
Helsinki University of Technology Laboratory for Theoretical Computer Science

Technical Reports 25

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tekninen raportti 25

Espoo 2007 HUT-TCS-B25

A SLICER FOR UML STATE MACHINES

Vesa Ojala

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Technical Reports 25

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tekninen raportti 25

Espoo 2007 HUT-TCS-B25

A SLICER FOR UML STATE MACHINES

Vesa Ojala

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FI-02015 TKK, FINLAND

Tel. +358 9 451 1

Fax. +358 9 451 3369

E-mail: lab@tcs.tkk.fi

URL: http://www.tcs.tkk.fi/

©c Vesa Ojala

ISBN 978-951-22-9195-3

ISSN 0783-540X

Multiprint Oy

Espoo 2007

ABSTRACT: This document describes the data structures and algorithms
used in an implementation of a slicer for UML state machines developed in
the SMUML project.

KEYWORDS: UML, state machines, slicing

CONTENTS

1 Introduction 1

2 Supported Features of UML State Machines and Action Language 1

3 Control Flow Graph 2
3.1 Branch Nodes . 2
3.2 CFG Nodes Corresponding to Effects of Transitions 4

4 Dependency Relations 5
4.1 Reaching Definitions . 5
4.2 Data Dependencies . 7
4.3 Interference Dependencies 8
4.4 Control Dependencies . 9

Non-Termination Sensitive Control Dependencies 10
Decisive Order Dependencies 11

5 Calculating the Slice 14

6 Implementation 17

References 18

CONTENTS v

1 INTRODUCTION

Concurrent and distributed systems can be modelled with UML state ma-
chines. With model checking techniques a set of UML state machines work-
ing in parallel, accessing variables in the UML classes, and sending signals
to other UML state machines can be checked against a specified property.
The usage of slicing techniques (see, for example, the survey [6]) to the state
machines might ease the model checking task by removing triggers, guards,
and effects that do not affect the functionality of interest. This document
introduces a way to implement a UML state machine slicer.

Slicing is done in three parts, first we construct a control flow graph from
the UML model (Section 3), then we calculate various dependencies be-
tween the control flow graph’s nodes (Section 4), and in the third part we
calculate the slice using the control flow graph and the calculated depen-
dencies as a guide (Section 5). The slice is always generated with respect to
some slicing criterion, in our case this is a set of transitions in a collection of
UML state machines.

2 SUPPORTED FEATURES OF UML STATE MACHINES AND ACTION LAN-

GUAGE

We use UML 1.4 as our UML version [4]. In this document it is assumed
that the reader is familiar with basic UML terminology. We use Jumbala [2]
as our action language for guards and effects.

We support UML state machines that have only one composite state (top),
otherwise composite states are forbidden. Simple and final states are sup-
ported. From pseudostates, only initial and choice states are supported. Ev-
ery other state type is unsupported. States cannot have any internal behaviour
like entry, exit or doActivities.

Only SignalEvents are supported as triggers of transitions in UML state
machines. Also, only primitive Jumbala data types (int and boolean) are
supported with the exception of targets in ’send’ statements which have to be
references to objects. Currently arrays are not supported.

Effects of transitions are Jumbala statements with at most one primitive
operation (i.e., an assignment, an assertion, or a Jumbala ’send’ statement).

In this work, we assume a UML model to have a fixed set of classes C and
a fixed set of variable names (variables) V . By defining a variable, we mean
that the variable is assigned with a new value. Referencing a variable means
that a variable is read. For example in the Jumbala expression ’x = a + b; ’, x
is defined, a and b are referenced.

A variable is local in an expression if it is accessed simply by its name,
for example x and y are local in the expression ’x = y + 1; ’. A variable is
not local in an expression if it is accessed using a dereference. For example
a.x is a dereference to attribute x in object a. Thus a.x is not local in the
expression ’a.x = y + 1; ’. All parameters in triggers are assumed to be local.

We encapsulate a variable (the variable name and the class to which the
variable belongs) and the information whether it is local in an expression in
the attributes of a new structure VAR. We will have a VAR structure for every

2 SUPPORTED FEATURES OF UML STATE MACHINES AND ACTION LANGUAGE 1

variable identifier in an expression. The variable name v ∈ V associated
with a VAR structure can be accessed using the attribute var and the boolean
attribute local tells whether the variable is local in the expression to which
the VAR structure belongs. The attribute class contains the class c ∈ C

to which the variable belongs. With VAR structures we are not capable of
distinguishing between the attributes of different instances of the same class
because VAR structures do not have an attribute for the object to which the
variable associated with the VAR structure belongs. Such an attribute is not
needed (and would not be easily computable) because we are using only
static analysis methods for dependency calculation.

A VAR structure a is said to represent its associated variable a.var ∈ V .
Two VAR structures a and b are equal (denoted a = b) if a.var = b.var and
a.class = b.class . If we have a set W of VARs, the set of variables represented
by the members of W is vars(W) = {x.var | x ∈ W}. A VAR is said to be
referenced in an expression if the variable it is representing is referenced in
the expression the VAR is associated with and a VAR is said to be defined if the
variable it is representing is defined in the expression the VAR is associated
with.

