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Chapter 1IntrodutionWith eah passing year software systems are beoming more and more ompliated.The more ompliated they beome, the harder it is to ahieve bug-free systems.Formal veri�ation methods [11℄ like model heking [12℄ have been developed forahieving better quality produts. Although model heking tehniques have beenapplied diretly to the soure ode of software system [14, 37, 8, 27℄, it is ommon toonstrut a model representing the logi of the system while hiding some of the detailsin the real system and then apply model heking programs [9, 29℄ to the onstrutedmodel.One widely used modelling language used for modelling of software systems is Uni-�ed Modelling Language (UML) [2, 1℄. The researh resulting in this thesis has beendone in the Symboli Methods for UML Behavioural Diagrams (SMUML) projet de-veloping model heking tehniques for UML models in the Laboratory for TheoretialComputer Siene at Helsinki University of Tehnology. Thus all the tehniques de-sribed in this thesis have been developed to be part of a model heking frameworkfor UML models. In this thesis we fous on UML features for speifying the behav-ior of systems: systems are supposed to be desribed with objets of lasses whosebehavior have been desribed with state mahines. The UML does not �x an ationlanguage for state mahines. A Java-like ation language Jumbala [18℄ is used as anation language of state mahines.The huge size of the state spae all but the smallest systems tend to have is a majorproblem for model hekers [36℄. Di�erent abstration tehniques have been developedto takle this state spae explosion problem. The idea in abstration tehniques is tosimplify the model in order to redue the state spae of the model. The simpli�ationis onstruted in suh a way that some of the harateristis of the original modelare preserved and thus it is possible to prove some properties from the original modelby using the abstrated model. In the SMUML projet we onsidered the use oftwo ommonly used abstration tehniques. These tehniques are prediate and dataabstration. In SMUML projet data abstrations were hosen (for the reasons, seeChapter 3).Intuitively in data abstrations the domains of variables are replaed with abstratdomains having smaller size than the original ones. For example all negative integervalues an be represented by a single value in the abstrat domain. It is lear thatabstrat operators, for example addition, need to be de�ned for abstrat domains1



beause the abstrat values store only partial information on the values whih appearin atual omputations. Two logial ways of de�ning abstrat operators are to de�nethe operators as over-approximations or under-approximations. Over-approximativelyde�ned operators produe all the possible outomes of an operation, for example withan addition of a negative and a positive integer the outome might be negative, zeroor positive. Over-approximative abstrations do not lose behavior in the abstrationthough they might add it. On the other hand under-approximative abstrations do notadd any extra behavior, but they might lose behavior in the abstration. For examplethe addition between a negative and a positive integer an not result negative, zero,nor positive value beause none of the results is guaranteed to orrespond to theresult of an unabstrated operation. Data abstration an be implemented usingvalue latties [15℄ or with non-deterministi operators [26, 24℄, the latter being ourhoie.Our data abstrations are over-approximative abstrations meaning that no be-havior in the original model is lost in the abstration but instead the abstrat modelmay ontain extra behavior with no orresponding behavior in the original model. Ifa data abstrated model annot violate any assertions or perform impliit messageonsumptions, the original model annot do so either [13℄.The drawbak of the over-approximative data abstration is that a ounterexam-ple demonstrating a property violation in the abstrat model does not allow us toautomatially onlude that there is an exeution violating the property in the orig-inal model. The ounterexample might demonstrate a property violating exeutionutilizing the extra behavior introdued by the abstration. Counterexamples demon-strating exeution not possible in the original model are alled spurious or infeasibleand ounterexamples demonstrating a real property violation in the original modelare alled true or feasible. Feasibility analysis [33℄ is used for reognizing true oun-terexamples from the spurious ones.When the model heker gives us a spurious ounterexample it annot be deduedwhether the properties hold in the original model or not. The extra behavior intro-dued by the abstration makes the spurious ounterexample possible. The existeneof the spurious ounterexample in the abstrat model prevents us from getting moreonlusive results. To get more onlusive results a new abstration with no possi-bility for the spurious ounterexample an be reated. Beause the ourrene of thespurious ounterexample was made possible by the extra behavior introdued by theabstration, a logial step is to make a new abstration suh that it does not inludethe extra behavior whih made the spurious ounterexample possible in the �rst plae.The old abstration an be used as a starting point for the new abstration. Ab-stration re�nement [10℄ is a proess of modifying the old abstration so that it moreaurately aptures the behavior of the original model. The re�nement an be madeby hand or, with a suitable algorithm, automatially. To ahieve good results with themanual approah the person re�ning the abstration has to have an understandingof the abstration tehnique used, the old abstration, the spurious ounterexampleand the original model. In other words re�ning the abstration manually requiresmuh detailed knowledge. With automati abstration re�nement a fully automatimodel heking proedure utilizing abstrations an be onstruted. It an be left toalulate its results unsupervised and if it enounters a spurious ounterexample it2



re�nes the abstration automatially. After the alulation is done we have either atrue ounterexample demonstrating a real property violation in the original model orwe have veri�ed that the properties hold in the original model. Though in the realworld, after the re�nement the abstrat model an have too large a state spae andthe model heking fails due to the lak of su�ient resoures, or even the re�nementproedure an fail.Until now there has not been an automati re�nement for data abstrations. Ex-isting work on data abstrations only mentions that re�nement is needed in order toontinue the model heking proedure when spurious ounterexamples are enoun-tered but desribe no method for the atual re�nement (see, for example, [33℄). Ourgoal was to develop algorithms for the analysis of spurious ounterexamples and �nallytry to develop an automati re�nement algorithm based on the analysis algorithms.We introdue the notion of a relevant loation for desribing important variables indi�erent objets whih ontribute to the ourrene of the spurious ounterexample.The proess of determining relevant loations starts with an analysis to the point ofexeution where the onrete model does not have any enabled event orrespondingto the abstrat ounterexample. This analysis �nds initial relevant loations whihserve as a starting point for our analysis. Next, from the initial relevant loations wepropagate relevant loations to other points of the ounterexample trae using data�ow analysis [30℄ shaped to this purpose. The data �ow analysis an be thought of asapplying program sliing [39, 35, 40℄ to the ounterexample. The relevant loationsguide the re�nement to be done to the variables whose abstrat domains' impreision(introdued by abstration) introdued the extra behavior ausing the existene ofthe spurious ounterexample.We have also developed an algorithm for �nding re�nements for interval abstra-tions, a subset of data abstrations. An interval abstration splits the set of integersto a set of intervals suh that every integer belongs to one of the intervals and no in-teger belongs to two distint intervals. A suitable re�nement ompromising betweenthe likelihood that the abstration is re�ned enough to remove the spurious oun-terexample and not too muh to ause state spae explosion is found by analyzing theexpressions a�eting the values of the relevant loations. The re�nement splits thedomains in the interval abstrated variables to smaller intervals from suitable plaes.This thesis begins with a de�nition of a notion for a simple state mahine modelwhih will be used throughout the thesis as a target for all the algorithms. Thisnotion aptures all the important features of UML models with respet to our algo-rithms. The state mahine model is introdued in Chapter 2. Chapter 3 desribes themodel heking proedure with abstrations and the abstrations used in this thesis.Feasibility analysis is desribed in Chapter 4. Methods for alulating relevant loa-tions and re�nement for interval abstrations are desribed in Chapter 5. Chapter 6desribes the atual implementation and the relationship between the state mahinemodels used in this thesis and the UML 1.4 models. Finally, in Chapter 7 we sum-marize the earlier hapters and disuss possible improvements and urrent problemsin the tehniques desribed in the thesis.
3



Chapter 2State Mahine ModelSystems examined in this thesis are desribed with models. Our de�nition for a modelhas a lot of similarities with UML 1.4 [1℄ models beause the tehniques desribed inthis thesis have been designed and implemented for a subset of UML 1.4. Howeverwe did not want to desribe our algorithms using UML models beause UML modelsontain a lot of unimportant detail in regard to tehniques desribed in this thesis.Conversion from the subset of UML 1.4 models used in the SMUML projet to themodel formalism used in this thesis is straightforward (desribed in Setion 6.3).A model ontains a set of ative objets (instantiated from lasses) ommuniatingasynhronously with eah other by sending messages or via shared variables. Everymessage has a type and a list of message parameters. Objets an also reeive externalmessages from the environment. Every lass ontains a set of variables and a statemahine that desribes the behavior of the objets instantiated from it. Besides thevariables desribed by the lass, objets have an input queue for storing messages sentto the objet and a defer queue for deferred messages.A global on�guration de�nes values of the variables, ontent of the queues, andative states in a model. Events modify the global on�guration of a system.A state mahine onsists of states and transitions between the states. One of thestates is an initial state. Transitions have three omponents: a trigger, a guard anda list of e�et statements. Eah one of the omponents may be omitted. The triggerreeives message of a signal spei�ed in the trigger from the input queue of the objetthe state mahine belongs to. The guard is a boolean expression. A transition isenabled if the objet an reeive a message of a signal spei�ed in the trigger of thetransition and the guard evaluates to true after the message has been reeived. Thetransition an be exeuted if it is enabled. Then the message is reeived and removedfrom the input queue of the objet and message parameters are assigned to variablesde�ned by the trigger. Statements in the e�et of the transition are exeuted afterthe message has been reeived.There are three di�erent kinds of statements: assignments, statements for sendingmessages and assertions. Assignments assign a value of an expression to a variable,statements for sending messages send a message to one of the objets in the model,and assertions ause a runtime error if the boolean expression assoiated with anassertion evaluates to false.If an objet has no transition enabled in the global on�guration, it an either4



impliitly onsume the �rst message in its input queue or defer the reeption of themessage by moving it to the defer queue of the objet. For messages of eah signaleither impliit onsumption of deferring is allowed depending on the ative state.2.1 Formal De�nition of a ModelIn the following de�nition of a model (and also later in the thesis) the followingfuntions will be used for sequenes and sequene manipulation. A �nite sequene ofelements x1, . . . , xn is written as 〈x1, . . . , xn〉. In�nite sequenes are not needed in thisthesis, from now on we refer to �nite sequene simply by sequene. The empty se-quene is 〈〉, every other sequene is non-empty. Funtion head(〈x1, x2, . . . , xn〉) = x1gives the �rst element in the non-empty sequene. Funtion tail(〈x1, x2, . . . , xn〉) =
〈x2, . . . , xn〉 gives the sequene with its �rst element removed for non-empty sequenes.Funtion last(〈x1, x2, . . . , xn〉) = xn gives the last element in the non-empty sequene.Funtion append(〈x1, . . . , xn〉, y) = 〈x1, . . . , xn, y〉 gives the original sequene with anelement added to the end of the sequene. Funtion concat(〈x1, . . . , xn〉, 〈y1, . . . , ym〉) =
〈x1, . . . , xn, y1, . . . , ym〉 onatenates two sequenes.2.1.1 Types, Variables, and ExpressionsA type d is a set {v1, . . . , vn} of possible values. For example a boolean type isboolean = {true, false}, and 32-bit integer type is int = {−231,−231+1, . . . , 231−1}.A type is oerible to another type if every value in the type an be representedunambiguously as a value of the other type. For example integers in the programinglanguage C an be thought to be oerible to boolean values in a way that 0 isoered to false and other values to true. If a type d1 is oerible to a type d2,
coercible(d1, d2), then funtion coerce(v1, d1, d2) = v2 gives the unambiguous value v2orresponding to the type d1 value v1 in the type d2. A type d is always oerible toitself: coerce(v, d , d) = v for all v ∈ d .A variable var over a set of types D is a pair 〈name, d〉, where name(var) = nameis the name of the variable, and type(var) = d ∈ D is the type of the variable.Expressions are represented as Jumbala expression parse trees. Jumbala [18℄ isa Java-like ation language for UML state mahines. Expressions are divided intotwo distint sets of expressions, ompound and terminal expressions. A ompoundexpression e over a set of variables Vars is a tuple 〈kind , id , d1, d2, op, 〈e1, . . . , en〉〉,where
• kind = kind(e) ∈ {ond, infix,unary,tond} is the kind of the expression

e,
• id is the unique expression identi�er distinguishing di�erent expressions in themodel (a speial identi�er is needed beause di�erent expressions an have iden-tial other omponents),
• d1 = type(e) is the type of the expression e,5
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Figure 2.1: Examples of di�erent ompound expressions.
• d2 = opType(e) is the type on whih the operator op operates in the expression

e,
• op = operator(e) is the operator of the expression e, and
• subexpr(e) = 〈e1, . . . , en〉 is the list of e's subexpressions. In tree representation,seen in Figure 2.1, the �rst subexpression e1 is the leftmost subtree, the seondsubexpression e2 is the seond leftmost subtree, and so on. For ond, infix, andunary kind expressions every subexpression has to be a type that an be oeredto the type on whih the operator operates, ∀1 ≤ i ≤ n : coercible(type(ei), d2).For tond kind expressions subexpressions e2 and e3 have to be of a typethat an be oered to the type on whih the operator operates, ∀i ∈ {2, 3} :

coercible(type(ei), d2), and subexpression e1 has to be a boolean type expression,
type(e1) = boolean.Compound expressions of a kind unary have one subexpression, ond and infixhave two subexpressions, and tond has three subexpressions. Figure 2.1 ontainsexamples of di�erent ompound expressions. The string representation of expressionsis used in some examples for the sake of simpliity.A terminal expression e over a set of variables Vars is a tuple 〈kind , id , d , symbol〉,where
• kind = kind(e) ∈ {lit,name} is the kind of the expression e,
• id is the unique expression identi�er distinguishing di�erent expressions in themodel (a speial identi�er is needed beause di�erent expressions an have iden-tial other omponents),
• d = type(e) is the type of the expression e, and6



• If kind = lit then symbol ∈ d . Otherwise kind = nameandsymbol is a sequene
〈var1, . . . , varn〉 where every var i is a variable from a set of variables Vars,
type(varn) = d , and ∀1 ≤ i ≤ n−1 : type(var i) = referene. Type refereneis used for aessing objets in a model and is de�ned later.Example 2.1. Let expression e1 represented as a string be (2 != (5 + 〈var〉)).Let e1's subexpressions be 2 = e2 and (5 + 〈var〉) = e3. Let e3's subexpres-sions be 5 = e4 and 〈var〉 = e5. Then expression e1 is formally represented as

〈infix, id1, boolean, int, !=, 〈e2, e3〉〉, its subexpressions are e2 = 〈lit, id2, int, 2〉,and e3 = 〈infix, id3, int, int, +, 〈e4, e5〉〉, and the expression e3's subexpressions are
e4 = 〈lit, id4, int, 5〉, and e5 = 〈name, id5, int, 〈var〉〉. �2.1.2 Signals, Messages, Queues, and State MahinesA signal sig over a set of types D is a pair 〈name, paramtypes〉, where
• name is the name of the signal, and
• paramtypes = params(sig) = 〈d1, . . . , dn〉 is the sequene of parameter types,where ∀1 ≤ i ≤ n : di ∈ D .A message msg of a signal sig is a tuple 〈idmsg , sig , v1, . . . , vn〉, where idmsg isan identi�er used for separating otherwise idential messages from eah other and

∀1 ≤ i ≤ n : vi ∈ di when params(sig) = 〈d1, . . . , dn〉.A message queue over a set of signals Sigs is a (possibly empty) �nite sequene ofmessages over the signals in Sigs . Let queues(D , Sigs) represent all possible messagequeues over the types D and the signals Sigs .A state mahine over a set of variables Vars, system signals SysSigs, and externalsignals ExtSigs (Sigs = SysSigs ∪ ExtSigs), is a tuple 〈si, S, T, defers,flush〉, where
• si ∈ S is the initial state,
• S = states(sm) is the set of states
• T is the set of transitions t = 〈tid , s1, s2, trig , g, eff 〉 between states, where� tid is the unique transition identi�er distinguishing transitions where allthe other omponents are idential in the state mahine,� s1 ∈ S is the soure state,� s2 ∈ S is the destination state,� the trigger trig is either ǫ or a tuple of the form 〈sig , 〈p1, . . . , pn〉〉, where

sig ∈ SysSigs ∪ ExtSigs , params(sig) = 〈d1, . . . , dn〉, and ∀1 ≤ i ≤ n : pi ∈
Vars, coercible(di, type(pi)),� g is a boolean type expression, type(g) = boolean, over the set of variables
Vars alled the guard, and� eff , the e�et, is a sequene of tuples of the form:7



s1

s2

〈t1, 〈sig, 〈var〉〉, ǫ, 〈〈assign, 〈var〉, (〈var〉 + 1)〉〉〉

Figure 2.2: An example of a state mahine.
∗ 〈send, sig , 〈e1, . . . , en〉, tgt〉, where sig ∈ Sigs, message parameter typesare params(sig) = 〈d1, . . . , dn〉, every ei is an expression over theset of variables Vars suh that ∀1 ≤ i ≤ n : coercible(type(ei), di),and tgt is an objet referene type expression, type(tgt) = referene(referene de�ned later),
∗ 〈assign, lhs , rhs〉, where lhs is a name expression, rhs is an expression,and the type of expression rhs an be oered to the type of expression

lhs , coercible(type(rhs), type(lhs)), and
∗ 〈assert, e〉, where e is a boolean type expression over the set of vari-ables Vars.

