
Helsinki University of Technology Laboratory for Theoretical Computer Science

Technical Reports 21

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tekninen raportti 21

Espoo 2004 HUT-TCS-B21

AUTOMATIC TRANSLATION OF SDL

INTO HIGH LEVEL PETRI NETS

Annikka Aalto

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Laboratory for Theoretical Computer Science

Technical Reports 21

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tekninen raportti 21

Espoo 2004 HUT-TCS-B21

AUTOMATIC TRANSLATION OF SDL

INTO HIGH LEVEL PETRI NETS

Annikka Aalto

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio



Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Annikka Aalto

ISBN 951-22-7404-3

ISSN 0783-540X

Multiprint Oy

Helsinki 2004



ABSTRACT: Designing, implementing and testing parallel and concurrent
programs have traditionally been complex and error-prone tasks. Due to the
concurrency and asynchronous communication within the system, the in-
ternal behavior of the system tends to be highly nondeterministic and error
conditions may be impossible to reproduce. Formal methods address the
problem by offering means for exhaustively analyzing all the alternative states
of a system.

There are many formal analysis methods, but reachability analysis is es-
pecially well suited for automatic analysis. In this method, all the reachable
states of the system are generated from the model, and then it is checked that
they fulfill some desired properties.

One problem with the reachability analysis is the creation of the model.
If done by hand, it is a very time consuming and error-prone task. This work
describes SDL2PN, a front-end for MARIA reachability analysis tool. The
front-end consists of a parser for SDL-96 language and a model generator
for MARIA input language. It reads an SDL system description in textual
representation and generates a text file containing the high-level Petri net
model which can be read and analyzed by the MARIA tool. The combination
of SDL2PN and MARIA can be used to analyze even quite large SDL systems
without having to manually construct the model of the system.

KEYWORDS: SDL, high-level Petri nets, reachability analysis



CONTENTS

1 Introduction 1

2 SDL 3
2.1 Basic Concepts of the SDL Language . . . . . . . . . . . . . 3
2.2 Behavioral Aspects of the SDL Language . . . . . . . . . . . 4

2.2.1 Transition Triggers . . . . . . . . . . . . . . . . . . . 5
2.2.2 Transition Terminators . . . . . . . . . . . . . . . . . 8
2.2.3 Conditional Branching . . . . . . . . . . . . . . . . . 9
2.2.4 Process Instances . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Communication Between Processes . . . . . . . . . . 11
2.2.6 Timers . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Data in SDL . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Structure of an SDL System . . . . . . . . . . . . . . . . . . 14

2.4.1 Block Substructure . . . . . . . . . . . . . . . . . . . 14
2.4.2 Channel Substructure . . . . . . . . . . . . . . . . . 15
2.4.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Service . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Petri Nets 17
3.1 Algebraic System Nets . . . . . . . . . . . . . . . . . . . . . 18
3.2 Analysis of Algebraic System Nets . . . . . . . . . . . . . . . 23
3.3 Extensions to Algebraic System Nets . . . . . . . . . . . . . . 24

3.3.1 Error Checking . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Short-Circuit Evaluation . . . . . . . . . . . . . . . . 25

4 The MARIA Project 26
4.1 The MARIA Analyzer . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Data Types of the MARIA Analyzer . . . . . . . . . . 26
4.1.2 Verifying Properties of Models . . . . . . . . . . . . . 27
4.1.3 Reachability Analysis . . . . . . . . . . . . . . . . . . 28

4.2 SDL Front-end for the MARIA Analyzer . . . . . . . . . . . . 28

5 Translation Rules for SDL 29
5.1 Static Analysis of an SDL System . . . . . . . . . . . . . . . 29
5.2 Translation of Types . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Generating Places and Initial Markings . . . . . . . . . . . . 31

5.3.1 Places for Processes . . . . . . . . . . . . . . . . . . . 31
5.3.2 Places for Procedures . . . . . . . . . . . . . . . . . . 32
5.3.3 System Places . . . . . . . . . . . . . . . . . . . . . . 32

5.4 The Environment . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Translating Transition Triggers . . . . . . . . . . . . . . . . . 36

5.5.1 INPUT Construct . . . . . . . . . . . . . . . . . . . . 37
5.5.2 ASTERISK INPUT Construct . . . . . . . . . . . . . 39
5.5.3 SAVE Construct . . . . . . . . . . . . . . . . . . . . 39
5.5.4 Spontaneous Transition . . . . . . . . . . . . . . . . 40

iv CONTENTS



5.5.5 Enabling Condition . . . . . . . . . . . . . . . . . . 40
5.5.6 Translation for Implicit Signal Consumption . . . . . 41

5.6 Translating the SDL Statements . . . . . . . . . . . . . . . . 41
5.6.1 DECISION Statement . . . . . . . . . . . . . . . . . 41
5.6.2 CREATE Statement . . . . . . . . . . . . . . . . . . 42
5.6.3 STOP Statement . . . . . . . . . . . . . . . . . . . . 43
5.6.4 OUTPUT Statement . . . . . . . . . . . . . . . . . . 43
5.6.5 TASK Statement . . . . . . . . . . . . . . . . . . . . 47

5.7 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7.1 SET Statement . . . . . . . . . . . . . . . . . . . . . 49
5.7.2 RESET Statement . . . . . . . . . . . . . . . . . . . 50
5.7.3 Controlling the Expiration Window . . . . . . . . . . 50
5.7.4 Modeling Timer Expiration . . . . . . . . . . . . . . 51

5.8 Structural Concepts . . . . . . . . . . . . . . . . . . . . . . . 51
5.8.1 Block Substructure . . . . . . . . . . . . . . . . . . . 53
5.8.2 Channel Substructure . . . . . . . . . . . . . . . . . 53
5.8.3 Types and Gates . . . . . . . . . . . . . . . . . . . . 54

5.9 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Optimizing the Model 56
6.1 Atomic Sections . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Interpreting PId expressions only when used . . . . . . . . . 59

7 Implementation Tools 60

8 Implementation Details 61

9 Conclusions 62
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

CONTENTS v



List of Figures

2.1 An example of an SDL system . . . . . . . . . . . . . . . . . 4
2.2 An example of an SDL block . . . . . . . . . . . . . . . . . . 4
2.3 An example of an SDL process . . . . . . . . . . . . . . . . . 5
2.4 An example of an SDL process . . . . . . . . . . . . . . . . . 7
2.5 SDL definition of a lossy communication channel . . . . . . 10
2.6 Communication paths in an SDL system . . . . . . . . . . . 13
2.7 An SDL type definition . . . . . . . . . . . . . . . . . . . . . 14
2.8 An example of SDL channel substructure . . . . . . . . . . . 15
3.1 A Place/Transition net modeling a four-slot buffer . . . . . . . 18
3.2 An algebraic system net modelling a four-slot buffer . . . . . . 22
5.1 Signal type definition . . . . . . . . . . . . . . . . . . . . . . 30
5.2 An environment transition . . . . . . . . . . . . . . . . . . . 34
5.3 An example of an SDL system with a signal path from the

environment . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 The channel, signal route and connection definitions for the

system in Figure 5.3 . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 An SDL process . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 The structure of an INPUT net transition . . . . . . . . . . . 38
5.7 A gate expression of an ASTERISK INPUT net transition . . . . 39
5.8 The structure of net transition generated to model SDL spon-

taneous transition . . . . . . . . . . . . . . . . . . . . . . . . 40
5.9 An SDL DECISION statement . . . . . . . . . . . . . . . . . 42
5.10 A DECISION net transition . . . . . . . . . . . . . . . . . . . 42
5.11 CREATE net transitions . . . . . . . . . . . . . . . . . . . . . 44
5.12 The structure of an OUTPUT net transition . . . . . . . . . . 45
5.13 A net transition modeling an OUTPUT statement with a TO

construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.14 A net transition modeling an OUTPUT statement with a VIA

ALL constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.15 A net transition modeling an OUTPUT statement with signal

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.16 The structure of a TASK net transition . . . . . . . . . . . . . 47
5.17 Assignment to an array element . . . . . . . . . . . . . . . . 48
5.18 A TASK statement before and after canonization . . . . . . . . 48
5.19 SET timer net transition . . . . . . . . . . . . . . . . . . . . 49
5.20 RESET timer net transition . . . . . . . . . . . . . . . . . . . 50
5.21 EXPIREPOINT START net transition . . . . . . . . . . . . . . 51
5.22 Net transition modeling timer expiration . . . . . . . . . . . 52
5.23 CALL net transition . . . . . . . . . . . . . . . . . . . . . . . 54
5.24 RETURN net transition . . . . . . . . . . . . . . . . . . . . . 55
6.1 Different views of a system . . . . . . . . . . . . . . . . . . . 56
6.2 An example of state spaces of two processes . . . . . . . . . . 57
6.3 An example of interesting executions being left out by reduc-

ing concurrency . . . . . . . . . . . . . . . . . . . . . . . . . 58

vi LIST OF FIGURES



List of Tables

2.1 Predefined PId expressions . . . . . . . . . . . . . . . . . . . 11
5.1 System-related places . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Net transitions needed for transition triggers of the SDL pro-

cess in Figure 5.5 . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Description of constants used in Figure 5.6 . . . . . . . . . . 38
5.4 Description of variables used in Figure 5.6 . . . . . . . . . . 38

LIST OF TABLES vii





1 INTRODUCTION

In the modern society, computer systems control many aspects of everyday
life. Telephone systems, financial systems and medical systems are examples
of complex computer systems, which are often unnoticed when operating
correctly, but the failure of which may lead to great financial losses, or be
even life-threatening. The size and complexity of software systems has in-
creased at a growing pace over the last decades. It is no longer uncommon
for tens or even thousands of people to be involved in the construction of a
software system.

In many applications, the system is divided to separate components that
collaborate to perform a joint task. The parts of the system usually run in par-
allel, and use asynchronous communication methods to communicate with
each other. The components of a system may physically reside in the same
computer, or be scattered around the world. Asynchronous communication
between the components of a system means that processes within the system
may send messages to each other at any given moment. Due to the difference
in the relative execution speeds of different system components, and dynamic
variation in this speed 1, messages may arrive to a process in any order. It is
also possible for the messages to travel different routes, in which case they
may arrive at their destination in different order than they were sent.

Designing, implementing and testing concurrent programs have tradition-
ally been complex and error-prone tasks. Due to the concurrency and asyn-
chronous communication within the system, the internal behavior of the sys-
tem tends to be highly nondeterministic and error conditions may be impos-
sible to reproduce. Formal methods are notations and analysis techniques
that can be used to verify that a system satisfies its specification. Reacha-
bility analysis is an analysis technique which suits well concurrent systems.
The basic idea of reachability analysis is to compute the state space of the
system and check the required properties at each state. The state space of a
system can easily be represented as a graph, and it is often referred to as the
reachability graph of the system.

The size of the state space of an industrial size system may outrule exhaus-
tive analysis. The size of the state space can grow exponentially compared to
the size of the system. This phenomenon is called state space explosion.
There are several techniques that can be used to attack the state space explo-
sion problem. Partial order reduction methods are based on the observation
that some orders in which the concurrent and independently executed events
are interleaved are equivalent with respect to the property to be checked. An-
other approach is to use symmetry methods, which exploit symmetries of
state spaces. Most reachability analysis tools utilize at least one technique to
relief the state space explosion problem.

Another problem besides the vast state space of industrial size programs is,
how to construct an analyzable model of a program. Manually constructing
the verification model of a large program may not be feasible, especially if the
work has to be done by someone who is not very familiar with formal methods

1The execution speed of a process may vary considerably depending on the load of the
computer system it is run on, and other external phenomena.

1. INTRODUCTION 1



or with the formalism applied by the analysis tool. Since most designers are
not familiar with other formalisms than the one they are directly working
with, it is desirable to automatically generate the verification model out of
the program specification. This requires a level of formality from the program
specification method itself.

The ITU-T 2 Specification and Description Language [34], SDL for short,
is a language with formally defined semantics. It is often used in describ-
ing telecommunication protocols, which form a very important class of dis-
tributed systems. Because of its formality, SDL is an interesting candidate
as an input language for automatic model generation. Automatic transla-
tion from SDL to various modelling formalisms have been developed. The
complexity of the translation mechanism depends on the selected modelling
formalism and the set of SDL constructs allowed.

The input language of the verification tool SPIN [11], PROMELA, has
been designed to be quite close to SDL which makes automatic translation
from SDL to PROMELA [12] quite straightforward. Intermediate format IF
is used in the translation from SDL to PROMELA described in [4]. Auto-
matic translation to PROMELA from TNSDL, a dialect of SDL has also
been defined [32].

High level Petri nets are a popular class of modeling formalisms used in
reachability analysis tools. A method for translating SDL specifications to
M-nets (modular multi-labelled Petri nets) is presented in [9]. Colored Petri
nets are used as a modelling formalism in the automatic model generation
from SDL described in [5] and [6].

Time is generally a difficult thing to model. Most programming languages
have a possibility to set timers and SDL is no exception. An extension to
SPIN taking timing considerations into account is presented in [3]. Petri
nets as such do not have a concept of time but special classes of high level
Petri nets have been developed that can be used to embed timing concepts
into the model. Modeling SDL specifications with HTT nets (Hierarchical
Timed Typed nets) is presented in [23].

State space explosion problem can be attacked by applying some suit-
able reduction method at the level of the modeling formalism, but it is also
possible to apply reductions at the SDL level as described in [31] and [28].
SDLcheck verification tool [16] utilizes a partial order reduction method de-
fined in [15].

This report presents an SDL front-end for MARIA [20] reachability anal-
ysis tool. The front-end consists of an SDL parser described in detail in [18]
and a model generator capable of constructing a high-level Petri net [19]
model from an SDL specification. This report focuses on the model gen-
erator part. Translation rules have been defined and implemented for most
of the SDL constructs, including dynamic process creation, procedure calls
and timers. To optimize the model with respect to the size of the reachability
graph, some SDL level static reductions have also been defined.

2ITU-T is the Telecommunication Standardization sector of the International Telecom-
munication Union and was formerly known as CCITT (Comiteé Consultatif Internationale
de Télégraphique et Téléphonique).

2 1. INTRODUCTION



2 SDL

SDL (ITU-T Specification and Description Language) was developed as a
specification and description language for telecommunication systems. The
language was available already in 1976, but since then it has been refined
several times and new features have been added. The version of SDL used
in this report is SDL-96 as defined in [34] and [35].

SDL-96 has formally defined semantics [2]. A description of a system
written in SDL is a formal specification. A formal specification is precise and
consistent. It is possible to generate an implementation of the system from
the specification. SDL is an implementation-independent language, so it is
possible to create multiple implementations from an SDL specification.

Even though SDL has been designed for specifying telecommunications
systems, it is suitable for describing all kinds of reactive, concurrent and dis-
tributed systems. A reactive system is a system whose behavior can be char-
acterized by its responses to external stimuli. SDL concentrates especially on
specifying how the system reacts to various actions in its environment.

SDL has two alternative presentation formats, a graphical presentation
(SDL/GR) and a text presentation (SDL/PR). The graphical form of presen-
tation is suitable for representing relationship between system components
and examining details of the system in a form that is easy to understand.
However, when large or even modest-size systems are considered, represent-
ing the whole system in graphical form is out of question. Textual represen-
tation is more compact, and does not require special tools for editing. It is
also easier to exchange between different tools.

The following description of the SDL language is based on [8], [25],
[27], [22] and [34].

2.1 BASIC CONCEPTS OF THE SDL LANGUAGE

An SDL specification specifies the structure and behavior of an SDL system,
and the data used in the system. An SDL system is a collection of SDL
processes and communication paths between them. SDL processes commu-
nicate with each other using signals, which travel along the communication
paths. A process can only send a signal to another process, if there is a com-
munication path between them.

Some communication paths end in the environment, which represents
the world outside the SDL system. The system can send signals to the envi-
ronment, and the environment can send signals to the system. No assump-
tions can generally be made about the environment, it can send signals to
the system in a completely random manner.

The processes are grouped into blocks. A block can contain other blocks,
and this way a hierarchical structure can be obtained. Communication paths
that connect blocks to other blocks or to the environment are called channels.
Channels are by default delaying, but not reordering. If two signals are sent
to a channel, it may take arbitrarily long time for them travel through it, but
they always come out in the same order as they were put in. It is possible to

2. SDL 3



specify a channel to be non-delaying, which means that when a signal is sent
to the channel, it instantly appears at the other end. This doesn’t, however,
mean that the receiver of the signal handles it instantly.

Figure 2.1 shows an SDL system which consists of three blocks: Sender,
Receiver and Buffer. The Buffer block is connected to the Sender and Re-
ceiver blocks with bidirectional channels named c1 and c2. Channel c1 can
carry signals of type Msg from Sender to Buffer, and Ack signals to the other
direction. There are no channels connecting any of the blocks to the envi-
ronment. This is a common way to avoid the completely nondeterministic
behavior of the environment.

