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1 Introduction

Petri nets [6, 1] are very suitable in the modelling of concurrent and distributed
systems. The problem of Petri nets until the 80’s was their very large size when
systems of the real world were modelled. The problem was solved by developing high
level Petri nets which made it possible to write compact models in a natural way.
One class of high level Petri nets, Pr/T-nets [4], has been long studied in Digital
Systems Laboratory.

Reachability analysis is a powerful method to analyze Petri nets. Using it we can
easily check whether certain properties hold or not. Unfortunately, reachability anal-
ysis suffers from state space explosion. For example, the number of states of a finite
state system may grow exponentially with respect to a parameter. If we are primarily
interested in such properties as the existence of terminal states, we don’t necessarily
have to generate the complete state space. The stubborn set method [9, 13] is one of
the most promising methods to find terminal states by inspecting a relatively small
number of states only.

It is difficult to interpret a large state space without some automatic tool. For proper
understanding of the behaviour of the net, it should be possible to ask the tool to
show state and event sequences satisfying given property. A plain ‘yes’ or ‘no’ answer
to an existence question is not necessarily very informative.

PROD is a reachability analysis tool for Pr/T-nets. The stubborn set method has been
implemented in it. PROD also has a rich query language for inspecting the generated
state space.

PROD has been developed by a group of researchers of Digital Systems Laboratory
and students of Helsinki University of Technology. The shortcomings in PRENA [5]
led to the decision to develop PROD. PRENA is an older reachability analysis tool
for Pr/T-nets that has been developed in Digital Systems Laboratory, but PROD is
strictly different from PRENA.

PROD is available and free of charge. A UNIX or an MS-DOS version of PROD can
be obtained using ftp. A reference manual of PROD is available on request. The
corresponding IATpX files are included in the package that contains the software.

Section 2 is an introduction to PROD and gives instructions on the usage of PROD.
It also tells how to get PROD. The modelling of systems by means of Petri nets is
described together with an example in Section 3. Section 4 gives an example of using
PROD to inspect a state space and then presents the stubborn set method. Appendix
A presents the syntax and semantics of the formulae in the query language.



2 Getting started

This section introduces PROD and gives instructions on how to get started in us-
ing PROD. Subsection 2.1 briefly describes what PROD is and how it is used. The
availability and installation of PROD are considered in Subsection 2.2.

2.1 Structure and usage

PROD consists of a net description language preprocessor prpp, a graph generator
program, a program called strong computing the strongly connected components
of the graph, a graph query program probe , and a batch program prod. (PROD is
the whole tool, prod a part of it. The term ‘strongly connected component’ will be
explained in Section 4.)

PROD’s net description language is the C preprocessor language extended with net
description directives. Net description is compiled into an executable reachability
graph generator program. PROD’s graph query language resembles CTL (Computation
Tree Logic) [2].

Figure 1 shows the overall structure of PROD. The arrows around prod present the
role of prod in executing the other programs. The other arrows present the order of
execution. The white-headed arrows present alternative orders. The computation of
strongly connected components is not necessary and can be done after inspecting the
graph. There is also a possibility to interrupt graph generation, inspect the graph,
and continue the generation.

prod takes a file called ‘prodfile’ as its input. ‘prodfile’ tells which programs should be
executed, and how and when. A user can use the default ‘prodfile’ or write another.
Of course, it is also possible to call the programs prpp, probe, etc. directly, instead
of using prod.

PROD is very independent of machine and operating system. Up till now it has been
installed on a number of UNIX machines and an MS-DOS PC.

The environment variable ‘PATH’ should contain the complete name of the directory
where the programs prpp, strong, probe, and prod are. An environment variable
called ‘PRODPATH’ should be equal to the complete name of the directory where
the default ‘prodfile’ is.

The most straightforward way to use PROD is to write a net description into a file, say,
‘mynet.net’ and run ‘prod mynet.net’. If we assume the current default ‘prodfile’,
the different phases of computation are printed on the screen until the graph query
program gives a prompt and waits for input. The user then types investigation
commands such as ‘statistics’ and finally closes the session by typing ‘quit’.

2.2 Getting PROD

PROD is free of charge and can be obtained using ftp. Both a UNIX and an MS-DOS
version are available. The ftp site is ‘saturn.hut.fi’ (Internet address 192.26.133.104).
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Figure 1: The structure of PROD.



‘anonymous’ can be used as a login name, and E-mail address for password. The UNIX
version is in ‘pub/prod/prod’ and the MS-DOS version in ‘pub/prod/pcprod’. Both
contain an archive file and two instruction files, ' README’ and ‘INSTALL’. Binary
mode must be used in file transfer. ‘README’ gives general information about PROD.
‘INSTALL’ tells how to open the archive file and install PROD.

The IATEX files of the reference manual of PROD are in the archive file, together with
the software.
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3 Modelling of systems

This section considers the modelling of systems by using Petri nets. Subsection
3.1 is a very informal introduction to Petri nets. The classical problem of dining
philosophers is modelled in Subsection 3.2. The problem has been widely used in
computer science to popularize concurrency control problems.

3.1 Petri nets

Petri nets were invented by Carl Adam Petri and published in his PhD Thesis in
1962 [6]. In a later paper [7] he discusses a possible motivation, which we shall base
the following introduction on.

X

Figure 2: A collection of world lines in 1-dimensional space.

Consider a collection of world lines in a space-time continuum, say, a history of
some of particles moving around and colliding with each other (for an example in
1-dimensional space plus time, see Figure 2). The obvious interactions among the
particles are represented by the world lines of two or more of them crossing at a
point.

Now, group the points on these world lines so that a crossing point forms a group,
equivalence class, on its own, and any line segment between some two crossings (or
either end of a world line) without any other crossing point intervening forms another
kind of group. We shall call any group of points of the first kind an event and any
of the second kind a condition. Let us represent the events by boxes or bars, and
conditions by circles. Obviously, an event is next to the conditions that have a line
segment end or start at that particular crossing point. The passage of time gives
a direction to this relation of being next to another group, turning it to a follower
or flow relation. In fact, we have constructed a bipartite, directed, acyclic graph
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Figure 3: A history of conditions and events.

of groups and the flow relation with an obvious connection to the world lines, see
Figure 3. Moreover, there is at most one event immediately before a condition, and
at most one event immediately after a condition.

Since this is a history of the particles, all the choices as to which interactions have
taken place have already been fixed. The history is, however, concurrent: there are
events that are not necessarily one before the other, but are simply unrelated to a
large enough degree to occur concurrently.

Now, assume the history were the result of a particle system evolution, a physical
process, perhaps repetitive, perhaps containing choices, perhaps containing concur-
rent events. Then it would be appealing to describe the system using the same kinds
of primitives, say transitions and places, similarly interconnected. However, the flow
relation need no longer be acyclic (to allow for repetitions), nor need the places have
at most one predecessor (to allow for forgetting exactly which interaction produced
the particle) or at most one follower (to allow for choices among possible interac-
tions). Note that it is unusual to have the behavior (here: history) and the system
be described using the same notation. Yet, the notations are not identical, since the
history has more properties than the description of the process. Also, the system
has a state, the distribution of the particles, that is usually called a marking. The
system would then produce the history much as the tire of a car leaves tracks in dirt,
by “unfolding”, with the current distribution of particles corresponding to the point
of contact between the tire and dirt. There are some problems, however, that must
be addressed to make the model well-defined.

Consider the particle that caused a particular line segment to be recorded in the set
of world lines. This has typically many attributes, such as color, mass, or momentum.
For the model of the system to be well-defined, there must be enough similarity among
the attributes of the particles that reside in a place in order for the transitions to
be meaningful. Also, the transitions will uphold some “laws of nature”, such as
conservation of mass-energy and momentum in the case of particles. These can be
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expressed as a relation over the attributes of the particles involved, sometimes called
a firing condition.

