HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series B: Technical Reports ISSN 0783-540X
No. 12; April 1994 ISBN 951-22-2126-8

ON COMPUTING SYMMETRIES AND STUBBORN SETS

KiMMO VARPAANIEMI

Digital Systems Laboratory
Department of Computer Science
Helsinki University of Technology
Otaniemi, FINLAND

Helsinki University of Technology
Department of Computer Science
Digital Systems Laboratory
Otaniemi, Otakaari 1

FIN-02150 ESPOO, FINLAND

HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series B: Technical Reports ISSN 0783-540X
No. 12; April 1994 ISBN 951-22-2126-8

On Computing Symmetries and Stubborn Sets

KiMMO VARPAANIEMI

Abstract: Tn this report, we consider two promising methods for alleviating the state
space explosion problem in reachability analysis: the symmetry method and the stubborn
set method. We concentrate on the computation of symmetries and stubborn sets. The
new algorithms presented in this report help us to save time and space in the symmetry
method and to avoid inspecting redundant states in the so called CFFD-preserving stubborn
set method.

Keywords: reachability analysis, symmetry method, stubborn set method, CFFD-
semantics, place/transition nets

Printing: TKK Monistamo; Otaniemi 1994

Helsinki University of Technology Phone: % 4511
Department of Computer Science

Digital Systems Laboratory Telex: 125 161 htkk fi
Otaniemi, Otakaari 1 Telefax: +358-0-465 077

FIN-02150 ESPOO, FINLAND E-mail: lab@saturn.hut.fi

Contents

1 Introduction

[\

Place/Transition Nets

3 Symmetries

4 Stubborn Sets and CFFD-Equivalence
5 Conclusions

Acknowledgements

References

15

15

15

1 Introduction

Reachability analysis, also known as exhaustive simulation or state space generation,
is a powerful formal method for detecting errors in such concurrent and distributed
systems that have a finite state space. Tt suffers from the so called state space
explosion problem, however: the state space of the system can be far too large with
respect to the time and other resources needed to inspect all states in the space.
Fortunately, many properties can often be verified without inspecting all reachable
states of the system.

In this report, we consider two promising methods for alleviating the state space
explosion problem: the symmetry method [1, 4, 5] and the stubborn set method
[6, 7, 8]. We concentrate on the computation of symmetries and stubborn sets.
We use place/transition nets (3| as our formalism. This is a tolerable restriction
since many models of concurrency can be transformed into behaviourally equivalent
place/transition nets.

The first contribution of this report can be described as follows. The algorithm of
Schmidt [4] computes all symmetries of a net, i.e. all such bijections from places and
transitions to places and transitions that “respect places, transitions, and arcs”. In
practice, place symmetries, i.e. the place mappings corresponding to symmetries, of-
ten suffice. We give an algorithm for computing the place symmetries. The algorithm
consumes at most as much time and space as the algorithm of Schmidt [4]. Despite
the similarity between our algorithm and the algorithm of Schmidt, we think that our
algorithm deserves presentation since the proofs given by Schmidt [4] do not trivially
imply the correctness of our algorithm.

The second contribution of this report is a new algorithm for computing stubborn
sets for the so called CFFD-preserving stubborn set method [8]. The new algorithm
computes stubborn sets that are minimal with respect to enabled transitions and
certain other conditions. Such minimality is good since the number of directions
inspected usually affects the number of states inspected during the verification of a
given property. The algorithm has been derived from the algorithms presented by
Valmari [6, 8], but as above, we think that the algorithm deserves presentation since
the performed derivation is not quite trivial.

The rest of this paper has been organized as follows: in Section 2, we introduce pla-
ce/transition nets. The presentation does not go beyond what is necessary for the
remaining sections. We consider the computation of symmetries in Section 3, and
the CFFD-preserving stubborn set method in Section 4. We then end in conclusions
in Section 5.

2 Place/Transition Nets

In this section we give definitions of place/transition nets 3| that will be used in later
sections.

We shall use “iff” to denote “if and only if”. The power set (the set of subsets) of a

~9

set A is denoted by 24. The set of partial functions from a set A to a set B is
{RCAXxB|Vte AVye BVz€ B ((¢,y) € RA(z,2) € R) = y = z}.
The set of total relations from a set A to a set B is
{RCAXB|VereAdye B (z,y) € R}

The set of functions from a set A to a set B, denoted by (A — B), is the set of
those partial functions from A to B that are total relations from A to B. So there
is always an empty function from an empty set to any set but there is no function
from a nonempty set to an empty set. The set of natural numbers, including 0, is
denoted by N. We shall use w to denote a formal infinite number, and N, to denote
N U {w}. Relation < over N is extended to N, by defining

Yn € N, n <w.
Addition and subtraction are extended similarly by defining
VneNw+n=wAw—n=uw.

Clearly, w ¢ N since no natural number can be substituted for w in these conditions
in such a way that the conditions would hold.

Definition 2.1 A place/transition net is a 6-tuple (S, T, F, K, W, My) such that

e S is the set of places,

T is the set of transitions, SNT = (),
F is the set of ares, F C (S x T)U (T x 9),

K is the capacity function, K € (5 — N,),

W is the arc weight function, W € (F — (N \ {0})), and

My is the initial marking (initial state), My € M where M is the set of markings
(states), M ={M € (§ — N)|Vse S M(s) < K(s)}.