�����������
	���
��������

����������� ���� !�#"�$��#�%&�#')(*���
+ ,- /.10 + ,- 2.30

+�46587)0 +�495�7&0 �: <;

Figure 2.1: An example of an SDL system

The contents of a block are not visible outside it. Figure 2.2 shows the
internal structure of the Receiver block. It contains two SDL processes,
Transceiver and User. Communication paths which connect processes to
each other or to the border of a block are called signal routes. They are never
delaying. There are two bidirectional signal routes in the Receiver block,
named r1 and r2.

Transceiver
[Msg] r2

block Receiver

r1
User

[Ack] [Receive]

c2 [Data, Error]

Figure 2.2: An example of an SDL block

2.2 BEHAVIORAL ASPECTS OF THE SDL LANGUAGE

The dynamic behavior of an SDL system is described by processes. SDL
processes are communicating extended finite state machines (CEFSMs). A
CEFSM has a finite set of states and transitions between the states and may
also store data in variables. CEFSMs communicate by sending messages.

4 2. SDL



In SDL the messages used for communication between processes are cal-
led signals. SDL signals can carry parameters. Each SDL process has an
input queue, to which arriving signals are stored. The queue has unlimited
capacity. The queue works in FIFO (First In, First Out) manner.

The execution of an SDL process starts from an initial state, shown as
an ellipse in the graphical representation. Each SDL process has exactly
one initial state. From the initial state, an SDL transition leads to some
other SDL state of the process. An SDL transition is a sequence of SDL
statements. Examples of SDL statements are OUTPUT for sending signals to
other processes, and ASSIGN for assigning a value to a variable.

Figure 2.3 shows the definition of the User process. The SDL transi-
tion following the initial state contains one OUTPUT statement and one
NEXTSTATE statement. The OUTPUT statement is used to send a Receive
signal. The block definition in Figure 2.2 shows that there is only one sig-
nal route capable of carrying a Receive signal and it ends in the Transceiver
process, so the only possible receiver for the signal is the Transceiver process.
The NEXTSTATE statement indicates the SDL state in which the process
moves next. It always ends the SDL transition.

���������
	���
������

������� ��� � � �������� �!"!$#&%�'(%��

������� �)� �

�����(���
	���
��*���

�����(�+�
	,�"
-�*���


������,.�/,�*����0 12����	,�

35476�8�9;:7:=<=>@?BA

/,�*���DCFE � �"
-�*���,G,HJI �,K

� LM%;N
O,P) RQ2�"�"�����

Figure 2.3: An example of an SDL process

2.2.1 Transition Triggers

For each state of an SDL process (except initial state), a set of trigger condi-
tions can be specified. Most common trigger condition is the presence of a
signal in the input queue.

2. SDL 5



With a trigger condition, an SDL transition can be specified. If the trigger
condition holds for the state the SDL process is in, the process may start to
execute the transition. After the transition has been completed, the process
enters some SDL state, which may be the same state that the transition was
initiated from (it can not, however, be the initial state). The example process
in Figure 2.3 has only one SDL state, WaitForData, in addition to the initial
state.

INPUT Construct
INPUT construct is the most commonly used transition trigger. The trigger
condition of an INPUT construct holds, if the first signal in the input queue
matches a signal specified by the INPUT construct. The signal is consumed
from the input queue.

State WaitForData in Figure 2.3 has two INPUT constructs, for signals
Data and Error. When the User process receives a Data signal, it processes
the data (informal text is used to represent this action), and informs the
Transceiver process that it is ready to receive more data by sending a Re-
ceive signal. If it receives an Error signal, it stops execution with a STOP
statement.

An INPUT construct may have variables as parameters, as is the case in the
INPUT for signal Data in Figure 2.3. The actual parameter values carried
by the signal are assigned to the variables. Even if the signal specified by
an INPUT construct is supposed to carry parameters, it is possible to omit
parameters from the INPUT construct. In this case, the actual parameters
carried by the received signal are lost when the signal is fetched from the
input queue. An INPUT construct can not have more parameters than the
signal it specifies. The types of the variables given as parameters for an INPUT
must be compatible with the types of the signal it specifies.

Multiple INPUT constructs can be attached to the same SDL transition.
The transition is executed, if any of the INPUT conditions hold.

An INPUT construct may specify more than one signal. This is a shorthand
notation for a separate INPUT construct for each signal.

ASTERISK INPUT is shorthand notation for an INPUT construct, which
contains all signals not specified by other INPUT or SAVE constructs of the
SDL state.

SAVE Construct
SAVE construct is for saving signals for later use. The trigger condition of
a SAVE construct holds, if the first signal in the input queue matches a sig-
nal specified by the SAVE. The signal is removed from the input queue and
saved. When the SDL process moves to next SDL state, the signal is consid-
ered again as it was in the input queue. A SAVE does not change the SDL
state the process is in.

Figure 2.4 shows an example of a SAVE construct. The Idle state has a
SAVE construct for signal Msg. If the process receives a Msg signal while in
Idle state, it saves the signal and continues waiting for other signals. When it
finally moves to WaitForMsg state, it can consume the saved signal.

An SAVE construct may specify more than one signal. This is a shorthand
notation for a separate SAVE construct for each signal.

6 2. SDL



�������

� �	�	��

���

���������������������! #"%$'&�('$��

)+*',.- ��/102�%� ) �'�

3 *%)
*�4 � *5)+*�6

7 �18 49)+*:,%6

��/10!�%� ) �'�<; -=)+*',.>@?

�������

ACB�B�D�B

�������

� �	�	��

��� EGF ,

H * 
 )JI D5B�EGF ,

KMLON�PQSR�TVUOP

� *%)+*XW FY�'B 3 *5)+*5Z�[ 02��\
)+*',]ZS*:,^ZS[ 02�5\
��/10!�	� ) ��� Z�*',SZ^[ 0!�]; -_? \

H * 
 )`I D�BOE@F ,

EGF ,a4�)+*',�b � *5)+*�6

Figure 2.4: An example of an SDL process

2. SDL 7



ASTERISK SAVE is shorthand notation for an SAVE construct, which con-
tains all signals not specified by other INPUT or SAVE constructs of the SDL
state.

A signal can be mentioned in at most one INPUT or SAVE construct in a
SDL state. A SDL state can have at most one ASTERISK INPUT or ASTERISK
SAVE.

Spontaneous Transition
Spontaneous transition does not expect any signals in the input queue. A
spontaneous transition may be triggered any time the process is in the SDL
state where the spontaneous transition is declared. Whether or not a spon-
taneous transition is triggered is independent of the presence of signals in
the input queue. There may be multiple spontaneous transitions in same
state. Spontaneous transitions are often used to model unreliable parts of the
system.

In graphical representation spontaneous transition is shown as a normal
input symbol containing keyword NONE. For this reason, it is sometimes
called NONE INPUT.

Continuous Signal
With continuous signal construct, a trigger condition depending on the state
of the system can be created. A continuous signal definition contains a
boolean expression referring to variables of the SDL process which contains
the continuous signal. When the expression evaluates to true, the SDL tran-
sition following the continuous signal definition may be executed.

INPUT and SAVE actions and spontaneous transition have precedence
over continuous signal. It is also possible to define priorities for continuous
signals in case there are multiple continuous signals in the same SDL state.

Enabling Condition
It is possible to add extra restrictions to an INPUT construct using an en-
abling condition. An enabling condition is a boolean expression referring to
variables of the process. The SDL transition associated with the INPUT con-
struct is executed only if the enabling condition evaluates to true. Otherwise
the signal is saved instead.

Implicit Signal Consumption
If the first signal in the input queue is not mentioned in any of the INPUT or
SAVE constructs of the state the process is in, and the state contains neither
ASTERISK INPUT nor ASTERISK SAVE construct, the signal is discarded.
This feature is called implicit signal consumption. Implicit signal consump-
tion does not change the SDL state the process is in.

2.2.2 Transition Terminators

An SDL transition is a sequence of SDL statements. The last statement of
an SDL transition is always a transition terminator. Most common transition
terminator is the NEXTSTATE statement. A NEXTSTATE statement moves
the process to the SDL state identified in the statement.

8 2. SDL



Other transition terminators are STOP and RETURN statements, described
in 2.2.4 and 2.4.3.

2.2.3 Conditional Branching

Conditional branching in an SDL transition is achieved by the DECISION
statement. A DECISION statement has a question expression and a number
of branches. A branch consists of an answer expression and an SDL tran-
sition. The answer expressions are constant ranges. Ranges must be mutu-
ally exclusive. When the question expression evaluates to a value within the
range of an answer expression, the corresponding SDL transition is executed.
Optionally an else-branch may be present, which is selected if the question
expression does not evaluate to any of the answer expressions.

A DECISION statement is shown as a diamond shape in the graphical rep-
resentation. Figure 2.4 shows an example of a DECISION statement. When
the Transceiver process receives a message (Msg signal) from a peer entity,
it checks whether the message is tagged with an expected tag value. If it is,
the Transceiver process sends an acknowledgement (Ack signal) with the tag
value to the sender of the message, and the data part of the message to the
User process. Then it increments the expected tag value by one and moves to
the Idle state to wait for the User process to request more data with a Receive
signal. If the message is not tagged with the expected tag value, execution
branches to error handling.

Nondeterministic Branching
An ANY DECISION is a decision statement containing neither the question
nor the answer expressions. It contains a set of branches, one of which is
selected nondeterministically when the statement is interpreted.

Figure 2.5 shows a lossy communication channel implemented using ANY
DECISION statement. LossyChannel process receives two kinds of signals:
Msg and Ack, and nondeterministically either sends the received signal for-
ward or discards it.

2.2.4 Process Instances

An SDL process may have a number of instances. Process instances can be
created either at system initialization time or dynamically during runtime.
By default, one instance of each process is created at system initialization
time. The number of dynamically created process instances is unlimited. It
is, however, possible to override these values by specifying the initial num-
ber of process instances and/or maximum number of simultaneously existing
instances for a process.

The signal routes attach to processes, not process instances. When a signal
arrives at a process which has more than one instance, the receiving instance
is selected at random.

Process instances can not be separated from each other by name, because
instances of a given process all have the same name. Instead, each process
instance has a unique PId (Process Identifier) value, which distinguishes it
from any other process instance in the system. All signals carry the PId value

2. SDL 9



���������
	��
����	
�
	��

�������

���������
	��
�
��	
�
	��

�����

���! ���
	��
�

�������

�����

�������

��	
�
	#"$�%�'&)(*	
�
	�+�,.-/��0
�
	'�1+2	��3+�,.-4��0

576�829�:<;�;>=�?�@�@BA3CED�FHG�GJI.K

�L�! ���
	'�<�

Figure 2.5: SDL definition of a lossy communication channel

10 2. SDL



of the sender. This allows the receiver to determine which process instance
sent the signal and possibly respond to the same instance.

An SDL process may have parameters. Parameter values are bound at
process instance creation time. If the process instance is created at system
initialization time, the values of parameters are undefined. Process parame-
ters function like read-only variables.

CREATE statement is used to create a process instance during runtime.
The creating process and the process to be created must be in the same block.
A process can stop its execution by a STOP statement. A process can not stop
any other processes but itself. When a process executes a STOP, it ceases to
exist and its PId value may be assigned to some newly created process.

The blocks, channels and signal routes are static elements that can not be
dynamically created or destroyed. They do not have a concept of instance,
either.

2.2.5 Communication Between Processes

SDL processes send signals to each other with OUTPUT statement. The
OUTPUT statement specifies the signal to be sent and values of parameters
for the signal.

There may be multiple process instances that can receive a signal, for in-
stance because the signal is sent to a communication path which branches
to multiple processes, or because there is more than one instance of the re-
ceiving process. In this case, the default version of the OUTPUT statement
sends the signal to a process instance which is randomly selected among the
process instances reachable from the sending process. It is, however, possible
to change this behavior using special constructs TO, VIA and VIA ALL with
the OUTPUT statement.

The TO constraint in an OUTPUT statement restricts the receiver of the
signal to the process instance with PId value specified in the OUTPUT state-
ment. The four predefined values that can be used are listed in Table 2.1.
If there is no reachable process instance with the requested PId value, the
signal is discarded.

Expression Identifies
SELF The process instance itself.
SENDER The sender of signal most recently received by this pro-

cess instance.
PARENT The process instance that created this process instance.
OFFSPRING The process instance most recently created by this pro-

cess instance.

Table 2.1: Predefined PId expressions

The VIA construct can be used to restrict the set of channels, signal routes
and gates the signal may travel through. Consider a system shown in Fig-
ure 2.6 a). All communication paths beginning from the process A are shown
in Figure 2.6 b). Statement OUTPUT Sig VIA r2 first selects the receiv-
ing process out of the set of processes reachable using the mentioned signal

2. SDL 11



route. This leaves processes C and D. One of them is randomly selected,
and the process instances are then considered. If the process has exactly one
process instance, the signal is delivered to it. If there are more than one pro-
cess instances, one of them is selected at random. If there are no process
instances, the signal is discarded, even if there were instances of the other
process which was not selected in the first phase of selecting the receiver for
the signal.

Statement OUTPUT Sig VIA c1, c3 works the same way, but now the
reachable processes are B and D.

The list of channels, signal routes and gates in the VIA definition is called
VIA path.

Other OUTPUT statement types send a signal to a single receiver, but the
VIA ALL construct can be used to implement multicasting. An OUTPUT
statement with a VIA ALL definition sends a copy of the signal to each of the
channels, signal routes and gates mentioned in the VIA path.

Considering the example in Figure 2.6, statement OUTPUT Sig VIA ALL
c1, c3 sends the signal Sig to both processes B and D. If one or both processes
have more than one instance, the receiving instance is selected randomly, as
in other OUTPUT statement types.

Statement OUTPUT Sig VIA ALL r2 works exactly the same way as without
the ALL keyword. Because the VIA path has only one element, only one copy
of the signal is sent.

Statement OUTPUT Sig VIA ALL c2, c3 is slightly more complicated,
because when a signal has been sent to channel c2, it still has two possible
receivers: processes C and D. Now it is possible, that one copy of the signal is
sent to process C (through channel c2) and one copy to process D (through
channel c3), or that both copies end to process D using different routes,
because D is reachable through both channels c2 and c3. If both copies of
the signal are sent to process D, they may still be received by different process
instances if there is more than one instance of D. It is also possible that they
will both be received by the same process instance.

2.2.6 Timers

An important concept of the SDL language is a timer. A timer is an object
which can generate signals to the input queue of the owning process instance.

A timer can be active of inactive. When a timer is created, it is inactive.
Activation of a timer is done using SET statement. When a timer is activated,
it is given either the duration of time after which it should expire, or the
actual time.

When a timer expires, it puts a signal to the input queue of the process
instance. The signal has the name of the timer which generated it. The
timer does not move back to the inactive state until the the signal has been
consumed. ACTIVE expression can be used to check whether a timer is in
active state.

A timer can be set to inactive state by RESET statement. Resetting an
inactive timer has no effect. If the timer has already expired, resetting it
removes the signal generated by it from the input queue of the process. If the
timer has not yet expired, it is just moved to inactive state.

12 2. SDL



�

�������	��

�������

����������� �"!#�%$�&%��'%(
)+*

, ������-

.

����������� �"!���$�&%�"'0/

132�1543687:9<;�=">@?BA ��/

, ������-
)DC

E

, ������-

)GF

, ������-
H�I

, ������-

, ������-

H%J

H#*

���������LK���MON��%'

, �P�Q��-
)RJ

, ������-

)%I

, ������-
)�S

T

(a)

� � �

��� ��� ��� �
	

�
� ������

��� ���

�

(b)

Figure 2.6: Communication paths in an SDL system

2. SDL 13



A timer can have parameters. The parameter values must be given in all
SET and RESET statements and ACTIVE expressions. Parameter values are
used in identifying the timer, in addition to name. Parameter values are also
included as parameters of the signal generated by the timer.

The signal generated by a timer is just like other signals. It can be con-
sumed by an INPUT construct, saved or discarded. Expiration of a timer is
not considered a transition trigger, because no SDL transition is executed
until the signal generated by the timer is consumed from the input queue.

2.3 DATA IN SDL

A SDL process may contain data in form of variables. The variables are of
different data types, called sorts in SDL. There is a predefined set of basic
sorts, such as Boolean, Integer and Character sorts, and new sorts may be
created either by composing from the existing ones, or defining them from
scratch.

Structural types can be created using the SDL struct construct.
SDL has some predefined generators, which can be used to create new

sorts easily. Figure 2.7 shows the definition of a list of Integer values using
the predefined String generator. It defines a new type IntList. The emptylist
literal is used to represent an empty list of this sort. Other predefined gener-
ators are Array and Powerset.

newtype IntList

String(Integer, emptylist);

endnewtype IntList;

Figure 2.7: An SDL type definition

The data type definition capabilities of the language are quite versatile,
but it is also possible to combine other formalisms (such as ASN.1) to SDL
to extend the data type definition capabilities.

