HELSINKI UNIVERSITY OF TECHNOLOGY
FACULTY OF INFORMATION AND NATURAL SCIENCES
DEPARTMENT OF INFORMATION AND COMPUTER SCIENCE

Vesa Ojala

Counterexample Analysis for Automated
Refinement of Data Abstracted State Machine
Models

Master’s thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Technology

Espoo, 1st December 2008

Supervisor: Prof. Ilkka Niemel&
Instructor: Heikki Tauriainen, D.Sc.(Tech.)

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF
Faculty of Information and Natural Sciences MASTER’S THESIS
Degree Programme of Computer Science and Engineering

Auth D
uthor Vesa Ojala ate 1st December 2008

P
WSS il + 68

Title of thesi
e ot thests Counterexample Analysis for Automated Refinement of Data Ab-

stracted State Machine Models

Prof hi Cod
FOIESSOTSIP Theoretical Computer Science oce T-119

Supervisor

Prof. Ilkka Niemeld

Instructor

Heikki Tauriainen, D.Sc.(Tech.)

State space explosion has been one of the main problems in model checking when dealing
with anything but the smallest systems. Different abstraction techniques have been
developed to tackle this problem. We use data abstraction for model checking state
machine models of objects communicating using asynchronous message passing against
assertion failures and implicit message consumption.

When a model checker reports a counterexample from the abstract model, the coun-
terexample does not necessarily correspond to an execution in the original model. Such
spurious counterexamples need to be identified and the abstraction needs to be refined
so that the spurious counterexample is no longer possible in the abstract model.

In this thesis we describe a technique for identifying spurious counterexamples. We
also introduce a method for applying data flow analysis to calculate which of the vari-
ables and objects are relevant to the occurrence of the spurious counterexample at dif-
ferent points of the execution. These relevant locations help us to focus on the variables
needed to be refined in order to remove the spurious counterexample.

We have also developed a method for the automatic refinement of integer interval
abstractions, a certain type of data abstraction. This method uses the notion of relevant
locations in the search for a suitable refinement.

The methods introduced in this thesis have been implemented in the SMUML (Sym-
bolic Methods for UML Behavioural Diagrams) toolkit.

Keywords
model checking, data abstraction, refinement, UML, state machines

TEKNILLINEN KORKEAKOULU DIPLOMITYON
Informaatio- ja luonnontieteiden tiedekunta TIIVISTELMA
Tietotekniikan tutkinto-ohjelma

e S
erue Vesa Ojala AAYS 1 joulukuuta 2008

Sivumaara .

viil + 68

Tyon nimi
yon i Vastaesimerkkianalyysi abstrahoituja tietotyyppeja kiyttévien tilako-

nemallien automaattiseen hienonnukseen

Professuuri Kood;
OSSN Tietojenkiisittelyteoria % 19

Ty6n valvoja Prof. Tlkka Niemeli,

Tyon ohjaaj : SR iai
YO OMAA2 " Peken.tri. Heikki Tauriainen

Tarkastettavan jarjestelmén tila-avaruuden valtava koko on ollut yksi suurimmista
ongelmista mallintarkastuksessa, pienimpid jarjestelmid lukuun ottamatta. Ongelman
ratkaisemiseksi on kehitetty erilaisia abstraktiotekniikoita. Téssd tyosséd kiytetddn ab-
strahoituja tietotyyppeji tarkastettaessa assert-lauseiden pitévyyttd ja implisiittisten
viestinkulutusten olemassaoloa asynkronisesti viestivistd tilakonemalleista.

Abstrahoitua mallia tarkastettaessa saadut vastaesimerkit eivit valttamétta vastaa ai-
nuttakaan suoritusta alkuperiisessi mallissa. Téllaiset valheelliset vastaesimerkit taytyy
tunnistaa ja abstraktiota on hienonnettava valheellisen vastaesimerkin mahdollisuuden
poistamiseksi abstrahoidusta mallista.

Tassa diplomityossd kuvataan, miten valheelliset vastaesimerkit voidaan tunnistaa.
Tyossa esitellidn myos menetelmd oleellisten muuttujien ja olioiden 16ytdmiseen suori-
tuksen kussakin pisteessd tietovuoanalyysid kéyttden. Namé oleelliset paitkat auttavat
keskittyméan muuttujiin, joiden tietotyyppeja hienontamalla saadaan valheellisen vas-
taesimerkin mahdollisuus abstraktiosta poistettua.

Tyossa esitellidn myos menetelmé kokonaislukuvilejd abstrakteina tietotyyppeindin
kiyttavien mallien automaattiseen hienonnukseen. Menetelmé etsii sopivaa hienonnusta
kiyttamalld hyvékseen oleellisia paikkoja.

Tyossé esitellyt menetelmét on toteutettu osana SMUML-projektia (Symbolic Meth-
ods for UML Behavioural Diagrams) osaksi SMUML toolkit -ohjelmistoa.

Avainsanat

mallintarkistus, abstrahoidut tietotyypit, abstraktion hienonnus, UML,
tilakoneet

Acknowledgements

[want to express my gratitude to my instructor Dr. Heikki Tauriainen for all the
discussions and the guidance in the course of this study. 1 would also like to thank my
supervisor Prof. [lkka Niemelé. [want to thank Dr. Tommi Junttila for the discussions
and the support during this study. Finally, I would like to thank my family and friends
for the invaluable support during my studies.

This work has been funded by Tekes (Finnish Funding Agency for Technology and
Innovation), Nokia Oyj, Conformiq Software Oy, and Mipro Oy. Their support is
gratefully acknowledged.

Espoo, 1st December 2008

Vesa Ojala

1l

Contents

1 Introduction

2 State Machine Model
2.1 Formal Definition of a Model

2.1.1 Types, Variables, and Expressions
2.1.2 Signals, Messages, Queues, and State Machines
2.1.3 Classes, Objects, Global Configurations, and Models

2.2 Execution of Transition Components
2.2.1 Receiving a Message
2.2.2 Sending a Message
2.2.3 Assignment
2.2.4 Assertion

2.2.5 Moving from a State to Another

2.3 Enabled Events
2.4 Execution of Events

2.4.1 Execution of Transition Events
2.4.2 Execution of Implicit Message Consumption

2.4.3 Deferring a Message
2.5 Executions in a Model

3 Model Checking with Abstractions
3.1 Data Abstractions.

3.1.1 Evaluation of Abstract Expressions
3.2 Formal Definition of an Abstract Model
3.2.1 Abstract Types and Variables

3.2.2 Abstract Expressions
3.2.3 Abstract Classes
3.2.4 Abstract Models
3.3 Counterexamples

4 Feasibility Analysis
4.1 Assertion Failures
4.2 Implicit Message Consumptions . .
4.3 Action Not Enabled
4.4 Algorithm for Checking Feasibility

v

16
18
18
19
19
20
20
21
21

5 Counterexample Analysis

Forming an Analysis Trace
Transition Execution Events
Implicit Consumptions and Message Deferrals
5.1.3 Execution of Actions for Analysis Trace
Relevant Locations
Initial Relevant Locations
5.2.2 Propagation of Relevant Locations
Refining Interval Abstractions
Finding Expressions for Analysis
5.3.2 Analysis of Expressions for Refinement

Implementation

6.1 SMUML Toolkit
6.2 Counterexample Analyzer in SMUML Toolkit
6.3 Conversion from UML 1.4

Conclusion
7.1 Future Work

29
29
31
33
34
36
37
45
ol
52
23

59
29
60
60

62

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

4.1

5.1

5.2

5.3

5.4
5.5

5.6

5.7
5.8

5.9

5.10

5.11

5.12

5.13

Examples of different compound expressions. 6
An example of a state machine. 8
Conventional model checking procedure. 16
Model checking procedure with abstractions and abstraction refinement. 17
The concrete state machine 22
An abstract state machine Lo 23

Algorithm IS COUNTEREXAMPLE _FEASIBLE checks whether the coun-
terexample trace Trace from abstract model M, is feasible in the con-
crete model M,. e 27

The algorithm TRANSFORM forms an analysis trace L from a spuri-
ous counterexample Trace by simulating the execution in the concrete

model M, and in the abstract model M,. 31
Algorithm for producing analysis trace steps from the transition exe-

cution events in the counterexample trace. 32
Algorithm for producing analysis trace steps from the implicit con-

sumption and message defer events in the counterexample trace. 34
Algorithm for creating analysis trace steps. 35
Function comparing the value of the concrete expression coerced to the

abstract type to the value of the corresponding abstract value. 38
Algorithm for finding initial relevant locations from expressions. 40
Algorithm for finding all the locations appearing in the expression. . . . 41

Algorithm for returning a tuple representing a location the NAME kind
expression represents. If the concrete and the abstract expression does
not represent corresponding locations a tuple representing the location

before the first non-corresponding location is returned. 42
Algorithm for checking correspondence of target objects in signal send
actions. 43

Algorithm for calculating initial relevant locations. The algorithm takes
an analysis trace 1" as argument and returns a set of relevant locations

R containing the initial relevant locations. 44
Algorithm for propagating relevant locations. 46
Algorithm for finding locations used in the evaluation of a pair of cor-

responding exXpressions. o0

Algorithm for finding expressions where the refinements are searched for. 52

vi

5.14 Algorithm for finding a concrete subexpression guiding the refinement. 54

5.15 Algorithm for finding all the locations in the expression with a type int. 57

5.16 Algorithm for evaluating all int type subexpressions of the expression
given. A set of int subexpression values is returned. o8

vil

List of Tables

3.1
3.2

5.1
5.2

Values of variables in the object o, at different points of execution. . . 23
Values of variables in the object o. at different points of execution. . . . 24
Values of variables in the object o, in global configurations C%. 36
Values of variables in the object o, in global configurations C*. 36

Viil

Chapter 1

Introduction

With each passing year software systems are becoming more and more complicated.
The more complicated they become, the harder it is to achieve bug-free systems.
Formal verification methods [11] like model checking [12] have been developed for
achieving better quality products. Although model checking techniques have been
applied directly to the source code of software system [14, 37, 8, 27|, it is common to
construct a model representing the logic of the system while hiding some of the details
in the real system and then apply model checking programs |9, 29| to the constructed
model.

One widely used modelling language used for modelling of software systems is Uni-
fied Modelling Language (UML) |2, 1]. The research resulting in this thesis has been
done in the Symbolic Methods for UML Behavioural Diagrams (SMUML) project de-
veloping model checking techniques for UML models in the Laboratory for Theoretical
Computer Science at Helsinki University of Technology. Thus all the techniques de-
scribed in this thesis have been developed to be part of a model checking framework
for UML models. In this thesis we focus on UML features for specifying the behav-
ior of systems: systems are supposed to be described with objects of classes whose
behavior have been described with state machines. The UML does not fix an action
language for state machines. A Java-like action language Jumbala [18| is used as an
action language of state machines.

The huge size of the state space all but the smallest systems tend to have is a major
problem for model checkers [36]. Different abstraction techniques have been developed
to tackle this state space explosion problem. The idea in abstraction techniques is to
simplify the model in order to reduce the state space of the model. The simplification
is constructed in such a way that some of the characteristics of the original model
are preserved and thus it is possible to prove some properties from the original model
by using the abstracted model. In the SMUML project we considered the use of
two commonly used abstraction techniques. These techniques are predicate and data
abstraction. In SMUML project data abstractions were chosen (for the reasons, see
Chapter 3).

Intuitively in data abstractions the domains of variables are replaced with abstract
domains having smaller size than the original ones. For example all negative integer
values can be represented by a single value in the abstract domain. It is clear that
abstract operators, for example addition, need to be defined for abstract domains

because the abstract values store only partial information on the values which appear
in actual computations. Two logical ways of defining abstract operators are to define
the operators as over-approximations or under-approximations. Over-approximatively
defined operators produce all the possible outcomes of an operation, for example with
an addition of a negative and a positive integer the outcome might be negative, zero
or positive. Over-approximative abstractions do not lose behavior in the abstraction
though they might add it. On the other hand under-approximative abstractions do not
add any extra behavior, but they might lose behavior in the abstraction. For example
the addition between a negative and a positive integer can not result negative, zero,
nor positive value because none of the results is guaranteed to correspond to the
result of an unabstracted operation. Data abstraction can be implemented using
value lattices [15] or with non-deterministic operators |26, 24|, the latter being our
choice.

Our data abstractions are over-approximative abstractions meaning that no be-
havior in the original model is lost in the abstraction but instead the abstract model
may contain extra behavior with no corresponding behavior in the original model. If
a data abstracted model cannot violate any assertions or perform implicit message
consumptions, the original model cannot do so either [13].

The drawback of the over-approximative data abstraction is that a counterexam-
ple demonstrating a property violation in the abstract model does not allow us to
automatically conclude that there is an execution violating the property in the orig-
inal model. The counterexample might demonstrate a property violating execution
utilizing the extra behavior introduced by the abstraction. Counterexamples demon-
strating execution not possible in the original model are called spurious or infeasible
and counterexamples demonstrating a real property violation in the original model
are called true or feasible. Feasibility analysis [33| is used for recognizing true coun-
terexamples from the spurious ones.

When the model checker gives us a spurious counterexample it cannot be deduced
whether the properties hold in the original model or not. The extra behavior intro-
duced by the abstraction makes the spurious counterexample possible. The existence
of the spurious counterexample in the abstract model prevents us from getting more
conclusive results. To get more conclusive results a new abstraction with no possi-
bility for the spurious counterexample can be created. Because the occurrence of the
spurious counterexample was made possible by the extra behavior introduced by the
abstraction, a logical step is to make a new abstraction such that it does not include
the extra behavior which made the spurious counterexample possible in the first place.

The old abstraction can be used as a starting point for the new abstraction. Ab-
straction refinement [10] is a process of modifying the old abstraction so that it more
accurately captures the behavior of the original model. The refinement can be made
by hand or, with a suitable algorithm, automatically. To achieve good results with the
manual approach the person refining the abstraction has to have an understanding
of the abstraction technique used, the old abstraction, the spurious counterexample
and the original model. In other words refining the abstraction manually requires
much detailed knowledge. With automatic abstraction refinement a fully automatic
model checking procedure utilizing abstractions can be constructed. It can be left to
calculate its results unsupervised and if it encounters a spurious counterexample it

refines the abstraction automatically. After the calculation is done we have either a
true counterexample demonstrating a real property violation in the original model or
we have verified that the properties hold in the original model. Though in the real
world, after the refinement the abstract model can have too large a state space and
the model checking fails due to the lack of sufficient resources, or even the refinement
procedure can fail.

Until now there has not been an automatic refinement for data abstractions. Ex-
isting work on data abstractions only mentions that refinement is needed in order to
continue the model checking procedure when spurious counterexamples are encoun-
tered but describe no method for the actual refinement (see, for example, [33|). Our
goal was to develop algorithms for the analysis of spurious counterexamples and finally
try to develop an automatic refinement algorithm based on the analysis algorithms.
We introduce the notion of a relevant location for describing important variables in
different objects which contribute to the occurrence of the spurious counterexample.
The process of determining relevant locations starts with an analysis to the point of
execution where the concrete model does not have any enabled event corresponding
to the abstract counterexample. This analysis finds initial relevant locations which
serve as a starting point for our analysis. Next, from the initial relevant locations we
propagate relevant locations to other points of the counterexample trace using data
flow analysis [30] shaped to this purpose. The data flow analysis can be thought of as
applying program slicing [39, 35, 40| to the counterexample. The relevant locations
guide the refinement to be done to the variables whose abstract domains’ imprecision
(introduced by abstraction) introduced the extra behavior causing the existence of
the spurious counterexample.

We have also developed an algorithm for finding refinements for interval abstrac-
tions, a subset of data abstractions. An interval abstraction splits the set of integers
to a set of intervals such that every integer belongs to one of the intervals and no in-
teger belongs to two distinct intervals. A suitable refinement compromising between
the likelihood that the abstraction is refined enough to remove the spurious coun-
terexample and not too much to cause state space explosion is found by analyzing the
expressions affecting the values of the relevant locations. The refinement splits the
domains in the interval abstracted variables to smaller intervals from suitable places.

This thesis begins with a definition of a notion for a simple state machine model
which will be used throughout the thesis as a target for all the algorithms. This
notion captures all the important features of UML models with respect to our algo-
rithms. The state machine model is introduced in Chapter 2. Chapter 3 describes the
model checking procedure with abstractions and the abstractions used in this thesis.
Feasibility analysis is described in Chapter 4. Methods for calculating relevant loca-
tions and refinement for interval abstractions are described in Chapter 5. Chapter 6
describes the actual implementation and the relationship between the state machine
models used in this thesis and the UML 1.4 models. Finally, in Chapter 7 we sum-
marize the earlier chapters and discuss possible improvements and current problems
in the techniques described in the thesis.

Chapter 2

State Machine Model

Systems examined in this thesis are described with models. Our definition for a model
has a lot of similarities with UML 1.4 [1] models because the techniques described in
this thesis have been designed and implemented for a subset of UML 1.4. However
we did not want to describe our algorithms using UML models because UML models
contain a lot of unimportant detail in regard to techniques described in this thesis.
Conversion from the subset of UML 1.4 models used in the SMUML project to the
model formalism used in this thesis is straightforward (described in Section 6.3).

A model contains a set of active objects (instantiated from classes) communicating
asynchronously with each other by sending messages or via shared variables. Every
message has a type and a list of message parameters. Objects can also receive external
messages from the environment. Every class contains a set of variables and a state
machine that describes the behavior of the objects instantiated from it. Besides the
variables described by the class, objects have an input queue for storing messages sent
to the object and a defer queue for deferred messages.

A global configuration defines values of the variables, content of the queues, and
active states in a model. Events modify the global configuration of a system.

A state machine consists of states and transitions between the states. One of the
states is an initial state. Transitions have three components: a trigger, a guard and
a list of effect statements. Each one of the components may be omitted. The trigger
receives message of a signal specified in the trigger from the input queue of the object
the state machine belongs to. The guard is a boolean expression. A transition is
enabled if the object can receive a message of a signal specified in the trigger of the
transition and the guard evaluates to true after the message has been received. The
transition can be executed if it is enabled. Then the message is received and removed
from the input queue of the object and message parameters are assigned to variables
defined by the trigger. Statements in the effect of the transition are executed after
the message has been received.

There are three different kinds of statements: assignments, statements for sending
messages and assertions. Assignments assign a value of an expression to a variable,
statements for sending messages send a message to one of the objects in the model,
and assertions cause a runtime error if the boolean expression associated with an
assertion evaluates to false.

If an object has no transition enabled in the global configuration, it can either

implicitly consume the first message in its input queue or defer the reception of the
message by moving it to the defer queue of the object. For messages of each signal
either implicit consumption of deferring is allowed depending on the active state.