• defers is a funtion giving the set of deferrable signals defers(s) ⊆ SysSigs foreah state s ∈ S, and
• flush ⊆ S is a subset of the states in the state mahine. Moving to these statesin the state mahine auses the defer queue to be �ushed into the input queue.Input and defer queues are desribed in Setion 2.1.3. For those familiar withUML, the set flush is used in the implementation of message deferral.Example 2.2. In Figure 2.2 is a graphial representation of a state mahine. Formallythe state mahine is 〈s1, S, T, defers,flush〉, where the set of states is S = {s1, s2} andthe set of transitions T = {〈t1, s1, s2, trig , ǫ, 〈stmt〉〉}. In the graphial representationthe initial state s1 is marked with an arrow with no soure state. The state mahinehas only one transition. Its trigger is trig = 〈sig , 〈var〉〉 and the only ation in thee�et is stmt = 〈assign, 〈var〉, (〈var〉 + 1)〉. The behavior of the funtion defersand the ontent of the set flush are not shown in the graphial representation. �2.1.3 Classes, Objets, Global Con�gurations, and ModelsA lass c over a set of types D , system signals SysSigs , and external signals ExtSigsis a pair 〈Vars, sm〉, where
• Vars = Vars(c), the set of variables in c, is a set of variables over D , and
• statemachine(c) = sm, the state mahine of c, is a state mahine over thevariables Vars, the system signals SysSigs , and the external signals ExtSigs .8



An objet o of a lass class(o) = c is a pair 〈c, oid〉, where c is the lass of theobjet, and oid = id(o) is the unique identi�er of the objet distinguishing it fromother instanes of the same lass in the model. Let Vars(o) = Vars(c) be the set ofvariables in the lass of whih the objet is an instane.Let O be a set of objets from a set of lasses Classes de�ned over some set oftypes D , a set of system signals SysSigs and a set of external signals ExtSigs . The set
O indues the set of loations Locations , whih ontains pairs of objets and variables
{〈o, var〉 | o ∈ O, var ∈ Vars(o)}. These loations map variables to their values.A global on�guration C of a set of objets O from a set of lasses Classes overtypes D and signals Sigs , and a set of loations Locations indued by O is a tuple
〈sn, state, inputqueue , deferqueue, valuation〉, where
• sn is the sequene number of C to trak the order of global on�gurations insequenes of global on�gurations.
• state(o) = s, where state is a funtion mapping objets o ∈ O to ative states

s ∈ states(statemachine(class(o))),
• inputqueue(o) ∈ queues(D , Sigs), where inputqueue is a funtion mapping anobjet o ∈ O to a message queue,
• deferqueue(o) ∈ queues(D , Sigs), where deferqueue is a funtion mapping anobjet o ∈ O to a message queue, and
• valuation(loc) = v, where valuation is a funtion mapping loations loc =
〈o, var〉 ∈ Locations to values v ∈ type(var).Let sn(C) = sn be the sequene number of the global on�guration C. Let Act(C, o) =

state(o) be the ative state in o in the global on�guration C. Let InputQueue(C, o) =
inputqueue(o) be the input queue and DeferQueue(C, o) = deferqueue(o) be the deferqueue in a global on�guration C. Let VarValue(C, o, var) = valuation(〈o, var〉) bethe value of variable var in the global on�guration C.For a name expression e, funtion resolve(C, o, e) = 〈o′, var ′〉 gives the loationthe expression represents. When e = 〈name, id , d , 〈var1, . . . , varn〉〉 and n ≥ 1,
resolve(C, o, e)

=





〈o, var1〉 if n = 1, o ∈ O, var 1 ∈ Vars(o),
type(var 1) = d

resolve(C, o1, e1) if n ≥ 2, o ∈ O, var1 ∈ Vars(o),
type(var 1) = referene, o1 = VarValue(C, o, var1),
e1 = 〈name, id , d , 〈var2, . . . , varn〉〉For an expression e, an objet o, and a global on�guration C, eval(C, F, o, e) =

v is the value of expression e evaluated in a ontext of the objet o in the globalon�guration C when F is used for solving possible non-deterministi hoies in theexpressions. Funtion F and expression with non-determinism are introdued alongwith the abstrations in Chapter 3.A model is a tuple 〈Cinit ,D ,Classes, O,Locations, SysSigs,ExtSigs〉, where9



• Cinit is an initial global on�guration, or simply the initial on�guration, ofthe model, sn(Cinit) = 1, input and defer queues for all objets in the initialon�guration are empty, ative state in all objets is the initial state in theobjet's state mahine,
• D is the set of types whih inludes the boolean type boolean = {true, false}and the objet referene type referene = O ∪ {null} ,
• SysSigs is the set of system signals over the set of types D ,
• ExtSigs is the set of external signals over the set of types D . Signals in the setof external signals annot have parameters. External signals must be disjointfrom the set of system signals, SysSigs ∩ ExtSigs = ∅,
• Classes is the set of lasses over the set of types D , the set of system signals

SysSigs, and the set of external signals ExtSigs ,
• O is the set of objets in the model, and
• Locations is the set of loations indued by O.Example 2.3. A simple model with one lass and one objet instantiated fromthe only lass in the model ould be 〈Cinit ,D ,Classes, O,Locations, SysSigs ,ExtSigs〉,where
• D = {int, boolean, referene},
• SysSigs = ∅,
• ExtSigs = {sig},
• a set of lasses Classes = {c} ontains only one lass, c = 〈{var}, sm〉, where

sm is the state mahine from Figure 2.2,
• a set of objets O = {o} ontains the only objet, o = 〈c, 1〉, whih is instantiatedfrom the only lass in the model,
• Locations = {〈o, var〉}, and
• Cinit = 〈1, s1, inputqueue , deferqueue, valuation〉.For our only objet inputqueue(o) = InputQueue(Cinit , o) = 〈〉, deferqueue(o) =

DeferQueue(Cinit , o) = 〈〉, and for the only variable in the objet we an de�ne,for example, valuation(〈o, var〉) = 0. �2.2 Exeution of Transition ComponentsTransitions onsist of di�erent on�guration altering omponents. In this setionwe desribe how these omponents modify the on�guration. In Setion 2.4 thesede�nitions are used when the e�ets of a transition exeution are introdued. Theexeution of omponents of transitions is partially de�ned, ases not de�ned are notused in the algorithms. 10



2.2.1 Reeiving a MessageReeiving a message by a trigger trig in a global on�guration C in an objet o pro-dues a new global on�guration C ′ = execrecv(C, o, trig) where C ′ is formed aordingto the following rules:
• If trig = ǫ, then C = C ′,
• if trig = 〈sig , 〈p1, . . . , pn〉〉 and head(InputQueue(C, o)) = 〈idmsg , sig , v1, . . . , vn〉,then C ′ = C exept that� The sequene number is inremented: sn(C ′) = sn(C) + 1,� The message to be reeived is removed from the input queue:

InputQueue(C ′, o) = tail(InputQueue(C, o)), and� Message parameters are assigned to the variables spei�ed in the trigger:
∀1 ≤ j ≤ n : VarValue(C ′, o, pj) = vj .2.2.2 Sending a MessageThe exeution of a send ation stmt = 〈send, sig , 〈e1, . . . , en〉, tgt〉 in an objet o in aglobal on�guration C produes a new global on�guration C ′ = execeff (C, F, o, stmt)where C ′ = C exept that:

• The sequene number is inremented: sn(C ′) = sn(C) + 1,
• The objet whih reeives the message is determined: o′′ = eval(C, F, o, tgt),
• The message is formed and the parameter values are determined:

msg = 〈sn(C), sig , v1, . . . , vn〉, ∀1 ≤ j ≤ n : vj = eval(C, F, o, ej), and
• The message is added to the end of the input queue of the objet whih reeivesthe message: InputQueue(C ′, o′′) = append(InputQueue(C, o′′),msg).2.2.3 AssignmentExeuting an assign ation stmt = 〈assign, lhs , rhs〉 in an objet o in a global on-�guration C produes a new global on�guration C ′ = execeff (C, F, o, stmt) where

C ′ = C exept that:
• The sequene number is inremented: sn(C ′) = sn(C) + 1, and
• The value v = eval(C, F, o, rhs) is assigned to a loation indiated by 〈o′′, var〉 =

resolve(C, o, lhs): VarValue(C ′, o′′, var) = v.
11



2.2.4 AssertionThe exeution of an assertion ation stmt = 〈assert, e〉 in an objet o in a globalon�guration C produes a new global on�guration C ′ = execeff (C, F, o, stmt) suhthat:
• If the ondition in the assertion statement evaluates to true, eval(C, F, o, e) =

true , then C ′ = 〈sn + 1, state, inputqueue , deferqueue, valuation〉, when C =
〈sn, state, inputqueue , deferqueue, valuation〉, or
• else C ′ = ⊥, where ⊥ is a speial value indiating an assertion error in theexeution.2.2.5 Moving from a State to AnotherMoving to a state s in a global on�guration C in an objet o produes a new globalon�guration C ′ = execgoto(C, o, s, b) when b = true if s ∈ flush, otherwise b = false,and where C ′ = C exept that:
• The sequene number is inremented: sn(C ′) = sn(C) + 1,
• The ative state of objet o is set to the new state: Act(C ′, o) = s, and
• The messages in o's defer queue are moved to the beginning of o's input queueif b = true : InputQueue(C ′, o) = concat(DeferQueue(C, o), InputQueue(C, o))and DeferQueue(C ′, o) = 〈〉, otherwise InputQueue(C ′, o) = InputQueue(C, o)and DeferQueue(C ′, o) = DeferQueue(C, o).2.3 Enabled EventsExeution in the model proeeds by exeution of events. Events are atomi, in par-tiular the exeution of a transition onsists of several steps exeuted together as asingle atomi event. An event an be exeuted only if it is enabled.In a on�guration C a transition t = 〈tid , s1, s2, trig, g, eff 〉 exeution event in anobjet o, a = 〈trans, F, o, t〉, is enabled, enabled(C, a), if:
• The soure state s1 of the transition is an ative state: Act(C, o) = s1,
• The trigger is empty, trig = ǫ, or there is a message of a signal orrespondingto the trigger in the head of o's input queue: trig = 〈sig , 〈p1, . . . , pn〉〉 when

head(InputQueue(C, o)) = 〈idmsg , sig , v1, . . . , vn〉, and
• The trigger is empty and the guard evaluates to true in the on�guration C, orthe trigger is non-empty and the guard evaluates to true in the on�guration

C ′ = execrecv(C, o, trig) whih would result from reeiving the message in theon�guration C.In on�guration C deferring a message a = 〈defer, o〉 in an objet o is enabled,
enabled(C, a), if: 12



• The input queue of o is not empty: |InputQueue(C, o)| > 0,
• The objet o has no enabled transitions: ∀t ∈ T : ¬enabled(C, 〈trans, F, o, t〉),when T is the set of transitions in the state mahine of the objet o,
• The message at the head of o's input queue an be deferred in the ative state:

sig ∈ defers(Act(C, o)), when head(InputQueue(C, o)) = 〈idmsg , sig , v1, . . . , vn〉.In on�guration C, the exeution of an impliit message onsumption event a =
〈impl, o〉 in an objet o is enabled, enabled(C, a), if:
• The input queue of o is not empty: |InputQueue(C, o)| > 0,
• The objet o has no enabled transitions: ∀t ∈ T : ¬enabled(C, 〈trans, F, o, t〉),when T is the set of transitions in the state mahine of the objet o,
• The message at the head of o's input queue annot be deferred in the ative state:

sig /∈ defers(Act(C, o)), when head(InputQueue(C, o)) = 〈idmsg , sig , v1, . . . , vn〉.No event is enabled if C = ⊥.2.4 Exeution of EventsExeutions of events alter the global on�guration in the following ways.2.4.1 Exeution of Transition EventsThe exeution of an enabled transition exeution event a = 〈trans, F, o, t〉, where t =
〈tid , s1, s2, trig , g, eff 〉, in a global on�guration C produes a new global on�guration
C ′ = exec(C, a) by the following steps:
• First the objet reeives a message orresponding to the trigger's signal: Ct =

execrecv(C, o, trig),
• Then every ation in eff = 〈stmt1, . . . , stmtn〉 is exeuted:� C1 = execeff (Ct, F, o, stmt1)� ∀2 ≤ i ≤ n : Ci = execeff (Ci−1, F, o, stmt i)� If some ation produes a global on�guration ⊥ representing an assertionerror, then the exeution is halted and the resulting global on�guration isset to C ′ = ⊥,
• The objet moves from the state s1 to the state s2: C ′ = execgoto(Cn, o, s2, b),where b = true if s2 ∈ flush , otherwise b = false.

13



2.4.2 Exeution of Impliit Message ConsumptionThe exeution of an enabled impliit message onsumption event a = 〈impl, o〉, in aglobal on�guration C produes a new global on�guration C ′ = exec(C, a) suh that:
• The sequene number is inremented: sn(C ′) = sn(C) + 1,
• The message to be onsumed is removed from the input queue:

InputQueue(C ′, o) = tail(InputQueue(C, o)),
• Everything else is like it was before the message was onsumed:� ∀o′ ∈ O : ∀var ∈ Vars(o′) : VarValue(C ′, o′, var) = VarValue(C, o′, var)� ∀o′ ∈ O \ {o} : InputQueue(C ′, o′) = InputQueue(C, o′)� ∀o′ ∈ O : DeferQueue(C ′, o′) = DeferQueue(C, o′)� ∀o′ ∈ O : Act(C ′, o′) = Act(C, o′).2.4.3 Deferring a MessageThe exeution of an enabled message defer event a = 〈defer, o〉, enabled(C, a), in aglobal on�guration C produes a new global on�guration C ′ = exec(C, a) suh that:
• The sequene number is inremented: sn(C ′) = sn(C) + 1,
• The message to be deferred is removed from the input queue:

InputQueue(C ′, o) = tail(InputQueue(C, o)),
• The message is added to the defer queue: DeferQueue(C ′, o) =

append(DeferQueue(C, o),msg), when InputQueue(C, o) = 〈msg , . . .〉,
• Everything else is like it was before the message was deferred:� ∀o′ ∈ O : ∀var ∈ Vars(o′) : VarValue(C ′, o′, var) = VarValue(C, o′, var)� ∀o′ ∈ O \ {o} : InputQueue(C ′, o′) = InputQueue(C, o′)� ∀o′ ∈ O \ {o} : DeferQueue(C ′, o′) = DeferQueue(C, o′)� ∀o′ ∈ O : Act(C ′, o′) = Act(C, o′)2.5 Exeutions in a ModelAn exeution in a model M = 〈Cinit ,D ,Classes, O,Locations, SysSigs ,ExtSigs〉 is asequene trace = 〈b1, . . . , bn〉, where bi = 〈Ci, ai, Ci+1〉, 1 ≤ i ≤ n, suh that
• ∀1 ≤ i ≤ n : ai is a transition exeution event, an impliit onsumption event,or a message defer event,
• ∀1 ≤ i ≤ n + 1 : Ci is a global on�guration,
• C1 = Cinit 14



