMENTS 37

package example_lock;
/**Generated from property:
StrictAlteration ::= (lock() ; unlock())*
Which is in parsed form
(([CALL]:lock) ; ([CALL]:unlock))*

And internally represented as
(([CALL]:lock) ; ([CALL]:unlock))*

*/
privileged aspect IFCheckerLockStrictAlteration pertarget(
(call(public void example_lock.Lock+.lock(..)) ||
call(public void example_lock.Lock+.unlock(..)))) {
declare precedence: IFChecker*, LSChecker*;
private int state;
public IFCheckerLockStrictAlteration() {
state = 1;
}
void around() : call(public void example_lock.Lock+.unlock(..)) {
boolean p0 = true; // [CALL]: unlock
boolean p1 = false; // [CALL]: lock
refreshState(p0, p1);
if(state == 2)
throw
new fi.hut.ics.aspectmonitor.CheckerException("StrictAlteration");

proceed();
}
void around() : call(public void example_lock.Lock+.lock(..)) {
boolean p0 = false; // [CALL]: unlock
boolean p1 = true; // [CALL]: lock
refreshState(p0, p1);
if(state == 2)
throw
new fi.hut.ics.aspectmonitor.CheckerException("StrictAlteration");

proceed();
}
private void refreshState(boolean p0, boolean p1) {
switch(state) {
case 0 :
if((!p0 && !p1) || (!p0 && p1)) state = 2;
if((p0 && !p1) || (p0 && p1)) state = 1;
break;
case 1 :
if((!p0 && !p1) || (p0 && !p1)) state = 2;
if((!p0 && p1) || (p0 && p1)) state = 0;
break;
case 2 :
break;
}
}
}

Figure 6.2: A generated interface checker aspect

38 6. EXPERIMENTS

package example_file;

import fi.hut.ics.aspectmonitor.annotation.LibraryCheckers;
import fi.hut.ics.aspectmonitor.annotation.TriggeredCheckers;

@LibraryCheckers(
pltlCheckers = {
"ProperWrites ::= "+
"G(<{ #pre(#s.length() + #this.length()) "+
"== #this.length() }>)"

}
)
public interface LogFile {
@TriggeredCheckers(
checkers = { "ProperWrites" },
exception = RuntimeException.class

)
public void write(String s);
public int length();

}

Fig. 6.3 shows the safety aspect that has been generated from the spec-
ification with the tool. The corresponding state automaton has exactly
two states – one for correct behavior and one for an error. The call tar-
get, i.e., the LogFile instance and the string s given to the write(String
s) method as parameter are passed to the advice from the join point’s
context. The history variable pre0 will hold the sum of argument’s
length and the length of the LogFile instance prior to the method call.
Now pre0 can be referenced when making the assertion after the actual
method call.

Recall that the specification language allows only primitive data to
be stored in history variables. If mutable objects, that are stored by
reference, could be used in this the method body could alter their values
and thus make the assertion invalid.

Another observation that can be made from this experiment concerns
the default triggering policy (see Def. 19 on page 15). Even though the
checker declaration references length() method in the LogFile interface,
the calls to it do not trigger the checker. This is because the reference is
done through a value proposition and not through a call proposition as
the default triggering policy would require.

6.3 PLTL SPECIFICATION WITH PAST TIME SUBFORMULA

This experiment demonstrates how past time subformulas are handled
in PLTL specifications. The interface specification has been done for a
Car interface which asserts that ignite() has been called at least once
before start() is called. What makes this experiment relevant is the
past time operator “once” in the specification.

package example_past;

6. EXPERIMENTS 39

package example_file;
/**Generated from property:
ProperWrites ::=
G(<{ #pre(#s.length() + #this.length()) == #this.length() }>)

Which is in parsed form
(G ([VALUE]:#pre(#s.length() + #this.length())
== #this.length()))

And internally represented as
(G ([VALUE]:#pre(#s.length() + #this.length())
== #this.length()))

