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ABSTRACT: In this thesis we investigate path finding problems, that is, plan-
ning routes from a start node to some goal nodes in a graph. Such prob-
lems arise in many fields of technology, for example, production planning,
energy-aware message routing in large networks, resource allocation, and ve-
hicle navigation systems. We concentrate mostly on planning a minimum
cost path using the A∗ algorithm.

We begin by proving new theorems comparing the performance of A∗ to
other (generalized) path finding algorithms. In some cases, A∗ is an optimal
method in a large class of algorithms. This means, roughly speaking, that A∗

explores a smaller region of the search space than the other algorithms in the
given class.

We develop a new method of improving a given (static) heuristic for A∗

dynamically, during search. A heuristic controls the search of A∗ so that
unnecessary branches of the tree of nodes that A∗ visits are pruned. The new
method also finds an optimal path to any node it visits for the first time so
that every node will be visited only once. The latter is an important property
considering the efficiency of the search.

We examine the use of A∗ as a higher level method to allocate resources
among several path finding algorithms. In some cases, the A∗ is an optimal
resource allocation method, which means that the number of the nodes the
path finding algorithms together visit is minimized.

As applications of A∗, we have developed new hierarchical algorithms for
robot point-to-point path planning tasks, and new algorithms for power-aware
routing of messages in large communication networks. The new algorithms
are more robust than some older ones to which we compare. Moreover, one
of the message routing algorithms produces higher average lifetimes of the
network than those of the widely quoted max-min zPmin algorithm.

KEYWORDS: Path finding, heuristic algorithms, best-first search, A∗, re-
source allocation, robotics, motion planning, message routing
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1 INTRODUCTION

This thesis considers path finding problems in graphs. The path finding prob-
lem is to plan a route, an alternating sequence of nodes and edges, from a
start node to some goal nodes in the graph.

The neighborhood relation, modeled as edges in the graph, constrains
possible movements, and path finding problems can be seen as a special
case of constraint satisfaction problems. Usually every edge has an associated
number modeling the distance or other cost measures between neighboring
nodes. We may wish to minimize (maximize) the cost of the path satisfying
the constraints, that is, the sum of the edge costs of feasible paths. Then the
problem becomes an instance of a linear programming problem.

During the 1960s, direct linear programming formulations of path find-
ing problems were replaced by more specific techniques to better exploit the
structure of the underlying search graphs, see e.g. [19, 54, 32, 58]. The classi-
cal method of this category is Dijkstra’s shortest path algorithm [19]. It is an
example of breadth-first search strategies that are guaranteed to find a min-
imum cost solution path if it exists in the graph (with strictly positive edge
costs). Other strategies are, e.g., depth-first and backtracking methods. The
latter ones may miss existing optimal solution paths in graphs with infinite
number of nodes.

Dijkstra’s shortest path algorithm searches every potential path candidate
in the graph towards “every direction” around the start node. This can be
very time consuming. Sometimes we may be able to describe where a goal
is approximately located, or which parts of the graph are most promising to
search. This information may not be explicitly present in the structure of the
search graph. How can this additional information, or our intuition of the
task, be given as advice to a path finding strategy to make it more effective?

In this thesis, we call the above additional advice heuristic information.
Among the most popular methods of exploiting heuristic information to prune
the search is the informed best-first strategy. The general philosophy of this
strategy is to use the heuristic information to assess the merit latent in every
candidate search avenue and then continue the exploration along the direc-
tion of highest merit [18]. A simple example is the following. The problem is
to search for a minimum cost path from a start node to a goal node in a two
dimensional rectangular grid with some obstacles. A heuristic information
may include the direction where the goal is located or its distance from any
node in the grid without the obstacles.

The most studied informed best-first strategy is the A∗ algorithm. It is a
generalization of Dijkstra’s shortest path algorithm, where heuristic informa-
tion is exploited. Let the edges in the above grid have unit costs. Dijkstra’s
algorithm searches the grid towards every direction forming a “Manhattan
ball” around the start node. Path candidates of A∗ search, with heuristic in-
formation, go mostly towards the location of the goal. Figure 2.1 in the next
chapter shows an example of this situation. We will discuss Figure 2.1 in
more detail later.

Most often A∗ visits a smaller set of nodes in the search graph than the
Dijkstra method. However, a drawback of A∗ search is still its slowness in
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many problems. This is because good or effective heuristic information to
guide the search is often very hard to get. Usually, more greedy algorithms
that do not search every path candidate have been found to work fast and well
enough. The latter algorithms can, as pointed out earlier, miss solution paths
when they exist. Moreover in many applications, we may not be interested
in minimizing path costs and can develop faster constraint satisfaction algo-
rithms. But then, comparisons of the efficiency of the latter algorithms to A∗

must almost always be empirical.
A strong point of A∗, and related informed best-first strategies, is that theo-

retical results exist both concerning the effectiveness and characterizing good
heuristic information. However, these results need the assumption of path
cost minimization. If this goal is not of interest, then theoretical comparisons
of algorithms with A∗ are hard to get. On the other hand, if we have a path
cost minimization problem such that an optimal solution path must be found
if it exists, then A∗ and its variants are among the best algorithms available.

Nowadays minimum cost path finding problems are important, for exam-
ple, in production planning, in energy-aware message routing in large com-
munication networks, and in vehicle navigation systems, see e.g. [44, 48, 25,

29].

1.1 CONTRIBUTIONS AND ORGANIZATION OF THE THESIS

Chapter 2 provides theoretical results concerning A∗ and, more generally,
informed best-first strategies. It is basically in the form of definitions and the-
orems that will be needed in subsequent chapters. Notions and concepts are
defined at the time they are needed. Proofs of the most important theorems
are also included.

Section 2.12.3 discusses howA∗ could be used to minimize real valued func-
tions. Now, the search is done in the space of complete solutions. The “good-
ness” of a solution is measured by the value of the function to be minimized.

Section 2.12.4 presents an algorithm that is a combination of two search
strategies: a “base” algorithm and a “probe”. The number of node expansion
of the composed algorithm is at most (1 + β) times the number of node
expansions of the base algorithm, for example A∗, where β is a parameter
defined by the user. The probe can be a simple and possibly a greedy search,
to look around the search space to see whether a goal can be found in the
“neighborhood” explored by the base algorithm.

The material in Sections 2.12.3 and 2.12.4 appears for the first time in
this thesis.

Chapter 3 compares the performance of A∗ to that of other (generalized)
path finding algorithms in cases where their guiding heuristics are not nec-
essarily admissible. Most theorems in the literature concern only admissible
heuristics.

At first, we define more precisely what we mean by a path finding algo-
rithm. Then we introduce generalizations of consistent heuristics that are
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not necessarily admissible. The rest of the chapter contains new theorems
that characterize the sets of nodes explored by the generalized path finding
algorithms by using the set of nodes explored by A∗. One of the optimal-
ity theorems for A∗ guided by nonadmissible heuristics is a generalization of
the results published earlier. Other theorems need additional assumptions
compared to their counterparts in the literature.

The material in this chapter appears for the first time in this thesis.

Chapter 4 defines a new method of improving a given (static) admissible
heuristic function for A∗. The improvements are done by estimating suc-
cessive lower bounds for the cost of an optimal path dynamically, during the
search. Thus, the evaluation function of the new algorithm at some time
instant during the search is a function of the whole search tree at that time
instant. We show that the new algorithm guided by the improved heuristic is
optimal over A∗. This means, roughly speaking, fewer node expansions com-
pared to those of A∗. Moreover, we also show that when the new algorithm
expands a node for the first time, it has found an optimal path to the node.
It follows that no reexpansions of nodes are necessary, which is an important
property considering the efficiency of the search.

Chapter 4 presents a revised version of the conference paper [2].1

Chapter 5 examines how A∗ can be used to allocate computing resources
among several search algorithms solving the same path finding problem. The
high-level A∗ algorithm uses abstracted paths that are composed of sets of
nodes expanded by the low-level algorithms during the search process. In
some situations, A∗ is an optimal resource allocation policy. This means,
roughly speaking, that the number of the nodes expanded by all the low-
level search algorithms together is minimized. As an example of a resource
allocation problem, we discuss so called bidirectional search.

At the end of the chapter, we show that A∗ that searches on a tree and is
guided by an admissible heuristic is the optimal path finding algorithm. This
theorem together with the theorems in Chapter 3 can be used to generalize
the optimality results of this chapter.

Chapter 5 presents a revised and enlarged version of the conference paper
[3].2

Chapter 6 introduces and tests four hierarchical robot path planning algo-
rithms using five simulated robot workcells. Two of the tested algorithms use
A∗ in resource allocation, as in Chapter 5, among the searches in several
resolutions of the robot’s configuration space. The methods with resource
allocation use different “step sizes” at the same time. The decision how a
robot’s collision free configuration is expanded depends on how close that
configuration is to the obstacles. When a configuration q is far away from ob-

1Portions of this document were first published as Antti Autere, A Dynamically Improving
Heuristic for A∗, Int. ICSC Congress on Intelligent Systems and Applications (ISA’2000),
with permission from ICSC.

2Portions of this document were first published as Antti Autere, A∗ as an Optimal Re-
source Allocation Policy in Path Finding Problems, The 14th International FLAIRS Confer-
ence (FLAIRS-2001), copyright 2001, AAAI, with permission from AAAI.
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stacles, then its successors are also far away from q. Instead, if a configuration
q is near to an obstacle surface, then its successors are also near q.

The simulations suggest that the algorithms using A∗ as a resource allo-
cation policy, on average, find paths faster and consume less memory than
the other hierarchical algorithms. Detailed pseudocodes are also given that
implement the node generation process of the hierarchical path planners.

Chapter 6 is a revised version of the journal paper [4].3

Chapter 7 presents three new online A∗-based algorithms for power-aware
routing of messages in large communication networks where future message
sequences are not known. The goal is to maximize the average lifetime of
a network in the sense of the average number of messages that can be sent
through it. A message cannot be routed if its every path candidate in the
network contains at least one node with less energy than is needed for the
node to relay, that is receive and send, the message further. For achieving
this goal the algorithms use different optimization criteria.

The new algorithms are simpler and their running times are shorter than
those of the widely quoted max-min zPmin algorithm. In addition, they are
not as sensitive to parameter settings as max-min zPmin. We show empirically
that one of the algorithms produces longer average lifetimes than max-min
zPmin. The other two algorithms perform similarly as max-min zPmin.

Chapter 7 is an enlarged version of reference [5].4

1.2 LIST OF PUBLICATIONS

The published material of this thesis is based on the following references:

Antti Autere, A Dynamically Improving Heuristic forA∗, Int. ICSC Congress
on Intelligent Systems and Applications (ISA’2000), Wollongong, NSW Aus-
tralia, December 12–15, 2000. ICSC Academic Press.

Antti Autere, A∗ as an Optimal Resource Allocation Policy in Path Finding
Problems, The 14th International FLAIRS Conference, Key West, Florida
USA, May 21–23, 2001. AAAI Press.

Antti Autere, Hierarchical A∗ Based Path Planning — A Case Study, Knowl-
edge Based Systems, 15(1–2), 2002. Elsevier.

Antti Autere, New Online Power-Aware Algorithms in Wireless Networks,
Int. Conference on Software, Telecommunications and Computer Networks
(SoftCOM 2004), Split–Dubrovnik, Croatia, Venice Italy, October 11–13,
2004. University of Split.

3Portions of this document are reprinted from Knowledge Based Systems, Vol. 15, No.
1–2, Antti Autere, Hierarchical A∗ based Path Planning — A Case Study, pp. 53–66, with
permission from Elsevier.

4Portions of this document were first published as Antti Autere, New Online Power-Aware
Algorithms in Wireless Networks, Int. Conference on Software, Telecommunications and
Computer Networks (SoftCOM 2004), with permission from SoftCOM.
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2 BACKGROUND

In the following, we assume a directed or undirected graph G = (V,E),
where V denotes the set of vertices (nodes), and E denotes the set of edges
between two vertices.

In addition, G has the following properties. There is a special node s ∈
V called the start node and a non-empty set Γ ⊆ V of goal nodes. Let
neigh(n) ⊆ V denote the set of neighbors to a node n ∈ V , that is, the
nodes that are connected to n by an edge. For every n, neigh(n) contains
finite number of nodes, that is, G is locally finite. G can have an infinite
number of nodes, though. Every edge in E between any two nodes n and m
in G has a cost c(n,m) ≥ δ > 0. A path is a sequence of edges. A solution
path is a path from the start node s to any of the goal nodes. In the sections
concerning the A∗ algorithm, the cost of a path is the sum of the costs of the
edges which comprise the path. We let C∗ denote the cost of any minimum
cost solution path.

2.1 THE A∗ ALGORITHM

A∗ (originally in [32]; see also [55] and [57]) is a best-first graph search algo-
rithm that always expands the “most promising” node n based on the evalua-
tion function:

f(n) = g(n) + h(n). (2.1)

The function g(n) is the cost of the cheapest path from the start node to n
among the paths found so far. The heuristic h(n) is an estimate of the cost of
the cheapest path from n to a goal node.

The A∗ algorithm maintains two sets of nodes: CLOSED and OPEN.
OPEN is sorted in ascending order of the evaluation function f . A∗ repeti-
tively removes from OPEN and places in CLOSED a node n for which f(n)
is minimum. If n is a goal node, then a solution is found. Otherwise, A∗

generates all the neighboring nodes of n in neigh(n), except the one that A∗

has already found on the path from s to n. This set of nodes is called the
successors to n and is denoted by succ(n) ⊆ V ; succ(n) ⊆ neigh(n). For
every n′ ∈ succ(n), the value of the evaluation function f(n′) is calculated.
Then A∗ places every n′ that is not already in OPEN or CLOSED in OPEN.

Figure 2.1 shows an example of the search process ofA∗ on a rectangular grid
with three obstacles. The start node on the left is labeled by 0, and the goal
on the right is labeled by 33. Black dots are expanded nodes in CLOSED
(all their successors have been generated before the goal has been found),
and white circles are generated nodes in OPEN. The labels of the nodes rep-
resent their g -values, measured by the Manhattan distance from the start
node. The cost of an optimal path from the start node to the goal is 33. A
traversal tree connects the nodes. The heuristic h guiding the search process
of A∗ is the Manhattan distance to the goal measured on a complete grid
with no obstacles. From Figure 2.1, it can be seen that the heuristic prunes
the search compared to the breadth-first search strategy: The path candidates
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of A∗ go mostly to the right from the start node. In the breadth-first strat-
egy, path candidates would go towards every direction forming a “Manhattan
ball” around the start node. Note however, that nodes in Figure 2.1 form big
heaps in front of the black obstacles.

The following presents the pseudocode for A∗, [57, pp. 64–65].

——————————————————————————————–
ALGORITHM A∗

��� ��� ��� ��	
� � �� � ���� ���� �
��� �� ���� �� ����� ���� �� �� � ��� �	���
� �
�� �  �� �!� �
�� ���� 	� � �	"� �� #$�%�& 	 � �� �

��
 �� �"� � �� � �� ���� �
� ����!� � ��� ��
 � �� ��	� � !	��� '
(�� 	��	�� �� �	!�
 �� 	�� )�	� � �� ��

�* � �� � �� 	 )�	� � �� ���� �� �� �� ""����� ���
� ��� ��� ����� ��� �(�	��� (�
�
	"��) (	"+ ��� � �����
 � �
�� � �� � �

�,� �$%� ���	� � ' )���
	� ��) 	�� �� � �� ""����
� '
	� 	��	"� �� ���� � �����
� (	"+ �� � �

�� �!�
� �� ""����
 � - �� � &�
�, ��� �� � - �� � �� 	�
�	� �� ���� �
 #$�%�&

���� ��� ��	�� � �� -� '
	� "	�"� �	�� � �� -� . ) �� -� / � �� -� '
���
� ) �� -� . ) �� � / " �� '� -� 	� ) ��� . 0 '
	� ��� � - ���� ���� �

�, ��� �� � - �� 	�
�	� �� ���� �
 #$�%�&
����  �
�"� �� � � �����
 	���) ��� �	��

� ��� ��) ��� ������ ) �� -� �
�, ��� �� � - 
�1� �
� � �����
 	2� ������ 	� �	� �� #$�%�&

���� 
����� �� �
��& �� 

�3� 4� �� ���� � �

——————————————————————————————–

During the search whenA∗ explores the search graphG, it builds up a traver-
sal tree T composed of the nodes in OPEN or CLOSED and pointers be-
tween them. T is a subgraph of G. The leaf nodes of T are either in OPEN
or in CLOSED. The latter leaf nodes were selected for expansion but no
successors could have been generated to them. The interior nodes are also
in either CLOSED or in OPEN . The reason for an interior node to be in
OPEN is found in step (5.3) in the pseudocode. The set of path candidates
that A∗ has found so far includes the paths obtained by tracing back the
pointers from every leaf node to the start node s.

Dijkstra’s shortest path algorithm [19] is a special case of the A∗ algorithm
where h(n) = 0 for every node n.
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Figure 2.1: A 2-D grid with three obstacles: A∗ [2].

2.2 TERMINATION AND COMPLETENESS OF A∗

Definition 2.2.1 [57, p. 75] A search algorithm is complete if it terminates
with a solution when one exists.

A∗ always terminates on finite graphs with strictly positive edge costs. The
reason is that the number of acyclic paths in each finite graph is finite and
with every node expansionA∗ adds new edges to its traversal tree. Each newly
added edge represents a new acyclic path and so the reservoir of paths must
eventually be exhausted [57, p. 76].

Lemma 2.2.1 [57, p. 77] If a solution path Ps−γ exists, then OPEN cannot
be empty and A∗ cannot exit with failure, in line (2) in the pseudocode,
before Ps−γ is discovered.

Proof: Assume that A∗ exits with failure. Then there would be a last node
n′ ∈ Ps−γ in OPEN which is expanded and found to generate no new suc-
cessors (at least one node, the start node s, from Ps−γ has surely entered
OPEN). This, however, contradicts the assumption that n′ lies on a solution
path since every such node, except a goal node, has at least one successor
also lying on a solution path. 2

It follows that A∗ is complete on finite graphs [57, pp. 76–77].

Theorem 2.2.2 [57, p. 77] If the cost of every infinite path in a locally finite
graph is unbounded, then A∗ is complete on that graph.

Proof: Consider the set of nodes on the solution path Ps−γ ; all these nodes
are assigned finite f values, and at all times at least one of them is in OPEN.
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If A∗ does not return a solution, then it does not terminate at all. The lat-
ter follows from Lemma 2.2.1: A∗ cannot exit with failure since the solution
path Ps−γ is assumed to exist. If A∗ does not terminate, then it must be chas-
ing an infinite path. Then, however, the infinite path has a bounded cost
since otherwise all the nodes on Ps−γ would have been expanded. This is a
contradiction. 2

Note that the proof does not actually require that all edge costs are strictly pos-
itive; it is enough to assume that the cost of every infinite path is unbounded.
We will return to this subject later, in Section 3.2. In the following, however,
we assume that all the edge costs are strictly positive.

2.3 ADMISSIBILITY OF A∗

Definition 2.3.1 [57, p. 75] An algorithm is admissible if it is guaranteed to
return an optimal solution whenever a solution exists.

Definition 2.3.2 [57, p. 77] A heuristic function h is admissible if it under-
estimates the cost of an optimal solution path from n to the goal nodes in Γ,
h(n)∗, i.e.,

h(n) ≤ h∗(n) ∀n. (2.2)

Before proving that A∗ guided by an admissible heuristic is admissible, we
present two lemmas. The lemmas tell us properties of nodes on an optimal
path P ∗

s−γ . Let us first introduce some more terminology.
From now on, we use the phrases ‘an OPEN node’ and ‘a node in OPEN’

as synonyms. The phrase ‘the shallowest OPEN node on a path’ means the
node n that is in OPEN and whose g -value on that path (from s to n) is the
smallest. Let f ∗ and g∗ (such as h∗ above) denote the optimal, that is, the
minimum values of the variables, respectively.

Lemma 2.3.1 [57, pp. 77–78] At any time beforeA∗ guided by an admissible
heuristic terminates, there exists an OPEN node n′ on P ∗

s−γ with f(n′) ≤ C∗,
where C∗ is the cost of P ∗

s−γ .

Proof: Consider any optimal path P ∗
s−γ ;

P ∗
s−γ = s, n1, n2, . . . , nk, n

′, . . . , γ. (2.3)

Let n′ be the shallowest OPEN node on P ∗
s−γ (there is at least one OPEN

node on P ∗
s−γ because γ is not CLOSED until termination), that is, all an-

cestors of n′ are in CLOSED (see line (3) in the pseudocode of A∗). Since
the path s, n1, n2, . . . , nk, n

′ is optimal, it must be that the pointer assigned
to n′ is towards nk ∈ P

∗
s−n′ (see line (5.2) in the pseudocode of A∗). It follows

that g(n′) = g∗(n′). Using the admissibility of h, we obtain

f(n′) = g∗(n′) + h(n′) ≤ g∗(n′) + h∗(n′) = f ∗(n′) = C∗. (2.4)

2
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Lemma 2.3.2 [57, p. 78] (Corollary of Lemma 2.3.1): Let n′ be the shal-
lowest OPEN node on an optimal path P ∗

s−n′′ to any arbitrary node n′′, not
necessarily in Γ. Then

g(n′) = g∗(n′) (2.5)

and the pointer path from n′ to s will remain unaltered through the search.

Proof: It follows directly from the proof of Lemma 2.3.1, where the equality
g(n′) = g∗(n′) was established without using the fact that n′ is in the role of
a goal node. 2

Theorem 2.3.3 [57, p. 78] A∗ guided by an admissible heuristic h is admis-
sible.

Proof: Suppose A∗ terminates with a goal node γ ∈ Γ for which f(γ) =
g(γ) > C∗. When γ was chosen for expansion, it satisfied

f(γ) ≤ f(n) ∀n ∈ OPEN. (2.6)

The latter follows from line (3) in the pseudocode of A∗. This means that,
immediately prior to termination, all the nodes in OPEN satisfied f(n) >
C∗. This, however, contradicts Lemma 2.3.1 which guarantees the existence
of at least one OPEN node n′ with f(n′) ≤ C∗. Therefore the terminating γ
must have g(γ) = C∗, which means that A∗ returns an optimal path. 2

2.4 CONDITIONS FOR NODE EXPANSION BY A∗

In this section, we will examine properties of nodes expanded and not ex-
panded by A∗. In the following, we assume that the heuristic used by A∗ is
admissible.

Theorem 2.4.1 [57, p. 79] No node expanded by A∗ can have an f value
exceeding C∗:

f(n) ≤ C∗ ∀n expanded. (2.7)

Proof: Follows directly from Lemma 2.3.1. 2

Theorem 2.4.2 [57, p. 79] Every node in OPEN for which f(n) < C∗ will
eventually be expanded by A∗.

Proof: Suppose, at some stage, n is found in OPEN with f(n) < C∗. A∗

terminates with f(γ) = C∗ after selecting γ for expansion from OPEN . The
fact that γ, not n, was selected means either that n was expanded before γ or
that f(n) has in the meantime been modified so as to exceed C∗. But f can
only be modified downward, see line (5.2) in the pseudocode of A∗. Thus n
has to be expanded before γ. 2

Theorems 2.4.1 and 2.4.2 constitute a necessary and a sufficient condition for
A∗ to expand nodes, respectively. The nodesm for which f(m) = C∗ may or
may not be expanded by A∗. This remains to be decided by the tie-breaking
rule employed in the particular implementation of A∗; the tie-breaking rule
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decides in which order the nodes with the same f value are expanded, see
also line (3) in the pseudocode of A∗.

Theorems 2.4.1 and 2.4.2, giving simple conditions for node expansions,
have two weaknesses. First, the function g(n), in f(n) = g(n) + h(n), is not
only a property of node n but also depends on which path to n A∗ has found
most recently. Second, Theorem 2.4.2 requires that n resides in OPEN.
Whether or not a given node ever enters OPEN depends not on n itself but
on the behavior of A∗ while exploring the paths leading to n. The following
results overcome these difficulties. Now, we write gP (n) and fP (n) to em-
phasize that these function values depend also on the most recently found
path to n.

Definition 2.4.1 [57, p. 80] A path P is C-bounded relative to f if every node
n along this path satisfies fP (n) ≤ C. Similarly, if a strict inequality holds for
every n along P, then P is strictly C-bounded.

Definition 2.4.1 is also valid for more general evaluation functions fP than
the additive one, fP (n) = gP (n) + h(n), that A∗ uses.

Now we formulate a necessary and a sufficient condition for A∗ to expand a
node. These are important tools in the analysis of the performance of A∗.

Theorem 2.4.3 [57, pp. 80–81] A sufficient condition for A∗ to expand a
node n is that there exists some strictly C∗-bounded path P from the start
node s to n.

Proof: Assume to the contrary that there exists a strictly C∗-bounded path P
from s to n and at termination its final node n has not yet been expanded. Let
n′ be the shallowest OPEN node on P (at termination). Since all ancestors
of n′ are in CLOSED, the g value that A∗ assigns to n′ cannot be more costly
than gP (n′); hence

f(n′) = g(n′) + h(n′) ≤ gP (n′) + h(n′) < C∗. (2.8)

But then n′ should have been chosen for expansion instead of the goal node
γ for which f(γ) = C∗. That contradicts our assumption that an OPEN
node n′ could exist on P and, hence, n must be expanded. 2

Theorem 2.4.4 [57, p. 81] A necessary condition for A∗ to expand a node n
is that there exists a C∗-bounded path from the start node s to n.

Proof: If A∗ expands a node n, then n must be in OPEN and f(n) ≤ C∗

(Theorem 2.4.1). Consider a pointer path PP that A∗ has assigned to n at the
time of its expansion (see line (5) in the pseudocode of A∗). Each ancestor
n′ of n along PP has been chosen for expansion (perhaps more than once)
some time in the past at which time it satisfied gP ′(n′) + h(n′) ≤ C∗ (from
Theorem 2.4.1). Its current g(n′) value along PP cannot be higher than its
gP ′(n′) value at the time of expansion. Consequently every node n′ along PP
currently satisfies f(n′) ≤ C∗, meaning that PP itself is C∗-bounded. 2

Based on Theorems 2.4.3 and 2.4.4 nodes in a graph can be divided into two
sets: nodes surely expanded by A∗ and nodes surely skipped by A∗.
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Definition 2.4.2 [17] The set of nodes surely expanded by A∗ is a set of
nodes n to which there exists a strictly C∗-bounded path P from the start
node s, i.e., for all nodes n′ along P : f(n′) < C∗.

Definition 2.4.3 The set of nodes surely skipped by A∗ is a set of nodes n to
which there does not exist a C∗-bounded or a strictly C∗-bounded path from
s, i.e., the nodes n for which f(n) > C∗.

Now, we can take the union of the sets in Definitions 2.4.2 and 2.4.3 and
then its complement. This is a set of nodes that A∗ may or may not expand,
that is, nodes n to which there exists a C∗-bounded and not a strictly C∗-
bounded path from s: f(n) = C∗. The expansion of these nodes depends on
the tie-breaking rule of a particular implementation of A∗.

2.5 THE EFFECTIVENESS OF PATH FINDING ALGORITHMS

In this section, we clarify what we mean by saying that “a path finding algo-
rithm A1 is better or more efficient than another one A2”. We identify three
different criteria for effectiveness. The two first ones measure the number of
expansions of distinct nodes, that is, if a node is expanded many times only
the first expansion is recorded.

Definition 2.5.1 [57, p. 75] An algorithm A1 dominates A2 if every node
expanded by A1 is also expanded by A2.

Definition 2.5.2 An algorithm A1 largely dominates A2 if every node surely
expanded by A1 is also expanded by A2, cf. [17] and [57, p. 85].

In case of two A∗ algorithms, A∗
1 and A∗

2, Definition 2.5.2 allows some nodes
n for which f1(n) = C∗ to be expanded by A∗

1 and possibly skipped from
expansion by A∗

2. How many such nodes an algorithm expands before find-
ing a solution depends on its tie-breaking rule, cf. Section 2.4. Usually it is
assumed that the number of these nodes is small. This does not always have
to be the case, however.

The above definitions are rather strong because they require that in order for
A1 to be superior over A2, A1 must pass two difficult tests:

(1) to expand a subset of nodes rather than a smaller number of nodes,

(2) to outperform A2 in every problem instance rather than in the majority
of instances.

Unfortunately, there seems to be no easy way of loosening the above require-
ments without having to make statistical assumptions of problem instances
and their relative likelihoods. This is because if in some problem instance
A2 skips even one node that is expanded by A1, then one could immediately
construct an infinite set of instances where A2 outperforms A1. This can be
done by appending to the skipped node a variety of trees with negligible costs
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(and low heuristic values) [18].

The third criterion measures the total number of node expansions. Remem-
ber that A∗ can reopen closed, expanded, nodes and expand them again later
which this criterion takes into account. This criterion actually measures the
number of iterations between lines (2) and (6) in the pseudocode of A∗. In
the literature, there is no common name reserved for this criterion.

2.6 PRUNING POWER OF ADMISSIBLE HEURISTICS IN A∗

The power of the heuristic estimate h is measured by the amount of prun-
ing induced by h and depends on the accuracy of this estimate. If h esti-
mates the path cost precisely (h(n) = h∗(n) ∀n), then A∗ will only expand
nodes lying along optimal paths. On the other hand, if no heuristic at all is
used (h(n) = 0 ∀n), a breadth-first search will expand exhaustively all nodes
reachable from s by a path costing less than C∗. The more common cases lie
somewhere between these two extremes.

Theorem 2.6.1 Let two A∗ algorithms A∗
1 and A∗

2 be guided by admissible
heuristics h1 and h2, respectively. If h1(n) > h2(n) for every nongoal node
n, then A∗

1 dominates A∗
2, cf. [57, p. 81].

Proof: Assume that A∗
1 expands a node n. From Theorem 2.4.4 it follows

that there must exist a C∗-bounded path P from s to n if judged by h1. Since
h1(n

′) > h2(n
′) for every node n′ along P , P is strictly C∗-bounded when

judged by h2. Hence, by Theorem 2.4.3, A∗
2 must also expand n. 2

If the relation h1(n) > h2(n) for every nongoal node n holds between two
admissible heuristics, then we say that h1 is more informed than h2.

Theorem 2.6.2 Let two A∗ algorithms A∗
1 and A∗

2 be guided by admissible
heuristics h1 and h2, respectively. If h1(n) ≥ h2(n) for every node n, then
A∗

1 largely dominates A∗
2, cf. [57, p. 85].

Proof: If n belongs in the set of nodes surely expanded by A∗
1, then there

must exist a strictly C∗-bounded path P from s to n if judged by h1. Since
h1(n

′) ≥ h2(n
′) for every node n′ along P , P is also strictly C∗-bounded

when judged by h2. Hence, by Theorem 2.4.3, A∗
2 must also expand n. 2

Notice the difference between Theorems 2.6.1 and 2.6.2: In Theorem 2.6.2
there may be some nodes that A∗

1 expands but A∗
2 doesn’t. Theorem 2.6.2

is more useful of the two because it allows situations where h1(n) = h2(n)
for some n. These situations arise, for example, if an admissible heuristic is
formed as a maximum of several admissible heuristics.

Theorem 2.6.1, however, can allow h1(n) = h2(n) if the two algorithms
A∗

1 and A∗
2 have the same tie-breaking rule that is purely structural, that is, it

does not depend on the values of g and h, see [57, p. 112] exercise 3.1. An
example of a purely structural tie-breaking rule is: If there are several nodes
with the same f value to be expanded next, then always expand first the
leftmost node in the search tree (here, of course, we assume that the search
trees of the two algorithms are constructed in the same way).
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2.7 A∗ AND MONOTONE (CONSISTENT) HEURISTICS

In this section, we will show that under certain conditions A∗ never reopens
a node from CLOSED, and consequently the work related to re-expansions
can be saved. Also some other useful properties follow.

The condition that enables A∗ to forgo reopenings is a certain property of
the heuristic h. The heuristic should be “geometric” in nature, which means
that it should satisfy the triangle inequality.