• ∀1 ≤ i ≤ n : enabled(Ci, ai).
• ∀1 ≤ i ≤ n : Ci+1 = exec(Ci, ai)
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Chapter 3Model Cheking with AbstrationsThe objetive in model heking [12℄ is to hek whether some properties, whih arefor some reason interesting to the user, hold in the model to be model heked. Themodel heker takes a model and a set of properties as an input and outputs either amessage that the properties hold in the model or gives a ounterexample illustratingan exeution in the model that violates one of the properties. Figure 3.1 illustrates thenormal model heking proedure. In this thesis the properties we are model hekingagainst are the absene of assertion failures and impliit message onsumptions.The need for abstration tehniques arises from the huge size of the state spaeall but the smallest models tend to have. The phenomenon is alled state spaeexplosion [36℄. Di�erent abstration tehniques have been developed to takle thisproblem. In abstration the idea is to reate another model, abstrat model, whihrepresents the behavior of the original model but abstrats away some details fromthe original model to redue the size of its state spae. Then the abstrat model isheked with a model heker for the same properties that we are interested in theoriginal model.The abstrat model is onstruted in suh a way that some of the harateristisof the original model are preserved thus making it possible to prove some propertiesfrom the original model by using the abstrat model. For example, over-approximativeabstration tehniques add behavior to the abstrat model ompared to the onretemodel but all the behaviors in the onrete model have a orresponding behavior inthe abstrat model. Therefore if the abstrat model reated in an over-approximativemanner does not ontain assertion failures, then the orresponding onrete modeldoes not ontain assertion failures either [13℄. On the other hand if the abstratmodel ontains assertion failures, we annot tell without further analysis whether theonrete model ontains assertion failures beause the over-approximative abstration
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Figure 3.1: Conventional model heking proedure.16
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Figure 3.2: Model heking proedure with abstrations and abstration re�nement.might have added new behaviors to the abstrat model.The proess for determining whether an abstrat ounterexample orresponds toan exeution in the onrete model is alled feasibility analysis [33℄. If an abstratounterexample has a orresponding exeution in the onrete model then the oun-terexample is alled feasible, otherwise it is spurious. The exeution of a spuriousounterexample in the abstrat model violates the properties but its exeution in theonrete model does not or the orresponding exeution is not even possible in theonrete model. An example of a spurious ounterexample an be found in Setion3.3.Even if a spurious ounterexample is enountered, we want to either prove that theproperties hold in the onrete model or that there is a true ounterexample demon-strating that a property does not hold in the onrete model. To be able to do this, wehave to re�ne [10℄ the abstration (make the abstration more preise). The purposeof re�nement is to hange the abstration in a way that the spurious ounterexampledoes not appear in the abstrat model onstruted with the re�ned abstration. Afterthe abstration is re�ned, a new abstrat model is produed with the new abstra-tion and the whole proess starts again. The re�nement an be done by hand orautomatially. In our ase the ounterexample analysis desribed in Setion 5 ana-lyzes automatially the way the abstration needs to be re�ned. The model hekingproedure with abstrations and abstration re�nement is shown in Figure 3.2.Two di�erent abstration tehniques, data abstrations and prediate abstrations,were onsidered in the SMUML projet. In data abstrations the domains of variablesare replaed with abstrat domains having smaller size than the original ones. Beause17



of the abstrat domain's smaller size abstrat values store only partial information onthe values whih appear in atual omputations. Data abstration an be implementedusing value latties [15℄ or with non-deterministi operators [26, 24℄, the latter beingour hoie. However, there was no prior algorithm for automati re�nement of dataabstrations as there was for prediate abstrations (for example [8℄).The prediate abstration approah was still not hosen to be inluded into theSMUML toolset beause the objet-oriented nature with onurreny and asynhro-nous message passing of the UML model is quite hallenging for the prediate abstra-tion. Also only one existing implementation of prediate abstration in an objet-oriented environment was known (Java PathFinder [38℄). On the other hand objet-orientation, onurreny, and asynhronous message passing do not introdue any realextra di�ulties for data abstrations. The seond reason was that the implementa-tion of a prediate abstration engine usually needs a theorem prover. The provermay have to be alled an exponential number of times at some step of the modelheking proedure with abstrations [4, 25, 37℄.13.1 Data AbstrationsIn this thesis we shall use data abstrations. In data abstrations an abstrat modelis reated by hanging the domains of variables in the onrete model to abstratdomains. An abstrat domain has to represent the same set of values as in theonrete domain, i.e. there is an abstration funtion mapping every value in theonrete domain to a value in the abstrat domain. The data abstrations we useare de�ned as over-approximations, therefore if the abstrat model does not ontainassertion failures or impliit message onsumptions, neither does the onrete model.Also we allow the use of data abstration only to integers. The formal de�nition ofthe relationship between onrete and abstrat models is given in Setion 3.2.3.1.1 Evaluation of Abstrat ExpressionsLet expression e1
c as its string representation be (〈var1

c〉 + 〈var2
c〉). Formally theexpression is e1 = 〈infix, 1, int, int, +, 〈e2

c , e
3
c〉〉, and its subexpressions are e2

c =
〈name, 2, int, 〈var1

c〉〉 and e3
c = 〈name, 3, int, 〈var2

c〉〉.Let Sign be an abstrat type with three values, NEG representing all negativeintegers, ZERO representing 0, and POS representing all positive integers. Let variables
var1

a and var 2
a be Sign-abstrated variables orresponding to the variables var 1

c and
var2

c . An expression e1
a = 〈infix, 1, Sign, Sign, +, 〈e2

a, e
3
a〉〉 is a Sign-abstrated versionof expression e1

c . The subexpressions of e1
a are e2

a = 〈name, 2, Sign, 〈var1
a〉〉 and e3

a =
〈name, 3, Sign, 〈var2

a〉〉.Let Cc be a global on�guration desribing the state of the onrete model andlet oc be an objet in the onrete model. Let VarValue(Cc, oc, var
1
c) = 2, and

VarValue(Cc, oc, var
2
c) = −1. Let Ca be a global on�guration orresponding to Cc inthe abstrat model and let oa be an objet orresponding to oc in the abstrat model.1The abstrat model generator in SMUML toolkit still uses a theorem prover (SMT solver, forexample [23, 5, 16℄) in the generation of abstrat operators.18



Let Ca have values orresponding to the values in Cc (determined by the abstrationfuntion): VarValue(Ca, oa, var
1
a) = POS, VarValue(Ca, oa, var

2
a) = NEG. When e1

c isevaluated in the objet oc using the global on�guration Cc, we get −1 as a result.On the other hand when we want to evaluate e1
a in the objet oa using the globalon�guration Ca, we do not have one orret solution but multiple possible solutions:when adding a positive and a negative integer we annot tell whether the result ispositive, zero, or negative. This impreision introdued by the abstration introduesthe extra behaviors to the abstrat model.This is where the funtion for solving non-determinism F omes into use. Funtion

eval introdued in Setion 2.1.3 evaluates expressions using a funtion given as seondargument for solving possible non-determinism in the evaluation. The funtion Fidenti�es the expressions using the unique identi�er in the expressions of a model.For example, every time eval(Ca, F, oa, e
1
a) is alled it gives us the same result beause

F �xes the non-determinism. Funtion F is used to make sure that the same hoiesare made in non-deterministi points of evaluation in the model heker and in theanalysis of the ounterexample.3.2 Formal De�nition of an Abstrat ModelUsing the de�nitions from Chapter 2, a onrete model is de�ned as a tuple Mc =
〈Cinit c,Dc,Classesc, Oc,Locationsc, SysSigsc,ExtSigs〉, where the set of types Dc =
{int, boolean, referene}. Type int represents 32-bit integers. Beause abstratmodels are also models even though they have a speial relationship to the orre-sponding onrete model, they also obey the de�nitions desribed in Chapter 2. Inthe following setions we desribe the onstraints that are used when abstrat modelsare generated from onrete models. Basially the onstraints just make sure thatthe abstrat model has a suitable set of types, and its variables orrespond to theonrete variables. We start our de�nitions from abstrat types building up all theway to the de�nition of an abstrat model. It should be noted that we only desribethe onstraints restriting the generation of abstrat models, not an algorithm forgenerating abstrat models. The abstrat models appearing later in this thesis obeythe de�nitions desribed in the following setions.3.2.1 Abstrat Types and VariablesAn abstrat type d = {v1, . . . , vn} is a set of values where eah value represents a setof integer values. Thus, coercible(int, d). Let abstTypes be a set of abstrat types.An abstrat type d1 an be, but neessarily does not have to be, oerible to anotherabstrat type d2.An abstrat variable vara = 〈namea, da〉 of an abstrat type da orresponds to aonrete variable var c = 〈namec, dc〉 of a onrete type dc if namea = namec, andeither da = dc or dc = int and da ∈ abstTypes. We write var c ∼ vara to denote thisorrespondene.A set of abstrat variables Varsa = {var1

a, . . . , var
n
a} orresponds to a set of on-rete variables Varsc = {var1

c , . . . , var
m
c }, Varsc ∼ Varsa, if n = m, and var i

c ∼ var i
a19



for all 1 ≤ i ≤ n.3.2.2 Abstrat ExpressionsLet ec = 〈kind , id , d1
c , d2

c , op, 〈e1
c , . . . , e

n
c 〉〉 be a ompound expression (over onretetypes Dc, variables Varsc), and let ea = 〈kind , id , d1

a , d2
a , op, 〈e1

a, . . . , e
n
a〉〉 be an ab-strat ompound expression (over abstrat types Da = Dc ∪ abstTypes, variables

Varsa). The expression ea orresponds to the onrete expression ec, ec ∼ ea, if
• d1

a ∈ abstTypes ∪ {int} if d1
c = int, otherwise d1

a = d1
c ,

• d2
a ∈ abstTypes ∪ {int} if d2

c = int, otherwise d2
a = d2

c , and
• ∀1 ≤ i ≤ n : ei

c ∼ ei
a.Let ec = 〈kind , id , dc, symbolc〉 be a terminal expression (over onrete types Dc,variables Varsc), and let ec = 〈kind , id , da, symbola〉 be an abstrat terminal expres-sion (over abstrat types Da = Dc ∪ abstTypes , variables Varsa). The expression eaorresponds to the onrete expression ec, ec ∼ ea, if

• da = abstTypes ∪ {int} if dc = int, otherwise da = dc, and
• symbola = symbolc if kind = name, otherwise symbola = coerce(symbol c, dc, da).3.2.3 Abstrat ClassesAn abstrat signal siga orresponding to a onrete signal sigc, sigc ∼ siga, is a tuple

〈name, 〈d1
a , . . . , dn

a 〉〉, where sigc = 〈name, 〈d1
c , . . . , dn

c 〉〉 and ∀1 ≤ i ≤ n: d i
a = d i

c if
d i

c ∈ {boolean, referene}, otherwise d i
a ∈ abstTypes ∪ {int}.A set of abstrat signals Sigsa = {sig1
a, . . . , sig

n
a} orresponds to a set of onretesignals Sigsc = {sig1

c , . . . , sig
m
c }, Sigsc ∼ Sigsa, if n = m, and sig i

c ∼ sig i
a for all

1 ≤ i ≤ n.An abstrat transition ta (over an abstrat set of system signals SysSigsa) orre-sponding to a transition tc = 〈tid , s1, s2, trigc, gc, eff c〉 (over a onrete set of systemsignals SysSigsc, SysSigsc ∼ SysSigsa), tc ∼ ta, is ta = 〈tid , s1, s2, triga, ga, eff a〉,where
• triga = 〈siga, 〈p

1
c , . . . , p

n
c 〉〉 orresponds to trigc = 〈sigc, 〈p

1
c, . . . , p

n
c 〉〉, trigc ∼

triga, where sigc ∼ siga and ∀1 ≤ i ≤ n : pi
c ∼ pi

a.
• ga is an abstrat expression orresponding to gc, gc ∼ ga,
• eff a = 〈stmt1

a, . . . , stmtn
a〉 is a sequene of tuples orresponding to the onretee�et eff c = 〈stmt1

c , . . . , stmtn
c 〉, eff c ∼ eff a, where stmt i

a is� 〈send, siga, 〈e
1
a, . . . , e

m
a 〉, tgta〉 when stmt i

c = 〈send, sigc, 〈e
1
c , . . . , e

m
c 〉, tgt c〉,where siga is a orresponding abstrat signal sigc ∼ siga, the parametersare abstrat expressions ∀1 ≤ j ≤ m : ej

c ∼ ej
a, and the target is an abstratexpression tgt c ∼ tgta, 20



� 〈assign, lhsa, rhsa〉 if stmt i
c = 〈assign, lhsc, rhsc〉, where lhsc ∼ lhsa, rhsais the abstrat expression rhsc ∼ rhsa,� 〈assert, ea〉 if stmt i

c = 〈assert, ec〉, where ea is the abstrat expressionorresponding to the onrete expression ec, ec ∼ ea,A set of abstrat transitions Ta = {t1a, . . . , t
n
a} orresponds to a set of onretetransitions Tc = {t1c , . . . , t

m
c }, if n = m, and tic ∼ tia for all 1 ≤ i ≤ n.An abstrat state mahine sma = 〈si, S, Ta, defersa,flush〉 orresponds to the statemahine smc = 〈si, S, Tc, defersc,flush〉, smc ∼ sma, if Ta is an abstrat set of transi-tions orresponding to the set of transitions Tc, and ∀s ∈ S : defersc(s) ∼ defersa(s).An abstrat lass ca = 〈Varsa, sma〉 orresponds to a lass cc = 〈Varsc, smc〉, cc ∼

ca, if Varsc ∼ Varsa and smc ∼ sma. A set of abstrat lasses Classesa = {c1
a, . . . , c

n
a}orresponds to a set of onrete lasses Classesc = {c1

c , . . . , c
m
c }, if n = m, and ci

c ∼ ci
afor all 1 ≤ i ≤ n.3.2.4 Abstrat ModelsLet Mc = 〈Cinit c,Dc,Classesc, Oc,Locationsc, SysSigsc,ExtSigs〉 be a onrete model.An abstrat model Mc = 〈Cinita,Da,Classesa, Oa,Locationsa, SysSigsa,ExtSigs〉 or-responds to the onrete model Mc, if

• Set of types Da = Dc ∪ abstTypes ontains abstrat types,
• SysSigsa is a set of abstrat system signals orresponding to the system signals

SysSigsc in the onrete model.
• Classesa is a set of lasses orresponding to the set of lasses Classesc in theonrete model.
• Oa is a set of objets orresponding to the objets in the set Oc. For every

oc = 〈cc, oid〉 ∈ Oc, there is a unique orresponding objet oa = 〈ca, oid〉 ∈ Oa,suh that cc ∼ ca. There are no other objets in the set Oa.
• Locationsa is a set of loations indued by Oa

• Cinita = 〈state , inputqueuea, deferqueuea, valuationa〉 is an initial global on�g-uration when Cinit c = 〈state, inputqueuec, deferqueuec, valuationc〉 is the initialglobal on�guration of the onrete model, input and defer queues for all ob-jets are empty in the initial on�guration, and ∀〈oa, vara〉 ∈ Locationsa :
valuationa(〈oa, vara〉) = coerce(valuationc(〈oc, var c〉), dc, da), where oc ∼ oa,
dc = type(var c), da = type(vara), and var c ∼ vara.3.3 CounterexamplesCounterexamples are represented as ounterexample traes desribing exeutions vi-olating a property in the model. Formally a ounterexample trae is a sequene oftuples representing exeution events of the form 〈trans, F, oid , tid〉, 〈impl, F, oid〉,21



s1

s2

s3

s5

s4

〈t1, ǫ, ǫ, 〈assign, 〈var4
c〉, ((〈var

1
c〉 + 〈var2

c〉) - 〈var 4
c〉)〉〉

〈t2, ǫ, ǫ, 〈assign, 〈var5
c〉, (〈var

4
c〉 + 〈var3

c〉)〉〉

〈t3, ǫ, ǫ, 〈assign, 〈var6
c〉, (〈var

1
c〉 + 〈var3

c〉)〉〉

〈t4, ǫ, ǫ, 〈assert, (〈var5
c〉 < 〈var6

c〉)〉〉Figure 3.3: The onrete state mahineand 〈defer, F, oid〉. A tuple of the form 〈trans, F, oid , tid〉 represents the exeutionof a transition with transition identi�er tid in the objet having objet identi�er oid .A tuple of the form 〈impl, F, oid〉 represents impliit message onsumption in theobjet with objet identi�er oid and a tuple of the form 〈defer, F, oid〉 representsdeferring a message in the objet with objet identi�er oid . F is the funtion solv-ing the possible non-deterministi hoies in the evaluation of the expressions. Everyexeution event has its own funtion for solving non-deterministi hoies.Example 3.1. Let Mc = 〈Cinit c,Dc,Classesc, Oc,Locationsc, SysSigsc,ExtSigs〉 be aonrete model with one lass cc = 〈Varsc, smc〉, Classesc = {cc}, and one objet
oc = 〈cc, 1〉, Oc = {oc}, whih is instantiated from the lass. The set of typesin the model is Dc = {int, boolean, referene}. The lass cc has a set of vari-ables Varsc = {var1

c , var
2
c , var

3
c , var

4
c , var

5
c , var

6
c} and the type of eah variable isint. A graphial representation of the state mahine smc is shown in Figure 3.3.In the initial on�guration Cinit c = 〈1, state, inputqueue, deferqueue, valuationc〉, theative state of the only objet is s1, the queues are empty and the valuation gives

valuationc(〈oc, var
1
c〉) = 1, valuationc(〈oc, var

2
c〉) = −2, valuationc(〈oc, var

3
c〉) = 5,

valuationc(〈oc, var
4
c〉) = 0, valuationc(〈oc, var

5
c〉) = 0, and valuationc(〈oc, var

6
c〉) = 0.The model has no system or external signals.A orresponding abstrat model with all the variables abstrated with Sign-abstration (see Setion 3.1.1) is Ma = 〈Cinita,Da,Classesa, Oa,Locationsa, SysSigsa,

