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Testing in software industry has traditionally been done by using manually generated
test cases. Given the high cost of this approach, there is interest to create methods
that allow test cases to be generated automatically. This work studies how dynamic
symbolic execution can be used to generate test cases for sequential Java programs in
an automated fashion.

The main method employed in this work is dynamic symbolic execution, where a pro-
gram is executed both concretely and symbolically at the same time. During an execu-
tion a set of symbolic constraints describing the input values that will force the program
to follow an unexplored execution path is collected. By solving the collected constraints
new input values are obtained allowing each test run to exercise di�erent behaviour of
the program.

Combining symbolic execution with concrete execution can be done with code instru-
mentation. By keeping track of the constraints generated during all previous test runs
it is possible to use di�erent strategies to choose the execution path that will be tested
next. The way execution paths are chosen becomes increasingly important with pro-
grams that have a large enough number of execution paths so that it is infeasible to
explore them all. In this work a testing framework is developed that allows multiple test
runs to be executed concurrently during the symbolic execution process. This allows
the utilisation of multicore processors and networks of computers in test generation.
Another contributions in this work are the description of how input objects can be
initialised lazily and the introduction of a technique that can avoid generating some
unnecessary test cases when objects are used as inputs.

Based on the methods developed in this work, a tool has been implemented that can
be used for automated testing of sequential Java programs. The implemented approach
is evaluated through case studies and the scalability of dynamic symbolic execution for
large programs is discussed.
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Testausta ohjelmistoteollisuudessa on perinteisesti tehty ihmistyönä luotujen testita-
pausten avulla. Koska kyseinen menetelmä on kallis sen vaatiman työmäärän johdos-
ta, automaattisille menetelmille testitapausten tuottamiseen on tarvetta. Tässä työssä
tarkastellaan, kuinka dynaamista symbolista suoritusta voidaan käyttää testitapausten
tuottamiseen automatisoidusti Javalla toteutetuille ohjemille, joissa ei esiinny rinnak-
kaisuutta.

Työssä käytetty dynaaminen symbolinen suoritus on menetelmä, jossa testattava oh-
jelma suoritetaan sekä konkreettisesti että symbolisesti yhtä aikaa. Suorituksen aikana
menetelmässä kerätään symbolisia rajoitteita kuvaamaan syötearvojen joukkoja, jotka
pakottavat ohjelman suorituksen seuraamaan aikaisemmin tutkimatonta suorituspolkua.
Ratkaisemalla kerätyt rajoitteet saadaan muodostettua uusia konkreettisia syötearvoja
ja näin ollen jokainen testisuoritus saadaan testaamaan toisista testiajoista poikkeavaa
käyttäytymistä.

Symbolisen suorituksen yhdistäminen konkreettisilla arvoilla suorittamiseen on mahdol-
lista toteuttaa instrumentoimalla annetun ohjelman suoritettavaa versiota. Pitämällä
muistissa testiajojen aikana muodostetut rajoitteet voidaan seuraavan tutkimattoman
suorituspolun valinta tehdä usealla erilaisella hakustrategialla. Menetelmällä, kuinka
seuraava tutkittava polku valitaan, on kasvava merkitys silloin, kun testattavan ohjel-
man suorituspolkujen avaruus on liian suuri, jotta se voitaisiin käydä kattavasti läpi.
Työssä kuvataan myös testausjärjestelmän rakenne, joka mahdollistaa useiden dynaa-
miseen symboliseen suoritukseen liittyvien testausajojen suorittamisen samanaikaisesti.
Tämä mahdollistaa moniydinsuorittimien sekä useiden erillisten tietokoneiden käytön
testitapausten generoimisessa. Muita tämän työn tuloksia ovat menetelmä alustaa syöt-
teenä annettavia olioita laiskasti sekä tekniikka, jolla voidaan välttää turhien testien
luominen tietyissä tapauksissa, kun olioita käytetään ohjelmaan syötteenä.

Työssä kehitettyihin menetelmiin pohjautuen on toteutettu työkalu, jota voidaan käyt-
tää Java-ohjelmien testaukseen automatisoidusti. Toteutusta tarkastellaan tapaustutki-
muksien pohjalta ja työstä saatujen kokemusten pohjalta dynaamisen symbolisen suo-
rituksen skaalattavuutta laajoille ohjelmille arvioidaan.
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Chapter 1

Introduction

Ensuring that a software system or component works as intended is an important
challenge for the software industry. Faulty software in safety critical systems, for
example, in medical care can lead to the loss of human life and in commercial products
faults can cause big �nancial losses. Two methods that are commonly used for checking
correctness of software are testing and model checking [9]. In testing the actual system
is used in veri�cation by making test runs in order to determine whether the system
works correctly in each individual test case. Traditionally the test cases have been
generated manually which is often slow, error-prone and the adds up to a large part
of the overall cost of the development process. The need for automated veri�cation
methods therefore clearly exists. In model checking, on the other hand, a model of
a system is created with the aim to exhaustively test every possible execution in the
model. The advantage with model checking is that it is possible to verify that the
model of the system functions correctly in all possible situations where as with testing
it is only possible to show that incorrect behaviour exists but not, in general, prove
that the program is correct. Additionally model checking can be automated when the
model and the properties to be checked are given. The drawback is that the state
spaces of the models are ofter so huge that exploring all of the states is virtually
impossible.

In this work the focus is on testing concrete implementations of systems. However,
the aim is to develop automated methods that systematically generate test cases that
cover majority of the behaviour of a system under test. Automated methods help in
reducing the cost of testing and systematically generated test cases can provide the
tester a good con�dence that a system will function correctly. It can be seen that the
testing methods developed in this work take a step towards model checking.

There are several test case generation methods that have been suggested over the
years. One of the simplest is random testing [5], in which a number of inputs to the
system are generated randomly. The system under test is executed with these inputs
and it is checked that the test runs do not violate a given speci�cation or that the
test runs exercise enough of the intended behaviour of the system. Random testing is
a lightweight method as it is easy to generate random inputs and a test run does not
require any time or memory resources in addition to those needed by the execution of

1



the program. However, random testing has its limitations. It might generate inputs
that exercise the same behaviour multiple times and it is possible that to check some
behaviour, very speci�c inputs would need to be generated, making it highly unlikely
to get these inputs by random means in a reasonable time. Additionally, in random
testing it is di�cult to determine when the testing should be stopped as it is not
known at any point whether the state space of a program has been fully explored.

Symbolic execution [22, 10, 21] is one proposed solution that addresses the limitations
of random testing. The main idea in symbolic execution is to analyse a program so
that it is possible to generate test inputs that will exercise di�erent behaviour in each
test run. The analysis is done by executing the given program symbolically, that is,
using symbolic values in place of concrete ones in program execution. The symbolic
values represent a set of possible concrete input values that will cause the execution
to follow the current execution path. At each branching statement a condition is
formed that constrains the set of input values that will force the execution to take the
desired branch. The idea of symbolic execution is not a new one as it has been around
from the 1970s, but the recent advancements in constraint solvers and the continuing
improvement in modern computers have made the approach interesting as it is not
anymore limited to only the simplest of programs.

There are two general approaches that have been suggested for symbolic execution:
one is based on static analysis and the other on dynamic analysis. In static analysis [4]
the given program is analysed by simulating it algorithmically. In other words, the
analysis is done without executing the program. This is done by building a model of a
given program and exploring how di�erent executions change the state of this model.
However, as already mentioned the state space of real life programs is generally so
large that it is not reasonable to explore every reachable state of the system. This
usually means that that an abstraction of the state space of the program is created and
this abstract model is inspected. Usually the abstractions used are conservative (i.e.,
all the reachable abstract states are guaranteed to contain all the reachable concrete
states but some non-reachable concrete states might also get labelled as reachable)
causing the methods to report spurious errors. Model checking is one example of
a technique that falls under static analysis. In fact, it is one of the most accurate
and therefore computationally expensive techniques at that category. Pure symbolic
execution can also be seen as a static method as the inputs to the system are expressed
and manipulated only in an abstract symbolic form.

Dynamic analysis, on the other hand, is based on the information collected during an
actual execution of a given program. To be able to make the required observations at
runtime, new lines of code are instrumented to the program or the program is executed
in a virtual environment. The advantage of dynamic analysis over static analysis is
that accurate information about the program state that might not be easily accessible
in the static case is now available due to the concrete execution. On the downside,
with dynamic analysis there is generally no possibility for similar conservative approx-
imations like in the case of static analysis [16]. This has the implication that on large
programs it is unlikely that all possible executions of the program can be analysed
and thus we are limited only to testing the program instead of fully verifying it. In
symbolic execution that is based on dynamic analysis, the program is executed both
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concretely and symbolically at the same time and the collected symbolic constraints
are used to guide the concrete execution. For a general overview of the di�erences
and similarities of static and dynamic analysis as well as discussion of combination of
the two approaches, the reader is referred to [12]. Note also that symbolic execution
is not limited only for test generation. For example, in [20] symbolic execution is
applied for generation of likely invariants for data structures. However, in this work
only the problem of test case generation is considered.

The goal of this work is to develop a test generation tool based on dynamic symbolic
execution such that it can be used for testing of sequential Java programs. Our aim
is also to identify the strong and weak points of the chosen approach to see where
further research is needed. Other similar tools [27, 8, 17, 29, 18] have been developed
but none of these are currently available with full open source code and licensing that
allows modi�cation of the tool with the exception of a recently released early version
of CREST [18] that is a dynamic symbolic execution tool for C programs. Because the
plan is to extend our tool to also handle concurrency in the future, Java was chosen
as a target language as it has been designed to support concurrent programming. To
the best of our knowledge there are only two tools based on or supporting symbolic
execution that can be used to test concurrent programs, Java PathFinder [19, 3] with
a symbolic execution extension (based on static analysis) and jCUTE [28] (based on
dynamic analysis).

The rest of this work is structured as follows. In Chapter 2 the concepts needed
for understanding symbolic execution are introduced and an overview is given on
how the symbolic execution can be combined with concrete execution. Chapter 3
describes the instrumentation of the original program that makes symbolic execution
possible. In Chapter 4 it is discussed how the information collected during a run of
an instrumented program can be used to �nd new input values that will guide the
concrete execution to cover behaviour that has not yet been tested. Chapter 5 covers
some implementation details of our testing tool and in Chapter 6 some case studies
are presented and their results discussed. Chapter 7 concludes the work and discusses
topics for further research.
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Chapter 2

Overview

The purpose of this chapter is to familiarise the reader with the used terminology and
give an overview of how the developed test generation system works in general. The
key concepts behind symbolic execution will be introduced �rst and then it will be
explained through running examples how executing a program both concretely and
symbolically can be used to generate test inputs that will explore distinct executions
of the system under test.

2.1 Basic Concepts

A program written with an imperative programming language can be seen as consist-
ing of a sequence of statements that are the smallest elements in a program that can
be executed separately. By executing a statement a program can change its state. An
execution path of a program P is a sequence of statements that could be executed in
the given order from the beginning of P. A pre�x of length n of an execution path
π is a sequence that consists of the �rst n statements of π. For sequential programs,
the execution path that will be followed is determined only by the input values of the
program. Every value the program reads that is not decided solely by the execution
history can be seen as an input (e.g., values received from the user and the use of
random value generators). Naturally, if multi-threaded programs are also considered,
the thread scheduling introduces another source of non-determinism in addition to
the one caused by input values. However, in this work the discussion is limited to
sequential programs only.

Example 1. Figure 2.1 shows a simple Java program on the left and a control �ow
graph of the program on the right side. In this case, all of the paths from the start
node to the end node in the control �ow graph represent a potential execution path.
If at the �rst line of the program an input value is read such that x = −10 and the
program statements are represented by their line numbers, the resulting execution
path is (1, 2, 4, 6, 7, 9). In fact, any input value for the variable x that is less than
or equal to -5 will cause the program to follow the same execution path. It is also
worth noting that not all of the possible paths in the control �ow graph are actual
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1 x = input ( ) ;
2 x = x + 5 ;
3
4 i f ( x > 0)
5 y = input ( ) ;
6 else

7 y = 10 ;
8
9 i f ( x > 2)
10 i f ( y == 2789)
11 e r r o r ( ) ;

Figure 2.1: An example program and its control �ow graph

execution paths. It is, for example, impossible to follow a potential execution path
(1, 2, 4, 6, 7, 9, 10, 11) regardless of what input values the program is given. This is
because the branching statements at lines 4 and 9 set contradicting requirements to
the value of x.

In dynamic symbolic execution the aim is to reason about the execution paths and the
inputs of a program symbolically during a concrete execution of the program. In order
to execute a program P symbolically, each concrete variable in P is associated with
a symbolic value in addition to its concrete value. A symbolic value represents a set
of concrete values a variable can have at the current point of execution. A symbolic
value of variable x will be denoted by S(x) and it can be either:

(a) an input symbol,
(b) an expression where a binary operator is applied to two symbolic values, or
(c) an expression where a binary operator is applied to a symbolic value and a

concrete value.

An input symbol is a symbolic representation of a single input value to a program P
such that no two input values have the same input symbol. The binary operators in
this context mean the same ones that are used in the program with concrete variables,
such as summation and multiplication. If a variable x has a value that does not depend
on any input values, it does not have a symbolic value associated to it. The symbolic
values of variables are updated just like concrete values during execution. To be
more precise, a symbolic value of a variable is constructed as follows. If the variable
is assigned an input value, it will be of type (a). Copying a concrete value from a
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variable to another causes the symbolic value to be copied also if the variable that
is being assigned to another one has a symbolic value. When a binary operator is
applied to a variable that has a symbolic value, the resulting symbolic expression will
be of the type (b) if the other operand has also a symbolic value and of the type
(c) if the other operand is a constant or a variable that does not have a symbolic
value. In the latter case, the concrete value of the constant or variable is used in the
symbolic expression. It can be seen that if the input symbols in a symbolic value
are replaced with concrete input values, the symbolic expression will tell what the
concrete value of the variable would be at the point of execution where the symbolic
value was constructed.