The evolution of the system of particles can be depicted by the particles containing
attributes (call them tokens) being transformed and transported from place to place
through the occurrence, or firing, of transitions. For a transition to be able to occur
(to be enabled), some particular kinds of tokens must be present, and the firing
condition (laws of nature) must permit the transition to occur. We call a state
terminal if and only if no transition is enabled at it. When a transition occurs, it will
remove all the tokens it required from the corresponding places, and deposit some,
perhaps entirely different tokens to some places, as dictated by the flow relation.
The model obtained in this way is the essential core of any of the so called high-level
Petri net models (for many of these, see [1]). The class of interest here is that of
Predicate/Transition nets (or Pr/T-nets). These use tuples to represent tokens with
attributes, and first-order predicate calculus formulae to express the firing conditions.
A transition can have many instances, in the sense that it can be enabled for many
combinations of values for the variables appearing on the tuples attached to the arcs
and in the firing conditions. For a formal definition of these we refer the reader to [4].

Most of the time, the particles involved are specialized enough to make any two of
them distinguishable: the tokens have an identity. Sometimes it is useful, however,
to ignore the identity of tokens. The solution employed in Petri nets is then to
simply count the tokens similar enough in a place. The logical conclusion of this
abstraction is to distinguish no two tokens, so that all tokens are, in a sense “black
dots”. Obviously, if tokens are not distinguished, there is little point in stating any
firing conditions for transitions, since these operate on the attributes of tokens, of
which there are none. The result is a model generally called Petri Nets, sometimes
also Place/Transition systems (or P/T-nets). These can be seen as a special case of
Pr/T-nets after all the tokens have been projected to become the empty tuple () as
described in [4], and all the firing conditions removed.

It is amusing to note that the so called high-level Petri nets are on a distinctly lower
level of abstraction in the above sense than plain Petri nets. The reason for the
name is that it is possible to give a translation (sometimes called unfolding, though
this does not involve the relation between system and its history) of a high-level net
to a plain Petri net that preserves the reachability relation between corresponding
markings. A markingis immediately reachable from another if it can be obtained from
the latter by firing a transition (transition instance in a Pr/T-net); it is reachable
from the latter if there is a path from the latter to it. The two nets will then be 1-to-1
simulations of each other. Unfolding employs potentially many transitions (places)
to represent any transition (place) of the high-level net. It is in this sense that the
plain Petri nets are on a lower level.

Since their conception, Petri nets and its variants have been used to model and ana-
lyze the behavior of a large variety of systems, such as computer, social, or economic
ones. We hold that the appeal of the model stems from the basis in physics, since
particles and their interactions are intuitively well understood ideas and easily iden-
tified almost anywhere. A token can model a person in a particular state of mind, a
copy of document in an office, or—as we shall see—the location of the control and
the values of local variables of a process.



3.2 Dining philosophers

We shall now model the classical problem of dining philosophers which has been
introduced by Edsger W. Dijkstra. The quoted description of the problem is from [3].

“We now turn to the problem of the Five Dining Philosophers. The life of a philoso-
pher consists of an alternation of thinking and eating:

cycle begin think;
eat
end

Five philosophers, numbered from 0 through 4 are living in a house where the table
is laid for them, each philosopher having his own place at the table:

[[A figure has been omitted.]|

Their only problem — besides those of philosophy — is that the dish served is a very
difficult kind of spaghetti, that has to be eaten with two forks. There are two forks
next to each plate, so that presents no difficulty; as a consequence, however, no two
neighbours may be eating simultaneously.

A very naive solution associates with each fork a binary semaphore with the initial
value =1 (indicating that the fork is free) and, naming in each philosopher these
semaphores in a local terminology, we could think the following solution for the
philosopher’s life adequate

cycle begin think;
P(left-hand fork); P(right-hand fork);
eat;
V(left-hand fork); V(right-hand fork);

end

[[The quotation ends.]]”

Figure 4 presents a Pr/T-net model of the problem of dining philosophers. The
generalization of the problem of five philosophers into a problem of n philosophers
is obvious. We have chosen to number the philosophers from 1 through n, instead
of 0 through n — 1.

Figure 5 presents the same net written in PROD’s description language. The number
of philosophers, n , is fixed by the net preprocessor program prpp. The default value
for n is five. One can specify any other value by giving prpp an option of the form
““Dn =value’.

Macros are useful because they spare us the effort of repeating a complicated or less
intuitive expression. RIGHT (z ) is the right-hand and, for uniformity, LEFT(z ) the
left-hand fork of philosopher x .

A non-empty initial marking of a place is denoted by ‘mk’. ‘<.’ is the left and *.>’
the right angle bracket. ‘<.1..n.> means ‘Y . ,<.i¢.>. Without the operator ‘..,
we would have to write a sum such as ‘<.1.>4<.2.>4<.3.>4<.4.>

+<.5.>" explicitly.
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Figure 4: Dining philosophers.
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#ifndef n
#define n 5
#endif
#define LEFT(x) (x)
#define RIGHT(x) (1 + ((x) % n))
#place thinking lo(<.1.>) hi(<.n.>) mk(<.1..n.>)
#place forks mk(<.1..n.>)
#place withLeft lo(<.1.>) hi(<.n.>)
#place eating lo(<.1.>) hi(<.n.>)
#place withRight 1lo(<.1.>) hi(<.n.>)
#trans takeleft
in { thinking: <.ph.>; forks: <.LEFT(ph).>; }
out { withLeft: <.ph.>; }
#endtr
#trans takeRight
in { forks: <.RIGHT(ph).>; withLeft: <.ph.>; }
out { eating: <.ph.>; }
#endtr
#trans putLeft
in { eating: <.ph.>; }
out { withRight: <.ph.>; forks: <.LEFT(ph).>; }
#endtr
#trans putRight
in { withRight: <.ph.>; }
out { thinking: <.ph.>; forks: <.RIGHT(ph).>; }
#endtr

[

Figure 5: The philosopher system presented in PROD’s description language.
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‘hi(<.nm .>)’ denies the corresponding place all tuples with value more than n. The
meaning of ‘lo’ is analogous. In this particular net, ‘lo’ and ‘hi’ seem somewhat
unnecessary because there would not ever be any of the denied tuples anyway. The
reason for these restrictions on this net is to make the net easily unfoldable into a
P/T-net. The place ‘forks’ needs neither ‘o’ nor ‘hi’ because the restrictions on the
other places are sufficient to determine the ‘somewhere enabled’ transition instances.
A transition instance is ‘somewhere enabled’ if it is enabled at some, not necessarily
reachable, marking that respects the ‘lo’ and ‘hi’ restrictions.

There should be nothing difficult in the transition description part of this net. Vari-
able ph is local to each transition and has the same predefined integer type as the
values in the tuples in the places.
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4 Reachability analysis

This section begins with an investigation of a complete state space and ends with a
description of a state space generation method. The order is intentional. Subsection
4.1 assumes ‘ordinary’ state space generation, while Subsection 4.2 describes the
stubborn set method that tries to generate a small but suitable incomplete state
space.

4.1 Investigating system behaviour

In this subsection, the complete state space of the net in Figure 5 is investigated.
The number of philosophers, n, is five. This example can be reproduced by writing
the net description into ‘ph.net’, putting the investigation commands into ‘ph.btc’,
running ‘prod ph.net’, typing ‘quit’, and running

‘probe ph.gph -. -Iph.def -w70 -e < ph.btc > ph.log’.

The reproduced example is then in ‘ph.log’.

Some terms need to be explained. A reachability graph presents the state space of
the system. A node in the reachability graph corresponds to a reachable marking
of the net. It is possible to include fact transitions in a net description. Fact tran-
sitions present undesirable situations, so an enabled instance of a fact transition is
undesirable. The net in Figure 5 has no fact transition. A real arrow corresponds
to a fired instance of a non-fact transition. A fact arrow corresponds to an instance
of a fact transition. A real arrow has a target node, but a fact arrow has no target
node. In other words, only non-fact transitions are fired as far as PROD is concerned.
The set of immediate successor arrows of a node depends on the graph generation
method. By default, the set of immediate successor arrows corresponds to all enabled
transition instances. In the case of the stubborn set method which will be presented
in Subsection 4.2, the set of immediate successor arrows corresponds to all enabled
transition instances in a computed stubborn set as well as all enabled instances of the
fact transitions. The fact transitions are imagined to be non-existent when a stub-
born set is computed. The example in this subsection has been produced without
using the stubborn set method.