If £ € SUT, then the set of input elements of x is

‘v ={y|(y,z) € F},

the set of output elements of z is
z* ={y [(z,y) € I},

and the set of adjacent elements of x is £® U *z. The function W is extended to a
function in (((S x T) U (T x §)) — N) by defining W(z,y) = 0 iff (z,y) ¢ F. The
net is finite iff SUT is finite. Arcs (z,y) € F and (¢',y') € F form a self-loop iff
' = y and y' = z. The net has a self-loop iff some arcs of the net form a self-loop. A
place s has an infinite capacity iff K(s) = w. The net is a net with infinite capacities
iff each place has an infinite capacity. For any & € N, the net is k-safe iff

Vse S K(s)<kAN(Vtes® W(s,t) <K(s)N(Vte®sW(t,s)<K(s)). O

-3 -

If s is a place of a net and M is a marking of the net, then M(s) is called the number
of tokens in s at M. If each place has an infinite capacity, then the set of markings
of the net is simply (S — N).

In our figures, places are circles, transitions are rectangles, and the initial marking is
shown by the distribution of tokens, black dots, onto places. The weight of an arc is
shown iff it is not 1. The capacity of a place is shown iff it is not w, by the inscription
K =n.

Definition 2.2 Let (5,7, F, K,W, My) be a place/transition net. A transition t is
enabled at a marking M iff

Vs et M(s) > W(s,t)
and
Vs et® M(s)—Wi(s,t)+Wi(t,s) < K(s).

A transition ¢ leads (can be fired) from a marking M to a marking M' (M[t)M' for
short) iff ¢ is enabled at M and

Vse S M'(s)= M(s)—W(s,t)+W(t,s).

A transition t is disabled at a« marking M iff t is not enabled at M. A marking M is
terminal iff no transition is enabled at M. A marking M is nonterminal iff M is not
terminal. a

If each place has an infinite capacity, then the output places of a transition do not
affect the enabledness of the transition. Our enabledness condition is weaker than
Reisig’s enabledness condition [3] that requires M(s) + W(t,s) < K(s) instead of
M(s)—=W(s,t)+W(t,s) < K(s). We have chosen this enabledness condition because
we want to have meaningful self-loops even in 1-safe place/transition nets.

Finite transition sequences and reachability are introduced in Definition 2.3. We
shall use ¢ to denote the empty sequence.

Definition 2.3 Let (5,7, F, K, W, My) be a place/transition net. For any Ts C T,

7 = {e}
(Vne NTrMY = lgt|oeTrAteT,}), and
Ty = {o|IneNoel]}

T is called the set of finite sequences of transitions in T, and T™ is called the set of
finite transition sequences of the net. A finite transition sequence ¢’ is a prefiz of a
finite transition sequence o iff there exists a finite transition sequence o' such that
o =c'o". A finite transition sequence o leads (can be fired) from a marking M to a

marking M' ifft M|o)M' where
VM e M M[e)M, and

VM eMVM e MY6eT*VteT
M[st)M' < (3M" € M M[§)M" A M"[t)M").

A finite transition sequence o is enabled at a marking M (M|o) for short) iff o leads
from M to some marking. A finite transition sequence o is disabled at a marking M
iff o is not enabled at M. A marking M’ is reachable from a marking M iff some finite
transition sequence leads from M to M'. A marking M' is a reachable marking iff
M' is reachable from M. For any k& € N, the net is k-bounded iff for each reachable
marking M and for each place s € S, M(s) < k. The (full) reachability graph of the
net is the pair (V, A) such that the set of vertices V' is the set of reachable markings,
and the set of edges A is

{Mt, MY MeVAM eVAteTAM[t)M'}. O

A finite transition sequence is merely a string. It can be thought of as occurring
as a path in the full reachability graph iff it is enabled at some reachable marking.
Clearly, every k-safe place/transition net is k-bounded, but the converse does not
hold. In fact, each place/transition net can be transformed into a behaviourally
equivalent net with infinite capacities by adding so called complement places [3]. For
each k-safe place/transition net, there is thus a behaviourally equivalent k-bounded
place/transition net with infinite capacities.

Definition 2.4 Let (S,T, F, K, W, My) be a place/transition net. Let f be a function
from M to 2T. A finite transition sequence o f-leads (can be f-fired) from a marking
M to a marking M' iff M[o)sM', where

VM e M M[e); M, and

VM eMVM eMVseT*vVteT
Moty ;M < (IM" e M M[6)fM" Nt € f(M)NM"[t)M').

A finite transition sequence o is f-enabled at a marking M (M|[o) for short) iff o
f-leads from M to some marking. A marking M' is f-reachable from a marking M
iff some finite transition sequence f-leads from M to M'. A marking M' is an f-
reachable marking iff M’ is f-reachable from My. The f-reachability graph of the net
is the pair (V, A) such that the set of vertices V is the set of f-reachable markings,
and the set of edges A is

(M, t, M)

MeVAM eVAte f(M)ANM[t)M'}. O

Definition 2.4 is like a part of Definition 2.3 except that a transition selection func-
tion f determines which transitions are fired. If f is clear from the context or is
implicitly assumed to exist and be of a kind that is clear from the context, then the
f-reachability graph of the net is called the reduced reachability graph of the net.
Note that the reduced reachability graph of the net can even be the full reachability
graph of the net, e.g. in the case where f(M) =T for each M € M.

