
Helsinki University of Technology
Department of Electrical and Communications Engineering

Heikki Rantanen

Analyzing the Random-Walk
Algorithm for SAT

Master’s Thesis

submitted in partial fulfillment of the requirements
for the degree of Master of Science in Technology.

Espoo, October 15, 2004

Supervisor: Prof. Ilkka Niemelä
Instructor: Prof. Ilkka Niemelä

Helsinki University of Technology

Master’s Thesis Summary

Author: Heikki Rantanen

Title: Analyzing the Random-Walk Algorithm for SAT

Date: October 15, 2004 Pages: 7+47

Department: Electrical and
Communications Engineering

Professorship: T-119
Theoretical Computer Science

Supervisor: Prof. Ilkka Niemelä Instructor: Prof. Ilkka Niemelä

Abstract: The propositional logic satisfiability (SAT) problem has gained
growing interest in recent years. From complexity theory is known that
many real-world mathematical and engineering problems can be translated
into SAT problem instances. Advances on SAT solution algorithms in the
past ten or fifteen years has enabled solving these problems by a computer.
This, for one, has inspired developing even better algorithms.

In this work we study the so-called random-walk algorithm, which is a
well-known probabilistic solution method for the SAT problem. The aim
is to give insight into the algorithm with analytical methods and answer
some open questions. For example, one would like to know the optimal
value for the restart-moment—a parameter that has notable effect on the
algorithm’s performance.

The analysis leads to a stochastic model that is a Markov chain; more
precisely a simple random-walk between an absorbing and a reflecting bar-
rier. A scheme to solve the problem for fixed number of variables is ob-
tained from the theory of Markov chains. In general case, however, things
get more complicated. Namely such a random-walk, despite its simplicity,
shows very complex behaviour and unfortunately no closed-form solution
formula is known. Consequently, one must abide by approximative results.

The contribution of this work include solving the optimal restart-
moment approximately and a rigorous performance analysis. The calcu-
lations give insight into the algorithm’s nature underlining the importance
of restarts. Also some experimental study is made, and the results support
the developed stochastic model.

Keywords: Propositional satisfiability, random-walk algorithm,
probabilistic local search, simple random-walk

Teknillinen korkeakoulu

Diplomityön yhteenveto

Tekijä: Heikki Rantanen

Työn nimi: Lauselogiikan toteutuvuusongelman
satunnaiskulkualgoritmin analyyttinen tarkastelu

Päiväys: 15. lokakuuta 2004 Sivumäärä: 7+47

Osasto: Sähkö- ja
tietoliikennetekniikka

Professuuri: T-119
Tietojenkäsittelyteoria

Valvoja: Prof. Ilkka Niemelä Ohjaaja: Prof. Ilkka Niemelä

Tiivistelmä: Lauselogiikan toteutuvuuden (SAT) ongelmaa on tutkittu
viime vuosina kasvavassa määrin. Kompleksisuusteoriasta tiedämme, et-
tä useat käytännön matemaattiset ja tekniset ongelmat voidaan muun-
taa vastaamaan SAT-ongelmaa. SAT-ongelman ratkaisumenetelmien 10–
15 viime vuoden aikana tapahtuneen kehityksen ansiosta näitä ongelmia
voidaan ratkoa tietokoneella. Tämä puolestaan on innostanut kehittämään
yhä parempia menetelmiä.

Työssä tutkitaan niin kutsuttua satunnaiskulkualgoritmia, joka on tun-
nettu probabilistinen SAT-ongelman ratkaisumenetelmä. Työn tarkoituk-
sena on analyyttisen tarkastelun avulla auttaa ymmärtämään algorit-
min luonteenpiirteet ja vasta eräisiin avoimiin kysymyksiin. Yksi tällainen
kysymys liittyy algoritmin suorituskyvyn maksimointiin uudelleenkäyn-
nistysten avulla — optimaalista hetkeä uudelleenkäynnistykselle ei tiedetä.

Analyysin tuloksena saadaan stokastinen malli, joka on luonteeltaan
Markovin ketju, tarkemmin sanottuna yksinkertainen satunnaiskulku ab-
sorboivan ja heijastavan seinän välillä. Ratkaisumalli kiinnitetyn muut-
tujamäärän tapauksessa saadaan suoraan Markovin ketjujen teoriasta.
Yleisessä tapauksessa kuitenkin törmätään vaikeuksiin. Kyseisen satun-
naiskulun käytös on nimittäin yllättävän kompleksinen, eikä selkeää sulje-
tun muodon ratkaisua tunneta. Tarvitaan siis approksimoivia menetelmiä.

Työn keskeiset tulokset ovat algoritmin optimaalisen uudelleenkäyn-
nistysajankohdan ratkaiseminen approksimatiivisesti ja suorituskyvyn täs-
mällinen analyysi. Esitetty matemaattinen analyysi auttaa ymmärtämään
algoritmin luonteenpiirteitä; se mm. korostaa uudelleenkäynnistysten
merkitystä. Lopun kokeelliset tulokset näyttävät tukevan kehitettyä
stokastista mallia.
Avainsanat: Lauselogiikan toteutuvuus, satunnaiskulkualgoritmi,

probabilistinen paikallinen haku, yksinkertainen satunnaiskulku

Preface

The idea for the subject of my master’s thesis came up to me when I was attending
the course ”T-79.194 Seminar on Theoretical Computer Science”. The subject of
the seminar was methods for propositional logic satisfiability checking and it was
lectured by Prof. Ilkka Niemelä. I am fascinated by the probability calculus, so I
chose to do my report on papers [30] and [13] because of the word probabilistic in
their titles.

While preparing my report I started reconstructing the calculations since I wanted
to understand how such a simple algorithm is able to be so effective. There seemed
to be many questions that neither these two papers nor any other I found addressed.
I started feeling that I really could shed more light on this probabilistic algorithm
since the underlying stochastic model seemed to be the same I had run into with
quantum computing. Even though the problem turned out much more difficult that
I had expected, I feel that have managed to do it.

I would like to thank my instructor Prof. Ilkka Niemelä for doing his job very
well and enthusiastically and for arranging me some financial support, as well as my
fiancée Heli for her support and understanding. Thank you!

Heikki Rantanen

Otaniemi, October 15, 2004

iv

Contents

List of Figures . vi
List of Tables . vi
List of Algorithms . vi
List of Notations . vii

1 Introduction 1
1.1 Propositional Logic Satisfiability Problem 1
1.2 SAT Solution Methods . 2
1.3 Objectives . 3

2 Conceptual Background 5
2.1 Propositional Logic . 5
2.2 Random-Walk Algorithm . 6
2.3 Big-O Notation . 8

3 Stochastic Analysis 9
3.1 Markov Chain Model . 10
3.2 Expected Run Time . 12
3.3 Complement Checking . 14

4 Effect of Restarts 16
4.1 Expected Run Time . 17

4.1.1 Explicit Expression . 17
4.1.2 Asymptotic Analysis . 20

4.2 Optimal Timing . 24

5 Implementation Issues 31
5.1 Exploiting the Ideas . 31
5.2 Complement Checking: A Second Try 31

6 Experiments 34
6.1 Description . 34
6.2 Results . 35

7 Conclusions 38

Bibliography 40

Appendix A 43
A.1 Schöning’s Expression . 43
A.2 Normal Moments . 44

Appendix B Matlab Code 45

v

List of Figures

3.1 Markov chain {Xn} . 11

3.2 Worst-case success probability . 13

4.1 Worst-case run time . 18

4.2 The half-infinite Markov chain {Yn} 19

4.3 Worst-case run time versus restart moment 24

4.4 Standard normal-CDF and its Taylor polynomials 25

4.5 Minimizable approximation of the expected time to absorption . . . 28

4.6 Function whose root represents an approximate to nopt 28

4.7 Optimal restart moment; exact values and the approximations . . . 29

4.8 Ratio of Pr(X2N = 0) and Pr(Y2N = 0) 30

6.1 Expected run time by experiments 36

List of Tables

6.1 Problem instances used in the experiments 35

6.2 Experiment results . 37

List of Algorithms

1 Basic RWA . 7
2 Restarting RWA . 7
3 Complement checking RWA . 7

4 Complement tracing RWA . 32

vi

List of Notations

RWA Random-Walk Algorithm

CCRWA Complement Checking RWA

CDF Cumulative Distribution Function

CTRWA Complement Tracing RWA

DPLL Davis–Putnam–Logemann–Loveland (method for SAT)

a Complement of truth assignment a

k Number of literals per clause

N Number of atomic propositions

[v]i i:th element of a vector v

E[X] Expected value of a random variable X

Pr(A) Probability of an event A

Pr(A|B) Probability of an event A given an event B (conditional probability)

Cov[X, Y] Covariance of random variables X and Y

Var[X] Variance of random variable X

vii

1 Introduction

1.1 Propositional Logic Satisfiability Problem

Logic is present in our everyday life. We do logical reasoning ourselves and use
technology that is based on it. Apart from the fact that digital circuits are based
on logical operations, many of today’s intelligent systems apply logic heavily on the
software level. There are several types of mathematical logic. The context of this
work is propositional logic [20], which is the elementary one having a set of atomic
propositions together with and, or, and not operations; see Section 2.1 for a more
precise definition.

Logic has origins in philosophy. The mathematical sub-discipline was pioneered
by George Boole1 and Augustus De Morgan2 in the mid-nineteenth century. How-
ever, their work never raised conventional mathematicians’ interest. Logic was
widely denounced as trivial and useless—proving non-trivial propositions would have
required a big amount of mechanical work. But a raising interest in automated com-
puting was about to change the course. [20]

Along the invention of an electrical computer and digital technology in general,
a bunch of practical applications for logic arose in both design and utilization of
this technology. With the modern programmable computer one was able to auto-
mate logical proofs. The classical branch of philosophy was adopted by computer
scientists and engineers. Today, logic is heavily applied in e.g. artificial intelligence,
logical programming, VHDL, and verification of digital circuits, algorithms, and
protocols [20, 3, 2].

The propositional logic satisfiability (SAT) problem goes as follows. If F is a
proposition, the problem is to find out if there exists a truth assignment for the
atomic propositions in F so that F evaluates true. If the answer is yes, then F is
called satisfiable and the corresponding truth assignment a model of F . Usually the
proposition is supposed to be in conjunctive normal form (CNF). If the CNF has at
most k literals per clause, then we speak of k-SAT problem.

Deciding satisfiability is central since proving e.g. validity or equivalence of propo-
sitions is essentially a satisfiability problem. Moreover, propositional logic and the
SAT problem have gained growing interest in recent years, since the following solu-
tion scheme has proven fruitful for many real-world mathematical and engineering
problems [10, 9]. Namely,

1. Represent the problem by propositional logic.

2. Identify the proposition to be decided for satisfiability.
1Propositional logic is also known as Boolean logic.
2Presented the famous De Morgan laws.

1

1 Introduction

3. Solve the SAT problem.

4. Interpret the result in the original domain.

There is a strong theoretical basis for this being possible. From complexity theory
[22] is known that SAT belongs to the class of NP-complete problems, which means
that a large set of other problems (class NP) can be converted to SAT efficiently.