When a program P is executed, the same execution path is followed regardless of
the input values until a branching statement is encountered that selects an outgoing
branch based on some variable that has a symbolic value associated with it (i.e.,
inputs to the system a�ect its value). If the symbolic values of the variables that are
used to determine the outgoing branch are known, it is possible to reason about the
outcome symbolically. A local constraint is a symbolic expression x ◦ y, where x is
a symbolic value, y is either a symbolic or concrete value and ◦ ∈ {=,,, <,≤, >,≥}.
If it is assumed that in branching statements two values are compared (branching
statements with multiple comparisons joined with logical OR or AND operators are
seen as separate branching statements in this chapter), it is possible to form a local
constraint for the true and false branches assuming that at least one of the variables
used in the comparison has a symbolic value. A local constraint gives restrictions to
the input values that must be satis�ed in order for a concrete execution to take the
branch corresponding to the local constraint. At any given branching statement, the
two local constraints that correspond to the outgoing branches are negations of each
other. Each branching statement that causes a local constraint to be constructed can
be seen as a point where the set of input values following the current execution path
is possibly divided into two distinct sets that follow di�erent execution paths.

Example 2. Let us look at our running example program in Figure 2.1. At the
beginning of any execution of the program, an input value is read to a variable x. Let
the symbol representing this input be input1. This input symbol will be the symbolic
value of x after the �rst assignment in line 1. At the next assignment statement,
x = x+ 5, the symbolic value of x is updated to be S(x) = input1 + 5. As the following
if-statement depends on x and it has a symbolic value, local constraints input1+5 > 0
and input1 + 5 ≤ 0 are formed to indicate what values of x will follow the true and
false branches of the if-statements respectively.

So far only the symbolic representation of primitive data types has been discussed.
To be able to generate test cases for programs that take objects as input describing,
for example, various data structures, the ability to reason about input references is
needed as well. For primitive data types it is enough to collect arithmetic constraints
as shown with local constraints but to allow reasoning about symbolic objects and
their relationship to each other, it is necessary to also collect constraints that tell
whether some input references must or must not point to a same object. These kind
of constraints will be called object constraints. To make this kind of reasoning possible
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a symbolic value is also associated with each input object. A symbolic value of an
object o is denoted by R(o). It should be noted that if an object has a symbolic value
it is always an input symbol as it is not possible to operate with object references
similarly to numeric variables (e.g., use summation). Object constraints are formed
at branching statements where two object references are compared to each other and
they are of the form x ◦ y, where x is a symbolic value of an input object, y is either
a symbolic value or null and ◦ ∈ {=,,}. When input objects are constructed, they are
set to reference to a same object if and only if so required by an object constraint.
As input objects have data �elds, they are initialised as new input values. In this
work a method called lazy initialisation is used meaning that the �elds of an object
are initialised on demand only after one of the �elds of a symbolic object is accessed
during execution for the �rst time.

Example 3. Let us assume that a program taking two objects, o1 and o2, as input
is executed symbolically. Let us also assume that R(o1) = obj1 and R(o2) = obj2.
When an if-statement is executed that checks whether the references point to the
same object, two object constraints are formed. obj1 = obj2 for the true branch and
obj1 , obj2 for the false branch.

Given a pre�x of an execution path, we are interested in �nding concrete inputs that
will exercise one of the execution paths that has the given pre�x. Assuming that the
local constraints and object constraints corresponding to the pre�x are available, it
is not enough to consider only the last constraint on the pre�x as all of them can
add requirements for the inputs as illustrated in the Example 1. A path constraint
of an execution path pre�x is a conjunction of all the local constraints and object
constraints that must be satis�ed so that the pre�x can be followed by a concrete
execution. If the path constraint is satis�able, there exists concrete input values
that will follow an execution path with the desired pre�x and if it is unsatis�able,
then no such execution path can exist. It is, however, important to notice that the
generated local constraints are constraints on unbounded integers. This means that a
path constraint could be satis�able with concrete input values that are not within the
value range of the variables in the program under test. This problem could be solved,
for example, by expressing the variables in local constraints as �xed-size bit-vectors
but in this work the assumption is made that unbounded integers can be used.

All the possible execution paths of a program can be expressed in a form of a tree.
A symbolic execution tree is a binary tree where the nodes represent points in an
execution path where symbolic execution is occurring. An assignment with symbolic
values is represented with a node that has only one child and a branching statement
depending on symbolic values is represented by a node with two children, one for the
true branch and the other for the false branch. The tree also contains information on
the symbolic values of variables for each execution point as well as the path constraints
that must be satis�ed in order to reach a given node in the symbolic execution tree.
The number of nodes in a symbolic execution tree can be �nite or in�nite depending
on whether there are in�nite loops in the given program.

Example 4. A symbolic execution tree of our example program is shown in Figure 2.2.
The path constraints are denoted in the �gure by the short hand PC. If the aim is to
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Figure 2.2: Symbolic execution tree of the �rst example program
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follow an execution path that takes the true branch on the �rst if-statement and the
false branch of the second, the corresponding path condition is input1+5 > 0∧input1+
5 ≤ 2 which is satis�able if input1 = −4 or input1 = −3. Trying to follow an execution
path that takes �rst the false branch and then the true branch in our example, leads to
path constraint that is unsatis�able. This gives the information that no execution path
with the given pre�x can exist. The execution path (1, 2, 4, 6, 7, 9, 10, 11) discussed in
Example 1 can be seen as an example of this.

2.2 Combining Concrete and Symbolic Execution

The purpose of this section is to give an informal description of our test generation
tool that is based on the concepts introduced earlier in this chapter. As a symbolic
execution tree describes the distinct execution paths of a given program, the tool
is based on constructing such a tree by running the program under test both with
concrete and symbolic values at the same time. If the full symbolic execution tree of
a program can be constructed, it can be used to compute test inputs that give full
control �ow coverage of the given program.

The tool works as follows. A program under test is �rst modi�ed to allow symbolic
execution to be done along the concrete execution. The program is then executed �rst
with random input values to some prede�ned depth. The depth limit is used in order to
avoid in�nite executions. During a test run, the tool keeps track of the symbolic values
of variables and constructs path constrains and starts building a symbolic execution
tree based on the collected constraints. Each test run can be seen as exploring one
path in the symbolic execution tree of the program. As branching statements are
executed, the paths in the symbolic execution tree are also extended with branches.
The concrete execution follows one branch based on the concrete input values. For the
other branch a new node that is marked as unvisited is added to the tree and the local
or object constraint corresponding to the branch is added to the node. After a test
run �nishes, one of the unvisited nodes in the symbolic execution tree is selected and
the path constraint corresponding to the execution path pre�x the node represents is
given to a constraint solver. If the path constraint is unsatis�able, a new unvisited
node is selected and if the path constraint is satis�able, the constraint solver is asked
to provide a satisfying assignment for the constraint and this corresponds to the
concrete input values that are used on the next test run. When there are no unvisited
branches left in the symbolic execution tree, the test generation algorithm terminates.
As a result concrete input values for each of the test runs are obtained together with
the information if any of these test runs caused the program to terminate due to an
uncaught exception.

The described test generation approach is further illustrated by an example given be-
low. A more formal description of how both local and object constraints are generated
during execution is given in Chapter 3.

Example 5. Let us consider a modi�ed version of the simple example program dis-
cussed earlier. The program now takes both a primitive integer value and an object

9



1 Class S impleL i s t
2 {
3 public int value ;
4 public L i s t next ;
5 }

1 void example ( ) {
2 int x = input ( ) ;
3 SimpleL i s t y ;
4
5 x = x + 5 ;
6
7 i f ( x > 0)
8 y = input ( ) ;
9 else

10 y = null ;
11
12 i f ( y . next == y)
13 e r r o r ( ) ;
14 }

Figure 2.3: Second example program

representing a linked list as input to the system. The example code is shown in Fig-
ure 2.3 and the di�erent test runs from the viewpoint of a symbolic execution tree are
shown in Figure 2.4. The concrete values of primitive variables are shown in parenthe-
ses as they are not part of the symbolic execution tree. The �rst test run is executed
with randomly generated input values. The variable x is assigned a concrete value
−572 and a symbolic value input1 at line 2. A node corresponding to this �rst symbolic
operation is added as the root of the symbolic execution tree. For the x = x+ 5 state-
ment a new node is added to the symbolic execution tree re�ecting that the symbolic
value of x is updated to input1 + 5. At line 7 a branching statement is encountered
and as x has a symbolic value associated to it, two local constraints, input1 + 5 > 0
and input1+5 ≤ 0, are formed for the true and false branches respectively. Two nodes
are added to the symbolic execution tree to represent this branching. As the concrete
execution will follow the false branch, the node corresponding to it will be chosen as
the one that will be expanded by the current test run and the other node is marked
to be unvisited so that future test runs can select it and compute input values that
will force the execution to follow the true branch instead. Because the false branch
was followed, the object reference y is set to be null and this causes an null pointer
exception at line 12. This causes our tool to inform the user about an found error
and the current test run terminates.

After the �rst test run, the symbolic execution tree looks like the left most tree on
Figure 2.4. The fully explored subtrees are marked with dashed lines. The resulting
tree has only one unvisited node and that is selected as the node that will be expanded
during the second test run. If there were multiple unvisited nodes, an arbitrary
strategy could be used to select which node to expand. To get input values for the
new test run the local and object constraints are collected along a path from the node
to the root of the tree and a path constraint is formed of these constraints. In this
case there is only one local constraint on this path and the path constraint is simply
input1 + 5 > 0. The path constraint is then given to an o�-the-shelf constraint solver
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Figure 2.4: Running example of the testing algorithm

that reports that the constraint is satis�able and gives input1 = 0 as one assignment
that satis�es the constraint.

Given this information the variable x is given the value 0 instead of a random value
on the second test run. This will cause the concrete execution to take the true branch
at line 7 as expected. On line 8 an instance of the class SimpleList is read as an
input. This will cause y to be assigned with a new SimpleList object but the �elds
of this object are not initialised with input values yet. This input object is given a
new symbolic value, in this case obj1. When executing the line 12, the �eld y.next
is accessed and according to the lazy initialisation approach we are using this will
cause all the �eld of y to be initialised with input values. This will give the �eld
y.value symbolic value input2 and y.next symbolic value obj2 as shown in the second
tree of Figure 2.4. Whenever a new symbolic object is created and there are no
restrictions placed on it in the path constraint, our tool will create a new object
that is distinct from the other symbolic objects. Because of this the concrete object
y.next is di�erent from y and the execution follows the false branch on line 12. As
the branching statement uses symbolic objects, object constraints obj2 = obj1 and
obj2 , obj1 are created.

The second test run leaves again one unvisited node to the symbolic execution tree
and the path constraint corresponding to it is input1+5 > 0∧obj2 , obj1. For the third
test run the variable x is given the value 0 again and when initialising the �eld y.next
it is set reference the object y as the path constraint requires the objects with symbolic
values obj1 and obj2 to be the same. With these inputs the concrete execution hits
the error method call on line 13. Note that the �eld y.value can be given a random
value as it is not mentioned in the path constraint. After the third test run there are
no unvisited nodes left in the symbolic execution tree as shown in the rightmost tree
in Figure 2.4. This allows the test generation algorithm to terminate.
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Chapter 3

Collecting Symbolic Constraints at

Runtime

In order to give the program under test the input values computed from path con-
straints and to collect symbolic information about the test runs during execution, it
is necessary to instrument it �rst. During instrumentation the original code is left
unmodi�ed so that the program can be run with concrete values and new statements
are added to appropriate places to enable the symbolic execution at the same time.

In this chapter it is explained how symbolic information is stored during execution
and what kind of instrumentation is needed. It is also discussed how the developed
testing system can be used to test programs that take complex data (e.g., objects
representing data structures) as inputs and what kind of approximations the tool
makes in certain cases for e�ciency reasons.

The approach described in this chapter follows mostly the approach explained in [27]
for tools named CUTE and jCUTE. The main di�erences between the approach de-
scribed here and the approach taken in CUTE are highlighted at the relevant sections.

3.1 Syntax of Programs

As the number of di�erent instructions available in Java bytecode and the variety of
Java statements that can be written as Java source code is great enough to make the
instrumentation of all the possible statement types cumbersome, it is convenient to
translate Java to an intermediate language that o�ers less statements and has a more
restricted syntax than normal Java. In our tool implementation Jimple [30] is used as
this intermediate language without loss of any expressive power in comparison with
Java. To describe the instrumentation process here, the full syntax of Jimple is not
needed and so an idealised imperative language based on simple three-address code
will be used to represent the language that is instrumented. Syntax of the statements
expressible in this language is presented in Figure 3.1. In addition to the shown
statements, the language also contains class and method de�nitions. The tools used
in instrumentation are discussed in more detail in Chapter 5.
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statement ::= label | assign | if comparison goto label | return |
begin | end

assign ::= variable = expression | object reference = object reference

variable ::= local variable | object �eld

object reference ::= object | null | new object | input

expression ::= constant | variable | binop | invoke | input

binop ::= variable op variable

op ::= + | - | * | / | %

comparison ::= < | ≤ | > | ≥| == | ! =

Figure 3.1: Syntax of statements in the intermediate language

Any normal Java statement can be expressed using this simpli�ed syntax. For ex-
ample, looping constructs can be written with if and goto expressions. Note also
that if-statements where logical OR operators are used (e.g., if (x == 5 || x < 0))
must be expressed by using multiple if-statements. This has the e�ect that the path
constraints formed during execution contain only conjunctions and no disjunctions.
This is also the case with the Jimple language used in the tool. To simplify the pre-
sentation further, the types of variables and constants are left out of the discussion.
The reader can imagine the variable types to be, for example, primitive Java integers
but all primitive types are handled in a similar fashion as discussed in the subsequent
sections.