2.1 Formal Definition of a Model

In the following definition of a model (and also later in the thesis) the following
functions will be used for sequences and sequence manipulation. A finite sequence of
elements z1, ..., x, is written as (xi, ..., z,). Infinite sequences are not needed in this
thesis, from now on we refer to finite sequence simply by sequence. The empty se-
quence is (), every other sequence is non-empty. Function head({x1,za,...,2,)) = 1
gives the first element in the non-empty sequence. Function tail({xy,za,...,T,)) =
(xg,...,x,) gives the sequence with its first element removed for non-empty sequences.
Function last((z1,xs, ..., T,)) = z, gives the last element in the non-empty sequence.
Function append({x1,...,x,),y) = (x1,..., T, y) gives the original sequence with an
element added to the end of the sequence. Function concat({xy, ..., x.), (Y1, .-, Ym)) =
(T1,.. ., Tn,Y1,---,Ym) CcONcatenates two sequences.

2.1.1 Types, Variables, and Expressions

A type d is a set {vy,...,v,} of possible values. For example a boolean type is
boolean = {true, false}, and 32-bit integer type is int = {—231 —2314-1 ... 231 -1},
A type is coercible to another type if every value in the type can be represented
unambiguously as a value of the other type. For example integers in the programing
language C can be thought to be coercible to boolean values in a way that 0 is
coerced to false and other values to true. If a type d; is coercible to a type do,
coercible(dy, dy), then function coerce(vy, di, dy) = v gives the unambiguous value v,
corresponding to the type d; value v; in the type do. A type d is always coercible to
itself: coerce(v,d,d) = v for all v € d.

A wvariable var over a set of types D is a pair (name, d), where name(var) = name
is the name of the variable, and type(var) = d € D is the type of the variable.

Expressions are represented as Jumbala expression parse trees. Jumbala [18] is
a Java-like action language for UML state machines. Expressions are divided into
two distinct sets of expressions, compound and terminal expressions. A compound
expression e over a set of variables Vars is a tuple (kind, id, di, da, op, (€1, ..., €n)),
where

e kind = kind(e) € {COND, INFIX, UNARY, TCOND} is the kind of the expression
67

e id is the unique expression identifier distinguishing different expressions in the
model (a special identifier is needed because different expressions can have iden-
tical other components),

e d; = type(e) is the type of the expression e,

Tuple <UNARY, ’Ld, dl, dg, -, <€1>> <TCOND, Zd, dl, dg, ? <€1, €9, €3>>

String (-e1) (e17eq:e3)
- ?
Tree / \
€1 €1 €3 €3
Tuple (INFIX, id, dy, da, +, (€1, €3)) (COND, id, dy, dy, &&, (€1, €2))
String (e + e9) (e1 && e5y)

+ &&
Tree / \ / \
€1 €2 €1 €2
Figure 2.1: Examples of different compound expressions.

dy = opType(e) is the type on which the operator op operates in the expression
67

op = operator(e) is the operator of the expression e, and

subexpr(e) = (eq,...,ey,) is the list of e’s subexpressions. In tree representation,
seen in Figure 2.1, the first subexpression e; is the leftmost subtree, the second
subexpression e is the second leftmost subtree, and so on. For COND, INFIX, and
UNARY kind expressions every subexpression has to be a type that can be coerced
to the type on which the operator operates, V1 < i < n : coercible(type(e;), dz).
For TcoND kind expressions subexpressions e, and es have to be of a type
that can be coerced to the type on which the operator operates, Vi € {2,3} :
coercible(type(e;), do), and subexpression e; has to be a boolean type expression,
type(e1) = boolean.

Compound expressions of a kind UNARY have one subexpression, COND and INFIX
have two subexpressions, and TCOND has three subexpressions. Figure 2.1 contains
examples of different compound expressions. The string representation of expressions
is used in some examples for the sake of simplicity.

A terminal expression e over a set of variables Vars is a tuple (kind, id, d, symbol),

where

o kind = kind(e) € {L1T,NAME} is the kind of the expression e,

e id is the unique expression identifier distinguishing different expressions in the
model (a special identifier is needed because different expressions can have iden-
tical other components),

o d = type(e) is the type of the expression e, and

o If kind = LIT then symbol € d. Otherwise kind = NAMEandsymbol is a sequence
(vary,...,var,) where every var; is a variable from a set of variables Vars,
type(vary,) = d, and V1 <i < n—1: type(var;) = reference. Type reference
is used for accessing objects in a model and is defined later.

Example 2.1. Let expression e; represented as a string be (2 !'= (5 + (var))).
Let e;’s subexpressions be 2 = ey and (5 + (var)) = e3. Let e3’s subexpres-
sions be 5 = ¢4 and (var) = es. Then expression e; is formally represented as
(INFIX, idq, boolean, int, !=, (es, €3)), its subexpressions are e; = (LIT, ids, int,2),
and ez = (INFIX, id3, int, int, +, (e4, €5)), and the expression e3’s subexpressions are
eqs = (LIT, idy, int, 5), and e5 = (NAME, ids, int, (var)). [|

2.1.2 Signals, Messages, Queues, and State Machines

A signal sig over a set of types D is a pair (name, paramtypes), where
e name is the name of the signal, and

e paramtypes = params(sig) = (di,...,d,) is the sequence of parameter types,
where V1 <i<n:d;, € D.

A message msg of a signal sig is a tuple (id,., Sig,v1,...,v,), where id,,, is
an identifier used for separating otherwise identical messages from each other and
V1 <i<n:v € d; when params(sig) = (dy,...,d,).

A message queue over a set of signals Sigs is a (possibly empty) finite sequence of
messages over the signals in Sigs. Let queues(D, Sigs) represent all possible message
queues over the types D and the signals Sigs.

A state machine over a set of variables Vars, system signals SysSigs, and external
signals ExtSigs (Sigs = SysSigs U ExtSigs), is a tuple (s;, S, T, defers, flush), where

e s5; € S is the initial state,
o S = states(sm) is the set of states
e T is the set of transitions t = (tid, s1, ss, trig, g, eff) between states, where
— tid is the unique transition identifier distinguishing transitions where all
the other components are identical in the state machine,
— 51 € S is the source state,

— s9 € S is the destination state,

— the trigger trig is either € or a tuple of the form (sig, (p1,...,pn)), where
sig € SysSigs U EztSigs, params(sig) = (dy, ..., d,), and V1 <i<n:p; €
Vars, coercible(d;, type(p;)),

— g is a boolean type expression, type(g) = boolean, over the set of variables
Vars called the guard, and

— eff, the effect, is a sequence of tuples of the form:

S1

(t1, (sig, (var)), €, ({ASSIGN, (var), ({(var) + 1))))

\i

o)

Figure 2.2: An example of a state machine.

% (SEND, sig, (€1, ..., e,), lgt), where sig € Sigs, message parameter types
are params(sig) = (di,...,d,), every e; is an expression over the
set of variables Vars such that V1 < i < n : coercible(type(e;), d;),
and gt is an object reference type expression, type(tgt) = reference
(reference defined later),

* (ASSIGN, lhs, rhs), where [hs is a NAME expression, rhs is an expression,
and the type of expression rhs can be coerced to the type of expression
lhs, coercible(type(rhs), type(lhs)), and

* (ASSERT, e), where e is a boolean type expression over the set of vari-
ables Vars.

o defers is a function giving the set of deferrable signals defers(s) C SysSigs for
each state s € S, and

e flush C S is a subset of the states in the state machine. Moving to these states
in the state machine causes the defer queue to be flushed into the input queue.
Input and defer queues are described in Section 2.1.3. For those familiar with
UML, the set flush is used in the implementation of message deferral.

Example 2.2. In Figure 2.2 is a graphical representation of a state machine. Formally
the state machine is (s, S, T, defers, flush), where the set of states is S = {s1, so} and
the set of transitions T' = {(t1, s, o, trig, €, (stmt))}. In the graphical representation
the initial state s; is marked with an arrow with no source state. The state machine
has only one transition. Its trigger is trig = (sig, (var)) and the only action in the
effect is stmt = (ASSIGN, (var), ({(var) + 1)). The behavior of the function defers
and the content of the set flush are not shown in the graphical representation. [

2.1.3 Classes, Objects, Global Configurations, and Models

A class ¢ over a set of types D, system signals SysSigs, and external signals EztSigs
is a pair (Vars, sm), where

e Vars = Vars(c), the set of variables in ¢, is a set of variables over D, and

e statemachine(c) = sm, the state machine of ¢, is a state machine over the
variables Vars, the system signals SysSigs, and the external signals FxtSigs.

An object o of a class class(o) = c¢ is a pair (c, oid), where ¢ is the class of the
object, and oid = id(0) is the unique identifier of the object distinguishing it from
other instances of the same class in the model. Let Vars(o) = Vars(c) be the set of
variables in the class of which the object is an instance.

Let O be a set of objects from a set of classes Classes defined over some set of
types D, a set of system signals SysSigs and a set of external signals EztSigs. The set
O induces the set of locations Locations, which contains pairs of objects and variables
{{o,var) | o € O,var € Vars(o)}. These locations map variables to their values.

A global configuration C of a set of objects O from a set of classes Classes over
types D and signals Sigs, and a set of locations Locations induced by O is a tuple
(sn, state, inputqueue, deferqueue, valuation), where

e sn is the sequence number of C' to track the order of global configurations in
sequences of global configurations.

e state(o) = s, where state is a function mapping objects o € O to active states
s € states(statemachine(class(0))),

e inputqueue(o) € queues(D, Sigs), where inputqueue is a function mapping an
object 0 € O to a message queue,

o deferqueue(o) € queues(D, Sigs), where deferqueue is a function mapping an
object 0 € O to a message queue, and

e valuation(loc) = v, where wvaluation is a function mapping locations loc =
(0, var) € Locations to values v € type(var).

Let sn(C') = sn be the sequence number of the global configuration C. Let Act(C,0) =
state(o0) be the active state in o in the global configuration C. Let InputQueue(C,0) =
inputqueue(o) be the input queue and DeferQueue(C, o) = deferqueue(o) be the defer
queue in a global configuration C. Let VarValue(C, o, var) = valuation({o, var)) be
the value of variable var in the global configuration C.

For a NAME expression e, function resolve(C,o0,e) = (0, var’) gives the location
the expression represents. When e = (NAME, id, d, (vary,...,var,)) and n > 1,
resolve(C, 0, €)

(0, vary) ifn=1,0¢€ O, var, € Vars(o),
type(vary) = d
=< resolve(C,o01,e1) ifn>2 0€O0, var, € Vars(o),
type(var,) = reference, o; = VarValue(C, o, vary),
e = (NAME, id, d, (varg, ..., vary,))

For an expression e, an object o, and a global configuration C, eval(C, F,o,¢e) =
v is the value of expression e evaluated in a context of the object o in the global
configuration C' when F' is used for solving possible non-deterministic choices in the
expressions. Function F' and expression with non-determinism are introduced along
with the abstractions in Chapter 3.

A model is a tuple (Cini, D, Classes, O, Locations, SysSigs, ExtSigs), where

o (i, is an initial global configuration, or simply the initial configuration, of
the model, sn(Cy;;) = 1, input and defer queues for all objects in the initial
configuration are empty, active state in all objects is the initial state in the
object’s state machine,

e D is the set of types which includes the boolean type boolean = {true, false}
and the object reference type reference = O U {null} ,

e SysSigs is the set of system signals over the set of types D,

o [xtSigs is the set of external signals over the set of types D. Signals in the set
of external signals cannot have parameters. External signals must be disjoint
from the set of system signals, SysSigs N ExtSigs = (),

e (lasses is the set of classes over the set of types D, the set of system signals
SysSigs, and the set of external signals EztSigs,

e O is the set of objects in the model, and
e Locations is the set of locations induced by O.

Example 2.3. A simple model with one class and one object instantiated from
the only class in the model could be (Cy.;i, D, Classes, O, Locations, SysSigs, ExtSigs),
where

e D = {int,boolean, reference},
o SysSigs = (),
o [FutSigs = {sig},

e a set of classes Classes = {c} contains only one class, ¢ = ({var}, sm), where
sm is the state machine from Figure 2.2,

e aset of objects O = {o} contains the only object, 0 = (¢, 1), which is instantiated
from the only class in the model,

e Locations = {(o, var)}, and
o Ciny = (1, 51, inputqueue, deferqueuve, valuation).

For our ounly object inputqueue(o) = InputQueue(Cinit,0) = (), deferqueue(o) =
DeferQueue(Cinie,0) = (), and for the only variable in the object we can define,
for example, valuation({o, var)) = 0. |

2.2 Execution of Transition Components

Transitions consist of different configuration altering components. In this section
we describe how these components modify the configuration. In Section 2.4 these
definitions are used when the effects of a transition execution are introduced. The
execution of components of transitions is partially defined, cases not defined are not
used in the algorithms.

10

2.2.1 Receiving a Message

Receiving a message by a trigger trig in a global configuration C' in an object o pro-
duces a new global configuration C" = ezec,e,(C, o, trig) where C” is formed according
to the following rules:

o If trig = ¢, then C = ",

o if trig = (sig, (p1, ..., pn)) and head (InputQueue(C,0)) = (id sy, Sig, V1, - . ., Vp),
then C" = C' except that

— The sequence number is incremented: sn(C”") = sn(C) + 1,

— The message to be received is removed from the input queue:
InputQueue(C’, 0) = tail(InputQueue(C, o)), and

— Message parameters are assigned to the variables specified in the trigger:
V1 <j <n: VarValue(C',o0,p;) = v;.

2.2.2 Sending a Message

The execution of a send action stmt = (SEND, sig, (€1, ..., €,), tgt) in an object o in a
global configuration C' produces a new global configuration C' = exec.4(C, F, 0, stmt)
where C" = C except that:

e The sequence number is incremented: sn(C’) = sn(C) + 1,
e The object which receives the message is determined: o” = eval(C, F o, tgt),

e The message is formed and the parameter values are determined:
msg = (sn(C), sig, vy, ...,v,), V1 < j <n:v; = eval(C, F,o,e;), and

e The message is added to the end of the input queue of the object which receives

the message: InputQueue(C’,0") = append(InputQueue(C,0"), msg).

2.2.3 Assignment

Executing an assign action stmt = (ASSIGN, lhs, rhs) in an object o in a global con-
figuration C' produces a new global configuration C" = exec.(C, F, 0, stmt) where
C" = C except that:

e The sequence number is incremented: sn(C’) = sn(C') + 1, and

e The value v = eval(C, F, 0, rhs) is assigned to a location indicated by (0", var) =
resolve(C, 0, lhs): VarValue(C’, 0", var) = v.

11

2.2.4 Assertion

The execution of an assertion action stmt = (ASSERT, e) in an object o in a global
configuration C' produces a new global configuration C" = exec.g(C, F, 0, stmt) such
that:

e If the condition in the assertion statement evaluates to true, eval(C, F,o0,¢e) =
true, then C" = (sn + 1, state, inputqueue, deferqueue, valuation), when C' =
(sn, state, inputqueue, deferqueue, valuation), or

e clse C" = 1, where L is a special value indicating an assertion error in the
execution.

2.2.5 Moving from a State to Another

Moving to a state s in a global configuration C' in an object o produces a new global
configuration C" = exec o, (C, 0,5,b) when b = true if s € flush, otherwise b = false,
and where C" = C' except that:

e The sequence number is incremented: sn(C’) = sn(C) + 1,
e The active state of object o is set to the new state: Act(C’,0) = s, and

e The messages in 0’s defer queue are moved to the beginning of 0’s input queue
if b = true: InputQueue(C’,0) = concat(DeferQueue(C, o), InputQueue(C, o))
and DeferQueue(C’,0) = (), otherwise InputQueue(C’,0) = InputQueue(C, o)
and DeferQueue(C’,0) = DeferQueue(C, o).

2.3 Enabled Events

Execution in the model proceeds by execution of events. Events are atomic, in par-
ticular the execution of a transition consists of several steps executed together as a
single atomic event. An event can be executed only if it is enabled.

In a configuration C' a transition ¢ = (tid, s1, sq, trig, g, eff) execution event in an
object 0, a = (TRANS, F) 0,t), is enabled, enabled(C,a), if:

e The source state s; of the transition is an active state: Act(C,0) = sy,

e The trigger is empty, trig = €, or there is a message of a signal corresponding
to the trigger in the head of o’s input queue: trig = (sig, (p1,...,pn)) When
head (InputQueue(C,0)) = (idpsq, Sig, V1, - . ., V), and

e The trigger is empty and the guard evaluates to true in the configuration C, or
the trigger is non-empty and the guard evaluates to true in the configuration
C" = execree, (C, 0, trig) which would result from receiving the message in the
configuration C'.

In configuration C' deferring a message a = (DEFER, 0) in an object o is enabled,
enabled(C, a), if:

12

e The input queue of o is not empty: |InputQueue(C,0)| > 0,

e The object o has no enabled transitions: V¢t € T': =enabled(C, (TRANS, F, 0,t)),
when T is the set of transitions in the state machine of the object o,

e The message at the head of o’s input queue can be deferred in the active state:
sig € defers(Act(C,0)), when head(InputQueue(C,0)) = (idpsq, Sig, V1, - . ., Up).

In configuration C, the execution of an implicit message consumption event a =
(IMPL, 0) in an object o is enabled, enabled(C, a), if:

e The input queue of o is not empty: |InputQueue(C,o0)| > 0,

e The object o has no enabled transitions: V¢ € T': —enabled(C, (TRANS, F', 0, 1)),
when 7' is the set of transitions in the state machine of the object o,

e The message at the head of o’s input queue cannot be deferred in the active state:
sig ¢ defers(Act(C,0)), when head(InputQueue(C,0)) = (idpsq, Sig, V1, - . ., Up).

No event is enabled if C = 1.

2.4 Execution of Events

Executions of events alter the global configuration in the following ways.

2.4.1 Execution of Transition Events

The execution of an enabled transition execution event a = (TRANS, F), 0, t), where t =
(tid, s1, 2, trig, g, eff), in a global configuration C' produces a new global configuration
C" = exec(C,a) by the following steps:

e First the object receives a message corresponding to the trigger’s signal: C; =
eTCCreey (C 0, trig),

e Then every action in eff = (stmtq,. .., stmt,) is executed:
— C) = execey(Cy, F 0, stmty)

— V2 <i<n:C; = execn(Ciy, F, o0, stmt;)

— If some action produces a global configuration L representing an assertion
error, then the execution is halted and the resulting global configuration is
set to C' = L,

e The object moves from the state s; to the state so: C" = execgor,(Ch, 0, 52, b),
where b = true if sy € flush, otherwise b = false.