2.4 STRUCTURE OF AN SDL SYSTEM

Systems specified in SDL are usually too large to get an overview of if all the
processes are considered at once. Blocks offer a way to group processes to
more manageable sets, but also other structuring concepts are available.

2.4.1 Block Substructure

Using only one level of abstraction will easily lead to unpractically large num-
ber of blocks in the system. Block substructure can be used to create blocks
within blocks. This makes it possible to group interconnected blocks inside
a superblock, this way reducing the number of system-level blocks.

If a block does not have a substructure, it can only contain processes and
signal routes connecting the processes to each other or to the environment

14 2. SDL



of the block. Connections define how the signal routes are connected to the
channels outside the block. This kind of blocks are called leaf blocks.

A block with substructure may itself contain other blocks, which are in-
terconnected by subchannels. Subchannels are defined as normal channels,
and they are connected to the channels in the environment of the block by
channel connections.

In SDL, a block may contain both processes and a block substructure.
They are then two different views to the same block, and only one of them
can exist in a system at any time.

2.4.2 Channel Substructure

If partitioning blocks is not enough, it is possible to create further structure to
channels as well. Channel substructure is similar concept to block substruc-
ture, but it defines the internal structure of a channel.

A channel substructure can be used to change the behavior of a channel
by creating an internal structure for it. A channel substructure may contain
blocks and subchannels, just like a block substructure. The difference is in
the way how subchannels are connected to the outside world.

Figure 2.8 shows an example of a channel substructure definition. It is a
definition of a system with two blocks: Sender and Receiver connected with a
lossy channel. Because SDL channels do not lose signals, the channel c has
a substructure which adds the signal losing feature. The substructure con-
tains only one block, which contains a process LossyChannel (Figure 2.5)
implementing the actual signal losing behavior.

�����������
	���
��������

���������������� ��!#"$�%�
& '(�*),+

-/.�0�0214365 7 ! !8�*9
& '(�:);+

&=< 0�> +&=< 0?> +
& '6�:),+

&�< 0�> +

& '(�:);+ & '(�:);+
&�< 0?> + &=< 0?> +�4@ 0 @

�

0BA � A
� ��!#"C��� �������%�2�����

D#E?FHG�IKJML4NON ��P

Figure 2.8: An example of SDL channel substructure

2.4.3 Procedure

There are two ways of splitting an SDL process to smaller pieces: procedures
and services.

2. SDL 15



A procedure concept in SDL is similar to the one known in programming
languages. A procedure is a state machine within a process, which is created
when a procedure call (CALL statement) is interpreted, and ceases to exist
when a RETURN statement is interpreted within the procedure. While the
procedure is being interpreted, the calling process instance is suspended. A
procedure uses the input queue of the calling process instance.

A procedure may have two kinds of parameters. IN-parameters are like lo-
cal variables. Value for an IN-parameter may be given in procedure call, but
it is not mandatory. If value for a paramater is not given, default value is used.
IN/OUT-parameters may be used to return values from the procedure. In a
procedure call, each IN/OUT parameter of the procedure must be replaced
with a variable of the calling process or procedure. When the procedure re-
turns, the values of the variables are replaced with the values of the IN/OUT
parameters. A procedure may also return a value as an expression associated
with the RETURN statement.

2.4.4 Service

In addition to using procedures, it is also possible to split an SDL process to
smaller pieces by using services. An SDL service is, like an SDL process, a
set of SDL states and transitions. Each service in a process must contain a
distinct set of states.

Only one service may be executing a transition at a time. The active
service may change only when a transition terminator is reached and an SDL
state is entered.

2.5 TYPES

SDL uses the type concept extensively. There can be types of different en-
tity kinds, for example process- or block types. A type defines the common
properties of a category of entities, and it may be instantiated any number of
times. A block type may, for example, be instantiated to two different blocks.
Even if these two blocks are internally identical, they are different blocks,
and they may be used in different parts of the system.

The type information is static. For example processes can not be created
from a process type dynamically, like process instances can be created for a
process.

When process types are used, the signal routes to which the process is
attached can not be known when the type is specified. Instead, gates are
used. In the block definitions the signal routes are then connected to the
gates.

16 2. SDL



3 PETRI NETS

Petri net theory is a formalism suitable for describing systems of distributed
and combinatorial nature. Petri nets are particularly well suited for discrete
event systems. Petri net theory has emerged from the work of Carl Adam
Petri in the early 60’s. A compelling fact in this formalism is the way how
the basic aspects of distributed systems are identified both conceptually and
mathematically. The following description of nets is based on [30], [26],
[10] and [19].

In Petri net theory, the state of the system is seen as a composition of local
states of it’s parts. A change of state is also local — its extent does not depend
on the global state at which it occurs. The actions changing states are called
transitions 1.

Definition 3.1 (Nets) A net is a 3-tuple N = 〈S, T ; F 〉, where S is a set of
places, T is a set of transitions and F is a flow relation. Following properties
hold for the sets:

1. S ∪ T 6= ∅ and S ∩ T = ∅

2. F ⊆ (S × T ) ∪ (T × S)

A net is an ordered bipartite directed graph without isolated nodes. In
graphical notation the places are usually represented as circles, and tran-
sitions as rectangles. Flow relation is represented with directed arcs. The
places represent local states of the system, and the flow relation determines
which states a transition has an effect on. An arc coming from a place to a
transition is called an input arc, and an arc from a transition to a place is
called an output arc.

In Petri net theory a lot of work has been done using low level nets with
“black” tokens, meaning that the tokens can not be distinguished from each
other. This kind of nets are called Place/Transition nets (P/T nets). A P/T
net is a net as defined in Definition 3.1 associated with an initial marking,
the initial distribution of tokens to the places. The tokens are represented
graphically as black dots.

Figure 3.1 shows a simple example of a P/T net. The example shows
a model of a four-slot buffer, where the tokens in the slot places represent
messages that the sending end may put to the buffer, and the receiving end
may remove from the buffer. Each slot of the buffer has to be modeled with
a separate place, because otherwise there is no way to tell which message is
in which slot. The fact that tokens have no identities makes it difficult to
model message contents. Because a buffer slot usually fits only one message
at a time, complement places are needed to restrict the number of tokens in
each slot place to one.

1The concepts transition and sort are used in SDL in a completely different meaning
than in net theory. Unless otherwise stated, the occurrences of words transition and sort in
this chapter refer to net transitions and net sorts

3. PETRI NETS 17



��������� �������
	 ��������� ��������


��������������������� ��������������������	 ��������������������� ��������������������


 "!�#%$&��'(�)�  *!)#%$&��'(�+	  "!)#%$&�,'&��� -"�&'(�/.�#(��0���1!

Figure 3.1: A Place/Transition net modeling a four-slot buffer

A transition is said to be enabled if there are tokens in all its input places
(the places from which there is an input arc to the transition). When a transi-
tion is enabled, it can be fired. When a transition is fired, a token is removed
from all its input places and a token is inserted to all its output places. (Note
that this definition applies only to P/T nets without weights and capacities.)

P/T nets are very illustrative when modeling simple systems, but with even
slightly more complicated examples the models become unpractically large.
P/T nets lack the ability to model individuals. Predicate/Transition nets (Pr/T
nets) are a class of high-level Petri nets which allow modeling dynamical
systems with a set of individuals ordered by functions and relations.

While the tokens used in P/T nets were simple unnamed entities, in Pr/T
nets they are tuples of terms, and thus tokens can be identified. With each
arc is associated an arc expression, which tells how many, and what kind of to-
kens are removed from or inserted to the associated place when the transition
is fired. Also gate expressions can be added to transitions. A gate expression
(also called transition selector or firing condition), is a truth-valued expres-
sion. The transition can be fired only when the gate expression evaluates to
true.

Although a Pr/T model of a system can be considerably more compact
than a P/T model, it can not be used to model anything that could not be
modeled using a P/T net. In fact, each Pr/T net can be unfolded to a P/T
net, and a P/T net can be folded to a Pr/T net.

Pr/T nets are used in for example PROD [33] reachability analysis tool, and
they can be very efficied in modelling even quite complex systems. However,
when the aim is to generate models from a description in another language,
the modelling formalism falls short in expressing the data types of the source
language. If complex data types have to be represented by, for example, tu-
ples of integers as done in PROD, unnecessary complexity is introduced in the
models. They become both harder to understand, and more time-consuming
to analyze.

3.1 ALGEBRAIC SYSTEM NETS

Algebraic system nets allow the use of many kinds of data types, called sorts.
The use of algebraic techniques makes it possible to describe both the syntax
and the semantics of the terms appearing in the nets. The syntax of an al-
gebraic system is defined in a signature, which specifies the symbols used

18 3. PETRI NETS



in terms but does not give any interpretation for them. The semantics are
defined by the algebra, which gives a correspondence between the operation
symbols given in the signature and the actual interpretation for them.

Definition 3.2 (Signatures) A signature S = 〈S,F〉 consists of

1. A non-empty set S of sort names (sorts).

2. A pairwise disjoint family F =
⋃

σ∈S∗,s∈S Fσ,s of operation symbols.

An operation symbol f ∈ Fs1,...,sn,s denotes an operation from sorts
s1, ..., sn to sort s . The set Fε,s , where ε denotes the empty sequence, is
called the set of S -constant symbols of sort s 2.

Definition 3.3 (Variables) A pairwise disjoint family V =
⋃

s∈S Vs of sym-
bols such that V ∩ F = ∅ is called a family of S -variables.

Using operation symbols, constant symbols and variables, we can create S
-terms as follows. Algebraic terms can be seen as sequences of symbols, the
interpretation for them is defined separately.

Definition 3.4 (Terms) The set TS
s (V) of S -terms of sort s over variables V

is the minimal set defined inductively by the following rules:

1. Vs ⊆ TS
s (V)

2. For n ≥ 0, if f ∈ Fs1,...,sn,s and Ti ∈ TS
s (V) for 1 ≤ i ≤ n, then

f(T1, ..., Tn) ∈ TS
s (V).

The set TS
s (∅) is the set of S-ground terms of sort s.

An algebra corresponding to a signature gives an interpretation for the sorts
and operations. It assigns each sort a domain and each operation symbol a
function. For example, a boolean sort would be assigned a domain DA

b =
{⊥,>}.

Definition 3.5 (Algebras) Let S = 〈S,F〉 be a signature. A S-algebra A =
〈DA,FA〉 consists of:

1. A pairwise disjoint family DA =
⋃

s∈S DA
s of non-empty domain sets

for sorts.

2. A pairwise disjoint family FA =
⋃

f∈F fA of operations. For all f ∈
Fs1,...,sn,s with n ≥ 0, the operation fA is a mapping
fA : DA

s1
×· · ·×DA

sn
→ DA

s .

Definition 3.6 (Assignments) Let A be an algebra. The set

V A(V) =

{
v‖v :

⋃
s∈S

(Vs → DA
s )

}

is the set of all assignments to the variables of the family V .

2The convention used in this document is that sequence indices are written in ascending
order. When the index of the last element of a sequence is smaller than the index of the first
element, the sequence is empty.

3. PETRI NETS 19



An assignment basically fixes a value with each variable. Given an assign-
ment, S -terms can be evaluated as follows:

Definition 3.7 (Evaluation of Terms) An assignment v ∈ V A(V) to vari-
ables is extended to the corresponding evaluation of terms

eAv :
⋃
s∈S

(
TS

s (V) → DA
s

)

by the following inductive definition for each T ∈ TS
s (V):

1. If T ∈ Vs, then
eAv (T ) = v(T )

2. If T = f(T1, ..., Tn), f ∈ Fs1,...,sn,s and Ti ∈ TS
s (V) for 1 ≤ i ≤ n ≥ 0,

then
eAv (T ) = fA(eAv (T1), ..., e

A
v (Tn))

For ground terms all evaluations yield the same value, because variables
are not involved.

Multi-set signatures and multi-set algebras are special cases of signatures
and algebras. The set of sorts in a multi-set signature is divided to basic sorts
and multi-set sorts, in such a way that for each multi-set sort there exists a
corresponding basic sort. The domain of a multi-set sort is the set of all multi-
sets over the domain of the corresponding basic sort. More formal definition
is as follows.

Definition 3.8 (Multi-set Signatures) Let S = 〈S,F〉 be a signature with a
finite set of sorts S. Let Sβ,Sµ ⊆ S such that Sβ ∪ Sµ = S and Sβ ∩ Sµ = ∅,
and let µ : Sβ → Sµ be a bijective mapping from basic sorts Sβ to multi-set
sorts Sµ. Then

Sµ = 〈S,F , µ〉

is a multi-set signature.

A multi-set algebra is a straightforward extension of an algebra. Based on a
multi-set signature, it requires that the domain set of each of its multi-set sorts
is the set of multi-sets over the domain set of the corresponding basic sort.

Definition 3.9 (Multi-set Algebras) Let S be a signature and Sµ be a corre-
sponding multi-set signature. An S-algebra A = 〈DA,FA〉 is an Sµ-algebra
if for each s ∈ Sβ , DA

µ(s) = M(DA
s ), where M(DA

s ) denotes the set of all
multi-sets over DA

s .

Using the concept of multi-set algebras it is possible to define the structure
of an algebraic system net.

Definition 3.10 (Algebraic System Nets) An algebraic system net

Σ = 〈N ,A,V , i〉

over A consists of

1. A net N = 〈P , T ;F〉 , where

20 3. PETRI NETS



(a) P , a finite pairwise disjoint family of sort-indexed places P =⋃
s∈Sµ

Ps, is a set of Sµ-variables whose assignments are multi-set
valued.

(b) T , a finite set of transitions, is disjoint from the family of places
T ∩ P = ∅.

(c) F ⊆ (T × P) ∪ (P × T ) is a flow relation.

2. An Sµ-algebra A for a multi-set signature Sµ = 〈Sβ ∪ Sµ,F , µ〉; one
basic sort b ∈ Sβ is the Boolean sort of truth values withDA

b = {⊥,>}.

3. A sorted Sµ-variable set V =
⋃

s∈S Vs such that Ps ∩ Vs = ∅ for all
s ∈ Sµ.

4. A net inscription i : (P ∪ T ∪ F) → ⋃
s∈S TSµ

s (V) such that

(a) i(p) ∈ TSµ
s (∅) for each s ∈ Sµ and p ∈ P are the initialization

expressions.

(b) i(t) ∈ T
Sµ

b (V) for each t ∈ T , where b is the Boolean sort are the
transition guards.

(c) i(f) ∈ TSµ
s (V) for each f ∈ F such that f = 〈p, t〉 or f = 〈t, p〉

where s ∈ Sµ, p ∈ Ps and t ∈ T are the arc expressions.

Figure 3.2 shows the four-slot buffer from Figure 3.1 modeled as an alge-
braic system net. In this example, three sorts are used:

Natural_t Natural numbers, usual mathematical comparison operations.

Message_t Message_t data type has two literals, {0, 1}. It is used to repre-
sent the contents of messages moving in the system.

MessageBuffer_t MessageBuffer_t is a variable-length buffer of items of sort
Message_t. It has three operators:

add MessageBuffer_t, Message_t → MessageBuffer_t adds the mes-
sage to the end of the buffer.

remove MessageBuffer_t → MessageBuffer_t removes a message
from the beginning of the buffer.

count MessageBuffer_t → Natural_t returns the number of messages
in the buffer.

The four-slot buffer, the modelling of which required four places and
three transitions using low level nets, can now be modeled with a single vari-
able of type MessageBuffer_t. It is stored in a place named Slots. Messages
place is used to store an instance of all possible messages that can be sent.
The Send transition selects one of the messages, and adds it to the buffer.
The Send transition is augmented with a gate expression for ensuring that
the buffer is not full. Similarly, the Receive transition removes a message
from the buffer. It has a gate expression checking that there are messages in
the buffer.

3. PETRI NETS 21



Receive

count(b)>0

<0>
<1>

+

<b>

<m><m>

<b> <b>

Messages

Send

count(b)<4

<remove(b)><add(b, m)> Slots

Figure 3.2: An algebraic system net modelling a four-slot buffer

The same structure can be used to represent arbitrarily long buffers, and
arbitrarily complex messages.

A model of a system is not very useful if it can not be used to model the
dynamic behavior of the system. In Petri nets, the global state of the system
is modeled by marking, the contents of the places in the net.

Definition 3.11 (Marking, Local Marking and Tokens) A marking of an
algebraic system net Σ is a mapping

M :
⋃

s∈Sµ

(
Ps → DA

s

)

The set of all markings M is denoted by MΣ. For each s ∈ Sβ and p ∈ Pµ(s),
we call M(p) the local marking of place p and the items d ∈ DA

s tokens of
sort s. If M(p)(d) = n, we say that the place p contains n tokens carrying the
value d.

Initial marking defines the initial state of the system. It fixes an evaluation
of ground terms with each place, yielding the initial distribution of tokens in
the model.

Definition 3.12 (Initial Marking) Let v∅ ∈ V A(∅) be an empty assignment.
The marking M0 : P → DA with

M0 :
⋃

s∈Sµ

{〈
p, eAv∅(i(p))

〉
‖p ∈ Ps

}

is called the initial marking of Σ.