Definition 2.5 Let (5,7, F, K,W, My) be a place/transition net. The set of infinite
transition sequences of the net is the set of functions from N to T, (N — T). The
function ¢ from (N — T') x N to T* is defined by

(Vo € (N —=T)¢(0,0)=¢), and
(Vo e (N—=T)Vne N ¢lo,n+1)=c¢(o,n)o(n)).

- 5=

If ¢ is an infinite transition sequence and n € N, ¢(o,n) is called the prefiz of length
n of o. An infinite transition sequence o is enabled at a marking M (M|o) for short)
iff for each n € N, the prefix of length n of ¢ is enabled at M. An infinite transition
sequence o is disabled at ¢ marking M iff ¢ is not enabled at M. Let f be a function
from M to 27. An infinite transition sequence o is f-enabled at @ marking M (M|o) ¢
for short) iff for each n € N, the prefix of length n of ¢ is f-enabled at M. O

An infinite transition sequence is merely a function. It can be thought of as occurring
as a path in the full reachability graph iff it is enabled at some reachable marking.

3 Symmetries

The symmetry method [1, 4, 5] produces a virtual reachability graph containing for
each reachable marking one and only one member of the equivalence class of the
marking, the corresponding equivalence relation being determined by the symmetries
of the net.

Definition 3.1 Let (S, T, F, K,W, My) be a place/transition net. Let f be a function
f from SUT to SUT. Then we say that f respects places and transitions iff for each
place s and for each transition ¢, f(s) is a place and f(t) is a transition. Respectively,
f respects arcs ift Y{z,y) € (Sx T)U(T x S) W(f(z), f(y)) = W(z,y). Finally, f is
a symmetry iff f is a bijection from S UT to S UT and respects places, transitions,
and arcs. A function g from SUT to SUT is a completion of a function h from S to
S iff Vs € S g(s) = h(s). A function from S to S is a place symmetry iff some of its
completions is a symmetry. A function g from M to M is a marking symmetry iff
there exists some place symmetry h such that for each place s, g(M)(h(s)) = M(s).
A marking M is symmetric to a marking M’ iff there exists some marking symmetry
h such that h(M) = M'. O

It is straightforward to show that the symmetries of a net form a group under sub-
stitution and that the same holds for place and marking symmetries. Consequently,
the symmetricity relation between markings is an equivalence relation.

Schmidt [4] has presented an algorithm that computes the symmetries of a given net.
The symmetries can then be used for finding all those markings that are symmetric
to a given marking. For example, in reduced reachability graph generation we can
search for such marking in the generated part of the graph that is symmetric to
a given marking. However, we do not actually need the set of all symmetries for
reduced reachability graph generation. It is completely sufficient to compute the set
of all place symmetries. In this section, we derive from the algorithm of Schmidt [4]
an algorithm that computes place symmetries instead of symmetries. The derived
algorithm is particularly useful when there are many symmetries corresponding to
one place symmetry. On the other hand, the algorithm always consumes at most as
much time and space as the algorithm of Schmidt.

We call a collection of sets a partition of A iff the sets in the collection are nonempty
and pairwise disjoint, and the union of all the sets in the collection is A.

-6 —

Definition 3.2 Let (S, T, F, K, W, M) be a place/transition net. A set C' C (2597 x
25YT) is a constraint iff {A | 3B (A, B) € C} and {B | 34 (A, B) € C'} are partitions
of SUT. A function f from SUT to SUT is consistent with a constraint C iff

V(A,B) e C {f(a)| a € A} = B.

A function from S to S is consistent with a constraint iff some of the completions of
the function is consistent with the constraint. a

Note that the set of symmetries consistent with {(9,5),(T,T)} is the set of all
symmetries of the net if we assume that S and 7" are nonempty. It is easy to see that
if a function from S U T to S UT is consistent with a constraint, the function is a
bijection from SUT to SUT as well as a bijection from A to B for every (A, B) in
the constraint.

We now define the operation REFINE in the same way as Schmidt [4].

