
TKK Reports in Information and Computer Science

Espoo 2008 TKK-ICS-R3

MODEL CHECKING TIMED SAFETY INSTRUMENTED

SYSTEMS

Jussi Lahtinen

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

TKK Reports in Information and Computer Science

Espoo 2008 TKK-ICS-R3

MODEL CHECKING TIMED SAFETY INSTRUMENTED

SYSTEMS

Jussi Lahtinen

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietojenkäsittelytieteen laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Information and Computer Science

P.O.Box 5400

FI-02015 TKK

FINLAND

URL: http://ics.tkk.fi

Tel. +358 9 451 1

Fax +358 9 451 3369

E-mail: series@ics.tkk.fi

©c Jussi Lahtinen

ISBN 978-951-22-9444-2 (Print)

ISBN 978-951-22-9445-9 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

URL: http://www.otalib.fi/tkk/edoc/

TKK ICS

Espoo 2008

ABSTRACT: Defects in safety-critical software systems can cause large eco-
nomical and other losses. Often these systems are far too complex to be tested
extensively. In this work a formal verification technique called model check-
ing is utilized. In the technique, a mathematical model is created that cap-
tures the essential behaviour of the system. The specifications of the system
are stated in some formal language, usually temporal logic. The behaviour
of the model can then be checked exhaustively against a given specification.

This report studies the Falcon arc protection system engineered by UTU
Oy, which is controlled by a single programmable logic controller (PLC).
Two separate models of the arc protection system are created. Both mod-
els consist of a network of timed automata. In the first model, the controller
operates in discrete time steps at a specific rate. In the second model, the con-
troller operates at varying frequency in continuous time. Five system spec-
ifications were formulated in timed computation tree logic (TCTL). Using
the model checking tool Uppaal both models were verified against all five
specifications.

The processing times of the verification are measured and presented. The
discrete-time model has to be abstracted a lot before it can be verified in a
reasonable time. The continuous-time model, however, covered more be-
haviour than the system to be modelled, and could still be verified in a mod-
erate time period. In that sense, the continuous-time model is better than
the discrete-time model.

The main contributions of this report are the model checking of a safety
instrumented system controlled by a PLC, and the techniques used to de-
scribe various TCTL specifications in Uppaal. The conclusion of the work is
that model checking of timed systems can be used in the verification of safety
instrumented systems.

KEYWORDS: safety instrumented systems, model checking, real-time, Up-
paal

CONTENTS

List of Figures vii

1 Introduction 1
1.1 Model Checking . 1
1.2 Work Description . 2
1.3 Outline of the Work . 2

2 Model Checking of Timed Systems 2
2.1 Timed Automata . 4

2.1.1 Formal Semantics 5
2.1.2 Decision Problems in Timed Automata 7
2.1.3 Parallel Composition of Timed Automata 8
2.1.4 Symbolic Semantics, Regions and Zones 10
2.1.5 Difference Bound Matrices 12

2.2 Temporal Logic with Real Time 13
2.2.1 Computation Tree Logic 14
2.2.2 Timed Computation Tree Logic 15

2.3 Model Checking Tool Uppaal 16
2.3.1 Modelling in Uppaal 17
2.3.2 Verification in Uppaal 18

3 Timed Safety Instrumented Systems 19
3.1 Programmable Logic Controller 19
3.2 Safety Instrumented Systems 20

4 Modelling Systems with Timed Automata 21
4.1 Modelling Real-Time Communication Protocols 21
4.2 Modelling Real-Time Controllers 23
4.3 Other Real-Time Research 24

5 Case Study: Falcon 24
5.1 The Falcon Arc Protection System 24
5.2 System Environment Description 25
5.3 Discrete-time Model . 27

5.3.1 The Falcon Control Unit 28
5.3.2 Primary Breakers . 29
5.3.3 Secondary Breakers 30

5.4 Falcon: Continuous-time Model 30
5.4.1 The Falcon Control Unit 31
5.4.2 Primary Breakers . 31
5.4.3 Secondary Breakers 32
5.4.4 The Environment Model 33

5.5 Checked Properties . 34
5.6 Conclusions of the Models 36

6 Results 37

7 Conclusions 40

CONTENTS v

References 41

Appendices 46

A Falcon case: Discrete-time Model Related Code 46

B Falcon case: Continuous-time Model Related Code 50

C Falcon Case: The Discrete-time Simplified Model 52

D Falcon Case: The Continuous-time Simplified Model 55

vi CONTENTS

LIST OF FIGURES

1 A finite state automaton . 3
2 A timed automaton . 5
3 A timed automaton with invariant constraints 5
4 Regions of a system . 11
5 The zone graph of the timed automaton in Figure 3 12
6 An observer automaton in Uppaal 18
7 A TON timer with inputs IN and PT, and outputs Q and ET . 20
8 Functionality of a TON timer 20
9 The Falcon architecture . 26
10 Falcon master unit logic of the example case 27
11 The Falcon system model with discrete time 28
12 The discrete-time breaker model 30
13 The discrete-time secondary breaker model 30
14 The falcon system of the continuous-time model. 31
15 The continuous-time model of the breaker 32
16 The secondary breaker model in continuous-time 32
17 The continuous-time environment model 33
18 The observer automaton used in property 3 in the continuous-

time case . 35
19 An observer automaton for discrete-time 35
20 An observer automaton for continuous-time model 36
21 The observer automaton used in Property 5 37
22 The Falcon control unit of the simplified discrete-time model 52
23 The Falcon control unit of the simplified continuous-time

model . 55

LIST OF FIGURES vii

LIST OF SYMBOLS AND ABBREVIATIONS

{d} The fractional part of d
⌊d⌋ The integer part of d
N The set of natural numbers
R+ The set of non-negative real numbers
R

C The set of clock valuations
A Temporal logic path quantifier: for all computation paths
E Temporal logic path quantifier: for some computation path
U Temporal logic operator: until
X Temporal logic operator: next time
BDD Binary decision diagram
CCS Calculus of Communicating Systems
CTL Computation tree logic
DBM Difference bound matrix
FBD Function block diagram
IEC International Electrotechnical Commission
IL Instruction list
LD Ladder diagram
PLC Programmable logic controller
SFC Structured function chart
SIS Safety instrumented system
ST Structured text
TCTL Timed computation tree logic
TON Timer on delay
UTU Urho Tuominen Oy

viii LIST OF FIGURES

1 INTRODUCTION

Software plays an increasing role in safety-critical applications where an in-
correct behaviour could lead to significant economical, environmental or
personnel losses. Thus, it is imperative that these safety-critical systems con-
form to their functional requirements. Testing is regularly used to ensure
that the requirements are met. Testing can not, however, show the absence
of software bugs, only their presence. If the system functionality has to be
verified, some much more powerful method is needed.

1.1 Model Checking

Model checking [20] is an automatic technique for verifying hardware and
software designs. Other, more traditional system verification techniques in-
clude simulation, testing, and deductive reasoning [20]. Deductive reasoning
normally means the use of axioms and proof rules to prove the correctness
of systems. Deductive reasoning techniques are often difficult and require a
lot of manual intervention. On the other hand, validation techniques based
on extensive testing or simulation can easily miss errors when the number of
possible states of the system is very large. Model checking requires no user
supervision and always produces a counterexample when the design fails to
satisfy some checked property.

Model checking consists of modeling, specification, and verification. Firstly,
the design under investigation has to be converted into a formalism under-
stood by the used model checking tool. This means that the system behaviour
is depicted in a modeling language. The model should comprise the essential
properties of the system, and at the same time abstract away from unimpor-
tant details that only complicate the verification process [20].

Secondly, the system has some properties it must satisfy. These properties,
also called specifications, are usually given in some logical formalism. For
hardware and software designs, it is typical to use temporal logic [20], which
can express the requirements for system behaviour over time.

After modeling and specification, only the fully automatic model checker
part remains. If the design meets the desired properties, the verification tool
will state that the specification is true. In case of a design flaw or an incorrect
modeling or specification, a counterexample will be generated. A counterex-
ample presents a legal execution sequence in the model that is not allowed
by a specification. The analysis of the counterexample is usually impossible
to do automatically and thus involves human assistance. For example, it is
impossible for a computer program to decide whether the model or the spec-
ification is incorrect. The counterexample can help the designer find the
errors in the specifications, in the design or in the model.

There are several model checking techniques. Many of them suffer from
the state explosion problem [46]. State explosion results from the fact that

1 INTRODUCTION 1

the number of states in a system grows exponentially as the size of the model
increases. Although the system is still finite, model checking might be too
complex for even state-of-the-art computers. No fully satisfactory solution to
this problem has yet been found, although symbolic representation of the
state space using BDDs or reducing the needed state space using abstraction
have been found useful [17, 46]. Partial order reduction [24, 46, 20] is also
a typical state space reduction method. Bounded model checking [9, 10] at-
tempts to avoid the state explosion problem by bounding the counterexample
length. Nevertheless, model checking is likely to prove an invaluable tool to
verify system requirements or design.

1.2 Work Description

In this work, a real-time safety-critical system is modelled as a network of
timed automata [8]. Furthermore, the model is verified against five proper-
ties using the model checking tool Uppaal. Timed automata are chosen as
the basis of the model, since the system is very dependent on correct timing.
The theory of timed automata provides a framework to model and verify real-
time systems.

The checked system is a safety instrumented system (SIS) that is controlled
by a single programmable logic controller (PLC). The purpose of the system
is to cut electricity from a protected area, if an electric arc is observed. Be-
cause of the complexity of the system, standard testing can not guarantee the
correct functioning.

1.3 Outline of the Work

The rest of this work is organized as follows. In Section 2 timed automata are
introduced and the model checking methodology of this work is presented.
In Section 3 the use of programmable logic controllers in timed safety instru-
mented systems is discussed. A survey of related research is in Section 4. The
case study of this work is presented in Section 5, where two different models
of the system are shown. The results of the verification of the models are in
Section 6. Finally, the conclusions of the work are in Section 7.

2 MODEL CHECKING OF TIMED SYSTEMS

Model checking methods often use automata as their primary modelling
structure. The automata can be finite state automata, timed automata, Büchi
automata or of some other automata class depending on the employed model
checking method. Automata provide a way to describe the behaviour of the
modelled system efficiently and precisely. Also, the modelling of specifica-
tions by automata is possible. This provides a useful model checking ap-
proach of a system. The specification automaton and the automaton of the
system can be run in parallel. Usually model checking tools create a parallel
composition of the system automaton and the negation of the specification

2 2 MODEL CHECKING OF TIMED SYSTEMS

automaton. If the created automaton is not empty, the specification is not
met by the system. A counterexample can be easily extracted from the paral-
lel composition.

A finite automaton [20] is a mathematical model of a system that has a
constant amount of memory that does not depend on the size of the input.
Automata can operate on finite or infinite words depending on definition.

Definition 2.1 (Finite Automata) A finite automaton over finite words A is
a five tuple 〈Σ, Q, ∆, Q0, F 〉 such that

• Σ is the finite alphabet,

• Q is the finite set of states,

• ∆ ⊆ Q × Σ × Q is the transition relation,

• Q0 ⊆ Q is the set of initial states, and

• F ⊆ Q is the set of final states.

Usually automata are depicted as graphs with labeled transitions, where
the set of states Q is represented by the nodes and the transition relation ∆
is transformed to the edges of the graph. An example of a finite automaton is
in Figure 1.

1q q2

b

a

a b

Figure 1: A finite state automaton

In the example automaton Σ = {a, b}, the set of states Q = {q1, q2},
Q0 = {q1} and F = {q2}. Initial states are marked with an incoming arrow.
Final states are the ones with a double circle. In the example the transition
relation is such that ∆ = {(q1, a, q1), (q1, a, q2), (q2, b, q2), (q2, b, q1)}.

The following definitions follow closely [20]. A word v is a sequence of Σ∗

whose length is denoted by |v|. The ith input letter of the word v is denoted
by v(i). A run ρ over v is a path in the automaton graph from an initial
state ρ(0) to a state ρ(|v|). Formally, a run ρ of an automaton A over v is a
mapping ρ : {0, 1, ..., |v|} 7→ Q such that:

• The first state is an initial state, ρ(0) ∈ Q0.

• Moving from ρ(i) to ρ(i + 1) upon reading the ith input letter v(i) is
consistent with the transition relation. For every i, 0 ≤ i < |v|(ρ(i), v(i),
ρ(i + 1)) ∈ ∆.

A run ρ over a word v is accepting if it ends in a final state, ρ(|v|) ∈ F .
The language of an automaton A, L(A) is the set of words accepted by A.

2 MODEL CHECKING OF TIMED SYSTEMS 3

2.1 Timed Automata

Timed automata [3, 8] are used in the model checking of real time systems.
Alternative methods with the same goal are e.g., Petri Nets, timed process al-
gebras, and real time logics [16, 40, 42, 50]. Timed automata are especially
needed when the correct functioning depends fundamentally upon real time
considerations. Such a situation is typical when the system must interact with
a physical process.

Modal logic [21] considers only the ordering of sequential events, i.e., it
abstracts away from time. However, in the linear time model an execution
of a system can be modelled as a timed trace, in which the events and their
actual time points are denoted. The behaviour of a system is a set of these
timed traces. A set of timed traces can be thought of as a set of sequences
that form a language. If the language is regular, it is possible to use finite
automata in the process of specification and verification of the system.

In the original theory [3] timed automata are essentially finite state au-
tomata extended with real valued clock variables and infinite input. The
functionality of the automaton can be restricted by the conditions set to the
clocks.

A timed automaton is an abstraction of a real time system. It is basically a
finite state automaton with a set of clock variables. The variables model the
logical clocks of the system, and they are initialized with zero when the sys-
tem is started. After this, all the clock variables are increased at the same rate.
In addition to the clocks, a timed automaton also has guard constraints on its
transitions. A transition can be taken, when the guard constraint on the edge
of the automaton evaluates to true. These guards restrict the behaviour of the
automaton by constraining the values of the clocks allowed for the transition
to be enabled.

Finally, the clock variables can also be reset. This can only happen when a
transition is taken. Multiple clocks can be reset at once. The clock variables
are reset after the guard constraint has been evaluated as true.

The problem with the original timed automaton is that the guards only
enable the transitions. The automaton can not be forced to make transitions.
This leads to a possible situation where the automaton stays forever in some
state [8].

A simplified version of a timed automaton, a timed safety automaton [29]
is a timed automaton with local state invariants. A timed safety automaton
may stay in a node only as long as the clocks satisfy the invariant of the node.
These invariant conditions can eliminate the problem because they can force
the automaton to make a transition. Because of its simple structure, the
timed safety automaton has been adopted in many timed automata verifica-
tion tools including Uppaal [34] and Kronos [51].