The idea in this new paradigm for solving hard problems is that the hard work
(phase 3) is done by a computer. Solving SAT lends itself very well to being put
on a computer: In both, the power comes from doing simple operations but a huge
amount. Instead of solving problems from different fields with expertise in the field
in question, one can put all the effort in developing a good SAT solution algorithm
and then apply this paradigm. Of course this doesn’t work always. In some cases
the size of the SAT problem grows drastically with respect to the size of the original
problem. As the time requirement of solving SAT, for one, grows exponentially upon
the problem size, one may be in trouble.

1.2 SAT Solution Methods

A trivial method for solving SAT would be trying each of the possible truth as-
signments in turn. In the worst case this would require going through all the 2N ,
N being the number of different atomic propositions in F , possibilities. Several
algorithms, both deterministic and probabilistic, for solving SAT in time less than
O(2N) have been proposed and implemented; see [10, 12] for a survey. They can be
categorized as deterministic and probabilistic, and on the other hand complete and
incomplete. A complete algorithm can decide both satisfiability and unsatisfiability
while incomplete only one of these.

The random-walk algorithm (RWA) for SAT originally presented by Papadim-
itriou [21] is probably the simplest, but yet a powerful SAT solution method. It is
probabilistic and incomplete. The basic RWA goes as follows. For a start, draw a
truth assignment a at random. Then check if a satisfies F . If not, pick one unsat-
isfied clause and one atom of that clause at random. Modify a so that you flip the
truth value of the atom you picked. Check if a now satisfies F . If not, again pick
an unsatisfied clause and so on. Continue this scheme until a satisfying assignment
is found (or you become exhausted).

Despite its simplicity, this method is a clear advance on the trivial one. The
probability that an existing model is found after K flips can be made arbitrarily
close to one by setting K sufficiently large (this is justified in Chapter 3). For 2-
SAT, Papadimitriou showed a growth rate O(N2) for the expected run time in the
worst case. The same result is derived independently by Ross [27]. Note that proving
a proposition unsatisfiable, however, would take infinite time, so RWA is incomplete.

Schöning’s [30, 31] (the latter is a revision) novelty was to restart the algorithm
after every 3N flips, which improvement made it potential for k-SAT in general.
He showed an upper bound O

[
(2 · k−1

k)N
]

(k ≥ 3). This yields O[(4/3)N] for k =
3, which in fact was the best bound for 3-SAT known by that time. Since then
bounds O(1.3302N) [13], O(1.3290N) [1], and O(1.324N) [16] have been achieved

2

1 Introduction

with modifications to Schöning’s algorithm. The last is currently the best known
result for 3-SAT.

The RWA is an example of probabilistic local search. Other such methods are
GSAT [33] and the famous Walksat introduced in [32], which is a combination of
the previous two. See [10, Sec. 4] for more local-search methods. Deterministic
complete SAT algorithms, for one, are usually based on the DPLL method [5], but
state-of-the-art solvers apply different additional search pruning techniques on top
of it [18]. Also these methods may benefit from restarts [11]. On the other hand,
the DPLL can be randomized [24].

1.3 Objectives

Schöning [31] also makes a conjecture that gives rise expecting a rate even better.
Namely, every time one checks if the current assignment is satisfying, its complement,
which is an assignment that results when all the truth values are flipped, should be
checked too. However, the effect of this on the performance is not studied.3

Several questions now arise from [30, 31]:

1. Is the bound O
[
(2 · k−1

k)N
]

strict or is it actually even better?

2. Is the restart moment 3N optimal, and if not, what would be?

3. What is the growth rate with the optimal restart moment?

4. What is the effect of complement checking?

The papers [30, 31] are very short in length and thus don’t provide deep insight
into the problem. For these reasons, it feels entitled to say that the nature of the
random-walk algorithm is still more or less mystery. The object of this work is to
carefully analyze the algorithm by means of probability theory and with this, to
provide deeper understanding of its behavior and tackle the open questions above.

Especially the second question is of great practical importance, since there exists
many probabilistic local search implementations, and timing restarts plays a central
role in working with them. Numerous experiments have confirmed the fact that
performance of these algorithms depends on the parameter of restart moment. But
a generally good scheme for setting this parameter is hard to obtain empirically.4 [14]

The work has the following outline. Chapter 2 formalizes the concept of propo-
sitional logic and presents pseudo code for the discussed algorithms. Chapter 3 lays
the foundation for the algorithm analysis by building a mathematical model based

3Schöning [31, p. 3] writes: “Also note that the apparent worst case of reaching state n is not bad
at all, since the complementary assignment a is a satisfying assignment in this case. Therefore,
one might modify the algorithm such that it always checks whether the complement of the actual
assignment is satisfying. Instead of analyzing this somewhat complicated stochastic process we
choose to analyze closely another process”

4Hoos and Stützle [14, p. 32] write: “But good maxSteps settings are extremely difficult to find a
priori and currently, to our best knowledge, there exists no theoretical results on how to effectively
determine good settings.”

3

1 Introduction

on Markov chains. Also the basic RWA (without restarts) is analyzed. The ques-
tion 4 on page 3 is answered in Section 3.3. In Chapter 4 the restarts are taken
into account. That chapter presents the key results of this work; by the end of the
chapter we are able to answer the questions 1, 2 and 3. Implementing the RWA is
discussed shortly in Chapter 5. Also a new RWA variant, which might be useful
in practice when there is absence of true randomness, is proposed. In Chapter 6,
some experimental study is made to see if the calculated results can be verified by
experiments. The results and observations of this work are summarized and the final
conclusions are made in Chapter 7. A little extra mathematical material and the
important formulas as Matlab code are given in Appendices A and B, respectively.

4

2 Conceptual Background

This chapter introduces the concepts of propositional logic, the random-walk algo-
rithm, and the O-notation in more detail.

2.1 Propositional Logic

Syntax

The language of propositional logic [20] consists of propositions. The alphabet has
symbols

(i) A,B,C, . . . (Atomic propositions)

(ii) ∧,∨,¬ (Connectives)

(iii) (,) (Parentheses)

Propositions are formed using the following recursive definition:

Definition 1 (Proposition). String γ is a proposition, if and only if γ is either an
atomic proposition or of the form

(i) (α ∧ β)

(ii) (α ∨ β)

(iii) ¬α

where α and β are propositions.

Unnecessary parenthesis are usually left out, e.g. (A ∧ (B ∧ C)) can be written
A ∧B ∧ C. Atomic propositions are called atoms for short.

Semantics

Atomic propositions can be thought of as binary variables and propositions as func-
tions of those variables. To each atomic proposition one can assign a truth value—
either true or false. This is done by a truth assignment:

Definition 2 (Truth Assignment). Let A = {A,B, . . .} be the set of atomic propo-
sitions. A truth assignment is a function

a : A 7−→ {true, false} .

5

2 Conceptual Background

Given a truth assignment a, any proposition γ is either true or false denoted by
a |= γ or a 6|= γ, respectively. If γ is an atomic proposition, then a |= γ is equivalent
to a(γ) = true. Otherwise the truth value is determined according to the following
rules:

(i) a |= α ∧ β if and only if a |= α and a |= β (Conjunction)

(ii) a |= α ∨ β if and only if a |= α or a |= β (Disjunction)

(iii) a |= ¬α if and only if a 6|= α (Negation)

If a |= γ, a is called a model of γ. If a proposition has a model, it is satisfiable.
Atomic propositions and their negations are called literals. A disjunction of

literals is called a clause, and conjunction of clauses is called a conjunctive normal
form (CNF). The following theorem gives a reason why CNF’s are interesting.

Theorem 1. Any proposition has an equivalent conjunctive normal form.

Proof. See [20, p. 37] for a transformation procedure.

2.2 Random-Walk Algorithm

The random-walk algorithm requires the proposition to be a CNF. By Theorem 1
any proposition can be transformed to a CNF. The transformation may, however,
result in an exponential blow-up in the proposition length. This can be aided by re-
linquishing the equivalence requirement and using another transformation procedure
that introduces new atoms but retains satisfiability.

Algorithm 1 illustrates the basic RWA as pseudo code. Argument F is a propo-
sition in CNF and K serves as a time-out preventing the infinite loop that results
if the proposition happens to be unsatisfiable. In line two the truth assignment a is
initialized at random (uniform distribution). Then a is transformed gradually in the
for loop until either it satisfies F or the loop has run K cycles. Each transformation
cycle includes the following three steps:

(i) Pick one unsatisfied clause from F at random (line 7)

(ii) Pick one atom form this clause at random (line 8)

(iii) Modify a so that the truth value of this atom is flipped (line 9)

Adding restarts results in Algorithm 2, which we call restarting RWA. The dif-
ference compared to the basic RWA is that now the procedure search is restarted
every time the for loop has run nr cycles without success. This is done by nesting
the procedure in another for loop (line 2). Argument K again serves as a time-out
but counts now the number of restarts. Thus the maximum number of flips is K ·nr.

The complement checking RWA referred by question 4 on page 3 is depicted by
Algorithm 3. The only difference compared to the basic RWA is that every time one
checks if the current assignment a is satisfying (line 4), the complement assignment
a, which is obtained by flipping all the truth values, is checked too (line 6).

6

2 Conceptual Background

Algorithm 1 Basic RWA
1: procedure search(F, K)
2: a← randomly chosen truth assignment
3: for repeat K times do
4: if a |= F then
5: return a
6: else
7: c← randomly chosen unsatisfied clause of F (a)
8: s← randomly chosen atom of c
9: a← a except the truth value of s flipped

10: end if
11: end for
12: return false
13: end procedure

Algorithm 2 Restarting RWA
1: procedure rSearch(F, K, nr)
2: for repeat K times do
3: a← search(F, nr)
4: if a 6= false then
5: return a
6: end if
7: end for
8: return false
9: end procedure

Algorithm 3 Complement checking RWA
1: procedure ccSearch(F, K)
2: a← randomly chosen truth assignment
3: for repeat K times do
4: if a |= F then
5: return a
6: else if a |= F then
7: return a
8: else
9: c← randomly chosen unsatisfied clause of F

10: s← randomly chosen atom of c
11: a← a except the value of s flipped
12: end if
13: end for
14: return false
15: end procedure

7

2 Conceptual Background

2.3 Big-O Notation

The following definitions explain the O-symbol [6, Sec. 1.2] (read big-O).

Definition 3 (Big-O). Let f and g be functions of a real variable. Then f(x) is
O[g(x)] as x→∞, denoted by

f(x) = O[g(x)] (x→∞) ,

if there exists real numbers a and A such that

x > a⇐⇒ |f(x)| ≤ A |g(x)| .

Definition 4. If f(x) is O (ax) where a is a real number such that

min
c∈R

[f(x) = O(cx)] = a ,

then is said f(x) is O (ax) strictly.

8

3 Stochastic Analysis

In this chapter we start analyzing the algorithm. Basic knowledge of probability
and perhaps Markov chains will be a prerequisite to follow the text in full; [28, 35]
among others serve as a good backup if needed. After identifying the essential
random variables, a stochastic model for the algorithm is derived by utilizing Markov
chain theory in Section 3.1. This model based on probability matrices will serve the
purpose of calculating exact values with fixed N and k (the number of atoms and
literals per clause, respectively) throughout this work. Performance analysis without
restarts (Algorithm 1) is done in Section 3.2. In Section 3.3 the question 4 on page 3
is answered.