A node is terminal if and only if it has no real immediate successor arrow. A node
has been completely processed if and only if the graph generator program has checked
the node and created all of its immediate successor arrows.

A graph is strongly connected if and only if for each two nodes, there is a path from
one to the other. (Since ‘for each two nodes’ is symmetrical, there is a path in
the opposite direction, too.) A strongly connected component of a graph is such a
strongly connected subgraph of the graph that is not a subgraph of any other strongly
connected subgraph of the graph. It follows that each node of a graph is in one and
only one strongly connected component of the graph. Strongly connected component
B of a graph is an immediate successor of strongly connected component A of the
graph if and only if there is a real arrow from A to B in the graph and A is different
from B. A strongly connected component of a graph is terminal if and only if it
has no immediate successor. A terminal strongly connected component of a graph is
triviel if and only it is a terminal node or the whole graph.
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The command line prompt of probe is a pound preceded by the number of the
current node. The initial node has the number 0. ‘\’ at the end of a line means that
a command continues at the next line.

We first ask what macro definitions we already have. We shall use n in the sequel.

O#tdefs

#define LEFT(x) (x)

#define RIGHT(x) (1 + ((x) % n))
#define UNIX 1

#define n 5

‘statistics’ tells us that there is one terminal node and two strongly connected compo-
nents. Since a terminal node as such is a strongly connected component, we conclude
that all the other nodes are in the other component.

O#statistics

Number of nodes: 242

Number of (real) arrows: 805

Number of terminal nodes: 1

Number of fact arrow source nodes: O

Number of fact arrows: 0

Number of nodes that have been completely processed: 242
Number of strongly connected components: 2

Number of nontrivial terminal strongly connected components: 0

All sets in probe consist of paths. Each strongly connected component is represented
by one and only one ‘$$-set’. Such set consists of only the nodes in the component.
When it is known that each path in a set is just a node, ‘showends’ is a convenient
way to show the set. We observe that the system can get into a terminal state in
which each philosopher holds his left-hand fork.

O#tsets

Strongly connected components: $$0..$$1

Special sets:
$0: ** terminal nodes *x*
$1: ** fact arrow source nodes **

O#tshowends $0

Node 91, belongs to strongly connected component $$0
withLeft: <.1.> + <.2.> + <.3.> + <. 4.> + <.5.>

We evaluate some expressions with respect to the current node. The two new macros
will be used many times in the sequel.

O#look
Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <.,2.> + <, 3.> + <. 4.,> + <, 5.>
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forks: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>
Oftcalc thinking
<.1.> + <25+ <. 3> +<K.4.> + <560
O#calc card(thinking)
5
Otdefine submarking(marking, formula) ((marking):(formula))
O#define firstFieldInTuple (field[0])
O#calc submarking(thinking, firstFieldInTuple == 1)
<.1.>
O#calc submarking(thinking, firstFieldInTuple < 1)
empty
O#calc submarking(thinking, firstFieldInTuple > 1)
<.2.> + <.3.> + <. 4.> +<K,5>
O#calc card(submarking(thinking, firstFieldInTuple > 1))
4

The current node can be changed by firing a transition instance, by backtracking,
or by just jumping to another node. Each transition instance is in some precedence
class. As far as our example is concerned, it is sufficient to know that transition
instances have no priority to each other, and all transition instances are in the default

precedence class 0.

O#tsucc verbose
Arrow 0: transition takelLeft, precedence class 0
ph =1
Node 1, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.4.> + <. 5.>
forks: <.2.> + <.3.> + <. 4.> + <, 5.>
withLeft: <.1.>
Arrow 1: transition takelLeft, precedence class 0
ph = 2
Node 2, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <. 4.> + <,5.,>
forks: <.1.> + <.3.> + <.4.> + <.,5.>
withLeft: <.2.>
Arrow 2: transition takelLeft, precedence class 0
ph = 3
Node 3, belongs to strongly connected component $$1
thinking: <.1.> + <.2.> + <.4.> + <. 5.>
forks: <.1.> + <.2.> + <. 4.> + <., 6.>
withLeft: <.3.>
Arrow 3: transition takelLeft, precedence class 0
ph = 4
Node 4, belongs to strongly connected component $$1
thinking: <.1.> + <,2.> + <., 3.> + <,5.>
forks: <.1.> + <.2.> + <.3.> + <. 5.>
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withLeft: <.4.>
Arrow 4: transition takelLeft, precedence class 0
ph =5
Node 5, belongs to strongly connected component $$1
thinking: <.1.> + <,2.> + <., 3.> + <. 4.>
forks: <.1.> + <.2.> + <.3.> + <. 4.>
withLeft: <.5.>

O#next O
1#look
Node 1, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.4.> + <.5.>
forks: <.2.> + <.3.> + <. 4.> + <, 5.>
withLeft: <.1.>
l#succ
Arrow O: transition takelLeft, precedence class 0
ph = 2
to node 6

Arrow 1: transition takelLeft, precedence class 0

Arrow 2: transition takelLeft, precedence class 0
ph = 4

to node 8

Arrow 3: transition takelLeft, precedence class 0
ph =5

to node 9

Arrow 4: transition takeRight, precedence class 0
ph =1

to node 10

l#next 2

8#look

Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
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1#prev

O#tgoto 91

91#look

Node 91, belongs to strongly connected component $$0
withLeft: <.1.> + <.2.> + <,3.> + <,4,> + <, 5.>

91#goto 8

We start demonstrating ‘query’ and ‘query node’ by considering atomic argument
formulae. ‘volatile’ means ‘do not build a set’. ‘verbose’ and ‘mute’ are verbosity
levels. ‘verbose’ is above and ‘mute’ below the default verbosity level.

8#tdefine qvo query volatile

8#tdefine qvov qvo verbose

8#tdefine qvom gvo mute

8#qvov eating == empty

PATH

Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>

8#qvov thinking == empty

0 paths

8#qvov node thinking == empty

PATH

Node 91, belongs to strongly connected component $$0
withLeft: <.1.> + <.2.> + <. 3.> + <. 4.> + <. 5.>

8#qvov node (card(thinking) == n - 2) && (card(eating) == 2)
PATH
Node 64, belongs to strongly connected component $$1
thinking: <.2.> + <.4.> + <,5.>
forks: <.5.>
eating: <.1.> + <.3.>
PATH
Node 68, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.3.>
eating: <.1.> + <. 4.>
PATH
Node 79, belongs to strongly connected component $$1
thinking: <.1.> + <.,3.> + <.,5.>
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forks: <.1.>
eating: <.2.> + <.4.>
PATH
Node 82, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <.4.>
forks: <.4.>
eating: <.2.> + <.,5.>
PATH
Node 87, belongs to strongly connected component $$1
thinking: <.1.> + <.2.> + <. 4.>
forks: <.2.>
eating: <.3.> + <.5.>

‘step’ and ‘fire’ are ‘next state’ operators. ‘fire’ has an argument which describes the
transition instance.