The global state of the system (i.e. the marking of the net) changes when
a transition is fired. A transition can be fired only when it is enabled. A
transition is enabled when the transition guard holds, and there are enough
tokens in each of its input places. To define the enabling rule more formally,
the notion of input effect is needed.

Definition 3.13 (Input and Output Effect) Let Σ be an algebraic system
net, t ∈ T a transition and v ∈ V A(V) an assignment. The two substi-
tutions t−v , t+v :

⋃
s∈Sβ

(Pµ(s) → DA
µ(s)) are called the input effect and the

22 3. PETRI NETS



output effect, respectively, and they are defined by:

t−v (p) =

{
eAv (i(〈p, t〉)) if 〈p, t〉 ∈ F
DA

s → {0} otherwise

t+v (p) =

{
eAv (i(〈t, p〉)) if 〈t, p〉 ∈ F
DA

s → {0} otherwise

An assignment to variables of a transition t is called a mode for t.

Definition 3.14 (Enabling Rule) Let Σ be an algebraic system net, M its
marking, t ∈ T a transition of Σ and v ∈ V A(V) an assignment. Transition t
is enabled in mode v at marking M of Σ if the following conditions hold for
each s ∈ Sµ and p ∈ Ps:

1. eAv (i(t)) = >; i.e. the transition guard holds

2. t−v ≤ M(p); i.e. each input place contains enough tokens

Definition 3.15 (Firing Rule) Let Σ, M , t ∈ T and v ∈ V A(V) be such
that t is enabled in mode v at marking M of Σ. The firing of transition t in
mode v at marking M produces a marking

M ′ =
⋃

s∈Sµ

{
〈p, M(p)− t−v (p) + t+v (p)〉‖p ∈ Ps

}

The fact that marking M ′′ is the result of firing t in mode v at marking M
can be written M [tv〉M ′′.

Using the firing rule it is possible to determine the set of markings that are
reachable in the model starting from the initial marking.

3.2 ANALYSIS OF ALGEBRAIC SYSTEM NETS

The aim of the reachability analysis of an algebraic system net is to compute
the graph of all the system states that can be reached from its initial state.

Definition 3.16 (Reachable States) Let Σ be an algebraic system net and
M0 the initial marking of Σ. The set of reachable states of Σ is the smallest
set R ⊆MΣ fulfilling the following conditions:

1. M0 ∈ R

2. {M ′‖M [tv〉M ′} ⊆ R for all M ∈ R, t ∈ T and v ∈ V A(V) such that
t is enabled in mode v at marking M .

Definition 3.17 (Reachable Actions) Let Σ be an algebraic system net, M0

the initial marking of Σ and R the set of reachable states of Σ. The set of
reachable actions of Σ is defined to be the smallest set E ⊆ R × (T ×
V A(V))×R for which

{〈M, 〈t, v〉, M ′〉‖M [tv〉M ′} ⊆ E

for all M ∈ R, t ∈ T and v ∈ V A(V) such that t is enabled in mode v at M .

3. PETRI NETS 23



Definition 3.18 (Reachability Graph) Let Σ be an algebraic system net and
M0 the initial marking of Σ. Let R be the set of reachable states and E the set
of reachable actions of Σ. The reachability graph of Σ is the directed graph
G = 〈R,E〉.

After the reachability graph for a model has been constructed, it is pos-
sible to analyze it to see whether it fulfills some desired properties. These
properties can be stated, for example, using temporal logics.

Exhaustive reachability analysis, which considers each possible state in the
reachability graph, is the most complete analysis method. The main draw-
back with exhaustive reachability analysis is the state space explosion prob-
lem, meaning that the number of reachable states is too large to be analyzed
in a reasonable amount of time. This stems from the fact that the size of the
reachability graph grows very fast (exponentially) with the size of the system.
The state space explosion problem can be alleviated by using some suitable
method of selecting only subset of states for analysis, where it is guaranteed
that the states left out have the properties to be checked if and only if the
states that have been selected have them. Partial order reduction methods
are this kind of methods.

Some properties can be checked while generating the reachability graph,
and thus the graph generation can be stopped when a state violating the
specific property is found. Now the whole reachability graph does not need
to be generated if the property does not hold.

The system can also be simulated using the model. In simulation the
whole reachability graph does not need to be generated, because only a small
subset of possible actions will be carried out. Simulations typically generate
a trace of execution, always performing an action on the state generated by
the previously performed action. The next action can be selected either ran-
domly, chosen by the user, or selected using some suitable heuristic.

3.3 EXTENSIONS TO ALGEBRAIC SYSTEM NETS

Algebraic system nets can be extended in various ways to bear more simi-
larity to traditional programming languages. This may be beneficial if they
are used in modelling systems described using programming language -like
methods. Now the construction of a net model from the initial system model
is more straightforward and can be more easily automated. Two extensions
to algebraic system nets are presented here: error checking and short-circuit
evaluation. [19]

3.3.1 Error Checking

An error algebra is an algebra A augmented with the undefined symbol ε 6∈
DA. For all the operations, whenever an argument equals ε, so does the
result. Also assignments are allowed the undefined value, making it possible
for a term to be non-evaluable (evaluate to ε).

A transition can only be fired when all its arc expressions evaluate to a de-
fined value. The undefined value can be used to detect an illegal evaluation
of terms, such as a division by zero, and show an error message or abort the

24 3. PETRI NETS



reachability graph generation.

3.3.2 Short-Circuit Evaluation

Short-circuit evaluation of algebraic terms is a way to make algebraic sys-
tem nets resemble more closely optimized computer implementations of ex-
pression evaluators. A signature of a short-circuit algebra contains, in ad-
dition to sort names and operation symbols, a pairwise disjoint family G =⋃

s′,s∈S Gs′,sn of short-circuit operation symbols, which is disjoint from the set
of operation symbols. Here sn stands for s, . . . , s︸ ︷︷ ︸

n times

.

A short-circuit operation symbol g ∈ Gs′,sn stands for an operation from
sort s′ to an operation from sn to s, where s′ is the selection sort and s is the
range sort of g.

The selection sort must be ordered, in other words, the algebra must de-
fine a bijective mapping from the domain set of a selection sort to an or-
dered set of items, for example natural numbers. Now a short-circuit term
T = g(T ′, T1, . . . , Tn) can be evaluated by first evaluating the selection term
T ′, finding it’s ranking among the domain set if its sort, and evaluating the
term Tk, where the index k matches the ranking. Note that the number of
terms Ti must match the size of the domain set of the selection sort.

3. PETRI NETS 25



4 THE MARIA PROJECT

MARIA (Modular Reachability Analyzer) [20], [19] is a research project at
the Laboratory for Theoretical Computer Science of Helsinki University of
Technology. The aim of the project is to produce a pack of software tools
that perform reachability analysis and check safety and liveness properties of
distributed system models. The models can be constructed either by hand or
automatically from some description language, such as SDL.

The MARIA analyzer uses a formalism based on Algebraic System Nets. A
predecessor for the MARIA analyzer was PROD [33], developed at the Digital
Systems Laboratory of the Helsinki University of Technology 1. PROD is ca-
pable of exhaustively analyzing systems with millions of reachable states and
performing model checking while generating the set of reachable states. It
has been later extended with advanced algorithms, such as a model checker
for branching time temporal logic and the stubborn set method.

The current MARIA analyzer was coded primarily by Marko Mäkelä in
1999-2003. Major improvement over PROD is the type system: while PROD

allowed only tuples of integers to be used, the type system of the MARIA
analyzer has been designed to meet the practical needs of specification and
programming languages and contains also high-level data types like queues
and stacks.

The MARIA analyzer supports the design of several different task-specific
front-ends for various input languages like SDL, Petri nets, transition systems
etc. The user of the analyzer does not need to be an expert in the specific
formal method, but may use a familiar user interface.

A primitive front-end for standard SDL, supporting the basic elements of
the language, has been coded by Marko Mäkelä, André Schulz and Teemu
Tynjälä in 1998-2000 at the Laboratory for Theoretical Computer Science of
Helsinki University of Technology.

4.1 THE MARIA ANALYZER

The input language of the MARIA analyzer is entirely textual, and the syn-
tax of the expressions resembles the C programming language. Although
Petri nets are often represented graphically as directed bipartite graphs, the
advantage of the textual representation is not having to implement a graph-
ical user interface, which would mean creating an optimal graphical layout
for an automatically generated Petri net model. Graphical notations are also
very difficult to use for large systems and must be equipped with facilities for
dividing the graph into several (hierarchical) parts.

The MARIA analyzer is based on algebraic system nets, using a short-
circuit error algebra defined in [19].

4.1.1 Data Types of the MARIA Analyzer

The basic data types of the MARIA analyzer are:

1now Laboratory for Theoretical Computer Science

26 4. THE MARIA PROJECT



• Boolean

• Integer

• Character

• Enumerated

• Identifier

The Enumerated type consists of named integer constants having distinct
values. The Identifier type is similar to a pointer or resource handle notion
of programming languages in the extent that it does not have any literals,
and the values can only be compared for equality. Internally the Identifier
type is represented as integer values. Symmetry reductions are very effective
on models making use of the Identifier type. The MARIA analyzer does not
have a data type that would behave exactly like pointers or references in pro-
gramming languages, because it would break the locality principle of Petri
nets.

The MARIA analyzer supports the following composite types:

• Structure

• Union

• Array

• Queue

• Stack

All the MARIA data types have a limited domain, which can be further
restricted by specifying ranges of allowed values. This is very important in
reachability analysis where the value ranges have to be restricted as much as
possible to avoid state space explosion.

All the data types are totally ordered, including the composite types.
The Array type specifies a non-empty set of objects of a member type,

indexed by an index type. Usually arrays in programming languages are
integer-indexed but MARIA allows using any data type as the index type, be-
cause there is a total order on every type. The array size is determined by the
number of constants in the index type.

The Queue and Stack data types are different cases of a Buffer type. The
Buffer type resembles the Array type, but is not indexed. A buffer has always
a maximum length.

4.1.2 Verifying Properties of Models

Rather simple error conditions of a system, such as deadlocks, can be de-
tected directly in the model by reachability analysis. More complex prop-
erties must be described with, for example, formulae of temporal or modal
logic. These properties are often divided into safety and liveness properties.
A safety property (“nothing bad happens”) is violated if a chain of events is

4. THE MARIA PROJECT 27



found which leads from the initial state of the system to a “bad” state. A vio-
lation of a liveness property is an infinite loop of actions which never leads to
a “good” state. Liveness properties may be refined with fairness assumptions
i.e. excluding obviously impossible execution paths.

MARIA supports LTL logic with fairness constraints. An external tool is
used for translating LTL formulae to generalized Büchi automata. Replacing
the translator is possible due to the modularity of the MARIA analyzer.

4.1.3 Reachability Analysis

The generated reachability graphs tend to be very large, and storing them
efficiently is not a trivial problem. The MARIA analyzer uses a technique
where each state is stored separately. This makes it possible to navigate in the
reachability graph and to perform all sorts of queries on it afterwards.

One way to reduce the space requirements of the reachability graph is
to generate it only partially. Using some reduction method, like partial or-
der reduction methods or symmetries, it is possible to reduce the size of the
reachability graph considerably. Because of the modular structure of the ana-
lyzer it is possible to extend it by implementing different reduction methods.

Sometimes even the reduction methods are insufficient. When industrial
systems are verified, it is desirable to allow for partial verification either using
smart automatic selection of paths in the reachability graph or interactive
selection by the user. Now the whole reachability graph does not have to be
generated, only the interesting part of it.

4.2 SDL FRONT-END FOR THE MARIA ANALYZER

The SDL front-end for MARIA, SDL2PN, uses the ideas of the Emma [13],
[14] project. Emma is a tool which translates TNSDL2 [17] language to the
net description language of PROD. Naturally, the data type system of MARIA
makes translating data types and expressions much easier. However, SDL
contains constructs not in TNSDL, and some of them have quite complex
translations.

2TNSDL (TeleNokia SDL) is a dialect of SDL-88

28 4. THE MARIA PROJECT



5 TRANSLATION RULES FOR SDL

To translate an SDL specification into a Petri net is basically to generate a
corresponding net transition for each SDL statement. Some statements may
require more than one net transition. The translation is carried out in the
following steps:

• static analysis of the SDL system

• translate types

• create places

• add initial marking to places

• generate net transitions for the environment

• generate net transitions corresponding to SDL states and transition trig-
gers

Optimizing the model for reachability analysis may require a number of
further translations, e.g. merging consecutive independent net transitions.

5.1 STATIC ANALYSIS OF AN SDL SYSTEM

The control flow of an SDL program is controlled using a program counter.
It is a number identifying the SDL statement which is to be executed next.
Before starting to translate the system, each SDL statement is given a unique
number, which will be used as the program counter value.

Some structural analysis of the SDL system has to be done to find all
the possible receivers for signals mentioned in output statements. During
this step, a structure of signal paths between the processes in the system is
resolved as described in Section 5.8. This step is quite complicated, because
the TO and VIA constructs of OUTPUT statements are taken into account.

5.2 TRANSLATION OF TYPES

The translation of types consists of the following steps:

• create simple common types

• translate user-defined types

• create types for signals

• create complex common types

5. TRANSLATION RULES FOR SDL 29



Creating a type means generating a type definition for it in MARIA input
language.

The simple common types, like pid_t (for process identifier), tid_t (for
timer identifier), rec_t (for recursion depth) and pc_t (for program counter),
are created first because they are used as parts of other types. The reason
for translating user-defined types before signal types is that signals may have
parameters of user-defined types.

SDL specifies that a special expression SENDER should return the process
identifier of the process instance that sent the last signal consumed from the
input queue. To implement this behavior, the signals must carry the process
identifier of the sender, which the receiver then saves. For each signal, a
structure type is defined which contains the parameters of the signal. The
example in Figure 5.1 shows two signals, one with parameters and another
without, defined in MARIA input language. The actual signal type signal_t,
which is used to represent all signals in the system, is a structure containing a
pid_t and a union of all the structure types defined for different signals. This
way, a value of signal type contains a process identifier and any signal defined
in the system. The process identifier value 0 is reserved for signals coming
from the environment of the system.

typedef struct {

int param1;

bool param2;

} signal1_t;

typedef struct {

} signal2_t;

typedef union {

signal1_t signal1;

signal2_t signal2;

} signal_union_t;

typedef struct {

pid_t pid;

signal_union_t signal;

} signal_t;

Figure 5.1: Signal type definition

Complex common types include a union type for all signals in the system
(signal_union_t) and a type for process queues (queue_t).

Names for the created MARIA types are of form
<type prefix><sort name><type suffix>. This is to make names of types
clearly distinguishable from other names in the net description. By default,
type prefix is empty and type suffix is “_t”.

30 5. TRANSLATION RULES FOR SDL



5.3 GENERATING PLACES AND INITIAL MARKINGS

The places that are generated to the net can be divided into three categories:
process-, procedure-, and system-related places.

5.3.1 Places for Processes

Two places are created for each process in the system: a process control place
and a process queue place.

The purpose of a process control place is to keep track of the execution
of the process. A process control place contains a token for each instance of
the process. The tokens contain three values: process identifier (value of type
pid_t), recursion depth (value of type rec_t) and program counter (value of
type pc_t).

The name of a process control place is the name of the process, prefixed
by names of enclosing blocks and the name of the system. This is to prevent
name clashes when processes in different blocks have the same name. For
example, the name of the process control place for process P1 in block B1
in system Test is Test_B1_P1, and the name of the process control place for
process with the same name in block B2 in the same system is Test_B2_P1.

The names created using this strategy are usually quite long, which may
be annoying if the resulting reachability graph is shown graphically. If the
names of entities (processes, blocks, procedures etc.) in an SDL specification
are distinct, it is possible to use only the name of a process as the name of
the process control place. Another way to reduce the length of the names
is to use some compact labeling for names. The processes could be, for
instance, numbered. This reduces the readability of the net, because the
labels do not contain information about the entities which they represent.
The problem can be overcome by keeping a separate name translation table
which maps the labels to more intuitive names. SDL2PN allows the user to
select whether prefixed names or simple names are used. It does not employ
name translation tables.

A process queue place represents the input queue of a process. It contains
a token for each instance of the process. The tokens contain the process
identifier of the process instance (value of type pid_t) and a buffer of signals
(variable of MARIA Queue type). Name for a process queue place is con-
structed the same way as the name for the process control place, but it has a
suffix “Queue”.

Some processes may have a restriction on the maximum number of in-
stances that may exist at any given time. For these processes, a process count
place is created. The process count place contains a single token, which
holds one integer value. The value specifies the number of process instances
that may be created. When creating a new process instance, the value is
checked and if it equals to zero the creation fails.

In the rest of this Section, the process control place of a process named
“X” is denoted as Control X, and the process queue place of the same process
is denoted as Queue X. The process count place of the process, if it has one,
will be denoted as Count X.