Throughout this work, when we do algorithm analysis, we do it concerning the
worst case. To begin with, let us assume that the proposition is satisfiable. In the
worst case there is only a single model a∗ among the 2N candidates. We would like to
know the run time of Algorithm 1, i.e. the amount of time needed for the procedure
search to return a∗. Denote this time by T . The run time T is a probabilistic
quantity, that is a random variable, and its probability distribution determines how
the algorithm performs. Usually the expected value E[T] is considered as a measure
of performance.

Naturally the actual run time in seconds depends on the underlying hardware
and software. In analysis one uses a normalized time-unit, typically some operation
count. In addition, it typically suffices to find the run-time growth rate since this
measure captures all the information on the algorithm’s performance that is usually
relevant. We choose the unit operation to be one flip, i.e. a whole cycle in the for
loop of the procedure search. Hence, T is expressed in flips and the run time in
seconds is given by T · t where t is the duration of one flip in seconds. The important
thing is that although t depends on the size of the proposition under examination,
i.e. t is a function of N , k, and the number of clauses, this dependence is polynomial.
Consequently, to extract the exponential growth rate of the expected run time, it
suffices to extract that of E[T].

Now consider the procedure’s state after n flips. A reasonable measure of how
close we are is the number of atoms whose value in a and a∗ is different; denote
this number by d(a, a∗). If Xn denotes d(a, a∗) after n flips, then Xn is a random
variable with 0 ≤ Xn ≤ N and XT = 0 by definition. If Xn > 0, there is at least
one unsatisfied clause. We pick one of those, and make it satisfied by flipping one of
its k atoms.

Unfortunately, we might flip an atom that already has the correct value and
cause Xn+1 = Xn + 1. In the best case there isn’t such atoms, but in the worst case
only one of the k atoms has an incorrect value. Hence for the probability of event
Xn+1 = Xn − 1, given that 0 < Xn < N , holds

1
k
≤ Pr(Xn+1 = Xn − 1|0 < Xn < N) ≤ 1. (3.1)

9

3 Stochastic Analysis

The boundary states zero and N are special. When Xn = N , the trial assignment
is completely opposite and transition to Xn− 1 is guaranteed therefore. Once Xn =
0, we have found a satisfying assignment and the evolution terminates. This is
expressed by

Pr(Xt+1 = Xt − 1|Xt = N) = 1 , (3.2a)
Pr(Xt+1 = Xt|Xt = 0) = 1 . (3.2b)

Initially we draw the N truth values randomly and independently with success
probability 1/2. Thereby X0 is binomially distributed with parameters N , 1/2 and,
consequently, has point probabilities, expected value, and variance

Pr(X0 = i) = binN, 1
2
(i) , (3.3a)

E[X0] =
N

2
, (3.3b)

Var[X0] =
N

4
, (3.3c)

respectively, where

binn,p(i) =
(

n

i

)
pi(1− p)n−i (3.4)

is the binomial point probability function. We will use ωi as a shorthand for
Pr(X0 = i). The total probability of event A is obtained as a weighted average
of its conditional probabilities:

Pr(A) = Pr(A|X0 = 0)ω0 + . . . + Pr(A|X0 = N)ωN . (3.5)

Numbers {Xn, n ∈ N} form a sequence of random variables—a discrete time
stochastic process [4, 25, 7, 26, 23] in other words. The process is restricted by
boundary conditions (3.2a) and (3.2b) called reflecting and absorbing, respectively.
The theory of stochastic processes will be our apparatus to approach the problem.

3.1 Markov Chain Model

Due to the fact that the state transition probabilities (3.1) depend on n and the
proposition itself, the actual stochastic process is extremely complex. This restricts
the analysis to the worst-case where the lower bound is taken. Then

Pr(Xt+1 = Xt − 1|0 < Xt < N) =
1
k

= α , (3.6a)

Pr(Xt+1 = Xt + 1|0 < Xt < N) =
k − 1

k
= β (3.6b)

independently of F .

Now that the transition probabilities are constants it’s obvious that

Pr(Xn+1 = x|X0 = x0, . . . , Xn = xn) = Pr(Xn+1 = x|Xn = xn), (3.7)

10

3 Stochastic Analysis

Figure 3.1 States and transition probabilities of the Markov chain {Xn}

which states that the state transition probabilities depend on the present state only,
not the past ones. This is known as Markov property—a prerequisite for a stochastic
process {Xn} being a Markov chain1. The resulting Markov chain is illustrated in
Figure 3.1. This kind of a chain where transitions to the adjacent states only are
possible, is known as a simple random walk [4, Ch. 2], [7, Ch. 14].

What is the probability that the model is found by say n flips? The question is
addressed by the n-step transition probabilities Pr(Xm+n = j|Xm = i) = p

(n)
i,j of the

Markov chain. The quantity of interest would be the n-step absorption probability
Pr(Xn = 0).

The n-step transition probabilities obey the Chapman-Kolmogorov equation

p
(a+b)
i,j =

N∑

k=0

p
(a)
i,k p

(b)
k,j . (3.8)

They are usually calculated utilizing matrices. An n-step transition probability ma-
trix P(n) is a square matrix with elements p

(n)
i,j . The one-step transition probability

matrix can be formed by Eq. (3.6) and (3.2), which yield a tri-diagonal matrix

P(1)

N+1×N+1
=




1 0

α 0 β 0
α 0 β

.

0 α 0 β

1 0




= P . (3.9)

Now one can write Eq. (3.8) in matrix form P(a+b) = P(a)P(b), which immediately
implicates

P(n) = Pn . (3.10)

We will denote Pr(Xn = 0) by ρ(n) for short. Using Eq. (3.5),

ρ(n) =
N∑

i=0

p
(n)
i,0 ωi (3.11)

= E
[
p
(n)
X0,0

]
. (3.12)

1Markov chains are named after Russian mathematician A. A. Markov (1856–1922) who introduced
them in 1907. Since then they have proven extremely useful in modeling various systems and
become an essential part of the probability theory.

11

3 Stochastic Analysis

If p(n) is a row-vector such that p
(n)
i = Pr(Xn = i), by Eq. (3.5) and (3.10) we have

that p(n) = ωPn. The n-step absorption probability ρ(n) obtained by taking the
first element of p(n):

ρ(n) = [ωPn]0 (3.13)

where [v]0 denotes the first element of a vector. Below is a simple example.

Example 1. Calculate the lower-bound for the probability that Algorithm 1 returns
a model, in case of 3-SAT, N = 10, and K = 100.

Solution. For k = 3 we have that α = 1
3 and β = 2

3 (Eq. (3.6)). Form the initial
distribution vector by Eq. (3.3a), which yields

ω ≈ (0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001) .

Then form the one-step transition-probability matrix as in Eq. (3.9) and calculate
p(100) = ωP100 (Eq. 3.9) with e.g. the Matlab software. This yields

p(100) ≈ (0.071 0.001 0.002 0.005 0.010 0.021 0.043 0.087 0.175 0.350 0.234) .

The result is ρ(100) ≈ 0.07. ♦

RWA’s ability to solve SAT problems ensues from the following theorem.

Theorem 2. If {Xn} is the Markov chain of Figure 3.1 with α > 0, then

lim
n→∞ p

(n)
i,0 = 1

for all 0 ≤ i ≤ N and finite N .

Proof. The theorem follows from a more general theorem concerning reducible Markov
chains found in e.g. [4, p. 125]. The proof employs properties of the transition prob-
ability matrix; see [34] for a more extensive study.

Function (3.13) with α = 1/3 and three different N is plotted in Figure 3.2. The
figure seems to accord with Theorem 2 and gives a flavor of the fact that the number
of steps needed to attain a certain probability grows exponentially fast with respect
to N .

3.2 Expected Run Time

The worst-case run time of the basic RWA is equal to the first passage time to state
zero in the previous Markov chain, namely

T = min
n∈N
{Xn = 0} . (3.14)

In this section its expected value E[T] is calculated.
Expected first passage times of a simple random walk are usually calculated in the

following manner [7, p. 348]. Take a look at Figure 3.1 again. Suppose we start from

12

3 Stochastic Analysis

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

ρ(
n)

N=10

N=13

N=16

Figure 3.2 The n-step absorption probability of the Markov chain {Xn} with
α = 1

3 (Equation (3.13)). This corresponds to the worst-case success proba-
bility of the basic RWA after n flips with 3-SAT.

state i, and denote the expected number of steps to reach zero by yi. Then suppose
the first step is taken to the left. Now the situation is same than starting from i− 1
except that we have already one step in our account—that is to say yi = 1 + yi−1.
Considering both first step possibilities we conclude that

yi = 1 + αyi−1 + βyi+1 (3.15)

when 0 < i < N , and

y0 = 0 , (3.16a)
yN = 1 + yN−1 . (3.16b)

Equation (3.15) can be easily solved with the standard method for linear difference
equations [29, p. 214]. The general solution reads

yi =





A
(

α
β

)i
+ B − i

β−α α 6= β

Ai + B − i2 α = β = 1
2

(3.17)

where A and B are arbitrary constants. They are determined by the boundary
conditions (3.16). After short calculations,

A =

{
−B α 6= β

2N α = β = 1
2

, B =





C
(

β
α

)N
α 6= β

0 α = β = 1
2

. (3.18)

where C = 2αβ
(β−α)2

.

13

3 Stochastic Analysis

One obtains E[T] by simply averaging yi over the initial distribution in Eq. (3.3a):

E[T] =
N∑

i=0

(
N

i

)
2−Nyi (3.19)

Substituting Eq. (3.17) with α 6= β into this yields

E[T] =
N∑

i=0

(
N

i

)
2−N

[
A

(
α

β

)i

+ B − i

β − α

]

= 2−NA
N∑

i=0

(
N

i

)(
α

β

)i

+
N∑

i=0

(
N

i

)
2−NB − 2−N

β − α

N∑

i=0

(
N

i

)
i

= 2−NA

(
1 +

α

β

)N

+ B − 2−N

β − α
N2N−1

= A

(
1 + α

β

2

)N

+ B − N

2(β − α)
,

where the binomial theorem and another summation formula [29, p. 189] was used
in getting the third equality. Substituting Eq. (3.18) into this yields

E[T] = −C

(
β

α

)N
(

1 + α
β

2

)N

+ C

(
β

α

)N

− N

2(β − α)

= C

(
β

α

)N

− C

(
1
2α

)N

− N

2(β − α)
. (3.20)

Similarly for Eq. (3.17) with α = β = 1
2 :

E[T] =
N∑

i=0

(
N

i

)
2−N

[
Ai + B − i2

] | Eq. (3.18)

= 2−N2N
N∑

i=0

(
N

i

)
i− 2−N

N∑

i=0

(
N

i

)
i2

= 2−N2NN2N−1 − 2−N (N2 + N)2N−2

=
3
4
N2 − 1

4
N . (3.21)

Equation (3.21) confirms the result that 2-SAT is solvable in polynomial time.
Equation (3.20), for one, is O[(β/α)N] = O[(k − 1)N], which means that the basic
RWA is feasible for 2-SAT only.

3.3 Complement Checking

Next we deal with the complement checking RWA (Algorithm 3) and give an answer
to the question 4 on page 3.

