
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 99

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 99

Espoo 2005 HUT-TCS-A99

SOLVING BOOLEAN EQUATION SYSTEMS

Misa Keinänen

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 99

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 99

Espoo 2005 HUT-TCS-A99

SOLVING BOOLEAN EQUATION SYSTEMS

Misa Keinänen

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FI-02015 TKK

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Misa Keinänen

ISBN 951-22-7994-0

ISSN 1457-7615

Multiprint Oy

Helsinki 2005

ABSTRACT: Boolean equation systems are ordered sequences of Boolean
equations decorated with fixpoint operators. Boolean equation systems pro-
vide a useful framework for computer aided verification because various spec-
ification and verification problems can be encoded as the problem of solving
such fixpoint equation systems. In this work, techniques for finding solutions
to Boolean equation systems are studied, and new methods for solving such
systems are devised. An approach to solve a general form Boolean equation
system, which simplifies the process of finding the solution by dividing the
system into more simple subsystems and solving these by optimized proce-
dures, is introduced and analyzed. New solution algorithms for disjunctive
and conjunctive classes of Boolean equation systems are presented, together
with an implementation and experimental evaluation of a solver for these
classes. A novel translation of the problem of solving a general form Boolean
equation system into the problem of finding a stable model of a logic pro-
gram is given. The translation allows to use an implementation of an answer
set programming framework, the

�� �����
system, to solve Boolean equation

systems. Experimental tests have been performed using the presented ap-
proach and these experiments indicate the effectiveness of using answer set
programming in this problem domain.

KEYWORDS: Boolean equation systems, computer aided verification, model
checking, logic programs, stable model semantics

CONTENTS

1 Introduction 1
1.1 Related Work . 1
1.2 Contribution of the Report 2
1.3 Organization of the Report 4

2 Background 5
2.1 Boolean Equation Systems 5

Syntax of Boolean Equation Systems 5
Local Semantics of Boolean Equation Systems 6
Global Semantics of Boolean Equation Systems 7

2.2 Graph Representation of Boolean Equation Systems 9
2.3 Modal µ-Calculus . 11

Syntax of µ-Calculus . 11
Semantics of µ-Calculus . 11
From µ-Calculus to Boolean Equation Systems 13

2.4 Normal Logic Programs . 15

3 A General Procedure to Solve Boolean Equation Systems 18
3.1 Partitioning Boolean Equation Systems 18
3.2 Types of Blocks of a Boolean Equation System 19

Alternation-Free Blocks . 19
Conjunctive and Disjunctive Blocks with Alternation 19
General Alternating Blocks 20

3.3 General Solution Algorithm for Boolean Equation Systems . . 20

4 Minimal and Maximal Blocks 23
4.1 Algorithms for Alternation-Free Systems 23
4.2 Minimal and Maximal Blocks as Logic Programs 23

5 Disjunctive and Conjunctive Blocks with Alternation 27
5.1 Properties of Conjunctive and Disjunctive Blocks 27
5.2 Depth-First Search Based Algorithm 29
5.3 Conjunctive/Disjunctive Blocks and Parity Word Automata . 32

6 General Form Blocks 35
6.1 Solving General Blocks in Answer Set Programming 35
6.2 Properties of General Boolean Equation System 35
6.3 From General Blocks to Logic Programs 37
6.4 Correctness of the Translation 38

7 Case Studies 40
7.1 Model Checking Examples 40
7.2 Model Checking DKR Leader Election Protocol 42
7.3 Solving Alternating Boolean Equation Systems 43

8 Conclusion 46

References 52

iv CONTENTS

1 INTRODUCTION

In this report, we study Boolean equation systems [1, 42, 45, 57]. These are
ordered sequences of Boolean equations decorated with fixpoint signs. More
precisely, a Boolean equation system consists of equations with Boolean vari-
ables in left-hand sides and positive propositional formulas in right-hand
sides. In particular, we restrict the attention to solution techniques for Boolean
equation systems. The research topic belongs to the area of formal verifica-
tion but more specifically it addresses effective ways of solving systems of
fixpoint equations.

Boolean equation systems provide a useful framework for studying veri-
fication problems of finite-state concurrent systems, mainly because model
checking problem of µ-calculus [35] can be translated into this formalism
(see [4, 42, 45] for such translations). Model checking is a verification tech-
nique aimed at determining whether a system model satisfies desired prop-
erties expressed as temporal logic formulas (see [11] for a survey). Modal
µ-calculus [35] is an expressive logic for verification, and most model check-
ing logics can be encoded in the µ-calculus.

In the following subsections, we will briefly discuss related work, we will
state the contributions of this report, and, finally, we will outline the general
organization of the work.

1.1 Related Work

The notion of a Boolean equation system goes back at least to the work of
Larsen [37], where he presents an early form of a Boolean equation system.
Larsen gives a sound and complete proof system for Boolean equation sys-
tems consisting of minimal fixpoint equations. Larsen shows also how sim-
ple correctness questions of finite-state parallel systems can be solved in this
framework. In the same way, Boolean equation systems are studied in detail,
for example, by Vergauven and Lewi [57], and by Andersen and Vergauven
[2].

In [42], Mader studies basic properties of Boolean equation systems. Mader
shows how the model checking problem of full µ-calculus can be solved in
terms of Boolean equation systems. In addition, she provides a proof system
for solving general Boolean equation systems by means of algebraic manip-
ulations. Such an approach is also applicable to solve infinite systems of
equations, an extension of Boolean equation systems to infinite sequences of
Boolean equations involving infinite Boolean formulas.

In [45], Mateescu describes solution algorithms for alternation-free Boolean
equation system. The approach from [45] can be used for both bisimulation
checking and for model checking of alternation-free µ-calculus on finite-state
systems. Furthermore, in [44], Mateescu provides algorithms that can be
used to compute counterexamples as well as diagnostic information explain-
ing the solution computed to a given variable of a Boolean equation system.

In [36], Kumar and others apply answer set programming to solve Boolean
equation systems. They argue that general form Boolean equation systems
can be solved by translating them to propositional normal logic programs,
and computing stable models which satisfy certain criteria of preference.

1 INTRODUCTION 1

There is also a recent direction of research centred around an extension
of Boolean equation systems with data. Such systems are often called pa-
rameterized Boolean equation systems and they are also known as first-order
Boolean equation systems. In [25], Groote and Willemse show how a µ-
calculus formula and a process algebraic specification, both involving data
parameters, can be transformed into a parameterized Boolean equation sys-
tem. In [26], various solution methods for parameterized Boolean equation
systems are studied. An advantage of this kind of approach is that it allows for
dealing with the verification of infinite state systems.

Rather than providing a comprehensive list of work in the field with a
special reference to Boolean equation systems, the above list of results shows
that fixpoint equation systems have been studied in some depth in the recent
systems verification literature.

1.2 Contribution of the Report

Firstly, the work reports a general framework that allows for dividing Boolean
equation systems into individual blocks and solving the blocks in isolation
with special methods. The framework is based on two fundamental design
decisions. Firstly, the framework uses graph-theoretic techniques to effi-
ciently build a block partitioning of a Boolean equation system. Then, the
framework solves the resulting blocks using a customized solution method
for each partition of the underlying Boolean equation system. This enables
considerable optimization of the solution methods.

Secondly, the work presents novel solution methods for important sub-
classes of Boolean equation systems. In particular, we study solution methods
for Boolean equation systems which are either in conjunctive or disjunctive
form. This is motivated by the observation [23] that many practically rele-
vant µ-calculus formulas can be encoded as Boolean equation systems that
consist of conjunctive and disjunctive blocks. Hence, the problem of solv-
ing these subclasses is so important that developing special purpose solution
techniques for these classes is worthwhile.

Mateescu [45] presents a solution algorithm for disjunctive/conjunctive
Boolean equation systems. However, this approach is restricted to alternation-
free systems. We are only aware of one sketch of an algorithm that is directed
to alternating disjunctive/conjunctive Boolean equation systems, namely Propo-
sition 6.5 and 6.6 of [42]. Here a O(n2) time and O(n2) space algorithms are
provided where n is the number of variables1. Our algorithms [23, 24] are
substantial improvement over this.

The work presents efficient solution methods for general form Boolean
equation systems for which no polynomial time solution algorithms are known
to date. Since the problem of solving a general Boolean equation system is
in the complexity class NP∩ co-NP [42], it should be possible to employ fast
answer set programming solvers (such as ��� and

�� �����
) as effective proof

1The work [42] presents an O(n2) time algorithm assuming the existence of an algorithm
which allows union of (large) sets, and finding and deletion of elements in these sets in
constant time. However, we are not aware of any data structure which allows all of these
operations in constant time.

2 1 INTRODUCTION

engines to solve such Boolean equation systems2. As mentioned before, this
kind of approach is already suggested in [36].

But, while the translation from Boolean equation systems to logic pro-
grams presented in [36] preserves the linear-time complexity of solving alternation-
free Boolean equation systems, it does not preserve the polynomial time
complexity of solving conjunctive and disjunctive form Boolean equation
systems. Moreover, the approach proposed in [36] does not seem to preserve
the best known NP∩co-NP time complexity of solving general Boolean equa-
tion systems. An additional drawback of the approach from [36] is that typical
answer set programming systems (such as ��� and

�� �����
) do not support

the computation of answer sets satisfying the kind of preference criteria de-
fined in [36].

We overcome the above drawbacks by introducing a novel mapping [32]
from Boolean equation systems to normal logic programs. Namely, we re-
duce the problem of solving alternating Boolean equation systems to com-
puting stable models of normal logic programs. Our translation is such that it
ensures polynomial time complexity of solving both disjunctive and conjunc-
tive alternating systems, and also ensures NP∩co-NP time complexity of solv-
ing general form Boolean equation systems. In addition, our translation only
uses the kinds of rules that are already implemented in ��� and

�� �����
an-

swer set programming systems.
Finally, it is worthwhile to observe that, by computational complexity re-

sults, it is possible to construct a mapping from Boolean equation systems
to propositional satisfiability (for a description of propositional satisfiability
problem, see p. 77 in [49]).3 In principle, this kind of mapping would give
a way to solve Boolean equation systems with various propositional satisfia-
bility checkers. However, no mappings from Boolean equation systems to
propositional satisfiability has been presented in the literature. One can use
our translation from Boolean equation systems to normal logic programs as
a basis for such a mapping because there exists a succinct encoding [29] of
normal logic programs as propositional satisfiability.

In summary, the main contributions of this work are:

• The design of an approach to solve a general form Boolean equation
system which works by dividing the system into individual blocks and
solving these blocks in isolation. This simplifies the process of finding
solutions to Boolean equation systems in many settings. The approach
is presented and discussed in [32, 23].

• The introduction of novel solution algorithms for conjunctive and dis-
junctive classes of Boolean equation systems. This improves the best
known upper bound for solving conjunctive and disjunctive portions of
a Boolean equation system and makes the verification of a large class

2For example, see ���� ������ ���	
 ����
� �	� �	����������� and ���� ������ �
� �� ���� ��
������	����� ������) for descriptions of these answer set programming sys-
tems.

3Note that the problem of solving a Boolean equation system is itself very different from
the satisfiability problem of propositional logic. Indeed, the question of satisfiability does
not make a clear sense in the setting of Boolean equation systems because the propositional
formulas appearing in such systems are positive, and all positive Boolean formulas are always
satisfiable.

1 INTRODUCTION 3

of fixpoint expressions more tractable. These results are presented and
discussed in [23, 24].

• The development of a novel characterization of solutions to Boolean
equation systems with alternating fixed points, and the design of a map-
ping from such systems to normal logic programs. This enables the ap-
plication of answer set programming techniques to solve hard instances
of Boolean equation systems, and gives a new efficient way of solving
alternating portions of such systems. The approach is presented and
discussed in [32]. In addition, when combined with the results from
[29], our translation enables the the application of propositional satis-
fiability checkers to solve Boolean equation systems.

• The implementation and initial experimental evaluation of a solver
for conjunctive and disjunctive Boolean equation systems with alter-
nation. These are described in [23], and are also presented partly in
[31].

• The implementation and initial experimentation of the answer set pro-
gramming approach to solve alternating Boolean equation systems, as
a proof of concept on the simplicity and effectiveness of using logic
programming in this problem domain. These results are described in
[32].

1.3 Organization of the Report

The organization of this work is as follows. Section 2 provides the needed
background to read the work. Section 3 presents an overview of our general
framework to solve a Boolean equation system. Section 4 discusses solution
methods for alternation-free parts of Boolean equation systems. Section 5 de-
scribes algorithms for conjunctive and disjunctive cases of a Boolean equa-
tion system. Section 6 details an answer set programming approach to solve
general form, alternating parts of Boolean equation systems. Section 7 de-
tails some case studies. Finally, Section 8 presents conclusions, and suggests
directions for future work.

4 1 INTRODUCTION

2 BACKGROUND

This section presents some basic concepts that will be required in the fol-
lowing sections. The current section presents essentially an introduction to
Boolean equation systems, modal µ-calculus, and answer set programming.

2.1 Boolean Equation Systems

We will give in this subsection a short presentation of Boolean equation sys-
tems. Essentially, a Boolean equation system is an ordered sequence of fixed
point equations over Boolean variables, with associated signs, µ and ν, speci-
fying the polarity of the fixed points. The equations are of the form σx = α,
where α is a positive Boolean expression. The sign, σ, is µ if the equation is a
least fixed point equation and ν if it is a greatest fixed point equation. In the
following subsections, we will first define positive Boolean expressions, and
then define the syntax and semantics of Boolean equation systems.

Syntax of Boolean Equation Systems
Let X = {x1, x2, ..., xn} be a set of Boolean variables. The set of positive
Boolean expressions over X is denoted by B(X), and is given by the gram-
mar:

α ::= 0 | 1 | xi | α ∧ α | α ∨ α

where 0 stands for false, 1 stands for true , and xi ∈ X . The meaning of
positive Boolean expressions is trivially defined as the usual semantics for
Boolean formulas.

We define the syntax of Boolean equation systems as follows.

Definition 1 (The syntax of a Boolean equation system) A Boolean equation
is of the form σixi = αi, where σi ∈ {µ, ν}, xi ∈ X , and αi ∈ B(X).
A Boolean equation system is an ordered sequence of Boolean equations

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

where the left-hand sides of the equations are all different. We assume that
all right-hand side variables are from X .

The priority ordering on variables and equations of a Boolean equation sys-
tem is important for it ensures the existence of a unique solution. But, before
turning to the semantics of Boolean equation systems, let us first define some
useful syntactic notions.

In order to formally estimate the computational costs we need to define
the size and the alternation depth of Boolean equation systems.

Definition 2 (The size of a Boolean equation system) The size of a Boolean
equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

2 BACKGROUND 5

is
n

∑

i=1

1 + |αi|

where |αi| is the number of variables in αi.

We have taken a definition of alternation depth based on the sequential
occurrences of µ’s and ν’s in a Boolean equation system. More formally, the
notion of alternation depth can be defined as follows.