8#qvov step (submarking(withLeft, firstFieldInTuple <= 2) != empty)
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <.,5.>
forks: <.2.> + <.3.> + <. 5.>
withLeft: <.1.> + <.4.>
Arrow O: transition takelLeft, precedence class 0
ph = 2
Node 22, belongs to strongly connected component $$1
thinking: <.3.> + <.5.>
forks: <.3.> + <.5.>
withLeft: <.1.> + <.2.> + <.4.>
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <,5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 1: transition takelLeft, precedence class 0
ph = 3
Node 25, belongs to strongly connected component $$1
thinking: <.2.> + <.5.>
forks: <.2.> + <.5.>
withLeft: <.1.> + <.3.> + <.4.>
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <,5.>
forks: <.2.> + <.3.> + <.5.>
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withLeft: <.1.> + <. 4.>
Arrow 2: transition takelLeft, precedence class 0
ph =5
Node 29, belongs to strongly connected component $$1
thinking: <.2.> + <.3.>
forks: <.2.> + <.3.>
withLeft: <.1.> + <.4.> + <.5.>
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 4: transition takeRight, precedence class 0
ph = 4
Node 31, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <.,5.>
forks: <.2.> + <.3.>
withLeft: <.1.>
eating: <.4.>

8#define trueExpression 1
8#qvov fire(takeRight (trueExpression)) \
(submarking(withLeft, firstFieldInTuple <= 2) != empty)
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <,5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 4: transition takeRight, precedence class 0
ph = 4
Node 31, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.>
withLeft: <.1.>
eating: <.4.>

The negation operator ‘not’ is introduced. It is a very useful operator, as we shall
see in the sequel.

8#tqvov fire(takeLeft(ph < 2)) true

0 paths

8#qvov not (fire(takeLeft(ph < 2)) true)
PATH
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Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>

8#tqvov fire(takeLeft(ph > 2)) true
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 1: transition takelLeft, precedence class 0
ph = 3
Node 25, belongs to strongly connected component $$1
thinking: <.2.> + <.5.>
forks: <.2.> + <.5.>
withLeft: <.1.> + <.3.> + <.4.>
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 2: transition takelLeft, precedence class 0
ph =5
Node 29, belongs to strongly connected component $$1
thinking: <.2.> + <.3.>
forks: <.2.> + <.3.>
withLeft: <.1.> + <.4.> + <.5.>

8#qvov not (fire(takeLeft(ph > 2)) true)

0 paths

8#qvov not (not (fire(takeLeft(ph > 2)) true))

PATH

Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <,5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>

The complement of a set of transition instances is introduced.
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8#tqvov fire(!'takeLeft(ph > 2)) true

PATH

Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>

Arrow O: transition takelLeft, precedence class 0
ph = 2

Node 22, belongs to strongly connected component $$1
thinking: <.3.> + <.5.>
forks: <.3.> + <.5.>
withLeft: <.1.> + <.2.> + <.4.>

PATH

Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <,5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>

Arrow 3: transition takeRight, precedence class 0
ph =1

Node 30, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.3.> + <.5.>
withLeft: <.4.>
eating: <.1.>

PATH

Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <,5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>

Arrow 4: transition takeRight, precedence class 0
ph = 4

Node 31, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.>
withLeft: <.1.>
eating: <.4.>

‘and’ operator tests the first argument and, conditionally, evaluates the second argu-
ment.

8#tqvov (fire('takeLeft(ph > 2)) true) \
and (fire(takeLeft(ph > 2)) true)
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <,5.>
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forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 1: transition takelLeft, precedence class 0
ph = 3
Node 25, belongs to strongly connected component $$1
thinking: <.2.> + <.5.>
forks: <.2.> + <.5.>
withLeft: <.1.> + <.3.> + <.4.>
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 2: transition takelLeft, precedence class 0
ph =5
Node 29, belongs to strongly connected component $$1
thinking: <.2.> + <.3.>
forks: <.2.> + <.3.>
withLeft: <.1.> + <.4.> + <.5.>

8#qvov (fire(takeLeft(ph < 2)) true) \
and (fire(takeLeft(ph > 2)) true)

If, as in the net in our example, transition instances are distinguishable with respect
to their effect on the places, ‘fire’ can be simulated by combining ‘step’, a postcon-
dition, and a precondition.

8#qvov node (submarking(thinking, firstFieldInTuple <= 2) != empty) \
and (step (thinking == empty))
PATH
Node 59, belongs to strongly connected component $$1
thinking: <.2.>
forks: <.2.>
withLeft: <.1.> + <.3.> + <.4.> + <.5.>
Arrow 0: transition takelLeft, precedence class 0
ph = 2
Node 91, belongs to strongly connected component $$0
withLeft: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>
PATH
Node 72, belongs to strongly connected component $$1
thinking: <.1.>
forks: <.1.>
withLeft: <.2.> + <.3.> + <.4.> + <,5.>
Arrow 0: transition takelLeft, precedence class 0
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ph =1
Node 91, belongs to strongly connected component $$0
withLeft: <.1.> + <.,2.> + <,3.> + <.4.> + <,5.,>

8#qvov node fire(takeLeft(ph <= 2)) (thinking == empty)
PATH
Node 59, belongs to strongly connected component $$1
thinking: <.2.>
forks: <.2.>
withLeft: <.1.> + <.3.> + <.4.> + <.5.>
Arrow O: transition takelLeft, precedence class 0
ph = 2
Node 91, belongs to strongly connected component $$0
withLeft: <.1.> + <.,2.> + <. 3.> + <. 4.,> + <, 5.>
PATH
Node 72, belongs to strongly connected component $$1
thinking: <.1.>
forks: <.1.>
withLeft: <.2.> + <.3.> + <.4.> + <.5.>
Arrow O: transition takelLeft, precedence class 0
ph =1
Node 91, belongs to strongly connected component $$0
withLeft: <.1.> + <.2.> + <.3.> + <. 4.> + <. 5>

Negation saves computation time and space when only the set of start nodes or the
existence of paths is of interest.

8#qvov node not (not (fire(takeLeft(ph <= 2)) (thinking == empty)))
PATH
Node 59, belongs to strongly connected component $$1
thinking: <.2.>
forks: <.2.>
withLeft: <.1.> + <.3.> + <. 4.> + <, 5.>
PATH
Node 72, belongs to strongly connected component $$1
thinking: <.1.>
forks: <.1.>
withLeft: <.2.> + <.3.> + <.4.> + <. 5.>

Terminal nodes can be found in the following way, instead of looking at $0. However,
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looking at $0 is preferable because ‘query node’ makes probe visit all nodes.

8#qvov node not (step true)

PATH

Node 91, belongs to strongly connected component $$0
withLeft: <.1.> + <.2.> + <.3.> + <. 4.> + <. 5>

Result storing is demonstrated in the context of a twofold ‘fire’ formula.

8#query mute fire(takeLeft(ph > 2)) \
(fire(takeRight (trueExpression)) true)
3 paths
Built set $2
8#build volatile verbose $2
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 1: transition takelLeft, precedence class 0
ph = 3
Node 25, belongs to strongly connected component $$1
thinking: <.2.> + <.,5.>
forks: <.2.> + <.5.>
withLeft: <.1.> + <.3.> + <.4.>
Arrow 2: transition takeRight, precedence class 0
ph =1
Node 60, belongs to strongly connected component $$1
thinking: <.2.> + <.5.>
forks: <.5.>
withLeft: <.3.> + <.4.>
eating: <.1.>
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 1: transition takelLeft, precedence class 0
ph = 3
Node 25, belongs to strongly connected component $$1
thinking: <.2.> + <.5.>
forks: <.2.> + <.5.>
withLeft: <.1.> + <.3.> + <.4.>
Arrow 3: transition takeRight, precedence class 0
ph = 4
Node 61, belongs to strongly connected component $$1
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thinking: <.2.> + <.5.>
forks: <.2.>
withLeft: <.1.> + <.3.>
eating: <.4.>
PATH
Node 8, belongs to strongly connected component $$1
thinking: <.2.> + <,3.> + <.,5.>
forks: <.2.> + <.3.> + <.5.>
withLeft: <.1.> + <.4.>
Arrow 2: transition takelLeft, precedence class 0
ph =5
Node 29, belongs to strongly connected component $$1
thinking: <.2.> + <.3.>
forks: <.2.> + <.3.>
withLeft: <.1.> + <. 4.> + <, 5.,>
Arrow 2: transition takeRight, precedence class 0
ph =1
Node 67, belongs to strongly connected component $$1
thinking: <.2.> + <.3.>
forks: <.3.>
withLeft: <.4.> + <.5.>
eating: <.1.>

A set formula is an atomic formula which holds only at the end nodes of the paths
in the set. ‘showends’ shows the end nodes of the paths in the set.