4 2 MODEL CHECKING OF TIMED SYSTEMS

WorkStart

x== 5, a, x:= 0

x == 10, c

x >= 20, b, x := 0

Figure 2: A timed automaton

An example of a timed automaton is in Figure 2. The timed automaton
in Figure 2 has two locations: Start and Work , and a clock variable x. Start

has a double circle surrounding it indicating the initial location insted of the
incoming arrow in Figure 1. The automaton has three transitions. Each
transition has a guard and an action. There is a transition from Start to itself.
The guard of this transition states that the transition can only be taken, when
the clock variable has value 5 (x == 5). The action related to this transition
is a. The clock is reset after the transition (x := 0). The transition from
Start to Work has a guard x == 10 and an action c. This transition does
not reset the clock variable. The third transition from Work to Start has a
guard x >= 20 and an action b. The guard states that the transition can not
be taken unless x is at least 20. The transition also resets the clock x. It is
also possible to remain in either one of the locations forever. The automaton
has no location invariants.

When location invariants are added to the example automaton, the result
is a timed safety automaton (Figure 3). It has an invariant in both locations.
The invariants specify a local condition that Start must be left before x be-
comes greater than 10, and Work must be left before x becomes greater than
50.

WorkStart

x== 5, a, x:= 0

x == 10, c

x >= 20, b, x := 0
x <= 50x <= 10

Figure 3: A timed automaton with invariant constraints

This work concentrates on timed safety automata, and will herefrom refer
to them as timed automata or automata.

2.1.1 Formal Semantics

Basic definitions of the syntax and semantics of timed automata are given.
The definitions follow the semantics in [8]. The following notations are used:
N is the set of natural numbers, C is the set of clocks, B(C) is a set of simple
conjunctions of the form x ⊲⊳ c or x − y ⊲⊳ c, where x, y ∈ C, c ∈ N and
⊲⊳∈ {<,≤, =,≥, >}. A timed automaton is a finite graph, with transitions
labelled with conditions over and resets of non-negative real valued clock
variables.

2 MODEL CHECKING OF TIMED SYSTEMS 5

Definition 2.2 (Timed Automata) A timed automaton A is defined as a tu-
ple 〈L, l0, C, Σ, E, I〉, where

• L is a finite set of locations (or nodes),

• l0 ∈ L is the initial location,

• C is the finite set of clocks,

• Σ is the finite set of actions,

• E ⊆ L×Σ×B(C)×2C ×L is the finite set of edges between locations
with an action, a guard, and a set of clocks to be reset; and

• I : L −→ B(C) assigns invariants to locations.

Next the semantics of a timed automaton is defined. A clock valuation is a
function u : C → R+ from the set of clocks to the non-negative reals. Let R

C

be the set of clock valuations. Let u0(x) = 0 for all x ∈ C. In our notation
guards and invariants can be considered as sets of clock valuations. u ∈ I(l)
means that the clock valuation u satisfies all the constraints in I(l).

For d ∈ R+, let u + d denote the clock assignment that maps all x ∈ C to
u(x)+ d, and for r ⊆ C, let [r 7→ 0]u denote the clock assignment that maps
all clocks in r to 0 and agree with u for the other clocks in C \ r.

The semantics of a timed automaton is defined as a labelled transition
system where a state consists of the current location, and the current values
of the clock variables. Thus, there are two types of transitions between states.

In a delay transition the automaton delays for some time (denoted
d
→, where

d is a non-negative real). In an action transition an enabled edge is followed

(denoted
a
→, where a is an action). Consecutive delay-action transitions can

be denoted as
d
→

a
→.

Definition 2.3 (Semantics of Timed Automata) Let (L, l0, C, Σ, E, I) be a
timed automaton. The semantics is defined as a labelled transition system
〈S, s0,→〉, where S ⊆ L × R

C is the set of states, s0 = (l0, u0) is the initial
state, and →⊆ S × {R+ ∪ Σ} × S is the transition relation such that:

• (l, u)
d
→ (l, u + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d′ ∈ I(l), and

• (l, u)
a
→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E such that u ∈

g, u′ = [r 7→ 0]u, and u′ ∈ I(l).

The transition relation is intuitively such that it allows two kind of tran-
sitions. Either all the clock values of the automata are increased by some
positive value, or time does not advance at all while an edge of the automa-
ton is taken. In the first case the transition must be allowed by the location
invariants. In the second case the transition can only be taken if the guards

6 2 MODEL CHECKING OF TIMED SYSTEMS

evaluate to true, and the invariant constraints are not violated after the tran-
sition’s reset phase. As an example of the semantics, the timed automata in
Figure 3 could have the following reachable states:

(Start, x = 0)
5
→ (Start, x = 5)

a
→ (Start, x = 0)

10
→ (Start, x =

10)
c
→ (Work, x = 10)

38
→ (Work, x = 48)

b
→ (Start, x = 0)...

2.1.2 Decision Problems in Timed Automata

In model checking, we need to be able to ask questions about the function-
ing of the automaton used as a model. Operational semantics is the basis
for verification of timed automata [8]. An important question to ask about
a timed automaton is the reachability of a certain state in the automaton.
These kind of questions are used to formalize safety properties of the system.
It is also important to know how to compare the functioning of two indepen-
dent automata. Two main indications of similarity are language inclusion
and bisimilarity. Language inclusion means that the set of traces produced
by an automaton A is a subset of the set of traces produced by a different
automaton B. Bisimilarity is a stronger measure of similarity than language
inclusion. A formal definition of bisimulation is presented in what follows.
Next, some definitions for language inclusion, bisimulation and reachability
in timed automata are given. The definitions in [8] are closely followed.

A timed action (t, a) is a pair, where a ∈ Σ is an action performed by
the automaton A at time point t ∈ R+. The absolute time t is called the
time-stamp of the action a. A timed trace ξ = (t1, a1)(t2, a2)(t3, a3)... is a
sequence of timed actions where ti ≤ ti+1 for all i ≥ 1.

Definition 2.4 A Run of a Timed Automaton A = 〈L, l0, C, Σ, E, I〉 with
initial state 〈l0, u0〉 over a timed trace ξ = (t1, a1)(t2, a2)(t3, a3)... is a se-

quence of transitions: 〈l0, u0〉
d1→

a1→ 〈l1, u1〉
d2→

a2→ 〈l2, u2〉 · · · satisfying the
condition ti = ti−1 + di for all i ≥ 1.
The timed language L(A) is the set of all timed traces ξ for which there exists
a run of A over ξ.

Language inclusion problem is undecidable for timed automata [3]. This
is because timed automata are not determinizable in general. If the time
stamps of the traces are not taken into consideration, we can define the un-
timed language Luntimed(A) as the set of all traces in the form: a1a2a3... for
which there exists a timed trace ξ = (t1, a1)(t2, a2)(t3, a3)... ∈ A. The lan-
guage inclusion problem for these untimed languages is decidable [3].

It has been shown that timed bisimulation is decidable [15]. Timed bisim-
ulation is introduced for timed process algebras in [50], and can be extended
to timed automata [8].

Definition 2.5 (Bisimulation of Timed Automata) A bisimulation R over
the states of timed automata A1 = 〈L1, l10, C

1, Σ, E1, I1〉 and A2 = 〈L2, l20, C
2,

2 MODEL CHECKING OF TIMED SYSTEMS 7

Σ, E2, I2〉 is a symmetrical binary relation satisfying the following condition:

for all (s1, s2) ∈ R,

if s1
σ
→ s′1 ∈ E1 for some σ ∈ Σ and s1, s

′

1 ∈ L1, then s2
σ
→ s′2 ∈ E2 and

(s′1, s
′

2) ∈ R for some s2, s
′

2 ∈ L2.

if s2
σ
→ s′2 ∈ E2 for some σ ∈ Σ and s2, s

′

2 ∈ L2, then s1
σ
→ s′1 ∈ E1 and

(s′1, s
′

2) ∈ R for some s1, s
′

1 ∈ L1.

Two automata are timed bisimilar iff there is a bisimulation containing
the initial states of the automata.

In the case of bisimulation, an untimed version is also decidable [35]. We

just consider a timed transition s1
d
→ s2 as an empty transition s1

ε
→ s2. The

alphabet of the automaton is the replaced with Σ ∪ {ε}.

Definition 2.6 (Reachability Analysis of Timed Automata)

Let 〈l, u〉 → 〈l′, u′〉 if 〈l, u〉
σ
→ 〈l′, u′〉 for some σ ∈ Σ ∪ R+. Let →∗ de-

note n consecutive transitions, where n ∈ N. For an automaton with initial
state 〈l0, u0〉, 〈l, u〉 is reachable iff 〈l0, u0〉 →

∗ 〈l, u〉. More generally, given a
constraint φ ∈ B(C) we say that the configuration 〈l, φ〉 is reachable if 〈l, u〉
is reachable for some u satisfying φ.

Reachability analysis offers a lot of model checking properties. Negations
of reachability properties can be used to express invariant properties. For
example, a system is always in a safe state if the failure states of the system are
not reachable. In addition, reachability analysis of timed automata offers a
way to examine bounded liveness properties. These properties state that some
state will be reached within a given time. The property can be transformed
into an invariant property using an additional automaton.

2.1.3 Parallel Composition of Timed Automata
A parallel composition of timed automata [3] is an operation used to describe
complex systems using simpler subsystems. A parallel composition describes
the joint functioning of several automata concurrently.

In an untimed version of the parallel composition, it can be defined using
the traces of the automata. An untimed automaton is totally determined by
the set of its traces. A parallel composition of these trace sets is the set of
traces such that for each automaton the relevant projection is possible in the
automaton. If the event sets of the automata are distinct, the parallel com-
position is just the union of the trace sets. If the event sets of the automata
are identical, the parallel composition is the set theoretic intersection of the
trace sets.

Next, the parallel composition of timed automata is defined. The def-
initions in [3] are closely followed. The projection of an untimed trace
ξ = a1a2a3... onto an automaton Ai, written ξ⌈Ai is formed by taking only

8 2 MODEL CHECKING OF TIMED SYSTEMS

the events of the trace ξ that are in the event set of the automaton Ai. The
projection is only considered when the intersection ξ ∩Ai is nonempty. The
parallel composition ‖iAi for a set of untimed automata Ai is thus an un-
timed automaton with the event set of ∪iAi. The trace set of the parallel
composition is the set of traces that exist in at least one of the component
automata, and can be projected to all of the component automata.

The parallel composition operator can be extended to timed automata as
well. The projection operator is changed so that in the parallel composition
of two processes the common events should always happen at the same time.
A composition of two traces with common events will always result in either
an empty set or a single trace.
If, for example, automaton A1 with an event set {a, b} has only a single trace

ξ1 = (a, 1)(b, 2)(a, 4)(b, 5)(a, 7)(b, 8)...

and an automaton A2 with an event set {a, c} has three possible traces:

ξ2 = (a, 1)(a, 4)(a, 7)...
ξ3 = (a, 1)(a, 2)(a, 3)...
ξ4 = (c, 3)(c, 6)(c, 9)...

The resulting parallel composition A1‖A2 would have an event set of
{a, b, c} and a set of traces:

ξC1 = (a, 1)(b, 2)(a, 4)(b, 5)(a, 7)(b, 8)...
ξC2 = (a, 1)(b, 2)(c, 3)(a, 4)(b, 5)(c, 6)(a, 7)(b, 8)...

These are the compositions of trace pairs (ξ1, ξ2) and (ξ1, ξ4). The trace
pair (ξ1, ξ3) results in an empty trace because the common event a takes
place at different time stamps in the traces.

Following the definitions in [20], the actual timed automaton that repre-
sents the parallel composition of two automata A1 = 〈L1, l

1
0, C1, Σ1, E1, I1〉

and A2 = 〈L2, l
2
0, C2, Σ2, E2, I2〉 is the timed automaton:

A1‖A2 = 〈L1 × L2, l
1
0 × l20, C1 ∪ C2, Σ1 ∪ Σ2, E, I〉

where I(s1, s2) = I1(s1) ∧ I2(s2) and the transition relation E is given by
the following rules:

• For a ∈ Σ1 ∪ Σ2, if 〈s1, a, φ1, λ1, s
′

1〉 ∈ E1 and 〈s2, a, φ2, λ2, s
′

2〉 ∈ E2,
then E will contain the transition 〈(s1, s2), a, φ1∧φ2, λ1∪λ2, (s

′

1, s
′

2)〉.

• For a ∈ Σ1 −Σ2 if 〈s, a, φ, λ, s′〉 ∈ E1 and t ∈ L2, then E will contain
the transition 〈(s, t), a, φ, λ, (s′, t)〉.

• For a ∈ Σ2 −Σ1 if 〈s, a, φ, λ, s′〉 ∈ E2 and t ∈ L1, then E will contain
the transition 〈(t, s), a, φ, λ, (t, s′)〉.

2 MODEL CHECKING OF TIMED SYSTEMS 9

The locations of the parallel composition automaton are pairs of locations
from the component automata. Invariants are conjunctions of the invariants
in the component automata. For each pair of transitions from the component
automata with the same action, there will be a transition in the composite au-
tomaton. The transition source state is a pair in the composition that consists
of the source states of the individual automata. The transition target loca-
tion is such a pair that is formed from the target locations of the individual
transitions. If an action only exists in one of the automata, the composition
transition will be such that the other automaton remains unchanged. Such a
transition is created for each location of the other automaton.

2.1.4 Symbolic Semantics, Regions and Zones

A timed automaton with real-valued clocks leads to an infinite transition sys-
tem. In order to perform efficient verification of timed automata, a finite
transition system must be acquired. The basis of decidability results in timed
automata comes from the concept of region equivalence over clock assign-
ments [3]. The next section follows closely the definitions in [8].

Definition 2.7 (Region Equivalence) Let k be a function, called a clock
ceiling, mapping each clock x ∈ C to a natural number k(x) (i.e. the ceiling
of x). For a real number d, let {d} denote the fractional part of d, and let ⌊d⌋
denote its integer part. Two clock assignments u, v are region-equivalent, de-
noted u

.
∼k v, iff

• for all x, either ⌊u(x)⌋ = ⌊v(x)⌋ or both u(x) > k(x) and v(x) > k(x),

• for all x, if u(x) ≤ k(x) then {u(x)} = 0 iff {v(x)} = 0 ; and

• for all x, y if u(x) ≤ k(x) and u(y) ≤ k(y) then {u(x)} ≤ {u(y)} iff
{v(x)} ≤ {v(y)}.

A region is an equivalence class denoted [u] that is the set of region-
equivalent clock assignments with u. Using the region construction, a finite
partitioning of the state space is possible. This is because each clock has a
maximal constant value k(x) which makes the number of regions finite. The
constant value k(x) is the highest value, against which the clock is compared.