3 CONTROL FLOW GRAPH

In the first phase of our implementation, a control flow graph, CFG, is con-
structed. It captures all the possible executions of the UML state machines
from which it is generated.

A control flow graph CFG = (N , E) is a directed graph, where N is a set
of nodes in the graph and E ⊆ N ×N is a set of directed edges in the graph.
A node s ∈ N is a predecessor of a node t ∈ N iff there is an edge (s, t) ∈ E.
Node t ∈ N is a successor of node s ∈ N iff there is an edge (s, t) ∈ E. We
define n.preds to be the set of predecessors of node n and a set n.succs to be
the set of successors of n. An end node is a node with no successors.

In the CFG, different parts of a UML state machine’s transition are bro-
ken up into multiple CFG nodes. We have three different kinds of CFG
nodes, BRANCH, SIMPLE, and SEND. Triggers and guards are represented
by BRANCH nodes, effects are represented by SIMPLE and SEND nodes. SIM-
PLE and SEND nodes have one successor while BRANCH nodes can have any
number of successors. Because our UML state machine states do not have
internal behavior, we have to consider only transitions in the CFG construc-
tion.

A CFG is generated from a UML model by traversing all (UML) state
machines in the model. For each state s, the following CFG nodes are gen-
erated to represent the transitions leaving state s. Nodes generated (wholly
or partly) from the transitions in the slicing criterion constitute the slicing
criterion in the CFG.

3.1 Branch Nodes

For every state in the UML state machine, there is one BRANCH node. The
BRANCH node contains one ELEMENT substructure for every outgoing tran-

2 3 CONTROL FLOW GRAPH

sition in the original UML state machine. The ELEMENT contains trig-
ger and guard parts from the transition. Every ELEMENT has one succes-
sor which represents the effect part of the transition. Even if the effect part
is empty, there is an empty CFG node corresponding to that effect. The
successors of the individual ELEMENTs form the successors of the BRANCH

node itself. For final states, a BRANCH f with zero ELEMENTs is generated.
Therefore, f does not have any successors.

In every ELEMENT there is a trigger part and a guard part. Only the trigger
part can contain variable definitions and these definitions correspond to the
trigger parameters.

To be able to replace unimportant signal parameters by dummy ones, we
have to keep a record of parameters that might be important with respect
to our slicing criterion. The trigger includes information about every signal
parameter using PARAMETER structures that are part of the trigger part of the
ELEMENT.

Figure 1 illustrates the relationship between a UML state machine’s state
and a BRANCH node in the CFG.

Figure 1: BRANCH node constructed from UML state machine’s state. Ef-
fects in the picture can contain one or more CFG nodes. Nodes correspond-
ing to effects are discussed in more detail in Section 3.2

When the execution arrives in the BRANCH node, execution proceeds to
the next node through one of the ELEMENTs in the node. An ELEMENT

is enabled if its guard is true and a correct type of signal specified by the
trigger is received. A missing trigger (completion transition) or guard is in-
terpreted as if the correct type of signal is received or the guard is true. If
every ELEMENT in the node has a guard or a trigger, there is a chance for
a situation where no ELEMENT is enabled. This causes the execution to be
halted in that state machine until one of the ELEMENTs is enabled, which
might be never. In such cases a self-loop to the BRANCH node has to be
added to ensure that our algorithms produce the correct outcome. Adding a
self-loop allows infinite control flow paths where the execution stays indefi-
nitely at the BRANCH after it has arrived to the branch. Adding a self-loop is
done by adding one extra ELEMENT whose successor is the BRANCH node
to which it belongs. This ELEMENT does not have anything as a trigger or
a guard. Because transitions starting from choice states do not have triggers

3 CONTROL FLOW GRAPH 3

and one of these transitions is guaranteed to be enabled whenever the execu-
tion is in such a state (as required by the UML specification [4]) we do not
add self-loops to BRANCHes that represent choice states. Hatcliff et al. solved
a similar issue arising in concurrent Java programs with a new dependence
called ready depencence [3] but the resulting slice can be shown to be the
same with both approaches.

Every PARAMETER p has a set p.def = {v}, where v is the VAR p defines.
Every ELEMENT has sets def and ref . The def of ELEMENT e is a set of
VARs defined in e. The only place in ELEMENTs where variables are defined
is the PARAMETERs of e, because UML specification forbids side-effects in
the guard. Therefore, e.def = {v | v ∈ p.def for some PARAMETER p in e}.
The ref of ELEMENT e is the set of VARs referenced in e. Because no vari-
ables can be referenced in the trigger of a transition, all the references in e
come from the guard. The def of a BRANCH node is the union of the def s
of its ELEMENTs and the ref of the BRANCH node is the union of the ref s of
its ELEMENTs.

3.2 CFG Nodes Corresponding to Effects of Transitions

If the effect of a transition sends a signal, then we add one SEND node for
the actual sending operation and a SIMPLE node for every signal parameter
to take into account the possible side effects of the parameter evaluation.
Figure 2 clarifies the construction.