13

2.4.2 Execution of Implicit Message Consumption

The execution of an enabled implicit message consumption event a = (IMPL, 0), in a
global configuration C' produces a new global configuration C” = ezec(C, a) such that:

e The sequence number is incremented: sn(C’) = sn(C) + 1,

e The message to be consumed is removed from the input queue:
InputQueue(C’,; 0) = tail(InputQueue(C, 0)),

e Everything else is like it was before the message was consumed:

— Yo' € O :Yvar € Vars(d') : VarValue(C', o', var) = VarValue(C, o', var)
— Vo' € O\ {o} : InputQueue(C’,0") = InputQueue(C, o)

— Yo' € O : DeferQueue(C’,0") = DeferQueue(C, o)

— VYo' € O: Act(C',0") = Act(C, o).

2.4.3 Deferring a Message

The execution of an enabled message defer event a = (DEFER, 0), enabled(C,a), in a
global configuration C' produces a new global configuration C” = ezec(C, a) such that:

e The sequence number is incremented: sn(C’) = sn(C) + 1,

e The message to be deferred is removed from the input queue:
InputQueue(C’, 0) = tail(InputQueue(C, 0)),

e The message is added to the defer queue: DeferQueue(C’,0) =
append(DeferQueue(C, 0), msg), when InputQueue(C,0) = (msg,...),

e Everything else is like it was before the message was deferred:

— Yo' € O :Yvar € Vars(d') : VarValue(C', o', var) = VarValue(C, o', var)
— Vo' € O\ {0} : InputQueue(C’,0") = InputQueue(C, o)

— Vo' € O\ {0} : DeferQueue(C’,0") = DeferQueue(C, o)

— VYo' € O: Act(C',0") = Act(C, o)

2.5 Executions in a Model

An execution in a model M = (Cyn, D, Classes, O, Locations, SysSigs, ExtSigs) is a
sequence trace = (by,...,b,), where b; = (C;, a;,C;11), 1 <i < n, such that

e V1 <1 < n:aq;is a transition execution event, an implicit consumption event,
or a message defer event,

o V1 <i<n+1:C(;is a global configuration,
o (1= Cinit

14

o V1 <i<n:enabled(C;, a;).

o V1 <i<mn:Ciq = exec(Cy,a;)

15

Chapter 3

Model Checking with Abstractions

The objective in model checking [12] is to check whether some properties, which are
for some reason interesting to the user, hold in the model to be model checked. The
model checker takes a model and a set of properties as an input and outputs either a
message that the properties hold in the model or gives a counterexample illustrating
an execution in the model that violates one of the properties. Figure 3.1 illustrates the
normal model checking procedure. In this thesis the properties we are model checking
against are the absence of assertion failures and implicit message consumptions.

The need for abstraction techniques arises from the huge size of the state space
all but the smallest models tend to have. The phenomenon is called state space
explosion [36]. Different abstraction techniques have been developed to tackle this
problem. In abstraction the idea is to create another model, abstract model, which
represents the behavior of the original model but abstracts away some details from
the original model to reduce the size of its state space. Then the abstract model is
checked with a model checker for the same properties that we are interested in the
original model.

The abstract model is constructed in such a way that some of the characteristics
of the original model are preserved thus making it possible to prove some properties
from the original model by using the abstract model. For example, over-approximative
abstraction techniques add behavior to the abstract model compared to the concrete
model but all the behaviors in the concrete model have a corresponding behavior in
the abstract model. Therefore if the abstract model created in an over-approximative
manner does not contain assertion failures, then the corresponding concrete model
does not contain assertion failures either |[13]. On the other hand if the abstract
model contains assertion failures, we cannot tell without further analysis whether the
concrete model contains assertion failures because the over-approximative abstraction

Model ./~ Properties hold

" Model o

Properties checker Counterexample
! !

Figure 3.1: Conventional model checking procedure.

16

Concrete model

Properties

Abstraction Properties hold

Abstract Abstract model

model >
generation

A
Refinement Abstract
counterexample
. \
Spurious
Counterexample) counterexample Feasibility

analysis J< analysis

True counterexample

Figure 3.2: Model checking procedure with abstractions and abstraction refinement.

might have added new behaviors to the abstract model.

The process for determining whether an abstract counterexample corresponds to
an execution in the concrete model is called feasibility analysis [33]. If an abstract
counterexample has a corresponding execution in the concrete model then the coun-
terexample is called feasible, otherwise it is spurious. The execution of a spurious
counterexample in the abstract model violates the properties but its execution in the
concrete model does not or the corresponding execution is not even possible in the
concrete model. An example of a spurious counterexample can be found in Section
3.3.

Even if a spurious counterexample is encountered, we want to either prove that the
properties hold in the concrete model or that there is a true counterexample demon-
strating that a property does not hold in the concrete model. To be able to do this, we
have to refine [10] the abstraction (make the abstraction more precise). The purpose
of refinement is to change the abstraction in a way that the spurious counterexample
does not appear in the abstract model constructed with the refined abstraction. After
the abstraction is refined, a new abstract model is produced with the new abstrac-
tion and the whole process starts again. The refinement can be done by hand or
automatically. In our case the counterexample analysis described in Section 5 ana-
lyzes automatically the way the abstraction needs to be refined. The model checking
procedure with abstractions and abstraction refinement is shown in Figure 3.2.

Two different abstraction techniques, data abstractions and predicate abstractions,
were considered in the SMUML project. In data abstractions the domains of variables
are replaced with abstract domains having smaller size than the original ones. Because

17

of the abstract domain’s smaller size abstract values store only partial information on
the values which appear in actual computations. Data abstraction can be implemented
using value lattices [15] or with non-deterministic operators [26, 24|, the latter being
our choice. However, there was no prior algorithm for automatic refinement of data
abstractions as there was for predicate abstractions (for example [8]).

The predicate abstraction approach was still not chosen to be included into the
SMUML toolset because the object-oriented nature with concurrency and asynchro-
nous message passing of the UML model is quite challenging for the predicate abstrac-
tion. Also only one existing implementation of predicate abstraction in an object-
oriented environment was known (Java PathFinder [38|). On the other hand object-
orientation, concurrency, and asynchronous message passing do not introduce any real
extra difficulties for data abstractions. The second reason was that the implementa-
tion of a predicate abstraction engine usually needs a theorem prover. The prover
may have to be called an exponential number of times at some step of the model
checking procedure with abstractions [4, 25, 37].!

3.1 Data Abstractions

In this thesis we shall use data abstractions. In data abstractions an abstract model
is created by changing the domains of variables in the concrete model to abstract
domains. An abstract domain has to represent the same set of values as in the
concrete domain, i.e. there is an abstraction function mapping every value in the
concrete domain to a value in the abstract domain. The data abstractions we use
are defined as over-approximations, therefore if the abstract model does not contain
assertion failures or implicit message consumptions, neither does the concrete model.
Also we allow the use of data abstraction only to integers. The formal definition of
the relationship between concrete and abstract models is given in Section 3.2.

3.1.1 Evaluation of Abstract Expressions

Let expression ¢! as its string representation be ((varl) + (var?)). Formally the
expression is e; = (INFIX, 1, int, int,+, (€%, €3)), and its subexpressions are e? =
(NAME, 2, int, (varl)) and e = (NAME, 3, int, (var?)).

Let Sign be an abstract type with three values, NEG representing all negative
integers, ZERO representing 0, and POS representing all positive integers. Let variables
var! and var? be Sign-abstracted variables corresponding to the variables var! and
var?. An expression e} = (INFIX, 1,Sign, Sign, +, (€2, €3)) is a Sign-abstracted version
of expression e!. The subexpressions of ! are €2 = (NAME, 2, Sign, (varl)) and €2 =
(NAME, 3, Sign, (var?)).

Let C. be a global configuration describing the state of the concrete model and
let 0. be an object in the concrete model. Let VarValue(C.,o.,varl) = 2, and
VarValue(C., o, var?) = —1. Let C, be a global configuration corresponding to C, in

the abstract model and let o, be an object corresponding to o. in the abstract model.

!The abstract model generator in SMUML toolkit still uses a theorem prover (SMT solver, for
example [23, 5, 16]) in the generation of abstract operators.

18

Let C, have values corresponding to the values in C, (determined by the abstraction
function): VarValue(Cly, 04, varl) = P0S, VarValue(Cy, 04, var?) = NEG. When e is
evaluated in the object o, using the global configuration C., we get —1 as a result.
On the other hand when we want to evaluate el in the object o, using the global
configuration C,, we do not have one correct solution but multiple possible solutions:
when adding a positive and a negative integer we cannot tell whether the result is
positive, zero, or negative. This imprecision introduced by the abstraction introduces
the extra behaviors to the abstract model.

This is where the function for solving non-determinism F' comes into use. Function
eval introduced in Section 2.1.3 evaluates expressions using a function given as second
argument for solving possible non-determinism in the evaluation. The function F
identifies the expressions using the unique identifier in the expressions of a model.
For example, every time eval(C,, F, 04, €l) is called it gives us the same result because
F' fixes the non-determinism. Function F'is used to make sure that the same choices
are made in non-deterministic points of evaluation in the model checker and in the
analysis of the counterexample.

3.2 Formal Definition of an Abstract Model

Using the definitions from Chapter 2, a concrete model is defined as a tuple M, =
(Cinite, De, Classes., O, Locations., SysSigs,., ExtSigs), where the set of types D, =
{int,boolean, reference}. Type int represents 32-bit integers. Because abstract
models are also models even though they have a special relationship to the corre-
sponding concrete model, they also obey the definitions described in Chapter 2. In
the following sections we describe the constraints that are used when abstract models
are generated from concrete models. Basically the constraints just make sure that
the abstract model has a suitable set of types, and its variables correspond to the
concrete variables. We start our definitions from abstract types building up all the
way to the definition of an abstract model. It should be noted that we only describe
the constraints restricting the generation of abstract models, not an algorithm for
generating abstract models. The abstract models appearing later in this thesis obey
the definitions described in the following sections.

3.2.1 Abstract Types and Variables

An abstract type d = {vy,...,v,} is a set of values where each value represents a set
of integer values. Thus, coercible(int, d). Let abstTypes be a set of abstract types.
An abstract type d; can be, but necessarily does not have to be, coercible to another
abstract type ds.

An abstract variable var, = (name,, d,) of an abstract type d, corresponds to a
concrete variable var. = (name,, d.) of a concrete type d. if name, = name,., and
either d, = d. or d. = int and d, € abstTypes. We write var. ~ var, to denote this
correspondence.

A set of abstract variables Vars, = {varl,... var?™} corresponds to a set of con-
crete variables Vars. = {varl,... var™}, Vars. ~ Vars,, if n = m, and var’ ~ var?,

19

foralll <i<n.

3.2.2 Abstract Expressions

Let e. = (kind,id, d}, d?, op,{(el,... e")) be a compound expression (over concrete

» ey e

types D,, variables Vars.), and let e, = (kind,id, d}, d?, op,(el,... e")) be an ab-

a’ ar

stract compound expression (over abstract types D, = D. U abstTypes, variables
Vars,). The expression e, corresponds to the concrete expression e, e. ~ e, if

e d! € abstTypes U{int} if d! = int, otherwise d! = d!,
o d? € abstTypes U {int} if d* = int, otherwise d? = d?, and
e Vi<i<n:el ~e.

Let e. = (kind, id, d., symbol,) be a terminal expression (over concrete types D,
variables Vars,), and let e. = (kind, id, d,, symbol,) be an abstract terminal expres-
sion (over abstract types D, = D. U abstTypes, variables Vars,). The expression e,
corresponds to the concrete expression e., €. ~ e,, if

e d, = abstTypes U {int} if d. = int, otherwise d, = d., and

o symbol, = symbol, if kind = NAME, otherwise symbol, = coerce(symbol,, d., d,).

3.2.3 Abstract Classes

An abstract signal sig, corresponding to a concrete signal sig,., sig, ~ sig,, is a tuple
(name, (d}, ..., d™)), where sig, = (name,(d},...,d")) and V1 < i < n: d' = d if
d! € {boolean, reference}, otherwise d' € abstTypes U {int}.

A set of abstract signals Sigs, = {sig., ..., sig"} corresponds to a set of concrete
signals Sigs, = {sigl,..., sig™}, Sigs. ~ Sigs,, if n = m, and sig’. ~ sig’ for all
1< <n.

An abstract transition t, (over an abstract set of system signals SysSigs,) corre-
sponding to a transition t. = (tid, s, sa, trig., g, eff .) (over a concrete set of system
signals SysSigs.., SysSigs, ~ SysSigs,), te ~ ta, is t, = (tid, s, So, tTig,, Ga, €ff o),
where

o trig, = (sig,, (pL,...,p")) corresponds to trig, = (sig., (pL,...,p")), trig. ~
trig,, where sig, ~ sig, and V1 <i < n:p’ ~ p..

® g, is an abstract expression corresponding to g., g. ~ 9a,

o cff , = (stmtl, ... stmt?) is a sequence of tuples corresponding to the concrete
effect eff , = (stmtl, ... stmt?), eff .~ eff,, where stmt’ is

— (SEND, sig,, (el,..., e™), tgt,) when stmt’ = (SEND, sig,, (el,..., e™), tgt.),
where sig, is a corresponding abstract signal sig, ~ sig,, the parameters
are abstract expressions V1 < j < m : eg ~ eg, and the target is an abstract
expression tgt. ~ tgt,,

20

— (ASSIGN, lhs,, Ths,) if stmt’ = (ASSIGN, lhs., Ths.), where lhs. ~ [hs,, Ths,
is the abstract expression rhs. ~ rhs,,

— (ASSERT, ¢,) if stmt’. = (ASSERT,e.), where e, is the abstract expression
corresponding to the concrete expression e., e, ~ e,

A set of abstract transitions 7, = {t!,... "} corresponds to a set of concrete
transitions T, = {t!,... t™}, if n =m, and t’ ~ t for all 1 <i < n.

An abstract state machine sm, = (s;, S, T,, defers,, flush) corresponds to the state
machine sm. = (s;, S, T, defers,, flush), sm. ~ sm,, if T, is an abstract set of transi-
tions corresponding to the set of transitions 7., and Vs € S : defers,.(s) ~ defers,(s).

An abstract class ¢, = (Vars,, sm,) corresponds to a class ¢, = (Vars,, sm.), c. ~
Ca, if Vars. ~ Vars, and sm, ~ sm,. A set of abstract classes Classes, = {ck,... "}
corresponds to a set of concrete classes Classes. = {c.,...,c¢™}, if n =m, and ¢!, ~ ¢},
foralll <i<n.

3.2.4 Abstract Models

Let M. = (Ciite, De, Classes., O, Locations., SysSigs,, ExtSigs) be a concrete model.
An abstract model M. = (Cinita, Da, Classes,, Oy, Locations,, SysSigs,,, ExtSigs) cor-
responds to the concrete model M., if

e Set of types D, = D. U abstTypes contains abstract types,

o SysSigs, is a set of abstract system signals corresponding to the system signals
SysSigs, in the concrete model.

o (lasses, is a set of classes corresponding to the set of classes Classes. in the
concrete model.

e O, is a set of objects corresponding to the objects in the set O.. For every
0c = (¢, 0id) € O, there is a unique corresponding object 0, = (¢, 0id) € Oy,
such that ¢, ~ ¢,. There are no other objects in the set O,.

e Locations, is a set of locations induced by O,

o Cinita = (state, inputqueue,, deferqueue,, valuation,) is an initial global config-
uration when Cy;. = (state, inputqueue,., deferqueue,, valuation.) is the initial
global configuration of the concrete model, input and defer queues for all ob-
jects are empty in the initial configuration, and ¥(o,, var,) € Locations, :
valuation, ({04, var,)) = coerce(valuation.({(o., var.)), d., d,), where o, ~ 0,
d. = type(var.), d, = type(var,), and var, ~ var,.

3.3 Counterexamples

Counterexamples are represented as counterexample traces describing executions vi-
olating a property in the model. Formally a counterexample trace is a sequence of
tuples representing execution events of the form (TRANS, F, oid, tid), (IMPL, F’, 0id),

21

S1

(t1, €, €, (ASSIGN, (vard), ((varl) + (var?)) - (varl))))

-t

» |-
[\

(t2,€, €, (ASSIGN, (varl), ((vary) + (varg))))

-t

[V I
w

(t3, €, €, (ASSIGN, (var®), ((varl) + (var?))))

"

(t4, €, €, (ASSERT, ((var?) < (var%))))

Y
()

Figure 3.3: The concrete state machine

and (DEFER, F, 0id). A tuple of the form (TRANS, F, oid, tid) represents the execution
of a transition with transition identifier #id in the object having object identifier oid.
A tuple of the form (IMPL, F, 0id) represents implicit message consumption in the
object with object identifier oid and a tuple of the form (DEFER, F, 0id) represents
deferring a message in the object with object identifier oid. F' is the function solv-
ing the possible non-deterministic choices in the evaluation of the expressions. Every
execution event has its own function for solving non-deterministic choices.

Example 3.1. Let M. = (Ciitc, De, Classes., O., Locations,, SysSigs,., ExtSigs) be a
concrete model with one class c. = (Vars., sm.), Classes. = {c.}, and one object
0. = (¢, 1), O. = {o.}, which is instantiated from the class. The set of types
in the model is D. = {int,boolean,reference}. The class ¢, has a set of vari-
ables Vars. = {wvarl, var? var? var? varS var®} and the type of each variable is
int. A graphical representation of the state machine sm, is shown in Figure 3.3.
In the initial configuration Cy,;, = (1, state, inputqueue, deferqueue, valuation.), the
active state of the only object is s;, the queues are empty and the valuation gives

valuation.({o., vart)) = 1, valuation.({o., var?)) = =2, valuation.({o., vard)) = 5,

valuation.({o., var?)) = 0, valuation.({o., var?)) = 0, and valuation.({o., var®)) = 0.
The model has no system or external signals.