Definition 2.7.1 [57, p. 82] Let a node m be a descendant of a node n.1 A
heuristic function h(n) is consistent if it satisfies:

h(n) ≤ k(n,m) + h(m), (2.9)

for all pairs of nodes n and m, where k(n,m) denotes the cost of a cheapest
path from n to m.

Definition 2.7.2 [57, p. 83] A heuristic function h(n) is monotone if it sat-
isfies

h(n) ≤ c(n, n′) + h(n′) ∀n, n′; n′ ∈ succ(n), (2.10)

where succ(n) denotes the set of successors to n.

Clearly, consistency implies monotonicity but it follows from a proof by in-
duction that monotonicity also implies consistency:

Theorem 2.7.1 [57, p. 83] Monotonicity and consistency are equivalent prop-
erties.

It is also simple to prove that consistency (monotonicity) implies admissibil-
ity.

Theorem 2.7.2 [57, p. 83] Every consistent heuristic is also admissible.

Proof: We replace m in the equation of Definition 2.7.1 by any goal node
γ ∈ Γ, obtaining

h(n) ≤ k(n, γ) + h(γ) ∀n. (2.11)

Now, since h(γ) = 0 and k(n, γ) = h∗(n) for some goal node γ ∈ Γ, we
have the admissibility condition h(n) ≤ h∗(n). 2

It follows from the next theorem that an A∗ using a consistent (monotone)
heuristic never reopens nodes from CLOSED.

Theorem 2.7.3 [57, pp. 83–84] An A∗ guided by a consistent heuristic finds
optimal paths to all expanded nodes, i.e.,

g(n) = g∗(n) ∀n ∈ CLOSED. (2.12)

1The node m is any node in the subtree of the traversal tree of A∗ starting from n.

2. BACKGROUND 13



Proof: Assume that A∗ selects for expansion a node for which g(n) > g∗(n).
Consider an optimal path P ∗

s−n from s to n. If n is the only OPEN node
on P ∗

s−n, then obviously all the ancestors of n have been expanded and from
Lemma 2.3.2 it follows that g(n) = g∗(n). Otherwise, if n is not the only
OPEN node on P ∗

s−n, then let n′ be the shallowest OPEN node on P ∗
s−n.

Lemma 2.3.2 states that g(n′) = g∗(n′) and therefore, using consistency, we
have

f(n′) = g∗(n′) + h(n′) ≤ g∗(n′) + k(n′, n) + h(n). (2.13)

The sum g∗(n′) + k(n′, n) is equal to g∗(n) because n′ is an ancestor of n
along P ∗

s−n and so
f(n′) ≤ g∗(n) + h(n). (2.14)

Now the assumption g(n) > g∗(n) implies f(n′) < f(n) and hence n′

should have been expanded before n. Thus g(n) = g∗(n). 2

Theorem 2.7.4 [57, p. 84] Monotonicity implies that the f values of the se-
quence of nodes expanded by A∗ are non-decreasing.

Proof: Let n2 be expanded immediately after n1. If n2 resided in OPEN
while n1 was expanded, then f(n1) ≤ f(n2) follows from the node selection
rule of A∗. If n2 did not reside there, then n2 must be a successor to n1

for which we have g(n2) = g(n1) + c(n1, n2) and for which monotonicity
dictates:

f(n2) = g(n1) + c(n1, n2) + h(n2) ≥ g(n1) + h(n1) = f(n1). (2.15)

2

Note that Theorem 2.7.4 guarantees only implication. Later in Section 2.12.1,
we will encounter a variant of A∗ that always produces a non-decreasing se-
quence of f values but its heuristic does not have to be monotone (consis-
tent).

Monotonicity simplifies the necessary and sufficient conditions for node ex-
pansions and the definition of the corresponding sets, cf. Theorems 2.4.3,
2.4.4 and Definitions 2.4.2, 2.4.3. This is mainly due to Theorem 2.7.3 stat-
ing that g(n) = g∗(n) whenA∗ expands node n for the first time. This means
that the following conditions indeed are functions of n only.

Theorem 2.7.5 [57, p. 84] If h is monotone, then the necessary condition
for expanding node n is given by

g∗(n) + h(n) ≤ C∗ (2.16)

and the sufficient condition by the strict inequality

g∗(n) + h(n) < C∗. (2.17)

Proof: The necessary condition follows by combining Theorems 2.4.1 and
2.7.3. The sufficient condition is based on the non-decreasing nature of f
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values along an optimal path P ∗
s−n from s to n. If n′ is the parent of n along

P ∗
s−n, then from Theorem 2.7.4 it follows that

f(n′) = g∗(n′) + h(n′) ≤ g∗(n) + h(n) = f(n). (2.18)

This implies that if n satisfies g∗(n)+h(n) < C∗, all its ancestors along P ∗
s−n

must also satisfy this inequality. Thus P ∗
s−n is strictly C∗-bounded and, ac-

cording to Theorem 2.4.3, n will be expanded by A∗. 2

The sets of nodes thatA∗ surely expands and never expands, Definitions 2.4.2
and 2.4.3, can now be easily defined by using the above conditions for node
openings. The set of nodes that A∗ may or may not expand is {n | g∗(n) +
h(n) = C∗}.

Finally, let us present an easily provable theorem that we will need later.

Theorem 2.7.6 The maximum of two monotone heuristics is monotone.

2.8 ON GENERALIZED BEST-FIRST ALGORITHMS

This section introduces some generalizations, or extensions, of the A∗ algo-
rithm. In the following, let us again assume a locally finite graph G with
a start node, a non-empty set of goal nodes, and strictly positive edge costs.
Now the cost of a path in G can be an arbitrary function of possible weights
assigned to the nodes and branches along that path.

A general best-first strategy (GBF) [18, pp. 505–506] searches G by construct-
ing a tree T of selected paths of G using the elementary computational op-
eration of node expansion, that is, generating all successors of a given node.
GBF starts searching from s and will expand a leaf node of T that is “most
promising” measured by an evaluation function f . GBF will maintain in
T all previously encountered paths that still may be candidates for the best
solution path. GBF stops when no such candidate is available for node ex-
pansion. The solution is then the best solution path found so far, or a failure
if no such path has been found.

GBF has a more general evaluation function than f = g + h of A∗. For
example, the evaluation functions can include multiplicative, maximum,
most frequent, last, and average costs along paths, etc. In cases of addi-
tive cost, f(n) can be a function of the path from s to n, for example,
f(n) = maxn′{g(n′)+h(n′)}, where n′ is a node on the path to n. The latter
evaluation function is used, for example, in the A∗∗ algorithm discussed in
Section 2.12.1. In Chapter 4, we will encounter an f that is a function of the
search tree.

Usually, f is restricted to be order preserving, [18, p. 506]. An evaluation
function is order preserving if, for any two paths P1 and P2, leading from s to
n, and for any common extension P3 of those paths, it holds that:

f(P1) ≥ f(P2)⇒ f(P1P3) ≥ f(P2P3). (2.19)
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Order preservation is a version of the so-called principle of optimality in dy-
namic programming [22] that simply states that every subpath of an optimal
path is also optimal. If the above is true, then there is no need to keep in the
search tree T multiple paths to the same node; each time a node n is gener-
ated that already is in the search tree, we maintain only the lower f or g path
to it, see for example line (5.2) in the pseudocode ofA∗ and line (5.2’) below.

We call the GBF with the above order preserving evaluation function BF∗.
This section introduces some notions and properties of BF∗ algorithms from
[57, 18]. The notions, lemmas and theorems are somewhat analogous to those
of A∗ in Sections 2.2– 2.4. We will use these results to compare the per-
formance of A∗ to that of other BF∗ algorithms, GBF strategies, and other
generalized search procedures in Section 2.9 and Chapter 3.

The pseudocode of the BF∗ algorithm is identical to that of A∗ in Sec-
tion 2.1, except that the evaluation function is now simply f (not g + h) and
is calculated just above line (5.1), and line (5.2) is replaced with line (5.2’)
(g is replaced with f ) [18, p. 506]:
�, �� -� �� � - �� 	�
�	� �� ���� �
 #$�%�&

����  �
�"� �� � � �����
 	���) ��� �	�� � ��� ��)
��� ������ � �� -� !	��� �

Despite the difference between lines (5.2) and (5.2’), A∗ is a BF∗ algorithm
since it does not matter whether f or g is used in redirecting pointers on line
(5.2) (f(n) = g(n) + h(n) in A∗ is order preserving). Depth-first strategies
can be obtained from BF∗ by setting f(n′) = f(n)− 1, f(s) = 0, where the
node n′ is a successor to n.2 If a locally finite graph to be searched contains
an infinite number of nodes, then the depth-first strategy may not terminate
even if a solution path with a bounded cost exists.

In the following, let us assume that f ≥ 0. We start the study of BF∗ al-
gorithm without assuming any relationships between the cost C, defined on
complete solution paths, and the evaluation function f , defined on partial
paths. The next results and more can be found in references [57, 18]. The
presentation follows [18] and we refer only to it.

In locally finite graphs, the set of solution paths is countable [18, p. 509],
hence they can be enumerated:

P S
1 , P

S
2 , . . . , P

S
j , . . . (2.20)

and we can use the notation fj(n) to represent fP S
j
(n). Let a non-negative

real number M be
M = min

j
{max

n∈P S
j

{fj(n)}}. (2.21)

We call M the minmax value related to the evaluation function f or the
minmax value for algorithm A (using f ). For example, let M be the minmax
value for A∗. If the heuristic h is admissible (h(n) ≤ h∗(n) ∀n) then M =
C∗, the cheapest cost of any solution path, by Theorem 2.4.1. If the heuristic
can be nonadmissible, then M ≥ C∗.

2Here we let the f -values become negative.
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2.8.1 Termination and Completeness

We state the following lemma without a proof. The proof is found in [18, pp.
509–510].

Lemma 2.8.1 [18, pp. 509–510] At any time before BF∗ terminates, there
exists in OPEN a node n′ that is on some solution path and for which f(n′) ≤
M .

Lemma 2.8.1 is analogous to Lemma 2.3.1 in Section 2.3. The next theorem
is a counterpart of Theorem 2.2.2.

Theorem 2.8.2 [18, p. 510] If there is a solution path and f is such that
fP (n) is unbounded along any infinite path P , then BF∗ terminates with a
solution, i.e., BF∗ is complete.

Proof: In any locally finite graph, there is only a finite number of paths with
finite length. If BF∗ does not terminate, then there is at least one infinite
path along which every finite-depth node will eventually be expanded. That
means that f must increase beyond bounds and, after a some time τ , no
OPEN nodes on any given solution path will ever be expanded. However,
from Lemma 2.8.1, f(n′) ≤ M for some OPEN node n′ along a solution
path, which contradicts the assumption that n′ will never be chosen for ex-
pansion. 2

The condition of Theorem 2.8.2 may not hold for cost measures such as the
maximum of the edge costs along the path. In this situation, as well as the
case of depth-first strategies (f ≤ 0), termination cannot be guaranteed on
graphs having infinite number of nodes. Then the termination must be con-
trolled, for example, by using succeeding increasing but finite depth bounds.
An example is the depth-first iteratively deepening A∗ algorithm IDA∗ in
[40].

2.8.2 Solution Quality and Admissibility of BF ∗

We have not yet specified any relation between the cost C of solution paths,
and the evaluation function f of partial paths or solution candidates. Since
f is a tool to guide the search toward the cheapest solution paths, we define
that f is monotonic with C when evaluated on complete solution paths: If P
and Q are two solution paths with C(P ) > C(Q), then f(P ) > f(Q). So,
let

f(s, n1, n2, . . . , n) =

{

ψ(C(s, n1, n2, . . . , n)) n ∈ Γ,

F (s, n1, n2, . . . , n) n 6∈ Γ,
(2.22)

where ψ : C(·) → R+ is an increasing function of C(·) over the positive
reals. No constraints, however, are assumed concerning the relation be-
tween C and f on nongoal nodes; F (·) is an arbitrary function of the path
P = s, n1, n2, . . . , n. The evaluation function f = g + h used by A∗ is an
example of the above function: For a goal node γ ∈ Γ, h(γ) = 0 implies
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f = C on solution paths, whereas on other paths f is not necessarily related
to C, since h could take on arbitrary values.

We now give two results concerning the cost of a solution path using the
above relationship.

Theorem 2.8.3 [18, p. 511] BF∗ is ψ−1(M) -admissible, i.e., the cost of the
solution path found by BF∗ is at most ψ−1(M).

Proof: Let BF∗ terminate with a solution path P S
j = s, . . . , γ where γ ∈ Γ.

From Lemma 2.8.1, it follows that BF∗ cannot select for expansion any node
n having f(n) > M , where M is the minmax value related to f . This in-
cludes the node γ ∈ Γ and, hence, fj(γ) ≤ M . But the above constraint on
f implies that fj(γ) = ψ(C(P S

j )) and so, since ψ and ψ−1 are monotonic,
C(P S

j ) ≤ ψ−1(M). 2

Theorem 2.8.3 is useful in calculating the cost of the solution path a nonad-
missible algorithm finds as a function of the cost of the existing optimal path,
i.e., the degree of suboptimality, as we will see later in Section 2.11. Karp
and Pearl [38] have used Theorem 2.8.3 in studying search on graphs with
random costs where they have used estimates of M to establish probabilistic
bounds on the degree of suboptimality.

Theorem 2.8.3 can also be used to check for admissibility, when C(P S) =
C∗: We only need to verify the equality ψ−1(M) = C∗. For studying admis-
sibility, however, we preferably use the next corollary.

Corollary 2.8.4 (of Theorem 2.8.3) [18, pp. 512–513] If in every graph
searched by BF∗ there exists at least one optimal solution path along which
f attains its maximal value on the goal node, then BF∗ is admissible.

Proof: Let BF∗ terminate with a solution path P S
j = s, . . . , t and let P ∗ =

s, . . . , γ be an optimal solution path such that maxn∈P ∗ fP ∗(n) = fP ∗(γ).
By Theorem 2.8.3, we know that fj(t) ≤ M . Moreover, we have M ≤
maxn∈P S

i
fi(n) for every solution path P S

i . In particular, taking P S
i = P ∗,

we obtain
fj(t) ≤M ≤ max

n∈P ∗

fP ∗(n) = fP ∗(γ). (2.23)

However, from the constraint on f we know that f is monotonically increas-
ing in C when evaluated on complete solution paths; thus

fj(t) = ψ(C(P S
j )) ≤ fP ∗(γ) = ψ(C∗), (2.24)

implying C(P S
j )) ≤ C∗. 2

Dechter and Pearl [18] demonstrate the use of the above corollary by cal-
culating the range of admissibility of a weighted evaluation function fw =
(1 − w)g + wh, 0 ≤ w ≤ 1 [58]. Here ψ(C) = (1 − w)C for w < 1. It
remains to examine which values of w < 1 will force fw to get its maximum
value at the end of an optimal path P ∗. For more details, see [18, p. 513].

The above corollary can also be used to check whether a given combi-
nation of g and h, f = f(g, h), would result in an admissible heuristic in
problems of minimizing additive cost measures. For more details, see again
[18, p. 513].
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2.8.3 Conditions for Node Expansion

To save space, we state here only two results without proofs. For a more
thorough treatment of the subject, see [57, 18]. The next theorem follows
directly from Lemma 2.8.1. Its counterpart is Theorem 2.4.1, where C∗ plays
the role of the minmax value M .

Theorem 2.8.5 [18, p. 514] Any node expanded by BF∗ has f(n) ≤ M
immediately before its expansion.

Let us define a strictly M -bounded path analogously to Definition 2.4.1 in
Section 2.4 (replace C by M). The following theorem, a sufficient condition
for BF∗ to expand a node, is a counterpart of Theorem 2.4.3.

Theorem 2.8.6 [18, p. 514] Any node reachable from s by a strictly M -
bounded path will be expanded by BF∗.

In later sections, we will use the above result to compare the performance of
A∗ to that of other generalized path finding algorithms.

2.9 MORE OPTIMALITY PROPERTIES OF A∗

In this section, we show that A∗ is an “effective” path searching algorithm.
We first compare the performance of A∗ to that of a class of GBF strategies
that are admissible and equally informed as A∗. An algorithm is equally in-
formed asA∗ if it has access to the same heuristic information h asA∗ but can
use h in any way it likes. The admissibility requires that the algorithm finds
a least-cost solution, like A∗, when h(n) ≤ h∗(n) ∀n ∈ G. We denote this
class of algorithms Aad. If h(n) > h∗(n) then solutions found by algorithms
in Aad and A∗ may be of different cost.

Additionally, we assume that every algorithm A in Aad uses the primitive
step of node expansion, and A only expands nodes that it has generated be-
fore. Furthermore, A always begins the expansion process at the start node
s. GBF (and BF∗) strategies in Section 2.8 satisfy these requirements. The
requirements exclude, however, bidirectional searches or algorithms that si-
multaneously grow search trees from several “seed nodes” across G.

We assume that a heuristic h(n) is assigned to the nodes of G and the
value h(n) is available to each path finding algorithm that generates n. Thus
h is “static” in the sense that its values do not depend on the search process
of an algorithm. Hence we can actually set h(n) as one of the parameters
that specify problem instances. Let us denote such a problem instance by
the quadruple I = (G, s,Γ, h). In particular, we are interested in two sets of
problem instances where the heuristic h is admissible or consistent (mono-
tone), [18, p. 522]:

IAD = {(G, s,Γ, h) | h(n) ≤ h∗(n) ∀n ∈ G}, (2.25)

ICON = {(G, s,Γ, h) | h is consistent on G}. (2.26)
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Now we require that consistency (or monotonicity) holds for any pair of nodes
in G. Since consistency (monotonicity) implies admissibility but not vice
versa ICON ⊆ IAD.

In the following, the nodes surely expanded by algorithm A means the set
of nodes that A is always guaranteed to expand before it finds a solution path.
We recall from Theorem 2.4.3, Definitions 2.4.1 and 2.4.2, that if the algo-
rithm is A∗, then the set of nodes surely expanded by A∗ has a characterizing
property: All the nodes n to which there exists a strictly C∗-bounded path
belong to this set. We also saw that a similar property holds for nodes surely
expanded by BF∗ in Theorem 2.8.6.

We are now more precise when we define the notion of dominance, cf. Def-
inition 2.5.2.

Definition 2.9.1 [17] An algorithm A is optimal over a class A of algorithms
relative to a set I of problem instances if in each instance of I, every algorithm
in A will expand all the nodes surely expanded by A in that problem instance.

Dechter and Pearl [18] refine the concept of optimality by noting that A∗

does not stand for just one but a whole family of algorithms, each defined by
the tie-breaking rule chosen. They identified four different optimality crite-
ria. We, however, do not go into details and later use mostly the optimality
in Definition 2.9.1.

The next theorem guarantees that A∗ is an optimal algorithm according to
Definition 2.9.1 over the class Aad of algorithms relative to problem in-
stances ICON , that is, where the heuristic h is consistent (monotone). We
also present the proof since we will prove new theorems in later sections by
modifying the proof’s structure. Let N

C∗

f = N
C∗

g+h denote the set of nodes
surely expanded by A∗.

Theorem 2.9.1 Any algorithm that is admissible on IAD, i.e., any algorithm
in Aad will expand, in every instance I ∈ ICON , all nodes surely expanded
by A∗, cf. [18, pp. 522–524] and [17].

Proof: Let I = (G, s,Γ, h) be some problem instance in ICON and assume
that n is surely expanded by A∗, i.e., n ∈ N

C∗

g+h. Therefore there exists a path
Ps−n such that

g(n′) + h(n′) < C∗ ∀n′ ∈ Ps−n. (2.27)

Let B be an algorithm in Aad, namely, halting with cost C∗ in I , and assume
that B does not expand n. Moreover, assume that if there is only one least-
cost solution path in G, then it does not go via n. If the only least-cost path
goes via n, then B must also expand n in order to be in Aad.

We now construct a new graph G′, see Figure 2.2, by adding to G a goal
node t with h(t) = 0 and an edge from n to t with nonnegative cost c(n, t) =
h(n) + ∆, where

∆ =
1

2
(C∗ −D) > 0 and D = max{f(n′) | n′ ∈ N

C∗

g+h}. (2.28)
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Figure 2.2: The graph G′ is constructed from G by including a new solution
path going via n to the new goal node t.

This construction creates a new solution path P ∗ with a cost C(P ∗) < C∗

and, simultaneously (owing to the consistency of h on I), retains the consis-
tency (and admissibility) of h on the new instance I ′ = (G′, s,Γ∪{t}, h). To
establish the consistency of h on I ′, we note that since we kept the h values
of all the nodes in G unchanged, consistency will continue to hold between
any pair of nodes previously in G. It remains to verify consistency on pairs
involving the new goal node t, which amounts to establishing the inequality
h(n′) ≤ k(n′, t) for every node n′ in G. Now, if at some node n′ we have
h(n′) > k(n′, t), then we should also have

h(n′) > k(n′, n) + c(n, t) = k(n′, n) + h(n) + ∆ (2.29)

in violation of the consistency of h on I . Thus the new instance I ′ is also in
ICON .

In searching G′, algorithm A∗ will find the extended path P ∗ with cost
C(P ∗) < C∗ because

f(t) = g(n) + c(n, t) = f(n) + ∆ ≤ D + ∆ < D + 2∆ = C∗ (2.30)

and, so, t is reachable from s by a path strictly bounded by C∗, which ensures
its selection.

AlgorithmB, on the other hand, if it avoids expanding n, must behave the
same as in problem instance I , halting with cost C∗, which is higher than
that found by A∗. This contradicts the supposition that B is both admissible
on I ′ and avoids the expansion of node n. 2

The above proof makes it tempting to conjecture that A∗ is also optimal rela-
tive to instances in which h is admissible but not necessarily consistent, that
is, instances in IAD. However, in the above theorem, if h is admissible but
not consistent, then, after adding the goal node t to G we cannot guarantee
that h will remain admissible on the new instance I ′ [18, p. 524]. Moreover,
we can construct an algorithm that is admissible on IAD and in some prob-
lem instances, it will outperform A∗. For more details, see [17] and [18, pp.
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524–525]. However, if the search graph is a tree, then it will turn out that A∗

is the optimal algorithm relative to IAD, see Section 5.4.

Is there an optimal algorithm over Aad relative to IAD, in the following sense?
An optimal algorithm, if it exists, must skip in some problem instances in IAD

at least one node surely expanded byA∗, while it is not allowed to expand any
node that is surely skipped by A∗. In references [17] and [18, pp. 525–526],
Dechter and Pearl show that this is impossible relative to a subset of IAD,
for which there exists at least one optimal solution path along which h is not
fully informed, i.e., h(n) < h∗(n) for every non-goal node n on that path.
Let us denote this subset by I

−
AD. Note that in I

−
AD, all nodes expanded byA∗

equals to the set of nodes surely expanded by it.

Theorem 2.9.2 [18, pp. 525–526] and [17] If an algorithm B in Aad does
not expand a node that is surely expanded by A∗ in some problem instance
in I

−
AD, then, in that very problem instance, B must expand a node that is

avoided by every tie-breaking rule in A∗.

Theorem 2.9.2 states that although there does not exist an optimal algorithm
in the above sense, A∗ is not a bad choice: “The only way to gain one node
from A∗ is to relinquish another”.

We now compare A∗ with two subclasses of Aad: Agc and Abf . Agc denotes
the class of GBF algorithms (Section 2.8) that are globally compatible with
A∗, that is, they return optimal solutions whenever A∗ does, even in cases
where the heuristic is not admissible (h(n) > h∗(n) for some nodes n ∈
G). It is easy to see that A∗ ∈ Agc and Agc ⊆ Aad. Abf stands for the
class of BF∗ algorithms (Section 2.8), guided by a path-dependent evaluation
function, which are admissible if h(n) ≤ h∗(n) ∀n ∈ G. It is again easy
to see that A∗ ∈ Abf and Abf ⊆ Aad. However, no inclusion relation
holds between Agc and Abf , despite that BF∗ algorithms are a special class of
GBF algorithms. This is because algorithms in Abf may return non-optimal
solutions on the same instances where A∗ returns optimal solutions, that is,
when the heuristic is not admissible, see [18, pp. 520, 523].

Theorem 2.9.3 [18, p. 528] Any algorithm in Agc will expand, in every in-
stance I ∈ IAD, all nodes surely expanded by A∗.

The proof is analogous to that of Theorem 2.9.1. A new graph G′ is again
constructed from G by adding to G a new goal node, as in Figure 2.2, to
obtain a contradiction. For more details, see [18, p. 528].

Theorem 2.9.3 states that if we restrict the class of algorithms from Aad,
for which there exists no optimal algorithm, to the class Agc, then A∗ is an
optimal algorithm in that class in the sense of Definition 2.9.1.

The next theorem guarantees that A∗ is an optimal algorithm over the class
Abf . We present also the proof since we will modify it when we prove new
theorems in later sections.
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Figure 2.3: The graph G′ constructed from G with two solution paths going
to the new goal nodes t1 and t2.

Let a BF∗ algorithm in Abf be guided by an evaluation function fB(n) =
fP that is a function of the path P leading to the node n, that is, a function
of the nodes, the edge-costs and the heuristic values of the nodes along P :

fP = f(s, n1, n2, . . . , n) = f({ni}, {c(ni, ni+1)}, {h(ni)} | ni ∈ P ).
(2.31)

Theorem 2.9.4 Let B be an admissible BF∗ algorithm, i.e. B in Aad, using
the above evaluation function fB such that for every problem instance I ∈
IAD, fB satisfies

fB(γ) = fPs−γ
= f(s, n1, n2, . . . , γ) = C(Ps−γ) ∀γ ∈ Γ. (2.32)

Then B expands every node in N
C∗

g+h, i.e., every node surely expanded byA∗,
cf. [18, pp. 529–530].

Proof: Let N
C∗

fB
stand for the set of all the nodes that are reachable by some

strictly C∗-bounded path relative to fB . Let I = (G, s,Γ, h) ∈ IAD and
assume n ∈ N

C∗

g+h but n 6∈ N
C∗

fB
, i.e., there exists a path Ps−n such that for

every n′ ∈ Ps−n : gP (n′) + h(n′) < C∗ and, for some n′ ∈ Ps−n : fB(n′) ≥
C∗. Let

Q = max
n′∈Ps−n

{g(n′) + h(n′)} and QB = max
n′∈Ps−n

{fB(n′)}. (2.33)

Obviously, Q < C∗ and QB ≥ C∗ ⇒ QB > Q. Define G′ to include
only the path Ps−n with two additional goal nodes t1 and t2 as described in
Figure 2.3. The cost on edge (s, t2) is (QB + Q)/2; the cost on edge (n, t1)
is Q − gPs−n

(n); t1 and t2 are assigned h = 0, while all other nodes retain
their old h values. I ′ = (G′, s,Γ ∪ {t1, t2}, h) ∈ IAD since ∀n′ ∈ Ps−n :
g(n′) + h(n′) ≤ Q, which implies that h(n′) ≤ Q− g(n′) = h∗I′(n

′).
Clearly the optimal path in G′ is Ps−t1 with cost Q. However, the evalua-

tion function fB satisfies

Q < fB(t2) = C(Ps−t2) =
QB +Q

2
< QB. (2.34)

Since MPs−t1
= maxq∈Ps−t1

{fB(q)} ≥ QB , we have fB(t2) < MPs−t1
.

Hence B halts on the suboptimal path Ps−t2 , contradicting its admissibility.
Thus we have proved that N

C∗

g+h ⊆ N
C∗

fB
, cf. Lemma 6 in [18, p. 529].
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Now, let M be the minmax value related to the evaluation function fB on
G of I , defined in Section 2.8. It is easy to see that M ≥ C∗. From that and
Theorem 2.9.3 we get

N
C∗

g+h ⊆ N
C∗

fB
⊆ N

M
fB
, (2.35)

and Theorem 2.8.6 states that all the nodes in N
M
fB

are expanded by the ad-
missible BF∗ algorithm, cf. Theorem 12 (a) in [18, pp. 529–530]. 2

2.10 RELAXED MODELS AND ADMISSIBLE HEURISTICS

This section describes one method of generating admissible heuristics, namely
utilizing relaxed models.

Relaxed models are a well-known source of admissible heuristics [57, 72,

53, 30, 62, 61]. They are abstract problem descriptions generated by ignoring
constraints that are present in base-level problems [30]. The intuitive reason
that abstractions generate admissible heuristics is because they add short-cut
solution paths by simplifying the original problem [61]. Several authors em-
phasize, however, that relaxed problems should be easily solvable compared
with their original counterparts in order to speed up the overall computation
time, [72, 57, 53, 30].

Let a search problem be (G, c, s,Γ, h), whereG = (V,E) as before, s ∈ V
is the start node, Γ ⊆ V is a set of goal nodes, and h is a heuristic function.
Moreover, the cost function between any two nodes in V is c : V ×V → R+.
The following defines a relaxed model of a problem instance.

Definition 2.10.1 An abstracting transformation φ : G → G′ removes cer-
tain details (e.g. constraints) from the original problem (G, c, s,Γ, h) and
produces a relaxed problem or a relaxed model (G′, c′, s,Γ′, h′) iff φ reduces
all costs and preserves all the goals γ ∈ Γ:

c′(φ(n), φ(m)) ≤ c(n,m) ∀n,m ∈ V (2.36)

φ(γ) ∈ Γ′ ∀γ ∈ Γ, (2.37)

where c(n,m) and c′(φ(n), φ(m)) are the costs of the shortest paths between
the corresponding nodes, cf. [61].

The next theorem shows that heuristics generated by optimizations over re-
laxed models are monotone and thus admissible.

Theorem 2.10.1 [72, 57] Assign every node n in G of the original problem
a heuristic h(n) that is the cost of the optimal solution of a relaxed problem
instance with start node φ(n) in G′. Then h(n) is monotone for all n in G.

Proof: [57, p. 116] Suppose h(n) and h(n′) are the heuristics assigned to
nodes n, n′ in G (n 6= n′), respectively. These heuristics are minimum costs
from the corresponding nodes φ(n), φ(n′) in G′ to a goal φ(γ) ∈ Γ′. Thus
h(n) ≤ c′(φ(n), φ(n′)) + h(n′), where c′(φ(n), φ(n′)) is the relaxed optimal
cost. Otherwise c′(φ(n), φ(n′))+h(n′), instead of h(n), would constitute the
optimal cost from φ(n) to φ(γ) when φ(n) 6= φ(n′). Monotonicity follows
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from Definition 2.10.1: c(n, n′) ≥ c′(φ(n), φ(n′)), and from the condition
h(γ) = 0. 2

To satisfy the conditions of Definition 2.10.1, it suffices that n and m are
neighboring nodes in G.

2.11 RELAXING ADMISSIBILITY

Sometimes the requirement of finding an admissible or monotone heuristic
is too restrictive. In the following, we examine some extensions to A∗ and
prove properties that hold also when the heuristic is not admissible. The
properties concern the quality of the solution (its cost) and the number of
iterations of the algorithms. All the algorithms are special cases of the BF∗

algorithm in Section 2.8, hence their completeness is guaranteed by Theo-
rem 2.8.2.

The material in this and the following section is not very closely related
to the work in subsequent chapters. We will, however, refer to this material
later.

Pohl [60] introduces an evaluation function:

f(n) = g(n) + h(n) + ε

(

1−
d(n)

ds

)

h(n), (2.38)

where d(n) is the depth of node n, ds is the depth of the shallowest optimal
goal node and ε is a parameter. Now, if h(n) ≤ h∗(n), then h(γ) = 0 for
γ ∈ Γ implying that ψ(C) = C in Theorem 2.8.3. We can bound M , the
minmax value related to f , along any optimal solution path P ∗ for which
g(n) = g∗(n):

M ≤ max
n∈P ∗

fP ∗(n) ≤ max
n∈P ∗

(

g∗(n) + h∗(n) + εh∗(n)

(

1−
d(n)

ds

))

= C∗ + εh∗(s) = C∗(1 + ε). (2.39)

On the other hand, Theorem 2.8.3 states that the search terminates with cost
Ct ≤M . Hence Ct ≤ C∗(1 + ε). This property was first shown by Pohl [60].