Definition 3 (The alternation depth of a Boolean equation system) Let

E ≡ (σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

be a Boolean equation system. The alternation depth of E , denoted by ad(E),
is the number of variables xj (1 ≤ j < n) such that σj 6= σj+1.

An alternative definition of alternation depth which abstracts from the syntac-
tical appearance can be found in Definition 3.34 of [42]. The idea is that to
determine the alternation depth only chains of equations in a Boolean equa-
tion system must be followed that depend on each other. Using for instance
Lemma 3.22 of [42] a Boolean equation system can be reordered such that
our notion of alternation depth and the notion of [42] coincide.

Notice that for each equation system E with variables fromX we have that
ad(E) < |X |. That is, the alternation depth of a Boolean equation system is
always less than the number of variables involved.

As pointed out in [42] (see Proposition 3.31), for each system E there is
another system E ′ in a standard form such that E ′ preserves the solution of E
and has size linear in the size of E .

Definition 4 (Standard form Boolean equation systems) A Boolean equa-
tion system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

is in standard form if, for 1 ≤ i ≤ n, the right-hand side expression αi has
the form y ◦ z or y where ◦ ∈ {∧,∨} and y, z ∈ {x1, x2, . . . , xn} ∪ {0, 1}.

The transformation from unrestricted Boolean equation systems to stan-
dard form systems is based on the fact that, for each Boolean equation (σx =
y ◦ α) with ◦ ∈ {∧,∨} and σ ∈ {µ, ν}, we can always introduce a new
variable z and replace the equation by two consecutive equations (σx =
y ◦ z)(σz = α).

In the sequel, we will restrict to standard form Boolean equation systems.

Local Semantics of Boolean Equation Systems

The semantical interpretation of Boolean equation systems is such that each
system has a uniquely determined solution. Informally, the solution is a
valuation assigning a constant value in {0, 1} to variables occurring in the
system. More precisely, the solution is a truth assignment to the variables
{x1, x2, ..., xn} satisfying the fixed point equations such that the right-most
equations have higher priority over left-most equations (see, e.g., [1, 42]).

6 2 BACKGROUND

In particular, we are interested in the value of the left-most variable x1,
and we call this value the solution of a Boolean equation system. Such a
local solution can be characterized in the following way.

Let α be a closed positive Boolean expression (i.e. without occurrences
of variables in X). Then α has a uniquely determined value in the set {0, 1}
which we denote by ‖α‖. We define a substitution for positive Boolean ex-
pressions. Given Boolean expressions α, β ∈ B(X), let α[x/β] denote the
expression α where all occurrences of variable x are substituted by β simul-
taneously.

Similarly, we extend the definition of substitutions to Boolean equation
systems in the following way. Let E be a Boolean equation system over X ,
and let x ∈ X and α ∈ B(X). A substitution E [x/α] means the operation
where [x/α] is applied simultaneously to all right-hand sides of equations in
E . We suppose that substitution α[x/α] has priority over E [x/α].

The following definition of the solution is from [32].

Definition 5 (The local solution to a Boolean equation system) The solu-
tion to a Boolean equation system E , denoted by [[E]], is a Boolean value
inductively defined by

[[E]] =

{

‖α[x/bσ]‖ if E is of the form (σx = α)
[[E ′[x/α[x/bσ]]]] if E is of the form E ′(σx = α)

where bσ is 0 when σ = µ, and bσ is 1 when σ = ν.

The following example illustrates the definition of the solution.

Example 6 Let X be the set {x1, x2, x3} and assume we are given a Boolean
equation system

E1 ≡ (νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3).

The local solution, [[E1]], of variable x1 in E1 is given by
[[(νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3)]] =
[[(νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)[x3/1]]] =
[[(νx1 = x2 ∧ x1)(µx2 = x1 ∨ 1)]] =
[[(νx1 = x2 ∧ x1)[x2/x1 ∨ 1]]] =
[[(νx1 = (x1 ∨ 1) ∧ x1)]] = ‖((1 ∨ 1) ∧ 1)‖ = 1

We have taken a definition of the semantics which is non-standard in the
sense that it characterizes a local value only for the least variable x1. This
deviates from the standard definition of a solution to a Boolean equation
system which gives a global solution, i.e. solutions to all variables.

Global Semantics of Boolean Equation Systems

As opposed to Definition 5, the standard semantics of Boolean equation sys-
tems provides a uniquely determined solution to each variable of a Boolean
equation system. According to the standard definition, a solution is a valu-
ation assigning a constant value in {0, 1} to all variables occurring in a sys-
tem. To illustrate the difference, we restate here the standard semantics but
a reader familiar with the standard semantics may well skip this subsection.

2 BACKGROUND 7

Let θ stand for a valuation which is a function θ : X → {0, 1}. Let
θ[x:=a] denote the valuation that coincides with θ for all variables except
x which has the value a. Similarly, given distinct variables xi, ..., xj ∈ X ,
θ[xi:=ai, ..., xj :=aj] denotes the valuation that coincides with θ for all vari-
ables except for xi, ..., xj which have the values ai, ..., aj.

We extend the definition of valuations to terms in the standard way. So,
θ(α) is the value of the term α after replacing each free variable x in α by
θ(x). We suppose that [x:=a] has priority over all operations and θ[x:=a]
stands for (θ[x:=a]). Similarly, we apply [x:=a] to terms; α[x:=a] indicates
the term α where all occurrences of x have been replaced by a.

The standard, global definition of a solution to a Boolean equation system
is given as follows (see also, e.g., Definition 3.3 in [42]).

Definition 7 (The global solution to a Boolean equation system) The global
solution to a Boolean equation system E relative to a valuation θ, denoted by
[[E]]θ, is an assignment inductively defined by

[[ε]]θ = θ

[[(σixi = αi)E]]θ =

{

[[E]]θ[xi:=MIN (xi, αi, E , θ)] if σi = µ
[[E]]θ[xi:=MAX (xi.αi, E , θ)] if σi = ν

Here
MIN (xi, αi, E , θ) =

∧

{a|αi([[E]](θ[xi:=a]))⇒ a}
MAX (xi, αi, E , θ) =

∨

{a|a⇒ αi([[E]](θ[xi:=a]))}

where xi is a variable in X , αi a positive Boolean formula over variables in
X , E a Boolean equation system, and θ a valuation. Notice that ε denotes
an empty Boolean equation system, the operator

∨

denotes the least upper
bound and

∧

the greatest lower bound of the Boolean lattice ({0, 1},⇒).

The above standard definition of a solution to a Boolean equation system has
quite a complex nature, as exemplified with a simple system below.

Example 8 Let X be the set {x1, x2} and assume we are given a Boolean
equation system E2 ≡ (µx1 = x2)(νx2 = x1). According to Definition 7,
the solution to this system is calculated as follows. Consider an arbitrary
valuation θ. First, we calculate

θ[x1:=MIN (x1, x2, (νx2 = x1), θ)]. (1)

Thus, we calculate

MIN (x1, x2, (νx2 = x1), θ) =
∧

{a|x2([[(νx2 = x1)]](θ[x1:=a]))⇒ a}

(2)
and within this

[[(νx2 = x1)]](θ[x1:= a]) = [[(νx2 = x1)ε]](θ[x1:= a]) =

[[ε]](θ[x1:=a, x2:=MAX (x2, x1, ε, (θ[x1:=a]))]) = θ[x1:=a, x2:=a].

Now, (2) =
∧

{a|a⇒ a} =
∧

{0, 1} = 0. Thus, (1) is v[x1:=0]. Hence, the
solution to E2 is:
[[(µx1 = x2)(νx2 = x1)]]θ =

8 2 BACKGROUND

[[(νx2 = x1)]]θ[x1:=MIN (x1, x2, (νx2 = x1), θ)] =
[[(νx2 = x1)]]θ[x1:=0] =
[[ε]]θ[x1:=0, x2:=MAX (x2, x1, ε, θ[x1:=0])] =
θ[x1:=0, x2:=0].

When applied to non-trivial Boolean equation systems, i.e. to systems in-
volving more than two simple equations, the standard definition of the se-
mantics is quite tedious. Therefore, in this report we have adopted the local
semantics given in Definition 5.

But, notice that our local definition can easily be used to find the global
solutions as well. Of course, the local semantics in Definition 5 coincides
with the above standard semantics in Definition 7.

There are also alternative characterizations of the solution to a Boolean
equation system which help to provide more insight, for instance Proposi-
tion 3.6 in [42] and Definition 1.4.10 in [4].

2.2 Graph Representation of Boolean Equation Systems

Given a Boolean equation system we can define a variable dependency graph
similar to a Boolean graph in [1] which provides a representation of the de-
pendencies between the variables.

Definition 9 (Dependency graph) Let E be a standard form Boolean equa-
tion system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn).

The dependency graph of E is a directed graph GE = (V, E, `) where

• V = {i | 1 ≤ i ≤ n} is the set of nodes;

• E ⊆ V × V is the set of edges such that, for all equations σi xi = αi,
(i, j) ∈ E iff a variable xj occurs in αi

• ` is a labelling function defined by `(i) = σi.

We often omit the labelling function ` from the dependency graphs when it
is not of particular importance.

We now define some graph-theoretic notions concerning dependency graphs
of Boolean equation systems which will be used throughout this report.

Definition 10 (Paths of dependency graphs) A path of length k from a node
i to a node j in a dependency graph GE = (V, E, `) is a sequence (v0, v1, v2, ..., vk)
of nodes such that i = v0, j = vk, and (vi−1, vi) ∈ E for i = 1, 2, ..., k. The
path contains the the nodes v0, v1, v2, ..., vk.

Definition 11 (Reachability) A node j is reachable from node i in a depen-
dency graph GE , if there is a path in GE from i to j.

Definition 12 (Cycles) A path (v0, v1, v2, ..., vk) appearing in a dependency
graph GE is a cycle if v0 = vk and it is of length k ≥ 2.

2 BACKGROUND 9

- -�

�
�

�
?

�

�
?

1 2 3(νx1 = x2 ∧ x1)
(µx2 = x1 ∨ x3)
(νx3 = x3)

Figure 1: The dependency graph of Boolean equation system E1 in Exam-
ple 6.

Based on these standard concepts, we may introduce some additional terms.
We say that a variable xi depends on variable xj in a Boolean equation

system E , if the dependency graph GE of E contains a directed path from
node i to node j. It is said that two variables xi and xj are mutually depen-
dent, if xi depends on xj and vice versa. In general, it is said that a Boolean
equation system is alternation-free, if xi and xj are mutually dependent im-
plies that σi = σj holds. Otherwise, the Boolean equation system is said to
be alternating.

An important notion, which will be used in our mapping from Boolean
equation systems to normal logic programs, is self-dependency. We say that a
variable xi is self-dependent, if xi depends on itself such that no variable xj

with j < i occurs in this chain of dependencies. More precisely, the notion
of self-dependency can be defined in the following way.

Definition 13 Given a Boolean equation system E , let GE = (V, E, `) be its
dependency graph and k ∈ V . We define the graph G�k = (V, E�k, `) by
taking

• E�k = {〈i, j〉 ∈ E | i ≥ k and j ≥ k}.

The variable xk is said to be self-dependent in the system E , if node k is
reachable from itself in the graph G�k.

As with dependency graphs, we often omit the labelling function ` from a
restricted graph G�k when it is not of particular importance. Let us consider
a simple example below.

Example 14 Consider the Boolean equation system E1 of Example 6. The
dependency graph of E1 is depicted in Figure 1. The system E1 is in standard
form and is alternating, because it contains alternating fixed points with mu-
tually dependent variables having different signs, like x1 and x2 with σ1 6= σ2.
Notice that two variables are mutually dependent when they appear on a
same cycle in the dependency graph. The variables x1 and x3 of E1 are self-
dependent, but x2 is not as G�2 = ({1, 2, 3}, {(2, 3), (3, 3)}) contains no
loop from node 2 to itself.

Finally, we define maximal strongly connected components of a depen-
dency graph. This definition will be needed in partitioning a Boolean equa-
tion system into blocks as explained in Section 3.

10 2 BACKGROUND

Definition 15 (Strongly connected components) A strongly connected com-
ponent (SCC) in a graph G = (V, E, `) is a set of nodes W ⊆ V such that,
for each pair of nodes k, l ∈ W , l is reachable from k in E. A strongly con-
nected component is called maximal if there does not exist a larger set of
nodes which is also a strongly connected component. A maxiaml strongly
connected component is called trivial, if it consists of one vertex v ∈ V , and
there is no edge (v, v) ∈ E. A maximal strongly connected component is
non-trivial, if it is not trivial.

These graph-theoretic notions and definitions are very standard in the litera-
ture.

2.3 Modal µ-Calculus

In this subsection, we will briefly give the basic definitions concerning modal
µ-calculus [35]. The modal µ-calculus is based on fixpoint computations
[56], and a more detailed survey on this logic can be found from [9]. In this
subsection, we will also discuss the connections between µ-calculus model
checking problem and Boolean equation systems.

Syntax of µ-Calculus

Modal µ-calculus [35] is an expressive logic for system verification, and most
model checking logics can be encoded in the µ-calculus. Many impor-
tant features of system models, like equivalence/preorder relations and fair-
ness constraints, can also be expressed with the logic. For these reasons,
µ-calculus is a logic widely studied in the recent systems verification litera-
ture.

We define the syntax of modal µ-calculus in positive normal form. Let
Z be a set of recursion variables (indicated by X, Y, Z . . .). Let L be a set
of action labels (indicated by a, b, c, . . .). Then, the set of modal µ-calculus
formulas with respect to Z and L is defined as follows:

Φ ::= ⊥ | > | X | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a]Φ | 〈a〉Φ | µX.Φ | νX.Φ

As usual, for the above syntax we assume that modal operators ([a] and 〈a〉)
have higher precedence than Boolean connectives (∧ and ∨), and that fix-
point operators (µ and ν) have lowest precedence.

In addition, we will make use of some extensions to the above syntax which
are very standard in the literature. For instance, the notation [−]Φ means
∀a ∈ L : [a]Φ, and notation [−b]Φ means ∀a ∈ L \ {b} : [a]Φ.

Semantics of µ-Calculus

Given a set L of action labels, formulas of modal µ-calculus are interpreted

relative to a labelled transition system T = (S, {
a
→ | a ∈ L}) where S is a

(finite) set of states and, for every a ∈ L, relation
a
→⊆ S × S is a transition

relation. We will write (s, t) ∈
a
→ as s

a
→ t.

A valuation function V assigns to every variable X ∈ Z a set of states
V(X) ⊆ S meaning that variable Z holds for all states in V(X). Let V[X/S ′]
be the valuation which maps X to S ′ and otherwise agrees with valuation V .