A corresponding abstract model with all the variables abstracted with Sign-
abstraction (see Section 3.1.1) is M, = (Cinitq, Da, Classes,, O,, Locations,, SysSigs,,
EztSigs), where the set of types D, = {int,boolean, reference,Sign}, the sets of
system and external signals are empty, the set of classes Classes, = {c,} contains one

class ¢, = ({varl, var?, var3, vart var?, varS}, sm,), the set of objects, O, = {o,},

22

S1

(t1, €, €, (ASSIGN, (vard), ((wvarl) + (var?)) - (var3))))

-t

(t2, €, €, (ASSIGN, (vard), ((vard) + (var3))))

-t

(t3, €, €, (ASSIGN, (varS), ((varl) + (vari))))

o

(t4, €, €, (ASSERT, ((var?) < (var®))))

Y

()

Figure 3.4: An abstract state machine

Table 3.1: Values of variables in the object o, at different points of execution.

vart | var? | vars | var® | var® | var®

a a a a a a
POS | NEG | POS | ZERO | ZERO | ZERO
POS | NEG | POS | POS | ZERO | ZEROD
POS | NEG | POS | POS | POS | ZERD

POS | NEG | POS | POS | POS | POS

= QO DD | e

contains one object, o, = (c,, 1), instantiated from the only class in the model, and
in the initial configuration Cy,;, = (1, state, inputqueue, deferqueue, valuation,), the
active state of the only object is s1, the input and the defer queues are empty, and
the valuation gives:

valuation,({o,, varl)) = POS
valuation,({0q, var?)) = NEG
valuation, ({04, var®)) = POS
valuation, ({0, var?)) = ZERD
valuation, ({04, var®)) = ZERO
valuation,({oq, var®)) = ZERO

A graphical representation of the abstract state machine sm, is shown in Figure 3.4.
The concrete model contains only one execution but because of the the over-

23

Table 3.2: Values of variables in the object o, at different points of execution.

i | var! | var? | var? | var? | var? | var®
1 1 -2) 0 0 0
2 1 -2) -6 0 0
3 1 -2 5) -6 -11 0
4 1 -2 5) -6 -11 6

approximative abstraction the abstract model contains several executions. Let an
abstract counterexample trace be:

((TRANS, F, 1,t1), (TRANS, Fy, 1,12), (TRANS, F3, 1,t3), (TRANS, F}y, 1,t4))

Functions F;, 1 < ¢ < 4, fixes the non-deterministic choices made in the execution
in such a way that the assertion in transition with identifier ¢4 fails in the abstract
model. Table 3.1 shows the values of the variables in the object o, before the ith event
of the counterexample trace is executed . When the trace is executed in the concrete
model, the assertion holds. Thus the counterexample trace is spurious. Table 3.2
shows the values of the variables in the object o, in states s; at the execution of the
counterexample trace. |

24

Chapter 4
Feasibility Analysis

To determine the feasibility of an abstract counterexample, we use stepwise simulation
of the concrete model to try to execute the events fixed by the abstract counterex-
ample on the concrete model in the same order in which they appear in the abstract
counterexample [33|. Because every concrete model always has a fixed initial config-
uration, there are no external signals with parameters coming from the environment,
and each event determines via the object identifier the object where the event is exe-
cuted, the steps to be taken in the simulation are completely determined by the events
fixed by the abstract counterexample.

If all the events in the counterexample can be simulated successfully without asser-
tion failures or implicit message consumptions, then the counterexample is spurious
because the property that was expected to be violated was not violated in the simu-
lation of the counterexample.

4.1 Assertion Failures

If the property violation in the abstract model was an assertion failure, the execution
of a feasible counterexample in the concrete model results to an assertion failure.
Then the simulation of the execution of a transition of a state machine results in a
violation of an assertion in the concrete model, we have found an error in the concrete
model and have a counterexample to demonstrate it.

Assertion failures in the concrete model can also occur unintentionally, i.e. when
the counterexample was supposed to demonstrate implicit message consumption, mes-
sage deferral, or failure of another assertion. This happens when an assertion executed
prior to the intended property violation holds in the abstract model (due to the ex-
tra behavior introduced by the abstraction) but fails in the concrete model. For
example, let variables var! and var? have values 1 and 2, respectively, and let the
corresponding abstract variables varl and var? be abstracted with expression Sign-
abstraction and have values POS and POS, respectively. When a concrete expression
((var!) == (var?)) is evaluated the result is false, but when the corresponding ab-
stract expression ((varl) == (var?)) is evaluated the result can be either true or
false. If these expressions are the conditions in corresponding assertion statements we
could very well have a trace where an assertion fails in the concrete model but holds
in the abstract model. From the user’s point of view it is not important which kind

25

of failure the original counterexample was supposed to demonstrate; in any case we
have a true counterexample which leads to the violation of an assertion.

4.2 Implicit Message Consumptions

We assume that implicit message consumptions are always forbidden and thus an
implicit message consumption executed in the concrete model yields a true counterex-
ample. When the algorithm for feasibility checking is introduced in Chapter 4.4, we
shall describe changes needed to the algorithm to disable checking against implicit
message consumptions.

4.3 Action Not Enabled

If the action to be executed next is not enabled in the current configuration of the
concrete model the counterexample is spurious.

If the action is the execution of a transition, there are two possible reasons why
the transition is not enabled:

e The guard condition of the transition executed next in the abstract counterex-
ample evaluates to false in the current configuration of the concrete model, or

e the transition to be executed next (on some object in the concrete model) is not
enabled because there is no message with the correct signal in the head of the
object’s input queue. The contents of the corresponding message queues can
differ because the abstraction may introduce non-determinism to the targets
of send statements. For example, constructs like (condition?o1:05) can easily
cause this kind of situation.

If the action is an implicit consumption or a deferral of a message, then the reason
why the action is not enabled can be either of the two cases:

e There are no messages in the input queue. The corresponding input queue in
the abstract model however has at least one message because otherwise the
counterexample trace could not have such an event at this point. The reason for
this kind of situation is always a send statement in the abstract model sending
a message to an object which does not correspond to the target object of the
corresponding send statement in the concrete model. If all send statements in
the concrete and abstract model had sent the messages to corresponding objects,
the queues in all objects would contain the same number of messages.

e There is a transition enabled in the concrete model in the object where the event
should have been executed. The corresponding transition in the abstract model
is not enabled because otherwise there could not be an implicit consumption
or a message deferral event in the counterexample trace. The reason for the
transition to be not enabled in the abstract model can be either input queue
with no message matching the trigger in the head of the queue or a guard that

26

1: function IS COUNTEREXAMPLE FEASIBLE(M,, Trace)

2 # M. = (Ciite, De, Classes., O, Locations., SysSigs,, ExtSigs)
3 C — Cinite

4: while | Trace| > 0 do

5: event «— head(Trace)

6 Trace «— tail(Trace)

7 if event is of the form (TRANS, F) oid, tid) then

8 o < the object with id oid in O,

9: t « the transition with id tid in statemachine(class(0))
10: a < (TRANS, F o, t)

11: else # event = (etype, F, 0id) for some etype in {IMPL, DEFER}
12: o < the object with id oid in O,

13: a «— (etype, o)

14: if enabled(C,a) then

15: if a is of the form (IMPL, 0) then

16: return frue

17: C — exec(C,a)

18: if C = 1 then

19: return frue

20: else

21: return false

22: return false

Figure 4.1: Algorithm IS COUNTEREXAMPLE FEASIBLE checks whether the coun-
terexample trace Trace from abstract model M, is feasible in the concrete model

M..

evaluates to false. If the object cannot receive message with a correct signal,
then we have a pair of corresponding message send statements that have sent
their messages to non-corresponding objects, just like in the case with an empty
input queue.

4.4 Algorithm for Checking Feasibility

Algorithm IS COUNTEREXAMPLE FEASIBLE in Figure 4.1 checks whether a coun-
terexample is feasible. It takes the concrete model M. and the counterexample trace
Trace whose feasibility is to be checked and returns true if the counterexample is
feasible, otherwise false is returned.

The algorithm tries to execute the trace step by step. In lines 7-13 the algorithm
forms the event a to be executed. The object identifier oid can be mapped unam-
biguously to the object o because there are no two different objects with the same
object identifier in the model. Respectively transition identifier ¢id can be mapped
unambiguously to the transition ¢. In lines 14-19 the event is executed if it is enabled
in the concrete model. The if-clause in line 15 checks whether we have a feasible

27

counterexample demonstrating an implicit message consumption. If we do not want
to check against implicit consumptions lines 15-16 should be removed from the algo-
rithm. After we have checked whether the event is an implicit consumption the event
is executed in line 17 and checked whether an assertion failed in the execution of the
event. If the event was not enabled in the concrete model then the counterexample
is not feasible and false is returned in line 21. Finally, if the trace was successfully
executed in the concrete model, then the counterexample is spurious and false is
returned.

Example 4.1. In the feasibility analysis for abstract counterexample introduced in
Example 3.1 the first three events are executed successfully in the concrete model.
Also the execution of the fourth event, the transition with the assertion action, suc-
ceeds without runtime errors. Thus the abstract counterexample trace is executed in
the concrete model without property violations and the abstract counterexample is
spurious. [

28

Chapter 5

Counterexample Analysis

Finding a spurious counterexample in the abstract model prevents us from either veri-
fying that the properties hold in the concrete model or that there is a counterexample
which demonstrates a failing property. To be able to continue the model checking
procedure we need to refine the abstraction in order to remove the spurious coun-
terexample. A good refinement removes the spurious counterexample (and possibly
other spurious counterexamples which we have not encountered yet) but still avoids
the state explosion problem.

First we identify the parts in the model that contribute to the existence of the
spurious counterexample by identifying the relevant locations, i.e. for each point in
the trace the locations that contribute to the existence of the counterexample. The
algorithm for doing this is described in Section 5.2. It is intuitive that the refinement
is done to the parts of the model that are relevant to the existence of the spurious
counterexample. In Section 5.3 use relevant locations as a guide for calculating a
refinement for models abstracted with interval abstractions (a subset of data abstrac-
tions).

To facilitate the discussion of the counterexample analysis, we introduce a con-
struction for analysis traces. An analysis trace contains all the information needed in
the counterexample analysis from the spurious counterexample and its execution in
the concrete and in the abstract model. Analysis traces are described in Section 5.1.

5.1 Forming an Analysis Trace

Before the analysis methods are described we form an analysis trace by executing the
counterexample trace in both the concrete and the abstract models. The purpose of
the analysis trace is to bundle all the relevant information needed for the analysis into
one sequence for easier accessibility.

The analysis trace needs to have a finer granularity than the execution traces
because the analysis we are going to do needs to distinguish the effects of different
parts (actions) of the transitions. The analysis trace is formed by the algorithm

TRANSFORM and is a sequence of tuples of the form <5’, (sn, 0c, oa,g>, 5”), where

o« (= (C.,C,) is a combined configuration, a tuple containing the configuration
of the concrete and the abstract model before execution of the action,

29

o sn = sn(C.) = sn(C,) is a sequence number of the concrete and the abstract
configurations before the execution of the action,

e 0. is the concrete model object in which the action is executed,
e 0, is the abstract model object in which the action is executed,

e bis the tuple describing the type the action describes (these are specified below),
and

o (" = (C!,C!) is a tuple containing the configuration of the concrete and the
abstract model after the execution of the action. If either C? or C} is L, then
C’ = 1. This represents the point where the executions in the concrete and in
the abstract model differ so much that we can not execute the trace further in
either one of them.

Component, b in the tuple describes what kind of action the tuple represents. b
can represent one of the following things: the reception of a message (generated from
a trigger of an executed transition), assuming of a boolean expression to be true
(generated from a guard of an executed transition), an assertion, an assignment, the
sending of a message, an implicit message consumption, and the deferral of a message.

Reception of messages by corresponding triggers (sig,, (pl,...,p™)) in the con-
crete model and (sig,, (pl,...,p™)) in the abstract model are encoded as a tuple
b= (RECV, sig., $ig,, (Pes - -, D2")s (Pas - - -+ D))

Guards of transitions are not included in the analysis trace unless a guard is the
reason for the counterexample to be spurious. If a guard is the reason for the coun-
terexample to be spurious then the guard is encoded as a tuple b = (ASSUME, F', g, ga)
describing a boolean expression that is assumed to evaluate to true when g. is the
guard of the transition in the concrete model and g, is the corresponding guard in the
abstract model.

Sending a message by corresponding statements (SEND, sig,, (el ..., el), tgt,) in
the concrete model and (SEND, sig,, (el,...,ed), tgt,) in the abstract model are en-
coded as a tuple b = (SEND, F, sig,, sig,, (e, ... e%), (e}, ... e%), tgt,, tgt,).

Corresponding assignments by statements (ASSIGN, lhs,, Ths.) in the concrete mod-
el and (ASSIGN, lhs,, Ths,) in the abstract model are encoded as a tuple b= (ASSIGN,
F,lhs., lhs,, Ths., Ths,).

Corresponding assertions (ASSERT, e.) in the concrete model and (ASSERT, ¢,) in
the abstract model are encoded as a tuple b= (ASSERT, F' e, €4).

Implicit consumptions and deferrals of messages are encoded as tuples (IMPL) and
(DEFER), respectively.

The algorithm TRANSFORM is represented in Figure 5.1. The algorithm calls, for
every event in the counterexample trace, a function TF_ TRANS for handling the exe-
cution of transitions or TF_IMPL _DEFER for handling implicit consumptions or mes-
sage deferrals. These functions execute actions associated with the event and return
a new version of the analysis trace L with components produced from the associated
actions added. The function lastconf (L) returns the last combined configuration from
the analysis trace L, i.e. the last element of the last tuple in the sequence L. When

30

1. function TRANSFORM(M,, M,, Trace)

2 # M. = (Ciite, De, Classes,., O, Locations., SysSigs,, ExtSigs)
3 # M, = (Cinita, Da, Classes,, O,, Locations,, SysSigs,,, ExtSigs)
4: Trace = (eventy, events, . . ., event,)

5: L — <>

6 C (Cinites Cinita)

7 for: =1 to n do

8 if event; is of the form (TRANS, F’ 0id, tid) then

9 0. < the object with id oid in O,

10: 04 < the object with id oid in O,

11: t. < the transition with id ¢id in statemachine(class(o.))

12: t, < the transition with id tid in statemachine(class(o,))

13: L «— TF _TRANS(M,, M,, L, 5’, F 0,04, tc,tq)

14: else # event; is of the form (etype, F, oid), where etype € {IMPL, DEFER}
15: 0. < the object with id oid in O,

16: 0, + the object with id oid in O, _

17: L «— TF _IMPL_DEFER(M,., M,, L,C F, etype, 0., 0,)

18: if lastconf(L) = L then

19: return L

Figure 5.1: The algorithm TRANSFORM forms an analysis trace L from a spurious
counterexample Trace by simulating the execution in the concrete model M, and in
the abstract model M,.

the analysis trace has L as its last combined configuration we have reached the point
of execution where the counterexample trace cannot be executed further either in the
concrete or in the abstract model. This means that we have all the information we
need for analysis and the analysis trace is returned.

5.1.1 Transition Execution Events

The algorithm TF _TRANS in Figure 5.2 adds execution steps produced from the tran-
sition execution counterexample event to the analysis trace and returns the resulting
analysis trace. The algorithm is divided to two separate parts. The first, starting
from line 5, handles events that are enabled in the concrete model! and the latter
one, starting from line 28, events that are not enabled in the concrete model.

Enabled transitions are executed component by component in both the concrete
and the abstract model until either all components are executed or an assertion has
failed and the analysis trace to be returned ends with the combined configuration L.
The algorithm uses the function EXECUTE ACTION for the actual execution. The
pseudocode for the function EXECUTE _ACTION can be found in Figure 5.4.

The processing of enabled transition events starts with receiving messages by pos-
sible triggers. Triggers are executed in the code following line 6. Guards are skipped in

!Events are always enabled in the abstract model because the counterexample trace was generated
from the abstract model

31

1: function TF_TRANS(M,, M,, L, 5’, F 0,04, tc,tq)
2 #C=(C.0C,)
3 # t. = (tid, s1, 89, trig,, ge, (stmtl, ... stmt,))
4: #t, = (tid, s1, So, tTig,, g, (stmtl, ... stmt,))
5: if enabled(C., (TRANS, F, 0., t.)) then
6 if trig, # € then

7 # trig, = (sige, (De, - - - Pl")) and trig, = (5194, (Pa: - - - P3"))
8 b (RECV, sig,, sig,, (b, pI"), (P, - PI"))

9: L — append(L, EXECUTE_ACTION(@, Oc, Oq, F,g))

10: C «— lastconf (L)

11: for =1 to n do

12: if stmt’ is of the form (SEND, sig,, (¢!, ..., e%), tgt,) then

13: # stmt® is of the form (SEND, sig,, (e}, ..., e?), tgt,)

14: b« (SEND, F, sig,, sig,, (e}, ..., €9}, (e}, ... e, tgt,, tgt,)
15: else if stmt’ is of the form (ASSIGN, lhs., rhs.) then

16: # stmt’ is of the form (ASSIGN, lhs,, Ths,)

17: b (ASSIGN, F lhs., lhs,, Ths., rhs,)

18: else if stmt’ is of the form (ASSERT,e.) then

19: # stmt’ is of the form (ASSERT,e,)

20: b — (ASSERT, F ., e,)

21: L «— append(L, EXECUTE_ ACTION(C, 0., 04, F, b))

22: C «— lastconf (L)

23: if C = | then return L

24: # statemachine(class(o.)) = (s;, S, T, defers, flush)

25: if so € flush then

26: return append(L, EXECUTE_ACTION(G’, Oc, 0, F, (GOTO, 89, true)))
27 return append(L, EXECUTE _ACTION(C, 0., 04, F, (GOTO, o, false)))
28: else

29: if trig, # € then

30: # trig, = (sige, (pe, .. p")) and trig, = (sig,, (Pa; - - -, Py'))
31: b (RECV, sig,, $iga, (s .., D), (Phs -, DI))

32: if InputQueue(C.,o0.) = () then

33: return append(L, (C, (sn(C.), 0, 04, b), L))

34: # InputQueue(Ce, 0.) = ((idmsg,, 195, Vs, - .., 0Y),...)

35: # InputQueue(Cq, 04) = ((idmmsg,, Si94, Vas - - ., VL), ...)

36: if sig, # sig) then

37: return append(L, (C, (sn(C.), 0c, 0a, b), L))

38: L — append(L, EXECUTE_ACTION(@, Oc, Oq, F,~))

39: C «— lastconf (L)

40: return append(L, (6’, (sn(C.), 0¢, 04, (ASSUME, F, gc, ga)), L))

Figure 5.2: Algorithm for producing analysis trace steps from the transition execution
events in the counterexample trace.

32

enabled transitions because they do not alter the configuration. Effects are executed
in the for-clause starting from line 11. First the type of the component is parsed and
a tuple b representing the component is formed in lines 12-20. Then it is executed in
the abstract and in the concrete model with the function EXECUTE ACTION. Asser-
tion failures are checked in line 23. After all parts of the effect are processed we move
the state machine to the target state s, of the transition by executing a GOTO action.
This also flushes the defer queue if the target state ss is an element of the set flush.

If the transition execution event is not enabled in the concrete model, then either
the trigger of the transition can not be executed in the concrete model, or the guard
of the transition evaluates to false. If the transition has a trigger, we analyze in lines
29-37 whether the transition is not enabled in the concrete model because the trigger
can not be executed. The trigger can not be executed if the input queue is either
empty or if the type of the message at the head of the queue does not match the type
of the signal in the trigger. Otherwise the message is received by execution of the
EXECUTE _ACTION function in line 38. If there is no trigger or the trigger can be
executed without errors, the guard evaluates to false in the concrete model. Then we
add an assume step with an ASSUME action to the analysis trace and return.