ExtSigs〉, where the set of types Da = {int, boolean, referene, Sign}, the sets ofsystem and external signals are empty, the set of lasses Classesa = {ca} ontains onelass ca = 〈{var1
a, var

2
a, var

3
a, var

4
a, var

5
a, var

6
a}, sma〉, the set of objets, Oa = {oa},22



s1

s2

s3

s5

s4

〈t1, ǫ, ǫ, 〈assign, 〈var4
a〉, ((〈var

1
a〉 + 〈var2

a〉) - 〈var3
a〉)〉〉

〈t2, ǫ, ǫ, 〈assign, 〈var5
a〉, (〈var

4
a〉 + 〈var3

a〉)〉〉

〈t3, ǫ, ǫ, 〈assign, 〈var6
a〉, (〈var

1
a〉 + 〈var3

a〉)〉〉

〈t4, ǫ, ǫ, 〈assert, (〈var5
a〉 < 〈var 6

a〉)〉〉Figure 3.4: An abstrat state mahineTable 3.1: Values of variables in the objet oa at di�erent points of exeution.i var 1
a var2

a var3
a var4

a var5
a var 6

a1 POS NEG POS ZERO ZERO ZERO2 POS NEG POS POS ZERO ZERO3 POS NEG POS POS POS ZERO4 POS NEG POS POS POS POSontains one objet, oa = 〈ca, 1〉, instantiated from the only lass in the model, andin the initial on�guration Cinita = 〈1, state, inputqueue, deferqueue, valuationa〉, theative state of the only objet is s1, the input and the defer queues are empty, andthe valuation gives:
valuationa(〈oa, var

1

c〉) = POS
valuationa(〈oa, var

2

c〉) = NEG
valuationa(〈oa, var

3

c〉) = POS
valuationa(〈oa, var

4

c〉) = ZERO
valuationa(〈oa, var

5

c〉) = ZERO
valuationa(〈oa, var

6

c〉) = ZEROA graphial representation of the abstrat state mahine sma is shown in Figure 3.4.The onrete model ontains only one exeution but beause of the the over-23



Table 3.2: Values of variables in the objet oc at di�erent points of exeution.i var 1
c var2

c var 3
c var4

c var 5
c var6

c1 1 -2 5 0 0 02 1 -2 5 -6 0 03 1 -2 5 -6 -11 04 1 -2 5 -6 -11 6approximative abstration the abstrat model ontains several exeutions. Let anabstrat ounterexample trae be:
〈〈trans, F1, 1, t1〉, 〈trans, F2, 1, t2〉, 〈trans, F3, 1, t3〉, 〈trans, F4, 1, t4〉〉Funtions Fi, 1 ≤ i ≤ 4, �xes the non-deterministi hoies made in the exeutionin suh a way that the assertion in transition with identi�er t4 fails in the abstratmodel. Table 3.1 shows the values of the variables in the objet oa before the ith eventof the ounterexample trae is exeuted . When the trae is exeuted in the onretemodel, the assertion holds. Thus the ounterexample trae is spurious. Table 3.2shows the values of the variables in the objet oc in states si at the exeution of theounterexample trae. �
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Chapter 4Feasibility AnalysisTo determine the feasibility of an abstrat ounterexample, we use stepwise simulationof the onrete model to try to exeute the events �xed by the abstrat ounterex-ample on the onrete model in the same order in whih they appear in the abstratounterexample [33℄. Beause every onrete model always has a �xed initial on�g-uration, there are no external signals with parameters oming from the environment,and eah event determines via the objet identi�er the objet where the event is exe-uted, the steps to be taken in the simulation are ompletely determined by the events�xed by the abstrat ounterexample.If all the events in the ounterexample an be simulated suessfully without asser-tion failures or impliit message onsumptions, then the ounterexample is spuriousbeause the property that was expeted to be violated was not violated in the simu-lation of the ounterexample.4.1 Assertion FailuresIf the property violation in the abstrat model was an assertion failure, the exeutionof a feasible ounterexample in the onrete model results to an assertion failure.Then the simulation of the exeution of a transition of a state mahine results in aviolation of an assertion in the onrete model, we have found an error in the onretemodel and have a ounterexample to demonstrate it.Assertion failures in the onrete model an also our unintentionally, i.e. whenthe ounterexample was supposed to demonstrate impliit message onsumption, mes-sage deferral, or failure of another assertion. This happens when an assertion exeutedprior to the intended property violation holds in the abstrat model (due to the ex-tra behavior introdued by the abstration) but fails in the onrete model. Forexample, let variables var 1
c and var2

c have values 1 and 2, respetively, and let theorresponding abstrat variables var 1
a and var 2

a be abstrated with expression Sign-abstration and have values POS and POS, respetively. When a onrete expression(〈var1
c〉 == 〈var2

c〉) is evaluated the result is false, but when the orresponding ab-strat expression (〈var1
a〉 == 〈var 2

a〉) is evaluated the result an be either true orfalse. If these expressions are the onditions in orresponding assertion statements weould very well have a trae where an assertion fails in the onrete model but holdsin the abstrat model. From the user's point of view it is not important whih kind25



of failure the original ounterexample was supposed to demonstrate; in any ase wehave a true ounterexample whih leads to the violation of an assertion.4.2 Impliit Message ConsumptionsWe assume that impliit message onsumptions are always forbidden and thus animpliit message onsumption exeuted in the onrete model yields a true ounterex-ample. When the algorithm for feasibility heking is introdued in Chapter 4.4, weshall desribe hanges needed to the algorithm to disable heking against impliitmessage onsumptions.4.3 Ation Not EnabledIf the ation to be exeuted next is not enabled in the urrent on�guration of theonrete model the ounterexample is spurious.If the ation is the exeution of a transition, there are two possible reasons whythe transition is not enabled:
• The guard ondition of the transition exeuted next in the abstrat ounterex-ample evaluates to false in the urrent on�guration of the onrete model, or
• the transition to be exeuted next (on some objet in the onrete model) is notenabled beause there is no message with the orret signal in the head of theobjet's input queue. The ontents of the orresponding message queues andi�er beause the abstration may introdue non-determinism to the targetsof send statements. For example, onstruts like (condition?o1:o2) an easilyause this kind of situation.If the ation is an impliit onsumption or a deferral of a message, then the reasonwhy the ation is not enabled an be either of the two ases:
• There are no messages in the input queue. The orresponding input queue inthe abstrat model however has at least one message beause otherwise theounterexample trae ould not have suh an event at this point. The reason forthis kind of situation is always a send statement in the abstrat model sendinga message to an objet whih does not orrespond to the target objet of theorresponding send statement in the onrete model. If all send statements inthe onrete and abstrat model had sent the messages to orresponding objets,the queues in all objets would ontain the same number of messages.
• There is a transition enabled in the onrete model in the objet where the eventshould have been exeuted. The orresponding transition in the abstrat modelis not enabled beause otherwise there ould not be an impliit onsumptionor a message deferral event in the ounterexample trae. The reason for thetransition to be not enabled in the abstrat model an be either input queuewith no message mathing the trigger in the head of the queue or a guard that26



1: funtion is_ounterexample_feasible(Mc,Trace)2: # Mc = 〈Cinit c,Dc,Classesc, Oc,Locationsc, SysSigsc,ExtSigs〉3: C ← Cinit c4: while |Trace| > 0 do5: event ← head(Trace)6: Trace ← tail(Trace)7: if event is of the form 〈trans, F, oid , tid〉 then8: o← the objet with id oid in Oc9: t← the transition with id tid in statemachine(class(o))10: a← 〈trans, F, o, t〉11: else # event = 〈etype, F, oid〉 for some etype in {impl,defer}12: o← the objet with id oid in Oc13: a← 〈etype, o〉14: if enabled(C, a) then15: if a is of the form 〈impl, o〉 then16: return true17: C ← exec(C, a)18: if C = ⊥ then19: return true20: else21: return false22: return falseFigure 4.1: Algorithm is_ounterexample_feasible heks whether the oun-terexample trae Trace from abstrat model Ma is feasible in the onrete model
Mc. evaluates to false. If the objet annot reeive message with a orret signal,then we have a pair of orresponding message send statements that have senttheir messages to non-orresponding objets, just like in the ase with an emptyinput queue.4.4 Algorithm for Cheking FeasibilityAlgorithm is_ounterexample_feasible in Figure 4.1 heks whether a oun-terexample is feasible. It takes the onrete model Mc and the ounterexample trae
Trace whose feasibility is to be heked and returns true if the ounterexample isfeasible, otherwise false is returned.The algorithm tries to exeute the trae step by step. In lines 7�13 the algorithmforms the event a to be exeuted. The objet identi�er oid an be mapped unam-biguously to the objet o beause there are no two di�erent objets with the sameobjet identi�er in the model. Respetively transition identi�er tid an be mappedunambiguously to the transition t. In lines 14�19 the event is exeuted if it is enabledin the onrete model. The if-lause in line 15 heks whether we have a feasible27



ounterexample demonstrating an impliit message onsumption. If we do not wantto hek against impliit onsumptions lines 15�16 should be removed from the algo-rithm. After we have heked whether the event is an impliit onsumption the eventis exeuted in line 17 and heked whether an assertion failed in the exeution of theevent. If the event was not enabled in the onrete model then the ounterexampleis not feasible and false is returned in line 21. Finally, if the trae was suessfullyexeuted in the onrete model, then the ounterexample is spurious and false isreturned.Example 4.1. In the feasibility analysis for abstrat ounterexample introdued inExample 3.1 the �rst three events are exeuted suessfully in the onrete model.Also the exeution of the fourth event, the transition with the assertion ation, su-eeds without runtime errors. Thus the abstrat ounterexample trae is exeuted inthe onrete model without property violations and the abstrat ounterexample isspurious. �
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Chapter 5Counterexample AnalysisFinding a spurious ounterexample in the abstrat model prevents us from either veri-fying that the properties hold in the onrete model or that there is a ounterexamplewhih demonstrates a failing property. To be able to ontinue the model hekingproedure we need to re�ne the abstration in order to remove the spurious oun-terexample. A good re�nement removes the spurious ounterexample (and possiblyother spurious ounterexamples whih we have not enountered yet) but still avoidsthe state explosion problem.First we identify the parts in the model that ontribute to the existene of thespurious ounterexample by identifying the relevant loations, i.e. for eah point inthe trae the loations that ontribute to the existene of the ounterexample. Thealgorithm for doing this is desribed in Setion 5.2. It is intuitive that the re�nementis done to the parts of the model that are relevant to the existene of the spuriousounterexample. In Setion 5.3 use relevant loations as a guide for alulating are�nement for models abstrated with interval abstrations (a subset of data abstra-tions).To failitate the disussion of the ounterexample analysis, we introdue a on-strution for analysis traes. An analysis trae ontains all the information needed inthe ounterexample analysis from the spurious ounterexample and its exeution inthe onrete and in the abstrat model. Analysis traes are desribed in Setion 5.1.5.1 Forming an Analysis TraeBefore the analysis methods are desribed we form an analysis trae by exeuting theounterexample trae in both the onrete and the abstrat models. The purpose ofthe analysis trae is to bundle all the relevant information needed for the analysis intoone sequene for easier aessibility.The analysis trae needs to have a �ner granularity than the exeution traesbeause the analysis we are going to do needs to distinguish the e�ets of di�erentparts (ations) of the transitions. The analysis trae is formed by the algorithmtransform and is a sequene of tuples of the form 〈C̃, 〈sn, oc, oa, b̃〉, C̃
′〉, where

• C̃ = 〈Cc, Ca〉 is a ombined on�guration, a tuple ontaining the on�gurationof the onrete and the abstrat model before exeution of the ation,29



• sn = sn(Cc) = sn(Ca) is a sequene number of the onrete and the abstraton�gurations before the exeution of the ation,
• oc is the onrete model objet in whih the ation is exeuted,
• oa is the abstrat model objet in whih the ation is exeuted,
• b̃ is the tuple desribing the type the ation desribes (these are spei�ed below),and
• C̃ ′ = 〈C ′

c, C
′
a〉 is a tuple ontaining the on�guration of the onrete and theabstrat model after the exeution of the ation. If either C ′
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a is ⊥, then

C̃ ′ = ⊥. This represents the point where the exeutions in the onrete and inthe abstrat model di�er so muh that we an not exeute the trae further ineither one of them.Component b̃ in the tuple desribes what kind of ation the tuple represents. b̃an represent one of the following things: the reeption of a message (generated froma trigger of an exeuted transition), assuming of a boolean expression to be true(generated from a guard of an exeuted transition), an assertion, an assignment, thesending of a message, an impliit message onsumption, and the deferral of a message.Reeption of messages by orresponding triggers 〈sigc, 〈p
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1: funtion transform(Mc, Ma,Trace)2: # Mc = 〈Cinit c,Dc,Classesc, Oc,Locationsc, SysSigsc,ExtSigs〉3: # Ma = 〈Cinita,Da,Classesa, Oa,Locationsa, SysSigsa,ExtSigs〉4: Trace = 〈event1, event2, . . . , eventn〉5: L← 〈〉6: C̃ ← 〈Cinit c, Cinita〉7: for i = 1 to n do8: if event i is of the form 〈trans, F, oid , tid〉 then9: oc ← the objet with id oid in Oc10: oa ← the objet with id oid in Oa11: tc ← the transition with id tid in statemachine(class(oc))12: ta ← the transition with id tid in statemachine(class(oa))13: L← tf_trans(Mc, Ma, L, C̃, F, oc, oa, tc, ta)14: else # event i is of the form 〈etype , F, oid〉, where etype ∈ {impl,defer}15: oc ← the objet with id oid in Oc16: oa ← the objet with id oid in Oa17: L← tf_impl_defer(Mc, Ma, L, C̃, F, etype, oc, oa)18: if lastconf (L) = ⊥ then19: return LFigure 5.1: The algorithm transform forms an analysis trae L from a spuriousounterexample Trace by simulating the exeution in the onrete model Mc and inthe abstrat model Ma.the analysis trae has ⊥ as its last ombined on�guration we have reahed the pointof exeution where the ounterexample trae annot be exeuted further either in theonrete or in the abstrat model. This means that we have all the information weneed for analysis and the analysis trae is returned.5.1.1 Transition Exeution EventsThe algorithm tf_trans in Figure 5.2 adds exeution steps produed from the tran-sition exeution ounterexample event to the analysis trae and returns the resultinganalysis trae. The algorithm is divided to two separate parts. The �rst, startingfrom line 5, handles events that are enabled in the onrete model1 and the latterone, starting from line 28, events that are not enabled in the onrete model.Enabled transitions are exeuted omponent by omponent in both the onreteand the abstrat model until either all omponents are exeuted or an assertion hasfailed and the analysis trae to be returned ends with the ombined on�guration ⊥.The algorithm uses the funtion exeute_ation for the atual exeution. Thepseudoode for the funtion exeute_ation an be found in Figure 5.4.The proessing of enabled transition events starts with reeiving messages by pos-sible triggers. Triggers are exeuted in the ode following line 6. Guards are skipped in1Events are always enabled in the abstrat model beause the ounterexample trae was generatedfrom the abstrat model 31