3.2 Instrumentation

Adding the code for symbolic execution to a given program can be made in a fully
automatic fashion with the exception that it is assumed that the user identi�es the
the points in the source code where the system gets its input values. If the goal is to
unit test a method, the user can, for example, write a test driver that generates the
wanted symbolic inputs and �lters the unwanted values out if necessary and then calls
the method to be tested with these values. The locations where the inputs are read in
the source code are not limited in any way. This allows the user to take, for example,
a fully implemented program and replace the parts where the original inputs are read
with symbolic input statements and then proceed with testing.

Every statement that can read or update a variable with its value depending on the
inputs must be instrumented. The approach taken in our tool is to instrument all
statements that could operate on symbolic inputs regardless of whether a statement
operates only with concrete values during test runs or not. This means that a majority
of the lines in the code will be instrumented. This slows down the execution with a
constant factor.

To describe the instrumentation process it is �rst discussed how symbolic values of
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primitive type variables and objects can be stored. The instrumentation of programs
with only primitive type input values is then described. After this it is explained how
the instrumentation can be extended for programs that take objects as inputs and
�nally it is discussed how method calls must be instrumented.

3.2.1 Storing Symbolic Values

To form the symbolic path constraints introduced in the previous chapter, it is nec-
essary to know for each variable the symbolic expression associated with it during
execution. For this reason we introduce symbolic memory maps S and R for primi-
tive type variables and objects respectively. These memory maps are maintained by
the code added during instrumentation. A symbolic value of a variable x is denoted
by S(x) like in the previous chapter and S′ = S[x 7→ s] is written to express that
S′(x) = s and the the rest of the mappings in S and S′ are identical. S′ = S − x is
used to denote that the mapping of variable x to a symbolic value is removed. S′(x)
is de�ned in this case to return an implementation speci�c value indicating that x is
not symbolic. The map R maps objects to symbolic values in a similar fashion. In
addition to S and R a mapping denoted byM is also maintained but the description
of this mapping is postponed until Section 3.2.3

On the implementation level the memory addresses of data values could be used as
the keys to which the symbolic values are mapped to as the addresses can be seen
as unique identi�ers. However, because in Java it is not possible to have access to
pointers and memory addresses, the names of the variables are used as the keys for
primitive type variables. This solution has naturally the problem that names are not
unique for each variable. Therefore the mapping has been implemented by adding
a new symbolic variable during instrumentation for each primitive local variable or
object �eld in the program. In other words, each primitive type variable has a coun-
terpart variable with the same exact scope as the original. As in each scope we have
no ambiguity over the memory address a variable name refers to, the problem of
non-unique names is solved. This approach naturally requires that the mapping is
maintained by the new variables added during instrumentation and this e�ectively
doubles the number of variables the program uses. By applying static analysis to the
source code to identify the statements and variables that can be a�ected by the inputs
(e.g., using type-dependence analysis [2]), it would be possible to optimise the amount
of instrumentation to gain some improvement in execution time and memory usage.
It should be noted here that the described method to store symbolic values associates
the symbolic value with a variable and not with the value. As in Java it is not possible
to have two primitive type variables to point to the same memory location, it is safe to
do the association this way (i.e., it is not possible to have aliasing variables changing
their values without changing the symbolic value of the counterpart).

With objects, on the other hand, it is possible to have multiple references to the same
object. However, with objects it is also possible to use a reference as an identi�er.
Therefore the mapping R is implemented by maintaining a data structure that maps
an object reference to a symbolic value. Whenever a symbolic value of an object is
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needed, the data structure is searched for a reference to the object and the symbolic
value mapped to the reference is returned if the reference is found.

To keep the symbolic values stored for each variable short during execution, each time
a symbolic value is changed a new symbolic identi�er is made to represent this value.
For example, instead of storing a symbolic value input1 + 5 for a variable x a symbolic
value s0 is used and the information that s0 = input1 + 5 is maintained separately.
After another summation with value 5 the symbolic value would be S(x) = s1 and
s1 = s0 + 5. Consider a case where a variable is summed repeatedly with itself.
This would lead to the symbolic expression growing exponentially in the number of
summations if new symbolic identi�ers were not introduced. Naturally it is possible
to do some simpli�cations like input1 + input1 = 2× input1 similarly to [27, 29] to keep
the symbolic expressions succinct. This possibility is discussed further in Chapter 4
but the implementation of such simpli�cations is left for future work.

The symbolic execution tree constructed during test runs is maintained in a separate
module to the runtime environment where the tests are executed. Our testing system
can be seen as consisting of two parts: one is the instrumented program under test
and the second is a module that maintains a symbolic execution tree and uses it
to select test inputs for test runs. An instrumented program will be called a test
executor and the second module a test input selector. The test executors store data
relevant to a single test run by themselves and report all the information relevant to
the construction of the symbolic execution tree to the test input selector. The details
of the test input selector are given in Chapter 4.

3.2.2 Symbolic Execution with Primitive Data Types

To instrument a given program, each statement in it will be processed one at a time
and code performing symbolic execution will be added for that statement if needed.
The basic principle during instrumentation is to try to minimise the amount of code
added directly to the original code and to do most of the work in methods that are
called from the instrumented code lines. The statements added during instrumenta-
tion to a program containing only primitive type input values are shown in Table 3.1.
The letter v will be used as a shorthand for variables, letter o for objects and letter e
for expressions.

Before a test run can be started, the symbolic execution part of the program must be
initialised. During the initialisation, a connection is formed to the test input selector.
The selector sends a list of concrete input values, that must be used one at a time in
the given order when an input statement is executed to make sure that the correct
execution path pre�x will be followed. The input values received from the test input
selector are denoted by a mapping I that maps the number of an input (expressed
by inputNumber) to a concrete input value. In other words, the map I can be seen
as a sequence of input values ordered by the input number (i.e., when the �rst input
statement is executed the �rst value of the sequence is used). If the program is not
fully deterministic (e.g., some of the inputs are not replaced with symbolic input
statements) the test run is not guaranteed to follow the expected execution path. To
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Before instrumentation After instrumentation

begin I = receive inputs;
i = k = j = inputNumber = 0;
S =M = R = [];
begin

v = e; executeAssignment(v, e);
v = e;

v = input; v = getInput(v);
if v1 op v2 goto l; executeCondition(op, v1, v2);

if v1 op v2 goto l;
goto; checkGotoCount();

goto;
end reportEnd();

end

Table 3.1: Instrumentation of statements

detect executions that do not follow expected execution paths, a bit-vector containing
the information of which outgoing branch was taken at each branching statement is
constructed. By reporting this bit-vector to the test input selector it can be checked
if the correct path has been followed. This is further discussed in Chapter 4.

At every point where the program terminates successfully, the test selector needs to be
informed about this so that an execution path can be marked to be explored. Every
time a program terminates, normally or due to an error, the connection to the selector
is closed. If the successful termination is not reported before this happens, the test
run is considered to have found a program error. This means that every non-error
termination point must be identi�ed, which in our tool is done automatically when
the program is transformed into Jimple.

Every input statement indicated by the user is replaced with a call to a method
that assigns a concrete input value and a symbolic value to the respective variable.
The symbolic variable is simply assigned with a new unique input symbol and it is
reported to the test input selector that this value represents the new input value.
For the concrete input, it is �rst checked if there are values given by the selector left
to use. If there are not, a random value will be used. This is further illustrated in
Figure 3.2.

With every assignment statement it is necessary to make sure that the symbolic values
are also updated. Figure 3.3 shows how this is done. When a concrete value is assigned
to a variable, the symbolic value associated with the variable is simply removed if such
a value exists. Assigning a value from a variable to another requires only copying the
symbolic value to the respective symbolic variable. The case v = v1 op v2 where the
result of applying a binary operator to two variables is assigned to another variable is
slightly more complex. It is �rst checked (on line 10) whether the binary operator is
supported by the constraint solver being used (e.g., our tool does not support symbolic
execution of the operator %) and if it is not, the assignment is executed only concretely

16



getInput(v)
1 S[v 7→ si]; ∥si is a new symbolic value
2 i = i + 1;
3 report(S(v) = inputk);
4 k = k + 1;
5 if (inputNumber ∈ domain(I))
6 result = I(inputNumber);
7 else

8 result = a random value;
9 inputNumber = inputNumber + 1;
10 return result ;

Figure 3.2: Getting correct input values during execution

and the symbolic value of v is removed. If the binary operator is applied to at least
one variable with a symbolic value, a new unique symbolic identi�er is generated to
express the result of the assignment and this identi�er is given as the symbolic value of
v. As the symbolic identi�er in itself does not contain the information of the symbolic
expression corresponding to it, this fact is reported to the test input selector as shown,
for example, on line 18. If the binary operator is a multiplication or division and
the both variables to which the binary operator is applied to have symbolic values,
the constraints resulting from using the new symbolic value are nonlinear. As the
nonlinear integer programming problems are in general undecidable, there might be
no support in constraint solvers to handle nonlinear constraints that result from these
kind of assignments. (However, when representing variables as �xed-size bit-vectors,
which corresponds more closely to the way values are stored in computers, the problem
becomes decidable.) If the tool is used with a constraint solver that does not support
nonlinear constraints, the symbolic expression corresponding to the assignment is
approximated by replacing one of the symbolic values used in the assignment with a
concrete value (line 16). This allows part of the symbolic information to be carried
over the assignment statement. This same approximation is also used in the jCUTE
tool. In its current state our tool does not yet support the use of bit-vectors and all
values are considered to be unbounded integers.

To execute if-statements symbolically, it is �rst determined which outgoing branch the
concrete execution will take and then a local constraint is reported to the test input
selector as illustrated in Figure 3.4. The method �rst checks whether the if-statement
operates on symbolic values or not. If only concrete values are used, the test input
selector needs not to be informed as the statement does not a�ect the symbolic exe-
cution tree of the program. If symbolic values are used, the local constraint for the
true branch is reported to the test input selector (the false branch can be obtained by
simply negating this condition) as well as the branch taken by the current concrete
execution so that the test input selector knows which of the branches it will keep
expanding. Note that on line 2 the information of the taken branch is used in con-
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executeAssignment(v, e)
1 match (e)
2 case c: ∥c is a constant value
3 S = S − v;
4 case v1: ∥v1 is a variable
5 if (v1 ∈ domain(S))
6 S = S[v 7→ S(v1)];
7 else

8 S = S − v;
9 case v1 op v2:
10 if (op < {+,−, ∗, /})
11 S = S − v; ∥operators like % are unsupported
12 else if(v1 ∈ domain(S) ∧ v2 ∈ domain(S))
13 S[v 7→ si]; ∥si is a new symbolic value
14 i = i + 1;
15 if (op ∈ {∗, /} ∧ constraint solver supports only linear constraints)
16 report(S(v) = S(v1) op v2);
17 else

18 report(S(v) = S(v1) op S(v2));
19 else if(v1 ∈ domain(S))
20 S[v 7→ si];
21 i = i + 1;
22 report(S(v) = S(v1) op v2);
23 else if(v2 ∈ domain(S))
24 S[v 7→ si];
25 i = i + 1;
26 report(S(v) = v1 op S(v2));
27 else

28 S = S − v;

Figure 3.3: Executing symbolic assignments
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executeCondition(op, v1, v2)
1 branchTaken = evaluate(v1 op v2);
2 constructBranchBitvector(branchTaken);
3 if (v1 ∈ domain(S) ∧ v2 ∈ domain(S))
4 report(S(v1) op S(v2), branchTaken);
5 else if(v1 ∈ domain(S))
6 report(S(v1) op v2, branchTaken);
7 else if(v2 ∈ domain(S))
8 report(S(v2) op v1, branchTaken);

Figure 3.4: Executing if-statements symbolically

struction of the bit-vector containing all the chosen branches regardles whether the
if-statement operates on symbolic values or not. The constructed bit-vector is sent to
the test input selector whenever report method is called.

As a program may have in�nite execution paths due to looping constructs, the test
runs must be cut at some prede�ned depth to make sure that the testing terminates.
The only ways of creating a loop in Jimple and in our idealised language is by using
goto statements or recursive method calls. Each goto statement is instrumented
with a checkGotoCount method, that implements a counter that is increased
each time a goto statement is executed. Every method call is instrumented with
a checkInvokeCount method, that works similarly to the case with goto state-
ments. Whenever a method or goto counter exceeds a given depth value, the test run
is reported to have been successful and the test run is terminated.

3.2.3 Symbolic Execution with Objects

In this section the instrumentation process is extended for programs that use objects
as inputs to the system under test. Our tool supports two di�erent ways of how input
objects are created and how object constraints resulting from the use of these objects
are constructed. The �rst way collects object constraints during execution and is
described next. The second way is a simpli�ed version that does not generate object
constraints automatically but also does not require as much instrumentation.

Symbolic Execution with Object Constraints

The additional instrumentation needed for symbolic execution with input objects is
shown in Table 3.2. Notice that there is no need to add any instrumentation to
assignment statements using object references. To see the di�erence to the primitive
data type case, consider assignments x = 5 and y = null, where x is an integer and y
is an object reference. The �rst assignment replaces the earlier value in the memory
location reserved for variable x. If a symbolic value is associated with the memory
location, assignments a�ecting the value in it must also a�ect the symbolic value. In
the second assignment the value of y is not an object but a reference to one. This means

19



Before instrumentation After instrumentation

o = input; o = getSymbolicObject(o);
v = o.�eld ; lazyInitialize(o);

executeAssignment(v, o.�eld);
v = o.�eld ;

o.�eld = e; lazyInitialize(o);
executeAssignment(o.�eld, e);
o.�eld = e;

if o1 op o2 goto l; executeObjectCondition(�op�, o1, o2);
if o1 op o2 goto l;

Table 3.2: Instrumentation of object statements

that when y is set to be null, it does not change the object it was referencing in any
way. As symbolic values are associated with objects, no object reference assignments
can change the symbolic values of objects. Furthermore it is not possible to directly
replace or delete an object in a given memory location in Java.