5.1.2 Implicit Consumptions and Message Deferrals

The algorithm TF _IMPL DEFER in Figure 5.3 adds execution steps produced from
the implicit consumption or message deferral counterexample event to the analysis
trace and returns the resulting analysis trace. The algorithm is divided into two
separate parts just like the TF_ TRANS algorithm above.

If the event is enabled in the concrete model then we execute the event by calling
EXECUTE _ACTION and return the produced trace.

The event might not be enabled in the concrete model because of two reasons.
Firstly, the input queue of the object where the event is to be executed might be
empty. In the algorithm this is handled in the if-clause starting from line 6 by adding
a step corresponding to the type of the event that results in a combined configuration
1.

Secondly, there might be a transition enabled in the object where the event is to
be executed. In that case we have to analyze whether the reason for the corresponding
transition to be not enabled in the abstract model lies in the trigger part or in the
guard part of the transition. If the transitions (the concrete and the corresponding
abstract one) share a non-empty trigger, then the reason for the abstract transition to
be not enabled can be determined by checking the signals of messages in front of both,
the concrete and the abstract, message queues. If the signals are not corresponding
ones, then the reason is in the trigger parts and we return an analysis trace with
message receiving action resulting in the combined configuration | added to the end
of the trace. The signal correspondence check is done in line 19 in the algorithm. If the
signals in the messages are corresponding then the reason for the abstract transition
to be not enabled lies in the guard part because the enabledness of the transition
is determined by the trigger and guard parts, not by the effect part. If the reason
lies in the guard part then a step corresponding to the triggers of the transitions is
added to the analysis trace and after that an ASSUME step resulting in the combined

33

1: function TF_IMPL_DEFER(M,., M,, L, C,F, etype, O, 0q)

2 #C=(C.0C,)

3 if enabled(C., (etype,o.)) then

4 return L < append(L, EXECUTE_ACTION(@, Oc, 04, F', (etype)))
5: else

6 if InputQueue(C.,o0.) = () then

7 return append(L, (6’, (sn(C.), 0c, 04, {etype)), L))

8

9

else

: # There has to be enabled transition ¢. in the concrete model.
10: let t. be some transition enabled in C. in M.,
11: # t. = (tid, s1, S, trig,, ge, eff .)
12: #t, ~t, = (tid, s1, S9, trig,, ga, €ff 4)
13: if trig. # € then
14; # trig, = (sige, (D, - PL"))
15: # trig, = (8194, (Pas - -, PL"))
16: # InputQueue(Ce, 0.) = ((idmsg,, Sigg, Vs ..., V), ...)
17: # InputQueue(Cy, 04) = ((idmsg,, Sigl, Vg, .., VI),...)
18: b (RECV, sig,., sig,, (pL, ..., pm™), (pL, p™))
19: if sig, # sig!, then
20: return append(L, (C, (sn(C.), o., oa,g>, 1))
21: L — append(L, EXECUTE_ACTION(@’, Oc, O, F,N))
22: C «— lastconf (L)
23: return append(L, (6’, (sn(C.), 0¢, 04, (ASSUME, F, gc, ga)), L))

Figure 5.3: Algorithm for producing analysis trace steps from the implicit consump-
tion and message defer events in the counterexample trace.

configuration L is added to represent the guards that are evaluated with different
results.

5.1.3 Execution of Actions for Analysis Trace

We have extracted the actual execution of actions in the concrete and in the abstract
model to a separate algorithm in the construction of an analysis trace. The algorithm
in Figure 5.4 takes a combined configuration, a concrete object, an abstract object,
a function for solving non-determinism, and information about the type of the action
as arguments and returns an analysis trace step where the action is executed. The
algorithm is very straightforward and is here only to shorten the previous, more
complicated, algorithms.

34

1: function EXECUTE_ACTION(’CV', Oc, 0, I, ~)

2 #C=(C.C,)

3 if b is of the form (RECV, sig,, sig,, (p,...,p"), (p.,...,p")) then
4: C! — exeCroey(Ce, 0, (s1g., (P, ..., D))

5: C! — exeCroey(Cy, 04, (8ig,, (PL, ..., p™)))

6: C'—(CL,Cl)

7

8

9

else if b is of the form (SEND, F) sig,, sig,, E., Eq, tgt,, tgt,) then

E. is of the form (e!,..., e") and E, is of the form (el ... e")
: C! — execoy (Cy, F, 0., (SEND, sig,, (€}, ... e}, tgt,))
10: C! «— execey(Co, F, 04, (SEND, sig,, (el ... €™}, tgt,))
11: C'— (C,C")
12: else if b is of the form (ASSIGN, F, lhs., lhs,, Ths., rhs,) then
13: C! — execey(Ce, F, 0., (ASSIGN, lhs., Ths.))
14: C! — execog(Cy, F, 04, (ASSIGN, lhs g, Ths,))
15: ' —(C',)
16: else if b is of the form (ASSERT, F| e., e,) then
17: # Assertion has to hold in the concrete model because
18: # the counterexample was spurious
19: C! — execey(Ce, F, 0., (ASSERT, €.))
20: C! — execs(Cy, F, 04, (ASSERT, €,))
21: if !, = 1 then
22: C'— 1
23: else
24: ' —(C.,C)
25: else if b is of the form (GOTO, s, b) then
26: Cl «— execyoro(Ce, 0, 5, D)
27: Cl — execyoro(Cy, 0, 8, b)
28: ' —(C',)
29: else if b is of the form (IMPL) then
30: C" — (exec(C,, (IMPL, 0,)), ezec(Cl, (IMPL, 0,)))
31: else if b is of the form (DEFER) then
32: C" — (ezec(C., (DEFER, 0,)), exec(C,, (DEFER, 0,)))

33: return <5, <STL(C¢), Oc, 0a>g>> 5/>

Figure 5.4: Algorithm for creating analysis trace steps.

35

Table 5.1: Values of variables in the object o, in global configurations C".

vart | var? | var3 | var* | var® | var®

POS | NEG | POS | ZERO | ZERO | ZERO
POS | NEG | POS | POS | ZERO | ZERO
POS | POS | ZERO

POS | NEG | POS | POS | POS | POS

=~ W DN = =
g
o
wn
=
=
[p]
g
o
wn

Table 5.2: Values of variables in the object o, in global configurations C".

i | varl | var? | var? | var® | var? | var®
1 1 -2 5 0 0 0
2 1 -2 5} -6 0 0
3 1 -2) -6 -11 0
4 1 -2) -6 -11 6

5.2 Relevant Locations

One way to analyze the counterexample is to isolate variables in objects in the abstract
model that can actually affect the execution of the action whose corresponding action
in the concrete model could not be executed. Affecting variables can be different at
different points of the trace.

Example 5.1. In the abstract model introduced in Example 3.1, the spurious coun-
terexample was produced because the assertion fails in the abstract model even though
the corresponding assertion in the concrete model holds. An analysis trace produced
from the counterexample trace, the concrete model, and the abstract model is

(({(CL, O1), (1,00, 00, 1), (C2,C2)), ({C2,C2), (2, 0c, 0a, ba), (C2, C2)),
((C3,C3Y, (3, 06y 0, bs), (C1,C1Y), ((C2,C1Y, (4, 0¢, 00, ba), L)),

where
by = (ASSIGN, Fi, (var?), (var?), (((warl) + (var®)) - (var®)),
(wary) + (var2)) - (varj)))
by = (ASSIGN, Fy, (var®), (var®), (var®) + (var®)), (var?) + (var®)))
by = (ASSIGN, Fy, (var®), (var®), (war!) + (var®)), (varl) + (var®)))
by = (ASSERT, Fy, ((var®) < (varS)), ((var?) < (varS)))

The values of the variables in different points of the analysis trace are shown in
Table 5.1 and in Table 5.2. The assertion fails in the abstract model because the value
of the variable var? does not correspond to the value of the corresponding variable

varS. On the other hand the second action in the trace assigns values to variable var>

36

and its corresponding variable var®. Therefore the values of these variables before the
action do not affect the feasibility of the counterexample but the values of var?, var?,
var?, and var? do. Similarly the first action assigns the value calculated from the
values of varl, var?, and var? to var? in the abstract model and the value calculated
from the values of var!, var?, and var? to var? in the concrete model. In Table 5.1
and in Table 5.2 the values affecting the occurrence of the spurious counterexample
are underlined. Ultimately our objective is to remove the spurious counterexample
with refinement of the types of a subset of variables affecting the occurrence of the

spurious counterexample. [|

To put this observation into use we introduce the concept of a relevant location.
Relevant locations describe a set of components affecting the occurrence of the spuri-
ous counterexample at each point in the trace. We have two types of relevant locations,
relevant locations concerning variables and relevant locations concerning message pa-
rameters, which are both represented with tuples containing three elements.

A relevant location concerning a variable in an object is a tuple (sn, oid, name)
where sn is a sequence number indicating the concrete and abstract global configu-
rations relating to this entry, oid is the object identifier of the object this entry is
related to, and name is the name of the variable this entry is related to. The actual
location in the model can be found by converting the object identifier and the variable
name to the corresponding object and variable.

Example 5.2. In example 5.1, there is a relevant location (2,id(o.), name(var?))
(note that id(o.) = id(0,) and name(var?) = name(var?)) meaning that the values of
variables var? and var? in objects o, and o, are relevant in the global configurations
C? and C?, respectively. [|

A relevant location concerning a parameter in a message is a tuple (sn, ids,,)
where sn is a sequence number indicating the global configurations relating to this
entry, ids, 1s a message identifier identifying the message this entry is related to, and
7 is an index identifying the ith parameter in the message as the parameter this entry
is related to.

Our concept of relevant locations includes also message parameters and thus here
the meaning of the word location corresponds to the meaning of the word location in
Chapter 2 only when speaking about variables in objects.

In practice relevant locations are found by analyzing first the action which could
not be executed in the concrete model. This action is found from the last step in
the analysis trace. The analysis of the last action is described in Section 5.2.1. The
analysis produces a set of initial relevant locations. After we have found the initial
relevant locations, we propagate relevant locations to the other points of the trace
by following data flow paths of the initial relevant locations in the last action. This
process is described in Section 5.2.2.

5.2.1 Initial Relevant Locations

The process of finding initial relevant locations depends on the type of the action in
the last step of the analysis trace. If the action is either ASSUME or ASSERT, the

37

1. function EVAL CORR(C,, Cy, F, 0., 04, €, €4)

2 if type(e.) = reference then

3 if eval(C., F, o, e.) ~ eval(Cy, F, 0,4, €,) then
4: return frue

5: else

6: return false

7 else

8 ve «— eval(Ce, F, o, €..)

9 Vg < eval(Cy, F, 04, €,)

10: if coerce(v,, type(e.), type(e,)) = v, then
11: return true

12: else

13: return false

Figure 5.5: Function comparing the value of the concrete expression coerced to the
abstract type to the value of the corresponding abstract value.

corresponding condition expressions in the concrete and in the abstract models are
evaluated differently. Thus, this expression seems like a logical place for the search of
initial relevant locations.

5.2.1.1 Finding Initial Relevant Locations from Expressions

The simplest way for finding initial relevant locations from the expressions is to add
all the locations appearing in the expressions to the set of initial relevant locations.
This would ensure that all the relevant locations are included but on the other hand
the set might contain a large number of non-relevant locations. We chose to analyze
the expressions heuristically to narrow down the number of the relevant locations.

The idea in the search for the initial relevant locations from the expressions is to
traverse the concrete expression tree and the abstract expression tree, and to focus
on the subexpressions that do not evaluate correspondingly. This can be easily done
because the corresponding expressions have the same tree structure.

Example 5.3. For example, in the analysis trace introduced in Example 5.1 the
initial relevant locations consist of only one location, (4,id(o.), name(var?)). This
can also be seen in tables 5.1 and 5.2 in lines where ¢ = 4. The initial relevant
locations have been searched from the expression ((var®) < (var®)) and its abstract
counterpart ((var?) < (var®)). The first subexpressions (var®) and (var>) have non-
corresponding values —11 and P0S. The second subexpressions (var®) and (varS) have
corresponding values 6 and POS. Thus the initial relevant locations are searched from
the first subexpressions, from which only one location, (id(o.), name(var?)), is found.
|

In the analysis of the expressions, comparison of the correspondence of the values
of the expressions is often needed. Function EVAL CORR described in Figure 5.5 is

38

used for checking whether the concrete and the abstract expression evaluate corre-
spondingly. If the expressions evaluate as objects, the correspondence of the resulting
objects is compared and the result of the comparison is returned. Otherwise it eval-
uates a given concrete expression e, in the concrete model, then coerces the value
got to the type of the corresponding abstract expression, and finally compares the
coerced value to the value the corresponding abstract expression e, evaluates to in
the abstract model. The result of the comparison is returned.

Function RELEVANT described in Figure 5.6 is used for finding initial relevant loca-
tions from expressions. It takes a concrete configuration C,., an abstract configuration
C,, a function F' for solving non-deterministic choices in the evaluation of abstract
expressions, a concrete object o., a corresponding abstract object o,, a concrete ex-
pression e., and a corresponding abstract expression e, as arguments. The expressions
e. and e, are assumed to evaluate non-correspondingly between the concrete and the
abstract models (specified by the configurations, the objects, and the function F).

If the expressions are of the kind LIT or NAME, we collect locations appearing in
these expressions using function COLLECT LOCATIONS which is described in more
detail later.

If the expressions are of the kind COND, we analyze which one of the two subexpres-
sions causes the non-corresponding evaluation of the expression. The expressions of
the kind cOND describe logical and and or expressions for which Jumbala uses short-
circuit evaluation. Both cases are analyzed in the same way. If the first subexpressions
evaluate non-correspondingly we search for the initial relevant locations from those
subexpressions, otherwise from the second subexpressions. The reason for the iden-
tical treatment is the assumption that the expressions evaluate non-correspondingly
between the concrete and the abstract model. In that case if the first subexpressions
evaluate correspondingly, then the second subexpressions do not. On the other hand
if the first subexpressions evaluate non-correspondingly we do not evaluate the sec-
ond subexpression at all either in the concrete or in the abstract model because of
the short-circuit evaluation used, making the second subexpressions irrelevant for the
analysis.

If the expressions are of the kind INFIX, we check both subexpression pairs whether
they evaluate correspondingly. If the expressions in only one of the pairs evaluate
non-correspondingly, then we search initial relevant locations from the subexpressions
in that pair. If both pairs evaluate non-correspondingly, then we can not make a
rational choice over the other. Thus, we search for initial relevant locations from
both of the pairs and return the union of the relevant locations found. If both of
the pairs evaluate correspondingly, then the operation of the abstract expression is
non-deterministic and in the counterexample the abstract value corresponding to the
concrete one was not chosen in the evaluation of the abstract expression. In this case
we do not know which of the locations appearing in the expressions are best choices
as initial relevant locations. Thus, all the locations appearing in the expressions are
returned as initial relevant locations.

If the expressions are of the kind UNARY, we check whether the only subexpres-
sions evaluate correspondingly. If they do not we recursively call the function REL-
EVANT. On the other hand, if they do the operation in the abstract expression is
non-deterministic and like with the INFIX expressions, we just collect all the locations

39

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:

20:
21:
22:

23:
24:
25:
26:
27:
28:

29:
30:
31:
32:
33:

35:
36:
37:
38:

: function RELEVANT(C,, C,, F, 0., 04, €., €4)
if kind(e.) € {LIT, NAME} then
return COLLECT _LOCATIONS(C,, Cy, 0, 04, €c, €4)
if kind(e.) = COND then
subexpr(e.) = (el, e?) and subexpr(e,) = (el,e?)
if EVAL_CORR(C,, C,, F, 0., 04, €}, el) = false then
return RELEVANT(C,, C,, F, 0., 04, €., €})
else
return RELEVANT(C., C,, F', 0., 04, €2, €2)
if kind(e.) = INFIX then
subexpr(e.) = (el, e?) and subexpr(e,) = (el,e2)

¢1 < EVAL_CORR(C,, C,, F, 0., 04, €}, €})
¢y < EVAL _CORR(C,, Cy, F, 0, 04, €%, €2)
if ¢; = false V ¢y = false then
result — {}
if ¢; = false then
result « result U RELEVANT(C,, C,, F, 0, 04, €}, €1)

if ¢o = false then
result « result U RELEVANT(C,, Cy, F, 0, 04, €2, €2)

c)a
return result
else
return COLLECT LOCATIONS(C,, Cy, 0, 04, €c, €4)

if kind(e.) = UNARY then
subexpr(e.) = (e!) and subexpr(e,) = (el)
if EVAL_CORR(C., C,, F, 0., 04, €}, el) then
return COLLECT _LOCATIONS(C., Cy,, 0¢, 04, €¢, €4)
else
1

return RELEVANT(C,, C,, F, 0., 04, ¢!, €})

if kind(e.) = TCOND then
subexpr(e.) = (el e? €3
¢1 < EVAL _CORR(C,, Cy, F, 0,04, €., €l)
if ¢; = false then
return RELEVANT(C,, C,, F, 0., 04, €., €l)
else
if eval(C., F, 0., €!) = true then
return RELEVANT(C,, C,, F, 0., 04, €2, €2)
else
return RELEVANT(C,, C,, F, 0., 04, €2, €3)

c)-a

3) and subexpr(e,) = (e}, €2, e3)

a’ - a

Figure 5.6: Algorithm for finding initial relevant locations from expressions.

40

1. function COLLECT LOCATIONS(C., Cy, 0., 04, €, €4)

2: if kind(e.) = NAME then

3: # e, is of the form (NAME, id, d., (varl, ... var™))
4: # e, is of the form (NAME, id, d,, (varl,... var™))
5: return {SAFE_RESOLVE(C,, Cy, 0., 04, €., €4) }

6: else if kind(e.) = LIT then

7: return ()

8: else

9: # subexpr(e.) is of the form (e}, ... e)
10: # subexpr(e,) is of the form (e}, ..., e")
11: result < |J;_; COLLECT _LOCATIONS(C, Cy, 0¢, 04, €', €%,)
12: return result

Figure 5.7: Algorithm for finding all the locations appearing in the expression.

in the expression because we do not have a better judgement of the locations that
should be included in the initial relevant locations.

If the expressions are of the kind TCOND, we first check whether the condition
subexpressions evaluate correspondingly. If they do not, there is no point for concen-
trating on the subexpressions evaluating the value because in one model the second
subexpression is evaluated but in the other the third subexpression is evaluated. Thus
in this case we search initial relevant locations from the condition subexpressions. If
the condition subexpressions evaluate correspondingly, we search the subexpressions
that actually determine the value of the expression. The choice of the subexpression
pair depends naturally on the value of the condition subexpression.