14

3 Stochastic Analysis

For k ≥ 3 there is a positive drift in the chain and hitting the reflecting boundary
is much more probable, as we could see from Example 1. But note that in state N the
complement assignment is satisfying. This suggests checking always the complement
assignment as well, like in Algorithm 3. This interesting idea was proposed by
Schöning [31, p. 3], but he did not study it further.

In fact, analyzing the effect of complement checking isn’t difficult. An immediate
consequence in the Markov chain model is that the state N becomes absorbing as
well. Redoing the calculations of the previous section with the boundary conditions
changed accordingly, yields a polynomial run time for also 3-SAT and higher. So
here we have a polynomial time algorithm for an NP-complete problem! Or have
we? Unfortunately we also have to go back to Eq. (3.1) and ask “What is the worst
case now?”.

On the grounds of Eq. (3.1), the case P (Xn+1 = N − 2|Xn = N − 1) = 1 is
possible indeed, meaning the state N may be unreachable. In this case checking the
complement is naturally pointless.

The result that checking the complement is not worth the extra effort is easy
to confirm by straight thinking. Assume Xn = N − 1. If complement checking is
used, then the event Xn+1 = N is desired. But the assumption P (Xn+1 = N) =
k−1

k would require, first of all, that the single atom with the correct value appears
in an unsatisfied clause and such clause gets selected. This is of course anything
but certain. Secondly, since one is now chasing the one correct atom among k
possibilities, P (Xn+1 = N) is more like 1

k . In addition, carrying out the same
reasoning with assumption Xn = N − 2 shows that getting into N − 1 isn’t itself
that easy.

15

4 Effect of Restarts

Now the restarts (Algorithm 2) are taken into account. This chapter presents the
key results of this work. An explicit expression for the run time is provided in
Section 4.1.1. The growth rate of this expression is extracted in Section 4.1.2. In
Section 4.2 the optimal restart moment is solved. By the end of this chapter we are
able to answer the questions 1, 2 and 3 on page 3.

Obviously, if Xn is notably over E[X0] = N/2, it would be worthwhile to draw a
new assignment out of the hat—to start the procedure all over again in other words.
Of course one doesn’t know when this is the case, since only whether Xn is zero or
not is known. However, introducing a predefined restart moment nr works well too,
improving the performance tremendously for 3-SAT and higher. Schöning [30, 31]
considers a case nr = 3N .

Let a random variable S be the number of calls to the procedure search until
the model is returned. The procedure has a success probability ρ(nr), and different
procedure calls are independent of each other. This implies that S is geometrically
distributed with parameter ρ(nr). Hence

E[S] =
1

ρ(nr)
, (4.1a)

Var[S] =
1− ρ(nr)
ρ(nr)2

. (4.1b)

The worst-case run time T is equal to the total number of flips needed. The
model is returned at the Sth procedure call and so nr(S − 1) ≤ T ≤ nrS. Again,
we consider the worst case and put

T = nrS . (4.2)

By the previous three equations and the calculation rules of expected value and
variance [29] we have that

E[T] = E[nrS]
= nr E[S]

=
nr

ρ(nr)
(4.3)

and

Var[T] = Var[nrS]

= n2
r Var[S]

=
(

nr

ρ(nr)

)2

[1− ρ(nr)] . (4.4)

16

4 Effect of Restarts

Function (4.3) using Eq. (3.13) is plotted against N in Figure 4.1. Figure 4.1a
shows definitely a great potential for the RWA with restarts in solving 3-SAT. From
Figure 4.1b is seen more clearly that the limit 3N is not optimal as using nr =
1.2N more than halves the run time. Notice from Eq. (4.4), however, that chance
fluctuations in the run time can be remarkable. As Var[T] ≈ E[T]2, the expected
deviation from E[T] is of the same order than E[T] itself.

4.1 Expected Run Time

4.1.1 Explicit Expression

In order to get analytical results, one has to solve the n-step absorption probability
ρ(n) appearing in Eq. (4.3). Unfortunately, a simple random-walk between an ab-
sorbing and a reflecting barrier is a very tough bite in general and leads to highly
convoluted expressions [36]. In Schöning’s analysis the reflecting barrier is removed,
resulting in a simple random walk {Yn} on natural numbers with an absorbing bar-
rier at zero. This half infinite version is illustrated in Figure 4.2.

Notice that if the initial state is i, it takes a least 2N − i steps to hit both of the
barriers. Consequently, as long as n is smaller than 2N−i, the absorption probability
p
(n)
i,0 is the same whether there is a barrier at N or not. When n ≥ 2N − i, absence

of the reflecting barrier would make p
(n)
i,0 smaller and, especially, p

(∞)
i,0 = 1 would be

no longer true. Taking the initial distribution into account, it holds that

Pr(Xn = 0) = Pr(Yn = 0) , n < N , (4.5a)
Pr(Xn = 0) > Pr(Yn = 0) , n ≥ N . (4.5b)

For Yn a solution is available [25, p. 56], [7, p. 352]. One way for the solution
is using the ballot theorem [7, p. 69] as Schöning did. We, however, will utilize the
method of images [7, p. 369] because the expression for ρ(n) obtained that way will
make the task of Sections 4.2 and 4.2 easier.

Let us first ignore the boundaries and consider a simple random walk {Zn} on
integers. This unrestricted case is defined by a recurrence Zn = Zn−1 + Dn where
Dn is a random variable with Pr(Dn = −1) = α and Pr(Dn = +1) = β for all n.
Finding the n-step transition probabilities Pr(Zn = j|Z0 = i) ≡ v

(n)
i,j , i, j ∈ Z, is

easy since Zn = i + D1 + . . . + Dn and the Dk’s are independent corresponding to n
coin flips. The number of +1’s is therefore binomially distributed with parameters
n and β. If +1 occurs say k times, then j = i + k− (n− k), which yields k = n+j−i

2 .
Hence

v
(n)
i,j = binn,β

(
n + j − i

2

)
. (4.6)

Probabilities u
(n)
i,j = v

(n)
i,j as in Eq. (4.6) satisfy by definition a difference equation

u
(n)
i,j = αu

(n−1)
i,j+1 + βu

(n−1)
i,j−1 (4.7)

17

4 Effect of Restarts

50 100 150 200 250 300

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

N

St
ep

s

2N

(4/3)N

n
r
=3N

n
r
=1.2N

(a)

260 265 270 275 280 285 290 295 300
10

32

10
33

10
34

10
35

10
36

10
37

10
38

10
39

10
40

10
41

N

St
ep

s

(4/3)N

n
r
=3N

n
r
=1.2N

(b)

Figure 4.1 Expected time to absorption of the Markov chain {Xn} with α = 1
3

and restart moment nr (Equation (4.3)). This corresponds to the worst-case
run time of the restarting RWA with 3-SAT and restart moment nr.

18

4 Effect of Restarts

Figure 4.2 The half-infinite Markov chain {Yn}

with an initial condition

u
(0)
i,j =

{
1 j = i

0 j 6= i
. (4.8)

This is also easy to verify.

Next we place an absorbing barrier at the origin, resulting the aforementioned
random walk {Yn}. If we put u

(n)
i,j = Pr(Yn = j|Y0 = i) with i, j ≥ 1, Eq. (4.7) has

a boundary condition u
(n)
i,1 = αu

(n−1)
i,2 or

u
(n)
i,0 ≡ 0 . (4.9)

We obtain the probabilities u
(n)
i,j by solving the difference equation (4.7) with initial

and boundary conditions (4.8) and (4.9), respectively.

An expression v
(n)
i,j + cv

(n)
−i,j where c is a constant also satisfies Eq. (4.7) since it’s

a linear combination of two solutions. It satisfies the initial condition (4.8) as well,
since v

(0)
−i,j is zero in the domain in question (j ≥ 0).

This is the so-called method of images: The point source at i is mirrored with
respect to the barrier, and the resulting image source is multiplied with a constant
c. The idea is that c is chosen so that the boundary condition gets satisfied. A short
calculation yields c = −(α/β)i. Hence

u
(n)
i,j = v

(n)
i,j −

(
α

β

)i

v
(n)
−i,j , (4.10)

satisfies Eq. (4.7), (4.8), and (4.9), and thus represents the transition probabilities
Pr(Yn = j|Y0 = i).

So now, by virtue of Eq. (4.5a) and u’s definition, p
(n)
i,j = u

(n)
i,j when j ≥ 1, n < N .

Putting this together with Eq. (4.10) and (4.6) yields

p
(n)
i,j = binn,β

(
n + j − i

2

)
−

(
α

β

)i

binn,β

(
n + j + i

2

)
(4.11)

19

4 Effect of Restarts

for j ≥ 1, n < N . Now we can calculate the absorption probability:

p
(n)
i,0 = 1−

∞∑

j=1

p
(n)
i,j | Eq. (4.11)

= 1−
∞∑

j=1

binn,β

(
n + j − i

2

)
+

(
α

β

)i ∞∑

j=1

binn,β

(
n + j + i

2

)

= 1−
∞∑

k=dn+1−i
2 e

binn,β (k) +
(

α

β

)i ∞∑

k=dn+1+i
2 e

binn,β (k)

= Binn,β

(
n− i

2

)
+

(
α

β

)i [
1− Binn,β

(
n + i

2

)]
, n < N . (4.12)

where

Binn,β (x) =
x∑

k=0

binn,β (k) (4.13)

is the binomial cumulative distribution function (CDF). Averaging Eq. (4.12) over
the initial distribution gives the wanted

ρ(n) =
N∑

i=0

ωi

[
Binn,β

(
n− i

2

)
+

(
α

β

)i [
1− Binn,β

(
n + i

2

)]]
(4.14)

Substituting Eq. (4.14) into Eq. (4.3) together with Eq. (4.13) and (3.3a) yields

E[T] =
nr2N

N∑

i=0

K1∑

k=0

(
N
i

)(
n
k

)
βkαn−k +

N∑

i=0

n∑

k=K2

(
α
β

)i(
N
i

)(
n
k

)
βkαn−k

, n < N . (4.15)

where K1 = n−i
2 and K2 =

⌈
n+1+i

2

⌉
.

Schöning’s equivalent to Eq. (4.12) looks different because he employed a different
method (ballot theorem [7]) in deriving it. This form, however, will make the task
of asymptotic analysis easier and also serves the purposes of Section 4.2 better.
Equality between Eq. (4.12) and Schöning’s equivalent is shown in Appendix A.

4.1.2 Asymptotic Analysis

In this subsection the growth rate of E[T] is extracted. Schöning shows that

Pr(Y3N = 0) = poly(N) · (2β)−N (4.16)

where poly(N) denotes a polynomial of N . This, together with Eq. (4.3) and (4.5b),
provides an upper bound

E[T] < poly(N) · (2β)N (4.17)

for nr = 3N . Equation (4.17) now says that E[T] = O[(2β)N], but nothing guaran-
tees that E[T] = O[(2β)N] strictly (see Definition 4 on page 8). A further question

20

4 Effect of Restarts

that arises is, how does Eq. (4.16) change if Y is changed to X and 3N to the optimal
value nopt. We will be able to answer this question by the end of this chapter.