Getting objects as inputs is more complicated than getting simple numeric values.
The main di�erence to primitive type inputs is that with primitive inputs the test
input selector can simply give a concrete value that is assigned to a variable but with
object inputs no such concrete value can be given. In place of concrete values the test
input selector sends logical addresses to input objects. A logical address is a natural
number where the value zero is a special value that corresponds to a null reference.
When the test input selector wants to have two input objects to be the same, it
will give them both the same logical address in the input map I. For example, if
the input map corresponds to an input sequence (1,0,1,2), the �rst and third calls to
getSymbolicObject will give the reference to the same object, second call will give
a null reference and fourth call a reference to an object that is not the same as the
ones given by the earlier calls. To be able to return a reference to an already created
object, as in case of the third call in the previous example, a mapping from logical
address to concrete objects is maintained. This mapping is denoted by M.

Figure 3.5 shows the algorithm for creating a new input object. Similarly to the
primitive input case it is �rst checked if the test input selector has given an input
value that must be used at the current execution point. If the input map contains a
value, it corresponds to a logical address of an object. If the address corresponds to a
null reference, the algorithm simply returns null as the result. Otherwise it is checked
(line 5) if the required object has already been created by looking a reference to it
in the map M. If the reference is found, it is returned as the result and if it is not
found, a new object is created and the mapping from the given logical address to the
newly created object is added to M. A symbolic value obj j is also associated to the
created object. The value j is a running number to prevent the same input symbol
from being used multiple times.

If the input map does not contain a logical address to be used, a new object is created
and a symbolic value is associated with it. Notice that in this case no logical address
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getSymbolicObject(o)
1 if (inputNumber ∈ domain(I))
2 l = I(inputNumber);
3 if (l == 0)
4 result = null;
5 else if(l ∈ domain(M))
6 result = M(l);
7 else

8 result = new object of type o;
9 R = R[result 7→ obj j];
10 M =M[l 7→ result];
11 else

12 result = new object of type o;
13 R = R[result 7→ obj j];
14 inputNumber = inputNumber + 1;
15 j = j + 1;
16 return result ;

Figure 3.5: Getting symbolic objects as inputs

is given to the object. This is because all input objects are assumed to be distinct
unless required otherwise by the test input selector. As the input map does not
containt at this point any new values, there cannot be any requirements for input
object created later during the test run. Note also that any new object returned by
getSymbolicObject is simply created by using a default class constructor. This
means that the �elds of the object are not initialised with any symbolic values at this
point.

In lazyInitialize, the given object is marked to have been initialised to prevent
multiple initialisations. To initialise the �elds, the tool supports two approaches: all
of the �elds in an object can be initialised as new symbolic inputs or the user can
provide a custom method that has been added to the class of the object and does the
initialisation. The �rst approach creates objects that have no restrictions on what
values their primitive type �elds can have and that have every object �eld set to
be a new symbolic object. This approach is suitable for simple objects that do not
have dependencies between their �elds, such as linked lists that are not sorted with
respect to their content. However, when the objects are more structured and have
invariants that must hold, it is more convenient to allow the user to specify which
�elds are to be initialised with symbolic inputs and allow some �elds to be initialised
with only concrete values, possibly depending on the input values received for the
other �elds. This is achieved by calling a user written method at the time when lazy
initialisation is done. Currently the method must be added manually to the source
code of the class but this could be done automatically during instrumentation even
when no source code of the object class is available. The initialisation method can
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executeObjectCondition(op, o1, o2)
1 if (op ∈ {==, ! =} )
2 branchTaken = evaluate(o1 op o2);
3 constructBranchBitvector(branchTaken);
4 if (o1 ∈ domain(R) ∧ o2 ∈ domain(R))
5 report(R(o1) op R(o2), branchTaken);
6 else if(o1 ∈ domain(R) ∧ o2 == null)
7 report(R(o1) op null, branchTaken);
8 else if(o2 ∈ domain(R) ∧ o1 == null)
9 report(R(o2) op null, branchTaken);

Figure 3.6: Generating object constraints

access normally the public and private �elds of the object and may contain arbitrary
Java code. The user is, however, responsible that the initialisation code does not have
side e�ects that could not happen when the original program is executed without any
code added for symbolic execution. The problem of creating input objects that must
satisfy invariants is discussed in more detain in the Section 3.4. The lazy initialisation
approach is one of the biggest di�erences in our tool in comparison with jCUTE. In
jCUTE all input objects are initialised as null references on the �rst time they are
encountered in a test run and they are initialised with randon inputs like in our
tool if a local constraint requires them to be non-null. The initialisation is done at
the point where the object is received as input and not on demand as in our tool.
The advantages and disadvantages of lazy initialisation in comparison to the jCUTE
method are discussed in Chapter 4.

To collect object constraints the executeObjectCondition method presented in
Figure 3.6 is executed before any if-statement that compares objects references instead
of primitive values. Our tool collects object constraints that can be only of the form
o1 = o2, o1 , o2, o1 = null and o1 , null, where o1 and o2 are symbolic objects. The
executeObjectCondition method checks if the comparison of objects falls under
one of these types and also determines the outgoing branch of the if-statement taken
by the concrete execution (in line 2). If the comparison is of the supported type and
input objects are used in the comparison, the method generates an object constraint
based on the symbolic values of the objects. As null object references do not have
symbolic values associated to them, they are handled as a special case (in lines 6 and
8). The generated object constraint and the branch that the concrete test run will
take are then reported to the test input selector.

Symbolic Execution without Object Constraints

In the simpli�ed mode of our tool no object constraints are collected during symbolic
execution. In this mode all the symbolic objects returned by getSymbolicObject
method are unique non-null objects and the �elds of the symbolic objects are initialised
lazily as normal. In this mode there is no need to add executeObjectCondition
methods during instrumentation and path constraints are simpli�ed as the object
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constraints are missing completely. This approach is suitable in cases where the user
wants to write his own test driver that generates the dependencies between input
objects and ignore the dependencies that the tool can detect automatically during
testing. For example, if a user is interested of testing a program only with input
linked lists that have no cycles, the simpli�ed mode can be used as the symbolic
execution ignores the possible execution paths that could be explored with cyclic
lists. Also if the program under test receives only primitive data type inputs, this
mode performs slightly faster as there is less instrumentation involved.

3.2.4 Symbolic Execution with Method Calls

In Java all arguments to methods are passed by value. This means that when a method
is called with arguments that have symbolic values associated with them, the symbolic
values must be associated with the corresponding new variables inside the method as
well. Table 3.3 shows the code instrumented at method calls. When a method is called,
all symbolic values of the arguments are pushed into an argument stack and these
values are read from the stack and assigned to the corresponding symbolic variables
at the beginning of the method execution. Likewise, the symbolic return value of a
method is transferred from the method to the caller using the argument stack. To be
more precise, the tool must also be able to handle cases where the method caller and
the method might not be both instrumented as the user has control of what parts
are instrumented and there might be some libraries or native methods that cannot
be instrumented. Otherwise the stack could be empty when it is read or there might
be some old argument values that were not read and removed by an uninstrumented
method. For this the tool associates a method identi�cation to the elements in the
argument stack and uses this to check that there are no old arguments and removes
them if necessary when adding new ones and makes sure that the arguments or return
values received are in fact from the right source. If during a pop operation the
argument stack is empty or contains old arguments, no symbolic values are passed to
a method or a caller. The basic principle behind method instrumentation, however,
stays the same as shown in Table 3.3 regardless of the implementation of these checks.

Note also that when object references are used as arguments in method calls or as
return values there is no need for additional instrumentation. The same reasoning as
with assignment statements holds in this case as well.

3.3 Used Approximations

The path constraints generated by running a program that has been instrumented the
way it has been described in this chapter are not guaranteed to be precise enough to
make it possible to generate test inputs that will cover all the possible behaviour of
the program. That is, the current approach cannot be used in general for proving that
an implementation does not throw any uncaught exceptions. This limitation is due
to the fact that local or object constraints are only constructed at branching points
of a program similarly to [27] where a program code, a[i] = 0; a[j] = 1; if (a[i] == 0)
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Before instrumentation After instrumentation

v = method(v1, ..., vn); checkInvokeCount();
push(S(v1)); ...; push(S(vn));
v = method(v1, ..., vn);
S[v 7→ pop()];

method(v1, ..., vn) { method(v1, ..., vn) {
... S[vn 7→ pop()]; ...;S[v1 7→ pop()];
return v; ...
} push(S(v));

return v;
}

Table 3.3: Instrumentation of methods and method calls

ERROR, was given as an example of this. If the variables i and j are input variables,
it is possible to follow execution paths that either hit the error statement or avoid
it based on the fact whether i and j are equal. However, as there is no if-statement
that would check for this fact, our tool assumes that the values are independent and
does not generate constraints i = j and i , j. Similarly, our tool does not generate
null dereferences or object reference aliases if there are no branching statements that
result in such object constraints. This no aliasing assumption is made also by CUTE
and jCUTE to improve e�ciency as in many practical cases the approximation seems
to give reasonably good results. EXE [8], however, is a symbolic execution based
tool that creates exact constraints even when aliasing as shown above can occur.
The approach used is to add a disjunction of all possible aliasing cases to the path
constraint. The downside is that the path constraints will get more complex and
thus more di�cult for the constraint solver to solve. Improving the accuracy of the
constraints generated by our tool is left for future study.

Also the tool might not notice that when a value is divided by a variable having
a symbolic value, it is possible that the set of concrete values the symbolic value
represents might containt the value zero that will cause division by zero errors. This
can be easily corrected by asking the constraint solver to check whether the symbolic
value can be zero, given the current path constraint and reporting an error if this is
the case. However, this could be expensive if the program contains a large number of
divisions and so we have left the support these checks for future work.

Another point where the tool fails to explore all possible behaviour is when symbolic
values are used with operators that are not supported by the used constraint solver or
uninstrumented methods are called, such as native calls to functions implemented in
another programming language. As discussed earlier, the symbolic values are approx-
imated with concrete values in these cases. Such approximations are necessary and
actually show the advantage that dynamic test generation has over static methods.
To illustrate this, consider that we are unit testing the following method:
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boolean test (int x, int y) {

if (x == blackBox(y))

return true;

else

return false;

}

The method blackBox is an uninstrumented method and no source code for this
method is available. If static analysis is used to this method, it is impossible to
generate concrete input values for x and y that will test either of the branches in
the test method as nothing can be assumed about the value returned by blackBox.
Our tool can, similarly to other dynamic symbolic execution tools, circumvent this
problem partly. As the program is �rst executed with concrete random values, some
concrete value is also received as the result of blackBox(y) and a local constraint that
forces x to be equal or unequal to this value can be generated. Therefore it is possible
to �nd input values for both of the branches. Naturally, the symbolic value associated
with y is lost and our tool is limited to enter the branches with only some random
concrete values.

The use of unbounded integer values in local constraints is also an approximation. The
tool can fail to generate correct input values for an execution path where a concrete
value associated with a symbolic value over�ows or under�ows. For example, consider
that a variable the has maximum concrete value and a symbolic value. If the value
of the variable is increased by one, the value over�ows but this is not seen in the
symbolic value in any way. If for the next test run the test input selector gives a
slightly di�erent input value such that the variable in question has a smaller value,
the over�ow does not happen and the test run could follow an unpredicted execution
path.

3.4 Objects with Invariants

Generating object inputs that must satisfy any invariant causes problems if the �elds
of an object can be initialised with arbitrary input values. For example, consider a
case where a method that gets a binary search tree as input is unit tested. In binary
search trees, at any given node in the tree, the left subtree of the node contains only
values that are less than the value of this node and the right subtree contains values
that are greater or equal to the value of the node. As there are no restrictions on
how the concrete input values are generated other than the path constraints collected
during testing, it could happen that a binary search tree that does not ful�l the
invariant that requires the nodes to be correctly ordered, is generated. If the method
being tested is assuming that the input it receives is in fact a valid binary search tree,
the testing could generate test cases that are not possible with valid inputs. This
could lead to the tool to report unwanted errors.

Using the initialisation method approach described in the previous section can help
in some cases. For example, if an input object has two �elds of which the �rst has to
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be always greater than the second, it is easy write an initialisation method that adds
a requirement to the path constraint that guarantees that the �elds are initialised
correctly. However, this approach might not be enough if the object that is being
initialised is part of a data structure consisting of many objects. The initialisation
method can look at the data structure only from the point of view of the object itself,
but to create a valid data structure as an input, it might be necessary to look at the
data structure as a whole. For example, in the binary search tree, if the node object
does not contain a reference to its parent node, it is impossible to constrain the value
of the node to be less or greater than the value of the parent as the initialisation
method does not have access to the parent. To generate such data structures, the
user must write an external test driver that generates valid inputs �rst and only after
that passes the structure to the method that is being tested. The price to pay here is
that the input structure will be initialised at least partly before it is used regardless
of the requirements that the system under test might place on the structure. In the
initialisation method approach the object will be initialised on demand and this can
avoid generating some unnecessary test cases. For example, with an external test
driver it might be necessary generate binary search trees of all possible shapes to
guarantee that the testing is exhaustive even if some shapes would follow the same
execution path.