Locations are picked up from expressions using a function COLLECT LOCATIONS
described in Figure 5.7. If the corresponding expressions e. and e, are of the kind
NAME, we find the locations the expressions represent by using SAFE_ RESOLVE func-
tion which is described in Figure 5.8 and explained in the next paragraph. If the
expressions are of the kind LIT, we return an empty set because no locations appear
in the expressions. When the expressions are compound expressions, we call COL-
LECT _LOCATIONS for all the subexpression pairs and return the union of locations
appearing in the subexpressions.

The function SAFE _RESOLVE is used for resolving locations from NAME kind ex-
pressions. The algorithm for the function is shown in Figure 5.8. The function takes a
concrete and an abstract configuration, corresponding concrete and abstract objects,
and corresponding expressions. A tuple containing an object identifier and a variable
name indicating a location is returned. The idea is to iterate through the variables
appearing in the expressions while fetching the objects corresponding to the variables
from the configurations at each step in the iteration. At each step we also check
whether the objects between the concrete and the abstract model are corresponding
ones. If they are not, we stop the iteration and return a tuple pointing to a location
from where the non-corresponding objects were found because there is no point in
continuing the iteration when the values in the concrete and in the abstract model
come from non-corresponding objects. The logical relevant locations in such a case

41

1. function SAFE RESOLVE(C., Cy, 0, 04, €c, €4)
2 # e, is of the form (NAME, id,, d., (varl, ..., var™))
3 # e, is of the form (NAME, id., d,, (varl ... var?))
4 for i=1 to n-1 do

5: o, — VarValue(C., o., var')
6

7

8

9

C

o, — VarValue(C,, 04, vart)

if id(0.) # id(0,) then
return (id(o.), name(vart))
else
10: 0p 0.,
11: 04 — O,

12: return (id(o.), name(var?))

Figure 5.8: Algorithm for returning a tuple representing a location the NAME kind
expression represents. If the concrete and the abstract expression does not repre-
sent corresponding locations a tuple representing the location before the first non-
corresponding location is returned.

are the locations containing the first non-corresponding objects.

Example 5.4. Let o!, 0?, and o be objects instantiated from a class c. in the

concrete model. The corresponding abstract objects, instantiated from a class c,,
are ol, 02, and 03, respectively. Let var! € Vars(c.), varl € Vars(c,), varl ~
varl, and type(var!) = type(var!) = reference. Let war? € Vars(c.), var? €
Vars(cy), var? ~ wvar?, type(var?) = type(var?) = int. In the global configura-

tion C, and in the corresponding abstract global configuration C, some of the val-

ues of the variables are VarValue(C.,ol, varl) = o?, VarValue(C,,ol, varl) = 03,

c)
VarValue(C., 0?, var?) = 1, VarValue(C,,0?,var?) = 1, VarValue(C., 03, var?) =
—1, and VarValue(C,, 02, var?) = —1. The evaluation of corresponding expressions
(NAME, id, int, (varl, var?)) and (NAME, id, int, (var!, var?)) in the global configura-
tions C, and C, gives us non-corresponding results, 1 in the concrete model and —1 in
the abstract model. Still the location (0?, var?) has a value corresponding to the value
of the location (02, var?) as well as the location (02, var?) has a value corresponding
to the value of the location (03, var?). If we are searching for relevant locations from
these expressions in the global configurations described, there is no point in choosing
locations represented by a tuple (id(0?), name(var?)), (id(0?), name(var?)) or both
as relevant locations but instead the locations, represented by a (id (o), name(varl)),

which causes the non-corresponding results in the evaluation of the expressions. M

5.2.1.2 Target Correspondence Check

If the last action is either IMPL, DEFER, or RECV, the reason for the abstract coun-
terexample to be spurious is a send action that sends messages to non-corresponding
objects in the concrete and in the abstract model as was described in Section 4.3.2 A

2Implicit message consumptions and message defers caused by a guard which is false in the
abstract model and true in the concrete model have been converted to RECV and ASSUME actions in

42

1: function CHECK TARGET CORRESPONDENCE(T, 0., 0, id)
2 # T is of the form (step,, ..., step,)
3 for i =1 to id do o
4 # step, is of the form ((C., C,), (i, 0., d,,b),C")
5: if b is of the form (SEND, F) sig,, sig,, params,, params,, tgt., tgt,) then
6: O1gt, — eval(Cy, F, 0, tgt,)
7 O1gt, — eval(Cy, F, 0, tgt,)
8 if (0. = 04g1, N 0 7 O4gt,) V (00 7 O1gr. N\ 0q = 0441,) then
9: return ¢

10: return —1

Figure 5.9: Algorithm for checking correspondence of target objects in signal send
actions.

logical refinement to the abstraction would be one that makes the send action send
messages to corresponding objects instead of non-corresponding objects. Thus, we
look for the initial relevant locations in the target expressions of the send action.

First we have to find the action. For this we use a simple algorithm that examines
all send actions in the trace to find the first send action which sends a message to
non-corresponding objects and the target object is the object in the last action in the
trace either in the concrete or in the abstract model but not in both models. This
point of the trace is chosen because this is the point where the input queues of the
desired target objects begin to diverge between the concrete and the abstract model.
After the action is found, the target expressions of the action are analyzed using the
function RELEVANT, just like we did with the ASSUME and ASSERT cases.

Function CHECK_ TARGET _ CORRESPONDENCE described in Figure 5.9 is used for
comparison of the targets of the actions in the trace. It takes an analysis trace T,
target objects o. and o, from the concrete and the abstract model, and a sequence
number ¢d indicating the last step in the analysis trace that needs to be checked.
Function CHECK TARGET CORRESPONDENCE returns the sequence number of the
first step where a message is sent to the target object either in the concrete or in the
abstract model but not in the other model. If such a step can not be found —1 is
returned.

The last step to be checked is provided as an optimization when the last place
that can affect the first message in the input queues in the current location is already
known. For example if in the last step of the analysis trace the concrete object has
a message (4, sig.,pl,...,p?) in the head of the input queue and the corresponding
abstract object has a message (7, sig,,pl, ..., p1,,) in the head of the input queue, then
we know that there is a send action sending messages to non-corresponding objects at
the latest in the fourth action. When searching for the initial relevant locations the
optimization is actually irrelevant (because there is always a send action with non-
corresponding targets) but in the propagation of the relevant locations (introduced in
Section 5.2.2) the function is called in situations when there is not necessarily send

the construction of the analysis trace.

43

1: function INITIAL RELEVANT LOCATIONS(T)

2 # T is of the form (step,, ..., step,)

3: # last(T) is of the form ((C., C,), (id, 0c, 04, b), L)

4 R—10

5: if b is of the form (ASSUME, F' e., e,) or (ASSERT, F e., ¢,) then
6 for all (oid, name) € RELEVANT(C., Cy, F, 0., 04, €c, €,) dO

7 R — RU{(l, oid, name)}

8

9

else

. # b is of the form (IMPL), (DEFER), or
10: # (RECV, sig,, sig,, (pL, ..., p2), (p,....p"))
11: 17— CHECK_TARGET_CORRESPONDENCE(T, Oc, Og, id)
12: # step; = <<Céa Cé% <i’ 027 Ofw gZ>a é:—i-/l>
13: # b; = (SEND, F}, sig’, sigh, (e}, ..., e™), (e}, ... em), tqgti, tgti)
14: for all (0id, name) € RELEVANT(C?, C! F}, 0, 0, tgt’, tgt!) do
15: R — R U {(i, oid, name) }
16: return R

Figure 5.10: Algorithm for calculating initial relevant locations. The algorithm takes
an analysis trace 1" as argument and returns a set of relevant locations R containing
the initial relevant locations.

action with non-corresponding targets.

5.2.1.3 Algorithm for Finding Initial Relevant Locations

The algorithm in Figure 5.10 is used for finding initial relevant locations for an analysis
trace. It takes an analysis trace as an argument and returns a set containing the initial
relevant locations. Actions ASSUME and ASSERT are handled in lines 5-7. Condition
expressions (the concrete and the corresponding abstract) in these actions are searched
for initial relevant locations by a call to the function RELEVANT which searches for
initial relevant locations heuristically from the expressions given.

Example 5.5. In the analysis trace introduced in Example 5.1, the initial relevant
locations are searched from the concrete expression ((var?) < (var®)) and the corre-
sponding abstract expression ({varS) < (wvar®)). The set of initial relevant locations
found from the expressions is {(4, id(o.), name(var3))}. [|

Actions IMPL, DEFER, and RECV are handled in lines 8-15. The first send ac-
tion that sends a message to a target object either in the concrete model or in
the abstract model but not in the other model is found by a call to the function
CHECK _TARGET CORRESPONDENCE. After the sequence number 7 of such an ac-
tion is found, the target expressions in the send action in the ith step is searched for
initial relevant locations using function the RELEVANT.

44

5.2.2 Propagation of Relevant Locations

After a set of initial relevant locations has been found, we propagate relevant locations
to other points in the analysis trace. The idea is to traverse through the analysis trace
backwards and to follow where the values of the relevant locations come from. After
this data flow analysis is done, we have found relevant locations for every step in the
trace.

Example 5.6. After the initial relevant locations {(4, id(o.), name(var?))} in Exam-
ple 5.1 are found, the relevant locations are propagated to other points in the trace.
Relevant locations concerning C2 and C? are propagated from the relevant locations
concerning C and C?. Because the assignment action in the third step in the trace
does not modify values in relevant locations concerning C* and C%, the same locations
are relevant before the execution of the assignment action. Thus the set of relevant
locations is augmented with (3, id(o.), name(var?)).

The second action on the other hand assigns a value to var) in o. in the con-
crete model and to varS in o, in the abstract model. These locations were relevant
but because the action modifies the values in these locations the value before the
action is not relevant and thus we do not augment the set of relevant locations with
tuple (2, 1d(o.), name(var?)). Instead we find what locations are used in the cal-
culation of the values assigned to these locations. In the concrete model values in
locations (0., var®) and (o., var?) are used and in the abstract model values in loca-
tions (o,, var3) and (o4, var?) are used. The set of relevant variables is augmented
with (2,id(o.), name(var?)) and (2, id(o.), name(var?)).

Similarly the first action assigns values to relevant locations in C? and C? and thus
the concrete and abstract expressions for calculating the values assigned are searched
for new relevant locations. The set of relevant locations is augmented with entries
(1,14d(o.), name(varl)), (1,id(o.), name(var?)), and (1, id(o.), name(var3)). It should
be noted that (1, id(o.), name(var?)) would be in the set of relevant locations even if
the locations (0., var?) or {o,, var3) are not be used in the expressions evaluating the

values to be assigned in the action. [|

5

In the case where a message is sent to non-corresponding objects between the
concrete and the abstract model, the initial relevant locations are not related to the
global configurations before the last action in the trace. From the propagation’s point
of view this is not important, the propagation works in the same way as in the situation
where the initial relevant locations are related to the global configurations before the
execution of the last action in the trace.

The propagation of the relevant locations differs from traditional data flow analysis
as in the traditional data flow analysis all the variables used in the calculation of the
value of an important variable are collected but in the propagation of the relevant
locations all the locations are not necessarily collected but instead only the locations
that contribute to the search for the abstraction refinement.

5.2.2.1 Algorithm for the Propagation of Relevant Locations

The algorithm presented in Figure 5.11 is used for the propagation of the relevant
locations. It takes an analysis trace 7" and a set of initial relevant locations R as argu-

45

1: function PROPAGATE_RELEVANT_LOCATIONS(T, R)

2 # T is of the form (step,,. .., step,)

3 forvr=n—-1to 1do o

4: # step, is of the form ((C., C,), (i, 0., 04,0),C")

5: for all (id',z,y) € R:id =i+ 1do R+ RU{{(i,x,y)}

6 if b is of the form (ASSIGN, F, lhs., Ihsy, Ths., Ths,) then

7 (oL, varl) «— resolve(C,, o, lhs.)

8 (o), var!) < resolve(Cly, 04, lhs,)

9 if (i+1,4d(0)), name(var.)) € RV (i+1,id(0),), name(var,,)) € R then

10 if o/ ~ 0/ then

11: R «— R\ {(i,1id(0.), name(var’))}

12: for all (oid, name) € REF(C,, C,, F, 0., 04, Ths., rhs,) do
13: R «— RU{(i, oid, name)}

14: else

15: (0id, name) < SAFE_RESOLVE(C., Cy, 0., 04, lhs., lhs,)
16: R «— R\ (i,1d(0.), name(var’))

17: R «— R\ (i,1d(0)), name(var))

18: R — RU{(i, 0id, name)}

19: if b is of the form (RECV, sig,, sig,, (p,...,p™), (pL,....p™)) then
20: if 31 <j<m:{i+1,id(o.), name(pl)) € R then

21: # InputQueue(Ce, 0.) = ((idmsg,, Sige, Vg, -, U, ..

22: id «— CHECK_TARGET_CORRESPONDENCE(T, Oc, Oq, 1)

23: if id # —1 then

24: R0 o

25: # step,, is of the form ((C!,C"), (id, 0., 0., b"),C")

26: # U is of the form (SEND, F, sig., sig.., E', E', tgt., tqt’)
27 for all (oid, name) € RELEVANT(C?, C!, ', ol, 0, tgt., tgt’) do
28: R — RU{{(id, oid, name)}

29: return PROPAGATE _RELEVANT _LOCATIONS(T', R)

30: for =1 to mdo

31: if (i +1,4d(o.), name(p’)) € R then

32: R «— R\ {{i,id(o.), name(p’)) }

33: R — RU{(i,idpsg,.7)}

34: if b is of the form (SEND, F, sig.., $ig,, Ee., Eq, tgt., tgt,) then

35: # E. is of the form (e! ... e™) and E, is of the form (e}, ... e™)
36: for j =1 to m do

37: # messages sent from this point have the message id ¢

38: if (i+1,4,j) € R then

39: R — R\{(i,1,5)}

40: for all (oid, name) € REF(C., Cy, F, 0., 04, €2, ¢)) do

41: R — RU{(i, oid, name) }

42: return R

Figure 5.11: Algorithm for propagating relevant locations.

46

ments. The algorithm traverses through the analysis trace backwards and propagates
relevant locations from the step visited earlier by the algorithm.

First we copy all relevant locations from the succeeding step. A set of locations
obtained this way is then modified depending on the type of the action in the current
step.

If the action is of the type ASSIGN, we modify the set of relevant locations only if the
assignment modifies a value in one of the relevant locations. If a value in a relevant
location is modified the first thing is to check that the location the assignment is
modifying is the same one in both models. If it is, the location modified is not relevant
earlier in the trace because the location does not get its value until the current step.
On the other hand, locations used for the calculation of the values assigned (found
by a call to a function REF described later) are relevant and thus added to the set
of relevant locations (the location to which the value is assigned might be used in
the calculation of the value in which case that location is relevant also earlier in the
trace). This is done in lines 10-13 in the algorithm.

If the locations modified differ between the concrete and the abstract model, then
the values assigned are irrelevant. This is because we have no reason to expect that
the locations where the value is assigned only in one model but not in the other
should have corresponding values. For the same reason there is no point in being
interested about the values of the locations before the current step. Thus the locations
are removed from the set of relevant locations. Instead we turn our attention to the
expressions defining the locations modified. The reason why the assignment is done to
non-corresponding locations is found from these expressions. We use SAFE_RESOLVE
to get a location where the determination of the target location of the assignment
takes differing paths between the concrete and the abstract models. We add this
location to the set of relevant locations because the non-corresponding values in the
concrete and in the abstract model affect the values affecting the occurrence of the
spurious counterexample.

It could be argued that the locations modified only in either of the concrete and
abstract models should not be relevant after the assignment. This would lead to
the question of relevance of the locations whose values were calculated using values
in locations modified only in one of the models. Because later (Section 5.3) we are
interested only in the first relevant location having non-corresponding values, we shall
not modify relevant locations later in the trace.

If the action is of the type RECV, we modify the set of relevant locations only
if one of the assignments done in the process of receiving a message modifies the
value of a location belonging to the set of relevant locations. Because the locations
where values are assigned in RECV actions are always local, i.e. the assignment can
be made without dereferences, the assignments are always done to corresponding
locations. If there are such assignments, we first make sure that the messages re-
ceived are the corresponding ones. This is done by checking that all message send-
ing actions up to this point send a message either to both objects, the concrete
and the abstract, of this action or neither of them. For this check the function
CHECK _TARGET _CORRESPONDENCE is used. If it finds a place where a message is
sent to only one of the objects of this action, then we start over the search for rel-
evant locations by calling PROPAGATE RELEVANT _LOCATIONS with a set of initial

47

relevant locations found from the target expression of the send action pointed out
by function CHECK TARGET _CORRESPONDENCE. The idea behind restarting is to
help the search for a refinement focus on the locations which cause the target expres-
sions to evaluate non-correspondingly and thus try to force the send action to send
messages to corresponding objects after refinement. Message queue comparison and
the possible restarting of the search for relevant locations are done in lines 23-29 in
the algorithm. Making sure that the message queue histories of the message receiving
objects correspond in both models might very well be too cautious. This topic is
discussed further in Section 7.1.

When we have ensured that the input queue histories correspond (up to the po-
sition at which the message is received) in the objects of the action, we remove the
relevant locations modified in the message receiving action from the set of relevant
locations and for every relevant location assigned we add the corresponding message
parameter to the set of relevant locations. This is done in lines 30-33 in the algorithm.

If the action is of the type SEND, we check whether there are relevant message
parameters in the message the action sends. For each relevant message parameter we
remove that message parameter from the set of relevant locations (after all, before
the execution of the send action there is no such message) and add all the locations
used in the calculation of the parameter to the set of relevant locations. This is done
in lines 34-41 in the algorithm.

The algorithm returns a set of relevant locations in the trace.

5.2.2.2 Finding Locations Used in Expression Evaluation

The function REF described in Figure 5.12 is used for finding locations used in the
evaluation of a pair of corresponding expressions. It takes a concrete and an abstract
configuration, a function for solving non-deterministic choices in the abstract evalua-
tion, corresponding objects for the concrete and the abstract model, and correspond-
ing expressions as arguments. The algorithm returns a set of locations containing one
location per a pair of corresponding NAME kind of subexpressions appearing in the
pair of corresponding expressions given to the algorithm. The location for a pair of
NAME kind of expressions is got using the function SAFE_RESOLVE.

If the expressions are of the type LIT or NAME, function COLLECT LOCATIONS
is used to determine the set of locations returned. If the expressions are of the type
COND, we call REF recursively for the subexpressions that are evaluated, either in the
concrete or in the abstract model. Short-circuit evaluation used in the evaluation of
COND expressions in Jumbala is taken into account when deciding which subexpres-
sions are searched for the locations. If the expressions are of the type INFIX, both
subexpression pairs are searched for locations, recursively. If the expressions are of the
type UNARY, the only subexpression pair is searched for locations. If the expressions
are of the type TCOND, we search for the locations from the condition expressions
and depending on the values of the condition expressions from the expressions used
for determining the values.