Figure 2: CFG nodes constructed from signal sending transition effect

The first successor of the corresponding BRANCH is a SIMPLE node which
evaluates the first signal parameter, followed by a node that evaluates the
second signal parameter which is followed by the node that evaluates the
third one and so forth. After the node evaluating the last signal parameter is
the SEND node which corresponds to the actual signal sending operation. Its
successor is the BRANCH node corresponding to the UML state machine’s
state that is the target of the corresponding UML state machine’s transition.

If there are no signal parameters, then only the SEND node is generated.
For non-sending effects, a SIMPLE node is generated in the CFG. Its pre-

decessor is the ELEMENT corresponding to the transition to which the effect

4 3 CONTROL FLOW GRAPH

belongs. The successor of the node is the BRANCH corresponding to the
transition’s target.

If the transition does not have an effect, an empty SIMPLE node is gener-
ated as an effect.

Every SIMPLE and SEND node has sets def and ref which contain a set
of VARs, representing variables defined in that node and a set of VARs for
variables referenced in that node, respectively.

4 DEPENDENCY RELATIONS

To be able to deduce on which parts of the model the nodes in our slicing
criterion are dependent, we calculate different dependencies between parts
of the model. Data dependencies and interference dependencies describe
the possibility of an action in a state machine to define a variable that is later
referenced in a context belonging to the slice, thus making the location of
the definition an important one with respect to our slicing criterion. Control
dependencies are concerned with whether a node is part of an execution or
not.

Sections 4.1 and 4.2 describe how data dependencies are calculated. Sec-
tion 4.3 describes interference dependencies and Section 4.4 control depen-
dencies.

4.1 Reaching Definitions

Data dependencies are calculated in two parts: first we calculate reaching
definitions and based on that information we calculate actual data depen-
dencies.

A data flow path from a1 to ai is a sequence a1, a2, . . . , ai−1, ai, where
every aj ∈ {a1, . . . , ai} is either of the form n, where n is a SIMPLE, SEND

or end node (the type of end node is BRANCH), or b.e, where b is a BRANCH

node and e is an ELEMENT in b. For every consecutive pair (aj , aj+1) in the
path, the following must hold:

• if both aj and aj+1 are SIMPLE, SEND or end nodes (only aj+1 can be
an end node) there must be an edge from aj to aj+1

• if aj is a SIMPLE or SEND node and aj+1 = b.e, where b is a BRANCH

node and e is an ELEMENT in b, there must be an edge from aj to b

• if aj = b.e, where b is a BRANCH node and e is an ELEMENT in b and
aj+1 is a SIMPLE, SEND, or end node, aj+1 must be a successor of e

• if aj = bj .ej , where bj is a BRANCH node and ej is an ELEMENT in bj ,
and aj+1 = bj+1.ej+1, where bj+1 is a BRANCH node, and ej+1 is an
ELEMENT in bj+1, bj+1 must be a successor of ej

For example, in figure 3 there is a data flow path a, b.d, e, f.h between the
SIMPLE node a and the ELEMENT h belonging to the BRANCH node f .

Every node n has a set n.dfpreds which contains the SIMPLE nodes, SEND

nodes and ELEMENTs that have n as their successor.

4 DEPENDENCY RELATIONS 5

Figure 3: A part of a CFG which has a data flow path a, b.d, e, f.h between
the SIMPLE node a and the ELEMENT h

A definition of a variable v in a SIMPLE node s reaches a SIMPLE, SEND

or end node t (written (v, s)
def
; t) if there is a data flow path s = a1, . . . , aj =

t from s to t in the CFG and v /∈
⋃

a∈{ai+1,...,aj−1}
vars(a.def) and v ∈

vars(s.def).

A definition of a variable v in a SIMPLE node s reaches an ELEMENT

e in a BRANCH node b (written (v, s)
def
; b.e) if there is a data flow path

s = a1, a2, . . . , aj = b.e from s to b.e in the CFG and v ∈ vars(s.def) and
v /∈

⋃
a∈{ai+1,...,aj−1}

vars(a.def).

A definition of a variable v in a PARAMETER p in an ELEMENT e in a

BRANCH node b reaches a SIMPLE, SEND or end node t (written (v, p)
def
; t)

if there is a data flow path b.e = a1, a2, . . . , aj = t in the CFG and v ∈
vars(p.def) and v /∈

⋃
a∈{ai+1,...,aj−1}

vars(a.def).

A definition of a variable v in a PARAMETER p in an ELEMENT e1 in a
BRANCH node b1 reaches an ELEMENT e2 in a BRANCH node b2 (written

(v, p)
def
; b2.e2) if there is a data flow path b1.e1 = a1, a2, . . . , aj = b2.e2

from b1.e1 to b2.e2 in the CFG and v /∈
⋃

a∈{ai+1,...,aj−1}
vars(a.def) and

v ∈ vars(p.def).

We calculate defs_in sets for every node in the CFG. The defs_in set
contains information about the definitions that reach the node. The defini-
tions that reach a BRANCH node are the same that reach every ELEMENT in
the BRANCH node. We calculate defs_out sets for SIMPLE and SEND nodes
in the CFG as well as for ELEMENTs in every BRANCH node in the CFG.
The defs_out set contains information about the definitions that reach the
successor of the node or ELEMENT by an edge from the node or ELEMENT

to its successor.