Harris [31] shows that the extra cost of the solution path found by A∗ relates
to the amount by which h∗ is overestimated as follows. If h(n) − h∗(n) ≤
e, ∀n in G, then A∗ produces a solution path with a cost Ct ≤ C∗ + e.
Theorem 2.8.3 and the assumption h(γ) = 0 for γ ∈ Γ implies that ψ(C) =
C. We can now bound M by considering maxn∈P fP (n) along any solution
path for which g(n) = g∗(n):

M ≤ max
n∈P

fP (n) ≤ max
n∈P

(g∗(n) + h(n))

≤ max
n∈P

(g∗(n) + h∗(n) + e) = C∗ + e. (2.40)

Theorem 2.8.3 states that the search terminates with cost Ct ≤ M . Hence
Ct ≤ C∗ + e.
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Pearl and Kim [56] generalize Harris’ study and examine a search process
where the uncertainty of the estimation of h∗ is expressed in the form of a
probability density function. The heuristic and thus the evaluation function
f = g + h are treated as random variables. We, however, do not go into
details of this research.

Pearl and Kim [56] also introduce an algorithm called A∗
ε , which uses two

sets: OPEN and FOCAL. FOCAL is a subset of OPEN containing nodes n:

FOCAL = {n | f(n) ≤ (1 + ε) min
n′∈OPEN

f(n′)}, (2.41)

where ε > 0 is a parameter. The operation of A∗
ε is identical to that of A∗ ex-

cept that A∗
ε selects the node from FOCAL with the lowest h2 value, where

h2(n) is a second heuristic estimating the computational effort required to
complete the search starting from n. h2(n) can be almost any ranking func-
tion and it can be completely independent of h. However, if a goal node is
in FOCAL, then A∗

ε always chooses it.
Following the previous analyses, if h(γ) = 0 for γ ∈ Γ, then ψ(C) = C. If

h is admissible, then we can bound M along any optimal solution path P ∗:

M ≤ max
n∈P ∗

fP ∗(n) ≤ max
n∈P ∗

(1 + ε)fP ∗(n) = (1 + ε)C∗. (2.42)

Hence, by Theorem 2.8.3, Ct ≤ (1 + ε)C∗.

2.12 MORE EXTENSIONS TO A∗

This section presents some extensions to A∗. This materal is not very closely
related to the work in subsequent chapters and, thus, we only briefly intro-
duce four algorithms and their properties. We will, however, refer to some of
these algorithms later.

2.12.1 A∗∗

Here we introduce a variant of A∗, A∗∗ [18], that dominates A∗. The domi-
nance relation is, however, different from those discussed above.

A∗∗ uses an evaluation function

f ′(n) = max{g(n′) + h(n′) | n′ on the current path to n}. (2.43)

A∗∗ chooses for expansion the node with the lowest f ′ value in OPEN (break-
ing ties arbitrarily, but in favor of goal nodes) and adjusts pointers along the
path having the lowest g value. Despite the evaluation function f ′, A∗∗ op-
erates similarly as A∗. A∗∗, however, is not a best first algorithm (BF∗), like
A∗ is, since it uses one function f ′ for ordering nodes for expansion and a
different function g for redirecting pointers.

Clearly the f ′ values of the sequence of nodes expanded by A∗∗ is non-
decreasing. From this fact and the fact that A∗∗ explores all the potential
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path candidates in turn, similarly as A∗, it is easy to see that A∗∗ finds a least-
cost path whenever h(n) ≤ h∗(n) ∀n, that is, A∗∗ is admissible relative to
IAD. A detailed proof of the admissibility of A∗∗ is very much alike that of
A∗, see Theorem 2.3.3. Note that if the heuristic h is consistent (monotone),
then A∗∗ and A∗ operate identically.

From the definition of f ′ it follows that all paths that are strictly bounded
below C∗ relative to f of A∗ are also strictly bounded below C∗ relative to
f ′. Therefore, both algorithms have exactly the same set of surely expanded
nodes, NC∗

f = N
C∗

f ′ , and this set is expanded before any node outside this set.
Hence A∗∗ is not optimal over A∗ in the sense of Definition 2.9.1.

We just mention here that A∗∗ dominates A∗ in the following sense.

Theorem 2.12.1 For every tie-breaking rule of A∗ and for every problem
instance I ∈ IAD, there exists a tie-breaking rule for A∗∗ that expands a
subset of the nodes expanded by A∗, cf. [18, p. 534–535].

Since N
C∗

f = N
C∗

f ′ , the above theorem concerns only nodes n for which
f(n) = C∗.

2.12.2 Algorithms making O(|N |2) Iterations at Worst

Above we were concerned with the sets of distinct nodes expanded by A∗.
We saw that if the heuristic is not monotone (consistent), then A∗ can ex-
pand the same node many times. Here we examine how many nodes A∗ and
some of its variants totally expand in the worst case, that is, the number of
the iterations of the algorithm (for A∗, the iterations between lines (2)–(6) in
its pseudocode in Section 2.1).

Martelli [52] denotes by |N | the size of the graph G where |N | < ∞ is
not the number of the nodes in G but the number of the nodes in the set
N̄ = {n | f(n) ≤ C∗}. A∗ will expand nodes only in N̄ but not necessarily
all the nodes in N̄ (Theorems 2.4.3 and 2.4.4). For example, A∗ guided by a
monotone heuristic never re-expands nodes. Hence it expands totallyO(|N |)
nodes.

In [18, pp. 524–526], Dechter and Pearl show that if the heuristic is ad-
missible and not monotone, then there is no optimal algorithm as measured
by the number of distinct nodes expanded. Hence it is easy to believe that
no optimal algorithm exists as measured by the number of nodes totally ex-
panded. Mérõ [50] has proved this by constructing example graphs.

Martelli [52] proves the following theorem. Its proof is quite long and is
omitted here.

Theorem 2.12.2 [52] For all |N | there exists a search graph GN of size |N |,
with positive costs and estimates which are lower bounds on the minimal cost
(h(n) ≤ h∗(n) for each n in GN ), on which A∗ runs for O(2|N |) steps.

Martelli [52] presents a modified A∗ algorithm, called B, to improve the
performance in Theorem 2.12.2 to a worst case performance of O(|N |2) in
the case where h is admissible. Later, Bagchi and Mahanti [7] show that B
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makes O(|N |2) iterations at worst also when the heuristic is nonadmissible.
In the latter case, the size of the graph G is measured as the number of the
nodes |N | < ∞ in a set N̄M : N̄M = {n | f(n) ≤ M}, where M is the
minmax value of BF∗ algorithms in Section 2.8. Moreover, B always returns
a cheaper or at least as cheap a solution path as A∗.

Bagchi and Mahanti [7] also present another O(|N |2) algorithm called C
that always, independently of the admissibility of h, returns a cheaper or at
least as cheap a solution path as B.

Following the ideas of Mérõ [50], Mahanti and Ray [51] develop an algo-
rithm called D that modifies a given (static) heuristic dynamically, during
the search. D makes also O(|N |2) iterations at worst when the heuristic is
admissible or nonadmissible. Moreover, D never expands more nodes than
C. The cost of the solution path returned by D equals to that returned by C.
D is a modification of A∗ where line (3) and the calculation of the heuristic
on line (5.1) in the pseudocode of A∗ are replaced by the following lines:
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(Heuristic calculation on line 5.1): If an expanded node n has no successors,
then set h(n) =∞. Let n′ be the successor to n for which e = c(n, n′)+h(n′)
is minimal. If e > h(n), then set h(n) ← e. Otherwise for each successor ni

to n, if
h(ni) < h(n)− c(n, ni) (2.44)

holds, then set
h(ni)← h(n)− c(n, ni), (2.45)

where c(n, ni) is a strictly positive cost of the edge between n and ni.

The above steps always produce an admissible (dynamic) heuristic if the orig-
inal (static) heuristic is admissible. Mahanti and Ray [51] prove that in this
case D finds an optimal path if it exists. If the original heuristic, however, is
nonadmissible but vanishes at the goal nodes, then Mahanti and Ray prove
that D always finds a cheaper or as cheap a solution path as A∗. However, D
can expand more nodes than A∗.

2.12.3 On Function Minimization by A∗

In this section, we discuss how A∗ could be used to minimize positive real
valued functions. The minimization problem can be constrained or uncon-
strained. Now, the search is done in the space of complete solutions. The
“goodness” of a solution is measured by using the values of the function to
be minimized. Here we believe that short paths, lists of feasible solutions,
correlate with the effectiveness of the search whose goal is to find a solution
near to the minimum value of the function. The heuristic to be introduced
in Section 3.1 can be used as part of the guiding heuristic of the search. In
addition, similar information that is frequently used in Branch-and-Bound

28 2. BACKGROUND



methods can be utilized.3

Let the function to be minimized be F : X →R+
0 , where X is a set andR+

0

is the set of positive real numbers. The metric d between any two points n
and m in X is defined:

d(n,m) = |F (n)− F (m)|. (2.46)

If X is originally a real metric space, then d often differs from the original
metric, usually defined as a distance between n and m.

Let us discretize X so that the result is a locally finite graph G. Nodes in
G are (discretized) points in X and edges in G connect the nodes that are
immediate neighbors. The cost of an edge between the neighboring nodes n
and m in G is:

c(n,m) =

{

d(n,m) if d(n,m) ≥ ε,

ε otherwise,
(2.47)

where ε > 0 is a small positive constant. If d(n,m) < ε, then we assume that
the difference between F (n) and F (m) cannot any more be recognized by
the computer. In the latter case, we set the cost c(n,m)← ε > 0. In this way,
we have defined a locally finite graph whose edge costs are strictly positive.
Hence, we can use the A∗ algorithm, its variants or extensions to find paths
in G.

Let us assume that we know a lower bound F̃ for the global minimum of F ,
say F ∗, (F̃ ≤ F ∗). Our task is to find a solution with a value close enough to
F ∗, say F ∗

G (F ∗
G ≥ F ∗), in the discretized space (in the graph G) effectively

by using a start point s ∈ G. Here we are not concerned how a good starting
point(s) is found. Let us use A∗ to find F ∗

G. Now, the path finding problem is
defined in the space of complete solutions. Let us use the following heuristic
h for A∗:

h(n) = F (n)− F̃ . (2.48)

If F̃ < F ∗ ≤ F ∗
G, then h(F ∗

G) > 0. Does h satisfy the triangle inequality
among the nodes in G? The answer is affirmative.

Theorem 2.12.3 The heuristic h(n) = F (n) − F̃ satisfies the triangle in-
equality h(n) ≤ k(n, n1) + h(n1) for all pairs of nodes n and n1 in G, where
n1 is a descendant of n.

Proof: Let n′ be a successor to n in G. Then

h(n) = F (n)− F̃ = F (n)− F (n′) + F (n′)− F̃

≤ |F (n)− F (n′)|+ h(n′) ≤ c(n, n′) + h(n′). (2.49)

A proof by induction shows that also h(n) ≤ k(n, n1) + h(n1) for all pairs of
nodes n and n1 in G, cf. Theorem 2.7.1. 2

3The material in Sections 2.12.3 and 2.12.4 appears for the first time in this thesis.
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Let the global minimum of F (t) be F ∗(t∗). Then h(t∗) = F ∗(t∗)− F̃ ≥ 0. If
the heuristic does not vanish at the goal it still satisfies the triangle inequality
and hence is a h� heuristic, to be defined in the Section 3.1.

We can use A∗ with the above heuristic to search for a solution whose value
is less or equal to F ∗

G.4 A∗ finds shortest paths to all expanded nodes and no
re-expansions need to be done by Theorem 3.1.1. Also the other results in
Chapter 3 can be utilized if needed. If we have to find a global minimum
of F in G by using only the above heuristic, then we, unfortunately, have to
expand all the nodes in G at worst.

If we have a constrained optimization task, then A∗ is allowed to expand
only feasible nodes, that is, the ones that satisfy the constraints. Of course,
we assume that a feasible start node can be found, too.

In addition to the above h�, we may have other information available. For
example, we may be able to calculate lower bounds for some nodes n in G.
A lower bound Cn is the lowest F value we can possibly attain when we con-
tinue our search from n. Lower bounds are usually obtained by solving sim-
plified, easily solvable, versions of the original problem and are commonly
used in Branch-and-Bound methods, see e.g. [45]. We can take the lower
bounds into account by maintaining the lowest upper bound F̄ on the mini-
mum of F obtained so far, and set h�(n) = ∞ if Cn > F̄ . If we can obtain
the lower bounds, then we may find the global optimum of F in G without
expanding all the nodes in G.

The lower bounds can also be taken into the tie-breaking rule of the A∗:
Among all the nodes with the same value of the evaluation function f , select
and expand first a node n for which the lower bound Cn is minimum. The
following explains the advantage of using the above tie-breaking rule. Let
there be any two nodes n and m with the same f value and let Cm < Cn.
If we first expand m, then it can happen that there are successors w to m
for which Cm ≤ F (w) < Cn and we can set h(n) = ∞ and thus prune
the search space. Otherwise, if we first expand n, then it never happens that
any successor v to n has F (v) ≤ Cm by the definition of the lower bounds:
F (v) ≥ Cn > Cm for all v.

If we can obtain lower bounds, then we can also use as the heuristic
h(n) = F (n) − min{Ck}, where the minimum is taken over all the nodes
in OPEN every time a new node enters OPEN. If a lower bound for a node
m is not known, then set Cm = F (m). The above h values are “dynamic”
in the sense that when a new lower bound is obtained, then the h values for
all the nodes in G are recalculated. It is easy to see that the above h also
satisfies the triangle inequality among the nodes in G at all times during the
search by looking at the proof of Theorem 2.12.3. The above h can be called
a “dynamic” or an “adaptive” version of the heuristic in Theorem 2.12.3.

We could, of course, search the minimum of F by an algorithm that always
selects and expands a node n for which Cn is minimum regardless of its f
value. This algorithm is greedy in the sense that it does not penalize long

4The exact value F ∗

G
is not assumed to be given but, instead, the user is supposed to stop

the search when she or he is satisfied with the goodness of the solution.
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paths from the start node as A∗ does. We could also combine several opti-
mization algorithms similarly as proposed in [3], or in Chapter 5.

2.12.4 Regulating the Number of Node Expansions

In the context of A∗
ε in Section 2.11 ([56]), we saw the use of two different

heuristics h and h2 in the same algorithm returning a solution path of length
Ct ≤ (1 + ε)C∗. Here we present an algorithm, also using two heuristics,
that expands at most (1 + β)EX nodes, where EX is the number of nodes
expanded by algorithm X . The parameter β is a given by the user. X can
be, for example, the A∗ algorithm.

Consider the following algorithm. Let X and Y be any BF∗ algorithms
guided by heuristics hX and hY , respectively. For simplicity, let us assume
that both X and Y use a common OPEN and CLOSED sets.

——————————————————————————————–
ALGORITHM Xβ
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——————————————————————————————–

On lines (3) and (6), if a goal node is found, then exit immediately without
continuing the execution of the search algorithms any more. On line (2),
the “FOR a while DO” -sentence means that the user can specify how long
algorithm X runs; the number of the nodes to be expanded can be used as
a criterion, but also other criteria may be considered. Algorithms X and Y
can re-expand nodes that previously were in CLOSED but the number of
re-expansions is not recorded here.

An interpretation of Xβ is the following. Y is in a role of a “probe” that
tries to find a goal, possibly located nearby, in some easy “clever” or perhaps
greedy way. X on the other hand is a “base” algorithm, for example, A∗ that
“does not leave any stone unturned”.

Theorem 2.12.4 Algorithm Xβ expands at most (1 + β)EX nodes, where
EX is the number of nodes expanded by algorithm X .

Proof: Assume that X has expanded Ei new nodes during iteration i of the
REPEAT–UNTIL -loop (i = 1, 2, . . . ). The fact that Xβ has expanded at
worst (1 + β)EX nodes after, say k, iterations of the REPEAT–UNTIL -loop
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can easily be seen in the following summation:

k
∑

i=1

(1 + β)Ei = (1 + β)EX . (2.50)

2

Clearly, algorithm Xβ can also be designed with any two search algorithms,
not necessarily BF∗ algorithms.

In robot point-to-point path planning, for example, Y can be an algorithm
that generates partial paths towards a negative gradient of an artificial poten-
tial field generated in the robot’s configuration space, see Chapter 6.

2.13 DISCUSSION

Many variants, modifications, and extensions toA∗ have been published over
the years. In this chapter, we have already seen A∗∗ (Dechter and Pearl [18]),
a class of generalized best-first algorithmsBF ∗ (Dechter and Pearl [18]), algo-
rithms improving the worst case behavior of A∗ such as B (Martelli [52]), C
(Bagchi and Mahanti [7]), and D (Mahanti and Ray [51]), a dynamic weight-
ing of the evaluation function (Pohl [60]), a heuristic with bounded error
(Harris [31]), and A∗

ε (Pearl and Kim [56]). Other works include, for exam-
ple, iterative-deepening-A∗ IDA∗ (Korf [40]), restricted memory algorithms
such as MREC (Sen and Baghi [66]), MA∗ (Chakrabarti et al. [10]), SMA∗

(Russel [65]), RFBS (Korf [42]), and algorithms for dynamic environments
such as D∗ (Stentz [70]) — not to mention the works dealing with bidirec-
tional search methods.

Farreny [28] proposes a formal generalization for various works with heuris-
tic search in state space graphs. He identifies five dimensions for generaliza-
tions: (1) The notion of length to measure the paths between nodes, (2) the
characteristics of the state graphs dealt with, (3) the choices of the nodes to
expand, (4) the kinds of updating rules to realize, and (5) the properties of the
evaluation functions that guide the search. Consequently, Farraney discusses
algorithm families, which include many successors of A∗ such as B, A∗

ε , C,
D, BF ∗, IDA∗, and A∗∗. He employs this formalization to present general
theorems about the completeness and the admissibility/sub-admissibility of
the algorithms.

In Chapters 3–7, we will also present some extensions to A∗ and their appli-
cations. (A) We study nonadmissible heuristics, present a dynamically im-
proving heuristic for A∗, and use A∗ to control the allocation of computing
resources among search algorithms. (B) We apply A∗ to robot point-to-point
path planning and power-aware routing of messages in wireless communica-
tion networks.
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3 COMPARISONS OF A∗ TO OTHER PATH PLANNING
STRATEGIES

Let us define more precisely what we mean by a path finding problem and a
path finding algorithm.

Let G = (V,E) be a directed or undirected locally finite graph, where V is a
set of nodes and E is a set of edges between the nodes. Let every edge in E
have an associated strictly positive real number called edge cost. Let s ∈ V
denote the start node and Γ ⊆ V the set of goal nodes. A heuristic function
h(n) attaches a nonnegative real number to every node n in V . The heuristic
h(n) estimates a path cost from a node n in G to a goal node γ ∈ Γ.

An instance of path finding problems is denoted by

I = (CI , G, s,Γ, h), (3.1)

where CI includes context information that is not explicitly present in the
structure of G or in h. For example, CI could include details of the applica-
tion area of I , etc. We assume that all the data of I (as well as CI) is given
at the same time as input to a path finding algorithm. Moreover, we assume
that the possibly infinite graph G is not explicitly coded but is provided, for
example, by giving rules to generate successors to a node at hand.

The nodes in G being searched are at any time divided into four sets, cf. [57,
p. 34]:

• Nodes that have been expanded.

• Nodes that have been explored.

• Nodes that have been generated but not yet explored or expanded.

• Nodes that have not yet been generated.

Node generation means computing the representation code of a node from
that of its parent. The new successor node is then said to be generated and its
parent explored or expanded. Node expansion consists of generating all the
immediate successor nodes for a given parent node and no more. Node ex-
ploration refers to gathering or dismissing information concerning the neigh-
borhood structure of a given node. An example of node exploration is gen-
erating at least one successor node to a given node. Also, a connected graph
of nearby nodes can be generated “starting” from a given node. If a node is
expanded, then it is explored too, but not vice versa.

Usually, nodes that have been expanded are called closed, and nodes that
have been generated and are awaiting expansion or exploration are called
open. Furthermore, a path finding algorithm does not know anything about
the nodes that are not yet generated unless the context information CI gives
such a knowledge.

3. COMPARISONS OF A∗ TO OTHER PATH PLANNING
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A search procedure or a path finding algorithm is a prescription for determin-
ing the order in which nodes are to be generated. We allow that the order
is partial so that many nodes can be generated concurrently, cf. [57, p. 34].
From now on, we assume that a search procedure satisfies the following con-
straints:

1. It is deterministic.

2. It solves one problem instance at a time.

3. It uses the computational steps of node exploration and node generation.

4. It explores only nodes that it has generated in the same problem instance.

5. It begins the search from the start node of a problem instance. It stops
when it has explored or generated a goal node in the same instance or has no
new candidates for exploration.

For example, bidirectional searches or algorithms that start searching and/or
search from several “seed” nodes are forbidden by Constraints 4 and 5. As
a second example, any BF∗ algorithm defined in Section 2.8 (including A∗)
clearly satisfies the above constraints. In particular, BF∗ algorithms always
expand one node at a time. Furthermore, greedy algorithms can generate a
subset of the successor nodes for a given parent node.

Constraints 1–5 do not imply that a search procedure must explore nodes
one after another; it can explore a set of nodes concurrently. However by
Constraint 4, all the explored nodes have to be already generated. Hence
algorithms satisfying Constraints 1–5 are not necessarily GBF strategies as
discussed in Section 2.8 ([18, p. 506]).

Let a search history of a path finding algorithm A satisfying Constraints 1–5
be a set IA of all problem instances I = (CI , G, s,Γ, h) that A has solved
previously. There can be infinitely many previous instances in IA and the
search graph G of I can have infinitely many nodes. Hence, A can have an
infinite memory.

Now, let G be a graph of an instance I currently being searched by A.
Let us define the current search history concerning I as the graph H =
(NH , EH), where NH is composed of all the nodes explored or generated by
A in G before a given “time”, and EH contains a subset of edges between
the above nodes such that H is connected. Moreover, any edge e ∈ EH has
an associated edge cost that is the same as e ∈ E of G has, and any node
n ∈ NH has an associated nonnegative heuristic value that is the same as
n ∈ V of G has. In a case of A∗, for example, the graph H is a tree, where
edges connect any expanded node n to its successors in succ(n) such that the
edges are directed from the nodes in succ(n) to n.

In the following sections, we will compare the performance of A∗ to that of
other path finding algorithms. The proofs of several theorems use the fol-
lowing strategy, already presented in the proof of Theorem 2.9.1. A problem
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instance I is assumed, where A∗ expands a node n and another algorithm,
say A, does not explore n. Then a new instance I ′ 6= I is constructed from I
such that A∗ also expands n and A does not explore n in I ′. This is possible
if CI = C ′

I , that is, the context information of I and I ′ is the same. In the
following, we will assume the above.

The search history IA from problem instances previously solved by A is
not of any use to A in the proofs of the following theorems. This is because
I ′ will be constructed in such a way that A has “at most” generated n both
in I and in I ′ and hence does not know anything about the successor nodes
of n in I or in I ′ (Constraint 4). The conclusions of the theorems are based
on what happens to the successors of n in I ′ (A∗ will expand those nodes).
Thus, we will not explicitly write the search history IA anymore although the
computations of the following algorithms may depend on it in principle.

Constraint 1 implies that there is a function that completely determines
which set of nodes is to be explored next. The nodes in that set are assumed
to be explored concurrently. Let us call the above process the exploration
function Φ. Φ is the core of a path finding algorithm satisfying Constraints
1–5: It selects the set of generated nodes S ⊆ NH to be explored next and
explores them. Nodes in S have to be generated before their exploration by
Constraint 4. Let us write abstractly:

Φ : ((NH , EH), I) 7→ (NH′, EH′), (3.2)

where both H = (NH , EH) and H ′ = (NH′ , EH′) are connected and NH ⊆
NH′ . When the search starts, H = ({s}, ∅) (Constraint 5). Note that H is
not necessarily a subgraph of H ′ since EH can contain edges that are not in
EH′ , see for example line (5.2) in the pseudocode of A∗ in Section 2.1.

Let us call the set of path finding algorithms satisfying Constraints 1–5 and
having an exploration function Φ deterministic path finding strategies (DP).
In general, we do not require the DP strategies to be complete, that is, to find
a solution path whenever one exists. 1

A DP strategy can have an evaluation function

f(n) = f(n;H, I), (3.3)

which attaches a nonnegative real value to any node n ∈ NH it has gener-
ated. Let S ⊆ NH , as above, denote the generated nodes that are awaiting
exploration. We do not specify here how the nodes in S are selected, except
that the selection process is deterministic (Constraint 1). S can also contain
nodes that have been explored (or expanded) before, see line (5.3) in the
pseudocode of A∗ in Section 2.1. A DP strategy that always explores nodes
n ∈ S with the minimum f(n) value is called a deterministic best-first path
finding strategy (DPBF).

DP and DPBF strategies explore nodes, that is, they do not have to generate
all the successors for the selected node. In that sense, DP and DPBF strate-
gies are more general than the algorithms studied by Farreny [28]. On the

1Farreny [28] studies complete algorithms.
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other hand, Farreny uses a more general definition of the path length than
the sum of edge costs.

A DPBF strategy can search G by constructing a tree T of selected path
candidates in G by always expanding a leaf node of T with a minimal f
value. The algorithm thus expands one node at a time and maintains T .
Such search methods are similar to the GBF strategies in Section 2.8. The
evaluation function of the A∗ algorithm is: fA∗(n) = g(n) + h(n) for any
generated node n. Thus fA∗ depends only on the most recently found path
to n and the heuristic value h(n). A∗ is an example of BF∗ algorithms, and a
BF∗ algorithm is an example of GBF and DPBF strategies.

If there are many nodes awaiting exploration with the same minimum f
value and we do not want to explore them concurrently, then a so called
tie-breaking rule, coded in the search procedure, determines the node to be
explored next.2

In this chapter, we compare the performance of A∗ guided by a possibly
nonadmissible heuristic to that of some other path finding algorithms.

3.1 HEURISTICS SATISFYING THE TRIANGLE INEQUALITY

Here we introduce generalizations of consistent heuristics that are not neces-
sarily admissible. The A∗ algorithm guided by such a heuristic always finds
optimal paths to all the nodes it expands, in spite of the nonadmissibility of
the heuristic.

In Section 2.7, we defined and discussed heuristics that satisfy the triangle
inequality, see Definitions 2.7.1 and 2.7.2 (consistent and monotone heuris-
tics), where:

h(n) ≤ k(n, n′) + h(n′) (3.4)

for all pairs of nodes n and n′, where n′ is a descendant of n. The cost of an
optimal path from n to n′ is denoted by k(n, n′).

In Definitions 2.7.1 and 2.7.2, it is implicitly assumed that h vanishes at
the goal nodes (h(γ) = 0, ∀γ ∈ Γ). Here we introduce a heuristic h�

that only satisfies the triangle inequality, but is not necessarily zero at the
goal nodes, that is, h�(γ) > 0 for some γ ∈ Γ. It follows that h� can be
nonadmissible. In addition, we assume that h� satisfies Eq. (3.4) for any pair
of nodes n and n′. Next, we will show that some properties concerning A∗

with (admissible) monotone or consistent heuristics remain the same even if
A∗ uses the possibly nonadmissible h�.

Do nonadmissible heuristics satisfying the triangle inequality exist? Let us
give an example. We do not, however, argue how good or bad this heuristic
would be in practice.

Assume that there are many goal nodes in Γ and we can easily calculate
the distance d(n, ·) between any node n and only a subset Γd of the goal
nodes in Γ. Hence, we do not know which goal node in Γ is closest to the

2We could have included the tie-breaking rule in f as well but we will follow the con-
vention used in the literature.
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start node. Let us choose one node γd from Γd and use it for the calcula-
tion of the distance function d(n, γd) (∀n ∈ G) and use d as the heuristic.
The function d(n, γd), since it is a distance function, satisfies the triangle in-
equality. However, we do not know whether γd is closest to the start node,
hence we can have a nonadmissible h�(n) = d(n, γd). Clearly, every goal
node γc that is closer to the start node than γd, as measured by d, satisfies
h�(γc) = d(γc, γd) > 0.

Theorem 3.1.1 An A∗ guided by h� finds optimal paths to all expanded
nodes (cf. Theorem 2.7.3 and Theorem 10 in [57, pp. 83–84]).

Proof: The proof is exactly the same as that of Theorem 2.7.3 (Theorem 10
in [57, pp. 83–84]). The proof needs Lemma 2.3.2 guaranteeing that the
shallowest OPEN node n in an optimal path has g(n) = g∗(n). Neither
the proof of Theorem 2.7.3 nor Lemma 2.3.2 uses the fact that the heuristic
should vanish at the goal nodes. 2

It follows from Theorem 3.1.1 that A∗ using h� always finds an optimal so-
lution to a goal node if one exists. If there are several goal nodes, then A∗

halts at the first goal γ it finds. However, the path to γ may not be the glob-
ally optimal one since the heuristic may be nonadmissible. In general, A∗

has to find all the goal nodes before deciding on which solution path is the
globally optimal one. However, no node is expanded twice, hence A∗ using
h� makes at worst O(|N |) iterations, see Section 2.12.2.

Similarly, by looking at the proof of Theorem 2.7.4 (Theorem 11 in [57,
p. 84]), we notice that it does not use the fact h(γ) = 0 either. Hence the f
values of the sequence of nodes expanded byA∗ using h� are non-decreasing.

Recall that IAD denotes the set of problem instances, where the heuristic
h is admissible as defined in Section 2.9. Furthermore, let us denote by
I� = {(G, s,Γ, h�)} the set of problem instances with the above heuristic
h�. Obviously ICON ⊆ I�, where ICON was also defined in Section 2.9.

Let a DPBF strategy B be guided by a heuristic h. Moreover, assume that
the evaluation function of B satisfies ∀m1, m2 ∈ G of I :

h(m1) > h(m2)⇒ fB(m1;H, I(·, h)) > fB(m2;H
′, I(·, h)) (3.5)

independent of the current search histories H and H ′ (concerning I =
(G, s,Γ, h)). The above requirement characterizes greedy or depth-first al-
gorithms, where distances to goals are emphasized. Finally, assume that B
can find an optimal solution if h(n) ≤ h∗(n) ∀n, that is, in all the prob-
lem instances in IAD: B ∈ Aad, where Aad is here assumed to contain all
admissible DP strategies equally informed as A∗, cf. Section 2.9.

Let the set of nodes surely expanded by A∗ be denoted by N
M
g+h, where

M is the minmax value related to the evaluation function f = g + h of A∗,
defined in Section 2.8. In other words, the nodes n in N

M
g+h are reachable

by a strictly M -bounded path: f(n) < M , see also Theorem 2.8.6.

Now, we are ready to prove the following theorem that is a counterpart of
Theorem 2.9.1 (cf. Theorem 8 [18, pp. 522-524] that holds for any DP strat-
egy B ∈ Aad).
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Theorem 3.1.2 Let ∆ = maxγ∈Γ{h�(γ)}. Then any DPBF strategy B that
is admissible on IAD, i.e.,B ∈ Aad will explore, in every instance I� ∈ I�, all
the nodes in N

M
g+h∩{n | h�(n) ≥ ∆} provided that ∀m1, m2 ∈ G of any I ∈

I� ∪ ICON :

h(m1) > h(m2)⇒ fB(m1;H, I(·, h)) > fB(m2;H
′, I(·, h)) (3.6)

independent of the current search histories H and H ′ concerning I .

Proof: Let I� = (G, s,Γ, h�) be some problem instance in I�. If ∆ = 0,
then I� ∈ ICON , and by Theorem 2.9.1 we are done. Assume that ∆ > 0.

Assume that A∗ expands a node n in N
M
g+h ∩ {n | h�(n) ≥ ∆} of I�.

Moreover, assume that B does not explore n.
Let us create a new graph G1. G1 is the same as G except two modifica-

tions. First, the heuristic values of the nodes are changed:

h1(m) = max{0, h�(m)−∆} (3.7)

for all the nodes in G1 except n. Set h1(n) = h�(n)−∆ + ε > 0, where

0 < ε < M − g∗(n)− h�(n), (3.8)

where M is the minmax value for A∗ on G, and ε > 0 by Theorem 2.8.6.
The value h1(n) > 0 by the assumption of the theorem: h�(n) − ∆ ≥ 0.
The second modification is that all the edges between n and its neighbors n′

in G1 are directed from n′ to n.
Now, h1(γ) = 0 for any goal node γ ∈ G1 because of the first modifi-

cation. The heuristic h1 is monotone (consistent) since it is a maximum of
two monotone heuristics 0 and h� −∆ (Theorem 2.7.6) for all nodes in G1

except n. If n′ is a neighbor of n, then h1(n) and h1(n
′) satisfy the trian-

gle inequality because of the second modification. Denote the new problem
instance by I1 = (G1, s,Γ, h1). It follows that I1 ∈ ICON .