2 BACKGROUND 11

Then, the semantics of a µ-calculus formula Φ, relative to a transition sys-
tem T and a valuation V , is a set of states ‖Φ‖TV which is defined inductively
as follows:

‖⊥‖TV = ∅

‖>‖TV = S

‖Z‖TV = V(Z)

‖Φ1 ∧ Φ2‖
T

V = ‖Φ1‖
T

V ∩ ‖Φ2‖
T

V

‖Φ1 ∨ Φ2‖
T

V = ‖Φ1‖
T

V ∪ ‖Φ2‖
T

V

‖[a]Φ‖TV = {s | ∀t.s
a
→ t⇒ t ∈ ‖Φ‖TV }

‖〈a〉Φ‖TV = {s | ∃t.s
a
→ t ∧ t ∈ ‖Φ‖TV }

‖µX.Φ‖TV =
⋂

{S ′ ⊆ S | ‖Φ‖TV [X/S′] ⊆ S ′}

‖νX.Φ‖TV =
⋃

{S ′ ⊆ S | S ′ ⊆ ‖Φ‖TV [X/S′]}

Given a µ-calculus formula Φ and a state s of a labelled transition system
T , state s satisfies Φ iff s ∈ ‖Φ‖T

V
; as usual, this is written as T , s |= Φ.

The model checking problem for µ-calculus can be stated as follows.

Definition 16 (µ-calculus model checking) Given a µ-calculus formula Φ
and a state s of a labelled transition system T , the µ-calculus model checking
problem is to determine whether T , s |= Φ holds.

It is well-known that the µ-calculus model checking problem is in the com-
plexity class NP ∩ co-NP. Emerson, Jutla, and Sistla [18, 19] show that the
problem can be reduced to determining the winner in a parity game, and
thus is in NP (and also by symmetry in co-NP). Jurdzinsky [30] show that the
problem is even in the complexity class UP ∩ co-UP. Yet, the complexity of
the µ-calculus model checking problem for the unrestricted logic is an open
problem; no polynomial algorithm has been discovered so far.

Nevertheless, various effective model checking algorithms exist for expres-
sive subsets. Arnold and Crubille [3] present an algorithm for checking al-
ternation depth 1 formulas of µ-calculus which is linear in the size of the
model and quadratic in the size of the formula. Cleaveland and Steffen [13]
improve this result by making the algorithm linear also in the size of the
formula. Andersen [1], and similarly Vergauwen and Lewi [57], show how
model checking alternation depth 1 formulas amounts to the evaluation of
boolean graphs, resulting also in linear time techniques for model checking
alternation depth 1 formulas. Even more expressive subsets of µ-calculus
have been investigated by Bhat and Cleaveland [5] as well as Emerson et
al. [18, 19]. They present polynomial time model checking algorithms for
fragments L1 and L2 which may contain alternating fixed point formulas.

12 2 BACKGROUND

Property Formula

No deadlock can occur νZ.([−]Z ∧ 〈−〉>)
(i.e. in all states some action is enabled).
An error action does not occur νZ.([error]⊥∧ [−]Z)
along any execution path.
A send action is always eventually followed νX.([−]X ∧ [send]µY.〈−〉Y ∨
by a receive action. 〈receive〉>)
There are no executions where a request νX.µY.νZ.([request]X∧
action is enabled infinitely often but ([request]⊥∨ [−request]Y)∧
occurs only finitely often. [−request]Z)

Figure 2: Examples of properties expressed in modal µ-calculus.

Modal µ-calculus allows to express very concisely a wide range of useful
properties of finite-state concurrent systems. Figure 2 shows some typical ex-
amples of such properties encoded as modal µ-calculus formulas (for a com-
prehensive survey of the use of fixpoint operators, see [9]). More examples of
formulas expressing system properties will be given in Section 7.

From µ-Calculus to Boolean Equation Systems

In this report, instead of treating µ-calculus expressions together with their
semantics we work with the more flexible formalism of Boolean equation
systems. Boolean equation systems provide a useful framework for studying
verification problems of finite-state concurrent systems because µ-calculus
expressions can easily be translated into this simple formalism. A pleasant
feature of Boolean equation systems is that they give a simple representation
of the µ-calculus model checking problem.

In this subsection, we demonstrate the standard translation from a µ-
calculus formula and a labelled transition system to a Boolean equation sys-
tem as defined in [45]. Similar translations serving the same purpose are
presented, for example, in [1, 4, 42].

The transformation maps a modal µ-calculus formula Φ and a transition
system T to a Boolean equation system by treating (state, variable) pairs as
Boolean variables. Informal idea of the translation is to strip away the lin-
earization of the µ-calculus formula Φ imposed by text, and then map the
µ-calculus expression Φ to Boolean expressions at respective states of the
transition system T . More precisely, the translation proceeds as follows.

First, additional fresh variables may be introduced at appropriate places of
Φ to ensure that in every subformula σX.Φ′ of Φ with σ ∈ {µ, ν}, Φ′ con-
tains a single Boolean or modal operator. This may be done in order to obtain
only disjunctive or conjunctive formulas in the right-hand side Boolean ex-
pressions of the resulting Boolean equation system but is not necessary for
the translation.

Then, a sequence of equations is created for each closed fixed point sub-
formula σX.Φ′ of Φ. Each closed fixed point subformula σX.Φ′ is translated
into a sequence (σXs(Φ

′)s)s∈S of equations where variables Xs express that
state s satisfies variable X and the right-hand side Boolean formulas are ob-
tained using the translation in Figure 3.

2 BACKGROUND 13

Φ (Φ)s Φ (Φ)s

⊥ 0 > 1
Φ1 ∨ Φ2 (Φ1)s ∨ (Φ2)s Φ1 ∧ Φ2 (Φ1)s ∧ (Φ2)s

〈a〉Φ
∨

s
a
→t

(Φ)t [a]Φ
∧

s
a
→t

(Φ)t

Figure 3: The translation from a µ-calculus formula to a Boolean equation
system.

By using this technique, the size of the Boolean equation system result-
ing from the transformation is at most O(m× n) where m is the length of a
formula and n is the size of a transition system. Also, there exists a polyno-
mial mapping from a Boolean equation system to a µ-calculus formula and a
labelled transition system (see Theorem 5.2 in [42]).

The following example illustrates the standard translation from µ-calculus
to Boolean equation systems.

Example 17 Consider the following µ-calculus formula

νZ.([−]Z ∧ 〈−〉>)

which expresses the freedom of deadlocks property. Consider the following
labelled transition system

T = ({1, 2, 3, 4}, {1
a
→ 2, 1

a
→ 4, 2

a
→ 3, 3

a
→ 2})

depicted in Figure 4. We demonstrate how to construct the corresponding
Boolean equation system shown in Figure 4.

The closed fixed point formula

νZ.([−]Z ∧ 〈−〉>)

is first translated into a sequence of equations

(ν zs = ([−]z ∧ 〈−〉>)s)
}

∀s ∈ S

with one equation for each state s ∈ S.
Next, using the translation shown in Figure 3 to obtain the right-hand side

Boolean formulas, we get the sequence of equations:

(ν zs = ([−]z)s ∧ (〈−〉>)s)
}

∀s ∈ S

This sequence is translated to the Boolean equations below

(ν zs = (
∧

s
a
→s′

zs′) ∧ (
∨

s
a
→s′

(>)s′))
}

∀s ∈ S

where each variable Zs expresses that state s satisfies variable Z of the µ-
calculus formula.

Given labelled transition system T , the above equations translate to the
following sequence of Boolean equations:

(νZ0 = (Z1 ∧ Z2) ∧ (1 ∨ 1))
(νZ1 = 1 ∧ 0)
(νZ2 = Z3 ∧ 1)
(νZ3 = Z2 ∧ 1)

14 2 BACKGROUND

(a)
1 2 3

4

- -
�

?

a a

a

a

(c)
(νx1 = x2 ∧ x3)
(νx2 = x4 ∧ x5)
(νx3 = 1 ∨ 1)
(νx4 = 1 ∧ 0)
(νx5 = x6 ∧ 1)
(νx6 = x5 ∧ 1)

(b)
νZ.([−]Z ∧ 〈−〉>)

Figure 4: Example labelled transition system (a), µ-calculus formula for
deadlock freedom (b) and corresponding Boolean equation system (c).

Notice in this step that an empty disjunction is written as 0 and an empty
conjunction is written as 1.

Then, by introducing fresh variables we may transform the above system
to standard form, and we obtain the following equation system:

(νZ0 = Z ′
0 ∧ Z ′′

0)
(νZ ′

0 = Z1 ∧ Z2)
(νZ ′′

0 = 1 ∨ 1)
(νZ1 = 1 ∧ 0)
(νZ2 = Z3 ∧ 1)
(νZ3 = Z2 ∧ 1)

Finally, by renaming the variables we get the Boolean equation system over
X = {x1, x2, ..., x6}

(νx1 = x2 ∧ x3)
(νx2 = x4 ∧ x5)
(νx3 = 1 ∨ 1)
(νx4 = 1 ∧ 0)
(νx5 = x6 ∧ 1)
(νx6 = x5 ∧ 1)

which corresponds to the given model checking problem. Notice that the
last two steps are not necessary for the translation.

Additional examples of the mapping will be given in Section 7. Next, we
turn to issues concerning logic programs and answer set programming.

2.4 Normal Logic Programs

In this report, we often use normal logic programs with the stable model
semantics [22] for encoding and solving Boolean equation systems. In this
subsection, we provide a brief introduction to normal logic programs and
stable model semantics.

The definitions in this section appeared also in [32], and they are very
standard. A complete description of these topics and notions can be found,
for instance, in [15].

Normal logic programs consist of rules. A normal rule is of the form

a← b1, . . . , bm, not c1, . . . , not cn. (3)

where each a, b1, . . . , bm, c1, . . . , cn is a ground atom. In the normal rule
above, a is called the head of the rule and b1, . . . , bm, not c1, . . . , not cn its
body.

2 BACKGROUND 15

Given a logic program, its models are sets of ground atoms. A set of atoms
∆ is said to satisfy an atom a if a ∈ ∆ and a negative literal not a if a 6∈ ∆. A
rule r of the form (3) is satisfied by ∆ if the head a is satisfied whenever every
body literal b1, . . . , bm, not c1, . . . , not cn is satisfied by ∆ and a program Π is
satisfied by ∆ if each rule in Π is satisfied by ∆.

An essential concept here is a stable model. Stable models of a program
are sets of ground atoms which satisfy all the rules of the program and are
justified by the rules. This is captured using the concept of a reduct. As
usually, for a program Π and a set of atoms ∆, the reduct Π∆ can be defined
by

Π∆ = {a← b1, . . . , bm. | a← b1, . . . , bm, not c1, . . . , not cn. ∈ Π,
{c1, . . . , cn} ∩∆ = ∅}

That is, a reduct Π∆ does not contain any negative literals and, therefore, has
a unique subset minimal set of atoms satisfying it. This leads to the following
definition of stable models.

Definition 18 (Stable models of a logic program) A set of atoms ∆ is called
a stable model of a program Π iff ∆ is the unique minimal set of atoms satis-
fying Π∆.

In the following, we consider a series of examples to illustrate the intuitive
idea behind the stable model semantics of logic programs.

Example 19 Let {a, b} be the set of ground atoms. Consider the program:

a← not b.
b← not a.

This program has two stable models, namely {a} and {b}. Here, we may
either assume not b in order to deduce the stable model {a} or we may as-
sume not a to deduce the stable model {b}. However, note that assuming
both negative premises would lead to a contradiction; thus, we cannot de-
duce the stable model {} for this program by assuming both not a and not b.
Note that this is a way to encode a choice between atoms a and b.

Example 20 Let {a, b, c, d} be the set of ground atoms. Consider the pro-
gram:

a← a.
b← c, d.
c← d.
d.

The above program has only one stable model which is the set {b, c, d}. The
atom c can be deduced from the fact d, and the atom b is included in the
stable model because both c and d are included. Notice that the atom a is
not included in the stable model because we cannot use positive assumption
a to deduce what is to be included in a model.

16 2 BACKGROUND

In the course of this report, we will use two extensions which serve as short-
hands for normal rules. We will use so-called integrity constraints. Integrity
constraints are simply rules

← b1, . . . , bm, not c1, . . . , not cn. (4)

with an empty head. Such a constraint can be seen as a compact shorthand
for a rule

f ← b1, . . . , bm, not c1, . . . , not cn, not f.

where f is a new atom.
Notice that a stable model ∆ satisfies an integrity constraint (4) only if at

least one of its body literals is not satisfied by ∆.
Finally, for expressing the choice of selecting exactly one atom from two

possibilities we will make use of choose-1-of-2 rules on the left which corre-
spond to the normal rules on the right:

1 {a1, a2} 1. a1 ← not a2. a2 ← not a1. ← a1, a2.

Choose-1-of-2 rules are a simple subclass of cardinality constraint rules pre-
sented in [52].

In what follows, we will present an answer set programming based ap-
proach for solving alternating Boolean equation systems. In this approach a
problem is solved by devising a mapping from a problem instance to a logic
program so that models of the program provide the answers to the problem
instance [38, 43, 47].

In Section 6, we will define such a mapping from alternating Boolean
equation systems to logic programs. This provides a basis for a new solution
technique for alternating Boolean equation systems.

2 BACKGROUND 17

3 A GENERAL PROCEDURE TO SOLVE BOOLEAN EQUATION SYSTEMS

In this section, we introduce an overall approach to solve a Boolean equation
system. We list some important properties of Boolean equation systems which
allow for dividing them into blocks. After a brief discussion on partitioning,
we give an overview of the most important types of blocks that may result
in block partitioning. Then, we present an algorithm required to solve a
general Boolean equation system using the approach. This section serves
mainly as preliminaries to subsequent sections. Its purpose is to give a general
idea of how a Boolean equation system can be solved by first partitioning it
into blocks and then solving the individual blocks with specific, customized
procedures.

3.1 Partitioning Boolean Equation Systems

The variables of a standard form Boolean equation system can be partitioned
in blocks such that any two distinct variables belong to the same block iff they
are mutually dependent. Consequently, each block consists of such variables
whose nodes reside on the same maximal strongly connected component of
the corresponding dependency graph.

The dependency relation among variables extends to blocks such that
block Bi depends on another block Bj if some variable occurring in block Bi

depends on another variable in block Bj. The resulting dependency relation
among blocks is an ordering.

Below we have a simple example of such a partitioning on a Boolean equa-
tion system from a previous example.

Example 21 Consider again the Boolean equation system E1 of Example 6.
This system can be divided into two blocks, B1 = {x1, x2} and B2 = {x3}
such that the block B1 depends on the block B2. Consequently, the block
B1 is highest up in the block ordering, and block B2 is the lowest block.

Notice that finding the blocks of a Boolean equation system can be done
in linear time using any algorithm suitable to detect maximal strongly con-
nected components in directed graphs, for instance, those from [51, 54].

To summarize, a given Boolean equation system can trivially be parti-
tioned into individual blocks via the following steps:

• construct a dependency graph of the Boolean equation system at hand;

• compute all maximal strongly connected components of the depen-
dency graph;

• the set of blocks of the Boolean equation system is simply the set of
maximal strongly connected components from the previous step.

Furthermore, notice that the block ordering can be determined in linear
time as well, namely by simply applying standard depth-first search algorithm
to find the topological ordering among the blocks.

In general, this kind of partitioning is done as a preprocessing phase in
our solution technique. The advantage of our approach is that we can use

18 3 A GENERAL PROCEDURE TO SOLVE BOOLEAN EQUATION SYSTEMS

customized, optimized procedures to solve the individual blocks. In the fol-
lowing sections, we will present various routines and techniques to solve in-
dividual blocks in isolation.