Definition 3.3 Let (5,7, F, K, W, My) be a place/transition net. For any subset A
of SUT and for any natural number i, the set {z € SUT | Jy € A W(z,y) = i}
is denoted by F; A whereas the set {x € SUT | Jy € A W(y,z) = i} is denoted by
AF;. Let C be a constraint having the element (A, B) and the element (A’, B'). Let
i be a positive natural number. The REFINE operation on C' and ¢ produces the set

((C\{{4,B),(A",B")})
U{ (AN F;A", BNEF;B"),(A\ F;A", B\ F;B'"),
(A'N AF;, B' N BE;),(A'\ AF;,B'\ BF;)})
\{(0.0)}. ©

Clearly, the result of any REFINE operation is a constraint. Schmidt [4] has shown
that for any constraint C' and for any positive natural number ¢, the set of symmetries
consistent with the result of the REFINE operation on €' and ¢ is equal to the set of
symmetries consistent with C'. The REFINE operation can thus be used for removing
some non-symmetries from the set of functions consistent with a constraint. If §
and T are nonempty, we can start from the constraint {(S5,5),(T,T)} and perform
REFINE operations until we obtain a constraint that cannot be changed by any
REFINE operation. The set of symmetries consistent with such constraint is then
equal to the set of symmetries of the net. Note that such final constraint is unique
since the result of two REFINE operations does not depend on the order of the
operations. Unfortunately, the final constraint is (S, S), (T, T) if the underlying graph
of the net is strongly connected. If we want a better approximation for the set of
symmetries, we should start from a better initial constraint. Such initial constraint
can be computed by classifying the places and transitions with respect to the arcs
connected to them. We shall not go into the details of such classification in this
report.

Lemma 3.4 Let (S,T,F, K, W, My) be a place/transition net. Let C be a constraint
such that every pair in C' contains two sets of same cardinality, no pair in C' contains
both places and transitions, no REFINE operation on C changes C, and all sets of
places in C' are singletons. Then all such functions from S UT to SUT that are
consistent with C' are symmetries.

-7 -

Proof. Let f be a function from SUT to S UT and consistent with C. Clearly, f is
a bijection from S U T to S UT and respects places and transitions. We show that
f respects arcs.

Let s; be a place and ¢; a transition such that Wi(s;,t;) # 0. Let (A", B") € C
such that ¢; € A'. Then f(t1) € B' since f is consistent with C. The set B' N
{(51) }Fw (s, 1,) must be equal to B’ since f is consistent with (', no REFINE opera-
tion changes C, and A'N{s} Fyy (s, 1,) # 0. Consequently, W(f(s1), f(t1)) = W(s1,11).

Let s be a place and t3 a transition such that W (f(s2), f(t2)) # 0. Let (A", B") € C
such that t; € A". Then f(t3) € B since f is consistent with C. The set A" N
{52} Fw(#(ss), (1)) must be equal to A" since f is consistent with €', no REFINE
operation changes C, and B" N {f(s2)} Fyw(f(s,),f(12)) 7 V- Consequently, W (sz,12) =

W (f(s2), f(t2)).

Let s’ be a place and ¢’ a transition such that W(t',s") # 0. Let (A;, B;) € C such that
t' € Ay. Then f(t') € By since f is consistent with C. The set By N Fyy 4 s){f(s')}
must be equal to By since f is consistent with (', no REFINE operation changes C,
and Ay N Fyypr on{s'} # 0. Consequently, W(f(t'), f(s')) = W(t',s").

Let s" be a place and t" a transition such that W (f(t"), f(s")) # 0. Let (A3, B2) € C
such that ¢" € Ay. Then f(t") € Bj since f is consistent with C'. The set Ay N
Fw(amy, ()1} must be equal to Ay since f is consistent with C, no REFINE
operation changes C, and By N Fyy(sy, 551 f(8")} # 0. Conseqently, W (#",s") =
WA, F(s™). .

Lemma 3.4 tells us that we can extract a place symmetry from a constraint even if
some sets of transitions in the constraint are not singletons.

We now present the modified version of the algorithm of Schmidt [4]. We assume
that the reader has the article of Schmidt [4] available so that we can keep close to
the presentation of Schmidt [4] without having to repeat everything.

The computation of the set of place symmetries of a given net is started by computing
an initial constraint such that every symmetry of the net is consistent with the con-
straint. Then REFINE operations are performed until such constraint is obtained
that cannot be changed by any REFINE operation. Let C. be the resulting con-
straint. If all sets of places in (', are singletons, there is exactly one place symmetry,
namely the identity function from S to S. Otherwise the set PlaceSymmetries is made
empty and the procedure DefineSym in Figure 1 is called with the argument C' = C.
When the execution of the procedure ends, the set PlaceSymmetries contains a set
of generators that generate the group of all place symmetries of the net.

The DEFINE operation is defined as follows. Let C' be a constraint and z a place.
Let (A, B) be the unique pair in C satisfying # € A. Let y € B. The result of the
DEFINE operation on ', z, and y is the set

(CN{A B) U{{AN {2}, B\ {yh), (et {yh -

The function AlllnGroup has a constraint as an argument and returns true iff there
is a place symmetry o in the group generated by the set PlaceSymmetries in such
a way that each pair of singleton sets of places in the constraint is ({s},{o(s)}) for

PROCEDURE DefineSym(C':constraint)

VAR
x,y: place;
o: place symmetry;

Crew: constraint;
K,L,M:set of places;
BEGIN
X := the least place which isn’t a member of
a singleton first component of
[K,L| := the corresponding pair;
M:=1;
WHILE M # () DO
y := the least element of M; M := M - {y};
Crew ‘= DEFINE on (', x, and y;
IF NOT AlllnGroup(Cpe,) THEN (%! %)
REPEAT
REFINE C)cw;
UNTIL nothing changes;
IF every pair in (., contains two sets of same cardinality
IF AllSetsOfPlacesAreSingletons(Ce) THEN
o := MakePlaceSymmetry(C,cu);
PlaceSymmetries := PlaceSymmetries U { o };
ELSE
DefineSym(Chew);
END;
END;
END; (*! %)
END;
END DefineSym;

Figure 1: A procedure for computation of a set of generators for the group of place
symmetries of a net.