A rigorous way of showing that a function f(x) is O[γx] strictly is to find upper
and lower bounds f+(x) and f−(x), respectively, so that f−(x) ≤ f(x) ≤ f+(x), and
then show that both f+(x) and f−(x) are O[γx] strictly. The idea is seeking bounds
in such a form that its strict growth-rate is seen trivially.

To begin with this, we write Eq. (4.14) in an alternative form (see Eq. (3.12))

ρ(n) = E

[
Binn,β

(
n−X0

2

)
+

(
α

β

)X0
[
1− Binn,β

(
n + X0

2

)]]

= E

[
Pr

(
Z ≤ n−X0

2

)
+

(
α

β

)X0

Pr
(

Z >
n + X0

2

)]
(4.18)

where Z is a Bin(n, β) distributed random variable. The following theorems will be
utilized in extracting a lower and an upper bound for this function.

Theorem 3 (Markov’s Inequality). If X is a non-negative random variable and
a > 0, then

Pr(X ≥ a) ≤ E[X]
a

.

Theorem 4. If X is a Bin(n, β) distributed random variable and β ≥ 1
2 , then

Pr(X ≤ a) ≤
(

α

β

)n−2a

Pr(X ≥ n− a) .

where α = 1− β.

Proof. The point probabilities can be written

Pr(X = k) =
(

n

k

)
βkαn−k

=
(

n

n− k

)
βn−kαkβ2k−nαn−2k

= Pr(X = n− k)
(

β

α

)2k−n

.

Using this,

Pr(X ≤ a) =
a∑

k=0

Pr(X = k) =
a∑

k=0

Pr(X = n− k)
(

β

α

)2k−n

≤
(

β

α

)2a−n a∑

k=0

Pr(X = n− k)

=
(

α

β

)n−2a n∑

k=n−a

Pr(X = j) =
(

α

β

)n−2a

Pr(X ≥ n− a) .

21

4 Effect of Restarts

Theorem 5. If Z and X are random variables so that Z is Bin(n, β) distributed
and X takes integer values with X ≥ E[Z], then

E [Pr(Z ≥ X)] ≥ Pr(Z ≥ E[X])

Proof. Denote Pr(Z ≥ z) by Q(z) and let k ∈ 0, 1, . . . , n. Then denote by Q′(z) the
function that results when points Q(k) are connected with straight lines. Then it
holds that Q′(k) = Q(k) and in general Q′(z) ≥ Q(z). Since the greatest value of
the difference

Q′(k)−Q′(k + 1) = Pr(Z = k)

is obtained when k is nearest to E[Z] = nβ, this point acts as an “inflection point”
of Q′(z). Hence Q′(z) is concave when z ≤ nβ and convex when z ≥ nβ. From
Jensen’s inequality [29, p. 411], which states that

E[f(X)] ≥ f(E[X])

for a convex function f , follows E[Q′(X)] ≥ Q′(E[X]) when X ≥ nβ. The theorem
now follows from the fact that Q′(X) = Q(X).

To obtain lower and upper bounds for Eq. (4.18) we drop the first term and apply
Theorem 4 to it, respectively:

E

[(
α

β

)X0

Pr
(

Z >
n + X0

2

)]
≤ ρ(n)

≤ E

[(
α

β

)X0

Pr
(

Z ≥ n + X0

2

)
+

(
α

β

)X0

Pr
(

Z >
n + X0

2

)]
.

One can replace the > sign in the second term of the upper bound by ≥ since this
increases it:

E

[(
α

β

)X0

Pr
(

Z ≥ n + X0

2

)]
≤ ρ(n) ≤ 2 · E

[(
α

β

)X0

Pr
(

Z ≥ n + X0

2

)]
.

The expected values above can be written

E

[(
α

β

)X0

f(X0)

]
=

N∑

i=0

(
N

i

)
2−N

(
α

β

)i

f(i)

= (2β)−N
N∑

i=0

(
N

i

)
αiβN−if(i)

= (2β)−N E [f(V)] (4.19)

where V is Bin(N,α) distributed random variable. Consequently,

E
[
Pr

(
Z ≥ n+V

2

)]

(2β)N
≤ ρ(n) ≤ 2 · E

[
Pr

(
Z ≥ n+V

2

)]

(2β)N
.

22

4 Effect of Restarts

Our next two steps are to apply Theorem 3 and Theorem 5 to the upper and lower
bounds, respectively. The former can be done immediately. Theorem 5, however, is
not valid since the random variable (n + V)/2 can be smaller than nβ. But one can
write

E
[
Pr

(
Z ′ ≥ n+V

2

)]

(2β)N
≤ ρ(n) ≤ 2 ·

E
[

2βn
n+V

]

(2β)N
.

where Z ′ is Bin(n, α) distributed, because Pr
(
Z ′ ≥ n+V

2

)
< Pr

(
Z ≥ n+V

2

)
. Now

(n + V)/2 > nα and so Theorem 5 can be applied to the lower bound. In the upper
bound, we set V to its smallest value. This gives

Pr
(
Z ′ ≥ n+αN

2

)

(2β)N
≤ ρ(n) ≤ 2 · 2β

(2β)N
. (4.20)

The upper bound is now in a form whose growth rate is trivial. To deal with the
lower bound we require that limN→∞ Pr

(
Z ′ ≥ n+αN

2

)
> 0. This, for one, requires

that the ratio of n+αN
2 and the range of Z ′ limits to value smaller than one. In other

words

lim
N→∞

Pr
(

Z ′ ≥ n + αN

2

)
> 0⇐⇒ lim

N→∞
n + αN

2n
< 1

⇐⇒ lim
N→∞

[
1 +

αN

n

]
< 2

⇐⇒ lim
N→∞

αN

n
< 1

The requirement is fulfilled if n = ηN where η > α. Putting this together with
the condition of Eq. (4.14) we have that

ηN < n < N , η > α . (4.21)

Summing things up, assuming the condition (4.21) one can write the inequality (4.20)
in a form

ϑ

(2β)N
≤ ρ(n) ≤ 4β

(2β)N
(4.22)

where 0 < ϑ < 1 is a constant.

By the inequality (4.22) and Eq. (4.3),

n

4β
(2β)N ≤ E[T] ≤ n

ϑ
(2β)N , (4.23)

which with the condition (4.21) trivially implies

E[T] = O
[
(2β)N

]
= O

[
(2 · k − 1

k
)N

]
(4.24)

strictly.

23

4 Effect of Restarts

0 50 100 150 200 250 300 350 400
10

14

10
15

10
16

10
17

10
18

10
19

10
20

10
21

10
22

10
23

10
24

n
r

E
[T

]

k=3

k=4

k=5

Figure 4.3 Dependence of the expected time to absorption for Markov chain
{Xn} on the restart moment nr when α = 1/k and N = 100 (Equation (4.3)).
This corresponds to dependence of the worst-case run time of the restarting
RWA on the restart moment for k-SAT.

4.2 Optimal Timing

The goal of this section is to minimize the expected run time in Eq. (4.3) with
respect to nr. Figure 4.3 implies that the minimum exists and depends on k. We
denote the value of nr that yields the minimum by nopt. First thing to notice in
thinking about finding nopt is that Eq. (4.15) is valid for n < N only. Second, this
expression is convoluted and of a discrete variable, so it wouldn’t be very appealing
for minimization anyway. Therefore one must abide by approximative results.

First of all, we approximate Xn by Yn and thus consider the previous results valid
for all n ≥ 0. From Figure 4.3 is seen that the error of this approximation vanishes
when k ≥ 4 since nopt < N in those cases. Most probably, it also vanishes for k = 3
asymptotically as N grows.

The next approximation step involves the following theorem [7].

Theorem 6 (DeMoivre–Laplace). If X is a Bin(n, p) distributed random variable,
then for a fixed real number z

lim
n→∞Pr

(
X − np√

npq
≤ z

)
= Φ(z)

where q = 1− p and Φ(x) is the standard normal cumulative distribution function.

Proof. This is a special case of the central limit theorem [7, p. 244].

24

4 Effect of Restarts

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Pr
ob

ab
ili

ty

K=3
K=7
K=11
Φ(x)

Figure 4.4 Standard normal-CDF and its Taylor polynomials of degree K

Function Φ is seen in Figure 4.4. As a corollary of Theorem 6 one obtains an
approximation

Binn,p(x) ≈ Φ
(

x− np√
npq

)
, (4.25)

the error of which is guaranteed to vanish as n→∞ if x is of the form np + z
√

npq
where z is constant. We apply this approximation to Eq. (4.12), which yields

p
(n)
i,0 ≈ Φ

(
n−i
2 − βn√

βαn

)
+

(
α

β

)i
[
1− Φ

(
n+i
2 − βn√

βαn

)]

= Φ
(
−(2β − 1)n + i

2
√

βαn

)
+

(
α

β

)i [
1− Φ

(
−(2β − 1)n− i

2
√

βαn

)]

= Φ
(
−(β − α)n + i

2
√

βαn

)
+

(
α

β

)i

Φ
(

(β − α)n− i

2
√

βαn

)
. (4.26)

An alert reader probably noticed that the arguments of the binomial CDF in Eq. (4.12)
are not of the required form. This manifests itself in the fact that the arguments of
Φ in Eq. (4.26) depend on n. Consequently, nothing guarantees that the resulting
error will vanish asymptotically. However, approximation (4.25) even without the
precondition on x is very commonly used and proven fruitful.1

1Taylor and Karlin [35] write: “Intuition is sometimes enhanced by the looser statement that, for
large n, the sum Sn is approximately normally distributed with mean nµ and variance nσ2. In
practical terms we expect the normal distribution arise whenever the numerical outcome of an
experiment results from numerous small additive effects, all operating independently, and where
no single or small group of effects is dominant.”

25

4 Effect of Restarts

The argument to Φ in the second term of Eq. (4.26) is zero when n = i
β−α .

The argument in the first term, for one, is always negative and decreases limitlessly
when n grows, taking the term quickly to zero as is seen from Figure 4.4. Our third
approximation step to drop the first term in Eq. (4.26). Also use Eq. (3.12) to get

ρ(n) ≈ E

[(
α

β

)X0

Φ
(

(β − α)n−X0

2
√

βαn

)]
. (4.27)

Now Eq. (4.19) can be applied to this, yielding

ρ(n) ≈ (2β)−N E
[
Φ

(
(β − α)n− V

2
√

βαn

)]
. (4.28)

where V is Bin(N,α) distributed.

Two problems still remain in Eq. (4.28): How to deal with the expected value and
function Φ, for which no closed form expression exists. Fortunately, using Taylor
series offers a solution to both problems.

The standard normal-CDF has a Taylor series representation [8]

Φ(x) =
1
2

+
1√
2π

∞∑

k=0

(−1)k

2k(2k + 1)k!
x2k+1 . (4.29)

Truncating the series above results a Taylor polynomial b0 + b1x + . . . + bRxR. This
is plotted in Figure 4.4. As a fourth step, we approximate Eq. (4.28) with a form

ρ(n) ≈ (2β)−N E

[
R∑

k=0

bk

(
(β − α)n− Z

2
√

βαn

)k
]

= (2β)−N E

[
R∑

k=0

bk

(
1

2
√

βαn

)k k∑

l=0

(
k

l

)
[(β − α)n]k−l (−Z)l

]

= (2β)−N
R∑

k=0

bk

(
1

2
√

βαn

)k k∑

l=0

(
k

l

)
[(β − α)n]k−l (−1)l E

[
Z l

]

= (2β)−N
R∑

k=0

k∑

l=0

bk(
2
√

βα
)k

(
k

l

)
(−1)l(β − α)k−lµ,

ln
k
2
−l (4.30)

where µ,
l = E

[
Z l

]
is the lth moment of random variable Z.