Let us have a look at what kinds of blocks may result in the partitioning.

3.2 Types of Blocks of a Boolean Equation System

A trivial block of a Boolean equation system is such a block whose maximal
strongly connected component (in the corresponding dependency graph) is
trivial. Solutions to variables appearing in trivial blocks are solely determined
on the basis of other blocks. Therefore, in what follows we will only be deal-
ing with non-trivial blocks.

There are mainly two classes of non-trivial blocks of a Boolean equation
system, namely alternation-free and alternating blocks. Alternating blocks
can further be divided into disjunctive, conjunctive, and general blocks. Let
us have a closer look at each of them in turn.

Alternation-Free Blocks

All variables of an alternation-free block have the same sign, either µ or ν.
In the former case the block is said to be minimal and in the latter case
maximal.

Alternation-free blocks are especially important because encoding the model
checking problem of alternation-free µ-calculus as Boolean equation systems
leads to systems with alternation-free blocks only. Therefore, for instance, the
model checking problems for Hennessy-Milner logic (HML) [28], Computa-
tion Tree Logic (CTL) [10], and many equivalence/preorder checking prob-
lems result in alternation-free Boolean equation systems with alternation-free
blocks only (see for instance [45]).

In Section 4, we will review solution methods for alternation-free blocks.
It will be seen that such blocks can easily be solved in linear time in the size
of the block.

Conjunctive and Disjunctive Blocks with Alternation

Important subclasses of alternating blocks are both conjunctive and disjunc-
tive blocks with alternation. A conjunctive block with alternation consists of
such a portion of a Boolean equation system, whose defining equations have
different fixpoint signs, but all right-hand side expressions are conjunctive.
Similarly, a disjunctive block with alternation consists of such a portion of
a Boolean equation system, whose defining equations have different fixpoint
signs, but all right-hand side expressions are disjunctive.

Many practically relevant µ-calculus formulas (actually virtually all of them)
can be encoded as Boolean equation systems that have only conjunctive or
disjunctive blocks with alternation. For instance, encoding the L1 and L2
fragments of the µ-calculus [5, 18, 19] (and similar subsets) or many fairness
constraints as Boolean equation systems result in alternating systems which
are in a conjunctive or disjunctive form. Hence, the problem of solving con-
junctive and disjunctive blocks of Boolean equation systems is so important
that developing special purpose solution techniques for these classes is worth-
while.

3 A GENERAL PROCEDURE TO SOLVE BOOLEAN EQUATION SYSTEMS 19

In Section 5, we will study solution methods for conjunctive and disjunc-
tive blocks with alternation. It will be seen that such blocks can be solved in
quadratic, and even sub-quadratic, time in the size of the block.

General Alternating Blocks
In a general alternating block of a Boolean equation system, there are vari-
ables with both fixpoint signs µ and ν. Moreover, the right-hand side ex-
pressions are arbitrary in the sense that both conjunctions and disjunctions
may appear as right-hand side formulas. This is the most general form of a
Boolean equation system.

From a practical point of view, alternating blocks are of marginal interest
because they do not occur very frequently in Boolean equation systems aris-
ing in the context of verification. Many alternating, general form Boolean
equation systems that can be found from the literature – not to say all of
them – are theoretical constructions (see, e.g., [8] for such examples).

But, from a theoretical point of view, solving an alternating, general form
Boolean equation system is an interesting challenge. The problem is known
to be in the complexity class NP ∩ co-NP [42] (and it is known to be even
in UP ∩ co-UP), in the same way as the equivalent problem of µ-calculus
model checking. Furthermore, it is widely believed that a polynomial time
algorithm for the problem may well be found but the best known algorithms
to date are exponential in the size of the system.

In Section 6, we will propose an approach to solve alternating blocks of a
Boolean equation system which is based on answer set programming.

3.3 General Solution Algorithm for Boolean Equation Systems

In Mader [42], there are two useful lemmas which allow to solve all blocks
of standard form Boolean equation systems one at a time. As our solution
method and proofs are based on these, we restate them here.

Lemma 22 (Lemma 6.2 of [42]) Let E be a Boolean equation system

(σ1x1 = α1) . . . (σixi = αi) . . . (σnxn = αn)

with equation σixi = αi, for 1 ≤ i ≤ n. Let α′
i be exactly the same Boolean

expression as αi, except that all occurrences of xi in αi are substituted with 1
if σi = ν, and with 0 if σi = µ. Then, E has the same solution as the Boolean
equation system

(σ1x1 = α1) . . . (σixi = α′

i) . . . (σnxn = αn).

Lemma 23 (Lemma 6.3 of [42]) Let E be a Boolean equation system

(σ1x1 = α1) . . . (σixi = αi) . . . (σjxj = αj) . . . (σnxn = αn)

with two distinct equations σixi = αi and σjxj = αj, for 1 ≤ i < j ≤ n. Let
σixi = αi, σixi = α′

i and σjxj = αj be equations where α′
i is exactly the same

Boolean expression as αi except that all occurrences of xj are substituted with
expression αj . Then, E has the same solution as the Boolean equation system

(σ1x1 = α1) . . . (σixi = α′

i) . . . (σjxj = αj) . . . (σnxn = αn).

20 3 A GENERAL PROCEDURE TO SOLVE BOOLEAN EQUATION SYSTEMS

The basic idea of our approach is that we can start to find solutions to the
variables in the last block, setting them to 1 or 0. Using Lemma 23 we can
substitute the solutions for variables in blocks higher up the ordering.

The following simplification rules

• (φ ∧ 1) 7→ φ

• (φ ∧ 0) 7→ 0

• (φ ∨ 1) 7→ 1

• (φ ∨ 0) 7→ φ

can be used to simplify the equations and the resulting equation system has
the same solution. The rules allow to remove each occurrence of 1 and 0 in
the right-hand side of equations, except if the right-hand side becomes equal
to 1 or 0, in which case yet another equation has been solved. By recursively
applying these steps all non-trivial occurrences of 1 and 0 can be removed
from the equations and the resulting Boolean equation system is in standard
form.

Note that each substitution and simplification step reduces the number of
occurrences of variables or the size of a right-hand side, and therefore, only
a linear number (in the size of the equation system) of such reductions are
applicable.

After solving all variables in a block, and simplifying subsequent blocks
a suitable solution routine can be applied to the blocks higher up in the
ordering iteratively solving them all. In this way, we can solve all blocks one
at a time.

This approach leads to the following strategy to solve a general Boolean
equation system E which was also discussed in [32, 23]. Previously, a quite
similar algorithm for equational systems has been given in [12].

Algorithm 1 The general solution algorithm for Boolean equation systems

1. Build the dependency graph GE of E .

2. Divide the system E into blocks by calculating the maximal strongly
connected components of GE .

3. Topologically sort GE into blocks Bm, . . . , B2, B1; here blocks are num-
bered so that higher-numbered variables belong to higher-numbered
blocks.

4. Beginning with Bm, process each block Bi in turn by performing the
following steps:

(a) Generate a subsystem E ′ of E containing all equations of E whose
left-hand sides are from Bi. These equations are modified by re-
placing each occurrence of all variables xj outside the block Bi

by a constant 0 or 1 (according to the already known solution to
xj), and then propagating the constants using the rules to simplify
the equations of E ′.

3 A GENERAL PROCEDURE TO SOLVE BOOLEAN EQUATION SYSTEMS 21

(b) Solve the variables of the resulting subsystem E ′ with a suitable
subroutine:

i. if E ′ is alternation-free, use algorithms from Section 4

ii. if E ′ is disjunctive or conjunctive, use algorithms from Sec-
tion 5

iii. if E ′ is general, use algorithms from Section 6

The correctness of this procedure follows directly from the above lemmas,
and from the correctness of the subroutines for various block types.

Theorem 24 Given a general form Boolean equation system E , the general
solution procedure correctly computes the solution to E .

Proof:
The algorithm computes the solution block-wise. According to Lemma 23 it
is safe to substitute already known values to blocks higher up in the ordering,
and it is safe to simplify the right-hand side formulas with the simplification
rules among a single block. Consequently, the general procedure is correct,
assuming that all subroutines to solve the generated subsystems are correct.

ut

Notice that all steps 1− 3 and step 4 (a) can be performed in linear time
in the size of the underlying Boolean equation system. So the complexity of
the general procedure depends naturally on the costs of the subroutines.

Here, we give a simple example to demonstrate how the above algorithm
works on a Boolean equation system from previous examples.

Example 25 Consider again the Boolean equation system E1 from Exam-
ple 6. In step 1, the algorithm builds the dependency graph of the system
which is depicted in Figure 1. In step 2, the algorithm divides the system in
blocks, as explained in Example 21, resulting in two blocks B1 = {x1, x2}
and B2 = {x3} being identified. In step 3, the algorithm topologically sorts
these blocks which simply results in the block ordering B2, B1. Accordingly,
in step 4 the algorithm first solves block B2, and then solves block B1 in the
following way. The block B2 is alternation-free, and will be solved by using
appropriate techniques, in step 4. (b) i. The solution to the only variable x3

in block B2 is seen to be 1. Thus, in step 4 (a), to solve block B1 we generate
the subsystem

(νx1 = x2 ∧ x1)(µx2 = x1 ∨ 1)

and simplify these equations according to the simplification rules. The prop-
agation of the constant 1 in the second equation leads to a more simple,
alternation-free system

(νx1 = x1)(µx2 = 1).

As this subsystem is alternation-free, block B2 can be solved by using appro-
priate techniques in step 4. (b) i.

In the following sections, we will present the subroutines and techniques
to solve individual blocks in isolation.

22 3 A GENERAL PROCEDURE TO SOLVE BOOLEAN EQUATION SYSTEMS

4 MINIMAL AND MAXIMAL BLOCKS

In this section, we will discuss methods to solve alternation-free blocks of
Boolean equation systems. There are two types of blocks that can be alternation-
free, namely minimal and maximal. All equations of a minimal block have
the fixpoint sign µ, and, dually, all equations of a maximal block have the sign
ν. We will begin by exploring well-known linear-time techniques to solve
alternation-free Boolean equation systems. Then, we will discuss a logic pro-
gramming approach to solve alternation-free blocks. In the literature, there
exist several efficient methods to solve alternation-free Boolean equation sys-
tems. Therefore, we will be brief in this section.

4.1 Algorithms for Alternation-Free Systems

The problem of solving an alternation-free Boolean equation system is a rel-
atively easy task. Indeed, many solution algorithms can be found from the
literature which are directed to this class and require only linear time and
space in the size of an alternation-free system.

For instance, Andersen [1] presented an efficient linear-time algorithm
for finding a global solution to Boolean graphs which correspond to minimal
and maximal blocks of a Boolean equation system (see Fig. 1 on p.12 in [1]).

In addition, very simple linear-time algorithms to solve a Boolean equa-
tion system, whose all equations have the same fixpoint sign, can be found
from [41] (see e.g. Fig. 2 on p. 5). In [41], there are also straightforward,
linear-time reductions between alternation-free Boolean equation systems
and HornSAT, the problem of Horn formula satisfiability. This allows to
solve alternation-free Boolean equation systems by using a linear-time algo-
rithm for HornSAT given in [17].

More recently, additional linear-time algorithms for alternation-free Boolean
equation systems were presented in [45]. Very similar algorithms are pre-
sented in [46] too.

These kinds of standard algorithms can effectively be applied to solve min-
imal and maximal blocks in our setting. As they are very simple algorithms,
we do not consider them in detail here.

Instead, in the following section, it will be seen how minimal and maximal
blocks of a Boolean equation system can be solved with an approach based
on logic programming.

4.2 Minimal and Maximal Blocks as Logic Programs

An alternative way to solve minimal and maximal blocks of a Boolean equa-
tion system is through a logic programming approach. Such an approach
to solve Boolean equation systems was first proposed in [36]. In brief, it is
suggested in [36] that Boolean equation systems can be solved by translating
them to propositional normal logic programs, and computing stable models
which satisfy certain criteria of preference.

In particular, it is suggested in [36] that alternation-free Boolean equa-
tion systems can be mapped to stratified logic programs, which can be di-
rectly solved in linear time, preserving the linear-time complexity of solving

4 MINIMAL AND MAXIMAL BLOCKS 23

alternation-free Boolean equation systems. Unfortunately, [36] does not pro-
vide a complete translation but only sketches an informal idea via a few ex-
amples. However, it is important to notice that the same kind of idea based
on logic programming approach can efficiently be applied to solve minimal
and maximal blocks in our setting too.

Minimal and maximal blocks of Boolean equation systems can be easily
seen as equivalent to propositional logic programs where every clause body is
a negation-free Boolean formula. Such programs have unique stable models
which can be calculated in linear-time (in the size of programs), for instance
by employing the algorithm for HornSAT from [17].

Consider a standard form, minimal block of a Boolean equation system.
This block itself can be seen as a standard form Boolean equation system, call
it E . We construct a logic program Π(E) which captures the global solution
to E .

The idea is that Π(E) is a propositional normal logic program which has
size linear in the size of E and where every clause body is negation-free.
Suppose E has variables {x1, x2, . . . , xn}. The logic program Π(E) we derive
is over ground atoms {p1, p2, . . . , pn}.

For each equation µxi = αi of E , the program Π(E) contains the rules:

pi ← pj. if αi = xj (5)

pi ← pj, pk. if αi = xj ∧ xk (6)

pi ← pj. pi ← pk. if αi = xj ∨ xk (7)

pi. if αi = 1 (8)

Notice that there is no rule for equations where the right-hand side for-
mulas are of the form αi = 0 because they do not need to be translated at
all.

The intuitive idea of the above translation is that for a variable xi of E , the
solution to xi is 1 if and only if the unique stable model of Π(E) contains the
corresponding atom pi. The correctness of the translation is easy to verify.

Theorem 26 Let E be a standard form Boolean equation system where all
fixpoint signs are minimal, and let xi be any variable of E . Then, the solution
to xi is 1 iff Π(E) has a stable model which contains the ground atom pi.

Proof:
Immediate from Definition 7, Definition 18, and by the construction of
Π(E). ut

By Theorem 26, a minimal block of a Boolean equation system can now
be solved by first converting the equation system into a corresponding logic
program, then calculating the unique stable model of the program, and fi-
nally checking the resulting stable model for the containment of atoms.

Next, we demonstrate the above translation from minimal Boolean equa-
tion systems to propositional normal logic programs.

Example 27 Consider the standard form Boolean equation system E below:

(µx1 = x3)(µx2 = 1)(µx3 = x4∨x5)(µx4 = x2∧x1)(µx5 = x1)(µx6 = x2).

24 4 MINIMAL AND MAXIMAL BLOCKS

The corresponding program Π(E) over ground atoms {p1, p2, . . . , p6} con-
sists of the rules:

p1 ← p3.
p2.
p3 ← p4. p3 ← p5.
p4 ← p2, p1.
p5 ← p1.
p6 ← p2.