The algorithm used for the search of locations used in the evaluation of a pair of
corresponding expressions is relatively simple for the reason that we did not want to
make things too complex in the development of the algorithm for propagating relevant

48

locations. One point for optimization might be the handling of ternary conditional
expressions. In the case of condition expressions evaluating non-correspondingly be-
tween the concrete and the abstract model it could be reasonable to add just the
locations used for the evaluation of the condition expressions to the set of relevant
locations.

49

1. function REF(C., Cy, F, 0., 04, €c, €4)
2 if kind(e.) € {LIT, NAME} then
3 return COLLECT _LOCATIONS(C., Cy, 0¢, 04, €¢, €4)
4: if kind(e.) = COND then

5: # subexpr(e.) = (el,e?) and subexpr(e,) = (el,e?)
6 if operator(e.) = && then

7 if eval(C., F, o0, el) = false A eval(C,, F, 0,, €
8

9

a

) = false then
return REF(C,, C,, F, 0., 0,4, ¢!, ¢l)

crra

: else
10 return REF(C,, Cy, F, 0., 04, ¢, el) UREF(C,, Cy, F, 0., 04, €2, €2)
11: else if operator(e.) = || then
12: if eval(C,, F, 0., el) = true A eval(C,, F, 04, €l) = true then
13: return REF(C,, Cy, F, 0., 04, ¢!, €l)
14: else
15: return REF(C., C,, F, 0., 04, ¢!, el) UREF(C,, C,, F, 0., 04, €%, €2)
16: if kind(e.) = INFIX then
17: # subexpr(e.) = (e!, e?) and subexpr(e,) = (e}, e?)
18: return REF(C., C,, F, 0., 04, €}, e}) UREF(C,, Cy, F, 0, 04, €2, €2)
19: if kind(e.) = UNARY then
20: # subexpr(e.) = (e!) and subexpr(e,) = (el)
21: return REF(C., C,, F,0.,0,, €}, el)
22: if kind(e.) = TCOND then
23: # subexpr(e.) = (el, e? e3) and subexpr(e,) = (el €2, e3)
24: result < REF(C,, Cy, F, 0, 04, €}, €l)
25: if eval(C,, F, 0., el) = true V eval(C,, F, 04, €l) = true then
26: result « result U REF(C., C,, F, 0., 04, €2, ¢€2)
27: if eval(C,, F, 0., el) = false V eval(C,, F, 04, €l) = false then
28: result « result U REF(C., C,, F, 0., 04, €3, ¢3)
29: return result

Figure 5.12: Algorithm for finding locations used in the evaluation of a pair of corre-
sponding expressions.

50

5.3 Refining Interval Abstractions

In interval abstractions every abstract type used in the abstract model divides the
domain of int into integer intervals. For example 32-bit signed integers could be
divided to intervals [—23', —5], [—4,1], (2, 2], [3,2%" — 1]. The evaluation of an interval
abstracted expression can result in any interval containing an integer resulting from
an evaluation of the corresponding non-abstracted expression with some combination
of integers in the abstracted operands’ intervals as the operands of the non-abstracted
expression. For example [2,2] + [—4,1] = z, where = € {[—4,1],[2,2], 3,23 — 1]}.
Interval abstractions can be intuitively refined by splitting the intervals. For example,
(=231 —5],[—4,1],[2, 2], [3,2%" — 1] can be refined by splitting the interval 3,23 — 1]
into three new intervals [3, 5], [6,12], and [13,2%" — 1] producing a new set of intervals
(=231 —5], [—4,1],[2,2],[3,5], [6,12],[13,23! — 1]. We describe a process for finding
a suitable refinement automatically when using interval abstractions. This makes
possible a fully automatic model checking procedure with interval abstractions.

After an abstract counterexample has been identified as a spurious one, an analysis
trace representing the counterexample is formed. The idea is to calculate relevant
locations in the counterexample using the algorithms described in Section 5.2. After
the relevant locations have been determined, we find the first point in the trace where
the value of a relevant location in the concrete model does not correspond to the
value in the abstract model. Because the definition of an abstract model ensures
that initially values in all locations have corresponding values between the concrete
and the abstract model, we have an action in the trace that has produced the non-
correspondence between the values in the concrete and abstract model. Hence after
we have found the first point with non-corresponding values in the relevant locations,
we search for the action that caused the locations to have non-corresponding values.
This action has to be the action executed just before the point where the relevant
location with non-corresponding values has been found. Otherwise the values in this
location would have been non-corresponding earlier in the trace.

The expressions determining the values assigned to the relevant location in the
action are analyzed much in the same fashion as are the expressions analyzed when
searching for the set of initial relevant locations. The idea is to search for a set of
locations and a set of values from the pair of corresponding expressions to guide the
refinement process. Variables in the classes corresponding to the set of locations found
are refined in such a way that for every variable having an abstract type, a new type is
created. The domain of the new type is the domain of the old type with all the integer
values found in the expression analysis separated to distinct intervals. For example if
a concrete variable var, with int domain was abstracted to a corresponding variable
var, with domain containing intervals [—23', —5], [—4, 1],[2, 2], [3, 2*' —1] and our anal-
ysis has found that the type of var, needs to be refined with value —13, then the do-
main of the new type for var, is [-23', —14], [-13, —13],[-12, =5][—4, 1], [2,2], [3, 231 —
1]. With this refinement we try to make the expression equivalent to the expression
causing the first non-corresponding values in the relevant locations to evaluate corre-
spondingly in the abstract model generated with the refined abstraction.

ol

1: function FIND REFINEMENT(M,, M,, T, R)

2: # M. is of the form (Cini., D, Classes., O., Locations., SysSigs.., ExtSigs)
3 # M, is of the form (Cinita, D, Classes,, O, Locations,, SysSigs,, ExtSigs)
4: # T is of the form (stepy, ..., step,)

5: for:=1ton—1do _

6 # step, is of the form ((C., C,), (i, 0c, 04,), (C~ C'))

7 if b is of the form (ASSIGN, F lhs., lhs,, Ths., rhs,) then

8 (oL, varl) «— resolve(C., o, lhs.)

9 if (1 + 1,4d(0.), name(var.)) € R then

10: if EVAL _CORR(C., C!, F, 0., 04, lhs, lhs,) = false then
11: return REF__EXPR(C,, Cy, F, 0., 04, Ths., Ths,)

12: if b is of the form (SEND, F sig,, sig,, E., Eq4, tgt,, tgt,) then
13: # E. is of the form (el,... e™)

14: # E, is of the form (e}, ... e™)

15: if 3(i,z,y) € RAP(i+1,z,w) € R then

16: return REF_EXPR(C., Cy, F), 0., 04, tgt,, tgt,)

17: for j =1 tomdo

18: if (i+1,4,j) € R then

19: if EVAL _CORR(C., Cy, F, 0., 04, €., ¢)) = false then
20: return REF__EXPR(C,, C,, F, 0., 04, €}, €J)

21: # step,, is of the form ((C., C,), (i, o, oa,a, 5”)

22: # b is of the form (ASSUME, F, e,, e,) or (ASSERT, F, ., €,)

23: return REF_EXPR(C., Cy, F, 0., 04, €c, €4)

Figure 5.13: Algorithm for finding expressions where the refinements are searched for.

5.3.1 Finding Expressions for Analysis

The algorithm shown in Figure 5.13 determines a pair of corresponding expressions
from where a suitable refinement is searched for. After the expression pair has been
found, the refinement calculated by the function REF EXPR (described in Section
5.3.2) is returned.

The algorithm takes a concrete model, an abstract model corresponding to the
concrete model, an analysis trace, and a set of relevant locations in the trace as
arguments. We iterate through the steps in the analysis trace. For each step we check
whether the action in the step produced non-corresponding values to the relevant
locations. Only ASSIGN and SEND actions need to be checked because RECV action
assigns message parameters with a type coercible to the type of the variable the value
is assigned to. Thus, if the value of an abstract message parameter corresponds to the
value of the corresponding concrete message parameter, then the value of the variable
where the value of the message parameter is assigned to corresponds to the value of
the corresponding concrete variable after the assignment.

If the action is of the type ASSIGN, and the location where the assignment assigns
a value is relevant after the assignment, but the value in the location in the abstract

52

model does not correspond to the value in the concrete model after the assignment,
we search for a refinement from the right-hand side expressions. In the algorithm this
is done in lines 7-11.

If the action is of the type SEND, and there are relevant locations before the send
action but not after, we have searched for the initial relevant locations from the target
expressions of the send action. In this situation we search for the refinement from the
target expressions in the action. This case is handled in lines 15-16 in the algorithm.

If the target expressions of the action were not searched for initial relevant loca-
tions, we check whether each relevant abstract message parameter corresponds to the
concrete one. The pair of expressions evaluating the first pair of message parameters
with non-corresponding values is searched for the refinement. In the algorithm this is
done in lines 17-20.

If an expression to be searched for refinement has not been found before the last
step in the trace, we have a situation where the type of the last step in the trace
is either ASSUME or ASSERT and all the relevant locations in the trace have had
corresponding values. In this case we search the condition expressions in the action
for refinement. In the algorithm this is done in line 23.

5.3.2 Analysis of Expressions for Refinement

When the expressions to be searched for abstraction refinement are found, the func-
tion REF__EXPR described in Figure 5.14 is used for the search for refinement. The
function traverses the expression trees and focuses to subexpressions evaluating non-
correspondingly. When no pair of corresponding subexpressions can be chosen over
the other or all the subexpression pairs evaluate correspondingly, we collect all the
locations with an abstract type appearing in the expressions to a set of locations to be
refined® and evaluate values of the subexpressions of the current concrete expression
and collect all integer values from those to form a set of values guiding the refinement.

Example 5.7. In the example abstract model introduced in Example 3.1 (analy-
sis trace matching the counterexample was described in Example 5.1), the abstract
type Sign = {NEG, ZERO, POS} is an interval abstraction. The value NEG represents the
interval [—231, —1], the value ZERO represents the interval [0, 0], and the value POS rep-
resents the interval [1, 23 —1]. In the analysis trace of the model (introduced in Section
5.2) the first point with non-corresponding relevant locations is after the execution of
the first action. Because the first action is an assignment, the refinement is searched
from the expressions defining the assigned values. In this case the expressions are
((warl) + (var?)) - (var?)) and ((varl) + (var?)) - (var3)). The first subex-
pressions e. = ({var!) + (var?)) and e, = ((varl) + (var?)) evaluate as —1 and
POS, respectively, in the trace. The second subexpressions (var?) and (var3) evaluate
as b and POS, respectively. So, the first subexpressions evaluate non-correspondingly
and the second subexpressions evaluate correspondingly. Thus the first subexpressions

are searched further for the refinement.

3 As stated earlier, the actual type of the locations is not refined but the type of the variable in a
class defining the type of the location.

53

1. function REF EXPR(C,, Cy, F, 0, 04, €, €4)

2 if kind(e.) € {LIT, NAME} then

3 return (COLLECT _INT_LOCS(C., F, o, €.), VALUES(C., F’, 0., €.))
4 if kind(e.) = COND then

5: # subexpr(e.) = (el, e?) and subexpr(e,) = (el,e2)

6 if EVAL_CORR(C,, C,, F, 0., 04, €}, el) = false then

7 return REF_EXPR(C., C,, F, 0., 0,, €}, el)

8 else

9: return REF_EXPR(C., C,, F, 0., 0,, €2, €2)

10: if kind(e.) = INFIX then

11: # subexpr(e.) = (el, e?) and subexpr(e,) = (el,e2)

12: ¢1 < EVAL _CORR(C,, Cy, F, 0,04, €L, €l)

13: ¢y « EVAL_CORR(C,, Cy, F, 0., 04, €2, €2)

14: if ¢; = ¢5 then

15: return (COLLECT _INT_LOCS(C., F, o, €.), VALUES(C., F’, 0, €.))
16: else

17: if ¢; = false then

18: return REF_EXPR(C., C,, F, 0., 04, ¢!, ¢})

19: if ¢y = false then

20: return REF _EXPR(C., C,, F, 0, 04, €2, €2)

21: if kind(e.) = UNARY then

22: # subexpr(e.) = (el) and subexpr(e,) = (el)

23: if EVAL_CORR(C,, C,, F, 0., 04, €}, el) then

24: return (COLLECT _INT_LOCS(C., F, o, €.), VALUES(C., F’, 0, €.))
25: else

26: return REF_EXPR(C., C,, F, 0., 0,4, €}, el)

27: if kind(e.) = TCOND then

28: # subexpr(e.) = (el, €2 e3) and subexpr(e,) = (el €2, e3)
29: ¢1 < EVAL_CORR(C,, Cy, F, 00,04, ¢, €l)

30: if ¢; = false then

31: return REF_EXPR(C., C,, F, 0., 0,, €}, el)

32: else

33: if eval(C., F, 0., €!) = true then

34: return REF_EXPR(C., C,, F, 0., 04, €2, €2)

35: else

36: return REF_EXPR(C., C,, F, 0., 04, €2, €3)

Figure 5.14: Algorithm for finding a concrete subexpression guiding the refinement.

Because the subexpressions of the expressions e. and e, evaluate correspondingly,
the locations and values guiding the refinement is searched from the expressions e. and
ea. The set of locations is {(o., varl), (o., var?)} and the set of values is {—2,—1,1}.
The type of the variables var! and var? is Sign. After the refinement the type of
the variables ﬁd?clb and Wi corresponding to the concrete variables var! and var?

54

is representing the intervals [—2%', —3], [-2, —2], -1, —1],[0,0],[1,1],[2,2%! — 1]. In
the abstract model, constructed with the refined abstraction, all the properties hold
indicating the properties hold also in the concrete model. [|

5.3.2.1 Algorithm for Analysis of Expressions

The heuristic behind the subexpression analysis is that we assume that the non-
correspondingly evaluating abstract subexpression causes the abstract expression to
evaluate non-correspondingly. This assumption does not necessarily hold and there-
fore in the refined abstraction the same action can cause the first non-corresponding
values in a relevant location. Our approach still forces the abstract expression to even-
tually evaluate correspondingly (if the concrete data types are finite and the engine
generating abstract models does not over-approximate in places where it is not nec-
essary) because every refinement cycle refines the abstraction resulting in the end an
abstraction where every abstract value corresponds to a single integer value. At this
point the concrete and the abstract model are in practice the same model and there
is no extra behavior in the abstract model to produce spurious counterexamples. Our
approach still aims to refine the model enough so that the spurious counterexample
is removed from the abstract model but not too much to avoid state space explosion,
the very problem abstractions try to solve.

The function REF__EXPR takes a concrete and an abstract configuration, a func-
tion F' for solving non-determinism in the evaluation, a concrete and an abstract
object, and a concrete and an abstract expression as arguments.

If the expressions are of the kind LIT or NAME, we collect locations and all integer
subexpression values for refinement from the concrete expression.

If the expressions are of the kind COND, the first non-correspondingly evaluating
subexpression pair is searched recursively for refinement. If the first pair of subex-
pressions does not evaluate correspondingly, the other pair of subexpressions (even
though it might evaluate non-correspondingly as well) is not searched for refinement
because it is evaluated only either in the concrete or in the abstract model but not in
the other due to Jumbala’s short-circuit evaluation semantics.

If the expressions are of the kind INFIX, we check whether the subexpression pairs
evaluate correspondingly. If exactly one of the subexpression pairs evaluate non-
correspondingly, the refinement is searched from that pair recursively. Otherwise we
collect locations and all integer subexpression values for refinement from the entire
concrete INFIX expression.

If the expressions are of the kind UNARY, we search for a refinement recursively
from the subexpressions if the subexpressions evaluate non-correspondingly. Oth-
erwise all locations and all integer subexpression values from the concrete UNARY
expression are collected for refinement.

When the expressions are of the kind TCOND, the condition expressions are first
checked for corresponding values. If they evaluate to non-corresponding values, the
condition subexpressions are searched for the refinement recursively. Otherwise subex-
pressions evaluating the actual value of the current expressions are searched recursively
for refinement.

The actual generation of a refined abstract model is not described here. It has to be

%)

in accordance with the restrictions relating to abstract models described in Section 3.2.
Thus, assigning a refined type to a variable affects the types of expressions and may
affect the types of other variables.

For completeness, Figure 5.15 describes the function COLLECT INT LOCS used
for finding locations with type int and Figure 5.16 describes the function VALUES
used for the evaluation of all int type subexpressions (except the subexpressions not
evaluated because of the short-circuit evaluation).

56

1: function COLLECT INT_LOCS(C, F,0,¢)

2 if kind(e) = NAME then

3 # e is of the form (NAME, id, d, (vary, ..., vary,))

4 if d = int then

5: return {resolve(C,o0,¢) }

6 else

7 return ()

8 else if kind(e) = LIT then

9: return ()

10: else if kind(e) = COND then

11: # subexpr(e) = (e, €2)

12: if operator(e) = && then

13: if eval(C, F,o0,e;) = false then

14: return COLLECT INT_LOCS(C, F,o0,e1)

15: else

16: return J;(, 5y COLLECT_INT_LOCS(C, F) 0, ¢;)
17: else if operator(e) = || then

18: if eval(C, F,o0,e,) = true then

19: return COLLECT INT_LOCS(C, F, 0, ¢;)
20: else
21: return (J,c(, 5y COLLECT _INT_LOCS(C, F) 0, €;)
22: else if kind(e) = TCOND then
23: # subexpr(e) = (eq, €2, €3)
24: if eval(C, F,0,e1) = true then
25: return (J,.(, 5y COLLECT _INT_LOCS(C, F) 0, €;)
26: else
27 return (J,c(, 5y COLLECT _INT_LOCS(C, F) 0, €;)
28: else
29: # subexpr(e) is of the form (eq, ..., e,)
30: return (J;c(; 5 COLLECT _INT_LOCS(C, F)0,¢;)

Figure 5.15: Algorithm for finding all the locations in the expression with a type int.