Also, u
.
∼ v implies that the states of the timed automaton (l, u) and (l, v)

are bisimilar with regard to the untimed bisimulation for any location l ∈ L.
The equivalence classes can be used to create a finite-state region automaton.
Using a region automaton, many of the decision problems of timed automata
become decidable. The transition relation between symbolic states of a re-
gion automaton is the following:

• 〈l, [u]〉 ⇒ 〈l, [v]〉 if 〈l, u〉
d
→ 〈l, v〉 for a positive real number d, and

• 〈l, [u]〉 ⇒ 〈l′, [v]〉 if 〈l, u〉
a
→ 〈l′, v〉 for an action a.

10 2 MODEL CHECKING OF TIMED SYSTEMS

x

y

1 2 3

1

2

Figure 4: Regions of a system

An example of the regions of an automaton with two clocks x and y is
in Figure 4. The maximal comparison constants of x and y are 3 and 2,
respectively. The example has 60 different time regions. All open areas,
lines and intersections count as a region. Possible regions of the example
are (x = 1, y = 1) (a corner point), (x = 2, y < 1) (a line segment),
{(1 < x < 2) ∧ (y < x)} (an open area).

The intuitive idea of using regions is the following: if two states, which
correspond to the same location of a timed automaton, have clock values
with the same integral parts and the ordering of the fractional parts, the two
states will behave similarly.

The problem of the region automata is the exponential growth in the num-
ber of regions as the number of clocks or the maximal constants increase.
Clock zones [1] can represent the state space of a timed automaton more
efficiently. [19, 29]

The idea of clock zones is that most of the time regions are not needed,
and some of them can be united. A clock zone is a set of clock assignments
i.e. a conjunction of inequalities or a convex union of clock regions, that
compare a clock value or the difference between two clock values against an
integer. The following types of inequalities are allowed:

x < c, x ≤ c, c < x, c ≤ x, x − y < c, x − y ≤ c

where c is an integer, x, y are clocks. For a clock zone φ, the set of clock
values satisfying φ will also be denoted φ. If an automaton A has k clocks,
then a clock zone φ expressed in terms of these clocks is a convex subset in
k-dimensional Euclidean space [20].

For example, one possible zone graph of the timed automaton in Figure 3
is in Figure 5.

2 MODEL CHECKING OF TIMED SYSTEMS 11

Start, 0 <= x <= 10

Start, x = 5 Start, x = 10

Work, 10 <= x <= 50

Work, 20 <= x <= 50

Figure 5: The zone graph of the timed automaton in Figure 3

2.1.5 Difference Bound Matrices

Difference bound matrix (DBM) [19] is a way to represent a clock zone in
a compact form. We define a difference bound matrix following the defini-
tion in [20]. Its definition requires the use of a special clock c0 that always
has value 0. The difference bounded matrix is indexed by the set of clocks
C0 = C ∪ {c0}. The special clock c0 has the index 0. The entries of the ma-
trix Di,j have the form (di,j,≺i,j) that expresses a comparison of two clock
values ci and cj with an integer di,j. The comparison operator ≺i,j is either <
or ≤. The matrix entries represent inequalities ci − cj ≺ di,j, where di,j is ei-
ther integer or ∞. The special clock c0 can be used to represent inequalities
that only concern one clock variable. As an example, consider the following
clock zone:

c2 − c1 < −2 ∧ c2 ≤ 1 ∧ c1 ≤ 3

The difference bounded matrix is:

D =

(0,≤) (0,≤) (0,≤)
(3,≤) (0,≤) (∞, <)
(1,≤) (−2, <) (0,≤)

A zone can be represented by | C0 |2 atomic constraints of the form
c1 − c2 ≺ n. Each pair is used only once. In the case of two constraints
on the same pair of variables, the intersection of these constraints is mean-

12 2 MODEL CHECKING OF TIMED SYSTEMS

ingful. These zones can be stored in | C0 | × | C0 | sized matrices called
difference bound matrices.

The zone representation is not unique. The same zone can be represented
by several different matrices. In our example c1 − c0 ≤ 3 and c0 − c2 ≤ 0
implies c1 − c2 ≤ 3. We can change D1,2 to (3,≤) and obtain an alternative
DBM. Generally, the sum of the upper bounds ci − cj and cj − ck is an up-
per bound on the clock difference ci − ck. Reducing the clock differences to
tighten the difference bound matrix is done as follows:

If ci − cj ≺i,j di,j and cj − ck ≺j,k dj,k, then ci − ck ≺′

i,k d′

i,k where
d′

i,k = di,j + dj,k and

≺′

i,k=

{

≤ if ≺i,j=≤ and ≺j,k=≤
< otherwise

If (d′

i,k,≺
′

i,k) is a tighter bound than (di,k,≺i,k), the original bound can
be replaced by the new one. The operation is called tightening. The DBM
is in a canonical form when no further tightening is possible. The canonical
form of the DBM in our example is:

D =

(0,≤) (−2, <) (1, <)
(3,≤) (0,≤) (3,≤)
(1, <) (−2, <) (0,≤)

2.2 Temporal Logic with Real Time

Temporal logic is an extension of classical logic that can be used to create for-
mal system specifications. These formal specifications can then be checked
using some model checking method. With temporal logic unambiguous de-
scriptions such as "The system never reaches an erroneous state." or "This
action always leads to the resetting of the system." can be written.

Temporal logics can be classified according to the assumed structure of
time. Some temporal logics assume linear time structure, some assume a
branching time structure. Computation tree logic (CTL) [20] is a branching
time logic. It is used when the models that are verified are finite state systems
that abstract away from time. It is assumed that an execution can be mod-
elled as a linear sequence of system events.

Timed computation tree logic (TCTL) [2] is an extension of CTL to real
time systems. For real time systems ordinary CTL is not sufficient, since a sys-
tem’s correctness depends on the values of the timing delays. Sometimes it is
not enough if a function is known to eventually happen. In real time systems
we need to know whether the action takes place within a certain time period.

In order to create real time models and specifications, using event se-
quences is not sufficient and therefore timed traces are needed. Timed traces

2 MODEL CHECKING OF TIMED SYSTEMS 13

associate with each state the time of the occurrence of the event. The concept
of time can be modelled in different ways. In the case of timed computation
tree logic a dense-time model is preferred. In a dense-time model the times
of events are real numbers, that increase monotonically without a bound [3].
TCTL was created to describe CTL specifications in real time.

In TCTL, quantitative temporal operators are introduced to describe timed
properties. First, the syntax and semantics of the branching-time logic CTL
are reviewed. Next, the TCTL extensions to the CTL syntax are defined.
TCTL semantics is also represented.

2.2.1 Computation Tree Logic
In CTL time is seen as a tree-like structure in which the future in not de-
termined. Different possible futures exist, and any of these is possible. The
following section follows the notations in [20].

CTL formulas consist of logical operators, path quantifiers and temporal
operators. Path quantifiers (A(”for all computation paths”) and E(”for some
computation path”)) are used in a state to specify that all of the paths (A)
or some of the paths (E) starting from that state have some property. The
temporal operators describe properties of a path of the tree. Several temporal
operators exist. Here, only some are defined, since others can be defined
using them.

• X ("next") requires that the property holds at the next state of the path.

• U ("until") is a binary operator. Formula P U Q holds when P is true
until Q becomes true. Also, the second argument must become true at
some point.

Given a finite set of atomic propositions {AP}, the CTL formulas can be
inductively defined as follows:

φ ::= p | false | φ1 → φ2 |

| EXφ1 | E [φ1U φ2] | A [φ1U φ2]

where p ∈ AP is an atomic proposition and φ1, φ2 are CTL formulas. EXφ1

means that there is an immediate successor state that is reachable in one
step, in which φ1 is true. E [φ1U φ2] requires that there is a path in which φ2

becomes true at some time point t. Also, φ1 must be true on that path until
t. A [φ1U φ2] means that for every computation path, the previous condition
holds.

Other often used temporal operators are for example: EFφ for E [trueU φ],
AFφ for A [trueU φ], EGφ for ¬AF¬φ and AGφ for ¬EF¬φ.

The semantics of CTL is defined with respect to a Kripke structure M =
〈S, R, L〉, where S is the set of states, R ⊆ S × S is the total transition rela-
tion, and L : S → 2AP is the labelling function. A path in M is an infinite

14 2 MODEL CHECKING OF TIMED SYSTEMS

sequence of states, π = s0, s1, s2, ... such that for every i ≥ 0, (si, si+1) ∈ R.
We denote with πi the suffix of π starting at si. Notation M, s |= f means that
f holds at a state s in a structure M . Let Tr(s) = {π = s0, s1, ... | s0 = s}
be the set of possible paths starting from the state s. The satisfaction relation
|= is defined inductively:

M, s |= p iff p ∈ L(s)

M, s |= ¬φ iff M, s 2 φ

M, s |= φ1 → φ2 iff M, s 2 φ1 or M, s |= φ2

M, s |= EXφ iff ∃s1 ∈ S, s.t. ,(s, s1) ∈ R and M, s1 |= φ

M, s |= A[φ1Uφ2] iff ∀π = s0, s1, s2... ∈ Tr(s) :

∃i((M, si |= φ2) ∧ (∀(j < i)M, sj |= φ1))

M, s |= E[φ1Uφ2] iff ∃π = s0, s1, s2... ∈ Tr(s) :

∃i((M, si |= φ2) ∧ (∀(j < i)M, sj |= φ1))

2.2.2 Timed Computation Tree Logic

It is possible to write properties like EFp in CTL. However, CTL does not
provide a way to bound the time at which p happens. TCTL extends the tem-
poral operators so that it is possible to limit their scope in time. It is possible
to write for example EF<5p meaning that at some computation path p will
become true within 5 time units. TCTL syntax is shortly:

φ ::= p | false | φ1 → φ2 |

| E [φ1U∼c φ2] | A [φ1U∼c φ2]

where p ∈ AP is an atomic proposition, c ∈ N , φ1 and φ2 are TCTL formu-
las and ∼∈ {<,≤, =,≥, >}.

E [φ1U<c φ2] means that for some computation path there exists a prefix
of time length less than c time steps, such that at the last state of the pre-
fix φ2 holds, and φ1 is true in all the states in the path until the last state.
A [φ1U<c φ2] means that the above condition holds on every computation
path. It is also possible to create TCTL formulas for time intervals. For ex-
ample a formula EF(a,b)φ meaning "φ holds at least once between time steps
a and b" can be written EF=aEF<(b−a)φ.

Since TCTL operates in a dense time domain and not in a discrete time
domain like CTL, the next-time operator can not be used. By definition,
there is no unique next time point. The computation paths in TCTL with
dense time domain are maps from the real valued time domain R to states
of the system. There is a unique state at every real valued time instant. For a
set of states S and a state s ∈ S an s-path through S is a map p from R to S
satisfying p(0) = s. The computation tree in dense time is a map from every

2 MODEL CHECKING OF TIMED SYSTEMS 15

state to a set of paths starting at that state. The prefix of an s-path up to time
t is denoted pt. The concatenation of two s-paths p1 and p2 is denoted p1 �p2.

The structure that TCTL can be defined against can not be exactly the
same as in the of CTL. The TCTL structure is a triple M = 〈S, f, L〉 where
S is the set of states, L : S → 2AP is the labelling function, and f is a map
giving for each s ∈ S a set of s-paths through S. f satisfies the tree constraint:

∀s ∈ S.∀p ∈ f(s).∀t ∈ R.pt � f [p(t)] ⊆ f(s).

The satisfaction relation |= for TCTL is defined inductively:

M, s |= p iff p ∈ L(s)

M, s |= ¬φ iff M, s 2 φ

M, s |= φ1 → φ2 iff M, s 2 φ1 or M, s |= φ2

M, s |= A[φ1U∼cφ2] iff ∀p ∈ f(s) : ∃t ∼ c, p(t) |= φ2 ∧

(∀(0 < t′ < t)p(t′) |= φ1)

M, s |= E[φ1U∼cφ2] iff ∃p ∈ f(s) : ∃t ∼ c, p(t) |= φ2 ∧

(∀(0 < t′ < t)p(t′) |= φ1)

2.3 Model Checking Tool Uppaal

Uppaal is a tool for model checking of timed systems. Other tools for mod-
elling and verification based on timed automata are e.g., Kronos [51] and
RED [48].

The Uppaal modelling language [34] is based on networks of timed au-
tomata. A network of timed automata is a parallel composition A1 | · · · | An

of timed automata A1, ...An, referred to as processes. The definition of a
parallel composition varies depending on the used process calculi. In Up-
paal the parallel composition operator of Calculus of Communicating Sys-
tems (CCS) [39] is used. Hand-shake synchronization with input and output
actions is used for synchronous communication. Asynchronous communi-
cation happens through shared variables. For hand-shake synchronization
purposes the action alphabet Σ in Uppaal consist of symbols a? for input ac-
tions and a! for output actions. Internal actions are represented by a distinct
symbol τ . Next we define a network of timed automata formally.

A network of timed automata has a common set of clocks and actions. The
network consists of n timed automata Ai = (Li, l

0
i , C, Σ, Ei, Ii), 1 ≤ i ≤ n.

A location vector is l = (l1, ..., ln). We write I(l) =
∧

i Ii(li) as a composition
of the invariant functions. Let l[l′i/li] mark the vector l with the ith element
li replaced by l′i.

Definition 2.8 (Semantics of a network Timed Automata) Let Ai =
(Li, l

0
i , C, Σ, Ei, Ii), 1 ≤ i ≤ n. be a network of timed automata. Let l0 =

16 2 MODEL CHECKING OF TIMED SYSTEMS

(l01, ..., l
0
n) be the initial location vector. The semantics is defined as a labelled

transition system 〈S, s0,→〉, where S = (L1 × · · · × Ln) × R
C is the set of

states, s0 = (l0, u0) is the initial state, and →⊆ S × {R+ ∪ Σ} × S is the
transition relation defined by:

• (l, u) → (l, u + d) if ∀d′ : 0 ≤ d′ ≤ d =⇒ u + d′ ∈ I(l)

• (l, u) → (l[l′i/li], u
′) if there exists li

agr
−→ l′i such that u ∈ g, u′ = [r 7→

0]u, and u′ ∈ I(l) ; and

• (l, u) → (l[l′j/lj, l
′

i/li], u
′) if there exists li

c?giri
−→ l′i and lj

c!gjrj

−→ l′j such

that u ∈ (gi ∧ gj), u
′ = [ri ∪ rj 7→ 0]u and u′ ∈ I(l).

2.3.1 Modelling in Uppaal
Modelling in Uppaal is done via a graphical user interface. Timed automa-
ton templates can be created with the Uppaal modelling tool. Every template
has its own local declaration section, where local variables and functions can
be introduced. There is also a global declarations’ section for global variables
and functions. Finally, a section for process declaration is needed. In this
part the automaton instances are created from the templates, and the paral-
lel composition of these is declared for property checking and simulation.