The stable model of program Π(E) is {p2, p6}. As expected, by The-
orem 26, the only variables of E with solution 1 is x2 and x6. For vari-
ables x1, x3, x4, and x5, the solution is 0 because the corresponding atoms
p1, p3, p4, p5 are not contained in the stable model of program Π(E).

By duality, a method for obtaining the global solutions for maximal blocks
via stable model computation proceeds in the very same way. For instance,
the dual case (i.e. the case for maximal blocks) can be solved by complement-
ing a given system and using the same translation as for minimal blocks. In
the following, we will demonstrate how to solve maximal blocks using this
approach.

The complementation for Boolean equation systems can be defined as
below.

Definition 28 (The complementation of a Boolean equation system) The
complement of a Boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

is another Boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

where σi is defined by

σi =

{

ν if σi = µ
µ if σi = ν

and αi is defined inductively as follows:

0 = 1
1 = 0
xi = xi

αj ∧ αk = αj ∨ αk

αj ∨ αk = αj ∧ αk

Here, xi ∈ X and αj , αk ∈ B(X).

The complementation of a Boolean equation system preserves the solution
in the following sense.

Lemma 29 (Lemma 3.35 of [42]) Let E be a Boolean equation system and
let E be the complement of E . Then, for each variable xi of E , the solution
to xi in E is 1 iff the solution to xi in E is 0.

4 MINIMAL AND MAXIMAL BLOCKS 25

The complementation is very useful concept in most of the proofs concern-
ing Boolean equation systems because, as a simple consequence of Lemma 29,
many properties of Boolean equation systems have dual properties as well.
Therefore, it is usually sufficient to give only one half of a proof of a property,
and the other half immediately follows by a symmetric, dual argument.

For instance, the above fact explains why a maximal block of a Boolean
equation system can be solved by complementing the block, and then using
exactly the same solution method as for minimal blocks. To see this, consider
the following example as an application of Lemma 29.

Example 30 Consider the Boolean equation system E below, with only max-
imal equations:

(νx1 = x2 ∧ x3)(νx2 = x3 ∨ x4)(νx3 = x2 ∨ x4)(νx4 = 0).

In order to solve system E , we first take its complement E given below:

(µx1 = x2 ∨ x3)(µx2 = x3 ∧ x4)(µx3 = x2 ∧ x4)(µx4 = 1).

Then, we compute the unique stable model of the logic program Π(E) over
ground atoms {p1, p2, . . . , p4} which consists of the rules:

p1 ← p2. p1 ← p3.
p2 ← p3, p4.
p3 ← p2, p4.
p4.

The only stable model of program Π(E) is {p4}. By Theorem 26, the only
variable of E with solution 1 is x4. The solution is 0 to variables x1, x2, x3 of
E because the corresponding atoms p1, p2, p3 are not contained in the stable
model of Π(E). By Lemma 29, the solution is 1 to variables x1, x2, x3 of E ,
and the solution is 0 to variable x4 of E .

26 4 MINIMAL AND MAXIMAL BLOCKS

5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION

In this section, we examine conjunctive and disjunctive fragments of Boolean
equation systems. As pointed out in [23], many practically relevant proper-
ties of systems can be expressed by means of fixed point formulas that lead
to Boolean equations in either conjunctive or disjunctive forms. It is there-
fore interesting to develop specific resolution techniques for disjunctive and
conjunctive blocks with alternation.

We first introduce basic properties concerning conjunctive and disjunc-
tive blocks of Boolean equation systems. Then, we present two distinct algo-
rithms for solving disjunctive and conjunctive blocks. We also deal with the
correctness and complexity of these algorithms. Finally, we provide compre-
hensive examples of how the algorithms work.

5.1 Properties of Conjunctive and Disjunctive Blocks

A Boolean equation system is called disjunctive if no conjunction symbol ap-
pears in its right-hand side expressions. In the same way, a Boolean equation
system is called conjunctive if no disjunction symbol appears in its right-
hand side expressions. Consequently, we define conjunctive and disjunctive
Boolean equation systems in the following way.

Definition 31 Let (σx = α) be an equation. We call this equation disjunc-
tive if no conjunction symbol ∧ appears in α. Let E be a Boolean equation
system. We call E disjunctive iff each equation in E is disjunctive.

Definition 32 Let (σx = α) be an equation. We call this equation conjunc-
tive if no disjunction symbol ∨ appears in α. Let E be a Boolean equation
system. We call E conjunctive iff each equation in E is conjunctive.

The above definitions can be applied to blocks of a Boolean equation sys-
tem too and we will accordingly speak of disjunctive and conjunctive blocks.

The following essential lemma comes from [23], and it is closely related
to parity automata to be discussed in Section 5.3.

Lemma 33 Let E be a disjunctive Boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

and let G = (V, E, `) be the dependency graph of E . Let [[E]] be the local
solution to E . Then the following are equivalent:

1. [[E]] = 1

2. ∃j ∈ V with `(j) = ν such that:

(a) j is reachable from node 1 in G, and

(b) G contains a cycle of which the lowest index of a node on this
cycle is j.

5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION 27

Proof:
First we show that (2) implies (1).

If j lies on a cycle with all nodes larger than j, then there is a path

(j, k1, k2, . . . , kn, j)

in graph G such that, for 1 ≤ i ≤ n, j < ki holds. So there is a sub-equation
system of E that looks as follows:

(νxj = αj)
...

(σk1
xk1

= αk1
)

(σk2
xk2

= αk2
)

...
(σkn

xkn
= αkn

)

Using Lemma 23 we can rewrite the Boolean equation system E to an equiv-
alent one by replacing the equation νxj = αj by νxj = βj where βj is exactly
the same Boolean expression as αj except that, for 1 ≤ i ≤ n, all occurrences
of xki

are substituted with expression αki
. Now note that the right hand side

βj of equation νxj = βj contains only disjunctions and the variable xj at
least once. Hence, by Lemma 22 the equation reduces to νxj = 1. As node
j is reachable from node 1 in dependency graph G, the equation σ1x1 = α1

can similarly be replaced by σ1x1 = 1. Hence, for the solution [[E]] of E , it
holds that [[E]] = 1.

Now we prove that (1) implies (2) by contraposition. So, assume that there
is no node j with `(j) = ν that is reachable from node 1 such that j is on a
cycle with only higher numbered nodes.

The proof proceeds by induction on n−k and we show that E is equivalent
to the Boolean equation system where equations

(σk+1xk+1 = αk+1) . . . (σnxn = αn)

whose nodes k + 1, . . . , n are reachable from 1 have been replaced by

(σk+1xk+1 = βk+1) . . . (σnxn = βn)

where all βl are disjunctions of 0 and variables that stem from x1, . . . , xk. If
the inductive proof is finished, the lemma is also proven: consider the case
where n− k = n. This says that E is equivalent to a Boolean equation system
where all right hand sides of equations, on which x1 depends, are equal to
constant 0. So, for the solution [[E]] of E it holds that [[E]] = 0.

For n − k = 0 the induction hypothesis obviously holds. In particular
constant 1 cannot occur in the right hand side of any equation on which x1

depends. So, consider some n− k for which the induction hypothesis holds.
We show that it also holds for n − k + 1. So, we must show that, if equation
σkxk = αk is such that x1 depends on xk, then it can be replaced by an
equation σkxk = βk where in βk only variables chosen from x1, . . . , xk−1

and constant 0 can occur.
As k is reachable from 1, all variables xl occurring in αk are such that

x1 depends on xl. By the induction hypothesis the equations σlxl = αl for

28 5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION

l > k have been replaced by σlxl = βl where in βl only 0 and variables from
x1, . . . , xk occur. Using Lemma 23 such variables xl can be replaced by βl

and hence, αk is replaced by γk in which 0 and variables from x1, . . . , xk can
occur.

What remains to be done is to remove xk from γk assuming xk occurs in
γk. This can be done as follows. Suppose σk = ν. Then, as xk occurs in
γk, there must be a path in the dependency graph G to a node l′ with l′ ≥ k
such that xk appears in αl′ . But this means that the dependency graph has a
cycle on which k is the lowest value. This contradicts the assumption. So, it
cannot be that σk = ν, and thus σk = µ. Now using Lemma 22 the variable
xk in αk can be replaced by 0. ut

Also, a dual property holds for conjunctive Boolean equation systems.

Lemma 34 Let E be a conjunctive Boolean equation system

(σ1x1 = α1)(σ2x2 = α2) . . . (σnxn = αn)

and let G = (V, E, `) be the dependency graph of E . Let [[E]] be the local
solution to E . Then the following are equivalent:

1. [[E]] = 0

2. ∃j ∈ V with `(j) = µ such that:

(a) j is reachable from node 1 in G, and

(b) G contains a cycle of which the lowest index of a node on this
cycle is j.

Proof:
In the same way as for Lemma 33. ut

One can see that, as a simple consequence of the above properties, all
variables in a conjunctive or disjunctive blocks have the same solutions. We
may thus solve all variables of a conjunctive or disjunctive block by simply
computing the solution to the the smallest variable.

Furthermore, since a block consists of a single maximal strongly con-
nected component of the corresponding dependency graph, we may assume
that all nodes in the dependency graph of the block are reachable from the
smallest node.

Thus, the condition that needs to be checked is whether there is a cycle in
the dependency graph of which the lowest numbered vertex has label ν (or
µ respectively). In the following sections we define algorithms that perform
this task efficiently.

5.2 Depth-First Search Based Algorithm

There is a very simple algorithm based on depth-first search [55] on directed
graphs which can be used to solve conjunctive and disjunctive blocks of a
Boolean equation system. The algorithm was first discussed in [23] and we

5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION 29

present it here in a slightly simplified form. In particular, we give an algo-
rithm to solve a disjunctive block, the conjunctive case is dual and goes along
exactly the same lines.

Given a dependency graph G = (V, E, `) and a node i ∈ V with `(i) = ν,
we define a predicate

minNuLoop(G, i)

to be true iff the subgraph G�i of G contains a cycle (i, v0, v1..., i) such that
min{i, v0, v1..., i} = i.

Obviously, given a dependency graph G = (V, E, `) of a disjunctive block
and a node i ∈ V with `(i) = ν, deciding whether minNuLoop(G, i) holds
reduces to the task of computing the reachability of node i from itself in
the subgraph G�i of G. Note that this can be done by a standard depth-
first search algorithm in time and space O(|V | + |E|). Assuming such a
subroutine to decide minNuLoop(G, i), we can resolve a disjunctive block
of a Boolean equation systems as follows.

We define the algorithm SolveDisjunctive(G) where G = (V, E, `) is a
dependency graph of a disjunctive block of a Boolean equation system. The
algorithm SolveDisjunctive calculates whether there is a node k in G such
that `(k) = ν and k is the smallest node on some cycle of G. The algorithm
consists of the following steps:

Algorithm 2 The algorithm to solve disjunctive form Boolean equations sys-
tems

1. For all nodes i ∈ V such that `(i) = ν:

• If minNuLoop(G, i) holds, then report ”solution to smallest vari-
able is 1” and STOP.

2. Report ”solution to smallest variable is 0”.

It is not hard to see that the algorithm is correct.

Theorem 35 (Correctness) The algorithm SolveDisjunctive works correctly
on any disjunctive block of a Boolean equation system.

Proof:
If the algorithm reports that ”solution to smallest variable is 1” then

minNuLoop(G, i)

holds for some i ∈ V , and G contains at least one cycle of which the lowest
index of a node on this cycle is i, where `(i) = ν. By Lemma 33, the so-
lution to smallest variable is 1. If the algorithm reports ”solution to smallest
variable is 0”, then there does not exist a node i ∈ V with `(i) = ν such that
minNuLoop(G, i) holds. By Lemma 33, the solution to smallest variable is
0. ut

For instance, using a standard adjacency-list representation of dependency
graphs, the worst-case time complexity of this algorithm is easily seen to be
quadratic in the size of the block.

30 5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION

@
@@R@

@@I

?A
A

A
A

A
AK

�
��	@

@@I

6

�
�
�
�
�
��

�
���

1

2

3

...

n− 1

n

µ

ν

µµ

ν

Figure 5: A worst-case example.

Theorem 36 Let G = (V, E, `) be a dependency graph of a disjunctive block
with |V | = n and |E| = m. The algorithm SolveDisjunctive requires time
O((n · (n + m)) to solve G.

Proof:
The algorithm calls function cycle at most n times and each call takes time
O(n + m). ut

Note that the space complexity of SolveDisjunctive(G) is O(|G|).
We now give an example block of a Boolean equation system which shows

that the above algorithm may take quadratic time in the size of the block.

Example 37 For some even n ∈ N s.t. n ≥ 4, consider the Boolean equation
system:

(µx1 = x2)

(νx2 = x1 ∨ x3)

(µx3 = x2 ∨ x4)

...

(µxn−1 = xn−2 ∨ xn−1)

(νxn = x1)

The above equation system is disjunctive, and the solution to variable x1 is 0.
Consider the dependency graph G of this system depicted in Figure 5. Note
that, in order to solve the block with the depth-first search based algorithm
from [23], we need at least

|G�2|+ |G�4|+ · · ·+ |G�n| = O(n2)

steps.

5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION 31

All previous algorithms for solving conjunctive and disjunctive blocks,
including those from [23, 42], take at least quadratic time in the size of a
Boolean equation system in the worst case. But for large Boolean equations,
which are typically encountered in model checking and preorder/equivalence
checking of realistic systems, these algorithms often lead to unpleasant run-
ning times. It has been an open question whether or not the quadratic upper
bound for conjunctive and disjunctive Boolean equation systems could be
improved (e.g. see [23]). In [24] we resolve the question by presenting an
especially fast algorithm for finding a solution to a Boolean equation system
in either conjunctive or disjunctive form. Given such a Boolean equation
system with size e and alternation depth d, our algorithm finds the solution
using time O(e log d) in the worst case. This improves the best known upper
bound and makes the verification of a large class of fixpoint expressions more
tractable.

The algorithm in [24] combines graph theoretic techniques for finding
strong components [51, 54] and hierarchical clustering [55]. King, Kupfer-
man and Vardi [34] recently found an improved algorithm for deciding non-
emptiness of parity word automata. Our algorithm is very similar to [34], and
is also based on the ideas in [55].

5.3 Conjunctive/Disjunctive Blocks and Parity Word Automata

In this subsection, we relate the problem of solving conjunctive and disjunc-
tive Boolean equation systems to the non-emptiness problem of parity word
automata [34]. More precisely, we present a linear-time reduction from a dis-
junctive block of a Boolean equation system to the non-emptiness problem
of parity word automata. Also, similar linear-time reduction can be given to
the other direction, from a parity word automaton to a disjunctive block of a
Boolean equation system.

This helps to clarify the connection between the two problems, and shows
that the quadratic upper bound for conjunctive and disjunctive Boolean
equation systems can be substantially improved.

Let us first define the non-emptiness problem of parity word automata.

Definition 38 A parity word automaton can be represented as a directed
graph G = ({1, 2, ..., 2k}, V, E, `) where V is a set of nodes, E ⊆ V × V
is a set of edges and ` : V → {1, 2, ..., 2k} is a labelling function. Given
such a graph G, the non-emptiness problem is to determine whether there is
a cycle C in G such that minv∈C{`(v)} is even.