8#qvov $2

0 paths

8#goto 61

6i#qvov $2

PATH

Node 61, belongs to strongly connected component $$1
thinking: <.2.> + <.5.>
forks: <.2.>
withLeft: <.1
eating: <.4.>

61#showends $2
Node 60, belongs to strongly connected component $$1
thinking: <.2.> + <.5.>
forks: <.5.>
withLeft: <.3.> + <.4.>
eating: <.1.>
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Node 61, belongs to strongly connected component $$1
thinking: <.2.> + <.5.>
forks: <.2.>
withLeft: <.1
eating: <.4.>

1>+ <3
Node 67, belongs to strongly connected component $$1
thinking: <.2.> + <.3.>
forks: <.3.>

withLeft: <.4.> + <.5.>
eating: <.1.>

We now ask for a path of the minimum length from the initial node to the terminal
node. If there were more than one terminal node, the query would return for each
terminal node one of the shortest paths to that node.

61l#goto 0
O#qvov bspan(true) $0
PATH

Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <,2.> + <., 3.> + <. 4.> + <, 5.>
forks: <.1.> + <.,2.> + <.3.> + <. 4.,> + <, 5.>

Arrow 0: transition takelLeft, precedence class 0
ph =1

Node 1, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.4.> + <, 5.>
forks: <.2.> + <.3.> + <. 4.> + <. 5.>
withLeft: <.1.>

Arrow O: transition takelLeft, precedence class 0
ph = 2

Node 6, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <.5.>
forks: <.3.> + <. 4.> + <. 5.>
withLeft: <.1.> + <.,2.>

Arrow O: transition takelLeft, precedence class 0
ph = 3

Node 21, belongs to strongly connected component $$1
thinking: <.4.> + <.5.>
forks: <.4.> + <.5.>
withLeft: <.1.> + <.2.> + <.3.>

Arrow O: transition takelLeft, precedence class 0
ph = 4

Node 51, belongs to strongly connected component $$1
thinking: <.5.>
forks: <.5.>
withLeft: <.1.> + <.,2.> + <. 3.> + <. 4.>
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Arrow O: transition takelLeft, precedence class 0

ph =5

Node 91, belongs to strongly connected component $$0

withLeft:

<.1.> +<.2.> +<.3.>+<.4.> + <. 5.>

There are very many paths from the initial node to the terminal node, even if we
restrict ourselves to those paths where no philosopher eats. Such paths cannot contain

any loop.

O#qvom dpath(eating == empty, false) $0

120 paths

‘b’ in ‘bspan’ comes from ‘breadth-first search’. ‘dspan’ is some kind of a ‘depth-first’
analogy to ‘bspan’. In the following, ‘bspan’ returns a short path to a node. ‘dspan’
also returns exactly one path, without any loop, to the same node, but the path is
quite long. However, it should be emphasized that breadth-first search is sometimes
much more space consuming than depth-first search.

O#qvo bspan(true) \
(submarking(thinking, firstFieldInTuple ==
&% (card(withLeft) ==n - 1)

0o [1>
1 paths

2

[1>

11

[1>

34

[1>

72

O#qvo dspan(true, false) \

(submarking(thinking, firstFieldInTuple ==
&% (card(withLeft) == n - 1)

o [0>
167 [0>
164 [0>
128 [0>
202 [0>
188 [0>
231 [0>

96 [0>
197 [1>
175 [0>
151 [0>

93 [0>
238 [2>
183 [1>
137 [1>
215 [1>

72

1
192
178
144
220
209
236
136
112
199
181
133
217

73
24
158

[o>
[0>
[1>
[1>
[o>
[o>
[1>
[0o>
[o>
[0o>
[1>
[0>
[0>
[1>
[o>
[1>

6
212
201
177
165
225
210
171
143
218
203
168
229
1156

55
48

[o>
[o>
[o>
[2>
[o>
[o>
[1>
[0>
[2>
[0>
[1>
[o>
[o>
[1>
[o>
[o>

21
227
219

64
186
166
126
196

27
230
130
193
234
1563

95

77

[o>
[o>
[1>
[0>
[o>
[0>
(o>
[0>
(o>
[0>
[o>
[0>
[2>
[1>
[o>
[o>

51
232
150
105
208
190
159
216

60
235
1556
213
204
184
135
114

[1>
[0>
[0>
[0>
[0>
[0>
[o>
[o>
[o>
[o>
[1>
[o>
[2>
[1>
[o>
[0>

92
237
176
145
224
205
189
161
101
240

36
228
131
206
170
152

[o>
[o>
[o>
[o>
[1>
[o>
[2>
[0>
(o>
[1>
[o>
[0>
[o>
[2>
[o>
[1>

1) !'= empty) \

1) '= empty) \

132
223
200
179
162
222

79
172
141
221

53
233
160
124
195

34

[o>
[1>
[1>
[o>
[o>
[o>
(o>
[0>
(o>
[2>
[o>
[0>
[o>
[o>
[o>
[1>
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Unlike ‘bspan’, ‘dspan’ detects loops. ‘dspan(formula, true) false’ returns paths that
satisfy the formula and end in a single loop. ‘dpath(formula, true) false’ returns all
such paths. ‘dspan’ ignores alternative routes but is guaranteed to find all those
loops that ‘dpath’ finds. Below, we search for loops where philosopher number 1 is
thinking or holding his left-hand fork, and philosophers with number greater than
2 are thinking. ‘query’ lists paths in the order they are found. In a set, paths are
ordered with respect to node and arrow numbers so that the number of the end node
is the most significant, the number of the preceding arrow the next significant, etc.

O#define testFormula \
((card(submarking(thinking, firstFieldInTuple > 2)) \

==n - 2) \
&% (submarking(eating, firstFieldInTuple == 1) \
== empty))
O#query dspan(testFormula, true) false
o [0> 1 [0> 6 [3> 24 [2> 58 [3> 1, o [1>
2 [4> 14 [3> 42 [3> 0

2 paths
Built set $3

O#query dpath(testFormula, true) false

o [o0> 1 [0> 6 [3> 24 [2> 58 [3> 1, 0o [1>
2 [0> 6 [3> 24 [2> 58 [3> 1 [0> 6, 0o [1>
2 [4> 14 [0> 24 [2> 58 [3> 1 [0> 6 [3> 24,
0o [1> 2 [4> 14 [3> 42 [0> 58 [3> 1 [0> 6 [3>
24 [2> 58, 0o [1> 2 [4> 14 [3> 42 [3> 0

5 paths

Built set $4

O#build volatile verbose $3

PATH

Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <.2.> + <.3.> + <. 4.> + <. 5.>
forks: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>

Arrow 1: transition takelLeft, precedence class 0
ph = 2

Node 2, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <.4.> + <. 5.>
forks: <.1.> + <.3.> + <.4.> + <. 5.>
withLeft: <.2.>

Arrow 4: transition takeRight, precedence class 0
ph = 2

Node 14, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <.4.> + <. 5.>
forks: <.1.> + <.4.> + <.5.>
eating: <.2.>