1: funtion tf_trans(Mc, Ma, L, C̃, F, oc, oa, tc, ta)2: # C̃ = 〈Cc, Ca〉3: # tc = 〈tid , s1, s2, trigc, gc, 〈stmt1
c , . . . , stmtn〉〉4: # ta = 〈tid , s1, s2, triga, ga, 〈stmt1
a, . . . , stmtn〉〉5: if enabled(Cc, 〈trans, F, oc, tc〉) then6: if trigc 6= ǫ then7: # trigc = 〈sigc, 〈p
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a is of the form 〈assert, ea〉20: b̃← 〈assert, F, ec, ea〉21: L← append(L, exeute_ation(C̃, oc, oa, F, b̃))22: C̃ ← lastconf (L)23: if C̃ = ⊥ then return L24: # statemachine(class(oc)) = 〈si, S, T, defers,flush〉25: if s2 ∈ flush then26: return append(L, exeute_ation(C̃, oc, oa, F, 〈goto, s2, true〉))27: return append(L, exeute_ation(C̃, oc, oa, F, 〈goto, s2, false〉))28: else29: if trigc 6= ǫ then30: # trigc = 〈sigc, 〈p
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c then37: return append(L, 〈C̃, 〈sn(Cc), oc, oa, b̃〉,⊥〉)38: L← append(L, exeute_ation(C̃, oc, oa, F, b̃))39: C̃ ← lastconf (L)40: return append(L, 〈C̃, 〈sn(Cc), oc, oa, 〈assume, F, gc, ga〉〉,⊥〉)Figure 5.2: Algorithm for produing analysis trae steps from the transition exeutionevents in the ounterexample trae. 32



enabled transitions beause they do not alter the on�guration. E�ets are exeutedin the for-lause starting from line 11. First the type of the omponent is parsed anda tuple b̃ representing the omponent is formed in lines 12�20. Then it is exeuted inthe abstrat and in the onrete model with the funtion exeute_ation. Asser-tion failures are heked in line 23. After all parts of the e�et are proessed we movethe state mahine to the target state s2 of the transition by exeuting a goto ation.This also �ushes the defer queue if the target state s2 is an element of the set flush .If the transition exeution event is not enabled in the onrete model, then eitherthe trigger of the transition an not be exeuted in the onrete model, or the guardof the transition evaluates to false. If the transition has a trigger, we analyze in lines29�37 whether the transition is not enabled in the onrete model beause the triggeran not be exeuted. The trigger an not be exeuted if the input queue is eitherempty or if the type of the message at the head of the queue does not math the typeof the signal in the trigger. Otherwise the message is reeived by exeution of theexeute_ation funtion in line 38. If there is no trigger or the trigger an beexeuted without errors, the guard evaluates to false in the onrete model. Then weadd an assume step with an assume ation to the analysis trae and return.5.1.2 Impliit Consumptions and Message DeferralsThe algorithm tf_impl_defer in Figure 5.3 adds exeution steps produed fromthe impliit onsumption or message deferral ounterexample event to the analysistrae and returns the resulting analysis trae. The algorithm is divided into twoseparate parts just like the tf_trans algorithm above.If the event is enabled in the onrete model then we exeute the event by allingexeute_ation and return the produed trae.The event might not be enabled in the onrete model beause of two reasons.Firstly, the input queue of the objet where the event is to be exeuted might beempty. In the algorithm this is handled in the if-lause starting from line 6 by addinga step orresponding to the type of the event that results in a ombined on�guration
⊥. Seondly, there might be a transition enabled in the objet where the event is tobe exeuted. In that ase we have to analyze whether the reason for the orrespondingtransition to be not enabled in the abstrat model lies in the trigger part or in theguard part of the transition. If the transitions (the onrete and the orrespondingabstrat one) share a non-empty trigger, then the reason for the abstrat transition tobe not enabled an be determined by heking the signals of messages in front of both,the onrete and the abstrat, message queues. If the signals are not orrespondingones, then the reason is in the trigger parts and we return an analysis trae withmessage reeiving ation resulting in the ombined on�guration ⊥ added to the endof the trae. The signal orrespondene hek is done in line 19 in the algorithm. If thesignals in the messages are orresponding then the reason for the abstrat transitionto be not enabled lies in the guard part beause the enabledness of the transitionis determined by the trigger and guard parts, not by the e�et part. If the reasonlies in the guard part then a step orresponding to the triggers of the transitions isadded to the analysis trae and after that an assume step resulting in the ombined33



1: funtion tf_impl_defer(Mc, Ma, L, C̃, F, etype, oc, oa)2: # C̃ = 〈Cc, Ca〉3: if enabled(Cc, 〈etype, oc〉) then4: return L← append(L, exeute_ation(C̃, oc, oa, F, 〈etype〉))5: else6: if InputQueue(Cc, oc) = 〈〉 then7: return append(L, 〈C̃, 〈sn(Cc), oc, oa, 〈etype〉〉,⊥〉)8: else9: # There has to be enabled transition tc in the onrete model.10: let tc be some transition enabled in Cc in Mc11: # tc = 〈tid , s1, s2, trigc, gc, eff c〉12: # tc ∼ ta = 〈tid , s1, s2, triga, ga, eff a〉13: if trigc 6= ǫ then14: # trigc = 〈sigc, 〈p
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a then20: return append(L, 〈C̃, 〈sn(Cc), oc, oa, b̃〉,⊥〉)21: L← append(L, exeute_ation(C̃, oc, oa, F, b̃))22: C̃ ← lastconf (L)23: return append(L, 〈C̃, 〈sn(Cc), oc, oa, 〈assume, F, gc, ga〉〉,⊥〉)Figure 5.3: Algorithm for produing analysis trae steps from the impliit onsump-tion and message defer events in the ounterexample trae.on�guration ⊥ is added to represent the guards that are evaluated with di�erentresults.5.1.3 Exeution of Ations for Analysis TraeWe have extrated the atual exeution of ations in the onrete and in the abstratmodel to a separate algorithm in the onstrution of an analysis trae. The algorithmin Figure 5.4 takes a ombined on�guration, a onrete objet, an abstrat objet,a funtion for solving non-determinism, and information about the type of the ationas arguments and returns an analysis trae step where the ation is exeuted. Thealgorithm is very straightforward and is here only to shorten the previous, moreompliated, algorithms.
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1: funtion exeute_ation(C̃, oc, oa, F, b̃)2: # C̃ = 〈Cc, Ca〉3: if b̃ is of the form 〈rev, sigc, siga, 〈p
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′〉Figure 5.4: Algorithm for reating analysis trae steps.
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Table 5.1: Values of variables in the objet oa in global on�gurations Ci
a.i var 1

a var2
a var3

a var4
a var5

a var 6
a1 POS NEG POS ZERO ZERO ZERO2 POS NEG POS POS ZERO ZERO3 POS NEG POS POS POS ZERO4 POS NEG POS POS POS POSTable 5.2: Values of variables in the objet oc in global on�gurations Ci

c.i var 1
c var2

c var 3
c var4

c var 5
c var6

c1 1 -2 5 0 0 02 1 -2 5 -6 0 03 1 -2 5 -6 -11 04 1 -2 5 -6 -11 65.2 Relevant LoationsOne way to analyze the ounterexample is to isolate variables in objets in the abstratmodel that an atually a�et the exeution of the ation whose orresponding ationin the onrete model ould not be exeuted. A�eting variables an be di�erent atdi�erent points of the trae.Example 5.1. In the abstrat model introdued in Example 3.1, the spurious oun-terexample was produed beause the assertion fails in the abstrat model even thoughthe orresponding assertion in the onrete model holds. An analysis trae produedfrom the ounterexample trae, the onrete model, and the abstrat model is
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and its orresponding variable var 5
c . Therefore the values of these variables before theation do not a�et the feasibility of the ounterexample but the values of var 4
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c in the onrete model. In Table 5.1and in Table 5.2 the values a�eting the ourrene of the spurious ounterexampleare underlined. Ultimately our objetive is to remove the spurious ounterexamplewith re�nement of the types of a subset of variables a�eting the ourrene of thespurious ounterexample. �To put this observation into use we introdue the onept of a relevant loation.Relevant loations desribe a set of omponents a�eting the ourrene of the spuri-ous ounterexample at eah point in the trae. We have two types of relevant loations,relevant loations onerning variables and relevant loations onerning message pa-rameters, whih are both represented with tuples ontaining three elements.A relevant loation onerning a variable in an objet is a tuple 〈sn, oid , name〉where sn is a sequene number indiating the onrete and abstrat global on�gu-rations relating to this entry, oid is the objet identi�er of the objet this entry isrelated to, and name is the name of the variable this entry is related to. The atualloation in the model an be found by onverting the objet identi�er and the variablename to the orresponding objet and variable.Example 5.2. In example 5.1, there is a relevant loation 〈2, id(oc), name(var4
c)〉(note that id(oc) = id(oa) and name(var 4

c) = name(var4
a)) meaning that the values ofvariables var 4
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a in objets oc and oa, are relevant in the global on�gurations
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a , respetively. �A relevant loation onerning a parameter in a message is a tuple 〈sn, idmsg , i〉where sn is a sequene number indiating the global on�gurations relating to thisentry, idmsg is a message identi�er identifying the message this entry is related to, and
i is an index identifying the ith parameter in the message as the parameter this entryis related to.Our onept of relevant loations inludes also message parameters and thus herethe meaning of the word loation orresponds to the meaning of the word loation inChapter 2 only when speaking about variables in objets.In pratie relevant loations are found by analyzing �rst the ation whih ouldnot be exeuted in the onrete model. This ation is found from the last step inthe analysis trae. The analysis of the last ation is desribed in Setion 5.2.1. Theanalysis produes a set of initial relevant loations. After we have found the initialrelevant loations, we propagate relevant loations to the other points of the traeby following data �ow paths of the initial relevant loations in the last ation. Thisproess is desribed in Setion 5.2.2.5.2.1 Initial Relevant LoationsThe proess of �nding initial relevant loations depends on the type of the ation inthe last step of the analysis trae. If the ation is either assume or assert, the37



1: funtion eval_orr(Cc, Ca, F, oc, oa, ec, ea)2: if type(ec) = referene then3: if eval(Cc, F, oc, ec) ∼ eval(Ca, F, oa, ea) then4: return true5: else6: return false7: else8: vc ← eval(Cc, F, oc, ec)9: va ← eval(Ca, F, oa, ea)10: if coerce(vc, type(ec), type(ea)) = va then11: return true12: else13: return falseFigure 5.5: Funtion omparing the value of the onrete expression oered to theabstrat type to the value of the orresponding abstrat value.orresponding ondition expressions in the onrete and in the abstrat models areevaluated di�erently. Thus, this expression seems like a logial plae for the searh ofinitial relevant loations.5.2.1.1 Finding Initial Relevant Loations from ExpressionsThe simplest way for �nding initial relevant loations from the expressions is to addall the loations appearing in the expressions to the set of initial relevant loations.This would ensure that all the relevant loations are inluded but on the other handthe set might ontain a large number of non-relevant loations. We hose to analyzethe expressions heuristially to narrow down the number of the relevant loations.The idea in the searh for the initial relevant loations from the expressions is totraverse the onrete expression tree and the abstrat expression tree, and to fouson the subexpressions that do not evaluate orrespondingly. This an be easily donebeause the orresponding expressions have the same tree struture.Example 5.3. For example, in the analysis trae introdued in Example 5.1 theinitial relevant loations onsist of only one loation, 〈4, id(oc), name(var 5
c)〉. Thisan also be seen in tables 5.1 and 5.2 in lines where i = 4. The initial relevantloations have been searhed from the expression (〈var5

c〉 < 〈var6
c〉) and its abstratounterpart (〈var5

a〉 < 〈var 6
a〉). The �rst subexpressions 〈var5

c〉 and 〈var5
a〉 have non-orresponding values −11 and POS. The seond subexpressions 〈var 6

c〉 and 〈var6
a〉 haveorresponding values 6 and POS. Thus the initial relevant loations are searhed fromthe �rst subexpressions, from whih only one loation, 〈id(oc), name(var 5

c)〉, is found.
� In the analysis of the expressions, omparison of the orrespondene of the valuesof the expressions is often needed. Funtion eval_orr desribed in Figure 5.5 is38



used for heking whether the onrete and the abstrat expression evaluate orre-spondingly. If the expressions evaluate as objets, the orrespondene of the resultingobjets is ompared and the result of the omparison is returned. Otherwise it eval-uates a given onrete expression ec in the onrete model, then oeres the valuegot to the type of the orresponding abstrat expression, and �nally ompares theoered value to the value the orresponding abstrat expression ea evaluates to inthe abstrat model. The result of the omparison is returned.Funtion relevant desribed in Figure 5.6 is used for �nding initial relevant loa-tions from expressions. It takes a onrete on�guration Cc, an abstrat on�guration
Ca, a funtion F for solving non-deterministi hoies in the evaluation of abstratexpressions, a onrete objet oc, a orresponding abstrat objet oa, a onrete ex-pression ec, and a orresponding abstrat expression ea as arguments. The expressions
ec and ea are assumed to evaluate non-orrespondingly between the onrete and theabstrat models (spei�ed by the on�gurations, the objets, and the funtion F ).If the expressions are of the kind lit or name, we ollet loations appearing inthese expressions using funtion ollet_loations whih is desribed in moredetail later.If the expressions are of the kind ond, we analyze whih one of the two subexpres-sions auses the non-orresponding evaluation of the expression. The expressions ofthe kind ond desribe logial and and or expressions for whih Jumbala uses short-iruit evaluation. Both ases are analyzed in the same way. If the �rst subexpressionsevaluate non-orrespondingly we searh for the initial relevant loations from thosesubexpressions, otherwise from the seond subexpressions. The reason for the iden-tial treatment is the assumption that the expressions evaluate non-orrespondinglybetween the onrete and the abstrat model. In that ase if the �rst subexpressionsevaluate orrespondingly, then the seond subexpressions do not. On the other handif the �rst subexpressions evaluate non-orrespondingly we do not evaluate the se-ond subexpression at all either in the onrete or in the abstrat model beause ofthe short-iruit evaluation used, making the seond subexpressions irrelevant for theanalysis.If the expressions are of the kind infix, we hek both subexpression pairs whetherthey evaluate orrespondingly. If the expressions in only one of the pairs evaluatenon-orrespondingly, then we searh initial relevant loations from the subexpressionsin that pair. If both pairs evaluate non-orrespondingly, then we an not make arational hoie over the other. Thus, we searh for initial relevant loations fromboth of the pairs and return the union of the relevant loations found. If both ofthe pairs evaluate orrespondingly, then the operation of the abstrat expression isnon-deterministi and in the ounterexample the abstrat value orresponding to theonrete one was not hosen in the evaluation of the abstrat expression. In this asewe do not know whih of the loations appearing in the expressions are best hoiesas initial relevant loations. Thus, all the loations appearing in the expressions arereturned as initial relevant loations.If the expressions are of the kind unary, we hek whether the only subexpres-sions evaluate orrespondingly. If they do not we reursively all the funtion rel-evant. On the other hand, if they do the operation in the abstrat expression isnon-deterministi and like with the infix expressions, we just ollet all the loations39



1: funtion relevant(Cc, Ca, F, oc, oa, ec, ea)2: if kind(ec) ∈ {lit,name} then3: return ollet_loations(Cc, Ca, oc, oa, ec, ea)4: if kind(ec) = ond then5: # subexpr(ec) = 〈e1
c , e

2
c〉 and subexpr(ea) = 〈e1

a, e
2
a〉6: if eval_orr(Cc, Ca, F, oc, oa, e

1
c , e

1
a) = false then7: return relevant(Cc, Ca, F, oc, oa, e

1
c , e

1
a)8: else9: return relevant(Cc, Ca, F, oc, oa, e

2
c , e

2
a)10: if kind(ec) = infix then11: # subexpr(ec) = 〈e1

c , e
2
c〉 and subexpr(ea) = 〈e1

a, e
2
a〉12: c1 ← eval_orr(Cc, Ca, F, oc, oa, e

1
c , e

1
a)13: c2 ← eval_orr(Cc, Ca, F, oc, oa, e

2
c , e

2
a)14: if c1 = false ∨ c2 = false then15: result ← {}16: if c1 = false then17: result ← result ∪ relevant(Cc, Ca, F, oc, oa, e

1
c , e

1
a)18: if c2 = false then19: result ← result ∪ relevant(Cc, Ca, F, oc, oa, e

2
c , e

2
a)20: return result21: else22: return ollet_loations(Cc, Ca, oc, oa, ec, ea)23: if kind(ec) = unary then24: # subexpr(ec) = 〈e1

c〉 and subexpr(ea) = 〈e1
a〉25: if eval_orr(Cc, Ca, F, oc, oa, e

1
c , e

1
a) then26: return ollet_loations(Cc, Ca, oc, oa, ec, ea)27: else28: return relevant(Cc, Ca, F, oc, oa, e