*/
privileged aspect LSCheckerLogFileProperWrites pertarget(
call(public void example_file.LogFile+.write(..))) {
declare precedence: IFChecker*, LSChecker*;
private int state;
public LSCheckerLogFileProperWrites() {
state = 0;
}
void around(
java.lang.String s,
example_file.LogFile callTarget) :
((call(public void example_file.LogFile+.write(..)) &&
args(s)) && target(callTarget)) {
int pre0 = (s.length() + callTarget.length());
proceed(s, callTarget);
boolean p0 = pre0 == callTarget.length();
// [VALUE]: #pre(#s.length() + #this.length()) == #this.length()
refreshState(p0);
if(state == 1)
throw new java.lang.RuntimeException("ProperWrites");
}
private void refreshState(boolean p0) {
switch(state) {
case 1:
break;
case 0:
if(p0) state = 0;
if((!(p0))) state = 1;
break;
}
}
}

Figure 6.3: A generated library checker aspect

40 6. EXPERIMENTS

import fi.hut.ics.aspectmonitor.annotation.InterfaceCheckers;
import fi.hut.ics.aspectmonitor.annotation.TriggeredCheckers;

@InterfaceCheckers(
pltlCheckers = {
"ProperStarts ::= G (start() -> O(ignite()))"
}

)
public interface Car {
@TriggeredCheckers(
checkers = {"ProperStarts"},
exception = RuntimeException.class

)
public void start();
@TriggeredCheckers(
checkers = {"ProperStarts"},
exception = RuntimeException.class

)
public void ignite();

}

Fig. 6.4 shows the aspect generated from the specification. The boolean
variable p0 corresponds to the call proposition start(), and the boolean
variable p1 to the call proposition ignite() in the aspect code. This
is very much same as in the Lock interface experiment in Sec. 6.1. In
this case, however, there is an additional array nowProperStarts cor-
responding the current values of past time subformulas in the property,
and preProperStarts corresponding to the prior values of those subfor-
mulas. Since there there is only one such a subformula O(ignite()) the
arrays hold only one element each.

Recall the initialization and update rules from Table 5.1 on page 33
that allows the past time subformulas be treated as if they were one
of the atomic propositions. The initial value for preProperStarts[0]

is assigned in the aspect constructor according to this technique to be
false. The update rules are applied before the guards of the transi-
tions are checked. Finally, the current value of the O(ignite()), i.e.,
nowProperStarts[0] appears now as a proposition in the transitions
of the automaton generated by SCheck in refreshState(boolean p0,

boolean p1) method.

6. EXPERIMENTS 41

package example_past;
/**Generated from property:
ProperStarts ::= G (start() -> O(ignite()))
Which is in parsed form
(G (([CALL]:start) -> (O ([CALL]:ignite))))

And internally represented as
(G (([CALL]:start) -> (O ([CALL]:ignite))))

*/
privileged aspect IFCheckerCarProperStarts pertarget(
(call(public void example_past.Car+.start(..)) ||
call(public void example_past.Car+.ignite(..)))) {
declare precedence: IFChecker*, LSChecker*;
private boolean[] nowProperStarts;
private boolean[] preProperStarts;
private int state;
public IFCheckerCarProperStarts() {
preProperStarts = new boolean[1];
nowProperStarts = new boolean[1];
state = 0;
preProperStarts[0] = false; // ONCE
}
void around() : call(public void example_past.Car+.start(..)) {
boolean p0 = true; // [CALL]: start
boolean p1 = false; // [CALL]: ignite
refreshState(p0, p1);
if(state == 1)
throw new java.lang.RuntimeException("ProperStarts");
proceed();
}
void around() : call(public void example_past.Car+.ignite(..)) {
boolean p0 = false; // [CALL]: start
boolean p1 = true; // [CALL]: ignite
refreshState(p0, p1);
if(state == 1)
throw new java.lang.RuntimeException("ProperStarts");
proceed();
}
private void refreshState(boolean p0, boolean p1) {
nowProperStarts[0] = p1 || preProperStarts[0]; // ONCE
preProperStarts[0] = nowProperStarts[0];
switch(state) {
case 1:
break;
case 0:
if(((nowProperStarts[0] && p0) || (!(p0)))) state = 0;
if(((!(nowProperStarts[0])) && p0)) state = 1;
break;
}
}
}

Figure 6.4: A generated PLTL interface checker with a past subformula

42 6. EXPERIMENTS

7 CONCLUSIONS AND FUTURE WORK

The purpose of the chapter is to summarize the work what have presented
in this report, and discuss the future of the specification language.