-9 -

some place s. The implementation of AlllnGroup seems to require computing the
generated place symmetries and keeping them in memory or in some device.

The function MakePlaceSymmetry has a constraint as an argument and returns a
function from S to S that is consistent with the constraint. It follows from the
context that one and only one such function exists.

Our algorithm always consumes at most as much time and space as the algorithm of
Schmidt [4]. This can be shown by comparing the procedure DefineSym in Figure 1
to the procedure DefineSym in [4]. The essential difference between the procedures
is the fact that our procedure does not investigate the different possibilities to map
transitions to each other.

Theorem 3.5 Let (S,T,F, K, W, My) be a place/transition net. Let Cy be as above.
Then the procedure DefineSym called with the argument C' = C, computes a set of
generators that generate the group of all place symmetries of the net.

Proof. The proof of Theorem 1 in [4] suffices with the following modifications. Instead
of Lemma 2 of [4], our Lemma 3.4 is used. The symmetries o,0',0* and the identity
symmetry occurring in the proof of Theorem 1 in [4] are replaced by place symmetries
having the same names. a

As mentioned by Schmidt [4], the algorithm in [4] can be modified to compute sub-
groups of symmetries simply by choosing a suitable initial constraint. Our algorithm
can similarly be modified to compute subgroups of place symmetries.

4 Stubborn Sets and CFFD-Equivalence

A stubborn set consists of some transitions of a net such that the set is in some sense
independent of the complement of the set. Stubbornness is a marking-dependent
property, i.e. a set can be stubborn at some marking while not stubborn at some
other marking. In stubborn set selective reachability graph generation, a stubborn
set is computed at each encountered marking, and only the transitions in the set are
fired from that marking. As shown by Valmari [6], all reachable terminal markings
occur in the reduced reachability graph. Also, if there is an infinite path in the full
reachability graph, then the reduced reachability graph has an infinite path, too [7].

CFFD-equivalence |2, 8] is a behavioural equivalence which has a close relationship
to linear time temporal logic. The expression “CFFD” is an abbreviation of the
expression “chaos-free failures divergences”. The preservation of CFFD-semantics
means that the reduced reachability graph is CFFD-equivalent to the full reachability
graph. Valmari has presented an advanced version of the stubborn set method which
preserves CFFD-semantics [8]. In this section, we present an algorithm that computes
stubborn sets for the CFFD-preserving stubborn set method in such a way that the
computed sets are minimal with respect to enabled transitions and certain other
conditions. Before considering CFFD-semantics, we present the basic version of the
stubborn set method.

~10 -

Various definitions of stubbornness have been given in the literature. Here we have
chosen a rather weak definition of stubbornness. The weakness is good since the
weaker is the definition of stubbornness, the better are the chances to find stubborn
sets having a small number of enabled transitions. We do not know any better simple
heuristic for minimizing the number of markings in the reduced reachability graph
than the minimization of the number of transitions fired at a marking.

Definition 4.1 Let (5,7, F, K,W, My) be a place/transition net with infinite capac-
ities. The function F; from M x S to 27, the functions Fy and F3 from M x T x S
to 27, and the function E, from S to 27 are defined as follows: let M € M, t € T,
and s € S. Then

Ei(M,s) = {t'e*s|M(s)>W(s,t) AW, s)>W(s)},

Ey(M,t,s) = Eu(s)U{t' €s®| W(s,t) > W(t,s)A
W(s,t") > M(s) —W(s,t)+W(t,s)},
Es(M,t,s) = E(M,s)U{t' €®s| M(s)>W(s,t'") N\W(',s) >W(t,s)}, and
Eys) = {t'es®|W(s,t')>W(t',s)} O

Intuitively, E1(M,s) is the set of transitions that could increase the number of to-
kens in s and are not disabled by s at M. Correspondingly, E2(M,t,s) is the set of
transitions that could decrease the number of tokens in s or get disabled because of
the firing of ¢ at M. Respectively, F3(M,t,s) is the set of transitions that are not
disabled by s at M and could increase the number of tokens in s or deposit more
tokens to s than ¢. Finally, F4(s) is the set of transitions that could decrease the
number of tokens in s.

Definition 4.2 Let (5,7, F, K,W, Mp) be a place/transition net with infinite capac-
ities. A transition t is a key transition of a set Ty C 1 at a marking M iff t € T,, t
is enabled at M, and

Vs € *t Fy(s) CTs.

A set Ty, C T is stubborn at a marking M iff some transition is a key transition of T
at M and each transition ¢t in 7', satisfies

(Fse®t M(s) < W(s,t) NEy(M,s) CTs)V
(M[t) A (Vs € ®t W(s,t) <W(t,s)V Ey(M,t,5) CTsV Es(M,t,s) CTy)). O

In [9] it is shown that using stubborn sets of Definition 4.2 in a stubborn set selective
reachability graph generation guarantees that all reachable terminal markings are
found and the existence of infinite paths is detected if the net and the set of reachable
markings are finite.