1
c , e

1
a)29: if kind(ec) = tond then30: # subexpr(ec) = 〈e1

c , e
2
c , e

3
c〉 and subexpr(ea) = 〈e1

a, e
2
a, e

3
a〉31: c1 ← eval_orr(Cc, Ca, F, oc, oa, e

1
c , e

1
a)32: if c1 = false then33: return relevant(Cc, Ca, F, oc, oa, e
1
c , e

1
a)34: else35: if eval(Cc, F, oc, e

1
c) = true then36: return relevant(Cc, Ca, F, oc, oa, e

2
c , e

2
a)37: else38: return relevant(Cc, Ca, F, oc, oa, e

3
c , e

3
a)Figure 5.6: Algorithm for �nding initial relevant loations from expressions.
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1: funtion ollet_loations(Cc, Ca, oc, oa, ec, ea)2: if kind(ec) = name then3: # ec is of the form 〈name, id , dc, 〈var
1
c , . . . , var

n
c 〉〉4: # ea is of the form 〈name, id , da, 〈var

1
a, . . . , var

n
a〉〉5: return {safe_resolve(Cc, Ca, oc, oa, ec, ea)}6: else if kind(ec) = lit then7: return ∅8: else9: # subexpr(ec) is of the form 〈e1

c , . . . , e
n
c 〉10: # subexpr(ea) is of the form 〈e1

a, . . . , e
n
a〉11: result ←

⋃n

i=1
ollet_loations(Cc, Ca, oc, oa, e

i
c, e

i
a)12: return resultFigure 5.7: Algorithm for �nding all the loations appearing in the expression.in the expression beause we do not have a better judgement of the loations thatshould be inluded in the initial relevant loations.If the expressions are of the kind tond, we �rst hek whether the onditionsubexpressions evaluate orrespondingly. If they do not, there is no point for onen-trating on the subexpressions evaluating the value beause in one model the seondsubexpression is evaluated but in the other the third subexpression is evaluated. Thusin this ase we searh initial relevant loations from the ondition subexpressions. Ifthe ondition subexpressions evaluate orrespondingly, we searh the subexpressionsthat atually determine the value of the expression. The hoie of the subexpressionpair depends naturally on the value of the ondition subexpression.Loations are piked up from expressions using a funtion ollet_loationsdesribed in Figure 5.7. If the orresponding expressions ec and ea are of the kindname, we �nd the loations the expressions represent by using safe_resolve fun-tion whih is desribed in Figure 5.8 and explained in the next paragraph. If theexpressions are of the kind lit, we return an empty set beause no loations appearin the expressions. When the expressions are ompound expressions, we all ol-let_loations for all the subexpression pairs and return the union of loationsappearing in the subexpressions.The funtion safe_resolve is used for resolving loations from name kind ex-pressions. The algorithm for the funtion is shown in Figure 5.8. The funtion takes aonrete and an abstrat on�guration, orresponding onrete and abstrat objets,and orresponding expressions. A tuple ontaining an objet identi�er and a variablename indiating a loation is returned. The idea is to iterate through the variablesappearing in the expressions while fething the objets orresponding to the variablesfrom the on�gurations at eah step in the iteration. At eah step we also hekwhether the objets between the onrete and the abstrat model are orrespondingones. If they are not, we stop the iteration and return a tuple pointing to a loationfrom where the non-orresponding objets were found beause there is no point inontinuing the iteration when the values in the onrete and in the abstrat modelome from non-orresponding objets. The logial relevant loations in suh a ase41



1: funtion safe_resolve(Cc, Ca, oc, oa, ec, ea)2: # ec is of the form 〈name, id e, dc, 〈var
1
c , . . . , var

n
c 〉〉3: # ea is of the form 〈name, id e, da, 〈var

1
a, . . . , var

n
a〉〉4: for i=1 to n-1 do5: o′c ← VarValue(Cc, oc, var

i
c)6: o′a ← VarValue(Ca, oa, var
i
a)7: if id(o′c) 6= id(o′a) then8: return 〈id(oc), name(var i

c)〉9: else10: oc ← o′c11: oa ← o′a12: return 〈id(oc), name(varn
c )〉Figure 5.8: Algorithm for returning a tuple representing a loation the name kindexpression represents. If the onrete and the abstrat expression does not repre-sent orresponding loations a tuple representing the loation before the �rst non-orresponding loation is returned.are the loations ontaining the �rst non-orresponding objets.Example 5.4. Let o1

c , o2
c , and o3

c be objets instantiated from a lass cc in theonrete model. The orresponding abstrat objets, instantiated from a lass ca,are o1
a, o2

a, and o3
a, respetively. Let var 1

c ∈ Vars(cc), var1
a ∈ Vars(ca), var1

c ∼
var1

a, and type(var1
c) = type(var1

c) = referene. Let var2
c ∈ Vars(cc), var2

a ∈
Vars(ca), var 2

c ∼ var2
a, type(var2

c) = type(var2
c) = int. In the global on�gura-tion Cc and in the orresponding abstrat global on�guration Ca some of the val-ues of the variables are VarValue(Cc, o

1
c , var

1
c) = o2

c , VarValue(Ca, o
1
a, var

1
a) = o3

a,
VarValue(Cc, o

2
c , var

2
c) = 1, VarValue(Ca, o

2
a, var

2
a) = 1, VarValue(Cc, o

3
c , var

2
c) =

−1, and VarValue(Ca, o
3
a, var

2
a) = −1. The evaluation of orresponding expressions

〈name, id , int, 〈var1
c , var

2
c〉〉 and 〈name, id , int, 〈var1

a, var
2
a〉〉 in the global on�gura-tions Cc and Ca gives us non-orresponding results, 1 in the onrete model and −1 inthe abstrat model. Still the loation 〈o2

c , var
2
c〉 has a value orresponding to the valueof the loation 〈o2

a, var
2
a〉 as well as the loation 〈o3

c , var
2
c〉 has a value orrespondingto the value of the loation 〈o3

a, var
2
a〉. If we are searhing for relevant loations fromthese expressions in the global on�gurations desribed, there is no point in hoosingloations represented by a tuple 〈id(o2

c), name(var2
c)〉, 〈id(o3

c), name(var2
c)〉 or bothas relevant loations but instead the loations, represented by a 〈id(o1

c), name(var1
c)〉,whih auses the non-orresponding results in the evaluation of the expressions. �5.2.1.2 Target Correspondene ChekIf the last ation is either impl, defer, or rev, the reason for the abstrat oun-terexample to be spurious is a send ation that sends messages to non-orrespondingobjets in the onrete and in the abstrat model as was desribed in Setion 4.3.2 A2Impliit message onsumptions and message defers aused by a guard whih is false in theabstrat model and true in the onrete model have been onverted to rev and assume ations in42



1: funtion hek_target_orrespondene(T̃ , oc, oa, id)2: # T̃ is of the form 〈step1, . . . , stepn〉3: for i = 1 to id do4: # stepi is of the form 〈〈Cc, Ca〉, 〈i, o′c, o′a, b̃〉, C̃ ′〉5: if b̃ is of the form 〈send, F, sigc, siga, paramsc, paramsa, tgt c, tgta〉 then6: otgt
c

← eval(Cc, F, o′c, tgt c)7: otgt
a

← eval(Ca, F, o′a, tgta)8: if (oc = otgt
c

∧ oa 6= otgt
a

) ∨ (oc 6= otgt
c

∧ oa = otgt
a

) then9: return i10: return −1Figure 5.9: Algorithm for heking orrespondene of target objets in signal sendations.logial re�nement to the abstration would be one that makes the send ation sendmessages to orresponding objets instead of non-orresponding objets. Thus, welook for the initial relevant loations in the target expressions of the send ation.First we have to �nd the ation. For this we use a simple algorithm that examinesall send ations in the trae to �nd the �rst send ation whih sends a message tonon-orresponding objets and the target objet is the objet in the last ation in thetrae either in the onrete or in the abstrat model but not in both models. Thispoint of the trae is hosen beause this is the point where the input queues of thedesired target objets begin to diverge between the onrete and the abstrat model.After the ation is found, the target expressions of the ation are analyzed using thefuntion relevant, just like we did with the assume and assert ases.Funtion hek_target_orrespondene desribed in Figure 5.9 is used foromparison of the targets of the ations in the trae. It takes an analysis trae T̃ ,target objets oc and oa from the onrete and the abstrat model, and a sequenenumber id indiating the last step in the analysis trae that needs to be heked.Funtion hek_target_orrespondene returns the sequene number of the�rst step where a message is sent to the target objet either in the onrete or in theabstrat model but not in the other model. If suh a step an not be found −1 isreturned.The last step to be heked is provided as an optimization when the last plaethat an a�et the �rst message in the input queues in the urrent loation is alreadyknown. For example if in the last step of the analysis trae the onrete objet hasa message 〈4, sigc, p
1
c , . . . , p

n
c 〉 in the head of the input queue and the orrespondingabstrat objet has a message 〈7, siga , p

1
a, . . . , p1m

〉 in the head of the input queue, thenwe know that there is a send ation sending messages to non-orresponding objets atthe latest in the fourth ation. When searhing for the initial relevant loations theoptimization is atually irrelevant (beause there is always a send ation with non-orresponding targets) but in the propagation of the relevant loations (introdued inSetion 5.2.2) the funtion is alled in situations when there is not neessarily sendthe onstrution of the analysis trae. 43



1: funtion initial_relevant_loations(T̃ )2: # T̃ is of the form 〈step1, . . . , stepl〉3: # last(T̃ ) is of the form 〈〈Cc, Ca〉, 〈id , oc, oa, b̃〉,⊥〉4: R ← ∅5: if b̃ is of the form 〈assume, F, ec, ea〉 or 〈assert, F, ec, ea〉 then6: for all 〈oid , name〉 ∈ relevant(Cc, Ca, F, oc, oa, ec, ea) do7: R ← R ∪ {〈l, oid , name〉}8: else9: # b̃ is of the form 〈impl〉, 〈defer〉, or10: # 〈rev, sigc, siga, 〈p
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c , . . . , p

n
c 〉, 〈p
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a〉〉11: i← hek_target_orrespondene(T̃ , oc, oa, id)12: # stepi = 〈〈Ci
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a, 〈e
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c , . . . , e
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c 〉, 〈e
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a 〉, tgt
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i
a〉14: for all 〈oid , name〉 ∈ relevant(Ci

c, C
i
a, Fi, o

i
c, o

i
a, tgt

i
c, tgt

i
a) do15: R ← R ∪ {〈i, oid , name〉}16: return RFigure 5.10: Algorithm for alulating initial relevant loations. The algorithm takesan analysis trae T̃ as argument and returns a set of relevant loations R ontainingthe initial relevant loations.ation with non-orresponding targets.5.2.1.3 Algorithm for Finding Initial Relevant LoationsThe algorithm in Figure 5.10 is used for �nding initial relevant loations for an analysistrae. It takes an analysis trae as an argument and returns a set ontaining the initialrelevant loations. Ations assume and assert are handled in lines 5�7. Conditionexpressions (the onrete and the orresponding abstrat) in these ations are searhedfor initial relevant loations by a all to the funtion relevant whih searhes forinitial relevant loations heuristially from the expressions given.Example 5.5. In the analysis trae introdued in Example 5.1, the initial relevantloations are searhed from the onrete expression (〈var5

c〉 < 〈var6
c〉) and the orre-sponding abstrat expression (〈var5

a〉 < 〈var 6
a〉). The set of initial relevant loationsfound from the expressions is {〈4, id(oc), name(var5

c)〉}. �Ations impl, defer, and rev are handled in lines 8�15. The �rst send a-tion that sends a message to a target objet either in the onrete model or inthe abstrat model but not in the other model is found by a all to the funtionhek_target_orrespondene. After the sequene number i of suh an a-tion is found, the target expressions in the send ation in the ith step is searhed forinitial relevant loations using funtion the relevant.
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5.2.2 Propagation of Relevant LoationsAfter a set of initial relevant loations has been found, we propagate relevant loationsto other points in the analysis trae. The idea is to traverse through the analysis traebakwards and to follow where the values of the relevant loations ome from. Afterthis data �ow analysis is done, we have found relevant loations for every step in thetrae.Example 5.6. After the initial relevant loations {〈4, id(oc), name(var 5
c)〉} in Exam-ple 5.1 are found, the relevant loations are propagated to other points in the trae.Relevant loations onerning C3

c and C3
a are propagated from the relevant loationsonerning C4

c and C4
a . Beause the assignment ation in the third step in the traedoes not modify values in relevant loations onerning C4

c and C4
a , the same loationsare relevant before the exeution of the assignment ation. Thus the set of relevantloations is augmented with 〈3, id(oc), name(var5

c)〉.The seond ation on the other hand assigns a value to var5
c in oc in the on-rete model and to var5

a in oa in the abstrat model. These loations were relevantbut beause the ation modi�es the values in these loations the value before theation is not relevant and thus we do not augment the set of relevant loations withtuple 〈2, id(oc), name(var 5
c)〉. Instead we �nd what loations are used in the al-ulation of the values assigned to these loations. In the onrete model values inloations 〈oc, var

3
c〉 and 〈oc, var

4
c〉 are used and in the abstrat model values in loa-tions 〈oa, var

3
a〉 and 〈oa, var

4
a〉 are used. The set of relevant variables is augmentedwith 〈2, id(oc), name(var 3

c)〉 and 〈2, id(oc), name(var4
c)〉.Similarly the �rst ation assigns values to relevant loations in C2

c and C2
a and thusthe onrete and abstrat expressions for alulating the values assigned are searhedfor new relevant loations. The set of relevant loations is augmented with entries

〈1, id(oc), name(var1
c)〉, 〈1, id(oc), name(var2

c)〉, and 〈1, id(oc), name(var3
c)〉. It shouldbe noted that 〈1, id(oc), name(var 3

c)〉 would be in the set of relevant loations even ifthe loations 〈oc, var
3
c〉 or 〈oa, var

3
a〉 are not be used in the expressions evaluating thevalues to be assigned in the ation. �In the ase where a message is sent to non-orresponding objets between theonrete and the abstrat model, the initial relevant loations are not related to theglobal on�gurations before the last ation in the trae. From the propagation's pointof view this is not important, the propagation works in the same way as in the situationwhere the initial relevant loations are related to the global on�gurations before theexeution of the last ation in the trae.The propagation of the relevant loations di�ers from traditional data �ow analysisas in the traditional data �ow analysis all the variables used in the alulation of thevalue of an important variable are olleted but in the propagation of the relevantloations all the loations are not neessarily olleted but instead only the loationsthat ontribute to the searh for the abstration re�nement.5.2.2.1 Algorithm for the Propagation of Relevant LoationsThe algorithm presented in Figure 5.11 is used for the propagation of the relevantloations. It takes an analysis trae T̃ and a set of initial relevant loations R as argu-45



1: funtion propagate_relevant_loations(T̃ ,R)2: # T̃ is of the form 〈step1, . . . , stepn〉3: for i = n− 1 to 1 do4: # stepi is of the form 〈〈Cc, Ca〉, 〈i, oc, oa, b̃〉, C̃
′〉5: for all 〈id ′, x, y〉 ∈ R : id ′ = i + 1 do R ← R ∪ {〈i, x, y〉}6: if b̃ is of the form 〈assign, F, lhsc, lhsa, rhsc, rhsa〉 then7: 〈o′c, var