7.1 CONCLUSIONS

This report has presented an interface specification language which is
based on two complementary formalisms – PLTL and regular expressions.
It allows the specification of safety properties for both internal behavior
as well as the external usage of a software component. It is possible to
specify behavior that is impossible to be fulfilled by any implementation,
and therefore specifications themselves should be verified. The specifi-
cations may contain claims about the currently executing method and
the arguments it has received, and about the internal state of a com-
ponent. There is currently a limited support for data handling in the
language that is called the history variable mechanism. History variables
allow propositions to reference input values and relate them to expected
results.

The report has shown that the specification language can be used in
the context of Java programming language by annotating types with the
specifications. A tool implementation has also been presented which can
be used to analyze the annotated specifications and then to synthesize
them into AspectJ aspects. Aspects can be used for runtime verifica-
tion of the system, which is a complementary approach for the tradi-
tional methods of quality assurance. The tool has been implemented as
a Spoonlet and can be integrated into a popular development environ-
ment, Eclipse, and into a widely used build tool, Maven 2, with respective
plug-ins.

Aspect-oriented programming has proven to be very well suited for
establishing behavioral invariants into the runtime execution of the sys-
tem under test. Generation of aspect source code has also proven to be
a good approach compared to, for example, abstract syntax tree instru-
mentation of the program itself. This approach separates the generated
code from the actual implementation in a way that both can be examine
separately, for example, in inspection sessions.

The report contributes the use of a combination of future and past
time operators in specifications. This has been achieved by combining
the approach for handling formulas of the form “always P” where P is a
past time formula presented in [14, 15] with the SCheck tool presented
in [28].

The complementary formalisms – regular expressions and PLTL for-
mulas have proven to be a good choice. Regular expressions are very good
for expressing pattern behavior whereas PLTL allows the use of comple-
ment without blow up in the resulting automaton. Tool integration with
immediate feedback for the programmer about, for example, syntacti-
cally incorrect specifications can also be considered to be an asset for the

7. CONCLUSIONS AND FUTURE WORK 43

tool.

7.2 FUTURE WORK

The previous section concluded the current state of the specification lan-
guage and of the tool that supports it. The purpose in this section is to
discuss what has been planned for the future of the language.

One of the areas in which the specification language itself could be
improved is data handling. More sophisticated ways than the simple
history variable mechanism have been discussed. One approach to do
this is to allow values to be stored over method calls in the checker
aspects. Then, for example, the return value of one method could be
used to specify how another method should used. This would add a level
of dynamic behavior into the specifications. In languages such as Java
where exceptions are commonly used, propositions about them could be
added to the language. By doing this one could specify, for example, that
certain kinds of exceptions are allowed in the interaction while others are
not.

More elaborate models of interaction could also be considered. The
current model of interaction presented in Fig. 1.1 on page 3 assumes
a singleton application initiating the interaction with one or more li-
braries. The crosscutting nature of aspect-oriented programming could
allow the state of the protocol behavior be established between pairs of
interacting components. The more elaborate model of interaction could
also take into account concurrency. This could be approached by giv-
ing each thread its own copy of the state variable in the aspects (with
java.lang.ThreadLocal<T> state variable), and taking care of the syn-
chronization issues arising from concurrency.

The tool implementation could be extended to support the full safety
subset of PLTL which does not add expressive power to the language but
might make some specification easier and more natural to express, and
could also be of theoretical interest. The detection of pathologically safe
formula presented in [28] could also be integrated into the tool, as well
as other aids for error detection in the specification process.