Formally, for a node t in the CFG t.defs_in = {(v, a) | (v, a)
def
; t},

where v is a variable and a is either a SIMPLE node or a PARAMETER. For
SIMPLE and SEND nodes n.defs_out = {(w, a) | (w, a) ∈ n.defs_in ∧ w /∈
vars(n.def)} ∪ {(v, n) | v ∈ vars(n.def)}. For BRANCH nodes defs_out

6 4 DEPENDENCY RELATIONS

sets are defined for every ELEMENT e in the BRANCH node n:

e.defs_out = {(v, p) | v ∈ vars(p.def) ∧ p is a PARAMETER in e’s trigger} ∪

{(w, a) | (w, a) ∈ n.defs_in ∧w /∈ vars(e.def)}

Algorithm 1 calculates reaching definitions.

Algorithm 1 Reaching Definitions

1: SIMPLE and SEND nodes have defs_in and defs_out sets that contain
(v, a) pairs, where v is a variable and a is a node or a PARAMETER that
defines v.

2: BRANCH nodes have defs_in sets just like the other nodes but they may
have multiple defs_out sets, one for each ELEMENT.

3: All defs_in and defs_out sets are initially empty.

4: repeat
5: for all node ∈ N do
6: node.defs_in ←

⋃
pred∈node.dfpreds pred.defs_out

7: if node type is SIMPLE or SEND then
8: A← {(v, n) | (v, n) ∈ node.defs_in ∧ v /∈ vars(node.def)}
9: B ← {(v, node) | v ∈ vars(node.def)}

10: node.defs_out ← A ∪B

11: if node type is BRANCH then
12: for all ELEMENTs e in node do
13: A← {(v, n) | (v, n) ∈ node.defs_in ∧ v /∈ vars(e.def)}
14: B ← {(v, p) | v ∈ vars(p.def)∧ p is a PARAMETER in e}
15: e.defs_out ← A ∪ B

16: until defs_in and defs_out sets do not change from the last iteration

After the execution of the algorithm, every node has a set defs_in that
contains pairs (v, a) where a is a SIMPLE node or a PARAMETER and v is a
variable. Let m ∈ N be a node in the CFG. The set {a | (v, a) ∈ m.defs_in}
is the set of SIMPLE nodes and PARAMETERs that may have defined the cur-
rent value of the variable v when entering the node m. Let l be a SIMPLE or
SEND node or ELEMENT in the CFG. The set {a | (v, a) ∈ l.defs_out} is
the set of SIMPLE nodes and PARAMETERs that may have defined the current
value of the variable v when exiting the node or ELEMENT l.

4.2 Data Dependencies

A SIMPLE node t is data dependent on a SIMPLE node s, if for some v ∈

vars(t.ref), (v, s)
def
; t. A SIMPLE node t is data dependent on a PARAM-

ETER p in an ELEMENT e in a BRANCH b, if for some v ∈ vars(t.ref),

(v, p)
def
; t. A BRANCH node b is data dependent on a SIMPLE node s, if for

some ELEMENT e in b and v ∈ vars(e.ref), (v, s)
def
; b.e. A BRANCH node

b2 is data dependent on a PARAMETER p in an ELEMENT e1 in a BRANCH

b1, if for some ELEMENT e2 in b2 and v ∈ vars(e2.ref), (v, p)
def
; b2.e2.

4 DEPENDENCY RELATIONS 7

A PARAMETER has always an associated signal sig . A PARAMETER p is
data dependent on a node q if q evaluates an expression whose value gets
assigned to the PARAMETER p when a signal sig is received. Here, node q is
one of the CFG nodes generated when transforming a signal send operation1

into a sequence of SIMPLE nodes as described in Section 3.2. In figure 4,
data dependencies marked with (c) are obtained in this way.

When we already have calculated reaching definitions, we can get data
dependencies by algorithm 2. As it can be seen from the algorithm, the
whole BRANCH b node becomes data dependent on a if at least one of the
ELEMENTs belonging to b is data dependent on a.

Algorithm 2 Data Dependencies

1: Every node and PARAMETER has a set dd which will contain the nodes
and the PARAMETERs on which it is data dependent.

2: for all n ∈ N do
3: if n type is SIMPLE then
4: n.dd← {m | (v, m) ∈ n.defs_in ∧ v ∈ vars(n.ref)}

5: if n type is BRANCH then
6: n.dd← {m | (v, m) ∈ n.defs_in ∧ v ∈ vars(n.ref)∧

v /∈ vars(n.def)}
. all definitions come from PARAMETERs

7: for all ELEMENTs e in n do
8: for all PARAMETERs p in e do
9: if vars(p.def) ⊆ vars(e.ref) then

10: n.dd← n.dd ∪ {p}

11: . PARAMETERs depend on their evaluators before send
12: for all PARAMETERs p in e do
13: p.dd← {m |m evaluates p’s value before signal send}

In line 4 in algorithm 2, data dependencies for SIMPLE nodes are calcu-
lated. In line 6, dependencies to nodes that define variables that are refer-
enced in a BRANCH node, but are not defined by any signal parameters, are
calculated. The for-loop beginning from line 8 calculates data dependen-
cies to PARAMETERs in node n that define variables referenced in the same
node. Finally, for all PARAMETERs, data dependencies are calculated in the
for-loop beginning from line 12. Figure 4 illustrates the data dependence
calculation for BRANCH nodes. Because there are no variables referenced in
SEND nodes, only SIMPLE and BRANCH nodes need to be considered here.