Since A∗ expands n inG: f(n) = g∗(n)+h�(n) < M by Theorems 2.8.6
and 3.1.1. From the construction of h1, it follows that the minmax value M1

for A∗ in G1 satisfies M ≥ M1 ≥M −∆. A∗ will expand n also in G1 since
f1(n) = g∗(n) + h�(n)−∆ + ε < M −∆ because of the definition of ε > 0
and by Theorem 2.7.3.

Since B does not explore n in G, it follows that fB(m;H, I(·, h�)) ≤
fB(n;H ′, I(·, h�)) and hence h�(m) ≤ h�(n) for all nodes m that B ex-
plores in G.3 Then it follows that h1(m) < h1(n) and thus

fB(m; ·,max{0, h�(m)−∆}) < fB(n; ·, h�(n)−∆ + ε) (3.9)

and B, being deterministic, will explore all the nodes m in G1 without ex-
ploring n if I1 is given as input to B.

Now, since I1 ∈ ICON we can utilize the proof of Theorem 2.9.1 directly
to create an instance I ′ ∈ ICON , where A∗ will find an optimal solution path
whereas B will not if I ′ is given as input to B. This contradicts the assump-
tion that B ∈ Aad and avoids the exploration of node n. 2

3Here and in subsequent theorems, we assume that the value fB(n; ·) exists despite that
B may not yet have generated n.
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The above theorem states that greedy DPBF strategies always explore the
nodes that A∗ surely expands in regions of graphs, where the heuristic is not
small. Usually, the heuristic is small in the vicinity of goal nodes. If h(γ)
is close to zero for every γ ∈ Γ, then the set N

M
g+h ∩ {n | h(n) ≥ ∆} may

be close to N
M
g+h. The above theorem is not as strong as Theorem 2.9.1

(Theorem 8 [18, pp. 522-524]). There seems to be a price to pay when we
allow nonadmissible heuristics to exist in the proofs.

3.2 OTHER NONADMISSIBLE HEURISTICS

To what kind of algorithms and how can the performance of A∗ guided by
any possibly nonadmissible heuristic be compared? We give an answer here.
Let

I = {(G, s,Γ, h)} (3.10)

be a set of problem instances, where the heuristic h may be nonadmissible.
Let the A∗ algorithm solve problems in I. A∗ is an example of a BF∗

algorithm and hence is a DP strategy. Let another DP strategy B also solve
problems in I; B needs not to be a BF∗ algorithm, or a DPBF strategy. Now,
assume that B can find an optimal solution path whenever A∗ does, that is,
B is globally compatible with A∗: B ∈ Agc, where Agc is here assumed
to contain all DP strategies equally informed as A∗ and globally compatible
with A∗, cf. also Section 2.9.

To prove new theorems, we could apply the same strategy as was done
in Theorem 3.1.2 by defining a new, here admissible, heuristic hAD(r) =
max{0, h(r) − ∆}, where ∆ = maxm∈G{h(m) − h∗(m)}. We will prove
Theorem 5.4.2 in Chapter 5 by using the above.

However, we will choose a simpler strategy in proving the following theo-
rems. The next theorem can be seen as a counterpart of Theorem 2.9.3 (cf.
also Theorem 11 in [18, p. 528] that also holds for any DP strategy B ∈ Agc).
The proof is a modification of the proof of Theorem 11 in [18].

Let the set of nodes surely expanded byA∗ be denoted by N
M
g+h, as before.

Let C∗ be the cost of an optimal path and let gPs−n
(n) denote the cost of the

path Ps−n, from the start node s to n.

Theorem 3.2.1 Let I = {(G, s,Γ, h)}. Then any DP strategy B ∈ Agc will
explore, in every instance I ∈ I, all the nodes in N

M
g+h∩{n | gPs−n

(n) < C∗},
where gPs−n

(n) is the cost of the path Ps−n in G found by A∗.

Proof: Let I = (G, s,Γ, h) be a problem instance in I. Let a node n in G,
expanded by A∗, be in N

M
g+h ∩ {n | gPs−n

(n) < C∗} and not explored by B.
Obviously C∗ ≤M , the minmax value for A∗ in G.

Let us create a new graph G′, as in Figure 3.1, by adding to G a goal
node t with h(t) = 0 and an edge from n to t with nonnegative cost 0 <
c(n, t) < C∗ − gPs−n

(n). The graph G′ has an extended path P ∗
s−t with cost

C(P ∗
s−t) = gPs−n

(n) + c(n, t) < C∗. Let I ′ = (G′, s,Γ ∪ t, h) be a new
problem instance.

Algorithm A∗ searching G′ will find t since C(P ∗
s−t) < C∗ ≤M by Theo-

rem 2.8.6 and, thus, finds the new optimal path P ∗
s−t. Algorithm B, if given
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Figure 3.1: The graph G′ is constructed from G by including a new solution
path going via n to the new goal node t.

I ′ as input, will search I ′ in exactly the same way as it would have searched
I since B is deterministic; the only way B can reveal any difference between
I ′ and I is by exploring n. Since it does not, it will not find the solution path
P ∗

s−t. This contradicts its property of being in Agc. 2

If the heuristic h is admissible, then M = C∗ and the above theorem is the
same as Theorem 2.9.3 (Theorem 11 in [18, p. 528]), provided that B ex-
pands nodes. If h can be nonadmissible in some nodes, then B does not
necessarily explore all the nodes surely expanded by A∗.

The next corollary follows directly from the above theorem.

Corollary 3.2.2 Let I = {(G, s,Γ, h)}. Suppose A∗ finds an optimal path
P ∗ with cost C∗ such that

max
n′∈P ∗

{g(n′) + h(n′)} < C∗, (3.11)

except at the goal node. In these problem instances I ∈ I, any DP strategy
B ∈ Agc will explore all the nodes surely expanded by A∗.

The following theorem concerns DP strategies in a subclass of Agc, and it is
a variant of Theorem 3.2.1.

Theorem 3.2.3 Let I = {(G, s,Γ, h)}. Assume that D is a DP strategy and
always finds at least as cheap a solution path asA∗ does. Then D will explore,
in every instance I ∈ I, all the nodes in N

M
g+h∩{n | gPs−n

(n) < CD}, where
CD is the cost of the solution path in G found by D, and gPs−n

(n) is the cost
of the path Ps−n in G found by A∗.

Proof: Let I = (G, s,Γ, h) be a problem instance in I. Let a node n in G,
expanded by A∗, be in N

M
g+h ∩ {n | gPs−n

(n) < CD} and not explored by D.
Clearly CD ≤ M since the cost of the path found by A∗ is at least as high as
CD.
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Let us create a new graph G′, as in Figure 3.1, by adding to G a goal
node t with h(t) = 0 and an edge from n to t with nonnegative cost 0 <
c(n, t) < CD − gPs−n

(n). The graph G′ has an extended path P ′
s−t with cost

C(P ′
s−t) = gP ′

s−n
(n) + c(n, t) < CD. Let I ′ = (G′, s,Γ ∪ t, h) be a new

problem instance.
Algorithm A∗ searching G′ will find t since C(P ′

s−t) < CD ≤ M and,
thus, finds the new path P ′

s−t. Algorithm D, if given I ′ as input, will search
I ′ in exactly the same way as it would have searched I since D is determinis-
tic; the only wayD can reveal any difference between I ′ and I is by exploring
n. Since it does not, it will not find the solution path P ′

s−t, but will halt with
cost CD. This contradicts its property of always finding at least as cheap a
solution path as A∗ does. 2

In Section 2.12.2 we shortly presented examples of algorithms like the above
DP strategyD (one of the algorithms was, somewhat misleadingly, also called
D).

The next corollary follows from the above Theorems 3.2.1 and 3.2.3.

Corollary 3.2.4 Let B and D be the same algorithms as in Theorems 3.2.1
and 3.2.3. Then

N
M
g+h ∩ {n | gPs−n

(n) < C∗} ⊆ N
M
g+h ∩ {n | gPs−n

(n) < CD}. (3.12)

The above corollary states that D will explore all the nodes that B “at least”
explores in the same problem instance. This is because C∗ ≤ CD. The
corollary is somehow in accordance with the principle that in order to get
solutions with better quality (cheaper costs) one has to pay something extra.

Let us modify Theorem 3.2.1. To do it, we alter the search graph G. The
edges of G were assumed to have strictly positive costs.

Let us look at Theorem 2.2.2 (Theorem 1 in [57, p. 77]). Its proof does not
require that the edge costs of G are strictly positive. It is enough to demand
that the cost of every infinite path in G is unbounded. A similar condition
if imposed on any best-first strategy would render it complete [57, p. 77]. In
other words, some edge costs in a locally finite graph can be negative and still
any best-first strategy, such as A∗, finds a solution path if it exists.

Let us denote by Ǧ a locally finite graph such that the cost of any infinite
path in Ǧ is unbounded. Thus some edges of Ǧ can have negative costs.
Assume that a DP strategy B can find an optimal solution path whenever A∗

does in Ǧ: B ∈ Ǎgc. Note that Ǎgc ⊆ Agc since the set of graphs with strictly
positive edge costs forms a subset of the graphs Ǧ.

The next theorem is a counterpart of Theorems 3.2.1 and 2.9.3 (cf. The-
orem 11 in [18, p. 528]).

Theorem 3.2.5 Let Ǐ = {(Ǧ, s,Γ, h)}. Assume that a DP strategy B is in
Ǎgc. Then B explores, in every instance Ǐ ∈ Ǐ, all the nodes in N

M
g+h, i.e.,

all the nodes surely expanded by A∗.

Proof: Let Ǐ = (Ǧ, s,Γ, h) be a problem instance in Ǐ. Let a node n in Ǧ be
in N

M
g+h and not explored by B. Obviously C∗ ≤M .
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Let us create a new graph Ǧ′, as in Figure 3.1, by adding to Ǧ a goal
node t with h(t) = 0 and an edge from n to t with a possibly negative cost
c(n, t) = C∗ − gPs−n

(n)− ε, where C∗ > ε > 0 and gPs−n
(n) is the cost of a

path Ps−n in Ǧ found by A∗. The graph Ǧ′ has an extended path P ∗
s−t with

cost 0 < C(P ∗
s−t) = gPs−n

(n)+c(n, t) < C∗. Moreover, all the infinite paths
in Ǧ′ are unbounded since the same holds in Ǧ. Let Ǐ ′ = (Ǧ′, s,Γ∪ t, h) be
a new problem instance.

Algorithm A∗ searching Ǧ′ will find t since C(P ∗
s−t) < C∗ ≤ M and,

thus, finds the new optimal path P ∗
s−t. Algorithm B, if given Ǐ ′ as input,

will search Ǐ ′ in exactly the same way as it would have searched Ǐ since B is
deterministic; the only way B can reveal any difference between Ǐ ′ and Ǐ is
by exploring n. Since it does not, it will not find the solution path P ∗

s−t. This
contradicts its property of being in Ǎgc. 2

From now on, let us again study locally finite graphs G with strictly posi-
tive edge costs. Let a DPBF strategy B have an evaluation function fB(n) =
fB(n;Ps−n, I) that is a function of all the nodes, edges, edge costs and heuris-
tic values of the nodes along the path Ps−n found by B leading to n.

The following theorem is a counterpart of Theorem 2.9.4 (cf. Lemma 6 and
Theorem 12 (a) in [18, pp. 529-530]). The proof is a modifications of the
proofs of Lemma 6 and Theorem 12 in [18].

Theorem 3.2.6 Let I = {(G, s,Γ, h)}. Let a DPBF strategy B ∈ Aad use
an evaluation function fB such that for every problem instance I ∈ I, fB

satisfies
fB(n) = fB(n;Ps−n, I), ∀n ∈ G of I. (3.13)

Assume that fB also satisfies ∀m1 ∈ P1, m2 ∈ P2 in GAD of any IAD ∈ IAD:

h(m1) > h(m2)⇒ fB(m1;P1, IAD(·, h)) > fB(m2;P2, IAD(·, h)) (3.14)

independent of the paths P1 and P2 leading to m1 or m2. Then B explores,
in every instance I ∈ I, all the nodes in N

M
g+h, i.e., all the nodes surely

expanded by A∗.

Proof: Let I = (G, s,Γ, h) ∈ I be some problem instance. Assume n ∈ G is
in N

M
g+h but not explored by B. It follows there exists a path Ps−n on G such

that for every n′ ∈ Ps−n : gPs−n
(n′) + h(n′) < M by Theorem 2.8.6.

Define G′ to contain only a path Ps−n with two additional goal nodes t1
and t2. The cost of an edge (s, t2) is c(s, t2) = M + ε > M (ε > 0). The
cost of an edge (n, t1) is c(n, t1) = M − gPs−n

(n) > 0. The goals t1 and
t2 are assigned h′ = 0. All the other nodes n′ (along Ps−n) are assigned
h′ values such that gPs−n

(n′) + h′(n′) < M . In particular, set h′(n′′) > 0,
where n′′ 6= t2 is the immediate neighbor of s. That latter can be done since
c(s, n′′) < M . It follows that the new heuristic h′ is admissible on G′. Let
I ′ = (G′, s, {t1, t2}, h

′) be a new problem instance.
The optimal path in G′ is P ∗

s−t1
with cost M since c(s, t2) = M + ε > M .

A∗ will expand t1 and not t2 in G′, since f(n′) ≤ M for all n′ ∈ Ps−t1 and
f(t2) > M and, thus, will find the optimal solution path P ∗

s−t1 . However,
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since h′(t2) = 0 < h′(n′′) implying fB(t2; ·, h
′(t2)) < fB(n′′; ·, h′(n′′)), B

halts on the suboptimal path Ps−t2 if I ′ is given as input to B. This contra-
dicts its property of being in Aad. 2

The above theorem states that admissible any greedy or depth-first type DPBF
algorithm (in Aad) will explore all the nodes surely expanded by A∗ if both
guided by a possibly nonadmissible h, cf. Theorem 3.1.2. In Theorem 3.1.2,
the heuristic was assumed to satisfy the triangle inequality, and the evalua-
tion function of B was assumed to depend on the whole search history of B
solving a current problem instance. The above theorem, on the other hand,
assumes that the evaluation function of B, for a node, depends only on the
current path to that node.

The next theorem is a generalization of Theorem 2.9.4 (cf. Lemma 6 and
Theorem 12 (a) in [18, pp. 529-530]) in situations, where the heuristic can
be nonadmissible.

Theorem 3.2.7 Let I = {(G, s,Γ, h)}. Let a BF∗ algorithm B ∈ Aad use
an evaluation function fB such that for every problem instance I ∈ I, fB

satisfies

fB(n) = fB(n;Ps−n, I), ∀n ∈ G of I. (3.15)

Moreover, assume that for every problem instance IAD ∈ IAD, fB satisfies

fB(γ;Ps−γ, IAD) = C(Ps−γ) ∀γ ∈ Γ, (3.16)

where C(Ps−γ) is the cost of the solution path Ps−γ in GAD of IAD. Then
B explores, in every instance I ∈ I, all the nodes in N

M
g+h, where M is the

minmax value related to the evaluation function of A∗.

Proof: (i): Assume MB > M , where MB is the minmax value related to
the evaluation function of B. Let I = (G, s,Γ, h) ∈ I be some problem
instance. Assume n ∈ G is in N

M
g+h but not explored by B; i.e., there exists

a path Ps−n such that for every n′ ∈ Ps−n : gPs−n
(n′) + h(n′) < M , and for

some n′ ∈ Ps−n : fB(n′;Ps−n′, I) ≥MB by Theorem 2.8.6.
Define G′ to contain only a path Ps−n with two additional goal nodes

t1 and t2. The cost of an edge (s, t2) is c(s, t2) = MB − ε, where 0 <
ε < MB − M (MB > M by the assumption of (i)). The cost of an edge
(n, t1) is c(n, t1) = M − gPs−n

(n) > 0. The goals t1 and t2 are assigned
h′ = 0. All the other nodes n′ (along Ps−n) retain their old h values (h′(n′) =
h(n′)). It follows that the new heuristic h′ is admissible on G′. Let I ′ =
(G′, s, {t1, t2}, h

′) be a new problem instance.
The optimal path inG′ is P ∗

s−t1
with costM since c(s, t2) = MB−ε > M .

A∗ will expand t1 and not t2 in G′, since f(n′) ≤ M = C(P ∗
s−t1) for all

n′ ∈ P ∗
s−t1

and f(t2) > M and, thus, will find the optimal solution path
P ∗

s−t1 . However, since fB(t2;Ps−t2 , I
′) = C(Ps−t2) < MB , B halts on the

suboptimal path Ps−t2 if I ′ is given as input toB. This contradicts its property
of being in Aad.
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(ii): Assume MB ≤M . Let us define a constant K > 0 and a BF∗ algorithm
B̄ as follows. Given K, define B̄ to be identical to B except

fB̄(m;Ps−m, I) = fB(m;Ps−m, I) +K; ∀m ∈ G,m /∈ Γ of any I ∈ I

(3.17)
so that both B̄ and B explore nodes in the same order in solving any I ∈ I.
Hence B̄ will find an optimal solution path whenever B does. Then B̄ ∈
Aad since B ∈ Aad.

Next assume that B̄ does not explore n in G′. From (i), it follows that
there exists a node n′′ ∈ Ps−n : fB(n′′;Ps−n′′, I) ≥MB . Let the constant K
be large enough such that fB̄(n′′;Ps−n′′, I) = fB(n′′;Ps−n′′, I) + K > M ,
and denote MB̄ = fB(n′′;Ps−n′′, I) +K. Thus MB̄ > M .

LetG′′ be the same asG′, except that the cost of the edge (s, t2) is c(s, t2) =
MB̄−ε, where 0 < ε < MB̄−M . Let I ′′ = (G′′, s, {t1, t2}, h

′′). The heuristic
h′′(m) = h′(m) ∀m is admissible in I ′′ since h′ is admissible in I ′.

The rest of the proof is identical to (i), except that I ′, B and MB in (i) are
replaced by I ′′, B̄ and MB̄ , respectively. 2

Finally, let us present a proposition that we will use in Chapter 5, cf. Theo-
rems 2.6.1 and 2.6.2:

Proposition 3.2.8 Let h1 and h2 be possibly nonadmissible heuristics such
that h1(n) ≥ h2(n) for all nodes n. Assume that A∗(h1) and A∗(h2) have
the same minmax value M . Then A∗(h2) will expand all the nodes surely
expanded by A∗(h1).

Proof: {n | g(n) + h1(n) < M} ⊆ {m | g(m) + h2(m) < M} since
h1(n) ≥ h2(m). 2

Notice, that above we did not assume anything about the costs of the paths
that the algorithms find. Interesting comparisons arise if, in the above propo-
sition, M = C∗ or, more strictly, M = C∗ and h2 is admissible whereas h1 is
not.

3.3 CONCLUSIONS

In this chapter, we compared the computational work of several path plan-
ning algorithm classes to that of A∗ in situations, where the heuristic func-
tion guiding the search process is nonadmissible. The computational work
is measured as the number of the nodes that the algorithms are guaranteed
to explore. Dechter and Pearl [18] give similar results, when the heuristic is
admissible.

Based on the study of this chapter, it seems hard to generalize theorems,
like the ones in [18] constrained on admissible heuristics, to situations where
heuristics can be nonadmissible. The price to pay for the nonadmissibility ap-
pears in various additional assumptions in the theorems, see Theorems 3.1.2,
3.2.1, and 3.2.3.

The exception is Theorem 3.2.7 stating that A∗ is optimal over certain
admissible BF∗ algorithms. It is a generalization of the corresponding results
in [18].
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If we allow the search graph to contain also negative edge costs, then The-
orem 3.2.5, stating that A∗ is optimal over globally compatible DP strategies,
is a generalization of the corresponding theorem in [18]. The negative edge
costs has to be defined in such a way that the cost of every infinite path in
the graph is unbounded, which guarantees that A∗ finds a solution path if it
exists in the graph.

We also showed that A∗ is optimal over some greedy path finding algo-
rithms in Theorem 3.2.6. In greedy algorithms, the most promising node
next to be explored is chosen from the set of nodes with the minimum heuris-
tic value.
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4 A DYNAMICALLY IMPROVING HEURISTIC FOR A∗

In this chapter, we present an extension to A∗ called A∗
A. The evaluation

function of A∗
A at some time instant τ during the search is a function of the

search tree of A∗
A at τ . Here we present a revised version of [2].

A∗
A is a method of improving an initial admissible heuristic function by us-

ing information gathered from the search process so far. We show that A∗
A,

using the improved heuristic, is optimal over A∗, that is, A∗ will expand all
the nodes surely expanded by A∗

A (Definition 2.9.1). Moreover, when A∗
A

expands a node n for the first time, it has found an optimal path to n, i.e.,
g(n) = g∗(n). This means that re-expansions of nodes are unnecessary.

During search, A∗
A estimates successive lower bounds Fk, k = 1, 2, 3, . . .

K for the cost C∗ of an optimal path. For this, A∗
A utilizes information ob-

tained from an approximation of the original problem. It is a simplification
of the original problem generated by ignoring some of its constraints and
including the search tree formed byA∗

A before τ . Node expansions in the ap-
proximating problem are assumed to be less costly than those in the original
problem. The approximation is used as a “guide map” to improve the initial
heuristic function during search.

Let the domain of problem instances on which A∗ is admissible, IAD in Sec-
tion 2.9, be denoted here by I:

I = {(G, {c(n,m)}, s,Γ, h) | h(n) ≤ h∗(n) ∀n ∈ G}, (4.1)

G is a locally finite graph G = (V,E), where V and E are sets of nodes
and edges, respectively. A set {c(n,m)} contains strictly positive costs of the
edges between neighboring nodes n and m in G. A start node is s and Γ is a
set of goal nodes. An admissible heuristic h, assigned to each node in G, is a
lower bound of h∗.

Definition 4.0.1 Let a problem instance I be in I. A relaxed model of I is:

Î = (Ĝ, {ĉ(n,m)}, s,Γ, ĥ(n) = k̂(n,Γ) ∀n ∈ Ĝ). (4.2)

The edge cost between neighboring nodes in Ĝ is 0 < ĉ(n,m) ≤ c(m,n) of

I . The value k̂(n,Γ) denotes the cost of the cheapest path in Ĝ from n to the

set of goal nodes Γ. Moreover, if a node n is in G of I , then n is in Ĝ, cf.
Definition 2.10.1.

The heuristic ĥ can be obtained, for example, by finding optimal paths from

nodes in Ĝ to goal nodes Γ. However, relaxed models must be easily solvable
compared with their original counterparts to reduce the overall computation

time, see [30] for more details. So, ĥ is not assumed to be obtained by a

blind search in Ĝ. The heuristic ĥ is monotone (and consistent) if it is used
as a heuristic in G of the original problem I by Theorem 2.10.1 (ĥ(n) =

k̂(n,Γ))).
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4.1 AN EXAMPLE

Figure 4.1 illustrates a search problem I in a two dimensional grid. The grid
is formed by the horizontal and vertical hairlines and the thicker black lines.
A node in the grid is a crossing point of two lines. A start node is on the left
and a goal node is on the right. There are two rectangular obstacles on the

grid. Let the relaxed model, or problem, Î be obtained from I by allowing
nodes and edges to lie also inside the obstacles in Figure 4.1. Let the edge
costs of the relaxed and the original problem be one.

Let A∗ find an optimal path from the start node to the goal of I using

the Manhattan distance heuristic that equals to the ĥ of the relaxed problem

Î .1 The cost of the optimal path is C∗ = 15. Nodes marked with squares
are the ones that A∗ surely expands, i.e., nodes n for which f(n) < 15, see
Theorem 2.4.2.

By looking at Figure 4.1, it is easy to construct another simple algorithm,
say B, that also finds an optimal path. Nodes marked with black circles are
the ones that B expands. Nodes marked with white circles are open nodes
that B would choose to expand next if it had not found the goal. A search
tree of B consists of the white and the black circled nodes connected by the
thicker black lines. Algorithm B uses the Manhattan distance heuristic too.
B can be described by a rule: First expand the start node and then always
expand the rightmost open node in Figure 4.1, say m, for which f(m) ≤
C∗ = 15.

From Figure 4.1, we notice that the nodes surely expanded by B form a
subset of the nodes surely expanded by A∗: the former ones are the black
nodes p for which f(p) < 15 and the latter ones are the squared nodes.

How can an algorithm like B be sure that it really has found an optimal
path and not expanded any nodes m for which f(m) > C∗? An answer is
that B has to know C∗ or the lower bound F for it (F ≤ C∗) in advance.

In the following, we will construct a problem that approximates the orig-
inal problem in a certain way. A new algorithm uses the approximating
problem as a “guide map” to the unexplored search space and estimates
Fi ≤ C∗ (i = 1, 2, . . . ) during search. Then it uses these lower bounds
to improve an admissible, static, heuristic. The algorithm has methods like
the above B as tie-breaking rules.

4.2 BASIC IDEAS FORMALIZED

Here, we discuss how to find the lower bounds for C∗ and how to improve
a given admissible heuristic using them. We will define two subroutines A∗

F

and A∗
X . They are A∗ algorithms. A∗

F uses the improved heuristic and A∗
X

estimates the lower bounds by searching in an approximating model of the
original problem.

1The Manhattan distance is obtained by a simple calculation — not by searching a
cheapest path from n to the goal in the grid.
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Figure 4.1: A Search in a 2-D grid [2].

An Improved Heuristic: A∗
F

Suppose that A∗ searches G of the problem instance I ∈ I and is guided by a

consistent heuristic ĥ of Î in Definition 4.0.1. Let g(n) be the cost of a path
from the start node to a node n in G found by A∗. Furthermore, assume that
we know a lower bound F for the optimal path cost C∗ inG (F ≤ C∗). Then
we can define a new heuristic hF :

h1(n) = F − g(n),

hF (n) = max {ĥ(n), h1(n)}. (4.3)

Proposition 4.2.1 hF is monotone and hF (n) ≥ ĥ(n) ∀n.

Proof: Let the path costs to a node n and to its successor n′ in G, both
found by A∗, be g(n′) = c(n, n′) + g(n). Then h1(n) = F − g(n) =
F −g(n′)+c(n, n′) = c(n, n′)+h1(n

′). Thus h1 is monotone and consistent
(and admissible), see Section 2.7. Since hF is a maximum of two monotone
heuristics h1 and ĥ, hF is itself monotone (consistent) and hF (n) ≥ ĥ(n) ∀n.
2

Note that the heuristic value hF (n) in Proposition 4.2.1 is dependent on the
search “history” of A∗ in G. The values of hF (n) can increase if F increases
during the search.

If we know that 0 < F ≤ C∗, then we can replace the “old” f -values

of each node m in G for which f(m) = g(m) + ĥ(m) < F with f(m) =
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g(m) + hF (m) = F . It means that A∗, now guided by hF , can expand all
such nodes m in any order depending on its tie-breaking rule. This would

not, of course, be possible if ĥ were used instead of hF .
Denote by A∗

F the A∗ algorithm guided by the heuristic hF . The core
of A∗

F is a tie-breaking rule specifically constructed for the problem at hand.
The algorithm B above was a naive example of such a rule for a simple 2-D
grid search problem. There are some minor differences between the program
structures of A∗

F and A∗. We will define them later.

Lower Bounds for C∗: A∗
X

Assume that an A∗ algorithm is expanding nodes in G of the problem in-
stance I ∈ I.2 Let us arbitrarily stop the search process at a “time” τ before
a goal has been found, memorize the search tree at τ , and call it Tτ . Tτ

contains the nodes in G, in OPEN and CLOSED, and the directed arcs,
pointers, between them as described in the pseudocode of A∗ in Section 2.1.

Definition 4.2.1 Let a search tree T̃τ be identical to Tτ of the above A∗ at τ
in G, except that all the directed arcs in Tτ are reversed.

Let us construct a new problem instance, Ĩ(τ ), based on I and Î . A search

graph G̃τ of Ĩ(τ ) is composed of T̃τ with additional nodes and edges in Ĝ of

Î .

Definition 4.2.2 Let there be a problem instance I ∈ I and its relaxed

model Î . An approximating model of I is:

Ĩ(τ) = (G̃τ , {c̃(n,m)}, s,Γ, h̃(n) = ĥ(n) ∀n ∈ G̃τ ) (4.4)

The nodes in G̃τ are the same ones that are in Ĝ of Î . There is an edge

between nodes n and m in G̃τ if there is one between n and m in Ĝ with
the exception that all the directed arcs in T̃τ are the only edges between the
neighboring nodes in T̃τ .

The edge cost between neighboring nodes in G̃τ is c̃(n,m) = ĉ(n,m) of

Î with two exceptions. (1) if n and m are in T̃τ , then c̃(n,m) = c(n,m)

of I . (2) If the above A∗ cannot generate m as a successor to n in Ĝ, then
c̃(n,m) =∞.

Figure 4.2 shows an example of Ĩ(τ ) although the directions of the arcs in

T̃τ are not marked. Ĝ and G are the same as in Figure 4.1. G̃τ is the same

as Ĝ in Figure 4.1 except some “missing” hairlines in Figure 4.2. These are

the edges between the expanded, black, nodes in T̃τ and the nodes in Ĝ that
are inside the rightmost obstacle. This is because the above A∗ has tried to
generate the latter nodes but not succeeded and has assigned the cost of∞
to each edge in T̃τ coming to these nodes.

Assume that we know a lower bound F = 11 < C∗ = 15. Then the above
A∗, searching G of I , can use the heuristic hF (n) = max (ĥ(n), 11− g(n)),

2From now on, we will say “nodes in G of I” for short.
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Figure 4.2: A 2-D search stopped at time τ (10 expanded nodes) [2].

where ĥ is the Manhattan distance heuristic based on Î . Hence, the A∗ in
this example is actually the above mentioned A∗

F .
Let A∗

F use the same tie-breaking rule as the algorithm B in the previous
example: First expand the start node and then always expand the rightmost
open node n for which f(n) ≤ 11. A search tree T̃τ of A∗

F with ten expanded
nodes is composed of the ten black nodes, in CLOSED, and the white cir-
cled nodes, in OPEN, with the corresponding edges in Figure 4.2.3

Let theA∗ with the search tree Tτ solve a problem instance I ∈ I by using the
admissible heuristic h provided by I . Let another A∗ algorithm, A∗

X , solve
the approximating model Ĩ(τ ) of I using the consistent heuristic h̃(n) =

ĥ(n) ∀n ∈ G̃τ . When A∗
X has solved Ĩ(τ ), it outputs C̃∗ that is the cost of

an optimal solution path in G̃τ . The proposition below follows immediately
from Definition 4.2.2 and the fact that the A∗ has expanded at least the start
node in G of I at every τ > 0.

Proposition 4.2.2 Every path that A∗
X has found in G̃τ of Ĩ(τ ) has at least

one node n in CLOSED and its successor node along that path in OPEN,
where OPEN and CLOSED are the node sets of the A∗ with the search tree
Tτ at τ (τ > 0).

Proposition 4.2.3 Assume that the A∗ with the search tree Tτ , expanding
nodes in G of I , uses an admissible heuristic h(n) ≥ h̃(n) ∀n ∈ G. Then
any optimal path P̃ ∗, from the start node s to a goal node γ in G̃τ of Ĩ(τ ),
found by A∗

X at τ (τ > 0) has a cost C̃∗ ≤ C∗, where C∗ is the cost of an
optimal solution path in G.

3At the moment, do not pay any attention to the squared nodes, and crosses of thick
bolded lines.

4. A DYNAMICALLY IMPROVING HEURISTIC FOR A∗ 51



Proof. Let n be the deepest node in T̃τ expanded by the A∗ at time τ (τ > 0)
along an optimal path P̃ ∗; no descendants of n are expanded by the A∗. The
successor to n along P̃ ∗ is in OPEN of the A∗. Proposition 4.2.2 guarantees
that such nodes can always be found along any P̃ ∗.