In addition to creating networks of timed automata, the Uppaal modelling
language is extended with several modelling features:

• Templates of automata can be defined with a set of parameters. The
parameters are substituted in the process declaration part.

• Integer constants can be defined.

• Bounded integer variables (int[min, max]) can be defined.

• Binary synchronization channels can be declared.

• Broadcast channels can be declared. In broadcast synchronization one
transition labelled with an output action can synchronize with several
transitions labelled with an input action.

• Synchronization channels can be declared urgent by prefixing the chan-
nel declaration with the keyword urgent. When a transition labelled
with an urgent synchronization is enabled (i.e., it can be taken), time
is not allowed to pass. However, the synchronization transition need
not be taken if other transitions are possible.

• Locations can be declared urgent. When a system is in an urgent loca-
tion, no time is allowed to pass.

• Locations can be declared committed. A state is committed if one
or more locations in the state are committed. When a system state is
committed, no time is allowed to pass. Also, the next transition must be
such that an outgoing edge of at least one of the committed locations
is involved.

2 MODEL CHECKING OF TIMED SYSTEMS 17

• Arrays of clocks, channels, constants or integers can be declared.

• Integer variables and arrays can be initialized.

2.3.2 Verification in Uppaal

As specifications, Uppaal accepts a subset of TCTL formulas. In general,
Uppaal does not allow nesting of temporal operators, or bounded specifica-
tions. In Uppaal syntax [] is equivalent to the TCTL G, or "globally". 〈〉 is
equivalent to the TCTL F, or "finally". The notation p − − > q (p leads to
q) is an abbreviation of A[](p imply A <> q).

In Uppaal specifications, the dot character (.) is used to reference the vari-
ables and states of a particular timed automaton. For example A.l references
to the location or variable l of automaton A.

In the verification process, Uppaal uses symbolic states of the timed au-
tomata 〈l, D〉 where l is a location of the automaton, and D is a zone stored
in memory as a DBM [5]. The Uppaal tool calculates the parallel composi-
tion of the timed automata in the model, and performs reachability analysis
on the structure in order to verify it against a property. In other words, the
tool goes through the state space, and tries to find a state, in which the prop-
erty is false.

Not all specifications can be stated in TCTL as supported by Uppaal. In
these cases some modelling tricks can be used. Often it is possible to cre-
ate an additional observer automaton that observes the behaviour of some
other automata. For instance, bounded liveness properties of TCTL can be
checked using an observer automaton.

An example of an observer automaton is in Figure 6. Using the observer
automaton, a bounded liveness property:

AG alarm imply AF <50 observation

that can not be checked as such with Uppaal, can be stated differently as:A[℄ not Observer.Failure
Observer automata can be used in many ways and with various properties.

FailureDetect
time <= 50

Idle

observation

time == 50 and
not observation

alarm?
time :=0

Figure 6: An observer automaton in Uppaal

18 2 MODEL CHECKING OF TIMED SYSTEMS

3 TIMED SAFETY INSTRUMENTED SYSTEMS

3.1 Programmable Logic Controller

A programmable logic controller (PLC) defined in IEC 1131-3 is a digital
computer that can be used in automation control and safety instrumentation
control.

PLCs have evolved from simple logic controllers used to control physical
processes that have a number of inputs, outputs, relays and timers. PLCs
were designed as a replacement to logic controllers with relays [23]. PLCs,
however, can be modified to work like different logic controllers. The IEC
standard describes five different programming language standards for PLCs:

• Ladder diagram (LD),

• Function block diagram (FBD),

• Structured text (ST),

• Instruction list (IL), and

• Sequential function chart (SFC).

Structured text and instruction list are textual PLC programming lan-
guages. The other three are graphical diagram based languages. PLCs sup-
port complex features such as multi-tasking and interrupts, but these are not
necessary, and will only make the verification difficult. Therefore, a simple
version of a PLC is used throughout this work. The characterization follows.

A PLC program uses two memory areas reserved for input and output sig-
nal values. Before each execution cycle the sensors of the PLC are polled
and the values are copied to the memory area reserved for the input signals.
This part of memory contains the snapshot of the input values at the time of
the polling. After the PLC program has been executed, the output values are
updated. A well written PLC program terminates within a bounded amount
of time which is less than the cycle time of the PLC. The PLC program will
initiate the next cycle after some fixed amount of time.

Timers are pieces of programs used with systems that need real-time fea-
tures. The timers used in our simple version of a PLC are of type TON
(Timer On Delay). A TON timer has some signal as an input IN , a pre-
set integer value PT , an internal accumulator variable, timers base interval
value, and two output signals Q and ET . The timer records the number of
base intervals the input signal has been true, and increases the accumulator
value accordingly. When the accumulator value is greater than or equal to
the preset value PT , the output signal Q is turned on. ET is an integer out-
put that has an initial value of 0. In every cycle the value of ET is increased
by 1, if the IN is true, and the current value of ET is less than PT . If IN is
true, and ET is not less than PT , the value of ET is not increased. When
the input IN is false, both outputs are reset to zero. The preset value PT can

3 TIMED SAFETY INSTRUMENTED SYSTEMS 19

also be seen as an integer input. A TON timer is represented in Figure 7.

TON

Preset value pre

Accumulator acc

Base interval 1.0IN

PT

Q

ET

Figure 7: A TON timer with inputs IN and PT, and outputs Q and ET

The functionality of a TON timer is in Figure 8.

IN

Q

ET

time

PT PT PT

Figure 8: Functionality of a TON timer

3.2 Safety Instrumented Systems

Industrial processes involve great risks because of dangerous temperatures,
pressures and materials. Therefore, separate systems to protect environment,
personnel and equipment are needed. In the ANSI/ISA-84.00.01-2004 (IEC
61511) standard a safety instrumented system (SIS) [23] is defined as an "in-
strumented system used to implement one or more safety instrumented func-
tions. A SIS is composed of any combination of sensor(s), logic solver(s), and
final element(s)". The purpose of a SIS is to either automatically take an in-
dustrial process to a safe state, when predetermined conditions are violated;
allow a process to move forward when the predetermined conditions are true;
or mitigate the consequences of an industrial hazard. A SIS is designed to al-
ways work in a risk reducing manner. [23]

The sensors of a SIS collect information of the state of the process. Sen-
sors can measure temperature, pressure, flow or other process parameters.
The logic solver makes decisions of the actions taken based on the sensors’
signals. A typical action is a signal sent to the final elements. Final elements
are usually valves or electrical switches that have some risk reducing effect

20 3 TIMED SAFETY INSTRUMENTED SYSTEMS

on the process.

An example of a SIS is an emergency cooling system of a reactor. The
SIS has heat sensors, and a logic, which determines when the safety instru-
mented function is initiated. In this case the safety instrumented function is
the opening of a coolant valve. Similarly, a SIS observing the pressure of a
tank, initiates an open action of a pressure releasing valve.

As mentioned earlier, PLCs can be used as the logic solvers of safety in-
strumented systems. Since, PLCs are increasingly used in safety critical sys-
tems, testing and verification of PLC applications has become very important
[23].

4 MODELLING SYSTEMS WITH TIMED AUTOMATA

In this section, some research in the area of model checking with timed au-
tomata is surveyed. The research can be roughly divided into model check-
ing of real-time communication protocols, and model checking of real-time
controllers. Most of the surveyed case studies use the model checking tool
Uppaal. A comprehensive tutorial on Uppaal is in [6]. In this paper the tool
itself and its use is described. In addition, two extensive examples and some
modelling conventions are given.

4.1 Modelling Real-Time Communication Protocols

Protocol verification has been of interest to many research groups. Network
and other communication protocols have been modelled and verified using
Uppaal, and other modelling tools. Several protocols that have been com-
monly in use have been found erroneous, and corrected using Uppaal.

In [44] and [43] a fault tolerant clock synchronization mechanism for a
Controller Area Network (CAN) was modelled and verified. The modelling
was done using the Uppaal tool. The goal of the work was to formally verify
the precision that could be achieved, and the effects of faults to the preci-
sion. In their system, master nodes regularly transfer clock synchronization
messages to the slave nodes. As an essential part of this research, clock drift-
ing was modelled using clock automata where the clocks operated in variable
length cycles. In their model the clock rate could change dynamically. The
clock synchronization system corrected both the offset and the drift error of
the clocks. A certain precision was verified using an observer automaton that
compared the clocks of the nodes.

In [7] the correctness of the Philips Audio Control Protocol was verified
using the Uppaal tool. The analysis was performed on a system with two
senders. Consequently, the bus collision problem was present. In addi-
tion, for an incorrect implementation of the protocol, a counterexample was
found. An important observation of the paper was the usefulness of the com-

4 MODELLING SYSTEMS WITH TIMED AUTOMATA 21

mitted locations in Uppaal. The Uppaal tool was extended to include these
features. In this research, clocks with drifting timespeeds were used. The
system was verified for an error tolerance of 5 % on the timing.

In [33] a Collision Avoidance Protocol was studied. The protocol was
modelled and verified using two tools SPIN [31] and Uppaal. The timed as-
pects were easy to model with Uppaal. It was also noticed that the notion of
committed locations in Uppaal supported the modelling of broadcast com-
munication, and yielded significant reductions in time- and space-usages.

An Audio/Video protocol by Bang & Olufsen (B&O) was studied in [27].
The protocol controls the transmission of messages over a single bus, and de-
tects collisions. The protocol was known to be faulty, although the cause of
the fault could not have been pinpointed before. Using the Uppaal tool, an
error trace was extracted. This led to the detection of the error in the imple-
mentation. The corrected implementation was successfully verified.

As a continuation to [27] a different Power Down protocol by Bang &
Olufsen was studied in [26]. The modelling of the system resulted in the
discovery of three design errors that were identified and corrected. In this
paper, modelling techniques for time slicing problems with interruptions are
introduced. In addition, three observer automaton techniques for property
verification are introduced.

A bounded retransmission protocol is studied in [18]. In the paper a file
transfer service is first specified by stating several logical properties. The
bounded retransmission protocol’s conformance to these properties is then
checked using Uppaal and SPIN. The timed properties are checked using
Uppaal.

The Pragmatic General Multicast (PGM) protocol is analyzed in [12].
The protocol intends to guarantee a reliability property: "a receiver either
receives all data packets from transmissions and repairs or is able to detect
unrecoverable data packet loss" A simplified model of the protocol is built
and two reliability properties are checked with Uppaal. The properties were
verified only with some parameter values, which the paper presents.

In [36] a method for modelling and verifying of the LEGO RCX programs
is introduced. A tool is developed, which can automatically translate RCX
programs into Uppaal models. Also, a system of two RCX units communicat-
ing through an infrared channel is built. In their research their IR protocol
and Fischer’s mutual exclusion protocol are verified. Their experiments with
an actual system of two communicating RCX units showed that an Uppaal
model could be created using their tool, but the model could not be verified
because of its complexity.

22 4 MODELLING SYSTEMS WITH TIMED AUTOMATA

4.2 Modelling Real-Time Controllers

Controllers have also been of interest to many researchers. Programmable
logic controllers (PLCs) that are also analyzed in this work are analyzed in
[32], [49], [4] and [38].

In [32] software analysis techniques for PLCs are developed. Various ver-
ification techniques are considered for two PLC programming languages:
instruction list (IL) and sequential function charts (SFCs). In this work a for-
mal semantics is created for both languages. A model checking method for
the untimed version of a SFC program is presented. The analysis techniques
are also implemented in industrial size case studies.

In [49] a method is developed to analyze simple PLCs written in the in-
struction list (IL) language. The PLCs are converted into timed automata
that can be verified using Uppaal. The simple PLCs discussed in this paper
use the TON timers discussed in Section 3.1.

In [4], PLCs designed graphically using Sequential Function Charts (SFCs)
are converted into models that can be analyzed using model checking tech-
niques. Two approaches are introduced. Both Cadence SMV and Uppaal
are applied.

In [38], two examples of analyzing PLC applications with Uppaal are pre-
sented. The PLC timing is modelled in detail. Especially the reaction time
of the PLC to a signal is observed. In the first example the PLC just reads
input and writes output. The second example utilizes a TON timer: the
timer is set when the PLC receives input. PLC output is set when the timer’s
timeout is recognized.

A distributed lift system was re-examined in [41]. The lift system was pre-
viously found faulty in [25], but the errors were fixed in an ad hoc manner
by the system developers. In this paper the developers’ solutions are analyzed
using Uppaal. The solutions are shown to be incorrect. A different solution
is proposed and proven to be correct.

In [28] it is shown how model checking can be used in the designing pro-
cess of a deadlock free wafer scanner controller with an optimized through-
put. Deadlock situations are possible, since the wafers are handled by robots
that work independently. In their work a deadlock avoidance policy is first
analyzed based on a finite state model using the SMV model checker. A
throughput analysis can then be performed on a more detailed timed au-
tomaton model using the Uppaal tool. The two models (the SMV model
and the Uppaal model) are formally related through the notion of a stuttering
bisimulation introduced by Browne et al. [14]. In the throughput optimiza-
tion part an observer automaton is used to measure the progress of the system.
It observes the unload events of wafers that had already been scanned. The
observer is used to find an infinite schedule that takes at most H time units
until the first unload event, and that has at most S time units between two

4 MODELLING SYSTEMS WITH TIMED AUTOMATA 23

unload events.

In [13] a wafer scanner system is analyzed using model-based techniques.
As a part of their analysis the system is modelled with the process algebraic
language χ (Chi) [47]. The model is then translated into Uppaal timed au-
tomata. Some properties are then verified using the Uppaal model.

In [11] a turntable system is analyzed using various model checking tools.
A χ (Chi) [47] simulation model is translated into model written in the in-
put languages of CADP [22], SPIN and Uppaal. They concluded that Up-
paal is the easiest to translate to. Verification of properties with fairness con-
straints [20] can be done in CADP and SPIN but is impossible in Uppaal.

In [37] a prototype gear controller is designed and analyzed. Uppaal is
used to verify the design. The paper also introduces a method to verify
bounded response time properties in Uppaal without an observer automa-
ton. Extra variables (boolean variables and clock variables) are used instead.

4.3 Other Real-Time Research

In [30], techniques for generating timed test cases are introduced. In the pa-
per the examined environment and the system under test are both modelled
as timed automata. Using the presented techniques, both single purpose,
and coverage based test cases are then obtained as counterexamples given by
Uppaal.