At first glance, comparing Eq. (4.30) and (4.14) seems like getting out of the
frying pan into the fire. However, the effort of evaluating Eq. (4.30) is not only
constant with respect to N but also small—we will see shortly that as small as
R = 3 gives useful results.

As a fifth, and last, approximation step we utilize Theorem 6 again and replace
the binomial moments µ,

l by the corresponding normal moments, i.e. moments of
a Norm(αN,

√
αβN) distributed random variable; see Section A.2. The following

example will clarify all this.

26

4 Effect of Restarts

Example 2. Calculate an approximate for the optimal restart moment in case of
3-SAT and N = 200 by using Eq. (4.30) with K = 3.

Solution. First we have to calculate the Taylor coefficients bk and the moments µ,
k,

k = 0, . . . , 3. By Eq. (4.29)

b0 =
1
2

,

b1 =
1√
2π

1
1 · 1 · 1 =

1√
2π

,

b2 = 0 ,

b3 =
1√
2π

−1
2 · 3 · 1 = − 1

6
√

2π
.

Substituting µ = αN and σ =
√

αβN to the moments calculated in section A.2
gives

µ,
0 = 1 ,

µ,
1 = αN ,

µ,
2 = (αN)2 + αβN ,

µ,
3 = (αN)3 + 3β(αN)2 .

Substituting these into Eq. (4.30) with N = 200, α = 1/3, and β = 2/3 yields

ρ(n) ≈
(

3
4

)200 3∑

k=0

k∑

l=0

bk(
2
√

2
3

)k

(
k

l

)
(−1)l

(
1
3

)k−l

µ,
ln

k
2
−l

=
(

3
4

)200 (
128750
3
√

π
n−

3
2 − 2725

4
√

π
n−

1
2 +

1
2

+
27

8
√

π
n

1
2 − 1

192
√

π
n

3
2

)
.

Function n/ρ(n) as above is plotted in Figure 4.5. From the figure is seen that
the desired value is found at the second local extremum greater than zero.

Notice that a minimum of n/ρ(n) is maximum of ρ(n)/n and vice versa. Deriva-
tive of ρ(n)/n is

(
3
4

)200 d
dn

[
128750
3
√

π
n−

5
2 − 2725

4
√

π
n−

3
2 +

1
2
n−1 +

27
8
√

π
n−

1
2 − 1

192
√

π
n

1
2

]
=

(
3
4

)200 − 1
384n3 − 27

16n2 −
√

π
2 n3/2 + 8175

8 n− 321875
3√

πn7/2
.

Hence, we have to find the roots of the expression

f(n) =
1

384
n3 +

27
16

n2 +
√

π

2
n

3
2 − 8175

8
n +

321875
3

. (4.31)

From Figure 4.6 is seen that this has two real solutions. They are n ≈ 157.98 and
n ≈ 245.27. The answer is 245. ♦

27

4 Effect of Restarts

50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

x 10
27

n
r

E
[T

]

exact
R=3

Figure 4.5 Minimizable approximation of the expected time to absorption when
α = 1/3 and N = 200. The minimum is marked with a dot.

0 50 100 150 200 250 300 350
−2

0

2

4

6

8

10
x 10

4

245

255

n

f(
n)

Figure 4.6 Function (4.31) whose second positive root represents an approxi-
mate to nopt = 255 for α = 1/3 and N = 200

28

4 Effect of Restarts

50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

N

n op
t

k=5

k=4

k=3

exact
R=3

(a)

50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

N

n op
t

k=5

k=4

k=3

exact
R=7

(b)

Figure 4.7 Optimal restart moment; exact values and the approximations in-
volving Taylor polynomial of degree R

29

4 Effect of Restarts

In the previous example we maximized ρ(n)/n instead of minimizing n/ρ(n). This
is reasonable in general since the latter expression has poles in the domain of inter-
est. The former, for one, leads to a polynomial-like expression that is differentiable
everywhere and an easy bite for numerical root-finding.

A wider picture of the accuracy of this approximation is obtained from Figure 4.7.
The figure suggests that the dependence between nopt and N is linear and that the
approximative values are little smaller than the correct ones. Hence the approxi-
mative values should be multiplied with something like 1.1. Notice from Figure 4.3
that having the restart moment greater than the optimal value is better than having
it smaller.

On the grounds of Figure 4.7, we conclude that nopt fulfills the condition (4.21)
for k ≥ 4. Then Eq. (4.24) is valid providing an answer to the questions 1 and 3:
The growth rate with the optimal restart moment is strictly O

[
(2 · k−1

k)N
]
. For

k = 3 Figure 4.7 implies that N < nopt < 2N . In this case one has to rely on the
following conjecture.

Conjecture 1. Pr(Xn = 0) and Pr(Yn = 0) with α = 1
3 are polynomially related in

terms of N , if 0 ≤ n ≤ 2N .

Foundation. The conjecture is true for 0 ≤ n < N since Pr(Xn = 0) = Pr(Yn = 0)
in that case. For N ≤ n ≤ 2N it is true if Pr(X2N = 0) and Pr(Y2N = 0) are
polynomially related. Function f(N) = Pr(X2N=0)

Pr(Y2N=0) is plotted in Figure 4.8, which
strongly suggests that this is the case.

50 100 150 200 250 300 350 400 450 500
0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

1.0004

1.0006

1.0008

N

Pr
(X

2N
=

 0
)

/ P
r(

Y
2N

=
 0

)

Figure 4.8 Ratio of Pr(X2N = 0) and Pr(Y2N = 0), which are the 2N -step
absorption probabilities of Markov chains {Xn} (Figure 3.1) and {Yn} (Fig-
ure 4.2), respectively

Conjecture 1 implies that extending condition (4.21) to cover nopt for k = 3
results in a polynomial factor in the bounds of inequality (4.22), which does not
change Eq. (4.24).

30

5 Implementation Issues

Implementing the random-walk algorithm is straightforward. This chapter shortly
discusses the issue, especially how to exploit the ideas of this work in practice. Also
a new RWA variant, which might be useful in practice when there is absence of true
randomness, is proposed in Section 5.2.

5.1 Exploiting the Ideas

Implementations usually have the restart moment as a parameter set by the user.
Example 2 provides a procedure to calculate a setting that minimizes the expected
worst-case run time. This procedure should be straightforward to implement. It
involves solving an expression corresponding to Eq. (4.31) numerically with e.g. the
Newton’s method. Using a numerical optimization algorithm works as well. Be that
as it may, a starting point is needed. We will find such next.

Recall that the argument of Φ in Eq. (4.31) is zero when n = V
β−α . expected

value of this is

n =
α

β − α
N

=
N

k − 2
(5.1)

This point is special since it’s the inflection point of function Φ. It turns out that
this serves as a rough approximate to nopt.

A real-life SAT instance is hardly ever a clean k-SAT, but has variable length
clauses. This is not a problem. Notice that the only assumption about α = 1

k made
in Chapter 4 was α 6= 1

2 . That is to say, setting e.g. k = 2.31 or k = 5.94 is possible
indeed. This suggests calculating the average clause length and setting k accordingly.
In addition, probably one should not select the unsatisfied clause at random, but
select the shortest clause since this way the α at each step is maximized.

5.2 Complement Checking: A Second Try

Here the idea of complement checking is carried one step further. Take a look
at Algorithm 4. The difference between this and the normal RWA is that two
branches are traced interleaved. Again a random initial assignment a is drawn in
the beginning, but then an additional branch is initiated by assignment â which is
the complement, â = a. Then these two branches are traced independently. We will
call this complement tracing RWA (CTRWA).

31

5 Implementation Issues

Algorithm 4 Complement tracing RWA
1: procedure ctSearch(F, K)
2: a← randomly chosen truth assignment
3: â← a
4: for repeat K times do
5: if F (a) = true then
6: return a
7: else
8: c← randomly chosen unsatisfied clause in F (a)
9: s← randomly chosen atom of c

10: a← a except s flipped
11: end if
12: if F (â) = true then
13: return â
14: else
15: c← randomly chosen unsatisfied clause in F (â)
16: s← randomly chosen atom of c
17: â← â except s flipped
18: end if
19: end for
20: return false
21: end procedure

An appropriate measure of the algorithm state after the n:th for cycle would be
X̂n = min[d(a, a∗),d(â, a∗)], where a∗ is the model. The idea in CTRWA is that
Pr(X̂0 ≤ 1

2) = 1 whereas for two independent starts it would be only 3/4. Since one
for cycle in Algorithm 4 takes two flips, the n-step absorption probability ρ̂(n) is

ρ̂(2n) =
N∑

i=0

ωi[1− (1− p
(n)
i,0)(1− p

(n)
N−i,0)]

=
N∑

i=0

ωi

[
1−

(
1− p

(n)
N−i,0 − p

(n)
i,0 + p

(n)
i,0 p

(n)
N−i,0

)]

=
N∑

i=0

ωip
(n)
N−i,0 +

N∑

i=0

ωip
(n)
i,0 −

N∑

i=0

ωip
(n)
i,0 p

(n)
N−i,0 |ωi = ωN−i

=
N∑

i=0

ωip
(n)
i,0 +

N∑

i=0

ωip
(n)
i,0 −

N∑

i=0

ωip
(n)
i,0 p

(n)
N−i,0

= 2ρ(n)−
N∑

i=0

ωip
(n)
i,0 p

(n)
N−i,0 . (5.2)

Function ρ̂(n) is, after a small threshold, greater than ρ(n), meaning the CTRWA
performs better if no restarts are present. However, the difference vanishes as N
grows. With restarts the situation is the opposite. Namely, if the algorithm is

32

5 Implementation Issues

restarted every n̂r cycles, i.e. every 2n̂r flip, the expected run time is

E [T] =
2n̂r

ρ̂(2n̂r)
| Eq. (5.2)

>
2n̂r

2ρ(n̂r)
=

n̂r

ρ(n̂r)
(5.3)

where the difference between the right and the left side of the inequality vanishes as
N grows. This is because the positive term in Eq. (5.2) dominates the negative one.
Hence, the RWA and CTRWA are asymptotically equivalent.

There is, however, another aspect supporting the CTRWA. Namely producing
true randomness is very difficult, and in practice one has to abide by pseudo random
numbers. As a result, the distribution of X0 is perturbed with E[X0] = N/2+err. If
err happens to be positive, this decreases the performance. Using the complement
tracing scheme, however, makes the algorithm immune to a bias in E[X0].

33

6 Experiments

In this chapter the random-walk algorithm is studied empirically. We run a RWA
implementation upon some problem instances and compare the observed behavior
to the one predicted by the stochastic model developed in Section 3.1.