Let k̂(n, γ) be the cost of the cheapest path from n to a goal γ in Ĝ of Î .

Then C̃∗ = g̃∗(n)+ k̂(n, γ), where g̃∗(n) is the cost of the cheapest path from

s to n in G̃τ when A∗
X has expanded n. The cost g̃(n) = g̃∗(n) since h̃ = ĥ

is consistent by Theorem 2.7.3. Definition 4.2.2 implies that g̃∗(n) ≤ g(n),
where g(n) is the cost of the path from s to n in G found by the A∗. Defi-

nition 4.0.1 says that k̂(n, γ) = ĥ(n). Hence C̃∗ ≤ g(n) + h(n) ≤ C∗ by
Theorem 2.4.1 since h(n) ≥ h̃(n) is admissible. 2

From now on, let A∗
F denote the above A∗ searching G of I with the search

tree Tτ . Moreover, let it be possible for A∗
F to use a heuristic HF (n) =

max{hF (n), h(n)} ∀n, where h is the admissible, not necessarily consistent,
heuristic provided by the original problem instance I . The heuristic h is not

necessarily related to Î or Ĩ(τ ), like ĥ and hF . This is because we do not want

to restrict ourselves to utilizing only Î and Ĩ(τ ) in constructing heuristics for
a given problem.

Let a lower bound F1 < C∗ be known. A better lower bound F2 (C∗ ≥
F2 > F1) can be found by using the subroutines A∗

F and A∗
X as follows.

First, let A∗
F expand q1 new nodes in G until the time τ1.4 Second, let A∗

X

find optimal paths in G̃τ1 , into which the q1 newly expanded nodes, their
immediate successors and the corresponding edges are included. If C̃∗ > F1,
then set F2 = C̃∗, otherwise let A∗

F expand another set of new nodes, etc.
This is what the following algorithm A∗

A does.

4.3 ALGORITHM A∗
A

The subroutine A∗
F can expand nodes n for which g(n) > g∗(n) since its

guiding heuristic HF is admissible but not necessarily consistent, see lines
(5.2)–(5.3) in the pseudocode of A∗ in Section 2.1. To avoid this and reopen-
ings of expanded nodes, we introduce the following definition and proposi-
tion.

Definition 4.3.1 Let nτ be a node that is in OPEN of A∗
F at τ > 0 and

expanded by A∗
X such that g(nτ ) = g̃∗(nτ ).5 Let S(nτ ) be the set of all the

nodes nτ after A∗
X has found some optimal solution paths in G̃τ .

Let us again look at Figure 4.2. The black nodes are expanded by the sub-
routine A∗

F and are in T̃ . The white circled nodes are in OPEN of A∗
F . Let

the start node in Figure 4.2 be the origin and the crossings of the thin lines
be points in the plane. The x -axis is the horizontal and the y -axis is the ver-
tical line going via the start node. Let the distance between two neighboring
crossings be one as before.

4We will explain the details of this later.
5The existence of such nodes will be proven in the following Proposition 4.3.1.
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Now, assume that the partial paths found by A∗
F go along the thicker lines

connecting the black nodes. The horizontal thicker line from the start node
to the node whose coordinates in Figure 4.2 are (4,0) is common to the two
pointer paths, one leading upwards and one leading downwards from the
node (4,0).

Let A∗
X use the following tie-breaking rule:6 Among the nodes with the

same minimum f̂ value, first expand those nodes that are in CLOSED ofA∗
F .

At first, A∗
X expands and places the white circled nodes (0,1), (1,1), (2,1), and

(3,1) in S(nτ ). Then, it expands and places the white circled nodes (0,-1),
(1,-1), (2,-1), and (3,-1) in S(nτ ). Finally, the white circled nodes (4,4) and
(4,-3) are placed in S(nτ ). The reason for the nodes (4,4) and (4,-3) being

in S(nτ ) is that the edge costs ĉ = c̃ = c in Ĝ, G̃ and G. If ĉ < c outside
T̃τ , then they would not be in S(nτ ) if A∗

X found a shorter path to them than
A∗

F , going via nodes that are not in T̃τ . Finally, the white circled nodes (3,-2),
(3,2), and (3,3) are not in S(nτ ) since A∗

X has found a shorter path to them
than A∗

F .

A∗
X differs fromA∗ in the sense that, if needed,A∗

X does not stop after finding
the first solution path. The user may determine for how long A∗

X runs. We
will return to this subject in the pseudocode. Anyway, A∗

X must run at least
as long as there are one or more nodes in S(nτ ). This modification is needed
in the following proposition.

Proposition 4.3.1 Assume a problem instance I ∈ I and its approximating
model Ĩ(τ ). The set S(nτ ) is never empty unless OPEN of A∗

F is empty.
Moreover, when A∗

F expands a node nτ in S(nτ ) for the first time, then
g(nτ ) = g∗(nτ ).

Proof: A∗
F is guided by an admissible heuristic. From Lemma 2.3.2, it follows

that the OPEN of A∗
F , and hence T̃τ , always has nodes n for which g(n) =

g∗(n). After running long enough, A∗
X must have expanded all the nodes in

T̃τ . Some of the partial paths to the nodes n found byA∗
X must contain nodes

only in T̃τ , hence g(n) = g̃∗(n) by Definition 4.2.2 (A∗
X uses a consistent

heuristic). It follows that S(nτ ) contains nodes unless the OPEN of A∗
F is

empty.
SinceA∗

X has expanded nτ in S(nτ ), g̃(nτ ) = g̃∗(nτ ) ≤ g∗(nτ ). The latter
inequality follows from Definition 4.2.2. But then Definition 4.3.1 implies
that g(nτ) = g̃∗(nτ ) ≤ g∗(nτ ). It follows that g(nτ) = g∗(nτ ). Hence A∗

F

finds an optimal path to nτ when it expands nτ for the first time. 2

Proposition 4.3.2 Assume a problem instance I ∈ I and its approximating
model Ĩ(τ ). Let it be possible for A∗

F to expand nodes only in S(nτ ) at any
τ . Assume that a lower bound F1 < C∗ is known. Let P̃

∗ denote the set of
all the cheapest solution paths in G̃τ at τ > 0 and C̃∗ their cost. Let r be the
deepest node in S(nτ ) along a path in P̃

∗.
A sufficient condition to have C∗ ≥ C̃∗ > F1 is that the above nodes r

along every path in P̃
∗ have f̃(r) = g̃∗(r) + k̃(r, γ) = C̃∗ > F1.

6This is not obligatory but may improve the overall performance.
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Proof. Follows from Proposition 4.2.3: C∗ ≥ C̃∗ = f̃(r) > F1. 2

Proposition 4.3.2 states that in order for A∗
X to get a better lower bound than

F1 for C∗, A∗
F does not necessarily have to expand all the nodes l for which

g(l) +HF (l) = F1. A∗
F has to expand only the nodes such that their succes-

sors r in S(nτ ), and thus in OPEN of the A∗
F , have f(r) ≥ f̃(r) > F1. The

number of the nodes, nrol, that can be saved from expansion depends on the
tie-breaking rule of A∗

F . However, Proposition 4.3.2 is not constructive: it
does not give an actual tie-breaking rule for A∗

F guaranteeing that nrol > 0.
Every l must be expanded in the worst case.

The following example illustrates Proposition 4.3.2. Let F1 = 11 and A∗
F

have the same tie-breaking rule as algorithm B in Figure 4.2. HF = hF for
simplicity. In Figure 4.2, A∗

F has expanded the black nodes (at τ ). Hence it
has expanded only a subset of the nodes l for which g(l) +HF (l) = 11 such
that every r, in Proposition 4.3.2, has f̃(r) > 11. The nodes r are the upmost
and the lowest white circled nodes in Figure 4.2. The nodes l are the squared
ones that are not inside the left obstacle.

Now, suppose that A∗
X begins to search G̃τ with the Manhattan distance

heuristic, in Figure 4.2. A∗
X finds an optimal path of cost 13, see the thick

bolded line connecting nodes marked with thick bolded crosses together
with some of the black nodes. Similarly, A∗

X finds another optimal path
of cost 13 that goes via the upmost white circled node. This is enough to set
F2 = 13 > F1. Later, A∗

F can use F2 as part of its heuristic HF .

Next, we will prove that the following algorithm, A∗
A, is optimal over A∗. Let

there be a problem instance I ∈ I and its approximating model Ĩ(τ ). A∗
A has

subroutines A∗
F and A∗

X . A∗
F searches the graph G of I , using the admissible

heuristic HF , and A∗
X searches G̃τ of Ĩ(τ ), using the consistent heuristic ĥ.

The pseudocode of A∗
A is:

——————————————————————————————–
ALGORITHM A∗

A:

��� ��� ��� ��	
� � �� � �� ���� 	� �� %
��� � . � ���
�� � �� �$� ���� � �� ����� &�
�* �  �� �� � �� ' % ' #$�%�& ' ���� � ��
 ���� � ���
�,�  �� �� � �#$�%�& ' ���� ' % ' #�%� �

��� �� % �� � �� ����� �
 ���)�

�3� �� #�%� � � ���� � . #�%�
�� � ��&
�� � �� �� � ��� �	���
�

——————————————————————————————–

On line (4), “AF*(F, S, CLOSED, OPEN)” is A∗
F . F and S are input param-

eters whereas CLOSED and OPEN are both input and output parameters of
A∗

F . S is the set S(nτ ) in Definition 4.3.1: S ⊆ OPEN.
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A∗
F is somewhat different from the “plain” A∗. First, line (4) means that

A∗
F does not have to find an optimal path from the start node to a goal node

after one procedure call. Second, one procedure call denotes a search of A∗
F

that starts from the Tτ1 (τ1 ≥ 0) with possibly new F and S parameters and
stops at Tτ2 (τ2 > τ1). Third, A∗

F can only expand nodes in S.
On line (5), “AX*(CLOSED, OPEN, S, COST)” is A∗

X . CLOSED and
OPEN are input parameters whereas S and COST are output parameters
of A∗

X . COST = C̃∗, the cost of an optimal path found by A∗
X in G̃τ at τ .

Here it is assumed that A∗
X begins to search from the start node s at every

procedure call.7 Recall that A∗
X may have to find more than one solution

path until S is not empty.
A∗

A ends successfully if A∗
F ends successfully, that is, if A∗

F removes a goal
node from OPEN and places it in CLOSED, see the pseudocode of A∗ in
Section 2.1.

Theorem 4.3.3 Assume a set of problem instances IA ⊆ I such that every
IA ∈ IA has an approximating model ĨA(τ ). Then A∗

A is admissible and
optimal over A∗ relative to IA, where the admissible heuristic given as input
to both algorithms is provided by IA. Moreover, when A∗

A expands a node n
(in G of IA) in the set S for the first time, then it has found an optimal path
to n.

Proof. Let IA = (G, {c(n,m)}, s,Γ, h) be a problem instance in IA, where
h(n) ≤ h∗(n) ∀n ∈ G. Thus h is the admissible heuristic given as input to
both A∗ and A∗

A.
From Proposition 4.2.3, it follows that the value of F never exceeds C∗

in the pseudocode of A∗
A. Hence A∗

F is guided by the admissible heuristic
HF (n) = max{hF (n), h(n)} ∀n 8 and does not expand any node n for which
f(n) > C∗, by Theorem 2.4.1. Proposition 4.3.1 states that the set S is never
empty unless the OPEN of A∗

F is empty, on line (4). Hence A∗
A finds an

optimal path whenever A∗
F does and A∗

F finds an optimal path if it exists.
When A∗

A expands a node n in S for the first time (in subroutine A∗
F ), then

g(n) = g∗(n) by Proposition 4.3.1.
A∗

A (A∗
F ) uses the dynamically improving heuristic HF (n) ≥ h(n) ∀n,

which implies that

{n | g(n) +HF (n) < C∗} ⊆ {m | g(m) + h(m) < C∗}, (4.5)

where the above sets are the sets of nodes surely expanded by A∗
A and A∗,

respectively. Hence A∗
A is optimal over A∗ relative to IA in the sense of Def-

inition 2.9.1. 2

A necessary condition for A∗
A to surely expand fewer nodes than A∗ is the

following. Let γ be the goal found by A∗
F . Then it must be that F = C∗ in

the above pseudocode when A∗
F selects γ from OPEN. This is to guarantee

that h1(n) = F − g(n) > h(n) ∀n in S in the heuristic HF before the se-
lection of γ. In other words, F must converge to C∗ before A∗

F finds a goal.
This requires that for many enough nodes m in the original problem and its

7We will later remove this restriction.
8hF is the same as above Proposition 4.2.1.
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approximating model: k(m, γ) = k̃(m, γ). Let us call this kind of an approx-
imating model effective.

Let again F = 11, A∗
F have the same tie-breaking rule as B in Figure 4.1,

and HF (n) = hF (n) ∀n. Now, starting from the situation in Figure 4.2 and
looking at the pseudocode of A∗

A, we can see how A∗
A finds the optimal path

of cost 15 shown in Figure 4.1. It is also easy to “run”A∗
A “on paper” from the

start node in Figure 4.1 by first setting F = 7 until F = 15 and the optimal
path is found.

4.4 ON THE EFFECTIVENESS OF A∗
A

The effectiveness of A∗
A compared to that of A∗ depends mainly on the sub-

routines A∗
F and A∗

X , on lines (4) and (5) in the pseudocode of A∗
A.

Subroutine A∗
X

A∗
X searches and expands nodes in the graph G̃τ of Ĩ(τ ). From the construc-

tion of Ĩ(τ ), in Definition 4.2.2, it follows thatA∗
X expands new nodes in Ĝ of

Î and utilizes the nodes inG of I , already expanded byA∗
F . The efficiency of

A∗
X requires that node expansions in the relaxed model Î must be less costly

than node expansions in the original problem I .
In Figure 4.2, A∗

X has surely expanded the white squared nodes in order
to find an optimal path of cost 13. A∗ can solve the whole problem by surely
expanding the white squared nodes in Figure 4.1. By comparing the two
figures we see that A∗

X has expanded three nodes inside the left obstacle that
A∗ never expands.

An example where node expansions in the approximating model, more

precisely in Ĝ of Î, are less costly than in the original problem is a piano-
mover’s problem, cf. also Chapter 6. Figure 4.1 illustrates a common way to
discretize it. The problem consists of a solid object in space with obstacles.
The aim is to find a shortest path for the object from a start position to an end
position such that the object does not collide with the obstacles. For more
details and related problems for robot manipulators, see [44] and [35].

In the piano-mover’s problems the most time consuming operation is a
collision test: geometric calculations to determine whether the object col-
lides with the obstacles or not. This is particularly true if the geometries are
complicated and the space is high dimensional (three or more). Then col-
lision tests typically require over 90 per cent of the overall computational
work. Now, when A∗

F expands a node for the first time, it does the collision
test. On the other hand, A∗

X expands nodes without collision tests.
Other problems, suitable for A∗

A, may arise in systems where data for a
node to be expanded must be searched from databases and/or transmitted to
the place where the planning algorithm is located.
A∗

X does not have to find all the optimal paths in G̃τ in order to get a better
lower bound for C∗, cf. Proposition 4.3.2 that gives a sufficient condition for
better lower bounds. Only one optimal path may sometimes be enough to
get a better lower bound F and a nonempty set S for A∗

F , in the pseudocode
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of A∗
A.

It is possible to get a better F value than C̃∗, in the pseudocode. From
Theorem 2.4.1 we know that A∗

F expands only nodes n for which f(n) ≤ C∗.
Let n represent the nodes expanded by A∗

A (A∗
F ) for which the f value is

maximum. Since HF (n) = max{hF (n), h(n)} ∀n is admissible, we can
take as F :

C∗ ≥ F = max{C̃∗, f(n)}. (4.6)

It is not necessary to begin the next search ofA∗
X from the start node in the

WHILE -loop of A∗
A. Instead, it can be started from earlier expanded nodes,

in CLOSED of A∗
F , whose immediate successors are in OPEN of A∗

F . This
is because A∗

F has already found optimal paths to all the expanded nodes by
Proposition 4.3.1.

Assume that A∗
X utilizes the search tree Tτ of A∗

F in the next iteration of
the WHILE -loop of A∗

A. If G̃(τ ) is “close enough” to G such that their final
search trees are almost equal, after a goal has been found in G, then A∗

A and
A∗ consume approximately the same amount of memory.

Subroutine A∗
F

How many nodes A∗
F actually expands depends on its tie-breaking rule. The

tie-breaking rule affects the total number of node expansions in every set
JF = {n | f(n) ≤ F ≤ C∗}. This requires, however, that the approximating
model is effective, recall the text below Theorem 4.3.3. In the “traditional”
A∗, a tie-breaking rule affects the total number of node expansions only in
the set {m | f(m) = C∗}.

The construction of an effective tie-breaking rule for A∗
F is a problem spe-

cific task. However, a simple rule candidate to begin with suggests to be
greedy: Among the nodes nτ in S(nτ ) with the minimum f(nτ ) value, first
expand the ones that are nearest to a goal, measured perhaps in some other
way than using HF . Decision rules, like the above, may be based on infor-
mation other than contained in the probem instance I and its approximating
model Ĩ , e.g., context information concerning the application area of I , cf.
CI at the beginning of Chapter 3.

For example, the expansion rule of the algorithm B in the example of
Figure 4.1 states: Always expand the rightmost nodes l for which f(l) ≤ C∗.
The rightmost nodes are closest to the goal measured horizontally, not by the
Manhattan distance heuristic that the algorithm uses.

Of course, the above rules do not tell how many node expansions of A∗
F

are enough to guarantee that A∗
X actually finds a better lower bound for C∗.

Hence one cannot know a priori how many timesA∗
F has to be called on line

(4) in the WHILE -loop of A∗
A (Proposition 4.3.2).

More Ways of Utilizing A∗
X and Ĩ

A∗
X and Ĩ can also be used in finding paths or partial parts from selected

nodes of the plain A∗ [46]. In this case, no lower bounds for C∗ are searched
but a more informed heuristic for the A∗ may be obtained.
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Figure 4.3: A 2-D grid with an obstacle: A∗ [2].

4.5 EXAMPLES

In all the examples shown in Figures 4.3–4.6, graphs G, Ĝ and G̃τ are based
on the rectangular grid similarly as in Figure 4.1 and c = ĉ = c̃ = 1. The
heuristic, to which both A∗

A and A∗ have access, is the Manhattan distance
to the goal measured on the grid. Black and white circled dots, in the figures,
are expanded nodes in CLOSED and nodes in OPEN, respectively. The
values g are marked on the nodes. Start nodes are marked with bigger circles
and are on the left. Goals are bigger black nodes on the right.

Figures 4.3 and 4.4 show a problem with a nonconvex black obstacle. In
Figure 4.3 the search algorithm is A∗. In Figure 4.4 A∗

A is used instead.
Figures 4.5 and 4.6 show a problem with three black obstacles. In Figure
4.5, the search algorithm is A∗ whereas A∗

A is used in Figure 4.6.
A tie-breaking rule in all the examples is a greedy one: Among the nodes in

S with the minimum f value, first expand the ones that are located rightmost
and lowest in the figures. Here the context information, not explicitly present
in the grid, is the direction of the goal: rightmost and lowest nodes first. In the
current implementation, the set S contains only one node at a time obtained
by finding one optimal path using A∗

X . However, even these simple rules
make it possible for A∗

A to save many node expansions compared to A∗.

4.6 CONCLUSIONS

In this chapter, we presented an algorithm A∗
A that is optimal over A∗, if they

both receive as input the same admissible heuristic function. We also showed
that when A∗

A expands a node for the first time, it has found an optimal path
to that node. It follows that no re-expansions of nodes are necessary, which is
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Figure 4.4: The 2-D grid with an obstacle: A∗
A [2].
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Figure 4.5: A 2-D grid with three obstacles: A∗ [2].

an important property of effective search strategies.
A∗

A can utilize more information about the search history of the original
problem than A∗ does. By utilizing the information we constructed an effec-
tive approximating model, see Definition 4.2.2 and the text below the proof
of Theorem 4.3.3. The approximating model is used as a “guide map” to
improve the heuristic function during search.

Node expansions in the approximating model are required to be less costly
than in the original problem. The latter assumption is satisfied, e.g., in sys-
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Figure 4.6: The 2-D grid with three obstacles: A∗
A [2].

tems where data for a node to be expanded must be searched from databases
and/or transmitted to the place where the planning algorithm is located.
Other examples are so called piano-mover’s problems where database queries
correspond to testing whether an object (a piano) collides with nearby obsta-
cles or not.

If the construction of an effective approximating model is possible, then a
problem specific tie-breaking rule ofA∗

A reduces the total number of node ex-
pansions in the original problem on all “layers” of nodes n for which f(n) =
constant≤ C∗. This is becauseA∗

A uses the improved heuristic based on suc-
cessive lower bounds for C∗ by utilizing the effective approximating model.
A tie-breaking rule of A∗, on the other hand, affects only expansions of nodes
m for which f(m) = C∗.

In this way, a user has more freedom to adapt the program structure to a
particular problem instance than only constructing admissible static heuris-
tics.
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5 A∗ AS A RESOURCE ALLOCATION POLICY

In many problems, A∗ guided by an admissible heuristic is known to be
slow. This is mainly because effective, or informative, admissible heuristics
to prune the search tree are hard to obtain. Usually, more depth-first type
or greedy algorithms can find solution paths much faster than A∗. However,
then it is very difficult to know a priori which search methods are faster than
others. This motivates to run a set of promising algorithms more or less at the
same time in order to find a reasonably good solution path.

In this chapter, we examine how A∗ can be used to allocate computing re-
sources among several search algorithms solving the same path finding prob-
lem. The high-level A∗ algorithm uses abstracted paths that are composed of
sets of nodes expanded by the low-level algorithms during the search process.
As an example of a resource allocation problem, we discuss and analyze the
so called bidirectional search. More examples are presented in Chapter 6.

In some situations, A∗ provides the optimal resource allocation policy in
the sense of Definition 2.9.1 in Section 2.9. Roughly speaking, this means
that the set of nodes expanded by all the search algorithms together is mini-
mal. This chapter presents a revised version of [3].

At the end of this chapter, we prove that an A∗ that searches a tree and is
guided by an admissible heuristic is the optimal algorithm in the sense of
Definition 2.9.1. (Theorem 5.4.1). A somewhat weaker result follows when
the heuristic can be nonadmissible (Theorem 5.4.2). The above results, The-
orems 3.2.6, and 3.2.7 in Chapter 3 can be used to generalize the optimality
theorems in [3].

5.1 INTRODUCTION

Let G = (N,E) be a locally finite graph, where N is a set of nodes 1 and E is
a set of edges between the nodes. The nodes represent system states and the
edges transitions from one state to another. For example, a system state can
be a robot manipulator in a particular position in its work space. A transition
is a movement of the robot from one position to another. A positive cost is
associated with every edge in E. A search problem refers to finding a path, a
sequence of nodes and edges, from a start node to a goal node in G. A path
has a cost that is the sum of its edge costs.

Subproblems

Suppose that we have several different algorithms for solving a path find-
ing problem. They can share a common search graph or have their own
search graphs. In the latter case, for example, the algorithms may use dif-
ferent representations and data structures for the problem. It is also possible
that the search graphs have common nodes and edges, for example, in bidi-
rectional search using the same graph but different start and goal nodes, see

1Here and in Chapter 6, we use the symbol N instead of V .
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e.g. [54, 21, 59, 69, 16, 43, 29].
It may be possible to divide a search problem into a set of smaller subprob-

lems. This can be based on knowledge of an expert person on that problem
domain. Every subproblem can have a specialized algorithm for solving it
or there can be a single algorithm for all the subproblems. The subprob-
lems can be solvable either independent of each other or not. If they are
independently solvable and the goal of the original problem has the form
goal = g1 and g2 and . . . , where the gi’s are the goals of the subproblems,
then we usually call the original problem decomposable.

Let us formalize the above cases by using search graphs. We will use the
following operations between graphs. Let Gi = (Ni, Ei). First, Gk ⊆ Gj

iff Nk ⊆ Nj and Ek ⊆ Ej. Second, let the original search graph be G =
Gk ∪ Gj. Then the union of the two subgraphs Gk and Gj is Gk ∪ Gj =
(Nk ∪ Nj, Ek ∪ Ej ∪ Ek,j). The edges in a set Ek,j connect nodes nk ∈ Nk

and nj ∈ Nj in G. Finally, the union of several graphs, and the intersection
of two and more graphs are defined analogously.

Assume that the original path finding problem has a search graph G. We
model the subproblems by subgraphs Gi of G: G = G1∪G2∪G3∪· · ·∪Gr.
The intersection of Gi and Gj (i 6= j) is not necessarily empty. In addition
to a search graph, a path finding problem has also a start node s and a set of
goal nodes Γ.

Every subgraph Gi can have a “private” search algorithmAi for expanding
its nodes or there can be only a single algorithm expanding all the nodes in
G. In general, expanding the nodes in Gi can generate successors in Gj

(i 6= j). Hence a final solution path can have nodes in several subgraphs Gi.
If several algorithms solving the same problem use their own search graphs

Gi whose intersection is empty, then every Gi itself represents the original
problem. In this case, calling the Gi’s subgraphs or subproblems is some-
what misleading. Despite of this, we will formally write G =

⋃r
i=1

Gi. Here
G is actually a union of different representations of the same problem.

A simple example where G = G1 = G2 is a bidirectional search: There are
two algorithmsA1 andA2 searchingG1 andG2, respectively. G1 andG2 have
different start and goal nodes. The goal ofG1 is the start of G2 and vice versa.
The search stops if either algorithm finds its goal node or Ai tries to expand a
node that has already been expanded byAj (j 6= i). Both algorithms can also
be instances of a single one, for example, Dijkstra’s shortest path algorithm
or A∗ [59, 25, 29].

Usually we may be able to say which nodes belong to which subgraph
without starting any search. An example of this is path finding on a d-
dimensional rectangular grid. Nodes are in coarser or finer subgrids. This
corresponds to searching the original grid with different resolutions. Here a
subgraph equals to a subgrid of one resolution. The subgraphs are defined
before the search process begins. We have used this method in robot path
planning, see Section 6 and [4].

Alternatively, we can decide in which subgraph a node is only after an al-
gorithm has generated it. The generated nodes are included in the subgraphs
according to criteria that are implemented in the algorithms themselves. The
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criteria, for example, can use information about the generated nodes and
their immediate predecessors. For more details, see also Section 6 and [4].

Resource Allocation

Let a search problem in a graph G be divided into subproblems: G =
⋃r

i=1
Gi. Assume that we know how to expand nodes in every Gi, and that

information is programmed in the search algorithms.
Assume that the subproblems Gi are not independently solvable or we

have fewer than r computing machines available. Then we have to define
a strategy that tells us which subproblem Gi is assigned to which machine
at a time. Let us call this strategy a resource allocation policy among the
subgraphs Gi, or the subproblems. In this work, we assume that only one
machine is available for all the Gi’s.

A resource allocation policy is to first search for a solution in
⋃r1

i=1
Gi, r1 <

r. If a solution is not found then search a bigger set of graphs
⋃r2

i=1
Gi, r1 <

r2 ≤ r, etc. This strategy can be called greedy or a depth-first search among
the graphs Gi. If some of the graphs Gi have infinite number of nodes, then
it may happen that this method fails to find a solution path even if it exists.

Another resource allocation policy is to search all the the graphs Gi (i =
1, 2, . . . , r) at the same time. We assign to each node nj

i in Gi a weight wj
i .

An algorithm can minimize the numbers or total weights Wi =
∑Ki

j=1
wj

i of

the expanded nodes in every Gi in order to find a solution path.2 Ki is the
number of the expanded nodes in Gi at a given time. This is done by next
expanding a node in Gk (k = 1, 2, . . . , r) that has a minimum total weight
Wk so far. The strategy corresponds to a breadth-first search among the graphs
Gi.

Suppose that we do not know which subproblem Gi is the easiest to solve.
Or alternatively, we do not know which algorithm is best in solving a given
problem. Then we may wish to use the algorithms in such a way that the
number of the nodes that they have expanded together in G is minimized
when a solution path is found.

Let us modify the breadth-first strategy: If node expansions in Gk generate
paths that “seem to lead towards a goal”, then give computing resources to
explore more nodes inGk before starting to search any otherGi (i 6= k). One
way to implement this strategy is that we estimate the number of the nodes
still to be expanded in every Gi before a solution is found. The estimate,
say H , works here similarly as a heuristic function h in the A∗ algorithm. In
the modified resource allocation policy, the sets of the expanded nodes in
different Gi’s correspond to paths in the A∗ algorithm. We will formalize this
in the next section.

It will turn out that the new modified strategy is optimal over the breadth-
first strategy. Moreover, in some cases the new strategy is the best one avail-
able in the sense of Definition 2.9.1 in Section 2.9. This is possible because
it has the same structure as A∗ and “inherits” its optimality properties.

In the following, we will examine situations where the new resource allo-

2In general, we do not require that complete solution paths exist in a single graph.
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cation strategy is the best available, and how to calculate its heuristic H by
using the heuristic h related to A∗.

5.2 A∗ AS A RESOURCE ALLOCATION POLICY

Consider a path finding problem and its search graph G =
⋃r

i=1
Gi, where

the intersection of the Gi’s is not necessarily empty. Let there be algorithms
A1, A2, . . . , Ar expanding nodes in G1, G2, . . . , Gr, respectively. Some or
all the algorithms can be identical. For example the bidirectional search, in
Section 5.1, has r = 2 and algorithms A1 and A2, where it is possible that
A1 = A2.

Assume that Ai has expanded every node in a subgraph Gi(τ) ⊆ Gi at
“time” τ . Let Ni(τ) ⊆ Ni be the set of the expanded nodes at τ and |Ni(τ)|
be the number of the nodes in Ni(τ).

The breadth-first strategy for allocating computing resources among the
Gi’s, in Section 5.1, is: At τ , choose the Gj(τ) for which |Nj(τ)| is mini-
mum and expand one successor to a node in Nj(τ). If a goal node is first
found in Gk(τ

∗), then |Nk(τ
∗)| is minimized among the values |Ni(τ

∗)|
(i = 1, . . . , r).3

Let Ni(τ
1) and Ni(τ

2) be the sets of the nodes that an algorithm Ai has
expanded at time τ 1, and τ 2 > τ 1. Assume that |Ni(τ

1)| = l. If Ni(τ) =
Ni(τ

1), where τ 1 ≤ τ < τ 2 and Ni(τ
2) contains only one more node than

Ni(τ
1), then let us simply write Ni(τ

1) = Ni(l) and Ni(τ
2) = Ni(l + 1) =

N ′
i(l). The set N ′

i is called a successor to the set Ni.
Now, imagine that every set Ni(l) forms a new node and there is an edge

between Ni(l) and N ′
i(l) = Ni(l + 1) for all l = 1, 2, . . . . For example, if

Ai expands the start node s in Gi at τ 1, then Ni(1) = {s} is a node in the
above sense. Its successor node N ′

i(1) = Ni(2) contains two nodes in Gi

expanded by Ai, say, s and n1: Ni(2) = {s, n1}. Similarly, N ′
i(2) = Ni(3) =

{s, n1, n2} after Ai has expanded n2 in Gi, etc.

Definition 5.2.1 Let a graph G =
⋃r

i=1
Gi, and Ni(l) be the set of l ex-

panded nodes in Gi ⊆ G. Call Ni(l) a node. N ′
i(l) = Ni(l + 1) is the only

successor to Ni(l) if and only if |Ni(l+1)| = |Ni(l)|+1 = l+1 for all l ≥ 1.
There is an edge between Ni(l) and N ′

i(l) with a cost C(Ni(l), N
′
i(l)) > 0

for any i and l. There is no edge from Ni to Nj if i 6= j, except that
there is a dummy node N(0) with edges from N(0) to every Ni(1) and
C(N(0), Ni(1)) = ai > 0.

A sequence of the nodes and the edges, starting from N(0), form an ab-
stract, or a meta, path and is denoted by MPi (i = 1, . . . , r). The cost of
MPi is the sum of its edge costs.