We now present an algorithm that computes stubborn sets that are minimal with
respect to enabled transitions. This algorithm has earlier been presented in [9]. We
call it the deletion algorithm, according to the algorithm of Valmari [6] from which
it was derived.

Definition 4.3 Let (5,7, F, K,W, Mp) be a place/transition net with infinite capac-
ities and M a marking of the net. The and/or-graph at M is a triple

— 11 =

(VanD, Vor, A) such that the set of and-vertices Vanp is

{s|3teT -M[t)Ase*t}U
{teT| M[t)}u
{(t,s,i) |te T ANM[t)Ns et AW(s,t) > W(t,s) Ni€{2,3}},

the set of or-vertices Vogr 1is

{teT|-M[t)}uU
{(t,s) |t €T ANM[t) Ns €t AW (s, t) > W(ts)},

and the set of edges A is

{(s,t)y | FteT -M[t) Ns et ANt € E1(M,s)}U
{(t,(t,s)) |t €T ANM[t)ANs et AW (s, t) > W(t,s)}U
{((t,s,i),t") | teTANM[t)Ns e tANW(s,t)>WI(t s)A
ie{2,3} At € Ei(M,t,s)}U
{(t,s) |te T N=M[t) ANs € *t}U
{((t,s),(t,s,)y |[te TAM[t)y Ns€ t ANW(s,t) > W(t,s)Nie{2,3}}.

A set V, C Vanp U Vor is legal iff

(Vx € Vs N Vanp Yy € Vanp U Vor <:c,y> €A== Yy € Vs),
(Ve e VsnNVor Jy € Vi (z,y) € A), and

some transition is a key transition of V, N T at M. O

It is straightforward to show that the set of transitions of any legal set is stubborn.
Also, for each stubborn set, there exists a legal set such that the set of transitions of
the legal set is the stubborn set. Clearly, the set of vertices of the and/or-graph is
legal iff the marking is nonterminal.

The deletion algorithm can be described as follows. Let the net be finite and the
marking nonterminal. Let’s use the terms of Definition 4.3 though it is not necessary
to construct any explicit and/or-graph. Only such vertex that is both accessible from
some enabled transition and backwards accessible from some enabled transition by
the reflexive-transitive closure of A has to be explicitly presented if the and/or-graph
is constructed. The set of vertices of the and/or-graph is a legal set, maximal with
respect to set inclusion, that contains all enabled transitions. Let then V; be a legal
set, maximal with respect to set inclusion, such that the set of transitionsin V; is a
stubborn set 1. Let t € T, be enabled. An attempt to remove t from V is performed
by starting from ¢, moving backwards in the and /or-graph, and attempting to remove
those vertices that must be removed to get a legal subset, maximal with respect to
set inclusion, of Vi \ {t}. When such vertex is encountered that does not have to be
removed, the backward search is not continued from the vertex. The special condition
related to Fy (the last condition in the definition of legal sets) is not checked until the
cumulative removal attempt is over. If the set of vertices that were not attempted
to remove from V; is legal, the cumulative removal attempt is realized. The set of
transitions in the new legal set is then a stubborn subset, maximal with respect to set
inclusion, of T \ {t}. On the other hand, if the attempt to remove ¢ from Vi fails, it is
not possible to remove ¢ from any subset of V; either. The deletion algorithm proceeds

- 12 —

by repeatedly attempting to remove a new enabled transition from the current legal
set and realizing each successful attempt. The set of vertices of the and/or-graph is
the initial legal set. The algorithm stops when it is no longer possible to remove any
enabled transition from the current legal set. The set of transitions of the final legal
set is minimal in the sense that no proper subset of its enabled transitions can be the
set of enabled transitions of any stubborn set. This result is based on what is stated
above about the set of transitions of the current legal set before and after removing
an enabled transition.

The time taken by an execution of this algorithm is at most proportional to uv|T|?,
where p is the maximum number of input places of a transition, and v is the maximum
number of adjacent transitions of a place. Our deletion algorithm has no factor that
would make it more than a constant times slower than the deletion algorithm in [6].

We now turn to CFFD-semantics. After that we shall return to the above deletion
algorithm and modify it in such a way that the preservation of CFFD-semantics can
be guaranteed.

Definition 4.4 Let (S, T, F, K,W, My) be a place/transition net. The function R
from 27 x T* to T* is defined by requiring that for each T, C 7T,

%(ng) =&
(Vo e T*Vt € Ts R(T,0t) = R(Ts,0)t), and
(Vo eT*vVte T\ T, R(Ts,0t) = R(Ts,0)).