4.3 Interference Dependencies

When the variable v belonging to a class c is referenced in a node s and
defined in node t, node s is interference dependent on node t if s and t
are in different state machines or in different instances of the same state

1These signal send operations can happen in other UML state machines but they can
happen also in the same state machine. Because we may have multiple instances of one
class, the sends in the same state machine have to be taken into account.

8 4 DEPENDENCY RELATIONS

Figure 4: (a) br is data dependent on s, because the definition of c in s
reaches br and there is no signal parameter defining c in br. (b) BRANCH

br is data dependent on PARAMETER a because it defines a variable that is
referenced in br. (c) PARAMETERs are data dependent on their evaluators.

machine but still can access the same variable v in class c. This can happen
if the access to v is not local either in s or in t. The same concept applies
also if instead of node t PARAMETER p defines the variable v. It should be
remembered though that in PARAMETERs the occurrences of the variables
are always local as described in Section 2.

Formally, a node s is interference dependent on a node or a PARAMETER

t if v ∈ s.ref , w ∈ t.def , v = w, and ¬v.local ∨ ¬w.local . Hatcliff et al.
defined interference dependency between threads in a Java program in the
same way [3]. Algorithm 3 calculates interference dependencies.

4.4 Control Dependencies

A node ni is control dependent on a node nj if the execution of nj decides
whether ni is executed or not. In figure 5, the node d is control dependent on
the node a because the branch taken at node a decides whether we execute
node d or not.

Conventional algorithms for control dependency calculation assume that
programs have unique start and end nodes and that only paths ending in the
unique end node need to be considered. In reactive systems, these assump-
tions do not always hold. Because we want our slicer to work correctly with
reactive systems we are using two dependencies introduced by Ranganath et
al. and algorithms for calculating them [5]. These dependencies are non-
termination sensitive control dependencies and decisive control dependen-
cies and we shall examine those more closely in Sections 4.4 and 4.4, respec-
tively.

For discussion of control dependencies we define a control flow path. A
control flow path from n1 to nj in a CFG is a sequence of nodes n1, n2, . . . , nj

such that for every consecutive pair of nodes (nk, nk+1) in the path there is
an edge (nk, nk+1) ∈ E. A control flow path is maximal if it is infinite or it

4 DEPENDENCY RELATIONS 9

Algorithm 3 Interference Dependencies

1: every node has a set id that contains nodes and PARAMETERs on which
the node is interference dependent.

2: for all n ∈ N do
3: n.id← ∅
4: for all v ∈ n.ref do
5: n.id← n.id ∪ FIND_DEFS(v)

6: function FIND_DEFS(v)
7: deps← ∅
8: for all m ∈ N do
9: if m type is SIMPLE then

10: for all w ∈ m.def do
11: if v = w ∧ (¬v.local ∨ ¬w.local) then
12: deps← deps ∪ {m}

13: if m type is BRANCH then
14: for all ELEMENTs e in m do
15: for all PARAMETERs p in e do
16: pick w ∈ p.def . |p.def | = 1
17: if v = w ∧ ¬v.local then
18: deps← deps ∪ {p}

19: return deps

ends in an end node.
Node n strictly precedes any occurrence of node m in a control flow path

if n occurs in the control flow path and either node m does not occur in the
control flow path or the first occurrence of node n in the control flow path is
earlier than the first occurrence of node m in the control flow path.

Non-Termination Sensitive Control Dependencies

Node ni is non-termination sensitive control dependent on node nj iff nj has
at least two successors, nk and nl, such that

• for all maximal control flow paths from nk, ni always occurs and either
nj = ni or ni strictly precedes any occurrence of nj , and

• there exists a maximal control flow path from nl on which either ni

does not occur, or nj strictly precedes any occurrence of ni.

In figure 5, node a has two successors, b and c. In all maximal control
flow paths from c, d always occurs and it strictly precedes any occurrence of
a, so the first condition is fulfilled. In all maximal control flow paths from
b, a strictly precedes any occurrence of d, so the second condition is fulfilled
and we can conlude that d is non-termination sensitive control dependent
on a. Note that there are maximal control flow paths from b where d occurs
but there is always an occurrence of a before the occurrence of d. So, the
examination is limited between two successive visits in a (or nj).

10 4 DEPENDENCY RELATIONS

Figure 5: Nodes b, c, d, and e are non-termination sensitive control depen-
dent on node a

Algorithm 4 is used for calculating non-termination sensitive control de-
pendencies and it is based on the algorithm presented by Ranganath et al. [5].
In the algorithm, notation S[a, b] is used to represent a value obtained from
a dictionary S using the pair (a, b) as key value. 〈a, b〉 represents a unique
symbolic value for the pair (a, b).