5 CASE STUDY: FALCON

5.1 The Falcon Arc Protection System

The Falcon arc protection system is designed by the engineering company
Urho Tuominen Oy (UTU). The system is designed to increase personnel
safety and minimize material damages in case of an electric arc, e.g., in
switchgear. This is accomplished by cutting off the electricity, when an elec-
tric arc is observed. The Falcon system consists of the UTU-Falcon master
unit, several light sensors and several current sensors. The master unit is im-
plemented as a programmable logic controller (PLC). It is possible to design
new logical protection architectures that can be uploaded to the master unit.
An example of such a logic is in Figure 10.

The devices used to cut electricity are circuit breakers. Circuit breakers
are automatically-operated switches that operate in a matter of milliseconds.
Their operation is somewhat similar to fuses, but circuit breakers can be reset
either automatically or manually.

The master unit operates in cycles. On each cycle, the master unit reads
the inputs from its sensors and sends output signals according to its pro-

24 5 CASE STUDY: FALCON

grammed logic. Typically the master unit reacts to simultaneous light and
current alarms by giving a tripping command to the circuit breakers.

The arc protection system can also be designed to work selectively. This
means that electricity is not cut off in every part of the protected area. In-
stead, only the affected areas are cut off. If the electrical arc does not disap-
pear, an even larger area must be shut down. This kind of selective behaviour
is created by placement of the breakers, and the delay components inside the
Falcon master unit. The delay components are TON timers introduced in
Section 3.1. Intuitively, as soon as an alarm is detected, it is responded to.
If the alarm does not disappear, the TON timers in the master unit logic re-
ceive continuous input. After some preprogrammed number of cycles, the
TON timers give out a signal to some secondary breakers. The secondary
breakers will cut off the electricity more extensively.

5.2 System Environment Description

The environment and architecture used in this case study is identical to
the one used in [45]. The architecture of this case study is made by Matti
Koskimies. It is used here with his permission. The architecture is repre-
sented in Figure 9.

Electricity is distributed by two distinct power sources. The protected area
is divided into three different zones. Each zone has a primary breaker (break-
ers A, B, D), that will cut the zone off the power network, if an arc is de-
tected. The breaker C is used to separate the power sources. The breaker
C is always tripped, when an arc is observed. The secondary breaker G is
tripped if the alarm has not disappeared after tripping the primary breaker
D. The secondary breaker H is tripped if the alarm still has not disappeared
after tripping C, D and G. Similarly, the secondary breaker E is tripped if the
alarm has not disappeared after tripping the primary breaker A or B (or both).
The secondary breaker F is tripped if the alarm still has not disappeared after
tripping A (or B), C and E. The secondary breakers are not tripped immedi-
ately after the primary breakers. Some time must first pass so that the primary
breakers have time to operate.

The Falcon master unit logic that actualizes this behaviour is in Figure 10.
The logic consists of seven input signals, AND gates, OR gates, four delay
gates, and eight output signals. Four of the input signals (Cr_1, Cr_2, Cr_3a,
Cr_3b) are current alarms signals. The remaining three input signals (L_1,
L_2, L_3) are the light alarm signals.

The output signals can be divided into two groups. The fast triac outputs
(Triac 1, Triac 2, Triac 3, Triac 4) trigger the primary circuit breakers (A, B,
C, D). The slower relay outputs (Relay 1, Relay 2, Relay 3, Relay 4) trigger
the secondary circuit breakers (E, F, G, H).

The delay gates are the TON timers introduced in Section 3.1. A signal
passes through a delay gate when the gate receives a preset amount of succes-

5 CASE STUDY: FALCON 25

Current Current

Current Current

Light

Light

Falcon

Light

L_2

Breaker E

Breaker H

Breaker F

Breaker G

Breaker C

Breaker A

Cr_3a Cr_3b

L_1

L_3

Cr_2Cr_1

20 kV20 kV

110 kV 110 kV

Breaker D

Breaker B

Figure 9: The Falcon architecture

26 5 CASE STUDY: FALCON

sive input signal alarms. The idea is to let the primary breakers try to solve
the problem first. After the preset time limit, the secondary breakers take
action.

It is important that an arc protection system does not cut the electricity in
vain. A single current alarm, or a single light alarm typically does not indicate
an electric arc. Only in case of both of these alarms concurrently from the
same area should lead to the cutting of the electricity. On the other hand,
the arc protection system should always eventually cut the electricity, if the
concurrent current-light alarm does not disappear.

AND

AND

ANDOR

OR

OR

Cr_2
L_2

L_1

Cr_1

L_3

Cr_3a

Cr_3b

120

190

60

120

Triac 1

Triac 2

Triac 3

Triac 4

Relay 1

Relay 2

Relay 3

Relay 4

Breaker A

Breaker B

Breaker C

Breaker D

Breaker E

Breaker F

Breaker G

Breaker H

Figure 10: Falcon master unit logic of the example case

5.3 Discrete-time Model

A discrete-time model of the Falcon system can be constructed from three
different kinds of automata: the Falcon control unit automaton, primary
breaker automata, and secondary breaker automata. The primary and sec-
ondary breakers need distinct automata since their behaviour in the model is
somewhat different. Primary breakers can get broken. However, it is assumed
that the secondary breakers are always able to operate. This assumption is
made because we are not really interested in situations where all the breakers
involved are broken. In these cases it does not really matter how the control
unit reacts to the signals.

Next, the model is explained in more detail. The automata are repre-
sented as figures. All the code related to the discrete-time model of the
Falcon case is in Appendix A. This includes global declarations, template
instantiations and the system composition.

5 CASE STUDY: FALCON 27

5.3.1 The Falcon Control Unit

Idle
time<= 1

Cr_1_S: int[0,1], Cr_2_S: int[0,1], Cr_3a_S: int[0,1],
Cr_3b_S: int[0,1], L_1_S: int[0,1], L_2_S: int[0,1],
L_3_S: int[0,1] time==1

check!
getvalues(Cr_1_S, Cr_2_S, Cr_3a_S, Cr_3b_S, L_1_S, L_2_S, L_3_S), time=0

Figure 11: The Falcon system model with discrete time

The timed automaton of the Falcon control unit is in Figure 11. The lo-
cal declarations of the automaton are in Appendix A. The automaton has
only one state, Idle. There is only one transition from that state to itself.
In addition, the automaton has seven boolean input variables, seven integer
variables for internal calculations, and one clock variable. The automaton is
constructed so that the only transition is taken repeatedly on constant time
intervals, since the real Falcon system operates similarly. This behaviour
is forced by an invariant constraint on the clock variable time : time <= 1

and a guard constraint time == 1 in the transition. The combination of
these constraints forces the automaton to take the transition exactly when
time == 1 . The transition is taken repeatedly because the clock variable is
also reset to zero during the transition.

So far we have accomplished a transition that is taken on constant inter-
vals. In addition to the guard constraint, the transition has three other parts:
selection, updating and synchronization. All the parts are executed at the
same time point.

The selection part of the transition (Cr_1_S : int[0, 1], Cr_2_S : int [0 , 1],
Cr_3a_S : int[0, 1], Cr_3b_S : int[0, 1], L_1_S : int[0, 1], L_2_S : int[0, 1],
L_3_S : int [0 , 1]) introduces seven boolean variables that are given a boolean
value nondeterministically. These values are later used to determine the
values of the overcurrent signal inputs Cr_1 ,Cr_2 ,Cr_3a,Cr_3b and the
light signal inputs L_1 ,L_2 ,L_3 . The input values are not given values di-
rectly because it might be the case that electricity has already been cut off in
a way that some overcurrent signals are impossible. Therefore only interme-
diate values for the inputs are chosen. The real input values are then filtered
from these intermediate values.

The update part of the transition (getvalues(Cr_1_S ,Cr_2_S ,Cr_3a_S ,
Cr_3b_S ,L_1_S ,L_2_S ,L_3_S), time = 0) resets the clock and calls the
function
getvalues with the selected suggestions for inputs as parameters. The func-
tion getvalues is in Appendix A. The objective of this function is to deter-
mine the input values, and calculate the outputs using these inputs. First,
it is calculated whether electricity is available in the three different zones of
the system. This information can be concluded because we know whether

28 5 CASE STUDY: FALCON

each breaker has cut or not. Secondly, the sensors can detect an overcurrent
only if the sensor is connected to the zone it is observing. There is a breaker
C between zone 3 and the sensor detecting the value Cr_3a. The breaker D
is between zone 3 and the sensor detecting the value Cr_3b. Using logical
AND, the actual input values are calculated.

Using the inputs and the logic chosen for the system, the fast triac outputs
are easy to calculate. The delayed outputs are slightly more complicated.
Each of these outputs are associated with a TON timer introduced in Sec-
tion 3.1. Three variables are used for every timer-output pair: relayN , rN
and relNbuffer , where N ∈ {1, 2, 3, 4} is the number of the output variable.
rN is an integer given as a parameter to the Falcon control unit automaton.
It determines how many Falcon cycles the boolean variable relayN has to be
true until the information is sent to the breakers. relNbuffer calculates the
number of consecutive cycles relayN has been true. When the number of
cycles is insufficient the variable relayN is reset to zero. This is done because
the variable is declared globally. Each secondary breaker observes the value
of one of these variables. If relayN == true is detected by them, it indi-
cates that also relNbuffer == rN . The behaviour of the function getvalues

is atomic. Breakers can not detect the temporary relayN == true values if
the variable is reset later in the function.

Finally, the inputs are reset. This is done to avoid state space explosion. If
a property that refers to the inputs is checked, it will be necessary to remove
the last lines from this function.

The last part of the control unit automaton’s transition is the synchroniza-
tion. It is a way of communication in the system. The message (check !) is
sent to every breaker. Because of the message, every breaker can react to
the new output values instantaneously. Intuitively, the synchronization here
means: "Falcon has new outputs, react immediately".

5.3.2 Primary Breakers

The timed automaton representing the discrete-time primary breaker is in
Figure 12. The automaton has the clock btime declared locally. The automa-
ton has four parameters: the boolean variable that initiates the action (triac),
the minimum time needed for cutting the current (mintime), the maximum
time needed for cutting the current (maxtime) and the global variable (cuts)
that the breaker will set as true, when it has cut the current.

The breaker automaton is intended to take the transition from the state
Checking to the state Cutting when the observed signal becomes true. If the
state Cutting is reached, the transition from the state Cutting to the state Cut

is inevitably taken between time points mintime and maxtime, the threshold
values included. The automaton, however, as the observed signal becomes
true, can instead choose to take the transition from Checking to Broken. The
state Broken is a sink state that models the behaviour of a broken breaker. Af-
ter the state Broken is reached, the automaton can not reach any other state
in the automaton.

5 CASE STUDY: FALCON 29

Checking

triac==0 || btime<=0

Broken

CutCutting

btime <= maxtime

check?
btime=0

triac

triac
btime=0

check?

check?

btime >= mintime
cuts=true

check?

Figure 12: The discrete-time breaker model

The primary breaker automaton initiates the current cutting action im-
mediately after the triac signal is turned on. This is because of the invariant
in the Checking state (triac == 0 ||btime <= 0) states that whenever the
value of triac is true, the clock variable btime must be zero. The transi-
tion from Checking to itself includes a synchronization and the reset of the
clock. This transition is taken together with the Falcon control unit automa-
ton’s transition. If the value of the variable triac changes during the Falcon’s
calculations, the breaker automaton must choose either the transition from
Checking to Cutting or the transition from Checking to Broken. It can not
remain in the state Checking and advance in time because the invariant pre-
vents that.

5.3.3 Secondary Breakers
The timed automaton representing the discrete-time secondary breaker is in
Figure 13. The model has the clock btime declared locally. Secondary break-
ers are almost identical to the primary breakers. The only difference is the ab-
sence of the Broken state and the transition leading to that state. This means
that after observing a triac signal, a secondary breaker automaton will always
end up in the state Cut . This will happen between time points mintime and
maxtime, the threshold values included.

Checking

relay==0 || btime<=0

CutCutting

btime <=maxtime

check?
btime=0

check?

relay
btime:=0 check?

btime>= mintime
cuts = true

Figure 13: The discrete-time secondary breaker model

5.4 Falcon: Continuous-time Model

The fundamental idea of the continuous-time model is the absence of the
Falcon’s constant interval clock cycle. In fact, there is no clock variables
in the Falcon control unit automaton. The Falcon automaton’s operation is
controlled by a different environment automaton. The environment automa-

30 5 CASE STUDY: FALCON

ton decides when the Falcon will operate.

Since the Falcon clock cycle is missing, the continuous-time model can
experience zenoness, i.e., an infinite number of Falcon operations can occur
in finite time. Therefore, some of the liveness properties checked against the
discrete-time model can not be verified as such. For these properties, a sep-
arate observer automaton has to be created. The properties are transformed
into bounded liveness properties that imply the unbounded versions of the
same properties.

5.4.1 The Falcon Control Unit

The timed automaton representing the continuous-time Falcon system is in
Figure 14. The local declarations of the Falcon control unit automaton are
in Appendix B.

GotEventIdle

Cr_1_S: int[0,1], Cr_2_S: int[0,1], Cr_3a_S: int[0,1],
 Cr_3b_S: int[0,1], L_1_S: int[0,1],
L_2_S: int[0,1], L_3_S: int[0,1]

logic!
getvalues(Cr_1_S, Cr_2_S, Cr_3a_S, Cr_3b_S, L_1_S, L_2_S, L_3_S)

event?

Figure 14: The falcon system of the continuous-time model.

In essence the automaton is very similar to the discrete-time Falcon con-
trol unit automaton. The clock variable time is not needed, and a second
state has been added. The transition from the state Idle to the committed
state GotEvent is taken when an event synchronization is received. Because
the second state is committed, the transition back to the state Idle must follow
without any time elapsing. When the transition from the committed state to
the state Idle is taken, the Falcon system will operate as in the discrete-time
case. New inputs are sampled, and the outputs are derived from the inputs.

5.4.2 Primary Breakers

The timed automaton of the continuous-time primary breaker is in Figure 15.
The automaton is again very similar to the discrete time primary breaker au-
tomaton. The only difference is that a new committed state Decide has been
added. The automaton used in the discrete-time case would not work prop-
erly in the continuous-time model. In the discrete-time model the invariant
in the state Checking stated that the clock btime had to be zero or the signal
had to be false. In the case of an alarm, some transition had to be taken out
of the state Checking before time could advance.

In the continuous-time model, however, it would not be necessary for the
model to take the transition out of the state Checking . It would be possible to
sample a new event and not advance in time at all. This way an alarm signal
could get unnoticed. The committed state in the continuous-time model is
added to force the breaker to react to a possible alarm. If some automaton
is in a committed state, only transitions leaving from a committed state are

5 CASE STUDY: FALCON 31

DecideStart

Broken

Cut

Cutting
btime <= maxtime

triac

triac

!triac

logic?
btime=0

logic?

logic?

btime >= mintime

break!
cuts=true

logic?