Arrow 3: transition putLeft, precedence class 0
ph = 2

Node 42, belongs to strongly connected component $$1
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thinking: <.1.> + <.3.> + <.4.> + <. 5.>
forks: <.1.> + <.2.> + <. 4.> + <. 5.>
withRight: <.2.>
Arrow 3: transition putRight, precedence class 0
ph = 2
Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <.2.> + <. 3.> + <. 4.> + <. 5.>
forks: <.1.> + <,2,> + <,3.> + <. 4.> + <,6.>
PATH
Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <.2.> + <. 3.> + <. 4.> + <. 5.>
forks: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>
Arrow 0: transition takelLeft, precedence class 0
ph =1
Node 1, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <. 4.> + <,5.>
forks: <.2.> + <.3.> + <. 4.> + <, 5.>
withLeft: <.1.>
Arrow O: transition takelLeft, precedence class 0
ph = 2
Node 6, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <. 5.>
forks: <.3.> + <.4.> + <.5.>
withLeft: <.1.> + <.2.>
Arrow 3: transition takeRight, precedence class 0
ph = 2
Node 24, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <,5.>
forks: <.4.> + <.5.>
withLeft: <.1.>
eating: <.2.>
Arrow 2: transition putLeft, precedence class 0
ph = 2
Node 58, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <. 5.>
forks: <.2.> + <.4.> + <.5.>
withLeft: <.1.>
withRight: <.2.>
Arrow 3: transition putRight, precedence class 0
ph = 2
Node 1, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <. 4.> + <, 5.>
forks: <.2.> + <.3.> + <. 4.> + <. 5.>
withLeft: <.1.>

O#build volatile verbose $4 - $3
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PATH
Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <,2.> + <,3.> + <, 4.> + <, 5.>
forks: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>
Arrow 1: transition takelLeft, precedence class 0
ph = 2
Node 2, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <. 4.> + <, 5.>
forks: <.1.> + <.3.> + <.4.> + <,5.>
withLeft: <.2.>
Arrow O: transition takelLeft, precedence class 0
ph =1
Node 6, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <,5.>
forks: <.3.> + <.4.> + <.5.>
withLeft: <.1.> + <.,2.>
Arrow 3: transition takeRight, precedence class 0
ph = 2
Node 24, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <. 5.>
forks: <.4.> + <.5.>
withLeft: <.1.>
eating: <.2.>
Arrow 2: transition putLeft, precedence class 0
ph = 2
Node 58, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <,5.>
forks: <.2.> + <.4.> + <.5.>
withLeft: <.1.>
withRight: <.2.>
Arrow 3: transition putRight, precedence class 0
ph = 2
Node 1, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.4.> + <. 5.>
forks: <.2.> + <.3.> + <.4.> + <, 6.>
withLeft: <.1.>
Arrow O: transition takelLeft, precedence class 0
ph = 2
Node 6, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <,5.>
forks: <.3.> + <.4.> + <.5.>
withLeft: <.1.> + <.2.>
PATH
Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <.2.> + <. 3.> + <. 4.> + <. 5.>
forks: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>
Arrow 1: transition takelLeft, precedence class 0
ph = 2
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Node 2, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <.4.> + <.5.>
forks: <.1.> + <.3.> + <. 4.> + <, 5.>
withLeft: <.2.>
Arrow 4: transition takeRight, precedence class 0
ph = 2
Node 14, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <. 4.> + <, 5.>
forks: <.1.> + <.4.> + <.5.>
eating: <.2.>
Arrow O: transition takelLeft, precedence class 0
ph =1
Node 24, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <,5.>
forks: <.4.> + <.5.>
withLeft: <.1.>
eating: <.2.>
Arrow 2: transition putLeft, precedence class 0
ph = 2
Node 58, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <. 5.>
forks: <.2.> + <.4.> + <.5.>
withLeft: <.1.>
withRight: <.2.>
Arrow 3: transition putRight, precedence class 0
ph = 2
Node 1, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.4.> + <, 5.>
forks: <.2.> + <.3.> + <. 4.> + <, 5.>
withLeft: <.1.>
Arrow O: transition takelLeft, precedence class 0
ph = 2
Node 6, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <. 5.>
forks: <.3.> + <.4.> + <.5.>
withLeft: <.1.> + <.2.>
Arrow 3: transition takeRight, precedence class 0
ph = 2
Node 24, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <,5.>
forks: <.4.> + <.5.>
withLeft: <.1.>
eating: <.2.>
PATH
Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <.2.> + <. 3.> + <. 4.> + <. 5.>
forks: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>
Arrow 1: transition takelLeft, precedence class 0
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ph = 2
Node 2, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <. 4.> + <,5.>
forks: <.1.> + <.3.> + <.4.> + <. 5.>
withLeft: <.2.>
Arrow 4: transition takeRight, precedence class 0
ph = 2
Node 14, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <.4.> + <. 5.>
forks: <.1.> + <.4.> + <.5.>
eating: <.2.>
Arrow 3: transition putLeft, precedence class 0
ph = 2
Node 42, belongs to strongly connected component $$1
thinking: <.1.> + <.3.> + <.4.> + <.5.>
forks: <.1.> + <.,2.> + <. 4.> + <, 5.>
withRight: <.2.>
Arrow 0: transition takelLeft, precedence class 0
ph =1
Node 58, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <. 5.>
forks: <.2.> + <.4.> + <.5.>
withLeft: <.1.>
withRight: <.2.>
Arrow 3: transition putRight, precedence class 0
ph = 2
Node 1, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <. 4.> + <,5.>
forks: <.2.> + <.3.> + <. 4.> + <, 5.>
withLeft: <.1.>
Arrow O: transition takelLeft, precedence class 0
ph = 2
Node 6, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <. 5.>
forks: <.3.> + <.4.> + <.5.>
withLeft: <.1.> + <.2.>
Arrow 3: transition takeRight, precedence class 0
ph = 2
Node 24, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <,5.>
forks: <.4.> + <.5.>
withLeft: <.1.>
eating: <.2.>
Arrow 2: transition putLeft, precedence class 0
ph = 2
Node 58, belongs to strongly connected component $$1
thinking: <.3.> + <.4.> + <. 5.>
forks: <.2.> + <.4.> + <.5.>
withLeft: <.1.>
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withRight: <.2.>

The next query, given at the initial node, is a general way to ask whether the graph
has any loop. There is, of course, a loop if the number of strongly connected com-
ponents is less than the number of nodes in the graph. A problem arises when there
are as many strongly connected components as nodes.

O#qvov not (not (dspan(true, true) false))

PATH

Node 0, belongs to strongly connected component $$1
thinking: <.1.> + <.2.> + <. 3.> + <. 4.> + <. 5.>
forks: <.1.> + <.2.> + <.3.> + <.4.> + <.5.>

Suppose that we want to see a short loop-ended path in which philosopher number 1
is holding his right-hand fork. We proceed silently, by giving more and more specific
formulae and using negation to save computation time and space, until the number
of start nodes is sufficiently small. We then jump to the start node with the lowest
number and ask for actual paths.

O#qvom node not (not (dspan(submarking(withRight, \
firstFieldInTuple == 1) \
I= empty, \
true) false))
53 paths
O#qvom node not (not (dspan((submarking(withRight, \
firstFieldInTuple == 1) \
I= empty) \
&% (card(thinking) >=n - 2), \
true) false))

11 paths
O#qvo node not (mot ( \
dspan((submarking(withRight, firstFieldInTuple == 1) \
I= empty) \
&% (card(submarking(thinking, \
firstFieldInTuple '= 3)) \

==n—2)’\
true) false))
33, 65, 108, 148
4 paths
O#tgoto 33

1}
1}
[
~
-

33#qvov dspan((submarking(withRight, firstFieldInTuple
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I= empty) \
&% (card(submarking(thinking, \
firstFieldInTuple != 3)) \
==n - 2), \
true) false
PATH
Node 33, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <. 4.> + <,5.>
forks: <.1.> + <.3.> + <.4.> + <. 5.>
withRight: <.1.>
Arrow O: transition takelLeft, precedence class 0
ph = 3
Node 65, belongs to strongly connected component $$1
thinking: <.2.> + <.4.> + <,5.>
forks: <.1.> + <.4.> + <.5.>
withLeft: <.3.>
withRight: <.1.>
Arrow 2: transition takeRight, precedence class 0
ph = 3
Node 108, belongs to strongly connected component $$1
thinking: <.2.> + <.4.> + <. 5.>
forks: <.1.> + <.5.>
eating: <.3.>
withRight: <.1.>
Arrow 1: transition putLeft, precedence class 0
ph = 3
Node 148, belongs to strongly connected component $$1
thinking: <.2.> + <.4.> + <,5.>
forks: <.1.> + <.3.> + <.5.>
withRight: <.1.> + <.3.>
Arrow 2: transition putRight, precedence class 0
ph = 3
Node 33, belongs to strongly connected component $$1
thinking: <.2.> + <.3.> + <.4.> + <. 5.>
forks: <.1.> + <.3.> + <.4.> + <. 5.>
withRight: <.1.>

We quit probe.