A separate process variable place is created for each variable of a process.

5. TRANSLATION RULES FOR SDL 31



The tokens in a process variable place contain the process identifier of the
owning process instance (value of type pid_t), the recursion depth (value of
type rec_t) and the value of the variable (type depends on the sort of the
variable).

In SDL, a process may also have parameters. The values of process pa-
rameters are bound when a process instance is created. For each process
parameter, a process parameter place is created. The structure of tokens con-
tained in a process parameter place is similar to the case of process variables.
The initial marking contains no tokens in process parameter places, because
no process parameters can be bound at system initialization time.

5.3.2 Places for Procedures

A procedure control place is generated for each procedure in the system.
The tokens in a procedure control place contain the same components as
the tokens in process control places, and additionally a wait number (value
of type pc_t), which is used to separate different procedure calls from each
other.

For each procedure variable and parameter, a procedure variable place
or procedure parameter place is created, respectively. The tokens in these
places contain the process identifier of the calling process instance (value
of type pid_t), the recursion depth (value of type rec_t), the value of the
variable or parameter (type depends on the sort of the variable/parameter)
and the wait number as in a procedure control place.

The initial marking does not contain tokens in any procedure-related pla-
ce, because there are no procedure calls active at the system initialization
time.

5.3.3 System Places

Several places are created for the use of all processes in the system. The PId
pool place, free PId place and PId expression place are places controlling
the use of process identifiers. The timer control place, timer lock place and
TId map place are used for handling timers. The resource place is for
controlling the granularity of actions as described in Section 6.1.

The PId pool place works as a pool of process identifiers to be given for
dynamically created process instances. The tokens in the PId pool place
contain a single value of type pid_t. The initial marking has tokens in PId
pool place for all process identifiers not assigned to any process instance.
When a process instance is created, a process identifier is removed from the
PId pool place. Destroying a process instance returns its process identifier to
the PId pool place.

To implement correct behavior of the SDL CREATE statement, the dy-
namically changing number of available process identifiers must be stored.
For this reason, there is the free PId place, which always contains a single
token. The token in the free PId place contains an integer value specifying
the number of tokens in the PId pool place.

The purpose of PId expression place is to implement the special SDL
expressions SENDER, PARENT and OFFSPRING. The initial marking has a

32 5. TRANSLATION RULES FOR SDL



token in PId expression place for each process instance in the system. The
tokens consist of four pid_t values: one for each special expression and one
for the process identifier of the process instance itself. The tokens are updated
when signals are consumed from the input queue or new process instances
are created.

The timer control place contains a token for each timer in the system.
In SDL, timers can have parameters and the parameter values are used for
identifying the timer. A timer which is activated two times with different
parameter values is considered to be two different timers. Because of this,
a timer identifier (TId) is assigned to all possible timer name – parameter
value combinations. This can be done, because all data types in MARIA
language have a limited domain. The domain may be quite large, however,
and if there are timers with parameters which have vary large value range, a
lot of unnecessary tokens will be generated to the net. The tokens in timer
control place contain a timer identifier (of type tid_t), a process identifier (of
type pid_t) identifying the process instance which owns the timer, and a flag
(of MARIA Boolean type) which indicates whether the timer is active.

The timer identifiers must somehow be mapped to the parameter values
that the signal, which the timer sends when it expires, should carry. This
is possible using the TId map place, which contains a token for each timer
identifier value in the system. In addition to the timer identifier, the tokens
contain a value of type signal_t, which contains the parameter values for the
timer.

To keep the size of the reachability graph in reasonable limits, the timers
can not be allowed to expire at any time. Instead, special commands (de-
scribed in Section 5.7) are used to specify an expiration window, the SDL
statements between which the timer can expire. To prevent a timer from
expiring outside its expiration window, the timer lock place is introduced. It
contains a token for each timer identifier in the system. Each token contains
also a flag (MARIA Boolean type), which indicates whether it is allowed for
the timer to expire.

To further reduce the size of the reachability graph, it is possible to treat
sequences of SDL statements as atomic actions (see Section 6.1). To imple-
ment this, a resource place is created. It contains a single token, containing
a MARIA Boolean value.

Table 5.1 summarizes the system-related places and types of tokens they
contain.

Place name token type
PId pool <pid_t>
free PId <Integer>
PId expression <pid_t, pid_t, pid_t, pid_t>
timer control <pid_t, tid_t, Boolean>
TId map <tid_t, signal_t>
timer lock <tid_t, Boolean>
resource <Boolean>

Table 5.1: System-related places

5. TRANSLATION RULES FOR SDL 33



5.4 THE ENVIRONMENT

The behavior of the environment of the system is modeled by generating an
environment transition for each signal – parameter – receiver combination,
where the receiver is a process to which there exists a communication path
from the environment of the system capable of carrying the specific signal.
An environment transition adds the signal to the queue of the receiving pro-
cess. Figure 5.2 shows the structure of an environment transition. The token
taken from the process queue place consists of two variables, pid and buffer.
The buffer variable is of MARIA Queue type, which has a “+” operator for
adding elements at the end of the queue. It is used to add a new signal to
buffer. The signal name and parameters are fixed when the transition is gen-
erated (a separate transition will be generated for all signals and parameter
values). The name for the transition consists of the word “Env”, the name
of the receiving process, the name of the signal and a running number. The
purpose of the number is to separate similar transitions with differing param-
eter values of the signal.

<pid, buffer + signal>

Queue X<pid, buffer>Env:X:signal:1

Figure 5.2: An environment transition

In SDL, there is a difference between the environment of the system, and
the environment of a block. The environment of a block is the enclosing
block, or in the case of a block defined in the system level, the SDL system
itself. The environment of the system is represents the world outside the
system, and it is not defined in the specification.

In SDL, each endpoint of a signal route which is not attached to some pro-
cess leads to or from the environment of the block in which the signal route
is defined. On the border of the block, the signal route may be connected
to a channel. The channel itself may lead either to some other block or to
the environment of the block or system where the channel is defined. An en-
vironment transition is generated for only such communication paths which
start from the environment of the system. Figure 5.3 shows an SDL system
consisting of two blocks, BA and BB. Figure 5.4 shows the channels, signal
routes and connections defined in the system. Although the definitions of
signal routes r1 and r3 look identical, an environment transition will only be
generated for process PA, because it is connected to the environment of the
system (through channel c1).

If there is no need to model the behavior the system with all the possible
alternative input sequences, the system can be completely detached from the
environment, and the environment be simulated within the system. There
may, for example, be one process which generates all the input sequences of
interest, and then stops execution.

34 5. TRANSLATION RULES FOR SDL



���������
	���
����
���
���������

���! #"%$'&)( ���! #"%$'&*&

+�, +�-.�/ .
012/ 1�0 143
5 ��
���65 ��
���65 ��
7��65 ��
���65 ��
7��6

Figure 5.3: An example of an SDL system with a signal path from the envi-
ronment

system X;

channel c1 from env to PA with Sig;

endchannel c1;

channel c2 from PA to PB with Sig;

endchannel c2;

block BA;

signalroute r1 from env to PA with Sig;

signalroute r2 from PA to env with Sig;

connect c1 and r1;

connect c2 and r2;

endblock BA;

block BB;

signalroute r3 from env to PB with Sig;

connect c2 and r3;

endblock BB;

endsystem X;

Figure 5.4: The channel, signal route and connection definitions for the
system in Figure 5.3

5. TRANSLATION RULES FOR SDL 35



5.5 TRANSLATING TRANSITION TRIGGERS

For each state of an SDL process (except initial state), a set of trigger condi-
tions can be specified. The set of trigger conditions for a state may consist
of a number of INPUT constructs, SAVE constructs, spontaneous transitions
and continuous signals. Additionally, one ASTERISK INPUT or ASTERISK
SAVE may be present. In the following, translations for INPUT construct and
spontaneous transition are presented.

Net transitions modeling transition triggers combine the last statement
of the previous SDL transition and the (nondeterministic) selection of the
next SDL transition. For this reason, a set of net transitions is generated to
model one transition terminator: one net transition for each combination of
previous SDL transition and next SDL transition.

Figure 5.5 shows a simple SDL process named Device consisting of two
states, Idle and Active. Both states have two transition triggers, INPUT con-
structs with signals Activate and Deactivate. There are three NEXTSTATE
statements leading to the Idle state and two leading to the Active state. The
statements are numbered for clarity.

Table 5.2 lists all net transitions that would be generated to model the
transition triggers in the Device process. Two things are needed to separate
net transitions from each other: the signal consumed in the transition and
program counter of the previous statement.

���������
	��
� ����	���������	��
�

���������

����� �

�������
� �

����� �

�������
�
	��
� ���!	��������
	��
�

��������� ����� �

��������� �

��������� �

����� �

"$#�%'&�(*)�),+.- /�021�-

3

4 5

6

7

8

9

Figure 5.5: An SDL process

36 5. TRANSLATION RULES FOR SDL



Program Counter
State Signal

Before After

Idle Activate 1 2
Idle Activate 4 2
Idle Activate 7 2
Idle Deactivate 1 3
Idle Deactivate 4 3
Idle Deactivate 7 3
Active Activate 2 5
Active Activate 6 5
Active Deactivate 2 7
Active Deactivate 6 7

Table 5.2: Net transitions needed for transition triggers of the SDL process
in Figure 5.5

5.5.1 INPUT Construct

Figure 5.6 shows the structure of an INPUT net transition. Some values are
fixed at net generation time. Those values are listed in Table 5.3. The first
three values are present in all INPUT net transitions. They refer to Program
Counter Before, Program Counter After and Signal columns of Table 5.2,
respectively.

Other names shown in tokens on input arcs are variables. Variables in this
sense should not be mixed with SDL process variables that are represented
as places in the net. Variables used in Figure 5.6 are briefly explained in
Table 5.4. More thorough explanation of an INPUT net transition and the
variables used follows.

The buffer variable models the process input queue. It is of MARIA Queue
type containing elements of type signal_t (see Figure 5.1). MARIA Queue
type has a “/” -operator, which returns the number of elements in the queue
that it is applied to. It also has a “*” -operator for viewing the element at the
beginning of the queue. These operators are used on the buffer variable in
the gate expression to check that there is at least one element in the queue,
and it is a signal of the type mentioned in the INPUT part that the net transi-
tion is generated for (sig).

The MARIA Queue “*” -operator does not remove elements from the
queue. The first element in the queue is removed with “-” -operator before
the buffer variable is returned to the Queue X place.

An INPUT net transition must also update the PId expression place to
contain the process identifier of the SDL process that sent the signal. This is
achieved by replacing the old value of sender variable with the pid compo-
nent of the buffer element.

An INPUT construct may also contain SDL process variables, if the signal
specified in it has parameters. In this case, the old values of the variables
are replaced by the parameter values carried by the signal. In the example
in Figure 5.6, the value of variable Y is replaced by value of param0 of the

5. TRANSLATION RULES FOR SDL 37



Queue X Variable Y

Control X

PId expression

<pid, parent, offspring, (*buffer).pid>

<pid, rec, pc> <pid, rec, newpc>

<pid, parent, offspring, sender>

<pid, -buffer>

<pid, buffer> <pid, rec, y>

<pid, rec, (*buffer).signal.param0>

0 < /buffer
and

(*buffer).signal is sig

Figure 5.6: The structure of an INPUT net transition

Constant Description
pc Program counter before the net transition is fired - number of

the previous SDL statement
newpc Program counter after the net transition is fired - number of

the first SDL statement in the SDL transition associated with
the INPUT construct.

sig Name of the signal consumed by the INPUT construct.
param0 Name of a signal parameter. Arcs are created for all parame-

ters of the signal in question.

Table 5.3: Description of constants used in Figure 5.6

Variable Meaning Use in transition
pid Process identifier Ties input tokens together (all tokens

contain the same pid)
rec Recursion depth Not used
buffer Input queue First element is removed
parent PId expression Not used
offspring PId expression Not used
sender PId expression Updated
y Process variable Updated

Table 5.4: Description of variables used in Figure 5.6

38 5. TRANSLATION RULES FOR SDL



signal.
If a signal has multiple parameters, arcs to and from the variable places

are generated for each SDL process variable mentioned in the INPUT con-
struct. As a special case, same variable can occur multiple times in an INPUT
construct. In this case, only one pair of arcs is generated to/from the variable
place. The old value of the variable will be replaced with the value of the
signal parameter matching the last occurrence of the variable in the INPUT
construct.

According to SDL specification [34], it should be possible to omit some
signal parameters from an INPUT construct. This kind of behavior has not
been implemented in the SDL2PN front-end. If the signal has parameters,
also the INPUT construct has to define corresponding variables to receive
their values.

If an INPUT construct of a state contains multiple signals, a separate net
transition is generated for each of them. All the transitions update the pro-
gram counter to the same value.

5.5.2 ASTERISK INPUT Construct

ASTERISK INPUT construct is a shorthand notation for an INPUT construct,
which accepts any signal not defined in the other INPUT or SAVE constructs
of the state.

An ASTERISK INPUT net transition is similar to a normal INPUT net tran-
sition, but the gate expression excludes all the signals specified in other IN-
PUT or SAVE constructs of the state. To find the signals to exclude in the gate
expression, all the INPUT and SAVE constructs of the state must be checked.
At the same time it is easy to check that there is at most one ASTERISK IN-
PUT or ASTERISK SAVE per state, and no signal has been defined twice in
INPUT or SAVE constructs of the state.

Figure 5.7 shows a gate expression excluding two signals, sig1 and sig2 in
MARIA language.

( 0 < /buffer ),

!( ( *buffer ).signal is sig1 ||

( *buffer ).signal is sig2

)

Figure 5.7: A gate expression of an ASTERISK INPUT net transition

5.5.3 SAVE Construct

SAVE construct allows saving signals for later use. A signal mentioned in a
SAVE construct of an SDL state is not removed from the input queue, but it
is retained in the queue and available for input in a consecutive state.

Lets take as an example an SDL state S which has input constructs for
signals b and c, and a save construct for signal d. Assume that when the
process enters the state S, there are signals <d, b, c> in the input queue,
where d is the oldest (first) signal in the queue. Since d is saved in the

5. TRANSLATION RULES FOR SDL 39



state S, the process consumes the signal b and executes the SDL transition
following input b and moves to the next SDL state. In the next state the
signal d is first signal in the input queue.

This example suggests, that a straightforward translation of the SAVE con-
struct would be to swap first two signals in the input queue, and this is how
SDL2PN currently works. There is, however, a fundamental flaw in this ap-
proach which deadlocks the system if the first two signals in the input queue
are both mentioned in SAVE constructs of the state. A better solution would
be to utilize an auxiliary queue for saved signals.

5.5.4 Spontaneous Transition

Spontaneous transition does not expect any signals in the input queue. A
spontaneous transition may be triggered any time the process is in the SDL
state where the spontaneous transition is declared. After a spontaneous tran-
sition has been interpreted, the SENDER expression returns the process iden-
tifier of the process itself.

Figure 5.8 shows the structure of a net transition modeling SDL sponta-
neous transition.

Control X PId expression

<pid, rec, newpc> <pid, parent, offspring, pid>

<pid, parent, offspring, sender><pid, rec, pc>

Figure 5.8: The structure of net transition generated to model SDL sponta-
neous transition

5.5.5 Enabling Condition

An enabling condition can be associated with an INPUT construct or spon-
taneous transition. An enabling condition is a boolean expression which is
evaluated before the signal specified by the INPUT construct is consumed
from the input queue. If it evaluates to false, the signal is saved instead. In
the case of spontaneous transition the spontaneous transition is not triggered
if the enabling condition evaluates to false.

A spontaneous transition with an enabling condition is simple to translate
by adding the condition as a gate expression to the net transition. An INPUT
or ASTERISK INPUT construct with an enabling condition needs two net
transitions to be generated: one for the case when the condition is true and
another for the case when it is false. The first net transition is a normal
INPUT net transition where the gate expression has been augmented with
the condition expression. The other net transition is a SAVE net transition,
the gate expression augmented with the negation of the condition.

If a variable is used both in the enabling condition of an input, and as
a parameter for the same input, the value of the variable when the enabling
condition is evaluated is the value before the assignment of signal parameters.

40 5. TRANSLATION RULES FOR SDL



Procedure calls are not allowed in enabling condition expressions, because
they can not be evaluated in a single net transition.

5.5.6 Translation for Implicit Signal Consumption

Implicit signal consumption in SDL means discarding signals which are not
mentioned in any of the INPUT or SAVE constructs of the state the process
is in, and the state contains neither ASTERISK INPUT nor ASTERISK SAVE
construct.

An additional net transition is needed for each SDL state to implement
the discarding of a signal. A state which contains an ASTERISK INPUT or
ASTERISK SAVE does not need an implicit signal consumption net transi-
tion because it already handles all the possible signals the input queue may
contain.

An implicit signal consumption net transition does not change the pro-
gram counter value, it just removes the first signal from the input queue.