6.1 Description

Methodology

Instead of measuring run times with different restart moments, we utilize a more
elegant scheme similar to what is used in [14]. Run times are recorded in flips
instead of CPU seconds since this makes the experiments independent of the under-
lying machinery and, thus, reduces error sources as well as makes the results more
comparable.

The total number of flips in a successful run is T = nr(S− 1)+L where nr is the
restart moment, S is the number tries (S − 1 is the number of restarts), and L the
number of flips since the last restart. The expected value and the variance of T are
thus

E [T] = E [nr(S − 1) + L]
= nr (E [S]− 1) + E [L] (6.1)

and

Var[T] = Var [nr(S − 1) + L]
= Var [nr(S − 1)] + Var [L] + 2Cov[nr(S − 1), L]

= n2
r Var [S] + Var [L] + 2nr Cov[S, L] , (6.2)

respectively, where appropriate calculation rules [29, p. 413] were used. Parameters
E [S] and Var [S], E [L] and Var [L], and Cov[S,L] (covariance) are determined by
experiments.

In order to obtain random samples from random variables S and L, the algorithm
is run with a restart moment R and a time-out K until it finds a model (K sufficiently
large), and the values of S and L are recorded. This is repeated M times. Suppose
values s1, . . . , sM and l1, . . . , lM are observed. These sequences represent random
samples of random variables S and L, respectively, in the case of nr = R. The
sample size is M . Nonetheless, samples for cases nr < R can be extracted from
this same data. Suppose values s1 = 931, s2 = 586 and l1 = 311, l2 = 147 are
observed when R = 400. Notice that the outcome would have been the same even if
R had been 399 or anything between 311 and 400. Hence, these are valid samples for
311 ≤ nr ≤ 400. If R had been between 147 and 310, there had been one successful

34

6 Experiments

Table 6.1 Problem instances used in the experiments

name N k clauses solutions

aim-50-1 6-yes1-2 50 3 80 1
aim-50-1 6-yes1-4 50 3 80 1
aim-50-2 0-yes1-1 50 3 100 1

G3-50-250-1 50 3 250 1

run with s1 = 931 + 586 and l1 = 147. Hence the data contains one sample pair,
s1 = 1517 and l1 = 147, for 147 ≤ nr ≤ 310. Case nr < 147 cannot be addressed by
this data.

The previous procedure generalizes as follows. Suppose that samples s1, . . . , sM

and l1, . . . , lM are observed with a setting nr = R. For each nr ≤ R one obtains
samples ŝ1, . . . , ŝm and l̂1, . . . , l̂m by first forming a sequence a which enumerates
the indexes at which li ≤ nr, that is a = {i | li ≤ nr }. Then ŝ1 =

∑a1
i=1 si, ŝj =∑aj

i=aj−1+1 si, j = 2, . . . , m, and l̂j = laj . The sample size is m = |a|. Now one
can calculate the expected value and the variance of S and L, Cov[S,L], and thus
quantities (6.1) and (6.2) for each nr ≤ R.

Problem Instances

In order to verify the previous calculations by experiments, one needs also problem
instances that are as close to the theoretical worst case as possible. Hence we
are seeking problem instances having a unique solution. Such are found in the
AIM instance set of the DIMACS benchmark collection [15] and a set provided by
M. Motoki and O. Watanabe as a sample of their unique solution instance generator
[19]. We confine ourselves to the case N = 50 since neither of the second smallest
cases available in these sets (N = 100, N = 75) could be solved in a reasonable
time. In addition, only 3-SAT instances are available. From the AIM subset having
N = 50, three instances that describe well the whole subset are presented here. The
selected instances are listed in Table 6.1.

Implementation

As an implementation served Walksat version 45 [17], which has a parameter -
random for selecting a pure random-walk heuristic.

6.2 Results

The tests were run on a PC with 2.4 GHz CPU and 1 GB RAM. The program
reported around 1.5 · 106 flips per second tops, which means 11.3 seconds for the
hardest of the problem instances in Table 6.1. For each instance, the expected run
time as a function of restart moment is calculated by Eq. (6.1) and the result is
plotted in Figure 6.1. The minimum point of this function as well as the standard

35

6 Experiments

0 100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

12

14

16

18
x 10

8

n
r

E
[T

]

Calculated worst case

(a)

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

7

n
r

E
[T

]

aim−50−1_6−yes1−2

(b)

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

7

n
r

E
[T

]

aim−50−1_6−yes1−4

(c)

0 500 1000 1500 2000 2500 3000 3500 4000
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

n
r

E
[T

]

aim−50−2_0−yes1−1

(d)

0 500 1000 1500 2000 2500 3000 3500 4000
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

n
r

E
[T

]

G3−50−250−1

(e)

Figure 6.1 Expected run time versus restart moment calculated (a) and deter-
mined by experiments (b-e) in case of N = 50 and k = 3.

36

6 Experiments

Table 6.2 Experiment results

Setting Results
instance R M nopt E[Topt]

√
Var[Topt] Fig.

aim-50-1 6-yes1-2 1000 1000 114 1.7009 · 107 1.6992 · 107 6.1b
aim-50-1 6-yes1-4 1000 1000 185 1.0928 · 107 1.1288 · 107 6.1c
aim-50-2 0-yes1-1 4000 2000 3681 1.3380 · 106 1.4092 · 106 6.1d

G3-50-250-1 4000 2000 1666 2.1975 · 106 2.2171 · 106 6.1e

calculated worst case 61 1.4423 · 108 1.4423 · 108 6.1a

deviation at this point are seen in Table 6.2. The same quantities calculated by
Eq. (4.3), (4.4) and (3.13) are included for verification.

According to Table 6.2, the greatest expected run time observed (aim-50-1 6-
yes1-2) is almost thirteen times greater than the smallest one (aim-50-2 0-yes1-1),
so there is great variations in hardness of solving with RWA among different instances
even if they have the same clause length and the same number of solutions. These
variations are probably difficult to determine a priori. From Figure 6.1 is seen that
the greater the runtime is, the closer to the calculated worst case is the curve shape.
The instance that was observed as the hardest shows behavior (Figure 6.1b) pretty
similar to the calculated worst case (Figure 6.1a), although the run time of the latter
is still about eight times greater than that of the former. The standard deviation,
for one, seems what the theory predicts being about equal to the run time.

The observed optimal restart moment depends heavily on the observed instance
hardness. The hardest has it still somewhat larger that the calculated worst case,
which is no wonder considering the difference in their run times. The performance
for the easiest instance seems very robust with respect to the restart moment as
long as it is greater than about 10N . Notice that even if the restart moment is set
according to the hardest instance, nr = 114, the easiest still remains pretty easy
having E[T] ≈ 2.5 · 106. Also the rest of the four AIM instances having N = 50 and
80 clauses were tested, but their curves were very similar to those in Figures 6.1b
and 6.1c.

In the light of this evidence, the experimental findings support the used stochastic
model but suggest that the theoretical worst case is too pessimistic in practice. This
is no wonder recalling the fact that the analysis is based on assuming the probability
of a successful flip being 1/k. But since we are talking about millions of flips, the
worst-case scenario is unrealizable in practice. Making conjectures about a practical
worst case or an average case would require more extensive experiments though.

37

7 Conclusions

An important aspect in understanding the random-walk algorithm for SAT is the
fact that its capability rely heavily on restarts. Even though an existing model is
found eventually with or without restarts (Theorem 2), without them the algorithm
is reasonable, i.e. faster than just enumerating all the possibilities, for 2-SAT only
(Section 3.2). For k-SAT, k ≥ 3, if nopt denotes the restart moment that minimizes
the expected worst-case run time E[T], then nopt is of the same order than N , which
is the number of variables.

Key results of this work are the following two: nopt is solved approximately
(Section 4.2), and E[T] with nopt is shown to be O

[
(2k−1

k)N
]

strictly (Definition 4
on page 8) for the exponential part (Section 4.1.2). The former should contribute
directly to actual implementations, which have lacked a method for determining a
good restart moment parameter [14, p. 32]. The latter extends the result of Schöning
[30, 31], who showed this upper bound for a specific non-optimal restart moment.
Papadimitriou’s [21] result E[T] = O(N2) for 2-SAT is confirmed too (Section 3.2).
The standard deviation is shown to be almost as large as E[T] (p. 16), which explains
the noticeable chance fluctuations in the run time.

From the fact that nopt = O(N) follows that the number of restarts needed is
O

[
(2k−1

k)N
]

too. How this should be interpreted? Well, it behooves one to seek
a nearly satisfying initial assignment rather than trusting the ability of the actual
search to turn an arbitrary assignment into a model (although it is capable of that).
If nopt steps were taken without success, the initial assignment obviously wasn’t good
enough and a new one is drawn by restarting the search. Improving the algorithm
thus involves improving either the initial assignment selection or the search itself (or
both of course). A scheme for the former is presented and analyzed in [13]. The
Walksat procedure [32] does the latter. More sophisticated search probably causes
the optimal restart moment being bigger.

The stochastic model of the algorithm, on which the analysis is based on, is a
Markov chain (Section 3.1). Theory of Markov chains provides means to calculate
exact values of E[T], nopt, and other quantities for a fixed N and k by utilizing
matrices. The approximations needed for addressing the general case can be verified
this way. This scheme, however, becomes laborious for a large N as it involves
calculating powers of an N + 1 × N + 1 matrix. Cases N up to about 500 can
be addressed by a 2.2 GHz workstation. Matlab code for doing this is provided in
Appendix B.

The experimental findings (Chapter 6) support the developed stochastic model
but suggest that the theoretical worst case is too pessimistic in practice, as is usual
in algorithm analysis. Consequently, the optimal restart moment is somewhat big-
ger. Being more explicit requires more experiments. A subject for a further study
could be analyzing the search with problem–solution pairs step by step recording

38

7 Conclusions

the success probability α at each flip. The aim would be determining such constant
α that fits best in the findings. As long as α is constant throughout the search, one
obtains the optimal restart moment by calculating nopt with this value.

Another thing worth studying might be whether there exists a heuristic method
of deciding with high probability, given a truth assignment a, which one, a or its
complement a, is closer to a model. This knowledge would halve the run time since
tracing both branches of the complement tracing RWA (Section 5.2) would be no
longer necessary. Counting the number of satisfied clauses might be a candidate.

39

Bibliography

[1] Sven Baumer and Rainer Schuler. Improving a probabilistic 3-SAT Algorithm
by Dynamic Search and Independent Clause Pairs. Electronic Colloquium on
Computational Complexity, Report No. 10, 2003. http://eccc.uni-trier.de/eccc/.

[2] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic Model Check-
ing Using SAT Procedures instead of BDDs. In Proceedings of the 36th Design
Automation Conference (DAC), pages 317–320. ACM/IEEE, ACM, 1999.

[3] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying Safety Properties of a
PowerPC Microprocessor Using Symbolic Model Checking without BDDs. In
11th International Conference on Computer Aided Verification (CAV), number
1633 in Lecture Notes in Computer Science, pages 60–71. Springer–Verlag, 1999.

[4] D. R. Cox and H. D. Miller. The Theory of Stochastic Processes. Chapman and
Hall, 1978.

[5] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem proving. Communications of the ACM, 5:394–397, 1962.

[6] N. G. de Bruijn. Asymptotic Methods in Analysis. North-Holland Publishing
Company, third edition, 1970.