Figure 15: The continuous-time model of the breaker

allowed in all automata.

5.4.3 Secondary Breakers
The timed automaton of the continuous-time secondary breaker is in Fig-
ure 16. As with the primary breaker automaton, committed states are used to
force the breaker to react to an alarm signal.

CheckSignal2

Cut

CheckSignal1

Cutting
dtime <=maxtime

SignalOn
dtime <= delay

SignalOff
!signal

signal

logic?

logic?
dtime>= mintime

break!
cuts = true

logic?

signal
dtime=0

!signal

logic?

dtime == delay
dtime=0

Figure 16: The secondary breaker model in continuous-time

The secondary breaker automaton has new features in the continuous-
time model. This is because the Falcon automaton can not use integer
counters for the slow secondary breaker signals. It is not demanded that
the continuous-time Falcon automaton operates regularly, and the integer
counters in the discrete-time case were only incremented during the Falcon
cycle. In Appendix B the TON timer behaviour has been removed from the
Falcon automaton’s code. Substitutive behaviour is added to the respecting
secondary breaker automata. A new parameter delay has been added for the
TON timer implementation.

The purpose of the automaton is to observe its signal, and trip when nec-
essary. The signal value can only change when Falcon operates. Falcon oper-
ation is synchronized with transitions to the committed states CheckSignal1

and CheckSignal2 that force response to the signal value. When an alarm
signal is observed the first time, the local clock dtime is reset and the transi-
tion to the state SignalOn is taken. When the alarm signal is continuously
detected, the local clock dtime can become as large as the delay parame-
ter. When this happens, the transition from the state SignalOn to the state
Cutting must be taken. The SignalOn invariant constraint and the guard on
the transition from SignalOn to Cutting together state that the state Cutting

will be reached exactly when the alarm signal has been continuously detected

32 5 CASE STUDY: FALCON

for delay time points. This is the TON timer behaviour included in the au-
tomaton. The transition from SignalOn to Cutting models the time instant
when the tripping decision is made in the Falcon control unit logic.

When the Cutting state is reached, the remaining functionality of the au-
tomaton is related to the breaker behaviour. The same clock variable dtime

is used to model the breaker’s tripping time. This variable is reset when the
state Cutting is reached. Finally, the state Cut is reached between time
points mintime and maxtime.

5.4.4 The Environment Model
The timed automaton of the continuous-time environment model is in Fig-
ure 17.

WaitEvent

etime <= 1

CollectBreaksEvent

event!

etime =0

break?

break?event!

Figure 17: The continuous-time environment model

The environment decides when the Falcon automaton operates (i.e., col-
lects inputs and produces output). The transition from the state Event to
itself can be taken anytime. The transition is synchronized with the Falcon
control unit automaton’s transition from the state Idle to the state GotEvent .
The Falcon operation transition immediately succeeds.

Additionally, the environment automaton also has a synchronization with
the breakers via the break channel. For physical reasons, after a breaker has
cut, the current sensors should not be able to sense any current. This is why
the sensor values have to be updated accordingly. In the discrete case, this
is not a concern since the values are always updated on the next clock cycle.
When a breaker cut and a Falcon operation happen exactly at the same time,
the order of these events is chosen non-deterministically. If the breaker cut
event is executed before the Falcon operation, the disappearance of an alarm
is detected properly. If the Falcon operation is executed before the breaker
cut event, the effects of the cut can not be noticed until the next Falcon op-
eration.

In continuous time, however, the Falcon control unit does not operate
on a specific rate. After a breaker has cut the electricity, a Falcon operation
might not be summoned at all and sensor values could remain in an alarming
state even though a current alarm from a specific zone was not even possi-
ble. Thus, the environment model must be modified so that all the relevant
behaviour of the discrete-time model is modelled. The solution here is to
modify the environment so that after a breaker cuts, an event always follows.
As in the discrete-time case, the cutting of a breaker can be detected imme-
diately or on the next Falcon operation. After a breaker cut, the transition to

5 CASE STUDY: FALCON 33

the WaitEvent state is taken immediately. From this state the transition to
Idle can be taken immediately. This transition synchronizes with the Falcon
automaton. It is also possible to wait in this state for at most one clock cy-
cle, and then synchronize with the Falcon automaton. The Falcon operation
transition immediately succeeds.

In the model it is possible for multiple breakers to cut at the same time.
In the committed CollectBreaks state, it is possible to receive other break

synchronizations as well. The model also allows the handling of the break

synchronizations separately, so that a Falcon operation is between every break

synchronization. In reality, this kind of behaviour does not happen. In some
cases two different inputs generated at the same time point could result in
unwanted behaviour. Two distinct breakers could be tripped simultaneously
even though an output that trips both breakers at the same time were impos-
sible. This is an over-approximation: the model has more behaviour than the
actual system. For example, the model can be run at a specific rate, includ-
ing the actual rate of the modelled system. However, the model can also be
run at a much more faster rate. Even infinite operating frequency is possible
in the model. If safety properties can be verified with an over-approximated
model, they are also valid in the actual system.

5.5 Checked Properties

The two models were both verified against five properties. The checked prop-
erties were:

• Property 1: If the secondary breaker E cuts, breaker A or breaker B is
broken. Using Uppaal’s TCTL this is:A[℄ (BreakerE.Cut imply (BreakerA.Broken orBreakerB.Broken))

• Property 2: If Breaker A cuts, a current-light alarm has been observed
in the past. Using Uppaal’s TCTL this is:A[℄ (breakerAuts imply was_Cr_1)
For this property, the variable was_Cr_1 has to be added to the model.
Also, a line has to be added to the Falcon system -model:if (Cr_1 && L_1) was_Cr_1 = true;

• Property 3: A simultaneous current and light alarm leads to the dis-
appearance of the alarm, or to the cutting of breaker A or breaker E.
Using Uppaal’s TCTL this is in the discrete-time case:(Falon.Cr_1 & Falon.L_1) --> (not Falon.Cr_1 ornot Falon.L_1 or breakerAuts or breakerEuts)

34 5 CASE STUDY: FALCON

In the continuous-time case the property is:A[℄ not(Observer2.AfterTimeBound and not breakerAutsand not breakerEuts and Cr_1 and L_1)
The observer automaton in Figure 18 is used. The observer is such that
the state AfterTimeBound can only be reached when the current sig-
nal Cr_1 and the light signal L_1 have been true for 170 time points.
The constant is chosen so that the breakers are given enough time to
operate.

AfterTimeBoundAlarmStart

Cr_1&&L_1
!L_1

!Cr_1 logic?

otime >170Cr_1 && L_1

otime=0

Figure 18: The observer automaton used in property 3 in the continuous-
time case

• Property 4: Continuous alarm longer than the secondary breakers E
and H require leads to the cutting of breaker E or breaker H. Using
Uppaal’s TCTL this is in the discrete-time case:Obs7.Current_7_yles --> (breakerEuts orbreakerHuts)
The observer automaton in Figure 19 is used. The variable Now_CrL

of the automaton must be globally declared and properly updated de-
pending on the current and light signals. Now_CrL is updated during
each Falcon cycle. If both the current and the light signal are true, then
Now_CrL is set to true . Otherwise Now_CrL is set to false. In the ob-
server automaton the counter variable cycles is updated accordingly:
cycles = (cycles + 1) ∗ Now_CrL. That is, the counter is increased
by 1 if Now_CrL is true. Otherwise the counter is set to 0.

Current_7_cyclescycles<7 || time <=0

check?

cycles=(cycles +1)* Now_CrL, time=0

cycles==7

Figure 19: An observer automaton for discrete-time

In the continuous-time case the property is:A[℄ Observer.AfterLongAlarm imply (breakerEuts orbreakerHuts)
5 CASE STUDY: FALCON 35

The observer automaton in Figure 20 is used. The automaton is such
that one of the committed states Detect1 or Detect2 is reached when-
ever Falcon operates. When the alarm signal is detected the first time,
the state Alarm will be reached. If the alarm signal does not disappear
in 120 time units, the transition from Detect2 to the state LongAlarm

is taken. The constant is chosen so that the breakers are given enough
time to operate. From this state the transition to AfterLongAlarm is
eventually taken.

AfterLongAlarm LongAlarm

Detect1 Alarm Detect2NoAlarm

!L_1
!Cr_1

!L_1

otime >= 171

!Cr_1

Cr_1 && L_1 && otime >=121

Cr_1 && L_1
otime = 0

logic?

Cr_1 && L_1 && otime < 121

logic?

Figure 20: An observer automaton for continuous-time model

• Property 5: Continuous alarm longer than the secondary breaker G
requires leads to electricity cut from all zones. Using Uppaal’s TCTL
this is in the discrete-time case:Obs10.Current_10_yles --> ((breakerEuts orbreakerHuts) and (breakerCuts orbreakerFuts or breakerGuts or breakerDuts))
In the continuous-time case the property is:A[℄ Observer.AfterLongAlarm imply ((breakerEuts orbreakerHuts) and(breakerCuts or breakerFutsor breakerGuts or breakerDuts))
The observer automaton in Figure 20 is used with timing modifica-
tions. The modified version is in Figure 21.

5.6 Conclusions of the Models

In the continuous-time model the Falcon operation can happen at any time
point. The continuous-time model also ensures that at least one Falcon oper-
ation occurs after a breaker has cut the electricity. Thus, the execution traces
it produces is a superset of the execution traces of any version of the discrete-
time model. The continuous-time model simulates the discrete-time model.
The continuous-time model even has more behaviour than the system in real
life. It is an over-approximation of the real system. If safety properties can be
verified on the continuous-time model, they must also be valid on the real

36 5 CASE STUDY: FALCON

AfterLongAlarm LongAlarm

Detect1 Alarm Detect2NoAlarm

!L_1
!Cr_1

!L_1

otime >= 241

!Cr_1

Cr_1 && L_1 && otime >=191

Cr_1 && L_1
otime = 0

logic?

Cr_1 && L_1 && otime < 191

logic?

Figure 21: The observer automaton used in Property 5

system.

The properties 3, 4 and 5 are transformed into bounded liveness properties
in the continuous-time case. The properties give an explicit time bound for
the property, and are thus tighter than the properties in the discrete-time case.

6 RESULTS

The five properties were checked against the continuous-time model and dif-
ferent versions of the discrete-time model. The verification was done on a
standard PC with 1.8GHz Inter Core 2 Duo E63xx DualCore processor.
The available virtual memory was limited to 1.5GiB. Uppaal version 4.0.6
was used in the verification. The discrete-time model versions differed only
in operation frequency of the Falcon control unit. In reality, the Falcon con-
trol unit operates at least 50 times in the time it takes a breaker to cut the
current. In the discrete-time model this value could not be used, since the
calculations became too complex. Instead, from 2 to 12 Falcon operations
were used in the discrete-time models.

The discrete-time models checked were: discrete_2, discrete_4, discrete_6,
discrete_12 and discrete_2-4.

In the model discrete_2, Falcon operates two times in the time it takes
a breaker to cut the current. The delays in the Falcon control unit were
changed according to the breaker tripping time. For the model discrete_2
the delays of the secondary breakers E, F, G and H were 6, 9, 3 and 6 Falcon
cycles. The delay values are chosen according to the system architecture.
Secondary breakers can not trip in vain.

In the model discrete_4, Falcon operates four times in the time it takes a
breaker to cut the current. Secondary breaker delays were 10, 15, 5 and 10
Falcon cycles.

In the model discrete_6, Falcon operates six times in the time it takes a

6 RESULTS 37

breaker to cut the current. Secondary breaker delays were 14, 21, 7 and 14
Falcon cycles.

In the model discrete_12, Falcon operates twelve times in the time it takes
a breaker to cut the current. Secondary breaker delays were 26, 39, 13 and
26 Falcon cycles.

The model discrete_2-4 was such that breakers needed a minimum of 2
cycles and a maximum of 4 cycles to trip. Secondary breaker delays were 10,
15, 5 and 10 Falcon cycles.

The continuous-time model was such that breakers needed 50 time units
to trip. Secondary breaker delays were 120, 190, 60 and 120 time units.

The running times were as follows:

discrete_2 discrete_4 discrete_6 discrete_12
Property 1 1 min 11 s 8 min 29 s 32 min 22 s 16 h 27 min
Property 2 1 min 11 s 8 min 31 s 38 min 37 s 16 h 28 min
Property 3 1 min 19 s 9 min 30 s 43 min 19 s 19 h 10 min
Property 4 2 min 19 s 19 min 1 h 38 min > 20 h
Property 5 2 min 7 s 17 min 1 h 27 min Out of Memory

discrete_2-4
Property 1 7 min 28 s
Property 2 7 min 25 s
Property 3 9 min 25 s
Property 4 19 min 13 s
Property 5 17 min 18 s

As a comparison, if a simplification to the Falcon logic is made in the
discrete-time model, so that no light signals exist, but the same functional
behaviour is present, the following results were obtained. The simplified
discrete-time model is represented in Appedix C.

abs_discrete_2 abs_discrete_4 abs_discrete_6 abs_discrete_12
Property 1 5 s 34 s 2 min 44 s 1 h 54 min
Property 2 5 s 34 s 2 min 43 s 1 h 53 min
Property 3 5 s 39 s 3 min 6 s 2 h 14 min
Property 4 10 s 1 min 22 s 7 min 19 s Out of Memory
Property 5 10 s 1 min 23 s 7 min 47 s Out of Memory

abs_discrete_2-4
Property 1 30 s
Property 2 30 s
Property 3 41 s
Property 4 1 min 22 s
Property 5 1 min 24 s

38 6 RESULTS

Results for the continuous-time case were the following:

continuous-model
Property 1 30 min 18 s
Property 2 29 min 56 s
Property 3 1 h 6 min
Property 4 2 h 40 min
Property 5 2 h 39 min

As in the discrete-time case, the same logic simplification can also be
made in the continuous-time case. The simplified continuous-time model
is represented in Appedix D. The following results were obtained:

abs_continuous -model
Property 1 1 min 33 s
Property 2 1 min 32 s
Property 3 4 min 30 s
Property 4 16 min 12 s
Property 5 16 min 15 s

We can make many observations from the results. Firstly, the checked
property itself has influence on the length of the verification in all models.
Properties 1 and 2 seem to be the easiest, and properties 4 and 5 seem to be
the hardest. The properties that require an observer automaton take invari-
ably more time to verify than the other properties. This is understandable
because an additional automaton adds some complexity to the model.

Secondly, the frequency of the Falcon control unit operation in the discrete-
time model had a great influence on the verification times. In the model
discrete_12 the properties 4 and 5 could not be verified within the used time
and memory limit, while in the model discrete_2 all properties could be ver-
ified within a few minutes.