In [31] two approaches are presented for generating input data structures. Both of
these approaches can be used with our tool by writing a test driver that implements the
approach. In the �rst approach, the data structures are generated by using repeatedly
the basic methods the data structure o�ers (e.g., creation of a new data structure and
addition of a new element) if these are available. A data structure constructed this way
with symbolic elements is valid if the implementation of it is correct. It is important
to note here, that to generate all possible variants of a data structure, it may be
necessary to use all the operations the data structure provides. For example, it is
possible that some variants cannot be generated by using only additions but element
removals are also necessary.

The second approach is to use a method that checks if an required invariant holds
in a given data structure. When this method is executed with a symbolic input, the
local and object constraints added to the path constraint during the checking ensure
that the objects passing the check are representing valid data structures. In a way,
this approach can be seen as solving the method for checking invariants: the symbolic
execution of the method generates the constraints that lead to valid structures and the
execution paths leading to invalid structures can be terminated before the generated
structure is passed to the system under test.
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Chapter 4

Generating Inputs

In this chapter the focus is moved to describing the second main part of our tool, the
test input selector, which receives the constraints generated during test runs and uses
these constraints to compute new input values. Many of the previously implemented
dynamic symbolic execution tools, such as [27, 17], use information only from the
latest test run. This, in practice, limits the order in which a symbolic execution
tree of a program is explored to a depth �rst search but on the positive side saves
memory as there is no need to construct a representation of the symbolic execution
tree. Our tool, however, constructs and maintains a symbolic execution tree based
on the information of all the previous test runs. A similar approach is also used in a
more recent tool called Pex [29]. Constructing a symbolic execution tree allows the
test input selector to use a variety of di�erent strategies on how to choose an unvisited
branch from the tree for the next test run. It also makes it possible to run multiple
test runs concurrently as the test runs exercise di�erent execution paths and the test
runs need only communicate with the test input selector and not with each other.
This will be further discussed in this chapter and in Chapter 5.

The general working principle of the test input selector is shown in Figure 4.1. The test
input selector uses a strategy S to select an unvisited node from the symbolic execution
tree. The search strategies implemented in our tool are discussed in Section 4.2.
After an unvisited node is selected, a path constraint corresponding to it is formed
by collecting local and object constraints on the path from the unvisited node to the
root of the tree (lines 6-8). For the �rst test run the path constraint is considered to
be true so that the �rst test run will be executed with unconstrained input values.
To get concrete input values for a desired execution path the path constraint is given
to an o�-the-shelf constraint solver. Solving the path constraints is discussed in more
detail in Section 4.3. In particular, it will be discussed how object constraints are
solved and what implications they might have on the symbolic execution tree, as the
lazy initialisation approach used by the test executors can cause some complications
if these are not taken into account. If the path constraint is satis�able, the concrete
input values that satisfy the constraint are given to a test executor and the symbolic
execution tree is updated based on the messages generated during the test run.

How the symbolic execution trees are represented and updated based on the received
messages are discussed in the following section. Because of the way how our tool
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1 Tree T = new symbolic execution tree;
2 Strategy S = select search strategy;
3 while (T has unvisited nodes)
4 m = n = S (T ); ∥an unvisited node n is selected by using strategy S
5 pc = >;
6 while (m , T.root)
7 pc = pc ∧ m.constraint; ∥a path constraint pc is constructed
8 m = m.parent;
9 inputs = solve(pc);
10 if (inputs , unsatis�able)
11 Give inputs to a test executor e;
12 Expand n based on symbolic execution done by e;
13 if (e reports an error)
14 Report input values leading to error;
15 else

16 checkAlternative(n);
17 mark n visited;

Figure 4.1: General testing algorithm

constructs symbolic execution trees, it is sometimes necessary to modify the tree
when a path constraint is found to be unsatis�able as hinted by line 16 in Figure 4.1.
The purpose of this method call will also be explained in the following section.

4.1 Representing Symbolic Execution Trees

The data structure for the symbolic execution tree can vary from a search strategy to
another as each strategy might need to have some information stored to the tree that
no other strategy requires. Any data structure that is used to maintain the information
needed to compute new input values must have the following three characteristics:

• it can be used to get path constraints for currently unvisited branches,

• it can be used to check that no previously visited branches will be added to the
set of unvisited branches, and

• it can be used to check that a test run follows the execution path predicted by
the branches in the symbolic execution tree.

The �rst characteristic is self explanatory, the main purpose of a symbolic execution
tree is to provide the path constraints so that concrete input values can be computed.
The second characteristic is necessary so that it can be quaranteed that no symbolic
execution path is explored multiple times. Finally, the third characteristic is needed

28



Message type Description

Assignment A new symbolic value has been created due to a new input
or assignment statement that uses a symbolic value with a
binary operator.

Branch Symbolic value has been used at a branching statement. Con-
tains a local or object constraint and the branch that was
taken by the concrete execution.

Object Initialisation A symbolic object has been initialised.
Goto limit The number of goto statements executed during a test run has

exceeded the given limit and the test run has been terminated
as a result.

Method call limit The number of method calls executed during a test run has
exceeded the given limit.

Error The Java program under test has terminated due to an un-
caught exception.

End The program has terminated normally.

Table 4.1: Message types and their descriptions

because it is possible due to approximations our tool makes that a test run does not
follow the execution path that would be expected after solving a path constraint of
an unexplored branch in the symbolic execution tree. Handling the executions that
fail to follow the predicted path is discussed in more detail later in this chapter.

In principle it is possible to simply store path constraints of the unvisited branches,
for example, to a list instead of a tree and select one of them when a new test run
requires input values. However, this would require that in each element in the list
there is enough information in addition to the path constraint so that it is possible to
check the two latter characteristics listed above. By using trees it is not necessary to
duplicate any data of a given node to any successor nodes in its subtree. This allows
us to save some memory. All the strategies currently implemented in our tool use
binary trees as the main data structure and even though there are some di�erences
in the �elds that each node in the tree has, the basic principle how the trees are
constructed is the same.

It will be described next how a node in a symbolic execution tree is expanded based
on the messages received from test executors and after that the problem of executions
failing to follow the correct path is looked into.

4.1.1 Constructing Symbolic Execution Trees

As illustrated by the examples in Chapter 2, each path in a symbolic execution tree
represents a possible pre�x of an execution path. The symbolic execution tree is
constructed by adding new nodes and creating new paths based on the messages
generated during test runs. The types of messages a test input selector can receive
are shown in Table 4.1 as a summary from Chapter 3. Assume that a node has been
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1 L i s t l 1 = input ( ) ;
2 L i s t l 2 = input ( ) ;
3 int x = input ( ) ;
4
5 i f ( x == 5) {
6 i f ( l 1 != null )
7 i f ( l 2 != null ) {
8 l 1 . va lue = l2 . va lue ;
9
10 i f ( l 1 == l2 )
11 pr in t ( l 1 . va lue ) ;
12 }
13 }

Figure 4.2: Symbolic object example

selected from the symbolic execution tree as the current node that is to be expanded.
As a basic principle, all received assignment messages create a single child node to
the current node being expanded and the assignment in the message (e.g., s0 = input1
or s5 = s2 × 8) is set as a constraint for all the paths that contain the newly added
node. A branching message creates two child nodes and sets the constraint in the
message as a constraint for the �rst node and a negation of the constraint for the the
other node. The child node that corresponds to the path that the concrete execution
is following is chosen as the node that will be expanded by future messages and the
other is marked as unvisited.

Goto limit, method call limit and error messages denote that the current path is not
explored any further and the current node that was to be expanded is marked as
�nished. If both children of the parent of this node are marked as �nished, the parent
is set to be �nished also. If the used search strategy does not need information about
the already visited subtrees in the symbolic execution tree, it also possible to delete
unnecessary nodes from the tree. This can be done when a node is marked �nished
and it does not have any children or the child nodes have been marked as �nished.

For symbolic execution that uses only primitive data types, the construction method
described above is enough and a path constraint for an unvisited node can be formed
by collecting all constraints on a path from root to the unvisited node. However,
when symbolic objects are used with lazy initialisation the situation is slightly more
complex. Consider the example program in Figure 4.2. Let us assume that the test
input selector has generated inputs that will take the true branches on the �rst three
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if-statements and the false branch on the fourth. The partial symbolic execution tree
that is constructed based on this test run is shown on the right side of the program
code. Note that the symbolic list objects are initialised lazily when line 8 is executed.
Assume now that for the next test run the test input selector wants to follow the
same execution path as before with the exception that the execution is forced to take
the true branch on line 10. We would like to start expanding the unvisited node
corresponding to this path in the symbolic execution tree but if this is done, the
resulting path would no longer represent exactly the symbolic events happening when
the execution path is followed. This is because when l1 and l2 are set to point to the
same object, the lazy initialisation of the latter object will not happen anymore as it
is already initialised. Based on the �rst test run, it is expected that the third input
value (input3) will be used during lazy initialisation but on the second test run, the
third input value may be assigned at some later point if the program continues beyond
the code presented in our example. This can lead to giving input values to the test
executor in a wrong order. Moreover, in the general case the lazy initialisation process
may add new constraints and branches to the symbolic execution tree depending on
whether the user has implemented a custom initialisation method and this can cause
further inconsistencies to the symbolic execution tree.

To avoid this problem a symbolic execution path must branch into separate paths
when di�erent objects are given as inputs at the same input location. This approach
introduces two questions that need to be answered. Firstly, where in the symbolic
execution tree the branching to two separate paths should occur and secondly, what
branches must be created based on the collected constraints.

Let us concentrate on the �rst question and assume for a moment that all the branches
that need to be created due to di�erent object inputs are known. One possible place
to make a branch in the symbolic execution tree is the point where a program gets an
object as input. As this is the location where a program can start to use the concrete
input object it seems natural to create a branch at this point for each di�erent object
that are given as input. A partial symbolic execution tree of the program in Figure 4.2
that has been constructed using this approach is shown in Figure 4.3. Note that
branching points have been speci�cally marked with nodes �lled with grey colour
on the tree and for clarity these nodes are allowed to have more than two children
although an equivalent branching could be done with binary trees by using additional
nodes.

Although with a symbolic execution tree like shown in Figure 4.3 it is possible to
avoid the inconsistency problems when the same input object is used at di�erent
input location, there is a downside in creating such trees. Consider the nodes in the
tree marked with number 1. The execution paths leading to those nodes are in fact the
same in all cases (i.e., the same statements are executed to reach them). Imagine that
the program in Figure 4.2 continues after the line 13 and the program does not use
the objects l1 and l2 after the example code snippet. This results in the fact that all
the subtrees of the nodes marked with number 1 are identical and therefore exploring
all the paths shown in Figure 4.3 leads to exploring the same program behaviour
multiple times. Exploring these identical executions can be very expensive especially
if the subtrees are large.
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Figure 4.3: Symbolic execution tree with branching for di�erent object inputs

Note that using the approach taken in jCUTE where lazy initialisation is not used
has the same problem. In jCUTE the input objects are set to be null in the �rst test
run that uses them and initialised to be non-null for the following test runs. Due to
initialising the input object at the input location the symbolic execution e�ectively
branches at the same locations as in Figure 4.3.

It is, however, possible to improve the situation by changing the location where the
branching points are created. Although it is true that the program receives a concrete
input object when an input statement is executed, it is also true that the object is
not used before one of its �elds or methods is accessed. Therefore we propose that
the branching points are added to the symbolic execution trees right before the lazy
initialisation points because input objects are not used before lazy initialisation. This
way it is possible to take advantage of the fact that there can be statements between an
input location and the point where an input objects is started to being used such that
these statements create execution paths that are not needed to be explored multiple
times.

An example of this improved approach is shown bellow but before that the question
of how to create symbolic execution trees with the discussed kind of branching is
addressed. We propose the following approach to constructing the necessary branches.
When a test input selector receives a lazy initialisation message, a branching point
is added to the current symbolic execution path. From this branching point a single
outgoing branch is created where the logical address of the object to be initialised
is �xed to a value that has not yet been used on the current path (e.g., setting a
constraint obj2 = 2). The symbolic execution continues normally after the branching
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checkAlternative(n)
1 if (n.constraint is of type obji = obj j)
2 m = n;
3 l = not found;
4 t = null;
5 while (m , T.root ∧ l = not found)
6 if (m.constraint ∈ {objk = a | k ∈ {i, j}, a ∈ N \ {0}})
7 if (t = null)
8 t = m.parent;
9 x = k;
10 else

11 l = a;
12 m = m.parent;
13 if (m , T.root)
14 if (t does not have a child with constraint objx = l)
15 Add a new child node to t with constraint objx = l;
16 Mark the new node unvisited;

Figure 4.4: Adding branches for di�erent input objects

point has been created. Consider now that in the subtree after the point where the
logical address of the object was assigned is an object constraint that contradicts
the assignment (e.g., in the symbolic execution path it is �xed that obj1 = 1 and
obj2 = 2 and there is an object constraint obj1 = obj2). Giving a path constraint with
such assignments and an object constraint to a constraint solver results in getting an
answer that the path condition in unsatis�able. However, the path condition might
be unsatis�able because of the �xed assignments made at branching points and it is
possible that with di�erent assignments the path condition becomes satis�able. If this
is the case, new branches are needed to be created to the branching locations. To
do this our tool executes a checkAlternative method whenever an unsatis�able
path constraint is encountered as shown in Figure 4.1. The method itself is shown in
Figure 4.4.