In algorithm 4, values 〈a, b〉 are used for marking all maximal control flow
paths beginning from node a where the second node in the control flow path
is the node b. The dictionary S contains a set of these values for every pair
(c, d), where c is a node in the CFG and d is a BRANCH node in the CFG.
The values in the set represent a set of maximal control flow paths which start
at node d = a and contain node c.

The algorithm begins by initializing the dictionary S in a way that for every
BRANCH node b in the CFG, for every successor s of b, S[s, b] ← {〈b, s〉}.
Then the algorithm propagates these symbols from the node to the successor
of the node if appropriate.

Finally, every node n is made to be non-termination sensitively control de-
pendent on a BRANCH node b if b has more successors than there are symbols
in the set S[n, m] and S[n, m] 6= ∅. This is because every maximal control
flow path starting from b passes through one of b’s successors s (represented
by 〈b, s〉). When 0 < |S[n, b]|, there is a maximal control flow path including
n, starting from b, that passes through one of b’s successors s1, and therefore
〈b, s1〉 ∈ S[n, b]. On the other hand, when |S[n, b]| < |b.succs|, there is
a maximal control flow path that does not include n, starting from b, that
passes through one of b’s successors s2, and therefore 〈b, s2〉 /∈ S[n, b].

Decisive Order Dependencies

In figure 6, node g is data dependent on nodes a and h. The choice on
node b decides whether the assertion on node g holds, so g has to be control
dependent on node b in some way. We check whether g is non-termination
sensitive control dependent on node b.

4 DEPENDENCY RELATIONS 11

Algorithm 4 Non-Termination Sensitive Control Dependencies

1: Every node has a set ntscd which contains nodes on which it is ntsc-
dependent.

2: workbag ← ∅
3: S : empty dictionary which will contain symbols representing a pair of

nodes

4: for all n ∈ N , where |n.succs| > 1 do
5: for all s ∈ n.succs do
6: S[s, n]← {〈n, s〉}
7: workbag ← workbag ∪ {s}

8: while workbag 6= ∅ do
9: pick n ∈ workbag

10: workbag ← workbag \ {n}
11: if n has a unique successor s and s 6= n then

. all maximal control flow paths starting from n include also s
12: for all m ∈ N , where |m.succs| > 1 ∧ S[n, m] \ S[s, m] 6= ∅ do
13: S[s, m]← S[s, m] ∪ S[n, m]
14: workbag ← workbag ∪ {s}

15: if |n.succs| > 1 then
16: for all m ∈ N do
17: if |S[m, n]| = |n.succs| then

. all maximal control flow paths starting from n also include m
18: for all p ∈ {q ∈ N | |q.succs| > 1 ∧ q 6= n} do
19: if S[n, p] \ S[m, p] 6= ∅ then
20: S[m, p]← S[m, p] ∪ S[n, p]
21: workbag ← workbag ∪ {m}

22: for all n ∈ N do
23: for all m ∈ N , where |m.succs| > 1 do
24: if 0 < |S[n, m]| < |m.succs| then
25: n.ntscd← n.ntscd ∪ {m}

Node b has two successors, c and d. For all maximal control flow paths
from c, g always occurs and strictly precedes any occurrence of b. There-
fore the first condition of non-termination sensitive control dependence is
fulfilled. But there exists no control flow path from d where either g does
not occur or b strictly precedes any occurrence of g, and thus g is not non-
termination sensitive control dependent on node b. The same goes for node
h. If our slicing criterion is the set {g}, node b does not belong to our slice
even though it should: Because b does not belong to the slice, guards from
the transitions corresponding to node b are removed, and thus the sliced state
machine has executions where the assertion at node g is false even though
there were no such executions in the original state machine. What node
b actually decides is the order of execution of nodes e, f , g, and h. The
calculation of a slice is discussed in more detail in Section 5.

12 4 DEPENDENCY RELATIONS

Figure 6: Nodes g and h are decisively order dependent on node b

Decisive order dependence captures the dependence where the order of
execution of two nodes depends on the choice made in a third node. In any
control flow graph, two nodes m and p are decisively order dependent on n
if:

• all maximal control flow paths from n contain both m and p, and

• n has a successor from which all maximal control flow paths contain
m before any occurrence of p, and

• n has a successor from which all maximal control flow paths contain p
before any occurrence of m.

In figure 6, nodes g and h are decisively order dependent on node b. Now,
because g belongs to our slicing criterion and because g is data dependent
on node h, also node b belongs to the slice2.

Algorithm 6 is used for calculating decisive order dependencies. It is
based on the algorithm presented by Ranganath et al. [5]. Function ALL-
REACH(a,b) (presented in algorithm 5) returns true if b can be reached from
a by all maximal control flow paths. This all-path reachability is calculated
beforehand by ALLREACH_INIT and ALLREACH only looks from the dictio-
nary whether the value should be true or false.

In lines 5 and 6 in algorithm 6 the three conditions for decisive control de-
pendence are checked. The first condition is checked by the two ALLREACH

calls in the line 5. The second and the third condition are checked by the
DEPEND function called in the line 6. The DEPEND function colors nodes
of the CFG so that m and p are colored white and black, respectively. The

2If h is not in the slice, b would not be in the slice either because both g and h are needed
for decisive order dependency.