In the immediate future, efforts will be made to integrate the tool
presented in this report to the LIME project’s automatic test generator.
Also logging strategies for test runs will be considered to better capture
what exactly went wrong in the interaction. The logging mechanism itself
can be probably implemented with an aspect. As LIME is a project for
embedded systems the specification language will be adjusted to be better
suited for the C programming language, and with the lessons learned from
this work a tool to support it will also be made.

It is has also been planned that the interface specification methods are
to be extend for systems that are not at all or only partially implemented.
This would allow stub generation, i.e., mock-up implementations of speci-
fied interfaces could created automatically. These generated components
that approximate the behavior of a real library could be used as test-
ing aids for applications while the actual library is being implemented.

44 7. CONCLUSIONS AND FUTURE WORK

Similarly mock-up implementations of applications could be created for
libraries that would approximate behavior of a real application using the
library to test it.

ACKNOWLEDGEMENTS

This report has been done in the Department of Information and Com-
puter Science at the Helsinki University of Technology (TKK) as part of
the LIME project (LightweIght formal Methods for distributed component-
based Embedded systems).

I would like to thank Tekes, the Finnish Funding Agency for Technol-
ogy and Innovation, for funding in the LIME project, and Technology
Industries of Finland Centennial Foundation for funding prior to LIME.

I would want thank the my supervisor Prof. Ilkka Niemelä for the
opportunity to work here at TKK and for his comments and support
throughout the project. Also I would wish to express gratitude to my
instructor Docent Keijo Heljanko for his time, patience and advises that
guided me through this project.

My gratitude also goes for our industrial partners in the LIME project
Conformiq Software Oy, Elektrobit Oy, Nokia Oyj, and Space Systems
Finland, as well as our research partners at Åbo Akademi and my col-
leagues at TKK. I wish everyone continued success.

Finally, I dedicate this report for my mom and dad for always being
there for me when I have needed it the most.

7. CONCLUSIONS AND FUTURE WORK 45

BIBLIOGRAPHY

[1] Andrew W. Appel. Modern Compiler Implementation in Java, 2nd
edition. Cambridge University Press, 2002.

[2] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob
Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram K. Rajamani,
and Abdullah Ustuner. Thorough static analysis of device drivers.
In EuroSys ’06: Proceedings of the 1st ACM SIGOPS/EuroSys Eu-
ropean Conference on Computer Systems 2006, pages 73–85, New
York, NY, USA, 2006. ACM.

[3] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and
Viktor Schuppan. Linear encodings of bounded LTL model check-
ing. Logical Methods in Computer Science, 2(5:5), 2006. (doi:
10.2168/LMCS-2(5:5)2006).

[4] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst, Joe
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An
overview of JML tools and applications. Software Tools for Tech-
nology Transfer, 7(3):212–232, June 2005.

[5] Feng Chen and Grigore Roşu. Towards monitoring-oriented pro-
gramming: A paradigm combining specification and implementa-
tion. Electr. Notes Theor. Comput. Sci., 89(2):106–125, 2003. In
Proc. of RV’03: the Third International Workshop on Runtime Ver-
ification.

[6] Alessandro Cimatti, Marco Roveri, Simone Semprini, and Stefano
Tonetta. From PSL to NBA: a modular symbolic encoding. In FM-
CAD ’06: Proceedings of the Formal Methods in Computer Aided
Design, pages 125–133, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[7] Luca de Alfaro and Thomas A. Henzinger. Interface-based design.
In Manfred Broy, Johannes Gruenbauer, David Harel, and C.A.R.
Hoare, editors, Engineering Theories of Software-Intensive Systems,
volume 195 of NATO Science Series: Mathematics, Physics, and
Chemistry, pages 83–104. Springer, 2005.

[8] Jori Dubrovin and Tommi Junttila. Symbolic model checking of
hierarchical UML state machines. Technical Report B23, Helsinki
University of Technology, Laboratory for Theoretical Computer Sci-
ence, Espoo, Finland, December 2007.