33#quit

4.2 Stubborn set method

The stubborn set method is a method due to Valmari [9, 10, 11, 12] that attempts
to exploit the commutativity of transitions in order to reduce the number of states of
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the state space actually inspected during the generation of the state space, while still
finding all terminal states and detecting the existence of infinite firing sequences of
a P/T-net. Transitions may be ignored: there may be transitions that occur in the
complete state space but not in the reduced state space. If the stubborn sets used
in the state space generation are guaranteed to be sufficiently ‘strong’, the ignoring
phenomenon can be eliminated by using an algorithm presented by Valmari [13].
More recently, Valmari has also presented an algorithm that verifies any pregiven
stuttering-invariant linear time temporal logic formula [14], and then an on-the-
fly verification algorithm [15], both using stubborn sets. PROD uses the very weak
definition of stubbornness given in [9]. Such definition is better than any stronger
definition if the goal is to find the terminal states by inspecting as few states as
possible. The above three advanced algorithms have not been implemented in PROD.

In PROD, the reachability graph generator program unfolds a Pr/T-net into a P/T-
net and applies the stubborn set method to the P/T-net. Applying the stubborn
set method directly on the Pr/T-net level would not give us more freedom in net
description because we should still go through such transition instances that are not
enabled at the current marking but could possibly be enabled at some reachable
marking. (This has been said in other words in [16].) probe folds the state space
information back into the Pr/T-net level. probe sees only the generated part of the
state space, so an answer to a query just tells about the reduced reachability graph.

The aim of the stubborn set method is to reduce the branching factor (number of
successors) at each actually generated marking. The idea is the following. Consider
a marking, say M, whether reachable or not, that has at least one enabled transition.
Now, try to construct a partition of the the set of transitions T into two sets, say T,

and T, so that the following diagram commutes for some ¢t € Ty and any o € (Ts)*
such that M [t) A M [o):

g
M — M
t ] ]t
le” —_ L,w/l
g

If one furthermore can guarantee that firing any o € T,  cannot enable any transition
in T, there is no need to generate any of the internal markings on the path M [o)
M' [ty M"": any terminal state that can be found by generating such a path, can be
found by firing some enabled transition ¢t € T, if such exists.

A glimpse of the relevance of the stubborn set method can be obtained by considering
the state space produced by k£ > 1 strictly sequential, n > 0-transition, entirely
independent (unconnected) Petri net components. The state space of these is a k-
dimensional hypercube, with n 4+ 1 states possible in each dimension, giving a total
of (n + 1)¥ states. The stubborn set method will only consider one path through
this hypercube, a total of nk 4+ 1 states, a reduction to polynomial size. Adding a
transition that is enabled in an internal state of the hypercube, the method will force
that state to be generated and the firing of the added transition to be investicated.

Valmari has given several algorithms to compute the set of enabled transitions of a
stubborn set. We shall describe the so called incremental algorithm [9, 11]. Given
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a method to pick a place (the scapegoat) that disables a non-enabled transition, any
marking M determines a binary relation Rys(t,t'): “if ¢ is in a stubborn set, so must
be t', immediately due to the ‘safe part’ of the definition”. From now on, we shall
assume that such a method to pick the scapegoat exists and is efficiently computable.
The algorithm will work for any well-defined method, but the reduction in the number
of states varies. We omit the definition of stubbornness because the main idea of the
algorithm is completely independent of the actual definition of stubbornness. It is
sufficient to know that the ‘safe part’ of the definition guarantees that the above
diagram commutes for all enabled transitions in the stubborn set. On the other
hand, the definition used by PROD [9] is extremely difficult to understand without
simplifying assumptions about the P/T-net.

Starting from some enabled transition ¢ and computing the set of enabled transitions
in the first-found strongly connected component of the graph (7', Rys) that really
has an enabled transition using Tarjan’s algorithm [8], we have the set of enabled
transitions of a stubborn set. Such strongly connected component will be found,
since t was enabled, though transition need not be in the stubborn set found.

The correctness of the algorithm relies on the fact that Tarjan’s component search
algorithm will find a component only after all the components that can be reached
from it can be found. If the algorithm is stopped as soon as it finds a component
with at least one enabled transition, the component together with all the components
that can be reached from it forms a stubborn set. But, we are only interested in
the enabled transitions in the stubborn set, and the other components reachable
from the found one do not contain enabled transitions since these were found earlier,
so the others can be ignored. The time complexity of the incremental algorithm is
O(pv|T|), where T is the set of transitions, 4 is the maximum number of input
places of a transition, and v is the maximum of the maximum number of input
transitions of a place and the maximum number of output transitions of a place [9].

Without change in complexity, the incremental algorithm can be optimized to find
such stubborn set that contains the least number of enabled transitions, where ‘least’
holds only with respect to the graph (7, Rar). All what is needed is to complete the
depth-first search and application of Tarjan’s algorithm so that all enabled and only
enabled transitions are checked in the outermost loop of the search.

The complete state space of the dining philosopher system in Figure 4 has 3" —1 states
and n(2-3"~! — 1) state transitions. The incremental algorithm always produces a
reduced state space of only 3n? —3n + 2 states and 4n* — 3n state transitions [9]. If
n = 5 this means a reduction from 242 nodes and 805 real arrows in the reachability
graph of Subsection 4.1 to 62 nodes and 85 real arrows. If we assume the files
mentioned at the beginning of Subsection 4.1, the reduced reachability graph can be
produced by compiling ‘ph.net’ into a reachability graph generator program ‘ph.exe’
and running ‘ph.exe -. -s ph.gph’.

The stubborn sets produced by the incremental algorithm may contain unnecessarily
many enabled transitions. To solve this problem, Valmari has developed the so called
deletion algorithm. The deletion algorithm finds a stubborn set which is minimal in
the sense that no proper subset of its enabled transitions can be the set of all enabled
transitions of any stubborn set. The stubborn set is found in time O(up|T|*), where
T and v are as above, and p is the maximum number of adjacent transitions of



— 36 —

a place [10, 11] . The deletion algorithm utilizes the definition of stubbornness
completely, unlike the incremental algorithm. No one has presented any algorithm
that would find a stubborn set having a minimum number of enabled transitions in
polynomial time with respect to the number of places and transitions. Such set is
not necessarily the best choice [11] but it is difficult to define a better simple goal.

In PROD, both the incremental algorithm and the deletion algorithm have been im-
plemented. The definition of stubbornness for P/T-nets given in [9] is used for both,
though all the definitions Valmari has used when presenting the deletion algorithm
are strictly different from that definition. This is possible because the idea behind
the deletion algorithm is common to all definitions of stubbornness. Two versions of
the incremental algorithm were mentioned above, the ‘original’ and the ‘optimized’
version. Both of them have been implemented in PROD.
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A Formulae in the query language

This appendix presents the most important part of the query language: the formulae.
A formula is an argument of the ‘query’ command in probe. The part of the query
language consisting of formulae will be called PQL. The syntax and semantics of
PQL is presented. We do not get inside the atomic formulae in this presentation, and
not inside the so called firing classes either. An atomic formula is typically a C-like
expression about the markings of the places in the net. There is an extended version
of this appendix showing that each formula in CTL (Computation Tree Logic) [2]
can be transformed into a semantically equivalent formula in PQL. The extended
version is available on request.

The alphabet of PQL is
Y =¥ U 0O U {true, false,not,and, or, node, step,
bpath, dpath,bspan, dspan, (, ), , },
where U is the set of atomic formulae and © is the set of firing classes.