The following result stems from [34].

Lemma 39 (Theorem 4 of [34]) Let G = ({1, 2, ..., 2k}, V, E, `) be a di-
rected graph with |V | = n and |E| = m representing a parity word au-
tomaton. The non-emptiness problem for G can be solved in time O((n +
m) log k).

By the application of the above lemma, we obtain an improved upper
bound for solving a disjunctive block of a Boolean equation system.

32 5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION

Theorem 40 Let B be a disjunctive block of a Boolean equation system and
let G = (V, E, `) be the dependency graph of B with |V | = n and |E| = m.
The least variable of B can be solved in time O((n + m) log n).

Proof:
We present a linear-time reduction from B to the non-emptiness problem
described in Def. 38. Given the dependency graph G = (V, E, `) of B, let
G′ = (D′, V ′, E ′, `′) be another graph defined as follows:

• D′ = {1, 2, . . . , 2n}

• V ′ = V

• E ′ = E

• the labelling `′ is defined as

`′(1) =

{

1 if σ1 = µ
2 if σ1 = ν

and for 1 < i ≤ n

`′(i) =

{

(2i)− 1 if σi = µ
(2i) if σi = ν

With suitable representations of the graphs G and G′, the above mapping is
a linear-time reduction.

We show that the least variable of B holds iff the non-emptiness problem
for G′ is positive.

Suppose the least variable of B holds. By Lemma 33, ∃j ∈ V with `(j) =
ν such that j is reachable from node 1 in G, and G contains a cycle C of
which the lowest index of a node on this cycle is j. But, cycle C in G induces
a corresponding cycle C ′ in G′ such that minv∈C′{`′(v)} is even. Hence, the
non-emptiness problem is positive.

Suppose that G′ contains a cycle C ′ such that minv∈C′{`′(v)} is even.
Then, there must be a corresponding cycle C of G where the lowest in-
dexed node on this cycle has label ν. As all nodes appearing in block B
are reachable from the smallest numbered node, both conditions (2a) and
(2b) of Lemma 33 hold. Thus, by Lemma 33, the least variable of B holds.

Hence, solving a disjunctive block B with |V | = n and |E| = m reduces
in time O(n + m) to the task of deciding the even-cycle problem for G′ =
({1, 2, ..., 2n}, V, E, `′) which, by Lemma 39, can be solved in time O((n +
m) log k). ut

In the very same way, a similar result can be proved for the dual case, and
we thus have the following upper bound for solving a conjunctive block of a
Boolean equation system.

Theorem 41 Let B be a conjunctive block of a Boolean equation system and
let G = (V, E, `) be the dependency graph of B with |V | = n and |E| = m.
The least variable of B can be solved in time O((n + m) log n).

5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION 33

Proof:
In the same way as for Theorem 40. ut

We observe that a very similar linear-time reduction can be given to the
other direction as well, namely from a parity word automaton to a disjunctive
block of a Boolean equation system. It follows that, if one can find improved
algorithms for disjunctive and conjunctive Boolean equation systems, then
these algorithms could be effectively applied to check the non-emptiness of
parity word automata too.

It seems that the reductions in Theorem 40 and Theorem 41 are not opti-
mal, and could be even improved. In fact, a slightly more efficient algorithm
to solve disjunctive and conjunctive Boolean equation systems is defined in
[24]. This algorithm works in time O(e log ad) where e is the size of the
Boolean equation system and ad its alternation depth. However, it remains
open whether or not the reductions in this section could be improved to
match the time complexity of the algorithm in [24].

Finally, it would be interesting to find out whether or not the presented
theoretical improvement in Theorems 40 and 41 also leads to practical im-
provements over [23] and other existing algorithms for conjunctive and dis-
junctive Boolean equation systems. Unfortunately, to the best of our knowl-
edge there do not exist any implementations of algorithms in [34] and [24].
Therefore, evaluation on practical verification problems, and empirical com-
parison between the related algorithms are left for future work.

34 5 DISJUNCTIVE AND CONJUNCTIVE BLOCKS WITH ALTERNATION

6 GENERAL FORM BLOCKS

In this section, we discuss an answer set programming (ASP) based approach
for solving general blocks of Boolean equation systems. In ASP a problem is
solved by devising a mapping from a problem instance to a logic program
such that models of the program provide the answers to the problem in-
stance [38, 43, 47]. We first state some facts about general form Boolean
equation systems which turn out to be useful in the computation of their
solutions. We then develop a mapping from alternating blocks to logic pro-
grams providing a basis for effectively solving such hard blocks. Finally, we
discuss the correctness of our translation.

6.1 Solving General Blocks in Answer Set Programming

It was seen in Section 4 that, if all variables in a single block have the same
sign (i.e. the block is alternation free), the variables in this block can be
trivially solved in linear time. Furthermore, in Section 5 it was seen how the
variables appearing in conjunctive and disjunctive blocks with alternation
can be solved using only sub-quadratic time. So the remaining task is to
solve alternating blocks containing both mutually dependent variables with
different signs and arbitrary connectives as right-hand sides. The complexity
of solving such general blocks is an important open problem; no polynomial
time algorithm has been discovered. On the other hand, it is shown in [42]
that the problem is in the complexity class NP ∩ co-NP (and is known to be
even in UP ∩ co-UP).

Here, we present a technique to solve an alternating Boolean equation
system which applies Lemma 33 from Section 5 and another useful property,
Lemma 42 to be introduced in the following section. In particular, we re-
duce the resolution of alternating Boolean equation systems to the problem
of computing stable models of logic programs by defining a translation from
equation systems to normal logic programs.

We reduce the problem of solving alternating Boolean equation systems
to computing stable models of normal logic programs. This is achieved by
devising an alternative mapping from Boolean equation systems to normal
logic programs so the solution for a given variable in an equation system can
be determined by the existence of a stable model of the corresponding logic
program. The results presented in this section were mainly reported in [32].

Before giving the translation we discuss some useful properties of general
form Boolean equation systems.

6.2 Properties of General Boolean Equation System

The following observation forms the basis for our answer set programming
based technique to solve general form Boolean equation systems with alter-
nating fixed points.

From each Boolean equation system E containing both disjunctive and
conjunctive equations we may construct a new Boolean equation system E ′,
which is either in a disjunctive or in a conjunctive form. To obtain from E
a disjunctive form system E ′, we remove in every conjunctive equation of E

6 GENERAL FORM BLOCKS 35

exactly one conjunct; otherwise the system E is unchanged. The dual case is
similar.

For any standard form Boolean equation system having both disjunctive
and conjunctive equations we have the following two properties.

Lemma 42 (Lemma 2 of [32]) Let E be a standard form Boolean equation
system. Then the following are equivalent:

1. [[E]] = 0

2. There is a disjunctive system E ′ with the solution
[[E ′]] = 0 which can be constructed from E .

Proof:
We only show that (2) implies (1). The other direction can be proved by a
similar argument and also follows directly from Proposition 3.36 in [42].

Define a parity game in the following way. Given a standard form Boolean
equation system E = (σ1x1 = α1), (σ2x2 = α2), ..., (σnxn = αn), we define
a game ΓE = (V, E, P, σ) where V and E are exactly like in the dependency
graph of E and

• P : V → {I, II} is a player function assigning a player to each node;
for 1 ≤ i ≤ n, P is defined by P (i) = I if αi is conjunctive and
P (i) = II otherwise.

• σ : V → {µ, ν} is a parity function assigning a sign to each node;
for 1 ≤ i ≤ n, σ is defined by σ(i) = µ if σi = µ and σ(i) = ν
otherwise.

A play on the game graph is an infinite sequence of nodes chosen by
players I and II . The play starts at node 1. Whenever a node n is labelled
with P (n) = I , it is player I ’s turn to choose a successor of n. Similarly, if a
node n is labelled with P (n) = II , it is player II ’s turn to choose a successor
of n. A strategy for a player i is a function which tells i how to move at all
decision nodes, i.e. a strategy is a function that assigns a successor node to
each decision node belonging to player i. Player I wins a play of the game
if the smallest node that is visited infinitely often in the play is labelled with
µ, otherwise player II wins. We say that a player has a winning strategy in a
game whenever she wins all the plays of the game by using this strategy, no
matter how the opponent moves. According to Theorem 8.7 in [42], player
II has a winning strategy for game on ΓE with initial vertex 1 iff the solution
of E is [[E]] = 1.

So suppose there is a conjunctive equation system E ′ obtained from E by
removing exactly one disjunct from all equations of the form σixi = xj ∨ xk

such that [[E ′]] = 1. We can construct from E ′ a winning strategy for player
II in the parity game ΓE . For all nodes i of ΓE where it is player II ’s turn to
move, define a strategy for II to be strII(i) = j iff σixi = xj is an equation
of E ′. That is, the strategy strII for II is to choose in every II labelled node
of ΓE the successor which appears also in the right-hand side expression of
the i-th equation in E ′.

It is then straightforward to verify that for the game on ΓE with initial node
1 player II wins every play by playing according to strII . By Lemma 33, the

36 6 GENERAL FORM BLOCKS

system E ′ does not contain any µ labelled variables that depend on x1 and
are self-dependent. The crucial observation is that the dependency graph
of E ′ contains all and only those paths which correspond to the plays of the
game ΓE where the strategy strII is followed. Consequently, there cannot be
a play of the game ΓE starting from node 1 that is won by player I and where
player II plays according to strII . It follows from Theorem 8.7 in [42] that
the solution of E is [[E]] = 1. ut

Lemma 43 Let E be a standard form Boolean equation system. Then the
following are equivalent:

1. [[E]] = 1

2. There is a conjunctive system E ′ with the solution
[[E ′]] = 1 which can be constructed from E .

Let us illustrate the above lemmas with a simple example.

Example 44 Recall the Boolean equation system

E1 ≡ (νx1 = x2 ∧ x1)(µx2 = x1 ∨ x3)(νx3 = x3).

of Example 6. There is only one conjunctive equation νx1 = x2∧x1, yielding
two possible disjunctive Boolean equation systems which can be constructed
from E1:

• if we throw away the conjunct x2, then we obtain:

E ′1 ≡ (νx1 = x1)(µx2 = x1 ∨ x3)(νx3 = x3)

• if we throw away the conjunct x1, then we obtain:

E ′′1 ≡ (νx1 = x2)(µx2 = x1 ∨ x3)(νx3 = x3).

Using, for example, Lemma 33, we can see that these disjunctive systems
have the solutions [[E ′1]] = [[E ′′1]] = 1. By Lemma 42, a solution to E1 is
[[E1]] = 1 as expected.

In the next section we will see the application of the above lemmas to give
a compact encoding of the problem of solving alternating, general blocks of
Boolean equation systems as the problem of finding stable models of normal
logic programs.

6.3 From General Blocks to Logic Programs

Consider a standard form, alternating block of a Boolean equation system.
This block itself can be seen as a standard form Boolean equation system,
call it E . We construct a logic program Π(E) which captures the solution
[[E]] of E . Suppose that the number of conjunctive equations of E is less than
(or equal to) the number of disjunctive equations, or that no conjunction
symbols occur in the right-hand sides of E . The dual case goes along exactly

6 GENERAL FORM BLOCKS 37

the same lines and is omitted.4 The idea is that Π(E) is a ground program
which is polynomial in the size of E . We give a compact description of Π(E)
as a program with variables. This program consists of the rules

depends(1). (9)

depends(Y)← dep(X, Y), depends(X). (10)

reached(X, Y)← nu(X), dep(X, Y), Y ≥ X. (11)

reached(X, Y)← reached(X, Z), dep(Z, Y), Y ≥ X. (12)

← depends(Y), reached(Y, Y), nu(Y). (13)

extended for each equation σixi = αi of E by

dep(i, j). if αi = xj (14)

dep(i, j). dep(i, k). if αi = (xj ∨ xk) (15)

1 {dep(i, j), dep(i, k)} 1. if αi = (xj ∧ xk) (16)

and by nu(i). for each variable xi such that σi = ν.
The informal idea of the translation is that for the solution [[E]] of E , [[E]] =

0 iff Π(E) has a stable model. This is captured in the following way. The
system E is turned effectively into a disjunctive system by making a choice
between dep(i, j) and dep(i, k) for each conjunctive equation xi = (xj∧xk).
Hence, each stable model corresponds to a disjunctive system constructed
from E and vice versa.

The translation can be exemplified as follows.

Example 45 Recall the Boolean equation system E1 of Example 44. The
program Π(E1) consists of the rules 9-13 extended with rules:

1 {dep(1, 2), dep(1, 1)} 1.
dep(2, 1). dep(2, 3).
dep(3, 3).
nu(1). nu(3).

6.4 Correctness of the Translation

In this section, we prove formally the correctness of the translation. In par-
ticular, the main result below can be established by Lemmas 33 and 42

Theorem 46 Let E be a standard form, alternating Boolean equation system.
Then [[E]] = 0 iff Π(E) has a stable model.

Proof:
Consider a system E and its translation Π(E). The rules (14–16) effectively
capture the dependency graphs of the disjunctive systems that can be con-
structed from E . More precisely, there is a one to one correspondence be-
tween the stable models of the rules (14–16) and disjunctive systems that can
be constructed from E such that for each stable model ∆, there is exactly

4This is the case where the number of disjunctive equations of E is less than the number
of conjunctive equations, or where no disjunction symbols occur in the right-hand sides of
E .

38 6 GENERAL FORM BLOCKS

one disjunctive system E ′ with the dependency graph GE ′ = (V, E) where
V = {i | dep(i, j) ∈ ∆ or dep(j, i) ∈ ∆} and E = {(i, j) | dep(i, j) ∈ ∆}.

Now it is straightforward to establish by the splitting set theorem [39] that
each stable model ∆ of Π(E) is an extension of a stable model ∆′ of the
rules (14–16), i.e., of the form ∆ = ∆′ ∪∆′′ such that in the corresponding
dependency graph there is no variable xj such that σj = ν and x1 depends on
xj and xj is self-dependent. By Lemma 42 [[E]] = 0 iff there is a disjunctive
system E ′ that can be constructed from E for which [[E ′]] = 0. By Lemma 33
for a disjunctive system E ′, [[E ′]] = 1 iff there is a variable xj such σj = ν and
x1 depends on xj and xj is self-dependent. Hence, Π(E) has a stable model
iff there is a disjunctive system E ′ that can be constructed from E whose
dependency graph has no variable xj such that σj = ν and x1 depends on xj

and xj is self-dependent iff there is a disjunctive system E ′ with [[E ′]] 6= 1, i.e.,
[[E ′]] = 0 iff [[E]] = 0. ut

Similar property holds also for the dual program, which allows us to solve all
alternating blocks of standard form Boolean equation systems.