An implicit signal consumption net transition should not remove signals
that are mentioned in an INPUT or SAVE construct of the SDL state. For
this reason, a gate expression is needed which contains a negation of all the
signals that are mentioned in any INPUT or SAVE construct of the state. Re-
solving these signals can be done at the same time as signal sets for ASTERISK
INPUT and ASTERISK SAVE net transitions are collected. Actually, the sig-
nal sets to be excluded in ASTERISK INPUT, ASTERISK SAVE and implicit
signal consumption net transition are the same.

If a state does not contain an ASTERISK INPUT or ASTERISK SAVE, it has
an implicit signal consumption net transition and vice versa.

5.6 TRANSLATING THE SDL STATEMENTS

As a general rule, one net transition is required to model one SDL state-
ment. There are some exceptions, however, for example multi-signal OUT-
PUT statement requires one net transition for each signal. The following
sections describe translations for DECISION, CREATE, STOP, OUTPUT and
TASK SDL statements.

5.6.1 DECISION Statement

DECISION statement is used to implement conditional branching in SDL.
One net transition is generated to model the selection of the SDL transition
to execute. The net transition sets the program counter value using a MARIA
if-then-else expression.

Figure 5.10 shows an example of a net transition generated to model the
DECISION statement shown in Figure 5.9. In the example, the SDL transi-
tion to be executed is selected based on the value of variable V.

The SDL transitions in the DECISION branches are translated as normal
SDL transitions. The only difference is that an SDL transition which is in
a DECISION branch does not have to end in a transition terminator. In this
case, the control flows to the SDL statement following the DECISION state-

5. TRANSLATION RULES FOR SDL 41



decision (V);

case (1):

/* Do something */

else:

/* Do something else */

enddecision;

Figure 5.9: An SDL DECISION statement

Control X Variable V<pid, rec, pc>

<pid, rec, v == 1 ? newpc1 : newpc2>

<pid, rec, v>

<pid, rec, v>

Figure 5.10: A DECISION net transition

ment. In the generated model the value of the program counter is changed to
the statement number of the first statement after the DECISION statement.

ANY DECISION Statement
An ANY DECISION statement contains a set of branches, one of which is
selected nondeterministically when the statement is interpreted. A separate
net transition is generated for each branch. Each net transition replaces the
program counter value with the statement number of the first statement of
the branch.

5.6.2 CREATE Statement

CREATE statement is used to create a process instance during runtime. The
main function of CREATE net transition is to update the program counter
of the calling process and add new tokens to the process control, queue and
variable places of the process to be created. A new PId is fetched from the
PId pool place.

In SDL processes may have constraints restricting the number of instan-
ces of the process that may exist simultaneously. If a process tries to create a
new instance of a process whose instance count is full, the process creation
should fail and the creating processes OFFSPRING value should equal NULL
after the CREATE statement has been interpreted. For this reason, a process
count place is generated for each process which has a restricted maximum
number of instances. The CREATE net transition checks that the allowed in-
stance count is more than zero before creating the new instance, and decre-
ments the allowed instance count at the same time.

According to [34], the number of PId values is unlimited, there are always
new identifiers to assign to newly created processes. In real life implemen-
tation this is not possible, but the pid_t type has a maximum value. If there
are no more identifier values to use when executing a CREATE statement,
similar behavior is assumed than in the case in which a maximum number of
process instances is reached. The free PId place contains the number of PId

42 5. TRANSLATION RULES FOR SDL



values available. The CREATE net transition uses this value in the similar
way as the allowed process instance count.

Figure 5.11 shows the two net transitions corresponding to an SDL CRE-
ATE statement. The gate expressions of the two transitions are negations of
each other, so exactly one of the net transitions is fired. Both CREATE net
transitions update the program counter of the calling process, but only the
succeeding CREATE transition adds new tokens to the net and changes the
values of available PId values and allowed number of process instances.

An SDL process may have parameters. Parameter values are bound when
the CREATE statement is interpreted. The process parameters are modeled
as normal process variables and places are generated to the net for them.
In the CREATE net transition new tokens containing the actual parameter
values are added to the parameter places.

In process type definitions, the CREATE statement may contain a keyword
THIS. It is interpreted to mean the process executing the CREATE statement,
derived from the process type. The translation is similar to a normal CREATE
statement.

5.6.3 STOP Statement

The STOP net transition is the opposite of the CREATE net transition. It
removes the tokens from the process control, queue and variable places of
the process, removes the pid expressions token of the process, returns the
process identifier value to the PId pool place and updates the number of free
pids and possibly the number of allowed instances in the process.

It is not allowed to execute a STOP statement in a procedure.

5.6.4 OUTPUT Statement

SDL processes send signals to each other with OUTPUT statement. The
OUTPUT statement specifies the signal to be sent and values of parameters
for the signal. Figure 5.12 shows the structure of a net transition generated for
SDL statement OUTPUT Sig. The transition updates the program counter
of the calling process to new value, and adds the signal to the queue of the
receiving process.

Unlike other net transitions, in OUTPUT transition two different PIds are
considered: the PId of the sending process and the PId of the receiving
process. The PId of the receiving process is represented by rpid net variable.

The receiver process input queue after adding the new signal is shown in
the figure as newbuffer to make it easier to read. In reality, the value re-
turned to Queue B place is constructed by adding to buffer variable a struc-
ture value of type signal_t. The structure value consists of the value of pid
variable and a union value of type signal_union_t. The union value contains
a structure value of type Sig_t. In MARIA input language,

buffer + is signal_t { pid, Sig_t = {} }.

In case there are multiple possible receiver processes for a signal, a sep-
arate OUTPUT net transition is generated for each of them. Only differ-
ence between transitions is the receiver process place. For example, consider

5. TRANSLATION RULES FOR SDL 43



Control X Count Y

PId expression

free PId
PId pool Control Y

Queue YVariable V

<pid, rec, pc>

<pid, rec, newpc>

<y>

<y-1>
<pid, parent, offspring, sender> <pid, parent, npid, sender>

+ <npid, pid, 0, 0>

<x> <x-1><npid> <npid, 0, start>

<npid, {}>
<npid, 0, default>

x>0, y>0

(a) Succeeding CREATE net transition

Control X Count Y

PId expression

free PId

<pid, rec, pc>

<pid, rec, newpc>

<y>

<y>

<pid, parent, offspring, sender> <pid, parent, 0, sender>

<x> <x>

x==0 || y==0

(b) Failing CREATE net transition

Figure 5.11: CREATE net transitions

44 5. TRANSLATION RULES FOR SDL



Control A Queue B<pid, rec, pc>

<pid, rec, newpc>

<rpid, buffer>

<rpid, newbuffer>

Figure 5.12: The structure of an OUTPUT net transition

the SDL system in Figure 2.6. Three OUTPUT net transitions are needed
to model OUTPUT Sig statement in process A. A separate net transition is
needed for processes B, C and D because each of them is reachable from
process A.

By creating a separate net transition for each possible receiver of the sig-
nal, the selection of the actual receiver process is effectively made nonde-
terministic. If the receiver process has more than one process instance, the
selection of the receiving process instance is naturally nondeterministic as
well because the receiver PId is not fixed at net generation time.

An OUTPUT statement may contain multiple signals. In this case, a sep-
arate OUTPUT net transition is generated for each signal. For this reason, a
continuous block of statement numbers (to be used as program counter val-
ues) is reserved for each multi-signal output statement, one statement num-
ber for each signal. Now the signals are sent one after another, preserving
their order.

TO Constraint
The TO constraint in an OUTPUT statement restricts the receiver of the signal
to the process instance with PId value specified in the OUTPUT statement.
The translation is the basic OUTPUT net transition, shown in Figure 5.12,
augmented with a gate expression which allows the signal to be put only in
the input queue of a process with the PId value specified by the TO construct.

Control A Queue B

PId expression

<pid, rec, pc>

<pid, rec, newpc>

<rpid, buffer>

<rpid, newbuffer>

<pid, parent, offspring, sender> <pid, parent, offspring, sender>

sender == rpid

Figure 5.13: A net transition modeling an OUTPUT statement with a TO
construct

Figure 5.13 shows a net transition created to model OUTPUT Sig TO
SENDER. As in the case of basic OUTPUT statement without a TO con-
straint, a similar net transition is generated for each possible receiver process.

5. TRANSLATION RULES FOR SDL 45



The new contents of the receiver process input queue are as in the case of a
basic OUTPUT net transition.

The PId expression place is connected to the net transition because the
gate expression uses SENDER expression. The value of the SENDER expres-
sion is relative to process A, because process A contains the OUTPUT state-
ment. This is why the token taken from PId expression place has pid as the
first element instead of rpid.

VIA Constraint
VIA constraint can be used to restrict the set of channels, signal routes and
gates the signal may travel through. Signal path elements (channels, signal
routes and gates) are static and known at net generation time. An OUTPUT
statement with a VIA constraint is translated as a basic OUTPUT statement,
but a net transition is created for only such SDL processes that are reachable
through a signal route element mentioned in the VIA path. Information
required to find such processes is gathered during the static analysis phase.

VIA ALL Constraint
VIA ALL constraint implements multicast through all signal path elements
mentioned in the VIA ALL path. This means a separate net transition has to
be generated for each distinct set of processes reachable through the signal
path elements.

Figure 5.14 shows the net transition created to model OUTPUT Sig VIA
ALL c1, c3 statement in process A in the system shown in Figure 2.6

Control A Queue B

Queue D

<pid, rec, pc>

<pid, rec, newpc>

<rpid1, buffer1>

<rpid1, newbuffer>

<rpid2, buffer2> <rpid2, newbuffer>

Figure 5.14: A net transition modeling an OUTPUT statement with a VIA
ALL constraint

A special case when multiple separate VIA ALL -paths lead to the same
process has not been implemented in the SDL2PN front-end.

Signal Parameters
If the signal contains parameters, the values of the parameters are evaluated
first and after that the new signal is constructed and put to the queue of the
receiver. Figure 5.15 shows an example of a net transition created to model
OUTPUT Sig( V ) statement. V is a variable of the enclosing process. Value
of V is assigned to the signal parameter when the signal is sent.

46 5. TRANSLATION RULES FOR SDL



Control A Queue B

Variable V

<pid, rec, pc>

<pid, rec, newpc>

<rpid, buffer>

<rpid, buffer + is signal_t
{ pid, Sig = { v }}>

<pid, rec, v> <pid, rec, v>

Figure 5.15: A net transition modeling an OUTPUT statement with signal
parameters

5.6.5 TASK Statement

The TASK statement is used for two purposes in SDL: it may contain infor-
mal text or a variable assignment. Translating TASK statements containing
informal text is not implemented in the SDL2PN front-end. The rest of this
section concerns TASK statements which contain a variable assignment.

The structure of a TASK net transition is basically as shown in Figure 5.16.
The transition updates the program counter to the number of the following
statement and changes the contents of the token representing the variable on
the left-hand side of the assignment.

Control X Variable V

<pid, rec, newvalue>

<pid, rec, v><pid, rec, pc>

<pid, rec, newpc>

Figure 5.16: The structure of a TASK net transition

If the expression in the right-hand side of the assignment operator contains
variables, the net places of these variables must also be connected to the
generated net transition. The values of these variables are not changed by the
assignment, so all tokens taken from these places are put back unchanged.
Variable W in Figure 5.17 is an example of a variable used in the right-hand
side of an assignment statement.

Even if the expression in the right-hand side of an assignment statement
references the same variable twice, there may still be only one arc to and
from the variable place. While generating the net, an arc is added from a net
transition to a variable place only if no arc from the same net transition to
the same variable place already exist. The same applies to incoming arcs. It
is essential to create the assigning arc (the arc with the new value of the vari-
able) first, because otherwise it will not be created at all if the same variable
has also been used on the right-hand side of the expression.

5. TRANSLATION RULES FOR SDL 47



In SDL, the left-hand side of an assignment may be a simple variable
or a component of a structure or array variable. Figure 5.17 shows the net
transition generated from SDL statement TASK V(W) := W ; where V is an
array of integer values. Note that although variable W appears on both sides
of the assignment, only one pair of arcs is generated from/to its net place.

Control X Variable V

Variable W

<pid, rec, pc>

<pid, rec, newpc>

<pid, rec, v>

<pid, rec, v.{[w] w}>

<pid, rec, w> <pid, rec, w>

Figure 5.17: Assignment to an array element

Canonizing Statements
The expression on the right hand side of an assignment can contain proce-
dure calls. Because each procedure call requires multiple net transitions, the
procedure call has to be executed before the assignment. If the assignment
contains many, possibly nested, procedure calls, the translation becomes
overwhelmingly complex.

The solution used is to transform the procedure calls in an assignment
statement to assignments to temporary variables, preceding the original as-
signment. The original assignment just uses the values of the temporary
variables. This process, canonizing the statements, is done before starting
to translate them. After canonization, procedure calls appear only as single
statements, or as the right side of an assignment. Figure 5.18 shows an assign-
ment statement containing procedure calls before canonization and in can-
onized form. The canonized form consists of three assignment statements,
one for each procedure call in the original expression.

V := call C ( call A, 5 + call B ( 4 ) ) );

T1 := call B ( 4 );

T2 := call A;

V := call C ( T2, 5 + T1 );

Figure 5.18: A TASK statement before and after canonization

48 5. TRANSLATION RULES FOR SDL



5.7 TIMERS

Three net places are used to control all timers in the system: timer control
place, timer lock place and TId map place. These are explained in Sec-
tion 5.3.3. All the three places contain a token for each timer in the system.
No tokens are added or removed to or from these places in any net transition.
The tokens in timer control place contain flags controlling whether a timer
is active or inactive. The tokens in timer lock place contain flags controlling
whether a timer may expire. The tokens in TId map place contain the signals
that timers send when they expire.

There are two SDL statements for using timers: SET and RESET. In ad-
dition to these, two new statements are introduced to control the expiration
window. These statements are called EXPIREPOINT START and EXPIRE-
POINT STOP.

5.7.1 SET Statement

Figure 5.19 shows the structure of a SET statement. Besides updating the
program counter of the process, it changes the flag in the timer control place
to true, indicating that the timer is active. In the SET statement, timer name
and parameters are given, but the corresponding TId value must somehow
be found to get correct token from the timer control place. This is done con-
structing the timer signal from the name and parameter values, and fetching
the corresponding TId value from TId map place based on the signal.

The timer identifier is not actually necessary, because the timer signal
contains all the information needed to identify the timer. If the TId were
removed, some net transitions would be simpler. However, if the model
contains timers with space-consuming parameters, removal of TId is not de-
sirable because the timer signals will then appear in tokens in both timer
control place and timer lock place.

Control X timer control

TId map

<pid, rec, pc>

<pid, rec, newpc>

<tid, pid, flag>

<tid, pid, true>

<tid, signal> <tid, signal>

Figure 5.19: SET timer net transition

5. TRANSLATION RULES FOR SDL 49



5.7.2 RESET Statement

Resetting a timer is quite complex, because if the timer has already expired
and the timer signal is still in the input queue of the process, it must be
removed from the queue. Luckily, MARIA queue type allows removing items
from the middle of the queue in one step. Still, a separate net transition has
to be generated for each possible position of the timer signal in the queue.

Figure 5.20 shows a RESET net transition. Similar net transition is created
for all values of y less than maximum queue length. If the yth signal in the
queue is the one to remove, it is removed when the transition is fired. At
the same time, the flag controlling timer activity in the timer control place
is changed to false.

Control X Queue X

timer control

TId map

<pid, rec, pc>

<pid, rec, newpc>

<pid, buffer>

<pid, -(buffer[y])>

<tid, pid, flag> <tid, pid, false>

<tid, signal> <tid, signal>

y < /buffer, (*(buffer[y])).Signal is signal

Figure 5.20: RESET timer net transition

An additional net transition is added for the case when the timer has not
yet expired and the signal is not in the queue. The gate expression of the
transition excludes all cases handled by the other RESET net transitions. The
gate expression is thus a disjunction of expressions of form

( y == /buffer, !( *( buffer[x] ).Signal is signal )),

in MARIA language where 0 < y < maximum length of process input
queue and 0 < x < y. This transition does not affect the queue, it just re-
sets the timer activity flag.

5.7.3 Controlling the Expiration Window

To open and close the expiration window of a timer, it is only required to
change the value of the flag in the timer lock place. Both EXPIREPOINT

50 5. TRANSLATION RULES FOR SDL



START and EXPIREPOINT STOP statements are translated to one net tran-
sition, respectively. Each net transition updates the program counter of the
calling process and changes the value of the flag in the timer lock place. EX-
PIREPOINT START net transition changes the value of the flag to true, and
EXPIREPOINT STOP changes it to false.

An EXPIREPOINT START net transition is shown in Figure 5.21. The
EXPIREPOINT STOP net transition is similar, but it contains additional arcs
to and from the timer control place to check that the timer is inactive, to force
the timer to expire (or be reseted) before the expiration window is closed.