57

1: function VALUES(C, F) 0, €)

2 if kind(e) € {LIT, NAME} then

3 if type(e) = int then

4: return {eval(C, F,0,¢)}

5: else

6 return ()

7 if kind(e) = COND then

8 # subexpr(e) = (e, €2)

9: if operator(e) = && then

10: if eval(C, F,o0,e;) = false then

11: return VALUES(C, F, 0, e1)

12: else

13: return VALUES(C, F, 0, e;) U VALUES(C, F 0, e3)
14: else if operator(e) = || then

15: if eval(C, F,o0,e,) = true then

16: return VALUES(C, F) 0, 1)

17: else

18: return VALUES(C, F, 0,e1) U VALUES(C, F, 0, e3)
19: if kind(e) = INFIX then

20: # subexpr(e) = (eq, es)

21: if type(e) = int then

22: return {eval(C, F,0,e)} U VALUES(C, F', 0,e1) U VALUES(C, F, 0, e5)
23: else

24: return VALUES(C, F',0,e1) U VALUES(C, F’, 0, €3)
25: if kind(e) = UNARY then

26: # subexpr(e) = (e1)

27 if type(e) = int then

28: return {eval(C, F,0,e)} UVALUES(C, F, 0, e)
29: else
30: return VALUES(C, F, 0, e1)
31: if kind(e) = TCOND then
32: # subexpr(e) = (eq, e, e3)
33: if eval(C, F,0,e1) = true then
34: return VALUES(C, F',0,e1) U VALUES(C, F’, 0, €3)
35: else
36: return VALUES(C, F, 0,e1) U VALUES(C, F 0, e3)

Figure 5.16: Algorithm for evaluating all int type subexpressions of the expression
given. A set of int subexpression values is returned.

58

Chapter 6

Implementation

The techniques described in this thesis have been implemented as part of the Symbolic
Methods for UML Behavioural Diagrams (SMUML) project (see http://www.tcs.
hut .fi/Research/Logic/SMUML.shtml) in the Laboratory for Theoretical Computer
Science at Helsinki University of Technology. The purpose of the SMUML project
was to develop new techniques for analysis of dynamic behavior of models described
in UML. In the SMUML project the version 1.4 of UML was used. The reason for
the use of this particular version is that the SMUML toolkit is built upon the meta-
modelling toolkit Coral [3], developed at Abo Akademi, and UML 1.4 was the latest
UML version supported by Coral.

6.1 SMUML Toolkit

The tools developed in the SMUML project form the SMUML toolkit. The UML
models supported in the SMUML toolkit describe a set of objects (instantiated from
classes) communicating asynchronously via message passing and shared variables.
The action language Jumbala 18] is used for representation of guards and effects of
transitions.

With the symbolic model checker NuSMV [9] or a Satisfiability Modulo Theories
(SMT, see e.g. [17, 31, 7]) solver, the tools in the SMUML toolkit offer a bounded
model checking [6] procedure with automatically refined data abstractions. The ab-
sence of assertion failures or implicit message consumptions are the properties sup-
ported with the model checking procedure with abstractions.

The abstract model generation |34| is done by rewriting expressions in the model
so that abstract types and abstract operations are encoded as integers and operations
between integers. Other tools have also used similar approach [26, 24, 28]. The
abstract models produced in this way can be model checked and simulated by the
tools used in the model checking and simulation of the concrete models except that the
tools have to additionally handle the non-determinism introduced by the abstraction.

The generated abstract model can be encoded [20, 21, 22| to a format understood
by NuSMV, then model checked with NuSMV, and finally the result got from NuSMV is
interpreted. The result can either be that the properties hold in the model or that we
get an abstract counterexample demonstrating a property violation in the abstract

59

model. Alternatively the abstract model can be model checked with a bounded model
checker |19] using an external SMT solver (for example [23, 5, 16]) as a back-end.

The counterexample analysis (including feasibility analysis) are implemented into
a counterexample analyzer canal [32]. The analyzer takes the concrete UML model,
the corresponding abstract UML model, and the counterexample trace as an input and
either states that the counterexample is feasible, or in the case of spurious counterex-
ample, returns a set of variables and values as a recommendation for the refinement.
If the counterexample is a spurious one, a new abstract model is generated based
on the recommendation and the model checking is carried out again with the refined
model.

6.2 Counterexample Analyzer in SMUML Toolkit

The techniques described in this thesis have been implemented as a part of the coun-
terexample analyzer canal. The UML models supported by canal consist of objects
instantiated from classes whose behavior is represented with UML state machines.
Objects may communicate with each other by message passing or by shared variables.
The analyzer can handle only non-hierarchical UML models. This limitation was im-
posed to keep the implementation simple in order to make the development of new
algorithms easy. The SMUML toolset contains tools for converting hierarchical UML
models to non-hierarchical ones. The semantics used for the interpretation of UML
models are described in [21].

The analyzer supports the following UML and Jumbala features: We support UML
state machines that have only one UML composite state, otherwise composite states
are forbidden. UML simple states, final states, and from UML pseudo states, initial
states and choice states are supported. Every other state type is forbidden. States
cannot have any internal behavior like entry, exit, or doActivities.

Only UML signal events are supported as triggers of transitions in UML state
machines. The UML models have to have primitive components describing “int” and
“bool” data types as these are Jumbala’s primitive data types. Reference types are
modelled using UML associations. Arrays are not supported.

6.3 Conversion from UML 1.4

The conversion from UML 1.4 models supported by canal to a model notion used
in this thesis is fairly straightforward. The actual model checking still have to be
done with the UML model because the transition relation of the model notion used
in this thesis allows more transitions to be taken than the corresponding UML model.
Even though all the execution paths in our model definition cannot be taken in the
corresponding UML model, all the executions possible in the UML model are possible
in the model converted from the UML model to our notion for a model. After the
model checking is done, the concrete and the abstract UML model as well as the
counterexample can be converted to the model notion of this thesis and the algorithms
introduced in this thesis can be used to the converted models and the converted
counterexample.

60

Informally, the mapping from a UML model to a model notion of this thesis is
the following: For every UML class and object there is a corresponding class and
object, respectively. Type “int” and “bool” class attributes have corresponding int
and boolean type variables in the class corresponding to the UML class. UML as-
sociations are converted to variables of type reference in the class. The UML state
machine of a class is converted to a corresponding state machine so that all states in
the UML state machine have a corresponding state in the model, and the initial state
is the initial state of the UML state machine. UML signal events deferrable in the
states are converted to a defers function of the state machine. The flush set of the
state machine contains all states whose UML counterparts are simple states. This set
models the states where deferred messages are moved back to the input queue. For
every UML transition there is a corresponding transition with a trigger corresponding
to the UML trigger of the UML transition receiving messages of a corresponding sig-
nal and assigning values to corresponding variables. The guard of the transition is the
same expression converted to use the variables of the model instead of the ones in the
UML model. Jumbala statements in the effect of the UML transition are converted
to corresponding actions in the new transition. UML signals are converted to corre-

sponding signals. Finally the initial configuration matching the initial configuration
of the UML model is formed.

61

Chapter 7

Conclusion

In this thesis we have discussed the analysis of abstract counterexamples in the model
checking process with data abstractions. The notation and semantics of models used
in describing the methods introduced in this thesis were described in Chapter 2.

In Chapter 3 we described how abstractions were utilized in model checking in
the SMUML project. We also defined the relationship between the data abstracted
model and the original model. A check whether an abstract counterexample has a
corresponding execution in the concrete model, feasibility analysis using a stepwise
simulation of events in a counterexample, was described in Chapter 4. A similar
approach is used in Bandera [33].

We have introduced a method to calculate relevant locations at different points
of a spurious counterexample trace (Section 5.2). The calculation starts by searching
initial relevant locations from one point of the trace. After the initial relevant locations
are found, relevant locations are propagated to other points of the trace using data
flow analysis shaped for this purpose. The propagation might be restarted with new
initial relevant variables if the input queues of objects are not corresponding.

Before this thesis automatic abstraction refinement was done only with BDD-
based 10| and predicate abstractions [8]. Data abstraction papers only mentioned
that there is a need for refinement but did not describe how the refinement should
be done [33]. In Section 5.3 we introduced a method for determining a suitable
refinement automatically. It first searches the action whose evaluation in the abstract
model causes one of the relevant locations to contain non-corresponding values in the
concrete and the abstract model. The expression evaluating this value in the action is
analyzed with a heuristic algorithm which determines which of the variables appearing
in the expression need to be refined and how they should be refined.

Actual implementation of these techniques was done as part of the SMUML project
in the Laboratory for Theoretical Computer Science at Helsinki University of Technol-
ogy. This implementation, which works on UML state machine models, was described
in Chapter 6.

7.1 Future Work

In the future the techniques described in this thesis should be tested with real life
case studies to see how the techniques perform in practice. At this time the SMUML

62

toolkit does not offer a good platform for performance tests, even though the tech-
niques have been implemented to canal, because our implementation of abstractions
in the SMUML toolkit proved to be quite inefficient. In the SMUML toolkit the
abstractions were implemented by inlining the abstract types and operations using
Jumbala’s integer data type. This can lead, in the worst case, to an exponential in-
crease in the size of the expressions. The huge size of the expressions causes problems
to the Jumbala parser utilized in the counterexample analysis and possibly also to the
model checker. Since the Jumbala parser, being implemented in Python, is not very
efficient, the problem with the size of the expressions becomes emphasized.

We have also developed several ideas for improving the algorithms. First, when an
assignment is done to a relevant location in the message reception in concrete object o,
and in the corresponding abstract object o,, the current algorithm checks that all send
actions send a message either to the concrete object o. and the abstract object o, or
neither of them. This ensures that the queues are corresponding sequences of messages
in all points of the trace up to the point where the message received in the message
reception is sent. Furthermore this ensures that the messages received in the concrete
and in the abstract model are sent in the same point of the trace. It would also be
possible to use a weaker condition that allows the message queues of the concrete
and the abstract object to be non-corresponding so long as the concrete message and
the abstract message received (containing relevant locations) are the corresponding
ones. With this modification it is possible to get the spurious counterexample out
of the abstract model with less refined abstraction because the modifications may
allow some messages to be sent either to the concrete target object o. but not to
the corresponding abstract object or vice versa even if there is a send action sending
messages with relevant message parameters to the object o. and the corresponding
abstract object.

In the algorithm for propagating relevant locations we could more carefully analyze
the expressions assigning values to relevant locations. Instead of simply marking all
the locations containing values used in the evaluation of the expression as relevant,
we could analyze the expressions and mark only locations causing the expressions
to evaluate non-correspondingly as relevant locations. The analysis would be similar
to the expression analysis made in the search for initial relevant locations. It is
possible that with this improvement the spurious counterexample could be removed
with a smaller refinement but the details of the implementation and the effects of the
implementation are not yet thoroughly studied.

When a pair of corresponding expressions is searched for locations and values
to guide the refinement, we refine all the types of the locations with the same set
of values. Instead we could refine the type of each location in the expression tree
with values appearing in the path leading to the subexpression in which the location
appears. This is in line with the constraints relating to the types of subexpressions in
the model. This technique may produce more types with smaller domains compared
to the current algorithm. It is unclear and most likely also depends on the actual
implementation whether the modification actually improves the performance of the
model checking procedure. The main reason for the use of the simple method in this
thesis and in canal is that this way the construction of the abstract model is also
more simple.

63

The refinement does not necessarily remove the spurious counterexample from the
abstract model (Section 5.3.2). To ensure that the refined abstract model does not
contain the spurious counterexample, we could simulate all the executions matching
the counterexample’s transition sequence in the refined abstract model and if we this
way obtain a spurious counterexample (all the counterexamples found are bound to
be spurious because the concrete model did not contain a counterexample matching
the transition sequence), we would refine the abstraction again until we cannot find
spurious counterexamples matching the transition sequence.

Abstract loop counters are a general problem with abstractions and also our data
abstractions do not perform well with abstracted loop counters. This is because the
loop have to be unrolled exactly same number of times in the concrete and in the
abstract execution. However the extra behavior introduced by the abstraction can
allow the abstract model to “jump over” some of the unrollings. Though this is not
due the counterexample analysis, a more sophisticated way of handling loops would
benefit the whole model checking procedure.

64

Bibliography

1]
2|
13l

4]

5]

6]

17l

18]

19]

OMG unified modelling language specification, version 1.4. Object Management
Group, 2001.

UML 2.0 superstructure specification. Object Management Group, 2005.

Marcus Alanen and Ivan Porres. Coral: A metamodel kernel for transforma-
tion engines. In Proc. Second European Workshop on Model Driven Architecture
(MDA), number 17-04 in Tech. Report, pages 165-170. Computing Laboratory,
Univ. of Kent, 2004.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. ACM SIGPLAN Notices, 36(5):203-213, 2001.

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns,
editors, Proceedings of the 19" International Conference on Computer Aided
Verification (CAV ’07), volume 4590 of Lecture Notes in Computer Science, pages
298-302. Springer-Verlag, July 2007. Berlin, Germany.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In TACAS ’99: Proceedings of the 5th Inter-
national Conference on Tools and Algorithms for Construction and Analysis of
Systems, Lecture Notes in Computer Science, pages 193-207, London, UK, 1999.
Springer-Verlag.

Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Pe-
ter van Rossum, Stephan Schulz, and Roberto Sebastiani. MathSAT: Tight in-
tegration of SAT and mathematical decision procedures. Journal of Automated
Reasoning, 35(1-3):265-293, October 2005.

S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient
verification of sequential and concurrent C programs. Formal Methods in System
Design, 25(2-3):129-166, 2004.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking. In Proc. International Conference on Computer-Aided
Verification (CAV 2002), volume 2404 of LNCS, Copenhagen, Denmark, July
2002. Springer.

65

[10]

1]

[12]

[13]

[14]

[15]

[16]

17]

18]

[19]

20]

21

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided ab-
straction refinement for symbolic model checking. Journal of the ACM, 50(5):752—
794, 2003.

E. Clarke and R. Kurshan. Computer-aided verification. IEEE Spectrum,
33(6):61-67, 1996.

Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. The MIT
Press, 1999.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512-1542, 1994.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In
Proceedings of the 22nd International Conference on Software Engineering, pages
439-448. Association for Computing Machinery, 2000.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction and approximation of fixpoints. In
Proceedings of the jth ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL 1977), pages 238-252. Association for Comput-
ing Machinery, 1977.

Leonardo de Moura and Nikolaj Bjorner. Z3: An efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 4963 /2008
of Lecture Notes in Computer Science, pages 337-340. Springer Berlin / Heidel-
berg, 2008.

Leonardo de Moura, Bruno Dutertre, and Natarajan Shankar. A tutorial on
satisfiability modulo theories. In Computer Aided Verification, volume 4590 of
Lecture Notes in Computer Science, pages 20-36. Springer Berlin / Heidelberg,
2007.

Jori Dubrovin. Jumbala — an action language for UML state machines. Master’s
thesis, Helsinki University of Technology, Department of Engineering Physics and
Mathematics, 2006.

Jori Dubrovin. SMUML/Suboco 1.10 — an SMT-based UML bounded model
checker, 2007. Computer program in the SMUML Software Release 1.0.0, avail-
able at http://www.tcs.hut.fi/Research/Logic/SMUML.shtml.

Jori Dubrovin. SMUML/Uboco 1.10 — a translator from UML models to NuSMV
programs, 2007. Computer program in the SMUML Software Release 1.0.0, avail-
able at http://www.tcs.hut.fi/Research/Logic/SMUML.shtml.

Jori Dubrovin and Tommi Junttila. Symbolic model checking of hierarchical UML
state machines. In Jonathan Billington, Zhenhua Duan, and Maciej Koutny, ed-
itors, Proceedings of the 8th International Conference on Application of Concur-
rency to System Design (ACSD’08), pages 108-117, Xi’an, China, June 2008.
I[EEE Press.

66

22|

23]

24]

25]

26]

27]

28]

29]

[30]

31]

32]

Jori Dubrovin, Tommi Junttila, and Keijo Heljanko. Symbolic step encodings
for object based communicating state machines. In Gilles Barthe and Frank S.
de Boer, editors, Proceedings of the 10th IFIP International Conference on For-
mal Methods for Open Object-based Distributed Systems (FMOODS’08), volume
5051 of Lecture Notes in Computer Science, pages 96-112, Oslo, Norway, June
2008. Springer-Verlag.

Bruno Dutertre and Leonardo de Moura. System description: Yices 1.0, August
2006. SMT-COMP 2006 system description paper. http://www.csl.sri.com/
users/demoura/smt-comp/descriptions/yices-smtcomp06.pdf.

M. Gallardo, J. Martinez, P. Merino, and E. Pimentel. aSPIN: A tool for abstract
model checking. International Journal on Software Tools for Technology Transfer
(STTT), 5(2-3):165-184, 2004.

S. Graf and H. Saidi. Constructing abstract state graphs with PVS. In Proceed-
ings of the 9th International Conference on Computer Aided Verification (CAV

1997), volume 1254 of Lecture Notes in Computer Science, pages 72-83. Springer-
Verlag, 1997.

J. Hatcliff, M. B. Dwyer, C. S. Pasareanu, and Robby. Foundations of the Ban-
dera abstraction tools. In The Essence of Computation, Complexity, Analysis,
Transformation: Essays Dedicated to Neil D. Jones, volume 2566 of Lecture Notes
in Computer Science, pages 172—-203. Springer-Verlag, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification
with BLAST. In Proceedings of the 10th International SPIN Workshop on Model
Checking Software (SPIN 2003), volume 2648 of Lecture Notes in Computer Sci-
ence, pages 235-239. Springer-Verlag, 2003.

G. J. Holzmann and M. H. Smith. An automated verification method for dis-
tributed systems software based on model extraction. IEEE Transactions on
Software Engineering, 28(4), 2002.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279-295, 1997.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat
modulo theories: From an abstract davis—putnam—logemann—loveland procedure
to dpll(t). Journal of the ACM, 53(6):937-977, 2006.

Vesa Ojala. SMUML/canal 1.0.0 — a counterexample analyzer for analyzing
abstract counterexamples from data abstracted UML models, 2007. Computer
program.

67

33|

[34]

[35]

[36]

137]

138

[39]

[40]

C. S. Pasareanu, M. B. Dwyer, and W. Visser. Finding feasible abstract counter-
examples. International Journal on Software Tools for Technology Transfer
(STTT), 5(1):34-48, 2003.

Heikki Tauriainen. SMUML /abstractor 1.0.0 — data abstraction and abstract
type generation tools for abstracting UML state machines, 2007. Computer pro-
gram in the SMUML Software Release 1.0.0, available at http://www.tcs.hut.
fi/Research/Logic/SMUML. shtml.

F. Tip. A survey of program slicing techniques. Journal of Programming Lan-
guages, 3(3):121-189, 1995.

A. Valmari. The state explosion problem. Lectures on Petri Nets I: Basic Models,
1491:193-207, 1998.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking pro-
grams. Automated Software Engineering, 10(2):203-232, 2003.

W. Visser, S. Park, and J. Penix. Using predicate abstraction to reduce object-
oriented programs for model checking. In Proceedings of the 3rd Workshop on
Formal Methods in Software Practice (FMSP 2000), pages 3—12. Association for
Computing Machinery, 2000.

M. Weiser. Program slicing. [EEE Transactions on Software Engineering,
10(4):352-357, 1984.

B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
ACM SIGSOFT Software Engineering Notes, 30(2):1-36, 2005.

68