To determine whether a new branch is needed to be added to the symbolic execution
tree when a path constraint is found to be unsatis�able, checkAlternative �rst
checks if the last constraint of the path constraint is an object constraint that compares
two input symbols to each other (line 1). If this is not the case, it is safe to say that
the path constraint is truly unsatis�able. The reason for this is that the last constraint
corresponds to a branch in the program that was not followed by a concrete execution
that caused the node to be added. This means that the path constraint without the
last constraint is quaranteed to be satis�able. As only object constraints a�ect the
values of objects, there is no need to proceed further if the last constraint is not an
object constraint. Additionally, the checking can be stopped if the object constraint
requires an input symbol to have a speci�c logical address as the only cases where
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these kind of constraints are constructed are when checkAlternative is called or
when an object is required to be a null reference. If an object is required to be a null
reference and lazy initialisation (and a commitment to a speci�c logical address) of
that object has already been done, it is not possible that the object can be null as
at least one of its �elds has been accessed. To catch null pointer exceptions when no
object constraint requires an object to be null, it is checked at the lazy initialisation
points if the collected path constraint so far allows the object to be null. If this is the
case, inputs that will necessarily cause a null pointer exception can be generated.

If the last constraint is of the correct type, the symbolic execution path is then searched
(lines 5-6) for branching points where input symbols in the last constraint are assigned
their logical addresses. If branching points cannot be found for both of the input
symbols (i.e., the search was not stopped before the root of the tree as checked in
line 13), the path constraint is unsatis�able as the commitments to speci�c logical
addresses cannot in this case be the cause of the unsatis�ability. If the branching
points are found, a new branch is constructed at the branching point that was found
�rst (i.e., located deeper in the symbolic execution path) with a commitment to the
same logical address as used in the other located branching point unless such branch
has already been created. The node corresponding to this newly added branch is then
marked as un�nished.

Example 6. Let us look at how the symbolic execution tree of the program shown
in Figure 4.2 is constructed by using the approach described above. Figure 4.5 shows
the �rst test run on the left side of the �gure, which is the same as the one depicted
in Figure 4.2. The only di�erence is that new branching points shown with dark grey
colour are added to the tree with �xed assignments obj1 = 1 and obj2 = 2. Let us
assume that the unvisited node with the object constraint obj1 = obj2 is selected to
be extended next. The path constraint corresponding to this node is unsatis�able
because the �xed assignments contradict the object constraint in the unvisited node.
Because of the unsatis�ability the checkAlternative method is called and it lo-
cates the two branching points and adds a new node with a constraint obj2 = 1 to
the branching point located deeper in the symbolic execution tree. This new node is
marked unvisited and can be explored instead of the node that was originally selected.

The second test run, shown on the right side of Figure 4.5, extends the newly added
node by requiring both of the object inputs to have the same logical address. Note
that the second test runs creates an unvisited node with object constraint obj1 , obj2.
This is again unsatis�able with the used object assignments but as the last constraint
is not of the type obji = obj j, checkAlternative determines that this branch must
be truly unsatis�able (as di�erent input objects are always initialised to be di�erent
unless required otherwise by a branchin statement, such input must have already been
used during earlier test runs).

When the trees in Figure 4.3 and Figure 4.5 are compared, it can be seen that the
branch where x , 5 is explored only once in Figure 4.5 instead of four times as in
Figure 4.3. Although the approach described here helps avoiding some test runs that
exercise the same behaviour, there is still room for further improvement. This is be-
cause the checkAlternative method creates new branches at the lazy initialisation
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Figure 4.5: Example of additional branching for di�erent input objects

point but does not take into account the execution that happened after the initiali-
sation on the test run that created the new branch. In other words, each time a new
branch is added to a branching point, the whole subtree after that point is explored
for each of the �xed assignments. These subtrees can containt execution paths that
are the same as in other already explored subtrees.

Note also that the described way of creating a symbolic execution tree and path con-
straints is not necessarily optimal. Currently the symbolic assignments are considered
as local constraints and as each di�erent symbolic value is represented by an unique
symbolic identi�er, the path constraints can contain a large number of variables that
the constraint solver must process (e.g., s0 = input1 ∧ s1 = s0 + 5 ∧ s1 > 0 instead of
input1 + 5 > 0). One possibility is to remove the intermediate variables by writing
open the path constraints so that they contain only input variables. It is also not
necessary for the test executors to report assignment events as it would be enough to
only send local constraints in the open written form to the test input selector. As the
constrains in that form can become large, they should be simpli�ed whenever possible
(this process is discussed later in Section 4.3.3). If the local or path constraints are
processed to the simpli�ed open written form by test executors, this processing will
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1 int example ( int x , int y )
2 {
3 i f ( y > x)
4 i f ( x > blackBox (y ) )
5 . . .
6 else

7 . . .
8 else

9 . . .
10 }

Figure 4.6: Example of execution failing to follow the correct path

be done for each constraint no matter if they are used or not due to the number of
execution paths being so large so that the test generation process is terminated before
all of them are explored and therefore before all the path constraints are solved. On
the other hand, if the test input selector processes constraints, it can be done on de-
mand to avoid doing unnecessary work but it would also mean that the task is moved
to the selector that already must coordinate with all test executors that are running
in case that many of them are run concurrently. Evaluating di�erent alternatives
and improving the current way of constructing and storing path constraints is left for
future work.

4.1.2 Failing to Follow a Predicted Execution Path

When a new test run is started, one of the nodes in the tree corresponding to an
unexplored branch is selected and the tree is expanded from that node onwards based
on the messages the test executor sends as explained in the previous subsection. Before
the tree can be expanded, it is necessary to check that only those messages are used
that are received after the test run has reached the point where the execution of an
unexplored part of the execution path has started. It is also necessary to check that
the test run will in fact follow the predicted execution path. The reason why this
check is needed is that our tool approximates black box methods and operators not
supported by the constraint solver with concrete values and also because it does not
create exact path constraints with aliasing as shown in Chapter 3.

Example 7. Let us consider the method in Figure 4.6. Assume that the method
blackBox is uninstrumented and returns the same value as it gets as an argument.
Because the method is uninstrumented, it will only return concrete values. In other
words, the symbolic value associated with variable y is stripped away by the method.
Now if the example method is tested with input values x = 5 and y = 10, the program
will end up executing code from line 7 onwards and at the same time get a path
constraint y > x ∧ x > 10 that is assumed to correspond to inputs that lead to
executing line 5. A possible solution of x = 11 and y = 12 to this constraint will,
however, end up also executing line 7 and if this deviation from the expected path is
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not noticed, the test input selector ends up expanding a wrong node in the symbolic
execution tree.

To make sure that a test run follows the expected execution path the bit-vectors cor-
responding to the branches taken during concrete execution as explained in Chapter 3
are used. When a node corresponding to an unvisited branch is added to the symbolic
execution tree, a bit-vector containing the path to the node is stored to it. When a
node is selected to be expanded, the test input selector checks whether the start of
the bit-vector created by the test run matches the stored bit-vector. If it does, the
node can be expanded with messages received after the bit-vectors match. Otherwise
the test run has chosen a di�erent branch at some point of the execution. In this case
the target node is set to be �nished and the user is noti�ed that the tool has failed to
do precise symbolic execution and some possible execution paths may be left untested
as a result.

4.2 Search Strategies

As each test run can potentially add multiple new branches that can be explored to
the symbolic execution tree, the test input selector has the possibility to choose which
of these unexplored branches is to be tested next. When the aim is to explore all of
the execution paths of a given program, the order in which the execution paths are
tested makes little di�erence1 except that the time to �nd the �rst error might di�er.
However, when the number of execution paths is too large in order to explore them
all within a feasible time limit, di�erent search strategies and heuristics will perform
di�erently. In this section we will look at the three search strategies that have been
implemented in our tool.

4.2.1 Depth-�rst and Breadth-�rst Searches

One of the simplest ways of selecting an unvisited node from the symbolic execution
tree is to use classical depth-�rst (DFS) or breadth-�rst (BFS) searches. In both of
these cases the symbolic execution tree is traversed according to the search strategy
and the �rst unvisited branch located is selected and new input values are computed
by solving the path constraint associated to that branch.

DFS has the positive side that when only one test executor is run at a time, the search
strategy will systematically explore one subtree of any node before exploring the other
and once a subtree has been fully searched it can be deleted from memory. This makes
DFS very memory e�cient. The fact that one subtree is systematically explored before
other possible execution paths is also a weakness of DFS as the strategy will get stuck
exploring only a small local part of a program under test if it has a large enough
number of execution paths so that only a small amount of them are tested. Another

1If some execution path reduction methods are used, their performance may also depend on the

search order but this fact is not discussed further here.
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downside with DFS is that as it aims to select nodes that are deep in the symbolic
execution tree, the path constraints for these are longer than for the nodes closer to
the root node and as such more di�cult for a constraint solver to solve.

BFS on the other hand requires most of the symbolic execution tree that has been
generated during test runs to be kept in memory but at the same time avoids many
of the weaknesses of DFS. The strategy does not get stuck in the same way as DFS
does and it also aims to solve the easiest path constraints �rst. One downside with
BFS is that if the program, for example, is a parser and it does some input �ltering
as it expects to read input strings with correct syntax, BFS concentrates its e�ort on
exploring these early paths and �nds all the possible ways of creating incorrect inputs
to the system. This is usually uninteresting if the aim is to test that the parser works
correctly with correct input values. In otherwords, BFS explores systematically the
early branches in the control �ow of a program and for this reason often misses bugs
deep in the symbolic execution tree if the whole tree is not explored.

Both of these strategies search the symbolic execution tree in a �xed order without
taking the structure of the program under test into account which could increase the
possibility on �nding errors on large programs. Also both of these strategies work
in their intended way only when no more than one test executor is running at a
time. It is of course possible to use these strategies with many test executors running
concurrently by normally searching the symbolic execution tree (which might get
modi�ed during the search). This requires that each branch that is being expanded
currently by some test executor is marked as such so that they cannot be given to
be tested by another test executor. With DFS this means that the memory e�ciency
advantage is somewhat diminished as the subtrees of nodes might not be strictly tested
in a �xed order. In the BFS case running tests concurrently does not introduce any
new disadvantages.

4.2.2 Random Priority Search

The third search strategy in our tool, which is called a random priority search, is de-
signed to be used easily with a varying number of test executors running concurrently
and to avoid the localisation problem of DFS and the preference of BFS to concentrate
on covering the branches near the root of the symbolic execution tree �rst. In this
search strategy each new unvisited branch that is added to the symbolic execution
tree is given a priority value randomly on some prede�ned value range and when new
input values are required the branch with the highest priority is selected to be tested
next. To be able to get the branch with the highest priority without searching the
whole symbolic execution tree, a priority queue is maintained as an auxiliary data
structure that contains pointers to the branch nodes.

Downside with random priority search is that it can ignore some branches if they get
low priorities. For example, if at the �rst branch added to the symbolic execution
tree the unvisited branch gets the lowest possible priority, the whole subtree of the
branch that was taken during the �rst test run is explored before testing any of the
symbolic execution paths on the other subtree. One possibility to address this problem
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is to periodically reassign new random priorities to the unvisited nodes. This requires
updating the whole priority queue which can be expensive if the number of unvisited
nodes is large.

Like the DFS and BFS searches, the random priority search in its basic form does not
take the structure of the program under test into account. To make the search less
random, a variant of the random priority search has been implemented where the range
of the priorities assigned to unvisited nodes depend on whether the node is created
due to a branching statement on a speci�c code line that has already been executed
in one of the previous test runs or not. Distinguishing one branching statement from
another can be done by giving unique static ID to each branching statement during
instrumentation and then reporting the ID whenever a local or object constraint is
created. If the branching statement was not executed before, we know that executing
the unvisited branch of this statement will lead to exploring a previously unexplored
branch in the control �ow graph of the program. If such branches are given a higher
probability to get a better priority, the search strategy will be guided towards getting
better branch coverage before exploring other execution paths. By adjusting the
ranges of possible priorities for the two cases, the user can a�ect how greedily the
search aims to improve branch coverage.

Currently our tool does not collect during an execution any other information that
could be used to adjust the priorities in addtition to the branching statement IDs.
We plan on investigating new ways of getting useful information from the execution
or the structure of the program so that we can use the priority approach to guide the
testing to �nd errors more e�ciently.

4.2.3 Combining Search Strategies

If the data structure representation of the symbolic execution tree is compatible with
multiple search strategies, it is possible in our tool to use them all together in the
same testing process. In other words, when test executors request new inputs, it is
possible to choose a search strategy that will be used regardless of the search strategy
that had been used previously.

In [26] it was discussed that a search strategy may perform better with some prob-
lems and worse on others when compared to another search strategy. This gives the
idea that our ability to �nd errors is not so strictly dependend on whether a single
strategy performs well on the current problem or not if multiple di�erent strategies
are combined to a new meta strategy as is done in [29]. A framework for allowing
di�erent strategies to communicate with each other was also presented in [26]. This
allows strategies to guide one another to interesting paths and take advantage of each
others strengths in di�erent situations. For example, a random search could �nd an
interesting branch and DFS search would then be started to explore the subtree of this
branch in a more thorough manner. We have not yet implemented any such strategies
that can do this kind of communication but one possible direction for future work is
to investigate what makes an execution branch interesting in our symbolic execution
context and to develop more sophisticated search strategies.
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4.2.4 Reporting Errors

As the aim of testing is to search for errors in a given program, the errors found during
test runs are reported to the user. When an error is found, the input values used to
reach the error state are stored so that the same execution can be repeated at a later
time if this is desired. Naturally, if the aim is to generate test inputs for a later use,
the concrete input values for all distinct execution paths can be stored and given to
the user.

If the program contains an error that can be reached by multiple di�erent execution
paths, our tool will report an error for each of these paths unless the user selects a limit
to the number of errors after which the search is terminated. This can in worst case
lead to reporting a large number of errors because of one bug in the implementation.
For example, if a program throws an exception if a null element is added to an input
data structure, our tool might generate all possible variants of the data structure
where the null element is added. To make it easier for the user to analyse the found
errors, it is possible to give inputs for the shortest execution in respect to the number
of symbolic branching statements encountered during execution by sorting the found
errors by the depth in the symbolic execution tree where the error happened. Note
that this does not guarantee that the concrete execution to the error statement is the
shortest one as we do not know the number of statements using only concrete values
that will be executed in any execution path.