[9] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
Property specification patterns for finite-state verification. In Mark
Ardis, editor, Proc. 2nd Workshop on Formal Methods in Software
Practice (FMSP-98), pages 7–15, New York, 1998. ACM Press.

46 BIBLIOGRAPHY

[10] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Pat-
terns in property specifications for finite-state verification. In ICSE
’99: Proceedings of the 21st international conference on Software
engineering, pages 411–420, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[11] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[12] Robert E. Filman and Daniel P. Friedman. Aspect-oriented pro-
gramming is quantification and obliviousness. In Robert E. Fil-
man, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, edi-
tors, Aspect-Oriented Software Development, pages 21–35. Addison-
Wesley, Boston, 2005.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison-Wesley, Boston, MA, January 1995.

[14] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety
properties. In Joost-Pieter Katoen and Perdita Stevens, editors,
TACAS 2002: Tools and Algorithms for the Construction and Anal-
ysis of Systems, 8th International Conference, TACAS 2002, volume
2280 of Lecture Notes in Computer Science, pages 342–356. Springer,
2002.

[15] Klaus Havelund and Grigore Roşu. Efficient monitoring of safety
properties. Software Tools for Technology Transfer (STTT),
6(2):158–173, 2004.

[16] Klaus Havelund and Grigore Roşu. An overview of the runtime
verification tool Java PathExplorer. Form. Methods Syst. Des.,
24(2):189–215, 2004.

[17] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[18] Antti Huima. Implementing Conformiq Qtronic. In Alexandre Pe-
trenko, Margus Veanes, Jan Tretmans, and Wolfgang Grieskamp,
editors, TestCom/FATES, volume 4581 of Lecture Notes in Com-
puter Science, pages 1–12. Springer, 2007.

[19] IEEE-Commission. IEEE standard for property specification lan-
guage (PSL). Technical report, IEEE, 2005. IEEE Std 1850-2005.

[20] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In Jør-
gen Lindskov Knudsen, editor, ECOOP 2001 - Object-Oriented Pro-
gramming, 15th European Conference, Budapest, Hungary, June 18-
22, 2001, Proceedings, volume 2072 of Lecture Notes in Computer
Science, pages 327–353. Springer, 2001.

BIBLIOGRAPHY 47

[21] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Mehmet Aksit and Satoshi Mat-
suoka, editors, ECOOP’97 - Object-Oriented Programming, 11th
European Conference, Jyväskylä, Finland, June 9-13, 1997, Pro-
ceedings, volume 1241 of Lecture Notes in Computer Science, pages
220–242. Springer, 1997.

[22] Kimmo Kiviluoma, Johannes Koskinen, and Tommi Mikkonen. Run-
time monitoring of architecturally significant behaviors using behav-
ioral profiles and aspects. In ISSTA ’06: Proceedings of the 2006
International Symposium on Software Testing and Analysis, pages
181–190, New York, NY, USA, 2006. ACM.

[23] Hillel Kugler, David Harel, Amir Pnueli, Yuan Lu, and Yves Bon-
temps. Temporal logic for scenario-based specifications. In Nicolas
Halbwachs and Lenore D. Zuck, editors, TACAS 2005: Tools and
Algorithms for the Construction and Analysis of Systems, 11th In-
ternational Conference, TACAS 2005, volume 3440 of Lecture Notes
in Computer Science, pages 445–460. Springer, 2005.

[24] Orna Kupferman and Moshe Y. Vardi. Model checking of safety
properties. Form. Methods Syst. Des., 19(3):291–314, 2001.

[25] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT, USA,
2003.

[26] Leslie Lamport. ”Sometime” is sometimes ”not never”: on the tem-
poral logic of programs. In POPL ’80: Proceedings of the 7th ACM
SIGPLAN-SIGACT Symposium on Principles of programming lan-
guages, pages 174–185, New York, NY, USA, 1980. ACM.