′
c〉 ← resolve(Cc, oc, lhsc)8: 〈o′a, var
′
a〉 ← resolve(Ca, oa, lhsa)9: if 〈i+1, id(o′c), name(var ′

c)〉 ∈ R∨〈i+1, id(o′a), name(var ′
a)〉 ∈ R then10: if o′c ∼ o′a then11: R ← R \ {〈i, id(o′c), name(var ′

c)〉}12: for all 〈oid , name〉 ∈ ref(Cc, Ca, F, oc, oa, rhsc, rhsa) do13: R ← R ∪ {〈i, oid , name〉}14: else15: 〈oid , name〉 ← safe_resolve(Cc, Ca, oc, oa, lhsc, lhsa)16: R ← R \ 〈i, id(o′c), name(var ′
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c)〉}33: R ← R ∪ {〈i, idmsg c
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a) do41: R ← R ∪ {〈i, oid , name〉}42: return RFigure 5.11: Algorithm for propagating relevant loations.46



ments. The algorithm traverses through the analysis trae bakwards and propagatesrelevant loations from the step visited earlier by the algorithm.First we opy all relevant loations from the sueeding step. A set of loationsobtained this way is then modi�ed depending on the type of the ation in the urrentstep.If the ation is of the type assign, we modify the set of relevant loations only if theassignment modi�es a value in one of the relevant loations. If a value in a relevantloation is modi�ed the �rst thing is to hek that the loation the assignment ismodifying is the same one in both models. If it is, the loation modi�ed is not relevantearlier in the trae beause the loation does not get its value until the urrent step.On the other hand, loations used for the alulation of the values assigned (foundby a all to a funtion ref desribed later) are relevant and thus added to the setof relevant loations (the loation to whih the value is assigned might be used inthe alulation of the value in whih ase that loation is relevant also earlier in thetrae). This is done in lines 10�13 in the algorithm.If the loations modi�ed di�er between the onrete and the abstrat model, thenthe values assigned are irrelevant. This is beause we have no reason to expet thatthe loations where the value is assigned only in one model but not in the othershould have orresponding values. For the same reason there is no point in beinginterested about the values of the loations before the urrent step. Thus the loationsare removed from the set of relevant loations. Instead we turn our attention to theexpressions de�ning the loations modi�ed. The reason why the assignment is done tonon-orresponding loations is found from these expressions. We use safe_resolveto get a loation where the determination of the target loation of the assignmenttakes di�ering paths between the onrete and the abstrat models. We add thisloation to the set of relevant loations beause the non-orresponding values in theonrete and in the abstrat model a�et the values a�eting the ourrene of thespurious ounterexample.It ould be argued that the loations modi�ed only in either of the onrete andabstrat models should not be relevant after the assignment. This would lead tothe question of relevane of the loations whose values were alulated using valuesin loations modi�ed only in one of the models. Beause later (Setion 5.3) we areinterested only in the �rst relevant loation having non-orresponding values, we shallnot modify relevant loations later in the trae.If the ation is of the type rev, we modify the set of relevant loations onlyif one of the assignments done in the proess of reeiving a message modi�es thevalue of a loation belonging to the set of relevant loations. Beause the loationswhere values are assigned in rev ations are always loal, i.e. the assignment anbe made without dereferenes, the assignments are always done to orrespondingloations. If there are suh assignments, we �rst make sure that the messages re-eived are the orresponding ones. This is done by heking that all message send-ing ations up to this point send a message either to both objets, the onreteand the abstrat, of this ation or neither of them. For this hek the funtionhek_target_orrespondene is used. If it �nds a plae where a message issent to only one of the objets of this ation, then we start over the searh for rel-evant loations by alling propagate_relevant_loations with a set of initial47



relevant loations found from the target expression of the send ation pointed outby funtion hek_target_orrespondene. The idea behind restarting is tohelp the searh for a re�nement fous on the loations whih ause the target expres-sions to evaluate non-orrespondingly and thus try to fore the send ation to sendmessages to orresponding objets after re�nement. Message queue omparison andthe possible restarting of the searh for relevant loations are done in lines 23�29 inthe algorithm. Making sure that the message queue histories of the message reeivingobjets orrespond in both models might very well be too autious. This topi isdisussed further in Setion 7.1.When we have ensured that the input queue histories orrespond (up to the po-sition at whih the message is reeived) in the objets of the ation, we remove therelevant loations modi�ed in the message reeiving ation from the set of relevantloations and for every relevant loation assigned we add the orresponding messageparameter to the set of relevant loations. This is done in lines 30�33 in the algorithm.If the ation is of the type send, we hek whether there are relevant messageparameters in the message the ation sends. For eah relevant message parameter weremove that message parameter from the set of relevant loations (after all, beforethe exeution of the send ation there is no suh message) and add all the loationsused in the alulation of the parameter to the set of relevant loations. This is donein lines 34�41 in the algorithm.The algorithm returns a set of relevant loations in the trae.5.2.2.2 Finding Loations Used in Expression EvaluationThe funtion ref desribed in Figure 5.12 is used for �nding loations used in theevaluation of a pair of orresponding expressions. It takes a onrete and an abstraton�guration, a funtion for solving non-deterministi hoies in the abstrat evalua-tion, orresponding objets for the onrete and the abstrat model, and orrespond-ing expressions as arguments. The algorithm returns a set of loations ontaining oneloation per a pair of orresponding name kind of subexpressions appearing in thepair of orresponding expressions given to the algorithm. The loation for a pair ofname kind of expressions is got using the funtion safe_resolve.If the expressions are of the type lit or name, funtion ollet_loationsis used to determine the set of loations returned. If the expressions are of the typeond, we all ref reursively for the subexpressions that are evaluated, either in theonrete or in the abstrat model. Short-iruit evaluation used in the evaluation ofond expressions in Jumbala is taken into aount when deiding whih subexpres-sions are searhed for the loations. If the expressions are of the type infix, bothsubexpression pairs are searhed for loations, reursively. If the expressions are of thetype unary, the only subexpression pair is searhed for loations. If the expressionsare of the type tond, we searh for the loations from the ondition expressionsand depending on the values of the ondition expressions from the expressions usedfor determining the values.The algorithm used for the searh of loations used in the evaluation of a pair oforresponding expressions is relatively simple for the reason that we did not want tomake things too omplex in the development of the algorithm for propagating relevant48



loations. One point for optimization might be the handling of ternary onditionalexpressions. In the ase of ondition expressions evaluating non-orrespondingly be-tween the onrete and the abstrat model it ould be reasonable to add just theloations used for the evaluation of the ondition expressions to the set of relevantloations.
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1: funtion ref(Cc, Ca, F, oc, oa, ec, ea)2: if kind(ec) ∈ {lit,name} then3: return ollet_loations(Cc, Ca, oc, oa, ec, ea)4: if kind(ec) = ond then5: # subexpr(ec) = 〈e1
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a)22: if kind(ec) = tond then23: # subexpr(ec) = 〈e1
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a)25: if eval(Cc, F, oc, e

1
c) = true ∨ eval(Ca, F, oa, e
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a)27: if eval(Cc, F, oc, e
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a) = false then28: result ← result ∪ ref(Cc, Ca, F, oc, oa, e

3
c , e

3
a)29: return resultFigure 5.12: Algorithm for �nding loations used in the evaluation of a pair of orre-sponding expressions.
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5.3 Re�ning Interval AbstrationsIn interval abstrations every abstrat type used in the abstrat model divides thedomain of int into integer intervals. For example 32-bit signed integers ould bedivided to intervals [−231,−5], [−4, 1], [2, 2], [3, 231− 1]. The evaluation of an intervalabstrated expression an result in any interval ontaining an integer resulting froman evaluation of the orresponding non-abstrated expression with some ombinationof integers in the abstrated operands' intervals as the operands of the non-abstratedexpression. For example [2, 2] + [−4, 1] = x, where x ∈ {[−4, 1], [2, 2], [3, 231 − 1]}.Interval abstrations an be intuitively re�ned by splitting the intervals. For example,
[−231,−5], [−4, 1], [2, 2], [3, 231 − 1] an be re�ned by splitting the interval [3, 231 − 1]into three new intervals [3, 5], [6, 12], and [13, 231−1] produing a new set of intervals
[−231,−5], [−4, 1], [2, 2], [3, 5], [6, 12], [13, 231 − 1]. We desribe a proess for �ndinga suitable re�nement automatially when using interval abstrations. This makespossible a fully automati model heking proedure with interval abstrations.After an abstrat ounterexample has been identi�ed as a spurious one, an analysistrae representing the ounterexample is formed. The idea is to alulate relevantloations in the ounterexample using the algorithms desribed in Setion 5.2. Afterthe relevant loations have been determined, we �nd the �rst point in the trae wherethe value of a relevant loation in the onrete model does not orrespond to thevalue in the abstrat model. Beause the de�nition of an abstrat model ensuresthat initially values in all loations have orresponding values between the onreteand the abstrat model, we have an ation in the trae that has produed the non-orrespondene between the values in the onrete and abstrat model. Hene afterwe have found the �rst point with non-orresponding values in the relevant loations,we searh for the ation that aused the loations to have non-orresponding values.This ation has to be the ation exeuted just before the point where the relevantloation with non-orresponding values has been found. Otherwise the values in thisloation would have been non-orresponding earlier in the trae.The expressions determining the values assigned to the relevant loation in theation are analyzed muh in the same fashion as are the expressions analyzed whensearhing for the set of initial relevant loations. The idea is to searh for a set ofloations and a set of values from the pair of orresponding expressions to guide there�nement proess. Variables in the lasses orresponding to the set of loations foundare re�ned in suh a way that for every variable having an abstrat type, a new type isreated. The domain of the new type is the domain of the old type with all the integervalues found in the expression analysis separated to distint intervals. For example ifa onrete variable var c with int domain was abstrated to a orresponding variable
vara with domain ontaining intervals [−231,−5], [−4, 1], [2, 2], [3, 231−1] and our anal-ysis has found that the type of vara needs to be re�ned with value −13, then the do-main of the new type for vara is [−231,−14], [−13,−13], [−12,−5][−4, 1], [2, 2], [3, 231−
1]. With this re�nement we try to make the expression equivalent to the expressionausing the �rst non-orresponding values in the relevant loations to evaluate orre-spondingly in the abstrat model generated with the re�ned abstration.
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1: funtion find_refinement(Mc, Ma, T̃ ,R)2: # Mc is of the form 〈Cinit c,Dc,Classesc, Oc,Locationsc, SysSigsc,ExtSigs〉3: # Ma is of the form 〈Cinita,Da,Classesa, Oa,Locationsa, SysSigsa,ExtSigs〉4: # T̃ is of the form 〈step1, . . . , stepn〉5: for i = 1 to n− 1 do6: # stepi is of the form 〈〈Cc, Ca〉, 〈i, oc, oa, b̃〉, 〈C
′
c, C

′
a〉〉7: if b̃ is of the form 〈assign, F, lhsc, lhsa, rhsc, rhsa〉 then8: 〈o′c, var

′
c〉 ← resolve(C ′

c, oc, lhsc)9: if 〈i + 1, id(o′c), name(var ′
c)〉 ∈ R then10: if eval_orr(C ′

c, C
′
a, F, oc, oa, lhsc, lhsa) = false then11: return ref_expr(Cc, Ca, F, oc, oa, rhsc, rhsa)12: if b̃ is of the form 〈send, F, sigc, siga, Ec, Ea, tgtc, tgta〉 then13: # Ec is of the form 〈e1

c , . . . , e
m
c 〉14: # Ea is of the form 〈e1

a, . . . , e
m
a 〉15: if ∃〈i, x, y〉 ∈ R ∧ ∄〈i + 1, z, w〉 ∈ R then16: return ref_expr(Cc, Ca, F, oc, oa, tgt c, tgta)17: for j = 1 to m do18: if 〈i + 1, i, j〉 ∈ R then19: if eval_orr(Cc, Ca, F, oc, oa, e

j
c, e

j
a) = false then20: return ref_expr(Cc, Ca, F, oc, oa, e

j
c, e

j
a)21: # stepn is of the form 〈〈Cc, Ca〉, 〈i, oc, oa, b̃〉, C̃

′〉22: # b̃ is of the form 〈assume, F, ec, ea〉 or 〈assert, F, ec, ea〉23: return ref_expr(Cc, Ca, F, oc, oa, ec, ea)Figure 5.13: Algorithm for �nding expressions where the re�nements are searhed for.5.3.1 Finding Expressions for AnalysisThe algorithm shown in Figure 5.13 determines a pair of orresponding expressionsfrom where a suitable re�nement is searhed for. After the expression pair has beenfound, the re�nement alulated by the funtion ref_expr (desribed in Setion5.3.2) is returned.The algorithm takes a onrete model, an abstrat model orresponding to theonrete model, an analysis trae, and a set of relevant loations in the trae asarguments. We iterate through the steps in the analysis trae. For eah step we hekwhether the ation in the step produed non-orresponding values to the relevantloations. Only assign and send ations need to be heked beause rev ationassigns message parameters with a type oerible to the type of the variable the valueis assigned to. Thus, if the value of an abstrat message parameter orresponds to thevalue of the orresponding onrete message parameter, then the value of the variablewhere the value of the message parameter is assigned to orresponds to the value ofthe orresponding onrete variable after the assignment.If the ation is of the type assign, and the loation where the assignment assignsa value is relevant after the assignment, but the value in the loation in the abstrat52



model does not orrespond to the value in the onrete model after the assignment,we searh for a re�nement from the right-hand side expressions. In the algorithm thisis done in lines 7�11.If the ation is of the type send, and there are relevant loations before the sendation but not after, we have searhed for the initial relevant loations from the targetexpressions of the send ation. In this situation we searh for the re�nement from thetarget expressions in the ation. This ase is handled in lines 15�16 in the algorithm.If the target expressions of the ation were not searhed for initial relevant loa-tions, we hek whether eah relevant abstrat message parameter orresponds to theonrete one. The pair of expressions evaluating the �rst pair of message parameterswith non-orresponding values is searhed for the re�nement. In the algorithm this isdone in lines 17�20.If an expression to be searhed for re�nement has not been found before the laststep in the trae, we have a situation where the type of the last step in the traeis either assume or assert and all the relevant loations in the trae have hadorresponding values. In this ase we searh the ondition expressions in the ationfor re�nement. In the algorithm this is done in line 23.5.3.2 Analysis of Expressions for Re�nementWhen the expressions to be searhed for abstration re�nement are found, the fun-tion ref_expr desribed in Figure 5.14 is used for the searh for re�nement. Thefuntion traverses the expression trees and fouses to subexpressions evaluating non-orrespondingly. When no pair of orresponding subexpressions an be hosen overthe other or all the subexpression pairs evaluate orrespondingly, we ollet all theloations with an abstrat type appearing in the expressions to a set of loations to bere�ned3 and evaluate values of the subexpressions of the urrent onrete expressionand ollet all integer values from those to form a set of values guiding the re�nement.Example 5.7. In the example abstrat model introdued in Example 3.1 (analy-sis trae mathing the ounterexample was desribed in Example 5.1), the abstrattype Sign = {NEG, ZERO, POS} is an interval abstration. The value NEG represents theinterval [−231,−1], the value ZERO represents the interval [0, 0], and the value POS rep-resents the interval [1, 231−1]. In the analysis trae of the model (introdued in Setion5.2) the �rst point with non-orresponding relevant loations is after the exeution ofthe �rst ation. Beause the �rst ation is an assignment, the re�nement is searhedfrom the expressions de�ning the assigned values. In this ase the expressions are((〈var 1
c〉 + 〈var2

c〉) - 〈var3
c〉) and ((〈var 1

a〉 + 〈var2
a〉) - 〈var3

a〉). The �rst subex-pressions ec = (〈var1
c〉 + 〈var2

c〉) and ea = (〈var 1
a〉 + 〈var2

a〉) evaluate as −1 andPOS, respetively, in the trae. The seond subexpressions 〈var3
c〉 and 〈var3

a〉 evaluateas 5 and POS, respetively. So, the �rst subexpressions evaluate non-orrespondinglyand the seond subexpressions evaluate orrespondingly. Thus the �rst subexpressionsare searhed further for the re�nement.3As stated earlier, the atual type of the loations is not re�ned but the type of the variable in alass de�ning the type of the loation. 53