If the logic is simplified so that the same functional behaviour is preserved,
while the number of inputs is decreased, the verification times decrease sub-
stantially in both models. The properties 4 and 5 could still not be verified
for the discrete-time model discrete_12.

Also, the use of variable length cutting times in the model discrete_2-4
did not result in longer verification times for any property compared to the
model discrete_4.

Finally, while the continuous-time model could not be verified in a partic-
ularly short time, it covers all the behaviour of a discrete-time model operat-
ing at a real-life frequency. Such a discrete-time model could not be verified
because of its complexity.

6 RESULTS 39

7 CONCLUSIONS

In this work an electric arc protection system controlled by a programmable
logic controller (PLC) was modelled and verified. The used model check-
ing tool was Uppaal. The UTU electric arc protection system was modelled
in two different ways. The discrete-time model was based on counters and
a controller operating at a specific rate. In the continuous-time model the
counters were replaced with clocks, and the controller was allowed to oper-
ate at a varying frequency.

The properties requiring an observer automaton could not be checked
against the version of the discrete-time model with the most complexity, dis-
crete_12. Either the memory limit of 1.5 GiB was reached or more than 20
hours was needed for the verification. In addition, the checked discrete-time
model versions were simpler than the real modelled system. To be exact, the
real controller operates more frequently than in the discrete-time model. It
is also hard to prove that the discrete-time model captures all the essential
behaviour of the system.

The discrete-time model was not really the optimal model to be analyzed
with the real-time model checker Uppaal because of the discrete time. Up-
paal is designed to work with real-time models, and this is why the continuous-
time model proved to be more expressive.

The continuous-time model actually has more behaviour than the real
controller. Therefore, if no unwanted behaviour could be observed in the
continuous-time model, the real system must be working correctly as well.
This is only true because the checked properties could be stated as invariant
properties i.e., properties that are true in all states of the model.

It can also be noticed that the continuous-time model simulates the discrete-
time model operating at a realistic frequency. The set of execution traces of
the continuous-time model covers the execution traces of the discrete-time
model. In other words, the set of execution traces of the continuous-time
model is a superset of the execution traces of the discrete-time model. The
continuous-time model can always choose to imitate the operation of the
discrete-time model.

As a general observation, the most difficult part of the modelling work
was to find the right abstraction level that captures the system behaviour ad-
equately, and does not result in too complex verification. In Uppaal, the
running times of the verification increase rapidly as the number of input
variables is increased. In the results, the logic simplification was done by
removing 3 of the 7 input variables of the Falcon control unit. This simplifi-
cation led to significant decrease in running times. The external behaviour
of the system did not change because of the simplification.

All TCTL specifications can not be stated in the subset of TCTL Uppaal
supports. Many specifications require the use of an additional observer au-

40 7 CONCLUSIONS

tomaton. The use and generation of these observer automata is not straight-
forward, and the correctness of the observer automaton implementation is
difficult to assure.

In conclusion, Uppaal is suitable for the model checking of time-critical
systems, but does not perform well if a lot of unconstrained input variables
are needed. Model checking is a valuable tool in the verification of safety
instrumented systems.

Acknowledgements

This work was part of the research project Model-based safety evaluation of
automation systems (MODSAFE). The project is part of the Finnish Re-
search Programme on Nuclear Power Plant Safety 2007-2010 (SAFIR2010),
funded by the State Nuclear Waste Management Fund (VYR).

I want to thank my supervisor Prof. Ilkka Niemelä and my instructor Do-
cent Keijo Heljanko for their encouragement and guidance throughout this
study. I also want to thank for the opportunity to work here at the Department
of Information and Computer Science.

REFERENCES

[1] R. Alur. Timed automata. In Computer Aided Verification, pages 8–22,
1999.

[2] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time
systems. In Proceedings, Fifth Annual IEEE Symposium on Logic in
Computer Science, pages 414–425, Philadelphia, Pennsylvania, June
4–7 1990. IEEE Computer Society Press.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183–235, 1994.

[4] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus,
M. Remelhe, and O. Stursberg. Verification of PLC programs given
as sequential function charts. In SoftSpez Final Report, pages 517–540,
2004.

[5] G. Behrmann, J. Bengtsson, A. David, K. G. Larsen, P. Pettersson, and
W. Yi. Uppaal implementation secrets. In FTRTFT ’02: Proceedings of
the 7th International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 3–22, London, UK, 2002. Springer-
Verlag.

[6] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In
M. Bernardo and F. Corradini, editors, Formal Methods for the De-
sign of Real-Time Systems: 4th International School on Formal Meth-

REFERENCES 41

ods for the Design of Computer, Communication, and Software Sys-
tems, SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer-
Verlag, September 2004.

[7] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen,
F. Larsson, P. Pettersson, and W. Yi. Verification of an audio protocol
with bus collision using UPPAAL. In R. Alur and T. A. Henzinger, edi-
tors, Proceedings of the Eighth International Conference on Computer
Aided Verification CAV, pages 244–256, New Brunswick, NJ, USA, /
1996. Springer-Verlag.

[8] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and
tools. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on
Concurrency and Petri Nets, volume 3098 of Lecture Notes in Com-
puter Science, pages 87–124. Springer-Verlag, 2003.

[9] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model check-
ing without BDDs. In R. Cleaveland, editor, Tools and Algorithms for
Construction and Analysis of Systems, 5th International Conference,
TACAS ’99, Held as Part of the European Joint Conferences on the
Theory and Practice of Software, ETAPS’99, Amsterdam, The Nether-
lands, March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes
in Computer Science, pages 193–207. Springer-Verlag, 1999.

[10] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan. Lin-
ear encodings of bounded LTL model checking. Logical Methods in
Computer Science, 2(5:5), 2006. (doi: 10.2168/LMCS-2(5:5)2006).

[11] E. M. Bortnik, N. Trcka, A. Wijs, B. Luttik, J. M. van de Mortel-
Fronczak, J. C. M. Baeten, W. Fokkink, and J. E. Rooda. Analyzing
a χ model of a turntable system using Spin, CADP and Uppaal. J. Log.
Algebr. Program., 65(2):51–104, 2005.

[12] B. Brard, P. Bouyer, and A. Petit. Analysing the PGM Protocol with UP-
PAAL. In Proc. 2nd Workshop on Real-Time Tools (RT-TOOLS’02).
Technical Report 2002-025, Uppsala University, Sweden, 2002.

[13] N. C. W. M. Braspenning, E. M. Bortnik, J. M. van de Mortel-Fronczak,
and J. E. Rooda. Model-based system analysis using Chi and Uppaal:
An industrial case study. Comput. Ind., 59(1):41–54, 2008.

[14] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing Kripke
structures in temporal logic. In The International Joint Conference on
theory and practice of software development on TAPSOFT ’87, pages
256–270, London, UK, 1987. Springer-Verlag.

[15] K. Cerans. Decidability of bisimulation equivalences for parallel timer
processes. In G. von Bochmann and D. K. Probst, editors, Computer
Aided Verification, Fourth International Workshop, CAV ’92, Montreal,
Canada, June 29 - July 1, 1992, Proceedings, volume 663 of Lecture
Notes in Computer Science, pages 302–315. Springer-Verlag, 1992.

42 REFERENCES

[16] Z. Chaochen. Duration calculus, a logical approach to real-time sys-
tems. In A. M. Haeberer, editor, Algebraic Methodology and Software
Technology, 7th International Conference, AMAST ’98, Amazonia,
Brasil, January 4-8, 1999, Proceedings, volume 1548 of Lecture Notes
in Computer Science, pages 1–7. Springer-Verlag, 1998.

[17] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Progress on the
state explosion problem in model checking. Lecture Notes in Com-
puter Science, 2000:176–194, 2001.

[18] P. R. D’Argenio, J.-P. Katoen, T. C. Ruys, and G. J. Tretmans. The
bounded retransmission protocol must be on time! In E. Brinksma, ed-
itor, Tools and Algorithms for the Construction and Analysis of Systems,
pages 416–432, Enschede, The Netherlands, 1997. Springer-Verlag,
Lecture Notes in Computer Science 1217.

[19] D. L. Dill. Timing assumptions and verification of finite-state concur-
rent systems. In J. Sifakis, editor, Automatic Verification Methods for
Finite State Systems, volume 407 of Lecture Notes in Computer Sci-
ence, pages 197–212. Springer-Verlag, 1989.

[20] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, 1999.

[21] E. A. Emerson. Temporal and modal logic. pages 995–1072, The MIT
Press, 1990.

[22] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP: A protocol validation and verification toolbox.
In R. Alur and T. A. Henzinger, editors, Proceedings of the Eighth
International Conference on Computer Aided Verification CAV, vol-
ume 1102, pages 437–440, New Brunswick, NJ, USA, / 1996. Springer-
Verlag.

[23] W. M. Goble and H. Cheddie. Safety Instrumented Systems Verifi-
cation: Practical Probabilistic Calculations. ISA-Instrumentation, Sys-
tems, and Automation Society, NC, USA, 2005.

[24] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, volume 1032
of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[25] J. F. Groote, J. Pang, and A. G. Wouters. Analysis of a distributed system
for lifting trucks. Technical Report UMI Order Number: SEN-R0111,
CWI (Centre for Mathematics and Computer Science), Amsterdam,
The Netherlands, 2001.

[26] K. Havelund, K. G. Larsen, and A. Skou. Formal verification of a power
controller using the real-time model checker UPPAAL. Lecture Notes
in Computer Science, 1601:277–298, 1999.

REFERENCES 43

[27] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal model-
ing and analysis of an audio/video protocol: an industrial case study
using uppaal. In RTSS ’97: Proceedings of the 18th IEEE Real-Time
Systems Symposium (RTSS ’97), pages 2–13, Washington, DC, USA,
1997. IEEE Computer Society.

[28] M. Hendriks, B. van den Nieuwelaar, and F. Vaandrager. Model
checker aided design of a controller for a wafer scanner. Int. J. Softw.
Tools Technol. Transf., 8(6):633–647, 2006.

[29] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Inf. Comput., 111(2):193–244, 1994.

[30] A. Hessel, K. G. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-
optimal real-time test case generation using Uppaal. In A. Petrenko
and A. Ulrich, editors, Formal Approaches to Software Testing, Third
International Workshop on Formal Approaches to Testing of Software,
FATES 2003, Montreal, Quebec, Canada, October 6th, 2003, volume
2931 of Lecture Notes in Computer Science, pages 114–130. Springer,
2003.

[31] G. J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[32] R. Huuck. Software Verification for Programmable Logic Controllers.
PhD thesis, Christian-Albrechts-Universität zu Kiel, Germany, 2003.

[33] H. E. Jensen, K. G. Larsen, and A. Skou. Modelling and analysis of a
collision avoidance protocol using SPIN and UPPAAL. In The Second
Workshop on the SPIN Verification System, volume 32 of DIMACS,
Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, 1996.

[34] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. STTT,
1(1-2):134–152, 1997.

[35] K. G. Larsen and Y. Wang. Time-abstracted bisimulation: Implicit spec-
ifications and decidability. Information and Computation, 134(2):75–
101, 1997.

[36] M. Laursen, R. G. Madsen, and S. K. Mortensen. Verifying distributed
LEGO RCX programs using UPPAAL. Technical report, Institute of
Computer Science, Aalborg University, 1999.

[37] M. Lindahl, P. Pettersson, and W. Yi. Formal design and analysis of a
gear controller. In TACAS ’98: Proceedings of the 4th International
Conference on Tools and Algorithms for Construction and Analysis of
Systems, pages 281–297, London, UK, 1998. Springer-Verlag.

[38] A. Mader. Precise timing analysis of PLC applications two small exam-
ples. Unpublished manuscript. Available from iteseer.ist.psu.edu/mader00preise.html.

44 REFERENCES

[39] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1989.

[40] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: theory
and application. Inf. Comput., 114(1):131–178, 1994.

[41] J. Pang, B. Karstens, and W. Fokkink. Analyzing the redesign of a dis-
tributed lift system in UPPAAL. In J. S. Dong and J. Woodcock, editors,
ICFEM, volume 2885 of Lecture Notes in Computer Science, pages
504–522. Springer-Verlag, 2003.

[42] G. M. Reed and A. W. Roscoe. A timed model for communicating
sequential processes. Theor. Comput. Sci., 58(1-3):249–261, 1988.

[43] G. Rodriguez-Navas, J. Proenza, and H. Hansson. Using UPPAAL to
model and verify a clock synchronization protocol for the controller
area network. ETFA 2005. 10th IEEE Conference on Emerging Tech-
nologies and Factory Automation, 2, 2005.

[44] G. Rodriguez-Navas, J. Proenza, and H. Hansson. An UPPAAL model
for formal verification of master/slave clock synchronization over the
controller area network. Factory Communication Systems, 2006 IEEE
International Workshop on, pages 3–12, June 27, 2006.

[45] J. Valkonen, V. Pettersson, K. Björkman, J.-E. Holmberg, M. Koskimies,
K. Heljanko, and I. Niemelä. Model-based analysis of an arc protection
and an emergency cooling system. VTT Working Papers 93, VTT Tech-
nical Research Centre of Finland, Espoo, 2008.

[46] A. Valmari. The state explosion problem. In W. Reisig and G. Rozen-
berg, editors, Petri Nets, volume 1491 of Lecture Notes in Computer
Science, pages 429–528. Springer-Verlag, 1996.

[47] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H.
Schiffelers. Syntax and consistent equation semantics of hybrid Chi. J.
Log. Algebr. Program., 68(1-2):129–210, 2006.

[48] F. Wang. Red: Model-checker for timed automata with clock-restriction
diagram. In P. Pettersson and S. Yovine, editors, Workshop on Real-
Time Tools, Aalborg University Denmark. number 2001-014 in Tech-
nical Report. Uppsala University, 2001.

[49] H. X. Willems. Compact timed automata for PLC programs. Tech-
nical Report CSI-R9925, University of Nijmegen, Computing Science
Institute, 1999.

[50] W. Yi. CCS + Time = An interleaving model for real time systems.
In Proceedings of the 18th international colloquium on Automata, lan-
guages and programming, pages 217–228, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

[51] S. Yovine. Kronos: A verification tool for real-time systems. STTT,
1(1-2):123–133, 1997.