We call R(Ts, o) the restriction of o to Ts. A marking M' is virtually reachable from
a marking M by a finite transition sequence o with respect to a transition set T
(M[o)T- M' for short) iff there exists some finite transition sequence § such that o is
the restriction of ¢ to 7 and 6 leads from M to M'. A finite transition sequence o
is virtually enabled at a marking M with respect to a transition set Ty (M|o)T: for
short) iff some marking is virtually reachable from M by ¢ with respect to Ts. Let f
be a function from M to 27. A marking M' is virtually f-reachable from a marking
M by a finite transition sequence o with respect to a transition set T (AM[U>}F5 M’ for
short) iff there exists some finite transition sequence é such that o is the restriction
of § to Ty, and § f-leads from M to M'. A finite transition sequence o is virtually
f-enabled at a marking M with respect to a transition set T\ (JW[U}?S for short) iff
some marking is virtually f-reachable from M by ¢ with respect to Tj. O

Definition 4.5 Let (S,T, F, K, W, My) be a finite place/transition net. Let T be a
subset of 7' and f a function from M to 27. A marking M is f-stable with respect
to T iff no transition in 7'\ Ts is f-enabled at M. A marking M is f-instable with
respect to T's iff M is not f-stable with respect to Ts. The pair of a finite transition
sequence ¢ and a transition set A, (o, A), is an f-stable failure of a marking M with
respect to Ty iff there exists some marking M’ such that JW[J}F}FS M'" and no transition
in AU (T'\ T) is f-enabled at M'. A finite transition sequence ¢ is an f-divergence
trace of a marking M with respect to Ty and f iff there exist some marking M’ and
some infinite transition sequence é such that Aﬂa}% M', 6 is f-enabled at M', and
Vn € N é(n) € T\ Ts. Let g be a function from M to 27. The functions f and
the g are chaos-free failures divergences equivalent (CFFD-equivalent for short) with
respect to T iff the set of f-stable failures of My with respect to T is equal to the

~13 -

set of g-stable failures of My with respect to T, the set of f-divergence traces of My
with respect to T is equal to the set of g-divergence traces of My with respect to T,
and M is either both f-stable and g-stable or both f-instable and g-instable with
respect to Tj. O

We can extend the definition of the CFFD-equivalence by saying that two reduced
reachability graphs are CFFD-equivalent with respect to T iff for all functions f
and ¢ such that one of the graphs is the f-reachability graph and the other graph
is the g-reachability graph, f and g are CFFD-equivalent with respect to 7. This
definition is motivated by the fact that functions f' and ¢’ are CFFD-equivalent
with respect to any transition set if the f’-reachability graph is equal to the g¢'-
reachability graph. As mentioned immediately after Definition 2.4, we include the
full reachability graph in the class of reduced reachability graphs. We can thus talk
about the CFFD-equivalence between the full reachability graph and some reduced
reachability graph.

Let’s consider an arbitrary linear time temporal logic formula that does not contain
the “next state” operator but may have the subformula “the future is infinite”. Let
T, be a set of transitions that contains all those transitions that can affect the truth
values of the atomic subformulae of the formula. Kaivola and Valmari [2| have
shown that if a reduced reachability graph is CFFD-equivalent to the full reachability
graph with respect to T, then the formula is satisfiable in My with respect to the
reduced reachability graph iff the formula is satisfiable in My with respect to the full
reachability graph.

From now on, we assume that the transitions of the net have been divided into two
disjoint sets, called visible transitions and invisible transitions. Whenever we say that
two graphs are CFFD-equivalent, we actually mean that they are CFFD-equivalent
with respect to the set of visible transitions.

The CFFD-preserving stubborn set method [8] produces a reduced reachability graph
which is CFFD-equivalent to the full reachability graph. Valmari has shown that
CFFD-preservation can be guaranteed by requiring that the following conditions

hold [8].

A. The net and the set of reachable markings are finite.
B. The stubborn set contains all visible transitions or no enabled visible transition.

C. If an enabled invisible transition exists, at least one enabled invisible transition
of the stubborn set remains enabled, whatever happens in the environment.
This condition was obtained from Valmari in a private discussion. Valmari
uses a stronger condition in [8], but it is easy to modify the proofs in [8] in such
a way that this refined condition suffices.

D. Every elementary cycle in the reduced reachability graph contains at least one

such marking where the chosen stubborn set contains all visible transitions.

We now present such version of the deletion algorithm that produces stubborn sets
for the CFFD-preserving stubborn set method. As before, we assume that we are

— 14 -

in a nonterminal marking. The and/or-graph is still the same as in Definition 4.3
and determines which vertices must be removed if a given vertex is removed. We
say that a set of vertices V; of the and/or-graph is invisibly legal iff V; is legal and
some invisible transition is a key transition of V, NT. Clearly, the set of transitions
of an invisibly legal set is stubborn and satisfies the above condition C. There may
be stubborn sets satisfying the condition C and not corresponding to any invisibly
legal set, but it is hard if not impossible to re-express the condition C by means of
simple static conditions. The modified deletion algorithm is as follows.

1. If there is no enabled invisible transition, return the set of all transitions.

2. Start from the set of vertices of the and/or-graph and remove all visible tran-
sitions if you can do it in such a way that the set of remaining vertices in the
and/or-graph is invisibly legal. If you cannot do it, go to step 3. Otherwise
remove enabled invisible transitions as long as the set of remaining vertices of
the and/or-graph is invisibly legal, and return the set of transitions in the final
set of vertices.