4.3 Solving Path Constraints

It has been described so far how an unvisited branch is selected from the symbolic
execution tree and how the path constraint for that branch in obtained. In this section
a closer look is taken at how the input values for new test runs are computed with
the help of a constraint solver.

4.3.1 Local and Object Constraints

To obtain inputs from a path constraint it is �rst divided into two parts that are solved
separately. The �rst part consists of all the local constraints and the second part of
all the object constraints. Solving the �rst part is simple. The conjunction of all
local constraints are given to a constraint solver and if this conjunction is satis�able,
the concrete values for each symbol in it are obtained. From these symbols the input
symbols and their respective values are picked (the other symbols are the intermediate
identi�ers s0, s1 and so on) and given to the test executor.

Solving the second part of the path constraint requires more steps. The conjunction
of object constraints is �rst given to the constraint solver that consideres the symbols
in it to be integer variables. If the conjunction is unsatis�able, so is the whole path
constraint and if it is satis�able, the constraint solver could give some concrete integer
values to the object symbols that can be considered to be the object identi�ers.
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However, the satisfying assignment from the constraint solver is not used. The reason
for this is that there are additional requirements for the identi�er values that are not
expressed explicitly in the path constraint. For example, consider a path constraint
obj1 , obj2 ∧ obj3 = obj4. One possible satisfying assignment is obj1 = 1, obj2 =
2, obj3 = 3 and obj4 = 3 but the constraint is also satis�ed if obj1 = 3, obj2 = 0, obj3 = 3
and obj4 = 3. There are two problems shown by this example. Firstly, we have an
assumption that symbolic objects will be initialised as null references only is there is
an object constraint requiring this. In the second solution the assignment obj2 = 0
breaks this assumption. This has the e�ect that as we do not have symbolic values
associated with null input objects, some possible branches could be left out of the
symbolic execution three if this input object is compared with non-symbolic objects
or null references. Further more, there are no quarantees that the constraint solver
used will always return the same concrete values for a same kind of constraint. If on
the �rst test run the constraint solver gives an assignment obj2 = 0 and on the second
test run assignment obj2 = 2, the test runs might follow di�erent execution path pre�x
if some branches were left out during the �rst test run as explained above.

The second problem is that we also assume that two symbolic objects will be the same
only if there is a requirement for this in the path constraint. In the second assignment
the �rst, third and fourth input objects are set to be the same. This could for example
lead to a case where a system is only tested with an input linked list that has only
one element that points back to itself. This, of course, is a valid input structure but
as in this case only one concrete input object is created, our tool might not be able
create other kind of inputs as all the input objects now have the same symbolic value.

Because of the problems discussed above the constraint solver is used only to check if
the constraint is satis�able and if it is, identi�ers are assigned to the object symbols
in the following way. Our tool �rst builds an equivalence graph based on the object
constraints. This is done by adding each object symbol to the graph as nodes with
null as a special node and adding an undirected edge between nodes if the there is an
object constraint that requires the corresponding object symbols to be equal. Because
the constraint is satis�able, there is no need to worry about disequalities that could
make the constraint unsatis�able, that is, all object constraints with disequalities
are ignored while constructing the graph. The graph constructed this way divides
the node into equivalence classes. To the get the identi�er values for the symbolic
objects, one node is picked from the graph, all nodes that are reachable from that
node are collected and all the object symbols corresponding to these nodes are given
the same value. If the set of object symbols collected this way is N, the value given to
all symbols in N is determined in the following way. If the path constraint contains an
assignment for one of the object symbols in N, the value in that assignment is used.
Otherwise the value is a logical address that has not been used before on the symbolic
execution path in question. After the values are given, the nodes corresponding to
the symbols in N are removed from the graph and the process is repeated until the all
the nodes have been removed from the graph. The object identi�ers computed this
way are then given to the test executor.
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4.3.2 Solving Constraints Concurrently

The alert reader might already have noticed that there is a problem on how to solve
path constraints when the tool is used with multiple test runs executing concurrently.
If the test input selector solves path constraints when input values are required to
start a new test run, all the calls to the constraint solver happens in one centralised
place and this can become a performance bottleneck. To avoid this problem a way
to distribute constraint solving to di�erent computation nodes is required. We have
considered two alternatives for this: the testing system can be connected to a pool of
dedicated constraint solvers running on di�erent nodes or the path constraints can be
given to the test executor to solve before it starts the actual test run.

The �rst approach has a problem with load balancing. Ideally we want to start a
test run on one node immediately after the previous test run has ended. If the pool
of constraint solvers is too small, the test runs have to wait until a solver becomes
available. On the other hand, too large a pool will only waste resources that could be,
for example, used for executing test runs. For these reasons we have used the second
approach in our implementation where the test executors solve the path constraints
on demand. This partially blurs the division of the testing system to separate test
input selector and test executors but solves the load balancing problem and makes
the testing system easier to set up for the end user as there is no additional pool of
solvers involved.

4.3.3 Optimisations

The approach described above on how path constraints are constructed and solved can
be improved in various ways. We have implemented two optimisation for solving path
constraints. The �rst is called fast unsatis�ability check [27] where before giving a
path constraint to the constraint solver it is checked if the last constraint is a syntactic
negation of any of the preceding constraints. It if is, we can be sure that the path
constraint is unsatis�able without having to call the constraint solver. Checking the
last constraint this way is based on the observation that the path constraint without
the last constraint must be satis�able as it has been used to compute the input values
for the test run that caused the last constraint to be added.

The second optimisation is to store concrete input values used during current test
run to unvisited branches in the symbolic execution tree. If the branch is created
due to adding a local constraint, then the current object identi�ers are stored and
when adding a object constraint, the concrete input values are stored. Now when a
path constraint must be solved, we need solve only either the local or object part and
use the concrete values from the previous run for the other part. This can be done
because, as discussed above, only the last constraint can make the path constraint
unsatis�able and as the local and object parts are solved separately, the last constraint
can a�ect only one of them.

The �rst optimisation is severely limited in our current implementation due to the fact
that we always introduce new symbolic identi�ers (e.g., s0 and s1) when a symbolic
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value changes. For example, if we have a path constraint ending with s7 > 0 ∧ s7 ≤ 0,
we can use the optimisation. But if the variable having the symbolic value s7 is �rst
summed with some value (s8 = s7+c) and then subtracted the same value (s9 = s8−c),
we have a new symbolic identi�er for this value even though it represents a same value.
With these symbolic values the fast unsatis�ability check fails on a path constraint
ending s7 > 0∧ s9 ≤ 0. It would be possible to improve this situation by not creating a
new symbolic identi�er each time a value changes but to simplify the symbolic values
(e.g., s0 + 5 + 2 = s0 + 7). Simpli�cations based on folding constants and symbols
is just one technique that can be used. In [29] additional simpli�cation approaches
based on using BDD [7] representations of logical connectives and hash-consing [14]
among others as discussed.

In CUTE [27] the idea of our second optimisation is taken even further by an opti-
misation that allows path constraints to be solved incrementally. Note that taking
advantage of incremental constraint solvers is di�cult especially with search strate-
gies such as the random priority search as the constraints solved consecutively can
have few constraints common in them. The approach used in CUTE can be used
without an incremental solver and it can be utilised with any search strategy. The
optimisation based on the notions of dependency between di�erent constraints in a
path constraint. According to [27], two constraints c and c′ are dependent if either

• c and c′ have any common symbols in them, or

• there exists a constraint c′′ in the path constraint such that c and c′′ are depen-
dent and c′ and c′′ are dependent.

As discussed before, if the last constraint is removed from the path constraint C,
it is quaranteed to be satis�able. We can now go though all the constraints in C
and collect the ones that are dependent with the last constraint. The conjunction of
these constraints is then given to the constraint solver and in case it is satis�able,
the satisfying assignment is augmented with the concrete values used by a previous
test run to obtain all the input values. By using this optimisation, it was reported
in [27] that the constraints given to the constraint solver were reduced on average to
one-eight the size of the original path constraint on many cases.
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Chapter 5

Implementation

In this chapter the implementation details of our tool that is based on the methods
described in Chapters 3 and 4 are discussed. The limitations our tool has that the
users should be aware of are also discussed.

5.1 Structure of the Testing System

The structure of our tool is shown in Figure 5.1 and it can be seen as consisting
three main parts: the instrumenter, the test input selector and the test executors.
The instrumenter is based on a tool called Soot [30], that can be used to analyse
and transform Java byte code. Before a program is given to the instrumenter, the
input locations in the source code are marked so that the instrumenter knows how
to transform the code. Our tool provides a static class that is used for this in the
following fashion:

• int x = Symbolic.getInteger() is used to get an int type input value for a
variable x, and

• List l = Symbolic.getObject(�List�) indicates that an object l is an input
object.

Our tool has support for all primitive data types in Java as symbolic inputs with the
exception of �oat and double data types. Support for these missing types is planned
to be added in near future.

After the input variables have been marked in the source code, the program is given to
the instrumenter that transforms the code into an intermediate representation called
Jimple and adds the statements necessary for symbolic execution into it. When the
instrumentation is �nished, the code is transformed into byte code that can be run
over a standard Java Virtual Machine (JVM).

The instrumented program can be seen as a test executor. The test executors com-
municate with the test input selector to report the collected constraints and to receive
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Figure 5.1: Structure of the testing system

new input values. This communication is implemented by using TCP/IP connections.
The test input selector builds a symbolic execution tree to maintain the symbolic in-
formation about di�erent execution paths. Our tool uses Yices [11] as a constraint
solver but it is easy to modify the tool to add support for other constraint solvers as
well because the solvers are called though a single class that separates them from the
rest of the implementation.

The system can be also seen as a client/server architecture, where the test input
selector acts like a server and the test executors as clients. As di�erent test runs
do not depend on each other, it is possible to have multiple test runs executing
concurrently and reporting to the test input selector. This allows the tool to take
advantage of multicore processors and networks of computers.

As the test input selector and test executors are separate, it is possible to use a di�erent
kind of instrumentation, possibly even for a di�erent programming language, to obtain
a runnable test executor and still use the same test input selector provided that the
new test executors use the same communication protocol with the implemented test
input selector. The same goes also the other way around, it is possible to replace a
test input selector with an alternative implementation without the need to modify
how the test executors are constructed. The implemented tool is also designed to be
modular with respect to the search strategies. Adding new strategies for the test input
selector requires only writing classes that implement the symbolic execution tree and
the functionality that operates on the tree based on the messages received from the
test executors. Rest of the tool needs little modi�cation for new strategies except in
the case that additional information is needed to be collected during test runs which
can require additional instrumentation.

45



5.2 Limitations

The main limitations in our tool concern the automatic instrumentation process. In
order for the dynamic symbolic execution to be a worthwhile approach to generat-
ing test cases, at least the key parts the program under test must be instrumented.
Otherwise our ability to construct a reasonably extensive symbolic execution tree is
severely limited as the symbolic values will be approximated with concrete values.
This problem becomes especially clear with programs using the standard libraries
provided in Java Development Kit (JDK) as a part of them are restricted in a way
that a modi�ed versions of them cannot be used with the standard JVM. Consider,
for example, a program that places input values to an object instance of a String class.
If the String class cannot be instrumented, all the symbolic information associated
with the inputs are lost and the use of the String object will not result in constructing
any path constraints.

Luckily Sun Microsystems has released most of the source code of Java and provides
a public and freely modi�able version of the Java platform in OpenJDK project [25].
Investigating the use of of our tool with OpenJDK is planned for the future as it looks
like a promicing solution to the problem with instrumentation of the standard libraries.
Another possible solution is to implement a twin class hierarchy [13] of the standard
libraries. In this case the problematic classes are duplicated with di�erent names and
these duplicates are instrumented while leaving the original classes untouched. The
program under test would then be modi�ed to use the alternative classes in place of
the originals.

Also as our automatic instrumentation is based on the Soot tool, it is resticted to
the Java version it supports. At the time of writing this work, Soot has an almost
complete support for JDK 1.5.
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Chapter 6

Case Studies and Discussion

In this chapter the use of our tool and its ability to �nd errors are illustrated by
presenting case studies on testing various implementations of binary search trees and
sorting algorithms. The suitability of dynamic symbolic execution for test genera-
tion will also be discussed based on the case studies and experience gained during
the implementation of our tool. Some possible improvements to dynamic symbolic
executions that have been suggested in the literature are also discussed.

6.1 Test Arrangements

The case studies in this work were made by running our tool on several data structures
and sorting algorithms obtained from [32]. The data structures used were AVL tree
and basic binary search tree. The implementations of these two data structures were
tested by using a test driver that nondeterministically inserts to, removes from or
searches from the data structure a key given as an integer input. For each test run
this nondeterministic choice was repeated four times to modify or use the resulting
data structure. As in [32] no implementation for operation that removes a node
with a given key from an AVL tree is given, an implementation of this operation
available at http://cs-people.bu.edu/mullally/cs112/code/AvlTree.java was
used to complete the AVL tree data structure implementation.

The sorting algorithms used in the case studies were insertion sort, shell sort and
quicksort. To test these algorithms a test driver was used that creates an array of
size �ve and assigns an integer input as a value for each of the elements in the array.
This array was then sorted with one of the selected sorting algorithms and afterwards
it was checked that the sorting algorithm functioned correctly (i.e., the values in the
elements of the array are sorted). The method used for checking the correctness of
the result of the sorting algorithms is shown as Method 1 in Appendix A.