In general, it is sufficient that only one of the subgraphs Gi contains the start
node and one contains the goal node.

If the costsC(Ni(l), N
′
i(l)) = 1 for every i and l, then minimizing the cost

of MPi is equivalent to minimizing |Ni(·)|. For example, if a goal is found

3Here, the weights of the nodes are assumed to be one, and the goal is not considered
expanded.
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first in Gk containing l∗ expanded nodes, then the cost of the optimal meta
pathMP ∗

k is l∗. Hence the above breadth-first search strategy among theGi’s
can be interpreted as one finding a cheapest meta path MPi starting from
N(0).

Let a graph MG =
⋃r

i=1
MPi. Actually, MG is a tree with a root N(0). Let

us define a domain of problem instances, cf. Section 2.9:

MIAD = {(MG, s,Γ, H) | H(Ni) ≤ H∗(Ni) ∀Ni ∈MG}. (5.1)

From now on, let Ni represent Ni(l) for all l whenever the meaning is clear.
Assume again thatC(Ni, N

′
i) = 1 for all i. Assign to each nodeNi alongMPi

a heuristic H(Ni(l)). H(Ni(l)) is an estimate of the number of nodes still to
be expanded in Gi, after l, before a solution path in G is found. Similarly,
H∗(Ni(l)) is the minimum number of nodes to be expanded in Gi before a
goal is found in G. If H(Ni) ≤ H∗(Ni) for all Ni, then H is admissible by
Definition 2.3.2 in Section 2.3.

The breadth-first strategy for finding a cheapest meta path MPi in MG has
H(Ni) = 0 ≤ H∗(Ni) for all Ni, and it can be implemented as an A∗

algorithm. Hence it is admissible on the domain MIAD of problem instances
by Theorem 2.3.3. However, if we can estimate an admissibleH(Ni) ≥ 0 for
allNi, then anA∗ guided by it is also admissible on MIAD by Theorem 2.3.3.
Then Theorem 2.6.2 states that the A∗ is optimal over, or largely dominates,
the breadth-first strategy relative to MIAD.

Theorem 5.2.1 LetA∗ be the resource allocation policy for node expansions
among the subgraphsGi (i = 1, . . . , r), or among the algorithmsAi. Assume
that A∗ uses the nodes and the meta paths in Definition 5.2.1 and is guided
by a consistent heuristic H on MG of MIAD.

Then A∗ is admissible on MIAD and optimal over any DPBF resource
allocation policy (using H) also admissible on MIAD that has the same tie-
breaking rule as A∗, in the sense of Definition 2.9.1.4

Proof. The question of the tie-breaking rule will be discussed later, in the
context of Theorem 5.3.2. It is necessary only if expanding a node in Ni can
produce successors that are in Nj, j 6= i. The rest of the proof follows di-
rectly from Theorem 2.9.1. 2

Suppose that we wish to use the algorithms Ai searching the graph G =
⋃r

i=1
Gi in such a way that the number of the nodes that they together will

expand in
⋃r

i=1
Gi is minimum in order to find a solution path. Then The-

orem 5.2.1 states that the A∗ defined above is the best resource allocation
method among DPBF strategies that return an optimal (meta)path, provided
that H is consistent, and if expanding a node in Ni cannot produce succes-
sors that are inNj , j 6= i. Otherwise, the above holds relative to the common
tie-breaking rule of the resource allocation methods.

Theorem 5.2.1 can be generalized to hold also when the above heuristic
H is admissible and not consistent because the search graph is a tree. We

4DPBF strategies were characterized at the beginning of Chapter 3.
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will prove this later in Theorem 5.4.1. Weaker versions of Theorem 5.2.1:
Theorem 5.4.2, Theorem 3.2.6, and Theorem 3.2.7, may be considered if
the above heuristic H is nonadmissible.

5.3 USING THE ORIGINAL HEURISTIC IN G

Let a search graph G =
⋃r

i=1
Gi and algorithms Ai be as before. Assume

that the computational work of expanding a node in G is measured by the
edge costs of G. Let us associate with every node n a cost or a weight w(n) =
c(m,n), the cost of an edge between n and its immediate predecessor m. If
there are many paths leading to n, then we define m to be the father of n
when n was found for the first time. Let us arbitrarily assign w(s) = a > 0 to
the start node s.

Assume that we can calculate a heuristic h(n) for all the nodes n in G.
If a goal node and ni are in a subgraph Gi, then h(ni) estimates the cost of
the path from ni to the goal. If Gi does not contain any goal nodes, then
let h(ni) = 0 or the heuristic is estimated in some other way. Usually it
may be hard to tell in advance whether a graph Gi has a goal node or not.
However, we may be able to construct a heuristic h� that only satisfies the
triangle inequality but does not necessarily vanish at the possible goal nodes
in Gi, see Section 3.1 for more details.

Let us allocate computing resources for node expansions among the graphs
Gi, or among the algorithmsAi, such that the number of the weighted nodes
expanded in

⋃r
i=1

Gi is minimized. This can be done by the A∗ algorithm
minimizing the costs of the meta paths in Definition 5.2.1. From now on,
let us call the A∗ used in resource allocation A∗

MG: It searches the tree MG
of MIAD. The edge cost between a node Ni and its successor N ′

i in MG is
C(Ni, N

′
i) = c(n, n′) = w(n′), ∀n′ ∈ Ni ∀i.

Paths with Nodes in a Single Subgraph

If every Gi contains a complete solution path, then the subproblems repre-
sented by the Gi’s can be solved independent of each other. The intersection
of Gj and Gk (j 6= k), however, may or may not be empty. The bidirectional
search, in Section 5.1, is an example of the latter case (G1 = G2).

Let us now consider the following case: If a node in Gi is expanded then
all its successors will be only in Gi and not in any other subgraph. If the
intersection of Gj and Gk (j 6= k) is not empty, then let us define that algo-
rithm Aj does not react in any way to the fact that some of the nodes in Gj

can also be in Gk.

Theorem 5.3.1 Let all the subgraphsGi have the start and all the goal nodes.
Suppose that A∗

MG uses the nodes and the meta paths in Definition 5.2.1.
Assume that every path candidate Pi is in Gi. Let C(Ni, N

′
i) = w(n′

i) =
c(ni, n

′
i) > 0, where ni and its successor n′

i both are in Gi. If h(ni) is mono-
tone for all ni in Gi, then A∗

MG using an evaluation function

F (Ni) = G(Ni) +H(Ni) =

Ki
∑

j=1

w(nj
i ) + min

nj
i
∈Ni

{h(nj
i )}, (5.2)
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where Ki nodes have been expanded in Gi, is admissible on MIAD. More-
over, A∗

MG is optimal over any DP resource allocation policy (using h) also
admissible on MIAD in the sense of Definition 2.9.1.

Proof. Let A∗
MG expand a node n′

i, a successor to ni. If h(n′
i) ≥ H(Ni)

then H(N ′
i) = H(Ni) by the definition of H . Assume that h(n′

i) < H(Ni).
This implies H(N ′

i) = h(n′
i) ≥ h(ni) − c(ni, n

′
i) by the monotonicity of

h. Hence H(N ′
i) ≥ H(Ni) − C(Ni, N

′
i) since H(Ni) = min{h(mi) |

mi expanded in Ni} and C(Ni, N
′
i) = c(ni, n

′
i). Thus H is monotone, con-

sistent and admissible.
Hence A∗

MG is admissible in MIAD and optimal over any admissible algo-
rithm in MIAD by Theorem 2.9.1. 2

Theorem 5.3.1 also holds when the heuristic h is admissible because MG
is a tree. We will prove this later in Theorem 5.4.1. Weaker versions of
Theorem 5.3.1: Theorem 5.4.2, Theorem 3.2.6, and Theorem 3.2.7, may be
considered if the heuristic h is nonadmissible.

Theorem 5.3.1 can be generalized in situations where a subgraph Gi con-
tains fewer than all the goal nodes in G. Let h(ni) be calculated by using
only the goals in Gi. Assume that a solution path has been found in another
subgraph Gk, k 6= i. Then H(Ni), based on h(ni), may easily be nonadmissi-
ble in cases, where the minimum distance from the expanded nodes to a goal
in Gi is much longer than the one in Gk has been. But then, if the H values
used in the search in Gk have been admissible, then Proposition 3.2.8 holds.
In this situation, the otherwise nonadmissible H is actually better than an
admissible heuristic (see the text below Proposition 3.2.8). Moreover, Corol-
lary 3.2.2 states that in this case A∗

MG is also the optimal strategy among DP
strategies in a set Agc. The strategies in Agc are assumed to find an optimal
(meta)path whenever A∗

MG does, see Section 2.9.
Theorem 5.3.1 does not require that the algorithms Ai, expanding nodes

in the Gi’s, must themselves use the monotone or admissible heuristic h.
Only the resource allocation algorithm A∗

MG utilizes it. The Ai’s can be any
path searching algorithms, not necessarily admissible ones. Recall that there
can also be a single algorithm for expanding all the nodes in the subgraphs
Gi.

As an example, let us discuss how A∗
MG can be used as the bidirectional

search in G, introduced in Section 5.1. The search proceeds as follows.
First, A1 and A2 expand their start nodes s1 and s2. Hence N1(1) = {s1}
and N2(1) = {s2}. The OPEN set of A∗

MG has now two nodes N1(1) and
N2(1). F (N1(1)) = F (N2(1)) = 1 + h1(s1) assuming that h1(s1) = h2(s2)
and w(s1) = w(s2) = 1. Suppose that A∗

MG selects first N1(1). It means
that A1 now expands one of the successors to s1, say s′1. After this A∗

MG gen-
erates a successor to N1(1), N1(2) = {s1, s

′
1}, and calculates F (N1(2)) =

G(N1(2))+H(N1(2)) = 1+c(s1, s
′
1)+min{h1(s1), h1(s

′
1)}. Thus the OPEN

set of A∗
MG now contains nodes N1(2) and N2(1) since N1(1) is placed in

CLOSED. Next, A∗
MG selects a node from OPEN for which the F value is

minimum, etc.
The bidirectional (A∗

MG) search can have at least two stopping rules. (i)
A∗

MG stops when A1 (A2) chooses γ1 (γ2) for expansion. (ii) A∗
MG stops if one
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of the algorithms, A1 or A2, tries to expand a node already expanded by the
other.

Assume that we can calculate admissible heuristics h1 and h2 for all nodes
in the sets N1 and N2, respectively, by using the start node of A2 as a goal
to nodes in N1 and vice versa. Let A∗

MG use the above stopping rule (i)
and assume that A1 (A2) does not react in any way to the nodes expanded
and generated by A2 (A1). In this case, A∗

MG is the optimal resource alloca-
tion policy between A1 and A2 by the generalized version of Theorem 5.3.1.
Moreover, if h1 and h2 are monotone and A1 = A2 = A∗, then the bidi-
rectional search finds an optimal path to any node in G it expands. This
follows from Theorem 2.7.3. Also, the complete solution path found in G
(for example from s1 to γ1) is optimal. However, if the stopping rule (ii) is
used, then the complete solution path may no more be optimal, for more
delicate stopping rules guaranteeing the optimality of the complete path, see
e.g. [54, 59, 43, 25, 29].

Paths with Nodes in Many Subgraphs

Let us remove an assumption of Theorem 5.3.1: “every path candidate Pi

is in Gi”. Hence solution paths can contain nodes in several subgraphs Gi

(i = 1, 2, . . . , r). Subgraphs Gj and Gk (j 6= k) can have common nodes. It
is not necessary that the start node and a goal node are in everyGi. Moreover,
the expansion of a node in Gi can produce successors that are also in Gj

(i 6= j). The resource allocation algorithm A∗
MG then chooses in which set

Nj (j = 1, . . . , r) to place the successors. Let us first extend Definition 5.2.1.

Definition 5.3.1 Let the sets Ni in Definition 5.2.1 contain both expanded
and open, unexpanded, nodes in Gi. The predecessor of Ni contains no
open nodes. |Ni| is the number of the expanded nodes in Ni at a given time.

Let us now assign a type to every node: n has type k if n is in Gk; this is
denoted by nk. It is possible that the type of a node is known before any
algorithm has generated it, namely, if we know the division G =

⋃r
i=1

Gi a
priori. On the other hand, a decision which set Nk a node n′ is placed in may
depend on the type of its predecessor n. Hence the decision can be made
after the expansion of n. In the latter case, the type of the node is implicitly
defined whereas in the former case it is explicitly defined.

In the case of the bidirectional search, a node can have two types: It is in
both of the (sub)graphs G1 and G2 provided G = G1 = G2. The types of the
node are thus explicitly defined.

As another example, let us discuss the search graph defined in a d-dimen-
sional rectangular grid mentioned in Section 5.1, see Section 6 for more
details ([4]). The nodes in the grid, G, are vectors n ∈ Zd whose com-
ponents are integers. For example, the neighboring nodes in G are n =
(n1, n2, . . . , nd) and n′ = (n1, n2 + 1, . . . , nd). G = G1 ∪ G2 ∪ G4 ∪ G8 ∪
· · · ∪ Gmax defines a hierarchy of grids as follows. The nodes in Gi (i =
1, 2, 4, . . . ,max) are vectors {n = (n1, n2, . . . , nd) | gcd(n1, n2, . . . , nd) =
i}, where gcd(·) denotes the greatest common divisor of the arguments. Thus
the types of the nodes are explicitly defined. The subgraphs Gi do not have
any common nodes. However, there are edges between nodes in different

68 5. A∗ AS A RESOURCE ALLOCATION POLICY



Gi’s such that the expansion of a node in Gi can produce successors that are
in Gj (i 6= j).

An example of implicit problem division is also presented in Section 6
([4]). Denote now by Gi the graph Gi in the graph hierarchy in the previous
paragraph. Here the subgraphs Gi do not refer to the graph hierarchy but
are defined as follows. First, assume that A∗

MG has chosen a set Ni. Second,
suppose that a node ni in Gi has been expanded. Let ni be in Gj and its
successor n′ be in Gk in the graph hierarchy. If k ≥ j then A∗

MG places n′

in Ni and sets i as the type of n′. If k < j then n′ is placed in Nk and its
type is k. Hence the type of a successor depends on the type of its father.
We can imagine that every Ni contains nodes in Gi, in the graph hierarchy,
from which trees of partial paths start. Nodes in this forest of trees in Ni are
in Gk, k ≥ i.

In general A∗
MG works as follows. After a node ni in Ni is expanded, A∗

MG

places its successors n′
k in Nk where the type k = 1, 2, . . . , r can be different

from i. The successors are now open nodes in Nk. The evaluation function
F (Nk) for every Nk is calculated as in Theorem 5.3.1.

The pseudocode for algorithm A∗
MG is shown below. In the code, “N(i)”

is Ni and “n.type” is the type of n. OPEN refers to the set of sets N(i) that
contain at least one open, unexpanded, node.

——————————————————————————————–
ALGORITHM A∗

MG:
��� ������ ��� 	
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�� 
� � 
� 
��� �
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——————————————————————————————–

In the above pseudocode, there are no computational steps such as on lines
(5.2)–(5.3) in the pseudocode of A∗ in Section 2.1 despite that A∗

MG is an
instance of A∗. This is mainly because the graph MG that A∗

MG searches is a
tree. The second reason is the definition of the weight w at the beginning of
Section 5.3: w(n) is based on the father of n when n was found for the first
time.

5. A∗ AS A RESOURCE ALLOCATION POLICY 69



The meta paths are not explicitly formed in the above pseudocode, since
Ni and its only successor N ′

i are not implemented as separate sets: N ′
i =

Ni ∪ n
′
i after the insertion of n′

i.
Node selections and expansions in the sets Ni (on lines (1) and (6)), and

successor generations (on line (7)), can be done by algorithms Ai if wanted.
There can also be only a single algorithm for expanding all the nodes in G.
Furthermore, line (13) can be replaced by
��� /� ����� � / 
� � �� /������ 
	 
� 
� ��� ������ �� ���� ���


� ��� � �
� � �� ��������� � �� �� /�������

Then a single node is open only in oneNi. In general, a node can have many
types.

Now, let us say something about the optimality properties of A∗
MG in this

situation. We have to assume that any algorithm comparable to A∗
MG must

have the same tie-breaking rule as A∗
MG. The reason is the following.

A counterexample: Let an A∗
MG(a) have a tie-breaking rule a. Assume that

the A∗
MG(a) finds a goal node in Gk in a set Nk(l), that is, after l node ex-

pansions in Gk. Now, let another A∗
MG(b) have a tie-breaking rule b, differ-

ent from a. Let A∗
MG(a) and A∗

MG(b) behave in the same way until the set
Nk(l − 1) is reached. Assume that there are several sets Ni (i = 1, 2, . . . , q)
for which the F value is the same as F (Nk(l − 1)). Then A∗

MG(b) may se-
lect one of them, say Nj 6= Nk, such that expanding a node in Nj generates
new open nodes into Nk(l− 1). It can happen that the algorithm expanding
nodes in Gk first expands those new open nodes before the goal node in Gk

is chosen. Hence A∗
MG(b) can miss the optimal meta path since more than

l nodes may be expanded in Nk before the goal is found. It follows that the
optimality among A∗

MG algorithms depends on the tie-breaking rule. This is
true even if the heuristic H guiding both algorithms is admissible.

The situation in the above counterexample reveals one more thing. Sup-
pose that algorithm Ak expands nodes in Gk and Ak 6= Aj . Then, in the
counterexample, Ak was assumed to be able to expand nodes n that it has
not generated before; Aj has generated the n’s. Hence, the algorithms ex-
panding nodes in graphs Gi (i = 1, 2, . . . , q) in this section are more general
than the algorithms discussed elsewhere in this work, cf. Constraint 4 at the
beginning of Chapter 3.5 This is unless we define that every Ai is a subrou-
tine of some “global” node expansion algorithm.

Theorem 5.3.2 Assume thatA∗
MG uses the nodes and the meta paths in Def-

initions 5.2.1 and 5.3.1. Assume that every Gi does not necessarily contain
the start node and any goal node. Let it be possible for path candidates in
G to have nodes in different subgraphs Gi (i = 1, 2, . . . , r). Let the cost
C(Ni, N

′
i), the heuristic H(Ni) and F (Ni) be the same as in Theorem 5.3.1.

Let h(n) be admissible on every node n in G.
Moreover, assume that h(n′

j) ≥ H(Nj), where n′
j is the immediate suc-

cessor to ni, i 6= j, when A∗
MG places n′

j in Nj .

5The algorithms can also be such that they explore nodes instead of expanding them, see
Constraint 3 in Chapter 3.
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Then A∗
MG is admissible on MIAD relative to its tie-breaking rule. More-

over, any DPBF resource allocation policy (using h) that is admissible on
MIAD with the same tie-breaking rule as A∗

MG will explore, in any instance
I ∈MIAD, all the nodes surely expanded by A∗

MG.

Proof. Let A∗
MG expand a node ni ∈ Ni and place its successor n′

j as an open
node in Nj. If i = j then Theorem 5.3.1, or actually, its generalization holds
since h is admissible. Assume that i 6= j. If h(n′

j) ≥ H(Nj) = min{h(mj) |
mj expanded in Nj}, then n′

j does not change H(Nj) after it is expanded.
Hence H remains admissible.

Since any other algorithm admissible on MIAD was assumed to have the
same tie-breaking rule asA∗

MG, the above counterexample is impossible. The
following Theorem 5.4.1 implies the rest. 2

The assumption h(n′
j) ≥ H(Nj) is restrictive: no node that is placed in Nj

whose predecessor is in Ni, i 6= j, can alter the heuristic H(Nj). However,
if this is not the case, then the heuristic H(Nj) may become nonadmissible
and, again, Theorem 5.4.2, Theorem 3.2.6, and Theorem 3.2.7 may be con-
sidered. However, if H has been admissible along the optimal meta path
found, then A∗

MG is the optimal strategy among the DPBF strategies in the
set Agc by Corollary 3.2.2.

Usually, we can check whether the above assumption (h(n′
j) ≥ H(Nj)) is

true or not only after the generation of n′
j when A∗

MG has determined its
type j. One solution to the problem is to let the algorithms Ai avoid node
expansions that violate the admissibility assumption as long as it is possible.
However, at some point we may have to violate the assumption if a solution
path cannot be found in any other way.

Consider again the bidirectionalA∗
MG search discussed below Theorem 5.3.1.

Let A∗
MG now use the stopping rule (ii): A∗

MG stops if A1 (or A2) tries to ex-
pand a node already expanded by A2 (or A1).

Let n1 and n2 be nodes expanded by A1 and A2, respectively. Assume
that we can calculate h1(n1) = minn2∈N2

{k′(n1, n2)} for all the nodes n1

expanded by A1 at all times during the search, where the cost k′(n1, n2) is
a lower bound for the cost of an optimal path from n1 to n2. Moreover,
let h2(n2) be calculated similarly as above. Then A∗

MG using the stopping
rule (ii) is the optimal resource allocation policy between A1 and A2 among
admissible DPBF strategies by Theorem 5.3.2 relative to its tie-breaking rule.

The calculation of the above heuristics may be too slow in practise. If we
avoid the above calculations, then H my easily become nonadmissible when
A∗

MG uses the stopping rule (ii). Then, however, the A∗
MG is still optimal in

a smaller set of algorithms by Theorem 3.2.6 or Theorem 3.2.7.

5.4 OPTIMALITY IN TREES

It is possible to generalize Theorems 5.2.1 and 5.3.1, and to complete the
proof of Theorem 5.3.2 in situations where the heuristics H in the theo-
rems are not necessarily monotone but are admissible. The reason is that the
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search graph MG of MIAD is a tree. The following theorem formalizes this.
The set of algorithms Aad are the ones that always return an optimal solu-
tion when the heuristic is admissible, cf. Chapter 3. Let the set of problem
instances be

I
T
AD = {(T, s,Γ, h) | h ≤ h∗ on (T,Γ)}, (5.3)

where T is a directed tree: The root of T is the start node s and the edges
from any node n in T are directed from n to succ(n) (successor nodes: see
Section 2.1). Clearly I

T
AD ⊆ IAD, defined in Section 2.9.

Theorem 5.4.1 (cf. Theorem 2.9.1). Any DP strategy in Aad (admissible on
IAD) will explore, in every instance I ∈ I

T
AD, all nodes surely expanded by

A∗.

Proof: Let I = (T, s,Γ, h) be a problem instance in I
T
AD. Assume that n is

surely expanded by A∗ and not explored by B. Therefore, there exists a path
Ps−n such that

g∗(n′) + h(n′) < C∗ ∀n′ ∈ Ps−n, (5.4)

where g∗(n′) = g(n′) since T is a tree. Let B be in Aad, namely, halting
with cost C∗ in I . We now create a new tree T ′, similarly as in Figure 2.1,
by adding to T a goal node t with h(t) = 0 and an edge from n to t with a
nonnegative cost c(n, t):

c(n, t) = C∗ − g∗(n)− ε > 0, (5.5)

where 0 < ε < minn′′∈Ps−n
{C∗ − g∗(n′′) − h(n′′)}. Let a new instance be

I ′ = (T ′, s,Γ ∪ {t}, h). This construction creates a new solution path P ∗
t

with a cost

C(P ∗
t ) = g∗(n) + c(n, t) = g∗(n) + C∗ − g∗(n)− ε = C∗ − ε. (5.6)

The heuristic h(m) is admissible for any m not in P ∗
s−n since we kept the h

values of all the nodes in T unchanged and T is a directed tree. It remains to
verify the admissibility of h for every node n′ in P ∗

s−n:

h(n′) = C∗ − g∗(n′)− (C∗ − g∗(n′)− h(n′)) ≤ C∗ − g∗(n′)− ε

= k(n′, n) + C∗ − g∗(n)− ε = k(n′, n) + c(n, t) = k(n′, t).(5.7)

Thus, the new instance I ′ is in I
T
AD.

In searching T ′, algorithm A∗ will find the new optimal path P ∗
t with cost

C(P ∗
t ) < C∗ because

f(t) = g∗(n) + c(n, t) + h(t) = C∗ − ε (5.8)

and, so, t is reachable from s by a strictly C∗-bounded path, which ensues
its selection. Algorithm B, being deterministic, must behave exactly in the
same way as in solving I , if I ′ is given as input to B: It avoids exploring n
in T ′ and halts with cost C∗, which is higher than that found by A∗. This
contradicts the assumption that B is in Aad. 2

We can study algorithms in problems, where heuristics are nonadmissible
by using Theorems 3.2.6 and 3.2.7 or by using the following theorem. In
Theorems 3.2.6 and 3.2.7, A∗ was compared to algorithms whose evaluation
function for a node depends only on the current path to that node. The
following theorem holds in more general situations.
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Theorem 5.4.2 Let IT = {(T, s,Γ, h)}, where h is a possible nonadmissible
heuristic. Let ∆ = maxm∈T{h(m) − k(m,Γ)}, where k(m,Γ) denotes the
cost of the shortest path from m to the set of goal nodes Γ. Then any DPBF
strategy B ∈ Aad will explore, in every instance I ∈ I

T , all the nodes in
N

M
g+h ∩ {n | h(n) ≥ ∆} provided that ∀m1, m2 ∈ G of I ∈ I

T :

h(m1) > h(m2)⇒ fB(m1;H, I(·, h)) > fB(m2;H
′, I(·, h)) (5.9)

independent of the current search histories H and H ′ concerning I . (cf.
Theorem 3.1.2).

Proof: Let I = (T, s,Γ, h) be a problem instance in I
T . If ∆ ≤ 0, then

I ∈ I
T
AD, and by Theorem 5.4.1 we are done. Assume that ∆ > 0.

Let A∗ expand a node n in N
M
g+h ∩ {n | h(n) ≥ ∆} of I . Moreover,

assume that B does not explore n. Let

0 < ε < M − g∗(n)− h(n), (5.10)

where M is the minmax value of A∗ in T . Let us create a new tree T1, which
is the same as T except two modifications. First, the heuristic values of the
nodes are changed:

h1(m) = max{0, h(m)−∆} (5.11)

for all the nodes in T1 except n, for which h1(n) = h(n)−∆+ε. The second
modification is that the costs of the edges between n and all its successors n′

are c1(n, n
′) = c(n, n′) + ε, where c(n, n′) denotes the corresponding edge

cost in T . Denote a new problem instance by I1 = (T1, s,Γ, h1). It follows
that I1 ∈ I

T
AD.

Since A∗ expanded n in T : f(n) = g∗(n)+h(n) < M by Theorem 2.8.6.
From the construction of h1, it follows that the minmax value M1 for A∗

in T1 satisfies M1 ≥ M − ∆. A∗ will expand n also in T1 since f1(n) =
g∗(n) + h1(n) < M − ∆ by the definition of ε. Since B does not explore
n in T , is deterministic and fB satisfies the assumption of the theorem, B
does not explore n in T1 either if I1 is given as input to B, cf. the proof of
Theorem 3.1.2.

Now, I1 ∈ I
T
AD and we can utilize the proof of Theorem 5.4.1 directly

to create an instance I ′ ∈ I
T
AD, where B will not find the optimal solution

path (when I ′ is given as input to B) whereas A∗ will. This contradicts the
assumption that B ∈ Aad. 2

Here, if ∆ is close to zero, then the set NM
g+h ∩ {n | h(n) ≥ ∆}may be close

to N
M
g+h, cf. Theorem 3.1.2.

A final, technical, comment concerns the proofs of Theorems 5.2.1, 5.3.1,
and 5.3.2. It is the same independent of which theorem (Theorems 2.9.1,
5.4.1, 5.4.2, 3.2.6, or 3.2.7) is used in the proofs.

In all the proofs a new graph G′ is created from G by attaching to a node
n in G an edge and a new goal node t, or new goals t1 and t2. Now, n and
t (t1 and t2) are sets of nodes Ni (i = 1, . . . , r) and every Ni has only one
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successor in G, according to Definition 5.2.1. Formally, G′ is constructed
from G as follows.

Let the set corresponding to n, in the above proofs, be Nn and the graph
(tree) corresponding to Nn be Gn. First, delete all the children of Nn. Sec-
ond, place pc new open nodes in Nn, where the new goal t (t1 or t2) is
one of them. Construct a path P starting from n and going via the pc − 1
nodes to t (t1 or t2) by adding pc edges between them, and set a cost of
every edge as c(n, t)/pc. Next, construct a meta path of Definitions 5.2.1
and 5.3.1 starting from Nn with pc node sets: Every node set in the meta
path is Nn

p = Nn ∪ {np}, where the set {np} contains all the nodes in P
that has been explored when Nn

p is formed. Moreover, let the nodes np be
such that the algorithm exploring nodes in Nn explores them directly after n
before finding the goal t (t1 or t2). In other words, t (t1 or t2) is the first goal
found in the search process and no additional nodes, except the newly cre-
ated ones and n, are explored before t. The cost between any two succeeding
nodes in the meta path is thus C(Nn′

p , N
n′′

p ) = c(n, t)/pc, where c(n, t) is the
cost of the new (meta)path in G′ used in the proofs. In such a way, the cost
of the newly included meta path is the required one, in the proofs.

5.5 CONCLUSIONS

Suppose that we have divided a path finding problem into subproblems. This
is done by dividing the original search graph into subgraphs. In general, every
subgraph do not have to contain the start and goal nodes. Hence solution
paths can have nodes in several subgraphs. In other words, the subproblems
are not required to be solvable independent of each other. Every subproblem
can have a different algorithm for expanding its nodes.

In this chapter, we showed that A∗ can be used as a resource allocation
policy for node expansions among the subgraphs. We used bidirectional
search as an example of a resource allocation problem between two path
finding algorithms.

In some cases, (Meta)A∗ is the optimal resource allocation policy among
admissible DPBF strategies.6 This requires the possibility of underestimat-
ing, during search, the number of the nodes still to be expanded at least in
that subgraph, where a goal is found, see Corollary 3.2.2 in Chapter 3, The-
orems 5.2.1, 5.3.1, 5.3.2, and Theorem 5.4.1.

In Theorem 5.4.1 we showed that A∗ guided by an admissible heuristic
is the optimal algorithm, when the search graph a directed tree, cf. Theo-
rem 2.9.1.

If every path candidate can be only in a single subgraph and every sub-
graph contains the start node and all the goal nodes, then one method of
estimating the heuristic guiding the resource allocation process is to use an
admissible heuristic h assigned to the nodes in the original graph. The ad-
missibility of h guarantees the existence of an optimal resource allocation
strategy (Meta A∗), see Theorem 5.3.1 and the text below it.

In general, the situation is more complicated. Additional assumptions
are needed for the existence of an optimal resource allocation policy (Meta

6DPBF strategies were defined at the beginning of Chapter 3.
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A∗). It is not always possible to know a priori whether these constraints are
satisfied or not. Moreover, the optimality depends on the tie-breaking rule of
the resource allocation strategy. See Theorem 5.3.2 and the text below it.

If the heuristic guiding the resource allocation process has been nonad-
missible along the found (meta)path, then Meta A∗ is still an optimal re-
source allocation strategy among certain admissible DPBF and BF∗ strate-
gies, see Theorem 3.2.6 and Theorem 3.2.7 in Chapter 3.
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6 HIERARCHICAL A∗ BASED ROBOT PATH PLANNING —
A CASE STUDY

When an automated production line is operating, it is often very expensive
to stop it, for example, to re-program robots to deal with new products or
product variants. A more economical way is to generate new movements for
the robots off-line, using a simulator, and then download the programs into
the robot controllers. Minor modifications to the programs, e.g., fine tuning
the robot wrist and gripper movements may still be necessary but the time
the production line needs to be stopped is small compared to the manual
teaching of the robots.

Point-to-point path planning in known environments refers to finding a
path from an initial robot configuration to a desired goal configuration such
that the robot does not collide with itself or obstacles around it, see [44, 35].
This problem occurs in industry, e.g., in spot welding, riveting, and pick and
place tasks, see Figure 6.1.

Usually it is impossible to know in advance how coarsely robot movements
can be discretized in order to find a collision free path in the presence of
obstacles, i.e., a sequence of discrete robot positions, points, that can be con-
nected by straight collision free line segments. A solution to the problem is
to introduce a new method of constructing hierarchical path planning algo-
rithms. It is based on the Meta A∗ structure discussed in Chapter 5.