Definition A.1 The set of PQL-formulae is the least set ® C ¥* such that if
b, P1,02 and ¢3 € ® are formulae and 0 € O is a firing class, then

~

VCo,
true € ®,

false € @,

not ¢ € @,

(¢1 and ¢3) € @,

(¢1 or o) € @,

step 6 € B,
bpath(1,¢2)¢s € @,
dpath(oy, ¢2)ps € @,
bspan(¢1)gs € @,

. dspan(¢1, ¢2)¢3 € @,
12. fire(0)¢ € ®.

A R S T B B

S
N D

Definition A.2 A labelled directed graph is a triple (W, L, R), where

o W is a finite set of vertices (net markings, worlds of a model),
o [ is a finite set of labelled edges (transition instances), and

o RC{wlw' | w,w' € W and ! € L} is a set of three-element strings defining
the labeled directed edges (transition instances) of the graph.
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Wo wy w3 Wo w1 :
Wo
woliwylawal3wylyws wolywylywy

Figure 6: A cycle and an end cycle.

Definition A.3 The set R* of paths of a given graph G = (W, L, R) and the pro-
jection end : R* — W are defined as follows:

o forallp=wlw' € R, p e R* and end(wlw') = w',

o forallw e W, w e R* (an empty path of zero length), and end(w) = w,

o if wh and w'\' € R* and end(w)) = w', then wA)N € R*, and end(wA)\') =
end(w'\'),

e there are no other paths in R*.

Let R and R* be as defined above. Then we say that (W, L, R*) is a labelled graph,
namely the graph (W, L, R).

A cycle is a path where the starting and end vertices coincide. If for a path wgh =
woliwy ... lL,w, there are ¢,j € {0,...,n} such that i # j and w; = w; we say that
the path has a cycle. Specially, a path has an end cycle, if either i or j is n, that is,
there is a world w' on the path such that w, = w'.

In a graph G, a path (that belongs to R*) will be called mazimal, if it is a path
without cycles and it ends to a vertex with no successors in the graph or if it is a
path with only one cycle and this cycle is an end cycle.

In this appendix, paths always have a finite length; the sets of vertices and labels are
finite and the cycles can be thought as finite paths where the start and end vertices
coincide.

Definition A.4 Let G =(W,L,R) and G' = (W' L' R'") be labelled directed graphs.
G' spans G iff

e W' =W, and
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e R = Ry C R in such a way that G' is a spanning tree of G.
G' spans G with cycles iff

e W' =W, and

e R = Rr|JRc C R in such a way that (W', L', Ry) is a spanning tree of G
and Re consists exactly of all the labelled edges needed to define all cycles in
g.

For paths we define the partial concatenation operator ‘o’:
Definition A.5 Let p=w), p' = w'\" € R* for some G.
o pop =wA\, ifend(p) = w' (that is, po p' € R*), and
e undefined otherwise.
If P is a set of paths, we can write po P for {pop" | p" € P}.
Definition A.6 A formula ¢ € ®pgr is true in a world w € W for a model M,

with an interpretation I of formulae (defined later), M ELCL ¢ iff T(w,¢) # 0,
otherwise it is false and we write M fEEQL ¢,

For paths p = wolywy ... lLLw,, M |=5QL ¢ means, that for all 0 < i < n,
M |_PQL

For a graph G = (W, L, R), we define:
Definition A.7 R*pan[w,gb] C R* is a set of paths

{p' =w\ e R* | M E.°" ¢}

that as a labelled directed graph (W, L, R}, ,,[w,¢]) spans
(W, L, {p=wl € R*| M |=5QL o).
R anlw,®] C R* is a set of paths

(" =w" e R | M [,.7" ¢}
that as a labelled directed graph (W, L, R}, ,.[w,®]) spans

(W,L,A{p=wX € R* | M QL 1) with cycles.

In this appendix, we regard atomic formulae to be known to be either true or false
at a vertex and each firing class to define a set of edges (6 € © = 27).

Definition A.8 A model for the query language PQL is a triple M = (G,V,T),

o G is a labelled directed graph,
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o V:U —2W s q local valuation of atomic formulae,

¢ T:W x®— 28 & é1,¢s and ¢35 € O, € U, is the following interpretation
of PQL:

W, 1) = { w if we V()

@  otherwise

1.

n

)

(

2. I(w, false) = @,
(
(

3. I(w,true)

if MELPE 6
4. I(w,not ¢) = { otherwise ’
5. I(w,(¢1 or ¢2)) =T(w,¢1) UI(w, ),

, . _PQL

6. Z(w,(¢1 and ¢a)) = { é(w’@) Zli\e/tmtz;ue "
7. Z(w, step ¢) = {wlw' o P | wlw' € R and P = I(w', )},
8. T(w,bpath(py, ¢a)ds) =

={poP | p=wA € R* has no cycles
and M =LRL ¢y, and P = I(end(p), ¢s3)}
U{p | p=wA € R* has only an end cycle
and M =ERL ¢y and M =7 end(p) b2},
9. I(w,dpath(¢r, d2)d3) = I(w,bpath(¢r, d2)ds),

10. Z(w,dspan(¢y, ¢z )p3) =
={p/oP | p'=wA€ R}, [w, ¢1] has no cycles

and M | PQL ¢1, and P = T(end(p'),¢3)}
U{p' | p=wke Rcsp(m[ ,¢1] has only an end cycle
and M |—p,QL ¢y, and M EFOL " b2},

end(p

11. I(w,bspan(¢1)pe) ={p' o P | p' = wk € R}, . [w, 1],
M " 61 and P =TI(w,é2)},

12, I(w, fire(0)¢) = {wlw' o P | wlw' € R && 1€ && P=TI(w', ¢)}
where 0 € 2L is a firing class.

Note that:

e not necessarily Z(w,not not ¢) = I(w, ),

o not necessarily Z(w, (¢1 and ¢2)) = I(w, (¢ and ¢1)),
o I(w,dspan(¢1,¢2)d3) C T(w, dpath(ey,é2)és),

o T(w,bspan(dy)ds) C T(w,bpath(dy, false)dy).

bpath and dpath differ in how probe implements them; the search is done either
breadth-first or depth-first.
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Figure 7: An undetectable cycle for bspan.

Spanning operators are much like their ‘path’ counterparts but here we do not de-
mand all possible answers; every time a vertex is visited, it is marked and no ad-
ditional edges to that vertex will be used as a part of a path (the search spans a
subgraph).

This is true as is for bspan where, when constructing p’, the part of the path satisfying
the first set condition (see def. A.8), every edge leading to an already visited vertex
will be rejected. Even if the vertex was visited on the path we are currently on. This
means that p’ won’t contain cycles. The reason why we do not allow cycles while
constructing p’ for bspan is because there are cycles that wouldn’t be detected even
if we allowed additional edges to a vertex already visited on the current path.

Figure 7 gives an example of this. Even if we were trying to detect cycles by making
difference between vertices visited on the current path and vertices visited otherwise,
the cycle of this graph would be undetected. Traversing the graph in breadth-first
manner starting at the parent vertex, the children would be visited first using labelled
edges 1 and 2. Traversing the edge 1’ would lead to a vertex visited on the second
path and so that additional edge to that vertex would be rejected. Traversing the
edge 17 would lead to a vertex visited by the first path so this edge would also be
rejected and no cycles would be found. Even if some cycles could be found, it was
decided that no cycles might be better than ‘some cycles’; this because otherwise the
user could make a query about some kind of a cycle and then the query could state
that no such cycles were found even if there were some.

The dspan is a little different. Allowed to use a new edge when going to a vertex
visited earlier by the current path, it will find at least one path with a cycle for every
cycle found by dpath (or bpath).

We close this appendix by stating two quite obvious but important things about span
queries relatively to the corresponding path queries:
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M EDRE dspan(gy, ¢2) b3 < M =L dpath(éy, b2)ds,
and

M EPRL bspan(¢y)ps < M EERL bpath(éy, false)ds.