[27] Timo Latvala. On model checking safety properties. Research Re-
port A76, Helsinki University of Technology, Laboratory for Theo-
retical Computer Science, Espoo, Finland, December 2002.

[28] Timo Latvala. Efficient model checking of safety properties. In
Thomas Ball and Sriram K. Rajamani, editors, Model Checking Soft-
ware, 10th International SPIN Workshop. Portland, OR, USA, May
9-10, 2003, Proceedings, volume 2648 of Lecture Notes in Computer
Science, pages 74–88. Springer, 2003.

[29] Harry R. Lewis and Christos H. Papadimitriou. Elements of the
Theory of Computation. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1997.

[30] Zohar Manna and Amir Pnueli. Tools and rules for the practicing
verifier. In Perspectives on Computer Science, ed. by Anita K. Jones,
Academic Press, New York, 1977; CMU Computer Science: A 25th
Anniversary Commemorative, Richard F. Rashid (Ed.), ACM Press
and Addison-Wesley Publishing Co. 1991.

48 BIBLIOGRAPHY

[31] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer, 1992.

[32] Shahar Maoz and David Harel. From multi-modal scenarios to code:
compiling LSCs into AspectJ. In SIGSOFT ’06/FSE-14: Proceed-
ings of the 14th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 219–230, New York, NY,
USA, 2006. ACM.

[33] Renaud Pawlak, Carlos Noguera, and Nicolas Petitprez. Spoon:
Program Analysis and Transformation in Java. Research Report
RR-5901, INRIA, 2006.

[34] Ingo Pill, Simone Semprini, Roberto Cavada, Marco Roveri, Rod-
erick Bloem, and Alessandro Cimatti. Formal analysis of hardware
requirements. In DAC ’06: Proceedings of the 43rd annual confer-
ence on Design automation, pages 821–826, New York, NY, USA,
2006. ACM.

[35] Grigore Roşu. An effective algorithm for the membership problem
for extended regular expressions. In Proceedings of the 10th Inter-
national Conference on Foundations of Software Science and Com-
putation Structures (FOSSACS’07), volume 4423 of Lecture Notes
in Computer Science, pages 332–345. Springer, 2007.

[36] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified
Modeling Language Reference Manual. Addison-Wesley, second edi-
tion, July 2004.

[37] A. Prasad Sistla. Safety, liveness and fairness in temporal logic.
Formal Asp. Comput., 6(5):495–512, 1994.

[38] Volker Stolz and Eric Bodden. Temporal assertions using AspectJ.
In Proceedings of the Fifth Workshop on Runtime Verification (RV
2005), Satellite workshop of CAV 2005, Edinburgh, Scotland, UK,
volume 144:4 of Electronic Notes in Theoretical Computer Science,
pages 109–124. ”Elsevier”, 2006.

BIBLIOGRAPHY 49

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R1 Nikolaj Tatti, Hannes Heikinheimo

Decomposable Families of Itemsets. May 2008.

TKK-ICS-R2 Ville Viitaniemi, Jorma Laaksonen
Evaluation of Techniques for Image Classification, Object Detection and Object
Segmentation. June 2008.

TKK-ICS-R3 Jussi Lahtinen

Model Checking Timed Safety Instrumented Systems. June 2008.

ISBN 978-951-22-9453-4 (Print)

ISBN 978-951-22-9454-1 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

	Introduction
	Theoretical background
	Propositional formulas
	Regular expressions
	PLTL
	Safety properties

	The specification language
	Specifying interfaces and components -- Running examples
	Specification language
	Policies and notation
	Triggering a checker
	Data handling

	Technical background
	Aspect-oriented programming
	AspectJ
	Join points and pointcuts
	Advices and aspects

	The tool implementation
	Programming interface
	Propositions
	Checkers

	Tool architecture
	Common
	Aspect monitor

	Experiments
	An interface specification for a lock interface
	A library specification for a file interface
	PLTL specification with past time subformula

	Conclusions and future work
	Conclusions
	Future work

	Bibliography