4 DEPENDENCY RELATIONS 13

Algorithm 5 All-path reachability

1: reachability: dictionary - contains for all nodes a set of nodes from
which the node is reachable by all control flow paths

2: function ALLREACH_INIT(G)
3: workbag ← N

4: for all n ∈ N do
5: reachability[n] ← {n}

6: while |workbag| > 0 do
7: pick n ∈ workbag
8: workbag ← workbag \ {n}
9: new_set←

⋂
m∈n.succs reachability[m]

10: if (new_set 6⊆ reachability[n]) then
11: reachability[n]← reachability[n] ∪ new_set
12: workbag ← workbag ∪ n.preds

13: function ALLREACH(n,m)
14: if m ∈ reachability[n] then
15: return true

16: else
17: return false

predecessor of a node is colored white (black) if all its successors are colored
white (black), the nodes that have children of different colors or uncolored
children are uncolored. After the coloring process, if n has a white child and
a black child, nodes m and p are decisively order dependent on node n.

5 CALCULATING THE SLICE

Given the slicing criterion as a set of nodes in the CFG (see Section 3), the
slice is calculated as the smallest set of nodes which includes all nodes in the
slicing criterion and is closed under the dependencies described earlier.

The slice is a set of nodes and PARAMETERs. If a BRANCH node belongs
to the slice it does not directly imply that the PARAMETERs belonging to the
BRANCH are also included in the slice. This prevents the inclusion of un-
necessary signal parameters in the slice. A signal parameter is added to the
slice only if a node in the slice is actually dependent on it. Although the
inclusion of a BRANCH node in the slice does not force all of its PARAM-
ETERs to be included in the slice, the inclusion of a PARAMETER in the
slice does effectively imply the inclusion of the PARAMETER’s correspond-
ing BRANCH node to which the PARAMETER belongs in the slice through
function PART_IN_SLICE.

The function PART_IN_SLICE(node) returns true if node is in the slice
or if a PARAMETER that belongs to node is in the slice, otherwise it returns
false. In algorithm 7 the slice of the CFG is calculated.

14 5 CALCULATING THE SLICE

Algorithm 6 Decisive Order Dependencies

1: every node n has a set dod, which includes node pairs (a, b), where b is
the node on which n and a are decisively order dependent.

2: for all n ∈ N , where |n.succs| > 1 do
3: for all m ∈ N do
4: for all p ∈ N \ {m} do
5: if ALLREACH(m, p) ∧ ALLREACH(p, m) then
6: if DEPEND(n, m, p) then
7: m.dod← m.dod ∪ {(p, n)}
8: p.dod← p.dod ∪ {(m, n)}

9: function DEPEND(n, m, p)
10: color: dictionary indexed with nodes, initially filled with uncolored
11: color[m]← white
12: color[p]← black
13: visited← {m, p}
14: COLORED_DAG(n, color, visited)
15: return true if n has a black and a white child, otherwise false

16: function COLORED_DAG(n, color, visited)
17: if n /∈ visited then
18: visited← visited ∪ {n}
19: if |n.succs| > 0 then
20: for all succ ∈ n.succs do
21: COLORED_DAG(succ, color, visited)

22: c← color[pick t ∈ n.succs]
23: for all succ ∈ n.succs do
24: if color[succ] 6= c then
25: c← uncolored
26: break
27: color[n]← c

28: return

5 CALCULATING THE SLICE 15

Algorithm 7 Slicing

1: slicingcrit : slicing criterion (a set of nodes in the CFG)

2: slice ← slicingcrit

3: repeat
4: old_slice ← slice

5: for all n ∈ N do
6: if PART_OF_SLICE(n) then
7: slice ← slice ∪ n.dd ∪ n.ntscd ∪ n.id
8: . elements in (n.dd ∪ n.id) either PARAMETERs or SIMPLEs
9: slice ← slice ∪ {b ∈ N | ∃m ∈ slice : (m, b) ∈ n.dod}

10: if n type is BRANCH then
11: for all ELEMENTs e in n do
12: for all i ∈ N do
13: if i sends a signal matching to e’s trigger then
14: . SEND nodes are added to the slice here
15: if i /∈ slice then
16: slice ← slice ∪ {i}

17: . handling of PARAMETERs
18: if n type is BRANCH then
19: for all ELEMENTs e in n do
20: for all PARAMETERs p in e do
21: if p ∈ slice then
22: slice ← slice ∪ p.dd

23: until old_slice = slice

After we have calculated the slice of a CFG, we still have to get the slice
of the original UML model. When we constructed the CFG from the UML
state machines in section 3, we also kept record of the relationship between
CFG nodes and UML state machine transitions.

We will remove all parts of transitions whose counterparts in the CFG are
not in the slice. We will also replace unused signal arguments with dummy
ones. For simplicity, we do not remove any transitions, we modify only their
triggers, guards and effects.