The used implementation of insertion sort compares the values of elements in a given
array by using a method that checks whether one value is greater than, less than or
equal to a second value. In insertion sort it is enough to know whether one value is
less than some given value and therefore an additional experiment was made where
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Test Case RT 1 RT 2 Paths Unsat Fast unsat

AVL tree 4m 2s 49s 1233 1086 98,9%
Binary search tree 4m 1s 39s 1233 1448 99,7%
Insertion sort 1 2m 50s 28s 541 2316 27,4%
Insertion sort 2 34s 6s 120 480 50,0%
Shell sort 2m 55 29s 541 3238 45,5%
Quicksort 1 2m 51s 28s 541 2316 27,4%
Quicksort 2 27m 45s 4m 33s 4683 24833 27,4%
Quicksort 3 17m 8s 2m 47s 4683 1420 0%

Table 6.1: Case studies

the comparison method was replaced with normal less than operator that gives only
true or false as a result instead of the three possibilities in the original version. With
quicksort two additional experiments were made. In the �rst one the size of the array
was increased to contain six elements and in the second one the array size was also
set to be six but the check that the sorting was done correctly was removed.

The experiments were run with two di�erent computer setups. In the �rst setup
one computer was used to run a single test executor at a time together with a test
input selector. In the second setup the test input selector was run on one dedicated
computer and six other computers were used to run concurrently one test executor per
computer. The computers used in the experiments had Intel Core 2 Duo processors
running at 1.8 GHz together with 2 GB of RAM. Random priority search was used
as the search strategy for each of the test runs.

6.2 Test Results

The results of applying our tool to the cases described in the previous section are
shown in Table 6.1. Insertion sort 1 is the unmodi�ed version of the implementation
given in [32] and Insertion sort 2 is the version where the value comparison is changed.
Quicksort 1 sorts an array of size �ve and in Quicksort 2 the size is increased to six.
Quicksort 3 is the experiment without the correctless check. RT 1 and RT 2 denote
the running times of testing using one computer and seven computers respectively.
Paths denotes the number of test runs needed to explore all the paths in the symbolic
execution tree and unsat tells the number nodes in the symbolic execution tree that
had unsatis�able path constraints. Fast unsat gives the percentage of how many of
these unsatis�able path constraints were identi�ed as unsatis�able by using the fast
unsatis�ability check described in Chapter 4.

Our tool did not detect errors on any of the implementations which was expected as
they are all text book examples. From the results in can be seen that the testing can
be e�ciently done by using multiple test executors that run concurrently. On these
experiments dividing the work to seven computers is approximately �ve to six times
faster than in the case where only one computer is used.
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When Insertion sort 1 and Insertion sort 2 are compared, it can be seen that the way
how two values are compared to each other has a noticeable e�ect on the number
of possible execution paths. Whether the comparison can return two or three values
has little e�ect on the e�ciency of the sorting algorithm itself but our tool tries to
compute input values that force the execution to explore all these possible return
values. In other words, even small changes that do not a�ect the functionality of the
program under test can make big di�erences to the size of the symbolic execution tree
of that program.

By comparing Quicksort 1 and Quicksort 2 it can be seen that our tool does not scale
well on large input arrays. In these experiments the reason for the blow up of execution
paths is that in order to test all the possible execution paths in any sorting algorithm
the number of test runs needed is factorial of the size of the input array. In other
words, all possible permutations of the input array must be explored. In Insertion
sort 2 it can be seen that the number of test runs is exactly 5!. In other cases the
number of test runs in further increased due to the use of three valued comparison
method that causes unnecessarily some permutations to be explored multiple times.
This is also the reason why in many of the experiments the number of test runs is
the same. Quicksort 3, on the other hand, shows that checking if the array has been
correctly sorted does not add any new execution paths but is responsible for creating
majority of the unsatis�able path constraints. This is because the sorting algorithm
works correctly and therefore it is impossible to create input values where the check
would fail when any of the array elements are compared to each other. In other words,
the check method used creates an unsatis�able path constraint each time it compares
two elements in the input array in order to check that they are in the correct order.

The fast unsatis�ability check functions well in these experiments and improves the
running time as in many cases it is possible to skip a call to a constraint solver.
However, these results can be misleading as all the programs tested use the input
values directly and do not modify them. As our tool does not simplify the constraints
as discussed in Chapter 4, it is expected that the fast unsatis�ability check does not
perform as well in cases where input values are used together with, for example,
summation and multiplication as in many cases it cannot be directly checked whether
two constraints are negations of each other. In [27], where such simpli�cations are
used, it is reported that the fast unsatis�ability check performs well on more varied
kind of programs as well.

As the implementations of the selected data structures and sorting algorithms did not
contain any errors according to our tool, the ability of the tool to detect errors was
tested by changing the insertion sort algorithm to function incorrectly. The original
algorithm is shown in Appendix A as Method 2 and the modi�ed version as Method 3.
The modi�cation makes the sorting algorithm function incorrectly only when a speci�c
input value is used. This kind of error was added because they are di�cult to detect
with random testing. As expected our tool was able to �nd input values that cause
the correctness check to fail. Our tool reports that on the modi�ed version there exists
1889 di�erent execution paths and 586 of these contain an error. This can be seen as
an example where a single bug can cause many errors to be reported. To test how fast
our tool can detect a single error, the limit of number of errors to be reported was set
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to one and the insertion sort with the error was tested 20 times. In these experiments
it took from three to 37 test runs to �nd the �rst execution path that causes an error.
On average it took 16 test runs to �nd the �rst error. The variance in the number of
test runs needed comes from the fact that the �rst test run is completely random and
the random priority search can also search the symbolic execution tree in di�erent
order each time.

In addition to the tests described above an experiment was made to �nd out how much
symbolic execution slows down the concrete execution without any instrumentation.
This was done by adding timers to the start and end of the program code. To make the
comparison, an uninstrumented version of insertion sort was executed with random
inputs 200 times and the instrumented version was also run 200 times. On average
the result was that in our tool doing symbolic execution together with the concrete
execution was approximately nine times slower than executing the program without
instrumentation. Note that this is only an approximation as the di�erent versions
most likely exercised di�erent execution paths due to the random values used. The
di�erence can naturally also vary between di�erent programs as the amount of how
much symbolic execution will be done varies from program to program. Nevertheless,
it can be seen that the symbolic execution causes a clear slowdown to the running
time of test runs. Note also that the time to solve path constraints is not included in
this comparison as only the time to execute the program code was taken into account.

6.3 Discussion

Based on the case studies some general observations can be made. First of all, the test
generation method described in this work su�ers from a path explosion problem. This
means that on large or even small but non-trivial programs the number of di�erent
execution paths can be so large that it takes too long to test them all. Therefore our
tool does not scale well for large programs. A number of di�erent techniques has been
proposed in the literature to alleviate this problem. In hybrid concolic testing [23]
dynamic symbolic execution is combined with random testing. In [24] a technique
is introduced where low-level method calls are abstracted by replazing them with
unconstraint input values (this can be seen as using a stub for the method that returns
unconstraint values) and for the resulting execution paths it is checked whether a real
execution path can be found through the method without abstraction. The aim in
this technique is to concentrate on the program at hand and avoid generating tests
for library methods that may already been tested or contain functionality not needed
by the calling program.

Another approach to avoid generating all possible paths though library functions is
to do symbolic execution compositionally. In [15, 1] various techniques are introduced
where method calls can be expressed as summaries that are used instead of executing
the method symbolically. The summaries can be seen as conjunctions of preconditions
on method inputs and postconditions on method outputs so that when a summary
is added to a path constraint it can describe multiple paths through the method
using a single formula. In a way a summary can be seen as simultaneously following
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every path through the method and using a constraint solver to check that when an
unvisited branch is wanted to be visited a path through the summarised method can
be found. This way each method is needed to be executed symbolically only once and
execution paths through the method that are not relevant to the rest of the program
are not needed to be explored. The summaries can be constructed with separate unit
tests or on demand while testing the main program.

Another factor in the path explosion problem is that some execution paths can have
di�erent pre�xes but the post�xes exercise exactly the same behaviour. An example
of this was seen in Chapter 4 when the program in Figure 4.2 was considered. As
discussed at that point it is possible that large but identical subtrees are explored
even when it is enough to explore only one of them. In [6] a technique called RWset is
introduced that takes advantage of this fact and tries to prune paths from the symbolic
execution tree that have the same side-e�ects as some already explored path. The
main idea in RWset is to collect information of reads and writes of di�erent variables
in the program under test. If some variable x is not used after some speci�c point in
execution and the same program state excluding the information about x is reached by
two di�erent execution paths, it is safe to prune one of the paths as the only di�erence
can be due to the value of x and it is not used in following execution.

Symbolic execution is also slow as seen in the case studies. Although our tool is not
optimised for the fastest possible execution it can be noted that running code without
instrumentation is many times faster in most cases. Luckily this slowdown can be
seen as a constant factor and so it is not as severe problem as the path explosion.

On a positive side errors that require speci�c input values that are hard to generate
by random testing can be found e�ciently. However, it should be noted that when
not all execution paths can be tested, our tools ability to �nd errors depends on ran-
dom values as it blindly explores di�erent execution paths. To improve the situation
search strategies that can guide the search towards possible errors are planned to be
investigated in the future.
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Chapter 7

Conclusions

Dynamic symbolic execution is a promising approach for generating test inputs that
will exercise di�erent execution paths of a given program. In this work an instru-
mentation process has been developed that allows a program to be executed both
concretely and symbolically at the same time. The discussed approach is based on
collecting constraints for input values during execution and then using a constraint
solver to obtain concrete input values if the conjunction of the constraints is satis�-
able. This means that our ability to do symbolic execution relies heavily on the ability
of the used constraint solver to solve the given constraints. This also limits our ability
to do full symbolic execution to those cases where it is possible to expresses the col-
lected constraints in a theory (e.g., linear integer arithmetic and �xed size bit-vectors)
supported by the constraint solver.

The main contributions of this work are the introduction of an alternative way to
initialise symbolic objects based on lazy initialisation in comparison to the method
described in [27] and a framework that allows the test generation process to be dis-
tributed to many computating nodes so that the test executions can be run concur-
rently. It is also described in this work how the lazy initialisation process can help in
avoiding some cases where the same behaviour of a program is tested multiple times.

Many of the discussed methods have been implemented in a prototype test generation
tool. From experiments it can be concluded that in its basic form dynamic symbolic
execution does not currently scale well for large programs. The reason for this is
that large programs commonly have so many execution paths (and without limiting
the execution depth, even in�nitely many of them) that it is infeasible to test them
all within a reasonable time limit. With better search heuristics that decide which
execution path to explore next and by utilising more information from the structure
of the program under test we hope to improve our tool to achieve better scalability.

7.1 Future work

As future work it is planned to do research on methods for making our tool to be
able to handle a broader class of programs and to improve the scalability issues. For
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additional support we are especially interested in extending the dynamic symbolic
execution to concurrent programs. It is possible, for example, to sequentialise a
concurrent program by using interleaving semantics and take advantage of well known
partial-order reductions [9]. This increases the number of di�erent execution paths
to explore and combined with the path explosion problem makes obtaining good
scalability even more challenging.

To improve the tools ability to do symbolic execution, adding support for bit-vectors
has been planned in order to avoid the need to approximate non-linear path con-
straints. The accuracy of symbolic execution could also be improved by collecting
completely accurate path constraints instead of having the non-aliasing assumption
as discussed in Chapter 3.

To alleviate the path explosion problem, new ways are investigated to improve the
developed search heuristics. Currently our tool can aim to achieve �rst a good branch
coverage before exploring other execution paths as discussed in Chapter 4. Other
kind of metrics could also be used to guide the selection of which execution path is
to be tested next. By taking the structure or a formal speci�cation of a system under
test into account, it is hoped that the search process can be guided so that errors can
be found faster and the user can obtain better con�dence to the system even when
not all the execution paths have been tested. Also doing dynamic symbolic execution
compositionally as discussed in Chapter 6 seems a promising way to increase the size
of programs that can be handled by our tool. Ways to prune paths from symbolic
execution trees that do not increase our coverage of the behaviour a program has
would also improve scalability as shown in [6].

Another direction for future work is to combine dynamic symbolic execution with
runtime monitoring. In runtime monitoring a program is tested against a formal
speci�cation during a test run. To use runtime monitoring and dynamic symbolic
execution e�ciently together di�erent ways are planned to be investigated to take the
speci�cation into account when the order in which the execution paths are tested is
selected. This way it is hoped that the testing process can be guided to obtain a good
coverage of a desired part of the speci�cation.
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Appendix A

Source Code for the Case Studies

A.1 Method 1

1 public stat ic boolean i s S o r t ed ( IntConta iner a [ ] ) {
2 for ( int i = a . l ength − 1 ; i > 0 ; i −−)
3 i f ( a [ i ] . va lue < a [ i −1 ] . va lue )
4 return fa l se ;
5
6 return true ;
7 }

A.2 Method 2

1 public stat ic void i n s e r t i o nS o r t ( IntConta iner [ ] a )
2 {
3 int j ;
4
5 for ( int p = 1 ; p < a . l ength ; p++)
6 {
7 IntConta iner tmp = a [ p ] ;
8
9 for ( j = p ; j > 0 && tmp . compareTo ( a [ j −1] ) < 0 ; j −−)
10 a [ j ] = a [ j − 1 ] ;
11
12 a [ j ] = tmp ;
13 }
14 }
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A.3 Method 3

1 public stat ic void i n s e r t i o nS o r t ( IntConta iner [ ] a )
2 {
3 int j ;
4
5 for ( int p = 1 ; p < a . l ength ; p++)
6 {
7 IntConta iner tmp = a [ p ] ;
8
9 for ( j = p ; j > 0 && tmp . compareTo ( a [ j −1] ) < 0 ; j −−)
10 i f ( a [ j ] . va lue != 7153)
11 a [ j ] = a [ j − 1 ] ;
12
13 a [ j ] = tmp ;
14 }
15 }
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