3. Start from the set of vertices of the and/or-graph and remove enabled invisible
transitions as long as the set of remaining vertices of the and /or-graph is invis-
ibly legal and contains all visible transitions. Then return the set of transitions
of the final set of vertices.

The resulting set is a stubborn set which satifies the above conditions B and C and
is minimal in the sense that no proper subset of its enabled transitions can be the
set of all enabled transitions of any stubborn set satisfying the condition B and
corresponding to an invisibly legal set.

When we presented the deletion algorithm for the basic version of the stubborn set
method, we said that only such vertex that is both accessible from some enabled
transition and backwards accessible from some enabled transition by the reflexive-
transitive closure of the binary edge relation has to be explicitly presented if an
explicit and/or-graph is constructed. To be able to execute the above step 3, we
should also present all those vertices that are both accessible from some disabled
visible transition and backwards accessible from some enabled transition.

To satisfy the above condition D, loops are detected during reduced reachability graph
generation. At each encountered nonterminal marking, a preliminary stubborn set is
computed by starting from the above step 1. If the preliminary stubborn set does not
contain enabled visible transitions but would cause a nonempty sequence of invisible
transitions leading from the current marking back to the marking, the preliminary
stubborn set is replaced by a new stubborn set which is computed by the above step
3. As shown by Valmari [8], the reduced reachability graph can be generated in a
depth-first order without visiting any marking more than once.

The definition of CFFD-equivalence can be generalized to concern arbitrary labelled
transition systems (LTS’s for short) [8]. If we want to compute an LTS that is smaller
than but CFFD-equivalent to the parallel composition of given LTS’s [8], we can
construct a 1-bounded place/transition net that simulates the parallel composition,
generate a reduced reachability graph of the net using the above algorithm, and

~15 —

transform the reduced reachability graph into an LTS. The transitions corresponding
to invistble internal actions and hidden synchronization actions are invisible.

5 Conclusions

We have presented an algorithm for computing the place symmetries of a given
place/transition net. Compared to the symmetry computation algorithm of Schmidt
[4], it may save both time and space. Place symmetries are sufficient in ordinary
reachability analysis, whereas the different ways to map transitions to each other
seem to be of more theoretical than practical interest.

We have extended the so called deletion algorithm, familiar from the basic stubborn
set method [6], to compute stubborn sets for the CFFD-preserving stubborn set
method [8]. The computed sets are minimal with respect to enabled transitions and
a couple of static conditions which guarantee CFFD-preservation. The minimality is
useful since the less enabled transitions there are in the stubborn sets used during
reduced reachability graph generation, the less states we usually have to take into the
reduced reachability graph. The deletion algorithm does not compute a stubborn set
as fast as the so called incremental algorithm [6, 8|, but the incremental algorithm has
no practical minimality guarantee and may sometimes produce fatally large stubborn
sets [9]. Though we presented the extended deletion algorithm for place/transition
nets, it should be easy to derive algorithms from it for other models of concurrency
where stubbornness and CFFD-semantics have been defined.

Acknowledgements

This work has been funded by the Technology Development Centre of Finland (TEKES).
[am grateful to Doctor Karsten Schmidt, Acting Associate Professor Mikko Tiusa-
nen, and Associate Professor Antti Valmari for fruitful discussions on the subject of
this research.

References

[1] Huber, P., Jensen, A.M., Jepsen, L.O., and Jensen, K.: Towards Reachability
Trees for High-Level Petri Nets. Aarhus University, Department of Computer
Science, Technical report DAIMI PB-174, Aarhus 1985, 19442 p.

[2] Kaivola, R., and Valmari, A.: The Weakest Compositional Semantic Equiva-
lence Preserving Nexttime-less Linear Temporal Logic. Cleaveland, W.R. (Ed.),
Proceedings of the 3rd International Conference on Concurrency Theory, Stony
Brook NY, August 1992. Lecture Notes in Computer Science 630, Springer-
Verlag, Berlin 1992, pp. 207-221.

[3] Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical
Computer Science 4, Springer-Verlag, Berlin 1985, 161 p.

[4]

[5]

(6]

7]

8]

[9]

—16 —

Schmidt, K.: Symmetries of Petri Nets. Petri Net Newsletter 43 (1993), pp.
9-25.

Starke, P.H.: Reachability Analysis of Petri Nets Using Symmetries. Systems
Analysis — Modelling — Simulation 8 (1991) 4/5, pp. 293-303.

Valmari, A.: State Space Generation: Efficiency and Practicality. Doctoral the-
sis, Tampere University of Technology Publications 55, Tampere 1988, 170 p.

Valmari, A.: Eliminating Redundant Interleavings during Concurrent Program
Verification. Proceedings of Parallel Architectures and Languages FEurope ’89
Vol. 2. Lecture Notes in Computer Science 366, Springer-Verlag, Berlin 1989,
pp- 89-103.

Valmari, A.: Alleviating State Fxplosion during Verification of Behavioural
Equivalence. University of Helsinki, Department of Computer Science, Report
A-1992-4, Helsinki 1992, 57 p.

Varpaaniemi, K.: Efficient Detection of Deadlocks in Petri Nets. Helsinki Uni-

versity of Technology, Digital Systems Laboratory Report A 26, Espoo, October
1993, 56 p.