Control X timer lock

TId map

<pid, rec, pc>

<pid, rec, newpc>

<tid, pid, flag>

<tid, pid, true>

<tid, signal> <tid, signal>

Figure 5.21: EXPIREPOINT START net transition

It must be noted that if the timer parameters contain variables and their
values change between the SET and EXPIREPOINT START statements, the
wrong timer expiration window will be opened because the timer is identified
by the values of its parameters at the time the statement is interpreted.

5.7.4 Modeling Timer Expiration

Figure 5.22 shows a timer expiration net transition. A timer expiration net
transition is generated for each process in the system which owns timers.
There is no need to create a separate timer expiration net transition for each
timer in the system.

The timer expiration transition may fire only if a timer is active and its
expiration window is open. The timer expiration transition sets the timer to
inactive state and puts the timer signal to the process input queue. In SDL,
a timer is in active state until the timer signal has been consumed from the
input queue, so there is a slight difference between SDL semantics and the
generated model. The end result is same, however: the timer may still be
reseted also after it has expired, and the signal be removed from the queue.

5.8 STRUCTURAL CONCEPTS

SDL has a variety of constructs for structuring a specification to smaller parts.
Because Petri Nets do not have any structural concepts, the structure of an
SDL system can mainly be ignored. There is, however, one issue it has im-

5. TRANSLATION RULES FOR SDL 51



timer control Queue X

TId map

timer lock

<tid, pid, true>

<tid, pid, false>

<pid, buffer>

<pid, buffer + signal>

<tid, signal> <tid, signal>

<tid, pid, true> <tid, pid, true>

Figure 5.22: Net transition modeling timer expiration

pact on, and that is the OUTPUT statements. The structure of the SDL sys-
tem determines to which processes a signal can go.

When only the basic components: block, process, channel and signal
route, are used, it is quite straightforward to determine the processes to which
there exists a path from a specific process. All possible paths consist of either
a single signal route, or two signal routes and one channel.

Use of block or channel substructures makes it more difficult to find all
possible receivers for a signal, because now the signal can go through a num-
ber of channels before reaching the receiver process. If this signal path goes
through gates, the case is even more complicated. One way to find all the
signal path endpoints - processes which may receive the signal - is to traverse
the signal path from its origin to all the processes where it ends.

Because OUTPUT statements can have restrictions about the path via
which the signal may travel, it is also necessary to keep information about
which signal path elements are along the path in question. The most natural
way to implement this seemed to be to gather the information about signal
paths before starting to generate the net, and then just use the information
when needed.

The information is stored so that each signal path element - was it process,
channel or something else - has a set of successors, other signal path elements
to which a signal may go from this specific element. If we select the process
interpreting the OUTPUT statement as root, the other signal path elements
form a tree structure, leaves being the processes which are reachable from the
sending process. If multiple paths lead to same process set, the constructed
structure is not a pure tree, but a directed graph with no loops.

When it is time to generate the OUTPUT statement, it is easy to traverse
the tree and create a net transition for all possible receivers. Each signal path
element also contains information about which signals it is able to carry, so

52 5. TRANSLATION RULES FOR SDL



such paths that do not contain the signal being sent can be pruned. VIA
path restrictions can be taken into account simply by generating OUTPUT
net transitions for only such signal path endpoints to which the path contains
one of the VIA path elements.

Gathering information about the successors of a signal path element is
a problematic task itself. The following sections describe the problems that
arise when dealing with different kinds of structuring constructs.

5.8.1 Block Substructure

In SDL, a block may contain both processes and a block substructure. They
are then two different views to the same block, and only one of them can exist
in a system at any time. Because there is no way for the model generator to
know which version of the block to use when generating the net, only pure
leaf blocks or sub-structured blocks are allowed by SDL2pn.

Successors for subchannels and the channels in the surrounding block
can be resolved by looking only at the channel connections. If a connection
contains a subchannel and a channel which are both going out of the block,
the channel is a successor for the subchannel. Same applies in the opposite
direction.

There are some restrictions that SDL places on block substructures, which
possibly could be checked by the front-end, but currently are not. One re-
striction is that for each channel-subchannel pair going to the same direction
in a channel connection, their signal sets should be identical. Also each
channel in the enclosing block which is connected to the block containing
the substructure should be present in exactly one channel connection.

5.8.2 Channel Substructure

Resolving the successors of a subchannel in a channel substructure is more
complicated than in the case of block substructure, because it is not enough
to consider the channel endpoint connections but we must also look into the
connections in the block being the endpoint.

The channel itself must also exist on the signal path, otherwise output
statements with VIA constructs mentioning it will not be translated correctly.
It need not appear on a signal path leading out of the channel substructure
because processes inside the substructure can not use the channel in VIA
constructs. Outgoing subchannels can thus be handled as normal channels.

For incoming subchannels, the superschannel is added as a signal route
element between the channel in the enclosing scope and the subchannel.
Now a signal sent with a VIA construct mentioning the superchannel will
be directed to the substructure. This will, of course, not work for a two-way
channel, so each direction of a channel is considered as a separate signal path
element.

A channel substructure specification has the side-effect of changing the
origin of the signal sent through the channel. This follows from the way how
the channel substructure concept is defined.

5. TRANSLATION RULES FOR SDL 53



5.8.3 Types and Gates

A type - was it block, process or service type - can be instantiated in multiple
places. Each of these instances must be separately translated. This is imple-
mented by copying the contents of a type to the instances of the type. For
example, a process instantiated from a process type has a copy of all the vari-
ables and SDL transitions of the original type. A straight consequence of this
is that processes instantiated from the same type have equivalent statement
numbers. This should not be a problem, because all net places and net tran-
sitions generated include the full name of the process, and will thus not be
mixed.

If a process type uses VIA constructs in OUTPUT statements, it can not
use names of channels or signals routes as VIA path elements, but it must use
gates instead. Due to this, gates must be part of signal paths as well. This is
implemented simply by adding a gate to the signal path whenever a channel
or signal route passes through it.

5.9 PROCEDURES

A procedure body is translated the same way as a process body by translat-
ing each transition trigger and SDL statement separately according to rules
introduced in 5.5 and 5.6.

Figure 5.23 shows the basic principle of translating a CALL statement.
Each CALL statement in the SDL system has a unique wait number which
is separable from any statement number in the system. A CALL net transi-
tion replaces the program counter value of the calling process or procedure
with the wait number. Now the process can not proceed until the wait num-
ber is changed back to a normal statement number. A CALL statement also
adds new tokens to procedure control place, procedure variable places and
procedure parameter places.

Control X Control P

Variable V

<pid, rec, pc>

<pid, rec, wait>

<pid, rec + 1, start, wait>

<pid, rec + 1, value, wait>

Figure 5.23: CALL net transition

In the case of a recursive procedure, there may be multiple tokens with the
same PId in the procedure control place and the procedure variable places.
The recursion depth (rec) is used to separate these from each other. On a

54 5. TRANSLATION RULES FOR SDL



given recursion level, only the tokens with the same recursion depth value
are used. A CALL net transition creates new tokens with the recursion depth
incremented by one.

As a procedure may be called multiple times in a process, there must in-
deed be a separate RETURN net transition matching all these calls. Further,
there may be more than one RETURN statement in a procedure, so a separate
RETURN net transition has to be generated for each CALL-RETURN pair.

The structure of a RETURN net transition is shown in Figure 5.24. The
correct CALL statement is identified by the wait number, and the program
counter of the calling process or procedure is changed to the statement num-
ber of the statement following the CALL. Also all tokens added in the CALL
net transition are removed in the RETURN net transition.

Control X Control P

Variable V

<pid, rec, wait>

<pid, rec, newpc>

<pid, rec + 1, value, wait>

<pid, rec + 1, end, wait>

Figure 5.24: RETURN net transition

Some of the procedure parameters may be IN/OUT parameters, which
means they can return a value. For these parameters, the RETURN net tran-
sition must move their values to the places of actual parameters, correspond-
ing variables in the calling process or procedure. The actual parameters are
naturally call-specific, so when translating a RETURN statement, all calls for
the procedure containing it must be known.

A procedure may be value-returning, in which case the RETURN transi-
tion must also update the value of the variable to which the return value is be-
ing assigned. Because the SDL statements were simplified so that procedure
calls appear only as the only one expression in a statement (see 5.6.5), the
assignment of the return value can be done in the same transition which re-
moves the tokens from the procedure places. If procedure calls were allowed
to exist as parts of more complex expressions, for example as parameters for
another procedure call, the translation would have been far more complex.

If a procedure is defined outside the calling process or procedure, the call
should be transformed into a call of a local, implicitly created subtype of the
procedure [34]. This has been implemented by making a copy of the proce-
dure to each process which calls it, either directly or indirectly (by procedures
called by the process). As a result of this transformation, there is at most one
calling process for each procedure. Now it is easy to determine which queue
to use when translating INPUT constructs of a state in a procedure.

5. TRANSLATION RULES FOR SDL 55



6 OPTIMIZING THE MODEL

Using the previously presented translation rules it is possible to create a for-
mal model of an SDL program utilising almost any SDL language constructs.
However, the resulting model may be quite inefficient in a sense that the set
of reachable global states of the system can be excessively large, and thus
analysing the state space may require immoderate amounts of space and
time. This is called state space explosion.

When the intention is to analyse industrial-size programs, the state space
explosion is a severe problem. Although there are various methods to re-
duce the size of the reachability graph generated from a Petri Net model, it
is also possible to optimise the model itself. These kind of optimisations usu-
ally transform the net to disallow some execution sequences or leaving out
superfluous data.

Optimisations done on the Petri Net model do not usually reduce the size
of the model, actually they may introduce additional structure to the net.
Instead, their aim is to reduce the size of the reachability graph generated
from the net. Figure 6.1 shows the relationship between the initial SDL
model of a program, its Petri Net model and the reachability graph. The
tools presented in the figure, SDL2PN and MARIA, are the tools of interest in
the scope of this thesis. Naturally other tools can be used or the net model
may be constructed by hand.

SDL2PN MARIASDL model
reachability

graph
Petri Net

model

Figure 6.1: Different views of a system

The time to generate the Petri Net model from an SDL program, and also
the space consumed by the model are proportional to the size of the SDL
model, because except few exceptions, each SDL statement is modeled by
one net transition. The time it takes to create the net model is really short
(if done automatically) compared to the time required to generate the reach-
ability graph, where the number of states may grow exponentially compared
to the size of the model. Creating a slightly more complex net model is thus
justified if it results in a smaller reachability graph.

Nevertheless, optimizations do not come without a price. When disal-
lowing some execution sequences of a system (reducing concurrency), some
perfectly legal system states are removed from the model. If an error state
is optimized away, the error will not be found in the analysis. Similar con-
cerns arise when abstracting data. Extreme care must be taken in the model
optimization, so as not to exclude any integral behaviour of the system from
the model. In most cases, some optimizations have to be done, otherwise the
system could not be analyzed at all due to the size of its state space. All in all,
the user should be permitted to define whether to use specific optimization
method or not.

56 6. OPTIMIZING THE MODEL



6.1 ATOMIC SECTIONS

The basis for the state space explosion is the fact that when a pair of pro-
cesses is executing independenly of each other, all the possible interleavings
of their atomic actions must be considered. This creates a large amount of in-
termediate states between synchronization points of the processes. Figure 6.2
(a) shows a simple example of the state space generated by two independent
processes, both of which have four local states numbered from 0 to 3.

���������

�	�
�����

��
������

���������

���������

������
��

���������

�	�
�����

��
������

��
���
��

��
������

�	����
��

���������

������
��

�	�����
�

���������

(a) The full state space

���������

�	�
�����

��
������

���������

���������

������
��

���������

��
������

������
��

�	�����
�

���������

���������

(b) Reduced concurrency

Figure 6.2: An example of state spaces of two processes

If there are more processes, the number of states naturally grows even
faster. The intermediate states between the points where the processes com-
municate with each other are usually not essential to the analysis of the
model, because they represent the sequential parts of the program, which can
be treated quite well using other methods suitable for sequential programs.

The intermediate states can be abstracted away by allowing only one pro-
cess at a time to execute, as seen in Figure 6.2 (b). In a point where processes
communicate with each other, it must be allowed to swith the executing pro-
cess. The parts of program where a process executes independently of other
processes are called atomic sections. If the atomic sections are long, as usu-
ally is the case with SDL programs, disabling interleavings within them may
lead to considerable decrease in the number of global system states.

Handling atomic sections is based on the approach described in [21]. A
resource place is added to the net. It contains one token with a boolean
value. A process may begin executing an atomic section only if the resource
place contains value true. At the same time, the value is changed to false.
At the end of the atomic section, the resource token value is set back to true.

A simple implementation would claim the resource token in an INPUT
net transition, and release it in a STOP, RETURN and NEXTSTATE net tran-
sitions. The first problem with this approach is, that there is no net transition
for the NEXTSTATE statement because it was combined with the transition
trigger net transitions as described in 5.5. The resource token must thus be
released in the net transition preceding a transition trigger net transition.

6. OPTIMIZING THE MODEL 57



Second, and more severe, problem is that the atomic sections imple-
mented this way are too coarse. Figure 6.3 shows a situation that may arise
when using this kind of atomic sections. There are three processes in the
example, named P1, P2 and P3. P1 sends one signal to P3, and P2 sends
two signals to P3 in the same SDL transition. In the Figure 6.3 (a) atomic
sections are used, and the dashed line shows how the resource token is passed
from one process to another. Because the resource locking mechanism forces
the whole SDL transition to be executed before other processes get their turn,
the two signals process P2 sends arrive to the queue of P3 always immediately
following each other: no other signal can arrive between them. On the other
hand, if atomic sections were not used, the situation might be as in Figure 6.3
(b), where process P1 sends a signal to P3 between the two signals sent by
P2. In this case the use of atomic sections clearly excludes some potentially
crucial execution sequences of the system.

P3P2P1

(a) Atomic sections used

P3P2P1

(b) All interleavings allowed

Figure 6.3: An example of interesting executions being left out by reducing
concurrency

The problem can be solved by releasing the resource token temporarily
while an OUTPUT statement is being executed. Basically, there are two pos-
sibilities: either release the resource token in the OUTPUT net transition and
claim it back in the following net transition, or release the resorce token in
the transition preceding the OUTPUT and reclaim it in the OUTPUT net
transition. Both approaches allow changing the executing process when sig-
nals are sent, and thus do not exclude any orderings in which signals may
be sent. Here, the second approach is selected because it allows for simpler
translation.

SDL statements can be divided to two classes: resource claiming state-
ments (NEXTSTATE, OUTPUT), and those that do not claim the resource
token. The statements that do not claim the resource token can be furher
divided to resource releasing statements (STOP, RETURN) and other state-
ments. The statements, that are neither resource claiming nor releasing,
release the resource token if and only if the following statement is a resource
claiming one. The resource claining statements take the resource token if

58 6. OPTIMIZING THE MODEL



and only if the following statement is not another resource claiming state-
ment.

The DECISION statement requires a bit more consideration, because the
statement following it is selected dynamically. Here becomes apparent why
we modeled the resource as a boolean value instead of just a token which
either is in the resource place or not. The DECISION net transition takes the
resource token out of the resource place and puts it back, but the value of
the token is selected dynamically based on the selected execution branch. If
the branch starts with a resource claiming statement, true is returned to the
resource distributor place, otherwise false.

Also procedure calls may need releasing the resource token, if the proce-
dure being called contains states. In this case, the statement preceding the
call must release the resource token, and the following statement must re-
claim it. In the case of a procedure which does not contain states, the whole
procedure may be executed in the same atomic section.

Translation of the RETURN statement is made more complicated by the
fact that the resource token is always released by a net transition preceding
a resource consuming statement. A RETURN may, in fact, be the preceding
statement when the execution of the program is concerned. Whether the
following statement is resource consuming or not, depends on the CALL to
which the RETURN is made. This information is, however, available on the
translation time and because a separate RETURN net transition is generated
for each CALL in any case, it is quite simple to release the resource token
only in the correct net transitions.

The implementation of atomic sections described here is not as strict as
it could be. Returning to the example in Figure 6.3, to achive the correct
behaviour it is enough to release the resource token once, between the two
OUTPUT statements of process P2. In this implementation the resource to-
ken would actually be released three times: before the first OUTPUT state-
ment of P2, again before the second OUTPUT statement of the same process
and also before the single OUTPUT statement of process P1. This leaves a
number of unnecessary interleavings to the reachability graph. However, de-
creasing the number of times the resource token is released would make the
translation considerably more complex.

6.2 INTERPRETING PId EXPRESSIONS ONLY WHEN USED

The PId of the sender is sent with each signal in a SDL system. This value is
saved in the global PId expression place for each process separately. For each
process, this place contains also process identifiers of the parent and offspring
processes. It is possible that a process never uses these values, in which case
they are unnecessarily stored. Additionally, their values affect the global state
of the system, which in turn creates additional states to the reachability graph
of the model. If a process does not contain special expressions SENDER,
PARENT or OFFSPRING, all references to the PId expression place can be
removed from all the net transitions of the process. The SELF expression may
appear in the process, because it refers to the process identifier of the process
itself which does not need to be fetched from the PId expression place.