Perhaps, further explanation of our translation is in order here. Although
Π(E) is given using variables, for the theorem above a finite ground instanti-
ation of it is sufficient. For explaining the ground instantiation we introduce
a relation depDom such that depDom(i, j) holds iff there is an equation
σixi = αi of E with xj occurring in αi. Now the sufficient ground instanti-
ation is obtained by substituting variables X, Y in the rules (10–11) with all
pairs i, j such that depDom(i, j) holds, substituting variables X, Y, Z in rule
(12) with all triples l, i, j such that nu(l) and depDom(i, j) hold and variable
Y in rule (13) with every i such that nu(i) holds. This means also that such
conditions can be added as domain predicates to the rules without compro-
mising the correctness of the translation. For example, rule (12) could be
replaced by

reached(X, Y)← nu(X), depDom(Z, Y), reached(X, Z), dep(Z, Y), Y ≥ X.

Notice that such conditions make the rules domain restricted as required,
e.g., by the

�� �����
system.

Finally, it is worthwhile to observe that it is possible to construct a map-
ping from Boolean equation systems to propositional satisfiability as well (for
a description of propositional satisfiability problem, see p. 77 in [49]). In
principle, this would give a way to solve Boolean equation systems with vari-
ous propositional satisfiability checkers.

However, if one uses the above translation from general form equation
systems to normal logic programs as a basis for such a mapping, it will not
straightforwardly lead to compact encodings. One of the reasons for this is
the fact that there are difficulties to encode predicates like depends(Y) and
reached(X, Y) (see rules 9-13) with short propositional formulas.

In the next section, we will describe some experimental results on solving
alternating Boolean equation systems with the approach presented in this
section. We will demonstrate the technique on a series of examples which
are solved using the

�� �����
system as the ASP solver.

6 GENERAL FORM BLOCKS 39

- - - tk - -

� 6

�
�

�
?

�

�
?s t1 . . . u v

c a a a a
b a

b

Figure 6: Process Mk from [40, 53] for model checking the properties φ1 and
φ2.

7 CASE STUDIES

In this section, we discuss some case studies using the Boolean equation sys-
tem solution methods proposed in this report. Two of these case studies used
a solver for conjunctive and disjunctive Boolean equation systems to tackle µ-
calculus model checking problems. This solver is an implementation of the
solution algorithm reported in [23] which is also described in Section 5.2.
In the last case studies we used Smodels answer set programming system to
solve instances of general form Boolean equation systems with alternation.
We used the logic programming encoding reported in [32] which is also de-
scribed in Section 6.

7.1 Model Checking Examples

In this section, we describe an implementation of the solution algorithm
presented in [23] and discussed in Section 5.2. This prototype solver for al-
ternating conjunctive and disjunctive form Boolean equation systems is im-
plemented in the C programming language [33]. To give an impression of
the performance, we report experimental results on solving two verification
problems using the tool.

As our first benchmarks we used two sets of µ-calculus model checking
problems borrowed from [40] and [53], converted to Boolean equation sys-
tems. The verification problems consist of checking µ-calculus formulas of
alternation depth 2, on a sequence of regular labelled transition systems Mk

of increasing size (see figure 6).
Suppose we want to check, at initial state s of process Mk, the property

that transitions labelled b occur infinitely often along every infinite path of
the process. This is expressed with alternating fixed-point formula:

φ1 ≡ νX.µY.([b]X ∧ [−b]Y) (17)

The property is false at state s and we use the solver to find a counter-example
for the formula.

In second series of examples, we check the property that there is an execu-
tion in Mk starting from state s, where action a occurs infinitely often. This
is expressed with the alternating fixed point formula

φ2 ≡ νX.µY.(〈a〉X ∨ 〈−a〉Y) (18)

40 7 CASE STUDIES

which is true at initial state s of the process Mk.
The problems of determining whether the system Mk satisfies the speci-

fications φ1 and φ2 can be directly encoded as problems of solving the cor-
responding alternating Boolean equation systems, which are in conjunctive
and disjunctive forms.

As an illustration we explain here the transformation of the first formula φ1

using the standard translation [1, 4, 42] from µ-calculus to Boolean equation
systems (see Figure 3). If we consider a labelled transition system Mk =
(S, A,−→) in Figure 6 then the Boolean equation system looks like:

ν xs = ys

µ ys =
∧

s′∈∇(a,s)

xs′ ∧
∧

s′∈∇(¬a,s)

ys′

for all s ∈ S.

Here, ∇(a, s) := {s′|s
a
−→ s′} and ∇(¬a, s) := {s′|s

b
−→ s′ and b 6= a}.

We report the times for the solver to find the local solutions corresponding
to the local model checking problems of the formulas at state s. The times
in this section are the time for the solver to find the local solutions measured
as system time, on a 2.4Ghz Intel Xeon running Linux (i.e. the times for
the solver to read the equation systems from disk and build the internal data
structures are excluded).

The experimental results are given in Figure 7. The columns are ex-
plained below:

• Problem:

– the process Mk, with k + 3 states

– φ1 the formula 17 to be checked

– φ2 the formula 18 to be checked

• n: the number of equations in the Boolean equation system corre-
sponding to the model checking problem

• Time: the time in seconds to find the local solution

In the problem with the property φ1, the solver found solutions even with-
out executing the quadratic part of the algorithm. In the problem with prop-
erty φ2, the quadratic computation needed to be performed only on very
small portions of the equation systems. These facts are reflected in the per-
formance of the solver, which exhibits linear growth in the execution times
with increase in the size of the systems to be verified, in all of the experi-
ments.

The benchmarks in [40] and [53] have a quite simple structure, and there-
fore we must be careful in drawing general results from them. A more in-
volved practical evaluation is desirable here.

In the next section, we provide initial experimental results on Boolean
equation system benchmarks from more realistic applications in the domain
of protocol verification.

7 CASE STUDIES 41

Problem n Time (sec)

M5000000 φ1 10 000 006 2.6
φ2 10 000 006 3.0

M10000000 φ1 20 000 006 5.5
φ2 20 000 006 6.4

M15000000 φ1 30 000 006 7.5
φ2 30 000 006 9.0

Figure 7: Summary of execution times.

7.2 Model Checking DKR Leader Election Protocol

As second set of benchmarks, we used protocol models taken from [7], in-
stantiated with the µCRL-tool set [6], and converted to Boolean equation
systems. The verification problem consists of model checking a µ-calculus
formula on a sequence of distributed leader election protocol models of in-
creasing size, as described below.

In brief, the Dolev-Klawe-Rodeh (DKR) leader election protocol [16] con-
sists of n parties connected in a ring. These parties exchange messages and
after a finite number of messages, the party with the highest identification
informs the others being a leader. The protocol is modelled in [21] and
the desired safety property we need to check is that ”Two leader-actions can
never occur on a same execution path of the system”. This specification is
expressed with a µ-calculus formula (19) below

νX.([true]X ∧ [leader]φ) (19)

where the subformula φ is (20):

νY.([true]Y ∧ [leader]false) (20)

The formula (19) is globally true on all protocol models.
If we consider the labelled transition systems M = (S, A,−→) from [7],

then the above verification problem can be directly formalized as a Boolean
equation system prompting us to encode it as follows:

ν xs =
∧

s′∈∇(t,s)

xs′ ∧
∧

s′∈∇(l,s)

ys′

ν ys =
∧

s′∈∇(l,s)

false ∧
∧

s′∈∇(t,s)

ys′

∀s ∈ S

Here, ∇(l, s) := {s′|s
leader
−→ s′} and ∇(t, s) := {s′|s

i
−→ s′ and i ∈ A}.

We then evaluated the performance of our algorithm from [23], which was
also discussed in Section 5.2, by measuring solution times. The testing was
done on a 1.0Ghz AMD Athlon running Linux with sufficient main memory,
and the times reported in this section are the average of 3 runs of the times
for the solvers to find solutions as reported by the /usr/bin/time command

42 7 CASE STUDIES

Benchmark |E| Time (sec)

DKR(5) 7 192 0.0
DKR(6) 36 714 0.1
DKR(7) 190 618 0.2
DKR(8) 632 284 0.8
DKR(9) 3 162 712 4.2

Figure 8: Total solution times on DKR benchmark data.

(the times for the solver to read the equation systems from disk and build the
internal data structures are included).

The results are given in Fig. 8 where the columns are:

• Benchmark: DKR(n) DKR leader election protocol model with n par-
ties;

• |E|: the size of the Boolean equation system corresponding to the veri-
fication problem;

• Time(sec): The time in seconds needed to solve the equation system.

Previously, the above results were reported in [31]. It would have been
interesting to compare the performance of our algorithm to other Boolean
equation system solvers, like for instance those from [45]. Unfortunately, we
were not able to conduct such comparisons as we did not find any publicly
available implementations of other Boolean equation system solvers.

7.3 Solving Alternating Boolean Equation Systems

In this section, we describe some experimental results on solving alternat-
ing Boolean equation systems with the approach presented in Section 6.
We demonstrate the technique on a series of examples which are solved us-
ing the

�� �����
system (���� ������ �� �� ���� �	
���	�������� ������)

as the ASP solver.
An advantage of using

�� �����
is that it provides an implementation for

cardinality constraint rules used in our translation, and includes primitives
supporting directly such constraints without translating them first to corre-
sponding normal rules.

Once again, we were not able to compare this method to other approaches
as we did not find any implementation capable of handling Boolean equa-
tion systems with high alternation depths. We also experimented with an-
other ASP system, ��� (release 2004–05–23 available on ���� ������ ���
 �
���
�� ��� ��� ����������), as the underlying ASP solver but ran into per-
formance problems as explained below. We used

�� �����
version 2.26 to

find the solutions and the time needed for parsing and grounding the input
with

������ 1.0.13 is included.
The encoding used for the benchmarks is that represented in Section 6.3

with a couple of optimizations. Firstly, when encoding of dependencies as
given in rules (14–16) we differentiate those dependencies where there is a

7 CASE STUDIES 43

ν x1 = x2 ∧ xn

µ x2 = x1 ∨ xn

ν x3 = x2 ∧ xn

µ x4 = x3 ∨ xn

. . .
ν xn−3 = xn−4 ∧ xn

µ xn−2 = xn−3 ∨ xn

ν xn−1 = xn−2 ∧ xn

µ xn = xn−1 ∨ xn/2

for n ∈ 2N

Figure 9: The Boolean equation system in [42, p.91].

choice from those where there is not, i.e., for each equation σixi = αi of E
we add

ddep(i, j). if αi = xj

ddep(i, j).ddep(i, k). if αi = (xj ∨ xk)
1 {cdep(i, j), cdep(i, k)} 1. depDom(i, j). depDom(i, k). if αi = (xj ∧ xk)

instead of rules (14–16). Secondly, in order to make use of this distinction
and to allow for intelligent grounding, rules (10–12) are rewritten using the
above predicates as domain predicates in the following way.

depends(Y)← ddep(X, Y), depends(X).

depends(Y)← depDom(X, Y), cdep(X, Y), depends(X).

reached(X, Y)← nu(X), ddep(X, Y), Y ≥ X.

reached(X, Y)← nu(X), depDom(X, Y), cdep(X, Y), Y ≥ X.

reached(X, Y)← nu(X), reached(X, Z), ddep(Z, Y), Y ≥ X.

reached(X, Y)← nu(X), depDom(Z, Y), reached(X, Z),

cdep(Z, Y), Y ≥ X.

All benchmark encodings are available at:
���� ������ �� �� ���� �	
���	�������� ���������� ��
������� ���� ���.

The experiments deal with solving alternating Boolean equation systems
of increasing size and alternation depth. The problem is taken from [42,
p.91] and consists of finding the solution to the left-most variable x1 of the
Boolean equation system depicted in Fig. 9.

The example is such that a Boolean equation system in Fig. 9 with n
equations has the alternation depth n. The solution to the system is such
that [[E]] = 1 which can be obtained by determining the existence of a stable
model of the corresponding logic program.

The times reported in this section are the average of 3 runs of the time
for

�� �����
2.26 to find the solutions as reported by the /usr/bin/time

command on a 2.0Ghz AMD Athlon running Linux. The time needed for
parsing and grounding the input with

������ 1.0.13 is included. The exper-
imental results are summarised in Fig. 10.

44 7 CASE STUDIES

Problem (n) Time (sec)

1800 33.6
2000 41.8
2200 51.4
2400 60.0
2600 71.7

Figure 10: The experimental results on the Boolean equation system in
Fig. 9.

Our benchmarks are essentially the only results in the literature for al-
ternating Boolean equation systems with the alternation depth n ≥ 4 of
which we are aware. Notice that our benchmarks have the alternation depths
1800 ≤ n ≤ 2600.

Like pointed out in [42], typical solution algorithms take exponential time
in the size of the equation system in Fig. 9, because a maximal number of
backtracking steps is always needed to solve the left-most equation.

We tried to use also ��� as the underlying ASP solver on this benchmark,
but found that it does not scale as well as

�� �����
when the size n of the

problem grows. For example, for size n = 1800 the running time for ��� was
over 30 minutes.

7 CASE STUDIES 45

8 CONCLUSION

Boolean equation systems give a useful formalism to encode various prob-
lems encountered in a wide range of problem domains. For instance, these
domains include propositional logic programming (e.g. Horn clause satisfia-
bility [41]), automatic program analysis (e.g. abstract interpretation of func-
tional and logic programming languages [20]), and verification of concurrent
systems (e.g. equivalence checking [2, 13, 37, 45], model checking [1, 23,
32, 46], partial order reduction [48]). Boolean equation system solvers can
be used as general purpose tools targeted to handle these kinds of problems.

In this report, we develop an environment to solve Boolean equation sys-
tems. Namely, we present a framework which allows for considerably opti-
mizing the solver by taking advantage of many basic properties and features of
Boolean equation systems. We show how to solve various classes of Boolean
equation systems efficiently, and show how these different methods can be
combined into a single framework.

We discuss implementations as well as experiments with the proposed so-
lution techniques. Also, we demonstrate how the approach of the report can
be applied to solve model checking problems by discussing several case stud-
ies.

There is still room for further research on Boolean equation systems. For
instance, one might consider the following directions.

In Section 5.3, we give the proof of the complexity of solving conjunc-
tive and disjunctive Boolean equation systems without providing any imple-
mentation. The algorithm from [24] should be implemented, and its per-
formance should be evaluated on practical, real-life problems. Also, the ap-
proach from [24] should be compared to other related algorithms. It will be
interesting to see whether the complexity of solving conjunctive and disjunc-
tive classes can be further improved.

In Section 7.3, we provide a proof of concept implementation of the an-
swer set programming approach to solve general form, alternating Boolean
equation system. A full-blown Boolean equation system solver for general
systems, which is based on this approach, needs to be implemented. In addi-
tion, a more involved practical evaluation, and a comparison with the related
methods and tools (e.g. the one from [58, 50]) would be highly desirable.

Also, an interesting open question is whether or not there exist compact
encodings of Boolean equation systems as propositional satisfiability. Our
translation from Boolean equation systems to normal logic programs, to-
gether with the results in [29], gives a polynomial reduction from Boolean
equation systems to propositional satisfiability. It remains to be shown whether
this translation can be improved.

Recently, there has been an increasing interest to the study of various ex-
tensions of Boolean equation systems. These extensions include parameter-
ized Boolean equation systems [25, 26]. Some of the results in this report
can well be extended to parameterized systems as well, and automated tool
support for solving such extended Boolean equation systems should be devel-
oped.