For every BRANCH node that is not in the slice, we will remove all triggers
and guards from the corresponding UML state machine’s state. For sending
effects in transitions, we will remove the entire effect if the corresponding
SEND node in the CFG is not in the slice. Otherwise we will only replace all
unused signal arguments with NONE , that is, all arguments whose evaluator
node is not in the slice. NONE is used as a dummy value for arguments
whose values will not be used.

Algorithm 8 maps the slice from the CFG to the original UML model and
constructs the sliced UML model by removing uninteresting behavior from
the original UML model.

16 5 CALCULATING THE SLICE

Algorithm 8 From CFG slice to UML slice

1: for all states s in UML model do
2: b← BRANCH representing s
3: if ¬PART_OF_SLICE(b) then
4: remove all triggers and guards of transitions leaving s

5: for all outgoing transitions t from s do
6: if effect of t is send then
7: if corresponding SEND is not in slice then
8: remove the effect from t
9: else

10: replace all arguments that are not in slice with NONE

11: else
12: if SIMPLE representing the effect is not in slice then
13: remove the effect from t

6 IMPLEMENTATION

The algorithms presented in the previous sections have been implemented as
a part of the SMUML project to obtain a slicer for UML state machines. The
implementation uses the Python API provided by the Coral metamodeling
tool [1] to process UML 1.4 models in XMI format. As output the slicer gen-
erates another XMI file representing the slice of the model given. The slicing
criterion is defined in the input file by adding a new taggedValue named ’slic-
ingCrit’ to each transition belonging to the slicing criterion. The dataValue
of the taggedValue slicingCrit has no meaning to our implementation.

The sliced model can be analysed with other tools developed in the
SMUML project or it can be processed further, for example abstracted us-
ing a model abstractor implemented in the SMUML project.

6 IMPLEMENTATION 17

REFERENCES

[1] Marcus Alanen and Ivan Porres. Coral: A metamodel kernel for transfor-
mation engines. In Proc. Second European Workshop on Model Driven
Architecture (MDA), number 17-04 in Tech. Report, pages 165–170.
Computing Laboratory, Univ. of Kent, 2004.

[2] J. Dubrovin. Jumbala — an action language for UML state machines.
Research Report A101, Helsinki University of Technology, Laboratory
for Theoretical Computer Science, 2006.

[3] J. Hatcliff, J. Corbett, M. Dwyer, S. Sokolowski, and H. Zheng. A for-
mal study of slicing for multi-threaded programs with JVM concurrency
primitives. In Proceedings of the 6th International Static Analysis Sym-
posium (SAS 1999), volume 1694 of Lecture Notes in Computer Sci-
ence, pages 1–18. Springer-Verlag, 1999.

[4] OMG unified modelling language specification, version 1.4. Object
Management Group, 2001.

[5] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff. A
new foundation for control-dependence and slicing for modern program
structures. Technical Report #2004-8, SAnToS Laboratory, Kansas State
University, 2006.

[6] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3):121–189, 1995.

18 REFERENCES

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

TECHNICAL REPORTS

HUT-TCS-B12 Kimmo Varpaaniemi

On Computing Symmetries and Stubborn Sets. April 1994.

HUT-TCS-B13 Kimmo Varpaaniemi, Jaakko Halme, Kari Hiekkanen, Tino Pyssysalo

PROD Reference Manual. August 1995.

HUT-TCS-B14 Tuomas Aura

Modelling the Needham-Schröder authentication protocol with high level Petri nets.

September 1995.

HUT-TCS-B15 Eero Lassila

ReFlEx — an Experimental Tool for Special-Purpose Processor Code Generation.

March 1996.

HUT-TCS-B16 Markus Malmqvist

Methodology of Dynamical Analysis of SDL Programs using Predicate/Transition Nets.

April 1997.

HUT-TCS-B17 Tero Jyrinki

Dynamical Analysis of SDL Programs using Predicate/Transition Nets. April 1997.

HUT-TCS-B18 Tommi Syrjänen

Implementation of Local Grounding for Logic Programs With Stable Model Semantics.

October 1998.

HUT-TCS-B19 Marko Mäkelä, Jani Lahtinen, Leo Ojala

Performance Analysis of a Traffic Control System Using Stochastic Petri Nets.

December 1998.

HUT-TCS-B20 Eero Lassila

A Tree Expansion Formalism for Generative String Rewriting. June 2001.

HUT-TCS-B21 Annikka Aalto

Automatic Translation of SDL into High Level Petri Nets. November 2004.

HUT-TCS-B22 Maarit Hietalahti, Mikko Särelä, Antti Tuominen, Pekka Orponen

Security Topics and Mobility Management in Hierarchical Ad Hoc Networks (Samoyed):

Final Report. December 2007.

HUT-TCS-B23 Jori Dubrovin, Tommi Junttila

Symbolic Model Checking of Hierarchical UML State Machines. December 2007.

HUT-TCS-B24 Jori Dubrovin, Tommi Junttila, Keijo Heljanko

Symbolic Step Encodings for Object Based Communicating State Machines. December 2007.

HUT-TCS-B25 Vesa Ojala

A Slicer for UML State Machines. December 2007.

ISBN 978-951-22-9195-3

ISSN 0783-540X