1: funtion ref_expr(Cc, Ca, F, oc, oa, ec, ea)2: if kind(ec) ∈ {lit,name} then3: return 〈ollet_int_los(Cc, F, oc, ec),values(Cc, F, oc, ec)〉4: if kind(ec) = ond then5: # subexpr(ec) = 〈e1
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is representing the intervals [−231,−3], [−2,−2], [−1,−1], [0, 0], [1, 1], [2, 231 − 1]. Inthe abstrat model, onstruted with the re�ned abstration, all the properties holdindiating the properties hold also in the onrete model. �5.3.2.1 Algorithm for Analysis of ExpressionsThe heuristi behind the subexpression analysis is that we assume that the non-orrespondingly evaluating abstrat subexpression auses the abstrat expression toevaluate non-orrespondingly. This assumption does not neessarily hold and there-fore in the re�ned abstration the same ation an ause the �rst non-orrespondingvalues in a relevant loation. Our approah still fores the abstrat expression to even-tually evaluate orrespondingly (if the onrete data types are �nite and the enginegenerating abstrat models does not over-approximate in plaes where it is not ne-essary) beause every re�nement yle re�nes the abstration resulting in the end anabstration where every abstrat value orresponds to a single integer value. At thispoint the onrete and the abstrat model are in pratie the same model and thereis no extra behavior in the abstrat model to produe spurious ounterexamples. Ourapproah still aims to re�ne the model enough so that the spurious ounterexampleis removed from the abstrat model but not too muh to avoid state spae explosion,the very problem abstrations try to solve.The funtion ref_expr takes a onrete and an abstrat on�guration, a fun-tion F for solving non-determinism in the evaluation, a onrete and an abstratobjet, and a onrete and an abstrat expression as arguments.If the expressions are of the kind lit or name, we ollet loations and all integersubexpression values for re�nement from the onrete expression.If the expressions are of the kind ond, the �rst non-orrespondingly evaluatingsubexpression pair is searhed reursively for re�nement. If the �rst pair of subex-pressions does not evaluate orrespondingly, the other pair of subexpressions (eventhough it might evaluate non-orrespondingly as well) is not searhed for re�nementbeause it is evaluated only either in the onrete or in the abstrat model but not inthe other due to Jumbala's short-iruit evaluation semantis.If the expressions are of the kind infix, we hek whether the subexpression pairsevaluate orrespondingly. If exatly one of the subexpression pairs evaluate non-orrespondingly, the re�nement is searhed from that pair reursively. Otherwise weollet loations and all integer subexpression values for re�nement from the entireonrete infix expression.If the expressions are of the kind unary, we searh for a re�nement reursivelyfrom the subexpressions if the subexpressions evaluate non-orrespondingly. Oth-erwise all loations and all integer subexpression values from the onrete unaryexpression are olleted for re�nement.When the expressions are of the kind tond, the ondition expressions are �rstheked for orresponding values. If they evaluate to non-orresponding values, theondition subexpressions are searhed for the re�nement reursively. Otherwise subex-pressions evaluating the atual value of the urrent expressions are searhed reursivelyfor re�nement.The atual generation of a re�ned abstrat model is not desribed here. It has to be55



in aordane with the restritions relating to abstrat models desribed in Setion 3.2.Thus, assigning a re�ned type to a variable a�ets the types of expressions and maya�et the types of other variables.For ompleteness, Figure 5.15 desribes the funtion ollet_int_los usedfor �nding loations with type int and Figure 5.16 desribes the funtion valuesused for the evaluation of all int type subexpressions (exept the subexpressions notevaluated beause of the short-iruit evaluation).
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1: funtion ollet_int_los(C, F, o, e)2: if kind(e) = name then3: # e is of the form 〈name, id , d , 〈var1, . . . , varn〉〉4: if d = int then5: return {resolve(C, o, e) }6: else7: return ∅8: else if kind(e) = lit then9: return ∅10: else if kind(e) = ond then11: # subexpr(e) = 〈e1, e2〉12: if operator(e) = && then13: if eval(C, F, o, e1) = false then14: return ollet_int_los(C, F, o, e1)15: else16: return ⋃
i∈{1,2} ollet_int_los(C, F, o, ei)17: else if operator(e) = || then18: if eval(C, F, o, e1) = true then19: return ollet_int_los(C, F, o, e1)20: else21: return ⋃
i∈{1,2} ollet_int_los(C, F, o, ei)22: else if kind(e) = tond then23: # subexpr(e) = 〈e1, e2, e3〉24: if eval(C, F, o, e1) = true then25: return ⋃

i∈{1,2} ollet_int_los(C, F, o, ei)26: else27: return ⋃
i∈{1,3} ollet_int_los(C, F, o, ei)28: else29: # subexpr(e) is of the form 〈e1, . . . , en〉30: return ⋃

i∈{1,...,n} ollet_int_los(C, F, o, ei)Figure 5.15: Algorithm for �nding all the loations in the expression with a type int.
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1: funtion values(C, F, o, e)2: if kind(e) ∈ {lit,name} then3: if type(e) = int then4: return {eval(C, F, o, e)}5: else6: return ∅7: if kind(e) = ond then8: # subexpr(e) = 〈e1, e2〉9: if operator(e) = && then10: if eval(C, F, o, e1) = false then11: return values(C, F, o, e1)12: else13: return values(C, F, o, e1) ∪ values(C, F, o, e2)14: else if operator(e) = || then15: if eval(C, F, o, e1) = true then16: return values(C, F, o, e1)17: else18: return values(C, F, o, e1) ∪ values(C, F, o, e2)19: if kind(e) = infix then20: # subexpr(e) = 〈e1, e2〉21: if type(e) = int then22: return {eval(C, F, o, e)} ∪ values(C, F, o, e1) ∪ values(C, F, o, e2)23: else24: return values(C, F, o, e1) ∪ values(C, F, o, e2)25: if kind(e) = unary then26: # subexpr(e) = 〈e1〉27: if type(e) = int then28: return {eval(C, F, o, e)} ∪ values(C, F, o, e1)29: else30: return values(C, F, o, e1)31: if kind(e) = tond then32: # subexpr(e) = 〈e1, e2, e3〉33: if eval(C, F, o, e1) = true then34: return values(C, F, o, e1) ∪ values(C, F, o, e2)35: else36: return values(C, F, o, e1) ∪ values(C, F, o, e3)Figure 5.16: Algorithm for evaluating all int type subexpressions of the expressiongiven. A set of int subexpression values is returned.
58



Chapter 6ImplementationThe tehniques desribed in this thesis have been implemented as part of the SymboliMethods for UML Behavioural Diagrams (SMUML) projet (see http://www.ts.hut.fi/Researh/Logi/SMUML.shtml) in the Laboratory for Theoretial ComputerSiene at Helsinki University of Tehnology. The purpose of the SMUML projetwas to develop new tehniques for analysis of dynami behavior of models desribedin UML. In the SMUML projet the version 1.4 of UML was used. The reason forthe use of this partiular version is that the SMUML toolkit is built upon the meta-modelling toolkit Coral [3℄, developed at Åbo Akademi, and UML 1.4 was the latestUML version supported by Coral.6.1 SMUML ToolkitThe tools developed in the SMUML projet form the SMUML toolkit. The UMLmodels supported in the SMUML toolkit desribe a set of objets (instantiated fromlasses) ommuniating asynhronously via message passing and shared variables.The ation language Jumbala [18℄ is used for representation of guards and e�ets oftransitions.With the symboli model heker NuSMV [9℄ or a Satis�ability Modulo Theories(SMT, see e.g. [17, 31, 7℄) solver, the tools in the SMUML toolkit o�er a boundedmodel heking [6℄ proedure with automatially re�ned data abstrations. The ab-sene of assertion failures or impliit message onsumptions are the properties sup-ported with the model heking proedure with abstrations.The abstrat model generation [34℄ is done by rewriting expressions in the modelso that abstrat types and abstrat operations are enoded as integers and operationsbetween integers. Other tools have also used similar approah [26, 24, 28℄. Theabstrat models produed in this way an be model heked and simulated by thetools used in the model heking and simulation of the onrete models exept that thetools have to additionally handle the non-determinism introdued by the abstration.The generated abstrat model an be enoded [20, 21, 22℄ to a format understoodby NuSMV, then model heked with NuSMV, and �nally the result got from NuSMV isinterpreted. The result an either be that the properties hold in the model or that weget an abstrat ounterexample demonstrating a property violation in the abstrat59



model. Alternatively the abstrat model an be model heked with a bounded modelheker [19℄ using an external SMT solver (for example [23, 5, 16℄) as a bak-end.The ounterexample analysis (inluding feasibility analysis) are implemented intoa ounterexample analyzer anal [32℄. The analyzer takes the onrete UML model,the orresponding abstrat UML model, and the ounterexample trae as an input andeither states that the ounterexample is feasible, or in the ase of spurious ounterex-ample, returns a set of variables and values as a reommendation for the re�nement.If the ounterexample is a spurious one, a new abstrat model is generated basedon the reommendation and the model heking is arried out again with the re�nedmodel.6.2 Counterexample Analyzer in SMUML ToolkitThe tehniques desribed in this thesis have been implemented as a part of the oun-terexample analyzer anal. The UML models supported by anal onsist of objetsinstantiated from lasses whose behavior is represented with UML state mahines.Objets may ommuniate with eah other by message passing or by shared variables.The analyzer an handle only non-hierarhial UML models. This limitation was im-posed to keep the implementation simple in order to make the development of newalgorithms easy. The SMUML toolset ontains tools for onverting hierarhial UMLmodels to non-hierarhial ones. The semantis used for the interpretation of UMLmodels are desribed in [21℄.The analyzer supports the following UML and Jumbala features: We support UMLstate mahines that have only one UML omposite state, otherwise omposite statesare forbidden. UML simple states, �nal states, and from UML pseudo states, initialstates and hoie states are supported. Every other state type is forbidden. Statesannot have any internal behavior like entry, exit, or doAtivities.Only UML signal events are supported as triggers of transitions in UML statemahines. The UML models have to have primitive omponents desribing �int� and�bool� data types as these are Jumbala's primitive data types. Referene types aremodelled using UML assoiations. Arrays are not supported.6.3 Conversion from UML 1.4The onversion from UML 1.4 models supported by anal to a model notion usedin this thesis is fairly straightforward. The atual model heking still have to bedone with the UML model beause the transition relation of the model notion usedin this thesis allows more transitions to be taken than the orresponding UML model.Even though all the exeution paths in our model de�nition annot be taken in theorresponding UML model, all the exeutions possible in the UML model are possiblein the model onverted from the UML model to our notion for a model. After themodel heking is done, the onrete and the abstrat UML model as well as theounterexample an be onverted to the model notion of this thesis and the algorithmsintrodued in this thesis an be used to the onverted models and the onvertedounterexample. 60



Informally, the mapping from a UML model to a model notion of this thesis isthe following: For every UML lass and objet there is a orresponding lass andobjet, respetively. Type �int� and �bool� lass attributes have orresponding intand boolean type variables in the lass orresponding to the UML lass. UML as-soiations are onverted to variables of type referene in the lass. The UML statemahine of a lass is onverted to a orresponding state mahine so that all states inthe UML state mahine have a orresponding state in the model, and the initial stateis the initial state of the UML state mahine. UML signal events deferrable in thestates are onverted to a defers funtion of the state mahine. The flush set of thestate mahine ontains all states whose UML ounterparts are simple states. This setmodels the states where deferred messages are moved bak to the input queue. Forevery UML transition there is a orresponding transition with a trigger orrespondingto the UML trigger of the UML transition reeiving messages of a orresponding sig-nal and assigning values to orresponding variables. The guard of the transition is thesame expression onverted to use the variables of the model instead of the ones in theUML model. Jumbala statements in the e�et of the UML transition are onvertedto orresponding ations in the new transition. UML signals are onverted to orre-sponding signals. Finally the initial on�guration mathing the initial on�gurationof the UML model is formed.
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Chapter 7ConlusionIn this thesis we have disussed the analysis of abstrat ounterexamples in the modelheking proess with data abstrations. The notation and semantis of models usedin desribing the methods introdued in this thesis were desribed in Chapter 2.In Chapter 3 we desribed how abstrations were utilized in model heking inthe SMUML projet. We also de�ned the relationship between the data abstratedmodel and the original model. A hek whether an abstrat ounterexample has aorresponding exeution in the onrete model, feasibility analysis using a stepwisesimulation of events in a ounterexample, was desribed in Chapter 4. A similarapproah is used in Bandera [33℄.We have introdued a method to alulate relevant loations at di�erent pointsof a spurious ounterexample trae (Setion 5.2). The alulation starts by searhinginitial relevant loations from one point of the trae. After the initial relevant loationsare found, relevant loations are propagated to other points of the trae using data�ow analysis shaped for this purpose. The propagation might be restarted with newinitial relevant variables if the input queues of objets are not orresponding.Before this thesis automati abstration re�nement was done only with BDD-based [10℄ and prediate abstrations [8℄. Data abstration papers only mentionedthat there is a need for re�nement but did not desribe how the re�nement shouldbe done [33℄. In Setion 5.3 we introdued a method for determining a suitablere�nement automatially. It �rst searhes the ation whose evaluation in the abstratmodel auses one of the relevant loations to ontain non-orresponding values in theonrete and the abstrat model. The expression evaluating this value in the ation isanalyzed with a heuristi algorithm whih determines whih of the variables appearingin the expression need to be re�ned and how they should be re�ned.Atual implementation of these tehniques was done as part of the SMUML projetin the Laboratory for Theoretial Computer Siene at Helsinki University of Tehnol-ogy. This implementation, whih works on UML state mahine models, was desribedin Chapter 6.7.1 Future WorkIn the future the tehniques desribed in this thesis should be tested with real lifease studies to see how the tehniques perform in pratie. At this time the SMUML62



toolkit does not o�er a good platform for performane tests, even though the teh-niques have been implemented to anal, beause our implementation of abstrationsin the SMUML toolkit proved to be quite ine�ient. In the SMUML toolkit theabstrations were implemented by inlining the abstrat types and operations usingJumbala's integer data type. This an lead, in the worst ase, to an exponential in-rease in the size of the expressions. The huge size of the expressions auses problemsto the Jumbala parser utilized in the ounterexample analysis and possibly also to themodel heker. Sine the Jumbala parser, being implemented in Python, is not verye�ient, the problem with the size of the expressions beomes emphasized.We have also developed several ideas for improving the algorithms. First, when anassignment is done to a relevant loation in the message reeption in onrete objet ocand in the orresponding abstrat objet oa, the urrent algorithm heks that all sendations send a message either to the onrete objet oc and the abstrat objet oa orneither of them. This ensures that the queues are orresponding sequenes of messagesin all points of the trae up to the point where the message reeived in the messagereeption is sent. Furthermore this ensures that the messages reeived in the onreteand in the abstrat model are sent in the same point of the trae. It would also bepossible to use a weaker ondition that allows the message queues of the onreteand the abstrat objet to be non-orresponding so long as the onrete message andthe abstrat message reeived (ontaining relevant loations) are the orrespondingones. With this modi�ation it is possible to get the spurious ounterexample outof the abstrat model with less re�ned abstration beause the modi�ations mayallow some messages to be sent either to the onrete target objet oc but not tothe orresponding abstrat objet or vie versa even if there is a send ation sendingmessages with relevant message parameters to the objet oc and the orrespondingabstrat objet.In the algorithm for propagating relevant loations we ould more arefully analyzethe expressions assigning values to relevant loations. Instead of simply marking allthe loations ontaining values used in the evaluation of the expression as relevant,we ould analyze the expressions and mark only loations ausing the expressionsto evaluate non-orrespondingly as relevant loations. The analysis would be similarto the expression analysis made in the searh for initial relevant loations. It ispossible that with this improvement the spurious ounterexample ould be removedwith a smaller re�nement but the details of the implementation and the e�ets of theimplementation are not yet thoroughly studied.When a pair of orresponding expressions is searhed for loations and valuesto guide the re�nement, we re�ne all the types of the loations with the same setof values. Instead we ould re�ne the type of eah loation in the expression treewith values appearing in the path leading to the subexpression in whih the loationappears. This is in line with the onstraints relating to the types of subexpressions inthe model. This tehnique may produe more types with smaller domains omparedto the urrent algorithm. It is unlear and most likely also depends on the atualimplementation whether the modi�ation atually improves the performane of themodel heking proedure. The main reason for the use of the simple method in thisthesis and in anal is that this way the onstrution of the abstrat model is alsomore simple. 63



The re�nement does not neessarily remove the spurious ounterexample from theabstrat model (Setion 5.3.2). To ensure that the re�ned abstrat model does notontain the spurious ounterexample, we ould simulate all the exeutions mathingthe ounterexample's transition sequene in the re�ned abstrat model and if we thisway obtain a spurious ounterexample (all the ounterexamples found are bound tobe spurious beause the onrete model did not ontain a ounterexample mathingthe transition sequene), we would re�ne the abstration again until we annot �ndspurious ounterexamples mathing the transition sequene.Abstrat loop ounters are a general problem with abstrations and also our dataabstrations do not perform well with abstrated loop ounters. This is beause theloop have to be unrolled exatly same number of times in the onrete and in theabstrat exeution. However the extra behavior introdued by the abstration anallow the abstrat model to �jump over� some of the unrollings. Though this is notdue the ounterexample analysis, a more sophistiated way of handling loops wouldbene�t the whole model heking proedure.
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