[7] William Feller. An Introduction to Probability Theory and Its Applications,
volume 1. John Wiley & Sons, third edition, 1968.

[8] M. Fogiel, editor. Handbook of Mathematical, Scientific and Engineering For-
mulas, Tables, Functions, Graphs, Transforms. Staff of Research and Education
Association, 1988.

[9] John Franco. Some interesting research directions in satisfiability. Annals of
Mathematics and Artificial Intelligence, 28:7–15, 2000.

[10] Ian P. Gent and Toby Walsh. The search for Satisfaction. Internal report,
Department of Computer Science, University of Strathclyde, 1999.

[11] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting Combinatorial
Search Through Randomization. In Proceedings of the 15th National Conference
on Artificial Intelligence, pages 431–437. American Association for Artificial In-
telligence (AAAI), 1998.

40

Bibliography

[12] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algorithms for
the Satisfiability (SAT) Problem: A Survey. In Satisfiability Problem: Theory
and Applications, volume 35 of DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science, pages 19–151. American Mathematical Society,
1997.

[13] Thomas Hofmeister, Uwe Schöning, Rainer Schuler, and Osamu Watanabe.
A probabilistic 3-SAT algorithm further improved. In Proceedings of the 19th
Symposium on Theoretical Aspects of Computer Science (STACS), number 2285
in Lecture Notes in Computer Science, pages 192–202. Springer–Verlag, 2002.

[14] Holger H. Hoos and Thomas Stützle. Local Search Algorithms for SAT: An
Empirical Evaluation. Journal of Automated Reasoning, 24(4):421–481, 2000.

[15] Holger H. Hoos and Thomas Stützle. SATLIB: An Online Resource for Research
on SAT. In Ian P. Gent, Hans van Maaren, and Toby Walsh, editors, SAT 2000,
pages 283–292. IOS Press, 2000. Available online at www.satlib.org.

[16] Kazuo Iwama and Suguru Tamaki. Improved Upper Bounds for 3-SAT.
Electronic Colloquium on Computational Complexity, Report No. 53, 2003.
http://eccc.uni-trier.de/eccc/.

[17] Henry Kautz. Walksat version 45, 2004. A computer program available at
http://www.cs.washington.edu/homes/kautz/walksat/ (August 5 2004).

[18] Inês Lynce and João Marques-Silva. Building State-of-the-Art SAT Solvers. In
Proceedings of the European Conference on Artificial Intelligence (ECAI). IOS
Press, 2002.

[19] M. Motoki and O. Watanabe. Sample Instances, 1999. Files available at
http://www.is.titech.ac.jp/˜watanabe/gensat/a1/#sample (August 5 2004).

[20] Anil Nerode and Richard A. Shore. Logic for Applications. Springer, second
edition, 1997.

[21] Christos H. Papadimitriou. On selecting a satisfying truth assignment. In Pro-
ceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 163–169. IEEE, 1991.

[22] Christos H. Papadimitriou. Computational Complexity. Addison–Wesley, 1994.

[23] Emanuel Parzen. Stochastic processes. Holden–Day, 1962.

[24] R. Paturi, P. Pudlàck, M. E. Saks, and F. Zane. An improved exponential-
time algorithm for k-SAT. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science (FOCS), pages 628–637. IEEE, 1998.

[25] N. U. Prabhu. Stochastic Processes. The Macmillan Company, 1965.

[26] Sheldon M. Ross. Stochastic Processes. John Wiley & Sons, second edition,
1996.

41

Bibliography

[27] Sheldon M. Ross. Introduction to Probability Models. Academic Press, sixth
edition, 1997.

[28] Sheldon M. Ross. Introduction to Probability Models. Academic Press, eighth
edition, 2003.

[29] Lennart R̊ade and Bertil Westergren. Mathematics Handbook for Science and
Engineering. Studentlitteratur, fourth edition, 1998.

[30] Uwe Schöning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction
Problems. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS), pages 410–414. IEEE, 1999.

[31] Uwe Schöning. A Probabilistic Algorithm for k-SAT Based on Limited Local
Search and Restart. Algoritmica, 32:615–623, 2002.

[32] Bart Selman, Henry Kautz, and Bram Cohen. Noise Strategies for Improving
Local Search. In Proceedings of the 12th National Conference on Artificial Intel-
ligence, pages 337–343. American Association for Artificial Intelligence (AAAI),
1994.

[33] Bart Selman, Hector Levesque, and David Mitchell. A New Method for Solving
Hard Satisfiability Problems. In Proceedings of the 10th National Conference
on Artificial Intelligence, pages 440–446. American Association for Artificial
Intelligence (AAAI), 1992.

[34] Eugene Seneta. Non-negative matrices and Markov chains. Springer, New York,
second edition, 1981.

[35] Howard M. Taylor. An Introduction to Stochastic Modeling. Academic Press,
third edition, 1998.

[36] B. Weesakul. The Random Walk Between a Reflecting and an Absorbing Bar-
rier. The Annals of Mathematical Statistics, 32(3):765–769, 1961.

42

Appendix A

A.1 Schöning’s Expression

Equality between Eq. (4.12) and Schöning’s equivalent [31, p. 4] is shown in this
section.

If the distribution of the first passage time to zero is known, one can calculate
the n-step absorption probabilities by the identity

p
(n)
i,0 =

n∑

k=0

Pr(T = k|X0 = i) . (A.1)

Since state zero is absorbing we have that

Pr(T = n|X0 = i) = αp
(n−1)
i,1 | Eq. (4.11)

= α

[
binn−1,β

(
n− i

2

)
−

(
α

β

)i

binn−1,β

(
n + i

2

)]

= α

[(
n− 1

n−i
2

)
β

k−i
2 α

k+i
2
−1 −

(
α

β

)i (n− 1
k+i
2

)
β

k+i
2 α

k−i
2
−1

]

=
(

n− 1
n−i
2

)
β

n−i
2 α

n+i
2 −

(
n− 1

n−i
2 − 1

)
β

n−i
2 α

n+i
2

=
n + i

2n

(
n

n−i
2

)
β

n−i
2 α

n+i
2 − n− i

2n

(
n

n−i
2

)
β

n−i
2 α

n+i
2

=
i

n

(
n

n−i
2

)
β

n−i
2 α

n+i
2 , 0 < n < N . (A.2)

Substituting this into Eq. (A.1) yields

p
(n)
i,0 =

n∑

k=1

i

k

(
k

k−i
2

)
β

k−i
2 α

k+i
2

=

n−i
2∑

j= 1−i
2

i

2j + i

(
2j + i

j

)
βjαj+i , n < N , (A.3)

So now

Pr(Xn = 0) =
N∑

i=0

Pr(X0 = i) p
(n)
i,0

= 2−N
N∑

i=0

(
N

i

) n−i
2∑

j= 1−i
2

i

2j + i

(
2j + i

j

)
βjαj+i , n < N , (A.4)

43

Appendix A

which is the expression that Schöning used.

A.2 Normal Moments

The kth moment (about the origin) of random variable X is defined by

µ,
k = E[Xk] . (A.5)

They are obtained from the moment generating function mX(s) of X by

µ,
k =

[
dk

dsk
mX(s)

]

s=0

. (A.6)

The moment generating function of Norm(µ, σ) distributed X reads [29, p. 422]

mX(s) = eµs+(σs)2 . (A.7)

Calculating few of them give

µ,
0 = 1 ,

µ,
1 = µ ,

µ,
2 = µ2 + σ2 ,

µ,
3 = µ3 + 3µσ2 ,

µ,
4 = µ4 + 6µ2σ2 + 3σ2 ,

µ,
5 = µ5 + 10µ3σ2 + 15µσ4 ,

µ,
6 = µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6 ,

µ,
7 = µ7 + 21µ5σ2 + 105µ3σ4 + 105µσ6 .

44

Appendix B Matlab Code

Here the key results are presented as Matlab code. Many of the figures were gener-
ated utilizing these functions.

Function pmat returns the right-hand side of Eq. (3.9).

function P = pmat(N,k)

% One-step transition probability matrix

a = 1/k;
b = 1-a;

P = diag(ones(N,1),-1);
P = a*P + b*transpose(P);

P(1,1) = 1;
P(1,2) = 0;
P(end,end-1) = 1;

Function initp returns the initial distribution vector ω as in Eq. (3.3a).

function p = initp(N)

% Initial probability distribution

p = binopdf(0:N,N,1/2);

Function prob calculates the ρ(n) as in Eq. (3.13).

function r = prob(n,N,k)

% n-step absobtion probability

P = pmat(N,k);
w = initp(N);
p = w * P^round(n);
r = p(1);

Function probY calculates Pr(Yn = 0) as in Eq. (4.14).

45

Appendix B Matlab Code

function y = probY(n,N,k)

% n-step absorption probability of Markov chain Y

a = 1/k;
b = 1-a;
i = 0:N;

v=binocdf((n-i)/2,n,b)+(a/b).^i.*(1-binocdf((n+i)/2,n,b));

% The following is needed to patch an error in ’binopdf’;
% the possible NaN’s are replaced by zeros.
v1=v1(1:1+min([n,N]));
v1=horzcat(v1,zeros(1,N-min([n,N])));

y = initp(N)*v1’; % Total probability

Function optimum finds the minimum n/ρ(n) (Eq. (4.3)).

function [v,i] = optimum(N,k)

% Finds minimum of n/prob(n,N,k)

% interval to search within
b1 = round(N/(k-2));
b2 = 2*N;

len = b2-b1+1;
y = zeros(1,len);

P = pmat(N,k);
p = initp(N) * P^b1;

y(1) = b1/p(1);
for j = 2:len

p = p*P;
y(j) = (b1+j-1)/p(1);

end

[v,j] = min(y);

if j==1 | j==len
v=-1;
i=-1;

else
i=b1+j-1;

end

46

Appendix B Matlab Code

Function rootfunc returns an expression corresponding to the right-hand side of
Eq. (4.31).

function y = rootfunc(n,N,k,T)

% Function whose root represents approximate n_opt

a = 1/k;
b = 1-a;

% Moments
myy = 0:T;
syms x;
for i = 0:T

m = exp(a*N*x + a*b*N/2*x^2);
myy(i+1) = subs(diff(m,’x’,i),x,0);

end

% Taylor coefficients
coef = zeros(size(myy));
coef(1) = 1/2;
for i = 0:floor((T-1)/2);

coef(2*i+1+1) = 1/sqrt(2*pi) * (-1)^i/(factorial(i)*2^i*(2*i+1));
end

% The root-function
r = 0;
for i = 0:T

h = 0;
for j = 0:i

h = h + mfun(’binomial’,i,j)*(-1)^j*(b-a)^(i-j)*myy(j+1)*x^(i/2-j-1);
end
r = r + coef(i+1)/(2*sqrt(b*a))^i*h;

end
r = diff(r,’x’);
r = -sqrt(pi)*x^(T/2+2)*r;
r = simplify(r);
y = subs(r,x,n);

Function optimum_app returns an approximate nopt by finding a root of the ex-
pression that rootfunc returns.

function i = optimum_app(N,k,T)

% approximate n_opt

i=fzero(@rootfunc,[N/(k-2),2*N/(k-2)],[],N,k,T);

47