6. OPTIMIZING THE MODEL 59



7 IMPLEMENTATION TOOLS

The SDL parser and the initial implementation of the model generator had
been implemented in the C++ language [29], so it was quite natural to con-
tinue using the same language. C++ is fairly suitable for the purpose due to
its efficiency and portability 1.

On the other hand, C++ programs are particularly vulnerable to a prob-
lem called memory leaks. A program that dynamically allocates memory, and
does not deallocate it when it is no longer used, is said to have a memory leak.
A program with memory leaks will usually require more memory at run-time
than an equivalent program with correct memory deallocation. Garbage col-
lection, automatic deallocation of objects, is a powerful cure for the problem,
but involves some run-time overhead. C++ does not have garbage collection,
and because the implementation of the SDL front-end makes heavy use of
dynamic allocation of objects and complex data structures, memory leaks
were quite probable. There are not many freely available memory debug-
ging tools. We used a tool called LeakTracer [1], which detects both memory
leaks and situations where memory is tried to be deleted but which is not allo-
cated. There were some problems using LeakTracer with the C++ Standard
Template Library, but all in all the tool was very useful.

The SDL parser, which is part of the front-end, uses Flex [24] for gener-
ating the lexical analyzer, and Bison [7] for the generating the parser. As the
model generator was implemented, the input language of the SDL parser
needed to be slightly extended to introduce the special commands for con-
trolling timer expiration.

The model generator is of not much use without the MARIA analyzer,
because it only generates output in the MARIA input language. Addition-
ally, the model generator depends on a MARIA static library, which must be
present in a system when the model generator is compiled. For this reason,
it is convenient to keep the tool set used in the implementation of the model
generator close to that used in the implementation of the MARIA analyzer.

1A portable language means that a program developed for one system in such a language
using a standard-conforming compiler can be compiler for (ported to) any system using some
other compiler.

60 7. IMPLEMENTATION TOOLS



8 IMPLEMENTATION DETAILS

While an SDL specification is being parsed, a syntax tree is constructed. The
syntax tree contains nodes of different types. The nodes can be divided to
four groups: ENTITY, EXPRESSION, STATE and SORT. [18] presents a
more detailed description about the syntax tree node classes.

After generating the syntax tree, references to other nodes in the tree are
resolved and some semantic checks are done, for instance checking the num-
ber and types of parameters for procedure calls. Only after semantic checks
are passed, the model generation phase starts.

In the model generation phase the syntax tree is traversed multiple times:
at first the data types are generated, after that, places are added to the net and
finally the net transitions are created.

Basically, the code concerning the net generation is contained in the syn-
tax tree nodes. Each node contains a generate -function, which will gen-
erate the part of the net associated with the generating node. To be more
specific, there are separate functions for each of the three phases, and addi-
tionally some functions having to do with the translation of expressions.

To reduce the amount of redundant code in the syntax tree nodes, some
classes are added which encapsulate the most frequent net generation ac-
tions. Each group of places in the net is represented by a class. Some place
types, like the PID pool place, appear just once in the generated net, while
for some place types, for instance a queue place, an instance is created for
each process in the system. The different place classes have operations allow-
ing the creation of the corresponding net place, adding initial marking to it,
and adding arcs between a transition and the place to the net.

The whole model generation is controlled by an instance of Generator
class. It is a class which stores the shared resources used during the net gen-
eration phase, and contains operations for creating common types to the net.
There is only one instance of the Generator class at any given time. The
Generator object initiates the different phases of the model generation.

8. IMPLEMENTATION DETAILS 61



9 CONCLUSIONS

The SDL2PN front-end for the MARIA analyzer was created by adding a
model generator part to the previously existing compiler front-end for the
SDL language, described in [18].

The model generator supports most of the features of SDL-96, including
procedure calls and timers. Most notable features of SDL-96 which are not
yet supported by the model generator are virtuality constructs and remote
procedure calls.

The model generator does the translation in phases: first the static struc-
ture of the SDL system is analyzed, then user-defined data types are trans-
lated and places and their initial markings are created, and finally net transi-
tions are generated to model the statements in the SDL processes. Usually
only one net transition is required to model an SDL statement, but some
statements like an OUTPUT statement with a VIA constraint may require
more than one net transition.

Most SDL language constructs were quite straightforward to translate to
MARIA input language, largely due to the versatile type system of the MARIA
language and the clean and efficient programming interface of the MARIA
library. The translation of VIA and VIA ALL constraints of the SDL OUTPUT
statement was the most difficult to implement. Another difficulty was dealing
with erroneous SDL input.

Some features, such as the resource place, were added to the model gen-
erator to allow some model-level optimization to alleviate the state space ex-
plosion problem. Most of the work in reducing the complexity of the analysis
is, however, left to the MARIA analyzer.

The SDL2PN front-end consists of a parser for SDL-96 and a model gen-
erator for MARIA input language. It reads an SDL system description in
SDL/PR format and generates a text file containing the high-level Petri net
model which can be read and analyzed by the MARIA tool. The combination
of SDL2PN and MARIA can be used to analyze even quite large SDL systems
without having to manually construct the model of the system.

62 9. CONCLUSIONS



BIBLIOGRAPHY

[1] Erwin Andreasen and Henner Zeller. LeakTracer README.
http://www.andreasen.org/LeakTracer/README.html, August 2003.

[2] SDL formal definition. Recommendation Z.100. International
Telecommunication Union, Geneva, Switzerland, March 1993.

[3] Dragan Bošnački, Dennis Dams, Leszek Holenderski, and Natalia
Sidorova. Model checking SDL with Spin. In Susanne Graf and
Michael Schwartzbach, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, 6th International Conference, TACAS
2000, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2000, Berlin, Germany, March 25 – April
2, 2000, Proceedings, volume 1785 of Lecture Notes in Computer Sci-
ence, pages 363–377. Springer-Verlag, Berlin, Germany, 2000.

[4] Marius Bozga, Susanne Graf, and Laurent Mounier. Automated valida-
tion of distributed software using the IF environment. Electronic Notes
in Theoretical Computer Science, 55(3), 2001.

[5] T. G. Churina. Coloured Petri net approach to modeling of SDL spec-
ifications with dynamic constructs. In Joint Bulletin of the Novosibirsk
Computing Center and A.P. Ershov Institute of Informatics Systems,
Computer Science, pages 18 – 39, Novosibirsk, 2000. NCC Publisher.

[6] T. G. Churina, M. U. Mashukov, and V. A. Nepomniaschy. Towards
verification of SDL specified distributed systems: Coloured Petri nets
approach. In Proc CS&P’2001, pages 37 – 48. University of Warsaw,
Poland, 2001.

[7] Charles Donnelly and Richard Stallman. Bison - The YACC-
compatible Parser Generator. http://www.gnu.org/manual/bison-
1.25/html_chapter/bison_toc.html, November 1995.

[8] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma. SDL Formal
Object-oriented Language for Communicating Systems. Prentice Hall
Europe, 1997.

[9] Hans Fleischhack and Bernd Grahlmann. A compositional Petri net
semantics for SDL. In Jörg Desel and Manuel Silva, editors, Appli-
cation and Theory of Petri Nets 1998, 19th International Conference,
ICATPN’98, Lisbon, Portugal, June 22–26, 1998, Proceedings, volume
1420 of Lecture Notes in Computer Science, pages 144–164. Springer-
Verlag, Berlin, Germany, 1998.

[10] Hartmann J. Genrich. Predicate/Transition Nets. In Lecture Notes in
Computer Science 254: Advances in Petri Nets 1986, Part I, pages 208
– 247, 1986.

[11] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, May 1997.

BIBLIOGRAPHY 63



[12] Gerard J. Holzmann and Joanna Patti. Validating SDL specifications:
an experiment. In Ed Brinksma, Giuseppe Scollo, and Chris A. Vis-
sers, editors, PSTV IX, Proceedings of the IFIP WG6.1 Ninth Interna-
tional Symposium on Protocol Specification, Testing and Verification,
Enschede, The Netherlands, June 6–9, 1989, pages 317–326. North-
Holland, Amsterdam, The Netherlands, 1990.

[13] Nisse Husberg. SDL Modelling with High Level Petri Nets. In
Workshop on Concurrency, Specification and Programming, Berlin,
September 1996, 1996.

[14] Nisse Husberg, Markus Malmqvist, and Tero Jyrinki. Emma: A Tool
For Analysis of SDL Programs. Technical report, Helsinki University of
Technology, December 1996.

[15] Robert P. Kurshan, Vladimir Levin, Marius Minea, Doron A. Peled,
and Hüsnü Yenigün. Verifying hardware in its software context. In
Proceedings of the 1997 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD’97, San Jose, CA, USA, November
9–13, 1997, pages 742–749. IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1997.

[16] Vladimir Levin and Hüsnü Yenigün. SDLcheck: A model checking
tool. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Com-
puter Aided Verification, 13th International Conference, CAV 2001,
Paris, France, July 18–22, 2001, Proceedings, volume 2102 of Lecture
Notes in Computer Science, pages 378–381. Springer-Verlag, Berlin,
Germany, 2001.

[17] Markus Lindqvist, Erkki Ruohtula, Esa Kettunen, and Heikki Tuomi-
nen. The TNSDL Book. Nokia Telecommunications Oy, 1995.

[18] Marko Mäkelä. Implementing the Front-End of an SDL Compiler.
Master’s thesis, Helsinki University of Technology, November 1998.

[19] Marko Mäkelä. A Reachability Analyzer for Algebraic System Nets.
Licenciate’s thesis, March 2000.

[20] Marko Mäkelä. Maria, Modular Reachability Analyzer for Algebraic
System Nets, September 2001.

[21] Markus Malmqvist. Methodology of Dynamical Analysis of SDL Pro-
grams Using Predicate/Transition Nets. Master’s thesis, Helsinki Uni-
versity of Technology, April 1997.

[22] Andreas Mitschele-Thiel. Systems Engineering with SDL. John Wiley
& Sons, Ltd, 2001.

[23] V.A. Nepomniaschy, V.S. Argirov, D.M. Beloglazov, A.V. Bystrov, T.G.
Churina, M.Yu. Mashukov, and R.M. Novikov. Modeling and verifi-
cation of SDL specified distributed systems using high-level Petri nets.
In Gabriela Lindemann, Hans-Dieter Burkhard, Ludwik Czaja, Holger
Schlingloff, Andrzej Skowron, and Zbigniew Suraj, editors, Workshop:

64 BIBLIOGRAPHY



Concurrency, Specification and Programming, CS&P’2004, Caputh,
Germany, Septemberber 24–26, 2004, Volume 1: Petri Nets and Au-
tomata, pages 100–111. Informatik-Bericht Nr. 170, Institut für Infor-
matik, Humboldt-Universität zu Berlin, Germany, 2004.

[24] G. T. Nicol. Flex: The Lexical Scanner Generator for Version 2.3.7.
Free Software Foundation, February 1993.

[25] A. Olsen and O. Færgemand. Systems Engineering Using SDL-92.
Elsevier Science B.V., 1994.

[26] Wolfgang Reisig. Place/Transition Systems. In Lecture Notes in Com-
puter Science 254: Advances in Petri Nets 1986, Part I, pages 117 – 141,
1986.

[27] Anders Rockström. An Introduction to the CCITT SDL. Televerket
Stockholm, 1985.

[28] Mehmet Alper Şen. Verification of SDL systems with partial order
methods. Master’s thesis, Department of Electrical and Electronics
Engineering, Middle East Technical University, Ankara, Turkey, May
1997.

[29] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
1997.

[30] P.S. Thiagarajan. Elementary Net Systems. In Lecture Notes in Com-
puter Science 254: Advances in Petri Nets 1986, Part I, pages 26 – 59,
1986.

[31] Daniel Toggweiler, Jens Grabowski, and Dieter Hogrefe. Partial order
simulation of SDL specifications. In Rolv Bræk and Amardeo Sarma,
editors, SDL’95: With MSC in CASE, Proceedings of the 7th Interna-
tional SDL Forum, Oslo, Norway, September 26–29, 1995, pages 293–
306. Elsevier/North-Holland, Amsterdam, The Netherlands, 1995.

[32] Heikki Tuominen. Embedding a dialect of SDL in PROMELA. In
Dennis Dams, Rob Gerth, Stefan Leue, and Mieke Massink, edi-
tors, Theoretical and Practical Aspects of SPIN Model Checking, 5th
and 6th International SPIN Workshops, Trento, Italy, July 5, 1999 &
Toulouse, France, September 21 and 24, 1999, Proceedings, volume
1680 of Lecture Notes in Computer Science, pages 245–260. Springer-
Verlag, Berlin, Germany, 1999.

[33] Kimmo Varpaaniemi, Jaakko Halme, Kari Hiekkanen, and Tino
Pyssysalo. PROD Reference Manual. Technical Report B 13, Helsinki
University of Technology, August 1995.

[34] CCITT Specification and Description Language (SDL). Recom-
mendation Z.100. International Telecommunication Union, Geneva,
Switzerland, March 1993.

BIBLIOGRAPHY 65



[35] Corrections to Recommendation Z.100, CCITT Specification and De-
scription Language (SDL). Recommendation Z.100. International
Telecommunication Union, Geneva, Switzerland, October 1996.

66 BIBLIOGRAPHY





HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE
TECHNICAL REPORTS

HUT-TCS-B8 Johan Lilius

Dialectical Nets: A Categorical Approach to Net Theory. November 1989.

HUT-TCS-B9 Johan Lilius

On the Notion of Dialectical Nets. June 1990.

HUT-TCS-B10 Kari J. Nurmela, Patric R. J. Östergård

Constructing Covering Designs by Simulated Annealing. January 1993.

HUT-TCS-B11 Peter Grönberg, Mikko Tiusanen, Kimmo Varpaaniemi

PROD – A PrT–Net Reachability Analysis Tool. June 1993.

HUT-TCS-B12 Kimmo Varpaaniemi

On Computing Symmetries and Stubborn Sets. April 1994.

HUT-TCS-B13 Kimmo Varpaaniemi, Jaakko Halme, Kari Hiekkanen, Tino Pyssysalo

PROD Reference Manual. August 1995.

HUT-TCS-B14 Tuomas Aura
Modelling the Needham-Schröder authentication protocol with high level Petri nets.
September 1995.

HUT-TCS-B15 Eero Lassila
ReFlEx — an Experimental Tool for Special-Purpose Processor Code Generation.
March 1996.

HUT-TCS-B16 Markus Malmqvist
Methodology of Dynamical Analysis of SDL Programs using Predicate/Transition Nets.
April 1997.

HUT-TCS-B17 Tero Jyrinki

Dynamical Analysis of SDL Programs using Predicate/Transition Nets. April 1997.

HUT-TCS-B18 Tommi Syrjänen
Implementation of Local Grounding for Logic Programs With Stable Model Semantics.
October 1998.

HUT-TCS-B19 Marko Mäkelä, Jani Lahtinen, Leo Ojala
Performance Analysis of a Traffic Control System Using Stochastic Petri Nets.
December 1998.

HUT-TCS-B20 Eero Lassila

A Tree Expansion Formalism for Generative String Rewriting. June 2001.

HUT-TCS-B21 Annikka Aalto

Automatic Translation of SDL into High Level Petri Nets. November 2004.

ISBN 951-22-7404-3

ISSN 0783-540X


	Introduction
	SDL
	Basic Concepts of the SDL Language
	Behavioral Aspects of the SDL Language
	Transition Triggers
	Transition Terminators
	Conditional Branching
	Process Instances
	Communication Between Processes
	Timers

	Data in SDL
	Structure of an SDL System
	Block Substructure
	Channel Substructure
	Procedure
	Service

	Types

	Petri Nets
	Algebraic System Nets
	Analysis of Algebraic System Nets
	Extensions to Algebraic System Nets
	Error Checking
	Short-Circuit Evaluation


	The Maria Project
	The Maria Analyzer
	Data Types of the Maria Analyzer
	Verifying Properties of Models
	Reachability Analysis

	SDL Front-end for the Maria Analyzer

	Translation Rules for SDL
	Static Analysis of an SDL System
	Translation of Types
	Generating Places and Initial Markings
	Places for Processes
	Places for Procedures
	System Places

	The Environment
	Translating Transition Triggers
	Input Construct
	Asterisk input Construct
	Save Construct
	Spontaneous Transition
	Enabling Condition
	Translation for Implicit Signal Consumption

	Translating the SDL Statements
	Decision Statement
	Create Statement
	Stop Statement
	Output Statement
	Task Statement

	Timers
	Set Statement
	Reset Statement
	Controlling the Expiration Window
	Modeling Timer Expiration

	Structural Concepts
	Block Substructure
	Channel Substructure
	Types and Gates

	Procedures

	Optimizing the Model
	Atomic Sections
	Interpreting PId expressions only when used

	Implementation Tools
	Implementation Details
	Conclusions
	Bibliography