We test four hierarchical path planning algorithms, two of which are based
on the Meta A∗ algorithm, using five simulated robot workcells. The simu-
lations suggest that the Meta A∗ based planners, on average, find paths faster
and consume less memory than the two comparable algorithms. This chapter
presents a revised version of [4].

6.1 INTRODUCTION

Figure 6.2 illustrates a path planning example of a 2-joint robot manipulator.
The left picture shows the robot’s work space. There the robot is shown at
several different positions with some gray obstacles. “S” is a start position
and “E” is a goal position. The positions between “S” and “E” are snapshots
along a collision free path. The right picture shows a configuration space C
of the 2-joint robot manipulator. A point q ∈ C is called a configuration and
it can be represented by the 2-dimensional vector whose components are the
robot’s joint angle values.

Subset of C consisting of all the configurations where the robot has no
contact or does not intersect the obstacles is called free space and denoted
by Cfree, see white areas in the right picture. The complement of Cfree

consists of obstacles and is denoted by Cobst, see black areas. To determine
whether a configuration q is in Cfree or in Cobst, in a robot simulator, geo-
metric calculations are needed. This is called collision testing. A collision
free path from “S” to “E” is a continuous sequence of the configurations in
Cfree, see the thin black line.
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Figure 6.1: An IRB 2000 industrial robot assembling a dashboard into a car
body.

S
E

S

E

Figure 6.2: A 2-joint robot manipulator in its work space with obstacles (left
picture). A configuration space and a collision free path (right picture).

Robot path planning has received much attention over the years and many
different approaches have been presented, see for example [44, 35]. They can
be roughly categorized into cell decomposition, potential field, and roadmap
or skeleton methods. Most of these methods search a collision free path in the
discretized configuration space. A detailed survey of path planning problems
and algorithms can be found in [35].

Cell decomposition approaches are based on decomposing the set of free
configurations into simple non-overlapping regions called cells, see e.g. [26,

9, 23, 35, 44]. If the cells are in the work space then one has to model so
called swept volumes, sets of free configurations, around robot manipulators
[44]. In the configuration space, the cells are often rectangular regions. They
usually form a tree structure. If a cell is not free then it is subdivided into
some smaller cells by creating new leaf nodes in the tree, etc. After the divi-
sion process is completed the leaf nodes refer to the biggest cells in free space
at a given resolution. The adjacency of cells is represented in a connectiv-
ity graph that is then searched for a collision free path. These approaches
use sophisticated algorithms for finding adjacent free cells. Furthermore, to
check whether a cell is free requires distance calculations between robots and
obstacles [23, 35].

Roadmap or skeleton approaches attempt to map a set of feasible motions
onto a network of one-dimensional lines, called roadmap, skeleton, or sub-
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goal network, see e.g. [14, 39, 44, 35]. One node in the roadmap graph or
the subgoal network corresponds to one robot configuration in free space.
The nodes are generated by “intelligent” sampling in the search space. This
can be done either by preprocessing the search space or during path plan-
ning. Local planning refers to finding a collision free path from one node
or subgoal to another. Searching a collision-free path on the whole subgoal
network (graph) is called global planning. In these approaches, local plan-
ners usually do not know how difficult it is to find a path from one subgoal
to another. Therefore the algorithms have to decide when to stop searching
for one subgoal and to choose another instead. Moreover, allocation of com-
putational resources between global and local planning has to be carefully
implemented.

In potential field methods, path candidates evolve towards a goal guided
by a potential function. The paths proceed in directions of negative gradient
of the potential function, see e.g. [15, 71, 36, 63, 44, 35]. The potential func-
tion is zero at the goal whereas on the boundaries of the space and obstacles
it has a positive value, e.g. one. In general, potential functions are solutions
of a Laplace partial differential equation with the above boundary conditions.
It can be shown that such potential functions have their only minima at the
goals. Hence after the potential function has been found, path planning is a
fairly trivial task. The problem here is, however, that obstacles can be geo-
metrically complicated. It follows that potential functions can be calculated
only numerically. Solving the corresponding Laplace equation numerically
is possible only in low dimensional spaces (2 or 3) using coarse resolutions.
This is because calculations need all the points in the discretized space. A
common solution is that potential functions are most often estimated either
by using spherical approximations of obstacles or with the help of a few near-
est obstacles. Then they have simple algebraic forms composed of two terms:
an attractive force guiding paths towards goals and a repulsive force push-
ing them away from obstacle surfaces. A drawback is that the approximated
potential functions usually have other, local, minima except the one at the
goal. Hence sophisticated algorithms are needed to enable path candidates
to escape from those local minima.

We have not compared our results with the above methods. This is mainly
because there are very many variants of them presented in the literature. We
have briefly mentioned here only the basic ideas behind those methods.

Related Work

In this chapter, the search space is a d-dimensional grid, where d is the di-
mension of the configuration space C, i.e., the number of joints or degrees-
of-freedom (DOF) of a robot. A configuration q ∈ C is represented as a
d-dimensional vector (q1, q2, . . . , qd). The configuration space is discretized
so that each qi has mi distinct values: q1

i , q
2
i , . . . , q

mi

i . Hence C is a graph of
m1 ×m2 × · · · ×md vectors. The graph has edges that connect each node q
to its neighbors. For example, a neighbor of (q1, q

1
2, . . . , qd) is (q1, q

2
2, . . . , qd).

A collision free path (continuous sequence of the configurations in Cfree) is
represented by a sequence of nodes and edges in free space Cfree.
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The theme in this chapter is hierarchical A∗ (HA) based path planning.
Path candidates generated by A∗ from the start node to nodes n can be seen
as “rubber bands”. Their elasticity and potential energy is controlled by the
function f . A∗ tries to “stretch” these rubber bands by exploring successor
nodes to n that are in free space. For deepest collision free nodes m found
so far, the heuristic h(m) resembles the approximated potential function dis-
cussed above. The g(m) value penalizes the length of the path from the
start to m: Generating longer paths consumes more energy. However, A∗

explores only a subset of the search graph to find a collision free path unlike
the numerical solution of the corresponding Laplace equation. Despite this
A∗ always finds a shortest or a cheapest collision free path if one exists (as
long as the heuristic h is accurate enough). Methods that use approximated
potential functions with local minima can miss existing paths.

Warren [73] presents a very simple HA based search method for robot path
planning. First, a coarsely discretized configuration space is searched, using
big step sizes, to find a collision free path (the above numbersm1, m2, . . . , md

are small positive integers). If such a path is not found, then a graph with
finer discretizations is searched, using smaller step sizes (m1, m2, . . . , md are
increased), etc. If a collision free path exists on a coarse resolution graph,
then it will be found very quickly. However, if collision-free paths exist only
on very fine resolution graphs then the search process often does unneces-
sary work. For example, there may be a narrow passage somewhere between
the start and the goal configurations. To go through the passage the search
process has to use small step sizes. After that the search continues on the fine
resolution graph even when there is enough room for bigger step sizes again.

Another HA based path planner in [6] searches both coarser and finer
resolution graphs at the same time and changes step sizes adaptively during
the search. The search process always tries to increase step sizes whenever
there is enough free space around. When collisions occur the planner de-
creases step sizes near obstacles surfaces, see Figure 6.4 in Section 6.4. The
algorithm needs the coarsest and the finest allowed graph resolutions as pa-
rameters. If the coarsest resolution is set as the same as the finest resolution
then this method equals A∗ with the same resolution. If the finest resolution
is set much smaller than necessary to find a path, then this algorithm can do
much unnecessary work.

We have developed two new HA based path planning algorithms from the
planner in [6]. In the new algorithms, nodes in the search graph are dis-
tributed into several subgraphs — before or during the search depending on
the particular algorithm. In general, the search process chooses first the most
promising subgraph and only after that it starts to find collision free nodes
(configurations) in the chosen subgraph. Subgraphs can form, for example,
a hierarchy of graphs from coarser to finer discretizations of the search space.
In this way we can control node explorations more freely or adaptively than
in the above two HA based algorithms in [73, 6]. In the HA planner [6], adap-
tivity is achieved only when a single node is being explored, whereas our new
algorithms “see” also sets of nodes in the subgraphs. The new algorithms use
A∗ in a novel way, which we call Meta A∗, for more details see Section 5.
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A general strategy in all our algorithms is that we prefer searching coarse
resolution graphs by exploring coarse resolution nodes whenever possible.

Hierarchical cell decomposition methods are somewhat related to the
path planners tested here. However, the latter methods find collision free
paths that are lines in Cfree whereas the cell decomposition methods find
volumes, or voxels, in Cfree. A robot path can proceed in many ways through
these voxels. However, the organization of the hierarchical search in the
tested algorithms can also be applied to cell decomposition representations
of search spaces. Then a node corresponds to a cell and the connectivity
graph is constructed by the hierarchical search.

The tested methods differ from roadmap or subgoal networks although
they all generate paths that are one dimensional lines. The roadmap meth-
ods generally do not know whether a path exists or not between two sub-
goals in the beginning. Local planners find this out. Here we do not have
any subgoals nor “intelligent” local planning in this sense. We simply find
a collision free path along one coordinate axis from one configuration to a
neighboring configuration in C. When a configuration q is included in the
search tree, then we already know that there exists a collision free path from
the start node to q. However, it is straightforward to apply our HA methods to
roadmap methods as local planners: to find collision free paths between any
two subgoals chosen by a global planner.

First, we discuss how search graphs of the path planning problems are hier-
archically divided into subgraphs. Second, we describe the idea and give a
pseudocode for the new path planning algorithms that we compare to each
other empirically. Third, we describe path planning tasks and present simu-
lation results. Finally, we discuss the results and make conclusions.

6.2 SUBDIVIDING A PATH PLANNING PROBLEM

Here we define search graphs for hierarchical path planning and discuss how
to subdivide a path planning problem.

Let d be the degrees-of-freedom of a moving object. If the object is flying
freely in a 3 dimensional space, then its DOF is six — three linear direc-
tions and rotations around three linearly independent axes. In case of robot
manipulators, the DOF is the number of the robot’s joints — linear or rotary.

Every discretized collision free configuration q of an object, see Section 6.1,
is mapped onto a corresponding node n in the search graph. The nodes in the
search graph are vectors n ∈ Zd, whose components are integers. The graph
has edges that connect neighboring configurations. For example, neighbor-
ing configurations q = (q1, q2, . . . , qd) and q′ = (q1, q2 + stepsize, . . . , qd)
are mapped onto n = (n1, n2, . . . , nd) and n′ = (n1, n2 + 1, . . . , nd), respec-
tively. In general, we define that two nodes are neighbors if they differ from
each other only in one component by exactly one. Hence each node has 2 ·d
neighbors. Costs assigned to edges between any two neighbors are one. We
call this a basic graph G1 and its resolution is one.

Let a graph of the finest resolution be G1. A graph in the second level
of resolution, G2, has nodes n = (n1, n2, . . . , nd) ∈ Z

d whose components
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n1, n2, . . . , nd ∈ Z are divisible by 2. Nodes in the next level graph, G4,
are those whose components are divisible by 4, and so forth. In general, the
nodes in the graph Gi are {n = (n1, n2, . . . , nd) | gcd(n1, n2, . . . , nd) = i},
where gcd(·) denotes the greatest common divisor of the arguments. We call
the numbers i = 1, 2, 4, . . . , 2k, . . . , 2max(= rmax) the resolutions of the
graphs.

There are two kinds of edges in the graph hierarchy: edges that connect
neighboring nodes in a single Gi and edges that connect nodes in graphs Gi

and Gj, i 6= j. In the former case, we define the neighboring nodes, both
in Gi, similarly as in the basic graph G1. The latter case depends on how
an algorithm expands nodes. In any case, before n′ can be accepted as a
successor, collision tests (Section 6.1), are performed to be sure that there
are no obstacles along a path from n to n′. If n′ is accepted then an edge with
an appropriate cost is created between n and n′.

In general, when a node n in Gi is expanded, an edge is created from n to
each n′ where n′ is in Gk for k ≥ i, unless there is an object near n. If n is
near an object surface, then n′ can also be in Gj where j < i. Again, n and
n′ differ from each other by one component only. The detailed successor
generation process used in three of the four algorithms in this chapter is
presented in the Appendix.

Figure 6.3 illustrates some nodes and edges in graphs whose resolutions
are 1, 2, 4 and 8 = rmax, see the nodes labeled by white circles, triangles,
white rectangles and black rectangles, respectively. Thin lines show some
of the edges. A cost between neighboring nodes n and n′ is c(n, n′) =
rmax/dist(n, n′), where dist(n, n′) = ||n− n′‖|1, the Manhattan distance.
The distance is measured along the basic graph G1 with unit edge costs. The
costs are shown near the edges. We have used these costs in the HA planner
in [6].

Let a search graph G be composed of the graphs in the above hierarchy:
G = G1 ∪G2 ∪G4 ∪ · · · ∪Grmax. We can think of the graphs Gi as forming
a subdivision of the search problem, where each Gi is a search graph of one
subproblem. In general, we define a subdivision of G as G = G1 ∪ G2 ∪
G3 ∪ · · · ∪Gr as in Chapter 5. Thus, in the above example, G1 = G1, G2 =

G2, G3 = G4, . . . , Gk+1 = G2k

, . . . , Gr = Grmax. We will describe another
subdivision ofG later in connection with the tested algorithms. Subproblems
with search graphs Gj are not required to be solvable independent of each
other.

There are many ways to choose in which order the nodes in the above
graph hierarchy are expanded. One way to solve the problem is to first search
for a solution on the graphs

⋃r1

i=1
Gi, r1 < r. If a solution is not found,

then search
⋃r2

i=1
Gi, r1 < r2 ≤ r, etc. This strategy can be called greedy

or a depth-first search among the graphs Gi. If the original graph G has an
infinite number of nodes, then it may happen that this method fails to find a
solution path even if it exists.

Another way is to search all the graphs
⋃r

i=1
Gi more or less at the same

time. We assign to each node ni,k in Gi a weight wi,k. A weight can mea-
sure the computational work of expanding a node or the importance of a
node. In general, we give more computational resources to expansions of
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Figure 6.3: Hierarchy of graphs at resolutions 1,2,4 and 8 = rmax. Nodes
labeled by different symbols, such as rectangles, triangles, and circles, belong
to graphs with different resolutions.

important nodes. Here, nodes in coarser resolution graphs are more impor-
tant than nodes in finer resolution graphs. This is mainly because there are
significantly fewer of the former nodes than the latter. Thus there is a better
possibility to explore most of the coarser resolution graphs.

An algorithm can minimize the numbers or total weightsWi =
∑Ki

k=1
wi,k

of the expanded nodes in every Gi in order to find a solution path on G. Ki

is the number of the expanded nodes in Gi at a given time. This is done by
first choosing a graph Gj that has a minimum total weight Wj so far. After
this, one of the nodes in Gj is expanded, Wj is updated and another Gi

with the minimum Wi is chosen, and so forth. This strategy corresponds to a
breadth-first search among the graphs Gi.

In this chapter, node expansions in a single graph Gi are done by the
A∗ algorithm. In the following, this should not be mixed with the Meta A∗

algorithm that first chooses a graph Gi before any node expansions in Gi can
happen, like in the above breadth-first strategy. Actually Meta A∗ has more
or less the same structure as A∗, cf. also Section 5.

6.3 THE META A∗ ALGORITHM

Let us modify the above breadth-first strategy among the graphs Gi. If previ-
ous node expansions in Gi have generated paths that “seem to make regular
progress towards a goal”, then let us explore more nodes in Gi before start-
ing to search any other Gj , j 6= i. One way to implement this strategy is
to estimate the remaining cost of the nodes still to be expanded in every
Gi, i = 1, 2, . . . , r, before a solution is found. The estimate, say Hi, works
here similarly as a heuristic h in the A∗ algorithm.

Assume that ni,k is a node inGi that has a weight or a costwi,k = c(m,ni,k),
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the cost of an edge between the father m of ni,k and ni,k. After ni,k is ex-
panded the Wi value of Gi is updated: Wi = Wi + wi,k. Let h(n′) be an
estimate of the cost of the cheapest path from a successor node n′ of ni,k to
a goal. The value h(n′) may be less than h(ni,k). This indicates that a path
from the start node via ni,k to n′ has made progress towards the goal. Now we
can construct the estimate Hi, concerning the graph Gi, by using the h(n′)
values: Hi = min{c(ni,k, n

′) + h(n′)} if n′ is not yet expanded in Gi. Fi-
nally, all the graphs Gi, i = 1, 2, . . . , r, are ranked according to increasing
Fi = Wi +Hi. This implements the above modified strategy.

In the new strategy, called Meta A∗, a graph Gj with the minimum value
of Fj is first selected, then one of its nodes is expanded and Fj is updated.
Then anotherGi is selected and so forth. This differs from the earlier breadth-
first strategy only by the estimate H .

If the Hi’s underestimate the remaining cost of the nodes still to be ex-
panded in Gi for all i, then Meta A∗ is a better algorithm than the breadth-
first strategy since the latter has H = 0. Actually, then Meta A∗ is be the best
strategy available, using the Hi’s, for minimizing the Wi’s of the expanded
nodes among the graphsGi, i = 1, 2, . . . , r. The best strategy means, roughly
speaking, that the sum of the weights of the expanded nodes in the whole
search space G =

⋃r
i=1

Gi is minimized. This is possible because Meta A∗

has the same structure asA∗ and “inherits” its optimality properties. For more
details, see Section 5.

From now on, we will apply the terminology presented in Section 5. For
example, let the start node s = ni,1 be in Gi. Expanding s generates succes-
sor nodes that are in graphs Gm, where m can be any number in {1, . . . , r}.
The expanded ni,1 is placed on Ni(1). Ni(1) = {ni,1} is now a node used
by Meta A∗. Then assume that nm, a successor to s, is expanded and its
successors generated as above. If nm is in Gm where m 6= i then nm is
placed on Nm(1): Nm(1) = {nm,1}. On the other hand, if m = i then
Ni(2) = {ni,1, ni,2} is a successor to a set Ni(1), and so forth.

We write Ni instead of Ni(l) for every l whenever the meaning is clear.
In principle, Meta A∗ maintains OPEN and CLOSED sets similarly as A∗.
OPEN and CLOSED of Meta A∗ are sets of sets:

OPEN = {No
i | n ∈ N

o
i if n is open in Gi}.

In the above definition, n is open in Gi if it is not yet expanded and its father
has been expanded. InA∗-terminology, this means that n has been generated
in the expansion process of its father. Similarly, a CLOSED set of the Meta
A∗ is:

CLOSED = {N c
i | n ∈ N

c
i if n is expanded in Gi}.

MetaA∗ always examines the nodes of the “most promising” set No
i based on

the evaluation function F (No
i ) = G(N c

i ) + H(No
i ). G(N c

i ) = Wi: the sum
of the weights, or the total weight, of the nodes expanded so far inGi. H(No

i )
is an (under)estimate of the remaining cost H∗(No

i ) of the nodes still to be
expanded in Gi before a solution path on G is found.

After Meta A∗ has chosen a particular No
i then a node n ∈ No

i is chosen
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for expansion based on a local evaluation function fi(n). In general, every
Gi can have its own private search algorithm Ai (using fi) that will generate
successors to n. In this chapter, there is only a single algorithm expanding
nodes in G, namely A∗. Meta A∗ then removes n from No

i and places it in
N c

i (l + 1), a successor set to N c
i (l). The successor nodes to n, depending in

which Gj they are, are placed in No
i that is now a successor to N c

i (l + 1), or
in another No

j , j 6= i.
There are many possible evaluation functions F (No

i ) for Meta A∗ using
different weights wi,k for the nodes ni,k ∈ Gi. They all yield different algo-
rithms that usually can be compared to each other only empirically.

The following pseudocode describes Meta A∗. It is a variant of the pseu-
docode in Section 5, now applied to robot path planning. OPEN refers to
the set OPEN of the Meta A∗, G(i) is Gi, and N(i) is No

i ∪ N
c
i . F(N(i)) =

G(N(i)) + H(N(i)) for each element (or set) N(i). G(N(i)) is the sum of the
weights of the expanded nodes in N(i). H(N(i)) is an estimate of the remain-
ing cost of the nodes still to be expanded in N(i). f(n) = g(n) + h(n) is the
value of an evaluation function for a single node n. Before Meta A∗ starts, at
least one set N(i) has to contain an open node, e.g., a start node s, such that
OPEN is not empty.

——————————————————————————————–
THE META A∗ ALOGORITHM
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Note that no CLOSED set is implemented. If N(i) (= No
i ∪ N

c
i ) does not

have any nodes that can be expanded, then line (1) behaves as if N(i) were
closed. Furthermore, the meta paths composed of the N(i)’s are not explicitly
created since the only successor of N(i) is N(i) ∪ n’, where n’ is the new open
node in G(i), see line (13).
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In the pseudocode, a node can be in one set N(i) only, see line (8). This
means that the intersection of the subgraphs Gi is empty. This is not neces-
sary though. Line (10) could be moved above line (8) and the latter replaced
by writing: “(8’) IF (n’ is in G(j)) AND (n’ is not already in N(j))”. This would
result, of course, in a different algorithm from the above.

On line (6), a node n for which f(n) is minimum is expanded. The
detailed expansion method is presented in the Appendix.

6.4 TESTED ALGORITHMS

Let us define four hierarchical path planning algorithms tested in the fol-
lowing simulations. Two of the algorithms are new ones based on the pseu-
docode of Meta A∗.

Hierarchical A∗ (HAW)

The first tested algorithm is HAW resembling the one in [73], see also Sec-
tion 6.1. The idea is thatA∗ starts searching first the coarsest resolution graph
Grmax in the graph hierarchy in Section 6.2. If it does not find a collision
free path on Grmax, then it starts searching also the finer resolution graph
Grmax ∪ Grmax/2, etc. HAW generates successors to a chosen node along
each coordinate axis. Hence if the dimension of the search space is d then an
expanded node has 2d neighbors. The heuristic value h(n) assigned to each
node n is the Manhattan distance between n and the goal. Functions g and
h are measured using the costs of the finest resolution graph currently being
searched.

This corresponds to the greedy strategy in Section 6.2. At best, the method
is very fast since it has to explore only a union of a few coarse resolution
graphs. HAW, being an A∗ algorithm, is resolution complete: it finds a colli-
sion free path if one exists on the finest resolution graph.

Hierarchical Path Planner (HAPP)

The second algorithm, HAPP, is originally presented in [6]. It searches sev-
eral different resolution graphs in the graph hierarchy of Section 6.2 at the
same time. The search algorithm itself is A∗. The Appendix shows how
HAPP generates successors for a given node and presents detailed pseu-
docodes (Rules 1–3). The idea is that HAPP tries to generate nodes that
are in the coarser resolution graphs than their predecessors. The exception is
when a father node is near an obstacle surface. Then finer resolution succes-
sors are allowed, too. All this happens within the limits of the finest and the
coarsest resolutions given to the algorithm.

Figure 6.4 illustrates a 2-dimensional planning process of HAPP. A colli-
sion free path is the bolded line. Tiny black rectangles connected by thin
lines form a search tree needed to find the path. In Figure 6.4, the planner
uses four resolutions in the search: 1, 2, 4 and 8, see the thin lines of four dif-
ferent lengths. For comparison, Figure 6.5 illustrates the same path planning
task solved byA∗ searching the basic graph of resolution 1. The collision free
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Figure 6.4: A 2-D search on the graphs with resolutions 1,2,4 and 8 by HAPP.

Figure 6.5: A 2-D search on the basic graph with resolution 1 by A∗.

paths in Figures 6.4 and 6.5 are different. This is because the A∗ algorithms
search different graphs.

Planners based on Meta A∗ (Algorithm 1 and 2)

Let us assume that the search graph G is composed of a union of subgraphs
Gi, as in Section 6.2: G =

⋃r
i=1

Gi. Let us also use the graph hierarchy
in Section 6.2: Gj, j = 1, 2, 4, . . . , 2k, . . . , 2max(= rmax). In the next two
algorithms, we make two subdivisions Gi of G by using the graphs Gj . Both
the algorithms are instances of MetaA∗ and generate successors to a selected
node by Rules 1–3 in the Appendix, similarly as HAPP.

We assign a weight w(n′) = c(n, n′) to each n′ in Gi:
w(n′) = rmax/dist(n, n′), where n is a father of n′ and dist(n, n′) = ||n−
n′||1, as in Section 6.2. Nodes in finer resolution graphs are more costly
than most of the nodes in coarse resolution graphs. By doing this we favor
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expansions of nodes with coarse resolutions. This corresponds to the edge
costs used in HAPP, too.

The Meta A∗ based algorithms differ, however, from the greedy methods
HAW and HAPP. Here we can control the expansions of nodes with different
resolutions more adaptively by the “Meta A∗-mechanism” (the pseudocode
of Meta A∗), whereas in HAW and HAPP this is achieved only by the node
expansion mechanism itself and the edge costs.

Algorithm 1: Here every Gi = Gj in the graph hierarchy (i = 1, 2, 3, . . . , r;
j = 1, 2, 4, . . . , rmax). In other words, nodes in a set Ni of Meta A∗ are in a
graph whose resolution is j = 2i−1. Hence Algorithm 1 tries to find a meta
path (Section 6.3) that minimizes the sum of the weights of the expanded
nodes with equal resolutions j (min ≤ j ≤ max).

Algorithm 2: Here Gi 6= Gj. Let Meta A∗ choose a set Ni and then pick
up an open node n ∈ Ni whose resolution is k, i.e., n is in Gk. In general
k ≥ 2i−1. Rules 1–3, in the Appendix, generate successors n′ to n. If n′ is in
Gl, where l ≥ k then n′ is inserted in Ni. Alternatively, if n′ is in Gm, where
m < k then n′ is inserted as an open node in Nm.

We can imagine that every Ni contains nodes of resolution 2i−1, from
which trees of partial paths start. Nodes in a particular tree have resolutions
≥ 2i−1 and every child node has at least the same resolution as its father. In
this way, Algorithm 2 tries to find a meta path that minimizes the sum of the
weights of the expanded nodes in the forest whose trees start from nodes with
equal resolutions. The weights w make this strategy favor trees that start from
coarse resolution nodes.

We could at once construct variants of Algorithms 1 and 2. First, the weight
of a node could be its resolution. Second, in Algorithm 2, we could minimize
the (weighted) number of the trees in the forest instead of something relating
to their nodes. These variants are not, however, tested here.

6.5 EXPERIMENTAL RESULTS

Test Cases

There are five path planning tasks for the four tested algorithms.

Figure 6.6 shows a cell layout adopted from [35] although the actual di-
mensions disagree. There is a 5 DOF Adept robot with an L-shaped object
attached to its gripper. The left picture shows the start configuration and the
right picture the goal. The robot has to bend its wrist to get the L-shaped
object out of the wicket. Then it has to lift its linear axis and to rotate its
first and second link to avoid the middle block. The collision free path goes
between the robot and the middle block. This is the first task: Task 1.

Figure 6.7 shows a cell of Task 2. There is a 6 DOF IRB 2000 robot with
a stick attached to its gripper and two archs. Task 2 has the start in the left
picture and the goal in the right picture. The robot has to rotate all its joints
to carry the stick under the first arch. Then it has has to bend its wrist to get
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the stick through the second arch towards the goal.

Figure 6.8 shows a cell of Task 3. It has been adopted from [34] although
the actual dimensions disagree. The IRB 2000 has a cube attached to its
gripper. Task 3 has the start in the left and the goal in the right picture.

Figure 6.9 shows a cell of Task 4. There is a car body and the IRB 2000
robot with a fictitious dashboard in its gripper. This task mimics a dashboard
assembly process although here it is reversed: The start is in the left picture
and the goal in the right picture.

Figure 6.10 shows a table and three chairs (Task 5). One chair can move
on the floor, i.e., it has 3 DOFs. The moving chair is the leftmost one in the
left picture, in its start position. The goal is on the opposite side of the table,
under it, shown in the right picture. A collision free path goes between the
table and the rightmost chair.

Simulations

In Tables 6.1–6.6, we recorded the total number of the expanded nodes
(EXP) and path planning times (TIME) for all the four algorithms (ALG):
Hierarchical A∗ (HAW), Hierarchical Path Planner (HAPP), and the Meta
A∗ based Algorithms 1 and 2. The results of HAW are on a separate Table
6.6. The planning times are CPU times in seconds on a 1000 Mhz AMD
Athlon computer with 256 megabytes of main memory.

Collision testing was done using a software package called RAPID (Rapid
and Accurate Polygon Interference Detection) [27]. All the collision tests
were calculated at the finest allowed graph resolutions independent of the
resolutions that the algorithms used during their search. Collision testing
took about 90 per cent of the computational work of the algorithms.

In Task 1, the joint movements of the 5 DOF Adept robot are discretized
into 300 × 200 × 200 × 200 × 100 different configurations. In Task 2, the
6 DOF IRB 2000 has a discretization 1000× 500× 300× 200 × 50 × 200.
In Task 3, the discretization is 1000 × 500 × 300 × 200 × 200 × 200. In
Tasks 4 and 5, the discretizations are 200×150×150×100×100×100 and
300× 300× 300, respectively.

In the path planning Tasks 1–3, the discretizations correspond to the real
robot’s maximum wrist movements of 1–3 cm, and 5 cm in Task 4. Then
the resolution and step size is one. The coarsest allowed resolution and step
size 128 is chosen such that empty configuration spaces of the robots contain
only a few nodes.

Each path planning Task 1–5 has three test runs. In the first runs, the al-
gorithms can only utilize resolutions at least 4, 32, 32, 8 and 16, respectively,
see the first columns labeled “MIN” in Tables 6.1–6.5. This corresponds
to the maximum resolutions of the graphs at which collision free paths ex-
ist. The subsequent runs have smaller MIN -values. Hence in the second
and the third runs, the algorithms can search finer resolution graphs than is
necessary, the information that is not known a priori. For example, MIN =
1 denotes the finest allowed resolution. Note that HAW always finds paths
on the maximum resolution graphs that contain solution paths since it is a
greedy method, see Table 6.6.
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ALG MIN EXP TIME MIN EXP TIME MIN EXP TIME
1 4 3755 31 2 4658 34 1 5295 36
2 4 5176 44 2 5711 45 1 5720 45

HAPP 4 4672 35 2 5422 36 1 4778 35

Table 6.1: Task 1

ALG MIN EXP TIME MIN EXP TIME MIN EXP TIME
1 32 7342 602 8 11297 744 1 12461 779
2 32 14451 1230 8 19484 1500 1 20717 1550

HAPP 32 42000 2970 8 86579 4650 1 86519 4660

Table 6.2: Task 2

ALG MIN EXP TIME MIN EXP TIME MIN EXP TIME
1 32 11647 1090 8 20651 1550 1 23196 1650
2 32 10592 1290 8 18892 1570 1 18963 1840

HAPP 32 12246 1130 8 24162 1800 1 24267 1810

Table 6.3: Task 3

ALG MIN EXP TIME MIN EXP TIME MIN EXP TIME
1 8 29977 1720 2 45947 2200 1 48585 2270
2 8 58706 3480 2 85762 4160 1 84868 4170

HAPP 8 41685 2230 2 > 2 · 105 > 7200 1 > 2 · 105 > 7200

Table 6.4: Task 4

ALG MIN EXP TIME MIN EXP TIME MIN EXP TIME
1 16 2672 241 8 3859 284 1 4869 301
2 16 2667 287 8 3664 328 1 4842 348

HAPP 16 2861 236 8 7450 412 1 6791 379

Table 6.5: Task 5

TASK MIN EXP. TIME
1 4 > 106 > 7200
2 32 20756 1430
3 32 20921 1890
4 8 32947 1750
5 16 1733 134

Table 6.6: HAW
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Figure 6.6: Task 1: A 5 DOF Adept robot with an L-shaped object attached
to its gripper.

Figure 6.7: Task 2: A 6 DOF IRB 2000 robot with a stick.

Figure 6.8: Task 3: A 6 DOF IRB 2000 robot with a cube.

6.6 DISCUSSION

In Tables 6.1–6.6, the number of the expanded nodes “EXP” measures the
planning times as well as the amount of memory consumed by the algo-
rithms. “TIME” is the CPU time of our computer, in seconds and it corre-
lates with EXP. The planning times of the Meta A∗ based Algorithms 1 and
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Figure 6.9: Task 4: An IRB 2000 robot assembling dashboard into a car body.