46 8 CONCLUSION

Acknowledgements

This report is a reprint of my Licentiate’s thesis. First of all, I would like to
thank Professor Ilkka Niemelä for providing the possibility to join his research
group at Laboratory for Theoretical Computer Science, Helsinki University
of Technology. Prof. Niemelä first introduced me to answer set program-
ming and has taught me a lot. Also, I thank D.Sc. (Tech.) Keijo Heljanko for
suggesting to study µ-calculus model checking from the answer set program-
ming perspective. I am grateful to Prof. Niemelä and Dr. Heljanko for many
discussions. They both read some drafts of this report and patiently made
several helpful remarks.

I thank Professor Jan Friso Groote for various constructive ideas as well as
always expressing encouraging attitude to my work. I am greatly indebted
to Professor Wan Fokkink for the possibility to visit his research group at
CWI, in the Netherlands. Thanks to Prof. Fokkink, Dr. Jaco van de Pol
and others for discussions and the supporting research environment at the
CWI. I want to thank Professor Angelika Mader for discussion and useful
information about Boolean equation systems.

The financial supports of Helsinki Graduate School in Computer Science
and Engineering, the Academy of Finland (project 53695), and the Emil
Aaltonen Foundation are gratefully acknowledged.

Especially, I want to express my gratitude to her with whom I have just
started a project much more important and challenging than this report.

References

[1] H.R. Andersen. Model checking and Boolean graphs. Theoretical
Computer Science, 126:3–30, 1994.

[2] H.R. Andersen, B. Vergauwen. Efficient Checking of Behavioural Re-
lations and Modal Assertions using Fixed-Point Inversion. In Proceed-
ings of Conference on Computer Aided Verification, Lecture Notes on
Computer Science 939, pages 142–154, Springer Verlag, 1995.

[3] A. Arnold and P. Crubille. A linear algorithm to solve fixed-point equa-
tions on transition systems Information Processing Letters, 29: 57–66,
1988.

[4] A. Arnold and D. Niwinski. Rudiments of µ-calculus. Studies in logic
and the foundations of mathematics, Volume 146, Elsevier, 2001.

[5] G. Bhat and R. Cleaveland. Efficient local model-checking for frag-
ments of the modal µ-calculus. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, Lecture Notes in Computer Science 1055, pages 107–126,
Springer Verlag, 1996.

[6] S. Blom, W. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser and
J. van de Pol. µCRL: a toolset for analysing algebraic specifications.

REFERENCES 47

In Proceedings of Conference on Computer Aided Verification, Lec-
ture Notes in Computer Science 2102, pages 250–254, Springer Verlag,
2001.

[7] S. Blom and J. van de Pol. State space reduction by proving conflu-
ence. In Proceedings of Conference on Computer Aided Verification,
Lecture Notes on Computer Science 2404, pages 596–609, Springer
Verlag, 2002.

[8] J. Bradfield. The modal µ-calculus alternation hierarchy is strict. The-
oretical Computer Science, 195:133–153, 1998.

[9] J. Bradfield and C. Stirling. Modal Logics and mu-Calculi: An in-
troduction. Chapter 4 of Handbook of Process Algebra. J.A. Bergstra,
A. Ponse and S.A. Smolka, editors. Elsevier, 2001.

[10] E. Clarke and E. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Proceedings of Work-
shop on Logics of Programs, Lecture Notes in Computer Science 131,
pages 52–71, Springer Verlag, 1981.

[11] E. Clarke, O. Grumberg and D. Peled. Model Checking. The MIT
Press, 2000.

[12] R. Cleaveland, M. Klein and B. Steffen. Faster model checking for the
modal mu-calculus. In Proceedings of the 4th International Workshop
on Computer Aided Verification, Lecture Notes in Computer Science
663, pages 410–422, Springer Verlag, 1992.

[13] R. Cleaveland and B. Steffen. Computing Behavioural relations log-
ically. In Proceedings of the 18th International Colloquium on Au-
tomata, Languages and Programming, Lecture Notes in Computer Sci-
ence 510, pages 127–138, Springer Verlag, 1991.

[14] G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings
of the Int. In Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science 1579, pages 223–239, Springer Verlag, 1999.

[15] J. Dix, U. Furbach, and I. Niemelä. Nonmonotonic reasoning: Towards
efficient calculi and implementations. In Handbook of Automated Rea-
soning, chapter 19, pages 1241–1354. Elsevier, 2001.

[16] D. Dolew, M. Klawe, and M. Rodeh. An O(n log n) unidirectional dis-
tributed algorithm for extrema finding in a circle. Journal of Algorithms,
3(3): 245–260, 1982.

[17] W.F. Dowling and J.H. Gallier. Linear-Time Algorithm for Testing the
Satisfiability of Propositional Horn Formulae. J. Logic Programming,
3:267–284, 1984.

48 REFERENCES

[18] E.A. Emerson, C. Jutla and A.P. Sistla. On model checking for frag-
ments of the µ-calculus. In Proceedings of the Fifth International Con-
ference on Computer Aided Verification, Lecture Notes in Computer
Science 697, pages 385–396, Springer Verlag, 1993.

[19] E.A. Emerson, C. Jutla, and A.P. Sistla. On model checking for the
µ-calculus and its fragments. Theoretical Computer Science, 258:491–
522, 2001.

[20] C. Fecht and H. Seidl. An Even Faster Solver for General Systems
of Equations. In Proceedings of the Static Analysis Symposium, Lec-
ture Notes in Computer Science 1145, pages 189–204, Springer Verlag,
1996.

[21] L. Fredlund, J.F. Groote and H. Korver. Formal Verification of a Leader
Election Protocol in Process Algebra. Theoretical Computer Science,
177: 459–486, 1997.

[22] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In Proceedings of the 5th International Conference on
Logic Programming, pages 1070–1080, Seattle, USA, August 1988. The
MIT Press.

[23] J.F. Groote and M. Keinänen. Solving Disjunctive/Conjunctive
Boolean Equation Systems with Alternating Fixed Points. In Proceed-
ings of the 10th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, Lecture Notes in Computer
Science 2988, pages 436 – 450, Springer Verlag, 2004.

[24] J.F. Groote and M. Keinänen. A Sub-quadratic Algorithm for Conjunc-
tive and Disjunctive Boolean Equation Systems. Computer Science Re-
port 04/13, Department of Mathematics and Computer Science, Eind-
hoven University of Technology, 2004.

[25] J.F. Groote and T. Willemse. A Checker for Modal Formulas for Pro-
cesses with Data. Computer Science Report 02-16, Department of
Mathematics and Computer Science, Eindhoven University of Tech-
nology, 2002. To appear in Science of Computer Programming, Else-
vier.

[26] J.F. Groote and T. Willemse. Parameterised Boolean Equation Systems.
In Proceedings of the 15th International Conference on Concurrency
Theory (CONCUR’2004), Lecture Notes in Computer Science 3170,
pages 308–324, Springer Verlag, 2004.

[27] K. Heljanko and I. Niemelä. Bounded LTL model checking with
stable models. Theory and Practice of Logic Programming, 3: 519–
550, Cambridge University Press, 2003.

[28] M. Hennessy and R. Milner. Algebraic laws for non-determinism and
concurrency. Journal of the ACM, 32(1): 137–161, 1985.

REFERENCES 49

[29] T. Janhunen. Representing Normal Programs with Clauses. In Pro-
ceedings of the 16th European Conference on Artificial Intelligence
(ECAI’2004), pages 358–362, Valencia, Spain, august 2004.

[30] M. Jurdzinski. Deciding the winner in parity games is in UP ∩co−UP .
Information Processing Letters, 68:119–124, 1998.

[31] M. Keinänen. Obtaining Memory Efficient Solutions to Boolean Equa-
tion Systems. In Proceedings of the 9th International Workshop on For-
mal Methods for Industrial Critical Systems (FMICS’2004). To appear
in Electronic Notes in Theoretical Computer Science, Elsevier.

[32] M. Keinänen and I. Niemelä. Solving Alternating Boolean Equation
Systems in Answer Set Programming. In Applications of Declarative
Programming and Knowledge Management, Revised Selected Papers
from the 15th International Conference on Applications of Declarative
Programming and Knowledge Management, Lecture Notes in Artificial
Intelligence 3392, pages 134–148, Springer Verlag, 2005.

[33] B. Kernighan and D. Rithchie. The C Programming Language. Pren-
tice Hall PTR, 1988.

[34] V. King, O. Kupferman and M. Vardi. On the complexity of parity word
automata. In Proceedings of 4th International Conference on Founda-
tions of Software Science and Computation Structures, Lecture Notes
in Computer Science 2030, pages 276–286, Springer Verlag, 2001.

[35] D. Kozen. Results on the propositional µ-calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

[36] K. N. Kumar, C. R. Ramakrishnan, and S. A. Smolka. Alternat-
ing fixed points in Boolean equation systems as preferred stable mod-
els. In Proceedings of the 17th International Conference of Logic Pro-
gramming, Lecture Notes in Computer Science 2237, pages 227–241,
Springer Verlag, 2001.

[37] K. Larsen. Efficient Local Correctness Checking. In Proceedings of
Conference on Computer Aided Verification, Lecture Notes on Com-
puter Science 663, pages 30–43, Springer Verlag, 1992.

[38] V. Lifschitz. Answer Set Planning. In Proceedings of the 16th Inter-
national Conference on Logic Programming, pages 25–37, The MIT
Press, 1999.

[39] V. Lifschitz and H. Turner. Splitting a Logic Program. In Proceed-
ings of the Eleventh International Conference on Logic Programming,
pages 23–37, The MIT Press, 1994.

[40] X. Liu, C.R. Ramakrishnan and S.A. Smolka. Fully Local and Efficient
Evaluation of Alternating Fixed Points. In Proceedings of the 4th Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science 1384, pages
5–19, Springer Verlag, 1998.

50 REFERENCES

[41] X. Liu and S.A. Smolka. Simple Linear-Time Algorithms for Minimal
Fixed Points. In Proceedings of the 26th International Conference on
Automata, Languages, and Programming, Lecture Notes in Computer
Science 1443, pages 53–66, Springer Verlag, 1998.

[42] A. Mader. Verification of Modal Properties using Boolean Equation
Systems. PhD thesis, Technical University of Munich, 1997.

[43] W. Marek and M. Truszczyński. Stable Models and an Alternative
Logic Programming Paradigm, The Logic Programming Paradigm: a
25-Year Perspective, pages 375–398, Springer Verlag, 1999.

[44] R. Mateescu. Efficient Diagnostic Generation for Boolean Equa-
tion Systems. In Proceedings of the 6th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’2000), Lecture Notes in Computer Science 1785, pages 251–
265, Springer Verlag, 2000.

[45] R. Mateescu. A Generic On-the-Fly Solver for Alternation-Free
Boolean Equation Systems. In Proceedings of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’2003), Lecture Notes in Computer Science 2619,
pages 81–96, Springer Verlag, 2003.

[46] R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking
for Regular Alternation-Free Mu-Calculus. Science of Computer Pro-
gramming, 46(3):255–281, 2003.

[47] I. Niemelä. Logic Programs with Stable Model Semantics as a Con-
straint Programming Paradigm. Annals of Mathematics and Artificial
Intelligence, 25(3,4):241–273, 1999.

[48] G. Pace, F. Lang, and R. Mateescu. Calculating τ -Confluence Com-
positionally. In Proceedings of Conference on Computer Aided Ver-
ification, Lecture Notes in Computer Science 2725, pages 446–459,
Springer Verlag, 2003.

[49] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[50] D. Schmitz and J. Vöge. Implementation of a Strategy Improvement Al-
gorithm for Finite-State Parity Games. In Proceedings of the 5th Inter-
national Conference on Implementation and Application of Automata,
Lecture Notes in Computer Science 2088, pages 263–271, Springer
Verlag, 2000.

[51] M. Sharir. A strong-connectivity algorithm and its application in data
flow analysis. Computers and Mathematics with Applications, 7(1):67–
72, 1981.

[52] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing
the stable model semantics. Artificial Intelligence, 138(1–2):181–234,
2002.

REFERENCES 51

[53] B. Steffen, A. Classen, M. Klein, J. Knoop and T. Margaria. The fix-
point analysis machine. In I. Lee and S.A. Smolka, editors, In Pro-
ceedings of the Sixth International Conference on Concurrency The-
ory (CONCUR ’95), Lecture Notes in Computer Science 962, pages
72–87, Springer Verlag, 1995.

[54] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal of Computing, 1(2):146–160, 1972.

[55] R.E. Tarjan. A hierarchical clustering algorithm using strong compo-
nents. Information Processing Letters, 14(1):26–29, 1982.

[56] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[57] B. Vergauwen and J. Lewi. Efficient local correctness checking for
single and alternating Boolean equation systems. In Proceedings of
the 21st International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science 820, pages 302–315,
Springer Verlag, 1994.

[58] J. Vöge and M. Jurdzinski A Discrete Strategy Improvement Algorithm
for Solving Parity Games. In Proceedings of Conference on Computer
Aided Verification, Lecture Notes in Computer Science 1855, pages
202–215, Springer Verlag, 2000.

52 REFERENCES

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A86 Tommi Syrjänen

Logic Programming with Cardinality Constraints. December 2003.

HUT-TCS-A87 Harri Haanpää, Patric R. J. Östergård

Sets in Abelian Groups with Distinct Sums of Pairs. February 2004.

HUT-TCS-A88 Harri Haanpää

Minimum Sum and Difference Covers of Abelian Groups. February 2004.

HUT-TCS-A89 Harri Haanpää

Constructing Certain Combinatorial Structures by Computational Methods. February 2004.

HUT-TCS-A90 Matti Järvisalo

Proof Complexity of Cut-Based Tableaux for Boolean Circuit Satisfiability Checking.

March 2004.

HUT-TCS-A91 Mikko Särelä

Measuring the Effects of Mobility on Reactive Ad Hoc Routing Protocols. May 2004.

HUT-TCS-A92 Timo Latvala, Armin Biere, Keijo Heljanko, Tommi Junttila

Simple Bounded LTL Model Checking. July 2004.

HUT-TCS-A93 Tuomo Pyhälä

Specification-Based Test Selection in Formal Conformance Testing. August 2004.

HUT-TCS-A94 Petteri Kaski

Algorithms for Classification of Combinatorial Objects. June 2005.

HUT-TCS-A95 Timo Latvala

Automata-Theoretic and Bounded Model Checking for Linear Temporal Logic. August 2005.

HUT-TCS-A96 Heikki Tauriainen

A Note on the Worst-Case Memory Requirements of Generalized Nested Depth-First Search.

September 2005.

HUT-TCS-A97 Toni Jussila

On Bounded Model Checking of Asynchronous Systems. October 2005.

HUT-TCS-A98 Antti Autere

Extensions and Applications of the A∗ Algorithm. November 2005.

HUT-TCS-A99 Misa Keinänen

Solving Boolean Equation Systems. November 2005.

ISBN 951-22-7994-0

ISSN 1457-7615