REFERENCES 45

A FALCON CASE: DISCRETE-TIME MODEL RELATED CODE

The global declarations used in the model checking of the falcon case in
discrete time are listed below.bool tr1, tr2, tr3, tr4;bool relay1, relay2, relay3, relay4;broadast han hek;bool breakerAuts = false;bool breakerButs = false;bool breakerCuts = false;bool breakerDuts = false;bool breakerEuts = false;bool breakerFuts = false;bool breakerGuts = false;bool breakerHuts = false;

The system declarations (parallel composition descriptions) of the case
are the following://Parameters: Seondary breaker delaysFalon = Falonsystem(6, 9, 3, 6);//Parameters:// 1. the tria/relay signal// 2. minimum utting time// 3. maximum utting time// 4. boolean variable Breaker-has-utBreakerA = Breaker(tr1, 2, 2, breakerAuts);BreakerB = Breaker(tr2, 2, 2, breakerButs);BreakerC = Breaker(tr3, 2, 2, breakerCuts);BreakerD = Breaker(tr4, 2, 2, breakerDuts);BreakerE = BreakerSe(relay1, 2, 2, breakerEuts);BreakerF = BreakerSe(relay2, 2, 2, breakerFuts);BreakerG = BreakerSe(relay3, 2, 2, breakerGuts);BreakerH = BreakerSe(relay4, 2, 2, breakerHuts);// List one or more proesses to be omposed into a system.system Falon, BreakerA, BreakerB, BreakerC, BreakerD,BreakerE, BreakerF, BreakerG, BreakerH;

The Falcon control unit automaton related code is the following://input signalsbool Cr_1, Cr_2, Cr_3a, Cr_3b, L_1, L_2, L_3;
46 A FALCON CASE: DISCRETE-TIME MODEL RELATED CODE

int rel1buffer = 0;int rel2buffer = 0;int rel3buffer = 0;int rel4buffer = 0;int zone1geturrent, zone2geturrent, zone3geturrent;lok time;//Get Falon system inputs from suggested inputs and//alulate outputsvoid getvalues(bool Cr_1_S, bool Cr_2_S, bool Cr_3a_S,bool Cr_3b_S, bool L_1_S, bool L_2_S, bool L_3_S) {zone1geturrent = !(breakerAuts || ((breakerEuts ||breakerHuts) & (breakerCuts|| breakerDuts ||breakerGuts || breakerFuts)));zone2geturrent = !(breakerButs || ((breakerEuts ||breakerHuts) & (breakerCuts|| breakerDuts ||breakerGuts || breakerFuts)));zone3geturrent = !((breakerCuts || breakerEuts ||breakerHuts) & (breakerDuts || breakerFuts ||breakerGuts));Cr_1 = Cr_1_S & zone1geturrent;Cr_2 = Cr_2_S & zone2geturrent;Cr_3a = Cr_3a_S & !breakerCuts & zone3geturrent;Cr_3b = Cr_3b_S & !breakerDuts & zone3geturrent;L_1 = L_1_S;L_2 = L_2_S;L_3 = L_3_S;// get the outputstr1 = Cr_1 & L_1;tr2 = Cr_2 & L_2;tr3 = (Cr_1 & L_1) || (Cr_2 & L_2) ||((Cr_3a || Cr_3b) & L_3);tr4 = ((Cr_3a || Cr_3b) & L_3);relay1 = (Cr_1 & L_1) || (Cr_2 & L_2) ;relay2 = (Cr_1 & L_1) || (Cr_2 & L_2) ;relay3 = ((Cr_3a || Cr_3b) & L_3);relay4 = ((Cr_3a || Cr_3b) & L_3);
A FALCON CASE: DISCRETE-TIME MODEL RELATED CODE 47

// alulate ontinuous alarm lengths (relXbuffer) and// update slow relay-output values (relayX)if (relay1 == 0) {rel1buffer =0;}if (rel1buffer < r1 & relay1 == 1) {rel1buffer++;relay1=0;}if (rel1buffer == r1 && relay1 == 1){relay1 = 1;}if (relay2 == 0) {rel2buffer =0;}if (rel2buffer < r2 & relay2 == 1) {rel2buffer++;relay2=0;}if (rel2buffer == r2 && relay2 == 1){relay2 = 1;}if (relay3 == 0) {rel3buffer =0;}if (rel3buffer < r3 & relay3 == 1) {rel3buffer++;relay3=0;}if (rel3buffer == r3 && relay3 == 1){relay3 = 1;}if (relay4 == 0) {rel4buffer =0;}if (rel4buffer < r4 & relay4 == 1) {rel4buffer++;relay4=0;}if (rel4buffer == r4 && relay4 == 1){relay4 = 1;}
48 A FALCON CASE: DISCRETE-TIME MODEL RELATED CODE

//reset the inputsCr_1=0;Cr_2=0;Cr_3a=0;Cr_3b=0;L_1=0;L_2=0;L_3=0;}

A FALCON CASE: DISCRETE-TIME MODEL RELATED CODE 49

B FALCON CASE: CONTINUOUS-TIME MODEL RELATED CODE

The global declarations used in the model checking of the falcon case in
continuous time are listed below.// Plae global delarations here.bool tr1, tr2, tr3, tr4;bool relay1, relay2, relay3,relay4;broadast han logi;broadast han break;han event;bool breakerAuts = false;bool breakerButs = false;bool breakerCuts = false;bool breakerDuts = false;bool breakerEuts = false;bool breakerFuts = false;bool breakerGuts = false;bool breakerHuts = false;bool Cr_1, Cr_2, Cr_3a, Cr_3b, L_1, L_2, L_3;

The system declarations (parallel composition descriptions) of the case
are the following:Falon = Falonsystem();BreakerA = Breaker(tr1, 50, 50, breakerAuts);BreakerB = Breaker(tr2, 50, 50, breakerButs);BreakerC = Breaker(tr3, 50, 50, breakerCuts);BreakerD = Breaker(tr4, 50, 50, breakerDuts);// parameters:// delay-time// signal that needs to stay on for the time of delay// mintime of breaker ut// maxtime of breaker ut// the variable that is set when breakBreakerE = DelayAndBreaker(102, relay1, 40, 50, breakerEuts);BreakerF = DelayAndBreaker(153, relay2, 40, 50, breakerFuts);BreakerG = DelayAndBreaker(51, relay3, 40, 50, breakerGuts);BreakerH = DelayAndBreaker(102, relay4, 40, 50, breakerHuts);// List one or more proesses to be omposed into a system.system Falon, BreakerA, BreakerB, BreakerC, BreakerD, BreakerE,

50 B FALCON CASE: CONTINUOUS-TIME MODEL RELATED CODE

BreakerF, BreakerG, BreakerH, Environment, Observer;
The Falcon control unit automaton related code is the following:int zone1geturrent, zone2geturrent, zone3geturrent;//Get Falon system inputs from suggested inputs and//alulate outputsvoid getvalues(bool Cr_1_S, bool Cr_2_S, bool Cr_3a_S,bool Cr_3b_S, bool L_1_S, bool L_2_S, bool L_3_S) {//alulate possible input valueszone1geturrent = !(breakerAuts || ((breakerEuts ||breakerHuts) & (breakerCuts|| breakerDuts ||breakerGuts || breakerFuts)));zone2geturrent = !(breakerButs || ((breakerEuts ||breakerHuts) & (breakerCuts|| breakerDuts ||breakerGuts || breakerFuts)));zone3geturrent = !((breakerCuts || breakerEuts ||breakerHuts) & (breakerDuts ||breakerFuts || breakerGuts));Cr_1 = Cr_1_S & zone1geturrent;Cr_2 = Cr_2_S & zone2geturrent;Cr_3a = Cr_3a_S & zone3geturrent & !breakerCuts;Cr_3b = Cr_3b_S & zone3geturrent & !breakerDuts;L_1= L_1_S;L_2=L_2_S;L_3=L_3_S;// get the outputstr1 = Cr_1 & L_1;tr2 = Cr_2 & L_2;tr3 = (Cr_1 & L_1) || (Cr_2 & L_2) ||((Cr_3a || Cr_3b) & L_3);tr4 = ((Cr_3a || Cr_3b) & L_3);relay1 = (Cr_1 & L_1) || (Cr_2 & L_2) ;relay2 = (Cr_1 & L_1) || (Cr_2 & L_2) ;relay3 = ((Cr_3a || Cr_3b) & L_3);relay4 = ((Cr_3a || Cr_3b) & L_3);}

B FALCON CASE: CONTINUOUS-TIME MODEL RELATED CODE 51

C FALCON CASE: THE DISCRETE-TIME SIMPLIFIED MODEL

Here the discrete-time model with a logic simplification is represented. Only
the modified parts of the model are shown. Otherwise the model remains un-
changed. The Falcon control unit automaton of the simplified discrete-time
model is in Figure 22.

Idle
time<= 1

Cr_1_S: int[0,1], Cr_2_S: int[0,1], Cr_3_S: int[0,1]
time==1

check!
getvalues(Cr_1_S, Cr_2_S, Cr_3_S), time=0

Figure 22: The Falcon control unit of the simplified discrete-time model

The global declarations used in the model checking are listed below.bool tr1, tr2, tr3, tr4;bool relay1, relay2, relay3, relay4;broadast han hek;bool breakerAuts = false;bool breakerButs = false;bool breakerCuts = false;bool breakerDuts = false;bool breakerEuts = false;bool breakerFuts = false;bool breakerGuts = false;bool breakerHuts = false;bool was_Cr_1, Now_CrL;
The Falcon control unit automaton related code is the following:// observer variablesbool Cr1_L1_was;bool wasalarm;//Real input valuesbool Cr_1, Cr_2, Cr_3;int rel1buffer = 0;int rel2buffer = 0;

52 C FALCON CASE: THE DISCRETE-TIME SIMPLIFIED MODEL

int rel3buffer = 0;int rel4buffer = 0;int zone1geturrent, zone2geturrent, zone3geturrent;lok time;//Get Falon system inputs from suggested inputs and//alulate outputsvoid getvalues(bool Cr_1_S, bool Cr_2_S, bool Cr_3_S) {zone1geturrent = !(breakerAuts || ((breakerEuts|| breakerHuts) & (breakerCuts|| breakerDuts|| breakerGuts || breakerFuts)));zone2geturrent = !(breakerButs || ((breakerEuts|| breakerHuts) & (breakerCuts|| breakerDuts|| breakerGuts || breakerFuts)));zone3geturrent = !((breakerCuts || breakerEuts ||breakerHuts) & (breakerDuts || breakerFuts ||breakerGuts));Cr_1 = Cr_1_S & zone1geturrent;Cr_2 = Cr_2_S & zone2geturrent;Cr_3 = Cr_3_S & zone3geturrent &(!breakerCuts || !breakerDuts);if (Cr_1) was_Cr_1 = true;if (Cr_1) Now_CrL = true;if (!Cr_1) Now_CrL = false;// get the outputstr1 = Cr_1;tr2 = Cr_2;tr3 = Cr_1 || Cr_2 || Cr_3;tr4 = Cr_3;relay1 = tr1 || tr2 ;relay2 = relay1;relay3= tr4;relay4 = tr4;if (relay1 == 0) {rel1buffer =0;}if (rel1buffer < r1 & relay1 == 1) {rel1buffer++;relay1 =0;}if (rel1buffer == r1 && relay1 == 1){
C FALCON CASE: THE DISCRETE-TIME SIMPLIFIED MODEL 53

relay1 = 1;}if (relay2 == 0) {rel2buffer =0;}if (rel2buffer < r2 & relay2 == 1) {rel2buffer++;relay2 =0;}if (rel2buffer == r2 && relay2 == 1){relay2 = 1;}if (relay3 == 0) {rel3buffer =0;}if (rel3buffer < r3 & relay3 == 1) {rel3buffer++;relay3 =0;}if (rel3buffer == r3 && relay3 == 1){relay3 = 1;}if (relay4 == 0) {rel4buffer =0;}if (rel4buffer < r4 & relay4 == 1) {rel4buffer++;relay4 =0;}if (rel4buffer == r4 && relay4 == 1){relay4 = 1;}// reset the inputs:Cr_1=0;Cr_2=0;Cr_3=0;}

54 C FALCON CASE: THE DISCRETE-TIME SIMPLIFIED MODEL

D FALCON CASE: THE CONTINUOUS-TIME SIMPLIFIED MODEL

Here the continuous-time model with a logic simplification is represented.
Only the modified parts of the model are shown. Otherwise the model re-
mains unchanged. The Falcon control unit automaton of the simplified
continuous-time model is in Figure 23.

GotEventIdle

Cr_1_S: int[0,1], Cr_2_S: int[0,1], Cr_3_S: int[0,1]

logic!
getvalues(Cr_1_S, Cr_2_S, Cr_3_S)

event?

Figure 23: The Falcon control unit of the simplified continuous-time model

The global declarations used in the model checking are listed below.bool tr1, tr2, tr3, tr4;bool relay1, relay2, relay3,relay4;broadast han logi;broadast han break;han event;bool breakerAuts = false;bool breakerButs = false;bool breakerCuts = false;bool breakerDuts = false;bool breakerEuts = false;bool breakerFuts = false;bool breakerGuts = false;bool breakerHuts = false;bool Cr_1, Cr_2, Cr_3;bool was_Cr_1;
The Falcon control unit automaton related code is the following:int zone1geturrent, zone2geturrent, zone3geturrent;//Get Falon system inputs from suggested inputs and//alulate outputsvoid getvalues(bool Cr_1_S, bool Cr_2_S, bool Cr_3_S) {//alulate possible input valueszone1geturrent = !(breakerAuts || ((breakerEuts|| breakerHuts) & (breakerCuts|| breakerDuts|| breakerGuts || breakerFuts)));zone2geturrent = !(breakerButs || ((breakerEuts

D FALCON CASE: THE CONTINUOUS-TIME SIMPLIFIED MODEL 55

|| breakerHuts) & (breakerCuts|| breakerDuts|| breakerGuts || breakerFuts)));zone3geturrent = !((breakerCuts || breakerEuts|| breakerHuts) & (breakerDuts || breakerFuts|| breakerGuts));Cr_1 = Cr_1_S & zone1geturrent;Cr_2 = Cr_2_S & zone2geturrent;Cr_3 = Cr_3_S & zone3geturrent &(!breakerCuts || !breakerDuts);if (Cr_1) was_Cr_1 = true;// get the outputstr1 = Cr_1;tr2 = Cr_2;tr3 = Cr_1 || Cr_2 || Cr_3;tr4 = Cr_3;relay1 = tr1 || tr2 ;relay2 = relay1;relay3 = tr4;relay4 = tr4;}

56 D FALCON CASE: THE CONTINUOUS-TIME SIMPLIFIED MODEL

TKK REPORTS IN INFORMATION AND COMPUTER SCIENCE

TKK-ICS-R1 Nikolaj Tatti, Hannes Heikinheimo

Decomposable Families of Itemsets. May 2008.

TKK-ICS-R2 Ville Viitaniemi, Jorma Laaksonen

Evaluation of Techniques for Image Classification, Object Detection and Object

Segmentation. June 2008.

ISBN 978-951-22-9444-2 (Print)

ISBN 978-951-22-9445-9 (Online)

ISSN 1797-5034 (Print)

ISSN 1797-5042 (Online)