Figure 6.10: Task 5: A 3 DOF chair with a table and other chairs.

2 varied from about 30 seconds to 40 minutes. The exception is Algorithm 2
in Task 4: 69 minutes (Table 6.4).

Based on the CPU times Algorithm 1, on average, found paths fastest in
three of the five tasks, Tasks 1–3 (Tables 6.1–6.3, and 6.6). However, in Task
3, the differences between all the four tested algorithms were small. Also,
in Task 1, the hierarchical planner HAPP was almost as good as Algorithm
1. In Task 4, the greedy method HAW was almost as fast as Algorithm 1 at
best. Algorithm 1, however, was faster than Algorithm 2 and HAPP in Task
4. HAW was the fastest in Task 5 whereas it performed very poorly in Task 1.
In Task 5, Algorithm 1 slightly outperformed Algorithm 2 and HAPP. At best,
Algorithm 1 was the fastest one in Tasks 1–4.

Observations based on the number of the expanded nodes, EXP, correlate
with the above CPU -results. However in Tasks 3 and 5, Algorithm 2 ex-
panded slightly fewer nodes than Algorithm 1. HAPP performed very poorly
in Tasks 2 and 4.

We studied also the behavior of the algorithms in situations where they
searched finer resolution graphs than was actually needed in order to find
collision free paths, see the second and the third columns labeled MIN in
Tables 6.1–6.5. This data suggests that the Meta A∗ based algorithms 1 and
2 are more robust than HAPP: Algorithms 1 and 2 did not unnecessarily
expand many more nodes when minimum allowed search resolutions were
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finer than needed. The maximum numbers of the expanded nodes were less
than two times the numbers of the expanded nodes obtained by using the
coarsest possible MIN values, see all the columns labeled MIN. This was not
always the case with HAPP, see Tables 6.2, 6.4, and 6.5.

Algorithms 1, 2, and HAPP can also be run in a greedy mode, similarly
as HAW: First search coarser resolution graphs (set MIN high) and if a so-
lution is not found then search finer resolution graphs (set MIN lower),
etc. In Tables 6.1–6.5, the leftmost runs roughly correspond to this: MIN
= 4, 32, 32, 8, 16, respectively. These MIN values represent the coarsest res-
olution graphs on which solution paths exist. Here the Meta A∗ based Al-
gorithms 1 and 2 were faster than HAW in Tasks 1–3. Moreover, Algorithm
1 was faster or equally fast as HAW in four of the five tasks (Tasks 1–4) and
expanded fewer nodes than HAPP in all the five tasks.

These observations suggest that the Meta A∗ mechanism indeed had a pos-
itive effect on the running times and the memory consumption of the algo-
rithms — not only the adaptive node expansion method itself, presented in
Appendix.

The simulation runs done here were one directional searches. However,
all the tested algorithms can be used in bidirectional searches as well. In a
bidirectional search, there are two algorithms: The start and the goal of the
first algorithm are the goal and the start of another, respectively. The Meta
A∗ mechanism can also be adopted to combine the two search processes in
bidirectional searches, see Section 5.

6.7 CONCLUSIONS

In this chapter, we presented and tested four hierarchical path planning al-
gorithms using five simulated robot workcells. Two of the algorithms are
based on a novel application of A∗, Meta A∗. Although the results may lack
statistical significance, we feel that conclusions can be drawn.

In the algorithms, we do not have to guess right the coarsest resolutions
of the graphs on which solution paths exist, i.e., the minimum robot move-
ment discretizations. If we discretize the robot movements slightly too finely,
then the Meta A∗ based path planners do not unnecessarily expand very
many additional fine resolution nodes. In general, guessing of the smallest
discretizations would be needed especially in situation where search graphs
(grids) are infinite.

If search graphs are finite then path planning can also be done by reducing
the minimum allowed search resolution step by step starting from a coarse
one. In this case, the Meta A∗ based Algorithm 1 was the fastest method in
all the test cases including a robot.

The simulation data suggests that Meta A∗ is a useful mechanism that,
in addition to the adaptive node expansion method in Appendix, reduces
path planning times and memory consumption in hierarchical path plan-
ning. The Meta A∗ mechanism can also be adopted to combine two search
processes in bidirectional search applications.

The path planning times of the Meta A∗ based Algorithm 1 varied from
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about 30 seconds (Task 1) to 40 minutes (Task 4). Hence planning times
may grow too much compared to the manual teaching of robots if degrees of
freedom of tasks are increased (beyond 5 or 6 for example). Then, however,
one may consider to “plug” our algorithms into roadmap methods as local
planners: to find collision free paths between any two subgoals chosen by a
global planner.
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APPENDIX

Here we describe the node expansion process of the hierarchical search. We
present here a more detailed version of the pseudocodes in [6]. Now OPEN
an CLOSED refer to the sets used by A∗, not to those sets that Meta A∗ uses
in the pseudocode in Section 6.3. The A∗ algorithm with the following three
rules expand all the nodes in the graph G = Gi ∪G2 ∪ · · · ∪Gr. The goal is
always set at the origin. At first, let us introduce some terminology.

Let us denote by n.m the resolution of a node n. Recall that the resolution
of n = (n1, . . . , nd) is the greatest common divisor (1, 2, 4, . . . , rmax) of
the components n1, n2, . . . , nd. Next, assume that n has a resolution n.m.
Then denote by n.j a j-value of a node. It is the number of the components
n1, . . . , nd that are divisible by 2 · n.m. Intuitively, the j-value measures
how close a node of resolution n.m is to nodes of the next coarser resolution
2 · n.m.

A node can be a surface node, a corner node or a free-space node. A
node n is a “surface node” if the distance between n and an obstacle surface
along any coordinate axis is less or equal to n.m, the resolution of n. A node
n is a “corner node” if the distances between n and obstacle surfaces are
greater than n.m, the father n′′ of n is a surface node, and a so called corner
condition is satisfied: The distance from n′′ to an obstacle surface is less or
equal to n′′.m along a direction orthogonal to the one from n′′ to n. For
example, imagine a two dimensional search space to visualize a corner node.
Finally, n is a “free-space node” if it is not a surface node and not a corner
node.

The three rules below generate all the successors n′ to n. Input data to
the rules are n, OPEN and CLOSED sets of A∗ together with max and
min that are the maximum and the minimum allowed resolutions of nodes,
respectively. The rules maintain OPEN and CLOSEDsets.

Let ±ek (k = 1, . . . , d) denote unit vectors: ±ek = (0, . . . ,±1, . . . , 0),
where the index of the number ±1 is k. Hence there are 2d such vectors. A
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function DIST(n, ek) returns a distance between n and the closest obstacle
surface along ek. The distance is measured up to n.m + 1. Operators ‘<’,
‘<=’, ‘==’ and ‘>’ denote ‘less than’, ‘less or equal to’, ‘equal to’ and ‘greater
than’, respectively.
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RULE-1 generates some successor candidates n′ only to “surface nodes” n,
on lines (5) and (14). Actually, we mark the father node n either as a “surface”
or as a “free-space node” later, on lines (21)–(26). The decision whether n′
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is a “corner node” is done in RULE-3. Some of the successors are generated
only along the directions from n to nearby obstacle surfaces, see lines (11)–
(18). If n happens to be very near to an obstacle surface, then successors are
generated along every orthogonal direction to the surface, see lines (3)–(8).
The latter is done to ensure that all the nodes on the surfaces of big obstacles
will be expanded if needed. The successor candidates are inserted in OPEN
if they are not already there by RULE-3 on lines (7) and (15).

RULE-2 generates successor n′ to all kinds of nodes. The resolutions of the
successors are greater or equal to the resolution of their father n. The ‘EX-
OR’ operator below denotes ‘exclusive-or’.
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If a father node n is a “surface node” or a “corner node”, then RULE-2 gener-
ates new successors candidates along every direction where there is enough
free space, see lines (29), (31) and (32). If n is a “free-space node”, then
successor candidates are generated only along directions that lead towards
higher resolution nodes (increasing j-values), see lines (29) and (33). How-
ever, the exception is when n.m = max. Then successor candidates are
generated along every direction, see line (34). The distance between n and
its successor n′ is always n.m. If min = max, then RULE-1 and RULE-2
together generate the same successor candidates as the “basic” A∗ searching
the graph with resolution min.
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On line (38), if n does not yet have a type, then check whether n is a “surface
node”, similarly as on lines (21–26). RULE-3 does the same operations as
A∗ does before inserting a new node n in OPEN, on lines (5.1)–(5.3) in the
pseudocode of A∗ in Section 2.1. In addition, RULE-3 marks a node n′ as
a “corner node” if necessary, see lines (38), (39) and (47). We described the
“corner condition”, on line (38), in the text above RULE-1.

The above pseudocode could be implemented in a more effective way. The
presentation here tries to emphasize clarity.

Variants of the above successor generation rules can be constructed eas-
ily. The following suggestions are some examples. More successors could be
generated to “surface nodes” on line (31), e.g., along distances less than n.m
from n. Fewer successors could be generated to “free-space nodes” on line
(33), e.g., generate only those successors, with increasing j-values, whose dis-
tance to a goal is less than the distance between their father and the goal.
Successors to “free-space nodes” n could also be generated along every di-
rection when n.m is less than max, see line (33). The latter would simplify
the code since there is no longer a need to distinguish between “corner” and
“free-space” nodes.

Furthermore, lines (3)–(8) could be deleted and/or fewer successors could
be generated to “corner nodes” on line (32) in order to decrease the number
of the nodes on and near to obstacle surfaces. A possible general strategy is
the following. Expand all the above successors to the best nodes in OPEN
for a while. Then select a subset of the nodes in OPEN and forget all the
others. This subset forms a new reduced OPEN, etc. The selection of the
subset can be based on the f values or some other, adaptive, criteria. We can
decide how the size of the reduced OPEN increases, e.g., it can be constant,
it can grow linearly or according to a small polynomial relative to search time.
Then, of course, the possibility of missing an existing path increases. We can
also apply the pseudocode of the Xβ algorithm in Section 2.12.4.
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7 A∗-BASED POWER-AWARE ROUTING ALGORITHMS
IN WIRELESS NETWORKS

In this chapter, we describe three A∗-based algorithms for power-aware rout-
ing of messages in large communication networks where future message se-
quences are not known. We seek to maximize the average lifetime of the
network. For achieving this goal the algorithms use different optimization
criteria. The new algorithms are simpler and their running times are shorter
than those of the widely quoted max-min zPmin algorithm [48]. In addition
they are not as sensitive to parameter settings as max-min zPmin. We show
empirically that one of the algorithms produces longer average lifetimes than
max-min zPmin. The other two algorithms perform similarly as max-min
zPmin. This chapter presents an enlarged version of [5].

7.1 INTRODUCTION AND RELATED WORK

The rapid development of low-power electronics has made it possible to cre-
ate wireless networks of hundreds or even thousands of devices of low com-
putation, communication and battery power. The networks can be used, e.g.,
as distributed sensors to monitor large geographical areas or as grids of com-
putation, etc. In these applications, great care is required in the utilization
of power since every message sent and computation performed drains the
battery.

The problem of minimizing power consumption of wireless networks has
received significant attention [68, 64, 11, 33, 47, 48, 74, 12, 8, 20, 37, 1, 24].
Much of the power consumption of the devices is used for transmitting and
receiving messages [48, 67]. We concentrate on optimizing the power con-
sumption during communication. Optimizing the idle mode of the devices
is discussed, e.g., in [13, 67].

Several metrics have been introduced to optimize power-aware routing of
messages, see e.g. [68]. Minimal energy consumption was used in [64]. Other
metrics include minimizing the variance in the devices’ power levels, min-
imizing the energy cost per packet and minimizing the maximum energy
cost. However, these metrics can lead to suboptimal solutions: Many devices
can maintain high power while some devices, critical nodes, may have con-
sumed almost all their energy. The network may then become disconnected
because of the critical nodes.

The lifetime of the network has been defined as the time for the first node
or device to die due to low energy level [11, 33, 68], or as the time for a
certain percentage of nodes to die [74]. Blough and Santi [8] define the
network lifetime by using the number of the alive nodes and the size of the
largest connected component in the network. For sensor networks, Blough
and Santi take also into account the percentage of the region monitored by
the sensors. Li, Aslam, and Rus [48] define network lifetime as the earliest
time when a message in a sequence of messages cannot be sent due to nodes
with low residual energy. Kar et al. [37] maximize the throughput of the
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network, that is, minimize the number of messages that cannot be routed for
a sequence of message routing requests.

Li, Aslam, and Rus [48] develop an online approximate power aware rout-
ing algorithm max-min zPmin to maximize the lifetime, which involves choos-
ing between a minimal power consumption path and a path that maximizes
the minimum residual power in the network. In its basic version, max-min
zPmin needs to know all the locations and the energy levels of the nodes in
the network. The authors later develop a distributed version of their algo-
rithm, see [1]. These algorithms operate online: Message sequences in the
future are not assumed to be known. Later we shall refer to the max-min
zPmin algorithm simply as the Li-Aslam-Rus, or LAR algorithm.

Here, we maximize the average lifetime of a network that is an average of
the lifetimes of the network after routing online many random message se-
quences. The lifetime of the network is the same as in [48]. We develop
three new A∗ based power-aware routing algorithms. They have the same
input as the LAR method and are online algorithms too but are simpler than
LAR. Their running times are asymptotically shorter than that of LAR. We
compare the average lifetimes of the new algorithms with LAR. This is done
by simulating message transmissions on two dimensional grids containing be-
tween 200 and 1600 nodes, or devices (Li, Aslam, and Rus [48] used networks
containing only 40 nodes at maximum in their simulations of LAR). Two of
the algorithms and LAR produced similar average lifetimes and the third one
was between 10 and 21 per cent better than LAR.

7.2 THE POWER-AWARE ROUTING PROBLEM

Most of the power consumption in a wireless network can be divided into
two parts: (1) the idle mode and (2) the transmit/receive mode. The idle
mode corresponds to a baseline power consumption when a device is in a
“standby” state. Optimizing the idle mode is also important but here we
focus on optimizing the transmit/receive mode. When a message is routed
through the network, all the nodes except the source and destination receive
the message and then immediately relay it.

Let a wireless network be represented by a weighted graph G(V,E). The
vertices, V , correspond to devices (computers or sensors, etc.) in the network.
Every vertex has a weight that measures the device’s energy level. The edges,
E, connect pairs of devices that are within communication range. Each edge
weight is the energy cost of sending a unit message between two devices.
All messages are assumed to be unit messages. Suppose a device i needs
power e to transmit a message to a device j that is distance dij away. This
power consumption is usually approximated as e ∝ dc

ij where the exponent c
(2 ≤ c ≤ 4) models the decay of the radio signal in the intervening medium
[11, 33, 48].

The batteries of the devices have finite energy. We try to route messages
in such a way that the batteries would have enough energy for the network
to be connected as long as possible. This is measured by the average lifetime
of the network. To estimate the average we route messages one after an-
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other, online, between randomly selected nodes in the network and record
the number of successfully transmitted messages until the time when the
next message request cannot be routed. We repeat this process one thousand
times with the same algorithm, network and initial energy levels of nodes.

7.3 THE STUDIED ROUTING ALGORITHMS

Another Implementation of LAR

We use the notation of Li, Aslam, and Rus [48]. Let P (vi) be the initial power
level of node vi in the graph G and Pt(vi) the power of vi at time t. Let eij

be the weight of the edge vivj . Define utij = (Pt(vi) − eij)/P (vi) as the
residual power fraction after sending a message from vi to vj .

The LAR algorithm (max-min zPmin) [48] maximizes the minimal resid-
ual power fraction of the graph under the constraint that the power consump-
tion of any message must be below a value zPmin. Here Pmin is the minimum
power consumption of the paths found so far and z ≥ 1 is a parameter. LAR
is an iterative method.

The LAR algorithm first finds a path with the least power consumption
Pmin on the initial network graph. Then the algorithm iteratively searches
minimum power consumption paths on a series of graphs. During every
iteration, the minimal residual power fraction umin is found on the recent
optimal path. Then all the edges whose utij is less than umin are removed
from the previous graph to obtain a new graph for the next iteration. The
iteration process stops if the power consumption of the newly found path is
greater than zPmin.

To find paths with the least power consumption in each iteration LAR
uses Dijkstra’s shortest path algorithm. Here we replace Dijkstra’s algorithm
with the A∗ algorithm guided by a monotone (and admissible) heuristic h.
Dijkstra’s algorithm can be seen as an A∗ with h(n) = 0 ∀n. In this way,
we can improve the running times of LAR. The running times of A∗ with
a monotone h and Dijkstra’s algorithm can be directly compared with each
other. The larger the h is the shorter the running time of A∗ is compared to
that of Dijkstra’s algorithm (ignoring the computations of h).

In the present application, h(v) = ||γ−v|| is a distance function between
a node v and the goal node γ, where v and γ are 2-dimensional Euclidean
vectors. The heuristic h(v) underestimates the true message sending cost
from v to γ, since we assumed the power consumption model in Section 7.2:
e = kdc = k||γ−v||c for some positive constant k (c > 1) and, without loss of
generality, assume here that k, ||γ−v|| ≥ 1. The heuristic h is also monotone
since all distance functions by definition satisfy the triangle inequality. When
A∗ using a monotone heuristic finds a path to n for the first time, it has
already found the shortest path to n and does not have to visit n any more.
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The New Algorithms

We consider three new A∗-based routing algorithms with the following type
of evaluation function, for a node v in G:

f(v) = g(v) + (1− λ)h(v) = λg1(v) + (1− λ)g2(v) + (1− λ)h(v). (7.1)

The cost function g is a linear combination of two functions g1 and g2.
Constant λ ∈ [0, 1) is a parameter. The algorithms have different g1 func-
tions whereas g2 and h remain the same. Function g2 measures the power
consumption for sending one message from the source node s to v, that
is the sum of the weights eij along the route from s to v. The functions
h(v) = ||γ − v|| and (1− λ)h are monotone and admissible heuristics since
they are distance functions between 2-D vectors.

The A∗ algorithms route messages on a graph G′ that is identical to G
except that the cost of the edge between two neighboring nodes vi and vj in
G′ is:

cG′(vi, vj) = g(vj)− g(vi) = λ(g1(vj)− g1(vi)) + (1− λ)(g2(vj)− g2(vi))

= λ(g1(vj)− g1(vi)) + (1− λ)eij. (7.2)

Let |V | and |E| be the number of nodes and edges in G. The algorithms
below execute A∗ only once to find the final route (if it exists) for one mes-
sage. Their running time is O(|E| + |V | log |V |), the same as Dijkstra’s al-
gorithm, since the heuristic is monotone. The LAR method, on the other
hand, calls Dijkstra’s algorithm O(log |E|) times and has a running time of
O(log |E| · (|E|+ |V | log |V |)) [48].

Algorithm 1

Let rtij = Pt(vi)−eij be the residual power after sending a message from vi to
vj . The LAR algorithm routes a message by maximizing the minimal residual
power fraction rtij/P (vi) in the graph while keeping the power consumption
for one message below the limit zPmin. Algorithm 1 mimics this behavior by
penalizing both low minimal residual powers along message paths and high
power consumption of messages.

Let Max be the maximum of the P (vi)’s. The evaluation function of
Algorithm 1, for a node vj, is:

f(vj) = λ(Max −min(rt0j)) + (1− λ)g2(vj) + (1− λ)h(vj), (7.3)

where min(rt0j) is the minimum residual power along the message path from
the source node s = v0 to vj. The parameter λ defines the relative weights
of the two penalizing functions.

Algorithm 2

The evaluation function of Algorithm 2 is:

f(vj) = λ(1/min(rt0j)) + (1− λ)g2(vj) + (1− λ)h(vj). (7.4)
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Algorithm 2 resembles Algorithm 1 by penalizing both low minimal residual
powers rt0j along paths and high power consumption of messages. The first
penalizing function is, however, different from the one of Algorithm 1.

Algorithm 3

The evaluation function of Algorithm 3 is:

f(vl) = λ
∑

(Max− rtij) + (1− λ)g2(vl) + h(vl). (7.5)

The summation in the first term is taken over all the edges, message trans-
missions between succeeding nodes, along the path from s to vl. Algorithms
1 and 2 focus only on the minimal residual power along the path whereas
Algorithm 3 routes a message in such a way that the sum of the residual pow-
ers along the path is high and the total power consumption of the message is
low.

Here the heuristic can be h instead of (1 − λ)h which means shorter
running times. The cost between a node vi and its successor vj in the graph
G′ is

cG′(vi, vj) = λ(g1(vj)− g1(vi)) + (1− λ)eij = λ(Max − rtij) + (1− λ)eij

= λ(Max − Pt(vi) + eij) + (1− λ)eij ≥ eij , (7.6)

since Max−Pt(vi) ≥ 0. The heuristic h being a distance function is admis-
sible and monotone on the graph G, that is, h(vi) ≤ eij + h(vj). But then h
is also admissible and monotone on G′ since cG′(vi, vj) ≥ eij .

We could have modified Algorithm 3 by changing the Max − rtij term,
in the definition of its f(vl), to 1/rtij similarly as in Algorithm 2 but this was
not done here anymore. In Algorithms 1, 2, and 3, A∗ can be replaced by
Dijkstra’s algorithm, if wanted, at the expense of longer running times.

On Distributed Implementations

Li, Aslam, and Rus [48] use a zone based approach for routing in large net-
works. In this approach, information is aggregated in zones and the message
is routed from one zone to another. The information required by Algorithms
1, 2, and 3 as well as LAR is identical, except the heuristic h that can at least
be estimated between the zones. Therefore one can use the same zone based
approach to route with Algorithms 1, 2, and 3. Moreover in [1], the same
authors develop a distributed version of LAR based on a distributed version
of Dijkstra’s algorithm. Again, similarly modified versions of our algorithms
are possible.

In [24, 20], nodes estimate the power levels and location information of
all the nearby nodes by local broadcasts. This can be done repeatedly or an
on-demand fashion. Here theA∗ could be replaced by its variants, IDA∗ and
RTA∗ [40, 41, 49], that use only local information and the paths are sought
only when needed, in reactive manner. However, here we do not discuss
distributed implementation issues any further.
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7.4 PERFORMANCE EVALUATION

In all the experiments, the network is a 2-D grid: every node has four neigh-
bors and can send messages only to these neighbors. In this way we are able
to study grids with hundreds or even thousands of nodes. Moreover, accord-
ing to the power consumption model in Section 7.2: e ∝ dc

ij (2 ≤ c ≤ 4),
sending a message via relay nodes that are near each other consumes less
energy than sending a message straight from a start node to a distant goal
node. Also the grid resembles the situation when distributed routing is done:
A node mostly records data of nearby nodes.

In every simulation run, one of the tested algorithms routes a sequence
of message routing requests online between randomly chosen pairs of nodes.
The source and target nodes for each routing request are selected uniformly
at random from the grid. Transmitting messages consumes energies of the
nodes along message paths. A simulation run stops when the first message
cannot be routed, that is, all possible path candidates contain at least one
node with zero energy. The number of successfully transmitted messages are
recorded.

All the simulation results are averages over 1000–20000 single simulation
runs. The average estimates the average lifetime of the grid. The simulations
in Figures 7.1–7.8 use square grids with K ×K = 20× 20 nodes and every
node has an initial power level of P = 10 units. The cost of an edge between
neighboring nodes vi and vj is eij = 1.

Figure 7.1 shows average lifetimes produced by the LAR algorithm [48]. LAR
maximizes the minimal residual power fraction of the graph while keeping
the power consumption of any message under zPmin, where z ≥ 1 is a pa-
rameter. The average lifetimes depend on the parameter z in Figure 7.1.
The maximum is obtained when z ≈ 1.3. When messages are allowed to
consume more power with larger values of z, the average lifetimes decreases.
Li, Aslam, and Rus [48] report also similar behavior of LAR while using dif-
ferent network graphs.

We have replaced Dijkstra’s algorithm in LAR with A∗. The heuristic h
guiding the search of A∗ is the Manhattan distance between a node n =
[n1, n2] and the destination t = [t1, t2]: h(n) = |t1 − n1| + |t2 − n2|. The
simulation programs were implemented in Matlab. The CPU running times
of theA∗ version were about 60 per cent of those of the Dijkstra version. The
CPU times were average values of 2000 simulation runs on grids K = 20,
P = 10, and 20. These simulations were run on an SGI Origin 2000 multi-
processor system with R12000 300 MHz processors (RISC architecture).

Figure 7.2 shows average lifetimes produced by Algorithms 1, 2, and 3. In
these A∗ algorithms, the cost of a message route is λg1 + (1 − λ)g2 where
λ ∈ [0, 1) is a parameter, see Section 7.3. The measurements marked with
asterisks, plus signs and circles correspond to Algorithm 1, 2, and 3, respec-
tively. At λ = 0, all the A∗ algorithms minimize the power of sending one
message. This strategy gives the lowest average lifetimes in Figure 7.2. It is
thus insufficient. Li, Aslam, and Rus [48] already demonstrated that to obtain
a good routing algorithm, namely LAR, it is not sufficient to optimize with
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Figure 7.1: The LAR algorithm on a 20 × 20 grid (P = 10). The average
number of transmitted messages vs. parameter z. Averages over 1000 simula-
tion runs.
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Figure 7.2: Algorithms 1, 2, and 3 on a 20 × 20 grid (P = 10). The av-
erage number of transmitted messages vs. parameter λ. Averages over 1000
simulation runs.

respect to only one criterion. Our solution to the problem is to use a linear
combination of the two criteria g1 and g2. The advantage of doing this is vis-
ible in Figure 7.2 where λ > 0: The average lifetimes are much higher than
those at λ = 0. Figure 7.2 also shows that Algorithms 1, 2, and 3 are not very
sensitive to the parameter λ, where 0.3 ≤ λ ≤ 0.8. LAR is more sensitive to
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Figure 7.3: Histogram of 1000 runs of Algorithm 3 at λ = 0.5 on a 20 × 20
grid (P = 10). The number of experiments vs. the number of transmitted
messages.

its parameter z than Algorithms 1, 2, and 3, cf. Figure 7.1.
The average lifetimes produced by Algorithms 1 and 2 are roughly the

same as those produced by LAR when z ≈ 1.3. It seems that converting the
constraint “power consumption of a message≤ zPmin” in LAR to a “soft con-
straint” or a penalty function (1−λ)g2 in Algorithms 1 and 2 provides close to
optimal performance of LAR while removing its sensitivity to the parameter
z. Algorithm 3 (λ > 0) produces about 11 per cent longer average lifetimes
than the other tested algorithms. Figures 7.3 and 7.4 plot histograms of the
1000 simulation runs of Algorithm 3 (λ = 0.5) and LAR (z = 1.3), respec-
tively. The grid size is the same (20×20) and P = 10. The histograms clearly
confirm that Algorithm 3, on average, can route more messages than LAR at
its best. This suggests that using a more global criterion as a penalty function
g1 is better than only focusing on the minimal residual power along routes as
Algorithms 1 and 2 do, see Section 7.3.

We also studied the algorithms when 10, 20, and 30 per cent of the nodes in
the grid have randomly been removed. In every simulation run, a different
random set of nodes is missing.

Figures 7.5 and 7.6 show average lifetimes produced by the LAR method
and Algorithms 1, 2, and 3 on 20×20 grids (P = 10) from which 10 per cent
of the nodes have been randomly removed. Here the situation is quite similar
to the one in Figures 7.1 and 7.2. Algorithm 3 gives the longest average
lifetimes. The average numbers of transmitted messages in Figures 7.5 and
7.5 are about 60 per cent of those in grids with no missing nodes, in Figures
7.1 and 7.2.

Figures 7.7 and 7.8 present results on 20× 20 grids (P = 10) from which
20 per cent of the nodes have been randomly removed. Here all the tested
algorithms perform more or less equally well. Perhaps Algorithm 3 is still
better than the other ones, on average. The numbers of transmitted messages
are now less than 30 per cent of those in full grids, in Figures 7.1–7.2.
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Figure 7.5: The LAR algorithm on 20 × 20 grids (P = 10) from which 10
per cent of the nodes are randomly removed. Averages over 5000 simulation
runs.

Finally, we removed randomly 30 per cent of the nodes in the 20 × 20
(P = 10) grids (figures not shown here). No algorithm was significantly
better than the others in this situation. The average numbers of transmitted
messages over 10000 simulation runs were approximately 11.5 in the same
parameter setting as above. This is only about 5 per cent of those in full
grids. It seems now that the grids no longer provided a significant number of
alternative routes among which to optimize.
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Figure 7.7: The LAR algorithm on 20×20 grids (P = 10) from which 20 per
cent of the nodes are randomly removed. Averages over 20000 simulation
runs.

In Figure 7.9, there are 10 × 10 grids with different initial power levels of
nodes P = 5, 10, 15, 20, 25, 30. The measurements labeled by circles belong
to Algorithm 3. The other graphs belong to the other three algorithms. Fig-
ure 7.9 shows that average lifetimes grow linearly with initial power levels of
nodes. Algorithm 3 produces about 10 per cent longer average lifetimes than
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Figure 7.8: Algorithms 1, 2, and 3 on 20× 20 grids (P = 10) from which 20
per cent of the nodes are randomly removed. Averages over 10000 simulation
runs.

the other algorithms when P ≥ 20.

In Figure 7.10, there are grids of different sizes, 10×10, 20×20, 30×30, and
40× 40 with initial power levels of nodes P = 10. Again, the measurements
labeled by circles belong to Algorithm 3 and the other graphs to the other
three algorithms. Figure 7.10 shows that average lifetimes grow linearly with
the square root of the grid size. Algorithm 3 produces about 10, 17, and
21 per cent longer average lifetimes than the other algorithms on 20 × 20,
30 × 30, and 40 × 40 grids, respectively. In Figures 7.9–7.10, Algorithms 1,
2, and 3 have λ = 0.5 and LAR has z = 1.3.

7.5 CONCLUSION

We have described three new A∗ -based power-aware routing algorithms with
different optimization criteria. We compared the algorithms with the max-
min zPmin (LAR) method [48]. The algorithms require locations and energy
levels for all the nodes in the network at all times. No knowledge of the
future message sequence is assumed.

LAR runs Dijkstra’s shortest path algorithm several times during its iter-
ations. Our algorithms route a message by running the A∗ algorithm only
once, which means a shorter asymptotic running time compared to LAR.
We also implemented LAR by replacing Dijkstra’s algorithm with A∗. The
CPU running times of the A∗ version were about 60 per cent of those of the
Dijkstra version.

In the simulation runs, we recorded the average number of transmitted
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Figure 7.9: All the tested algorithms on 10× 10 grids. The average number
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Figure 7.10: All the tested algorithms on grids with an initial power level of
P = 10. The average number of transmitted messages vs. square root of grid
size.

messages for each algorithm. This was done by simulating 1000–20000 mes-
sage routing requests for each parameter setting between randomly selected
nodes in 2-D grids. The grid sizes ranged from 100 to 1600 nodes, or devices.
The results show that the new algorithms are not as sensitive to parameter
settings as LAR. One of the new algorithms, Algorithm 3, routed on average
more messages than LAR at its best: about 10, 17, and 21 per cent more on
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grids with 20 × 20, 30 × 30, and 40 × 40 nodes, respectively. When 10 per
cent of the nodes in the 20× 20 grids were randomly removed, Algorithm 3
was still the best one. After removing more nodes, Algorithm 3 was as good
as LAR at its best.

Li, Aslam, and Rus [48] report that LAR achieves over 80 per cent of the
optimal off-line algorithm (where future message sequences are known) for
most problem instances they studied. If the latter and the data shown in
Figure 7.1–7.10 are generalizable, then Algorithm 3 will achieve about 90
per cent of the optimal off-line algorithm for most of the time.

7. A∗-BASED POWER-AWARE ROUTING ALGORITHMS

IN WIRELESS NETWORKS

111



112 7. A∗-BASED POWER-AWARE ROUTING ALGORITHMS

IN WIRELESS NETWORKS



8 CONCLUSIONS

Path planning problems arise in many fields of technology, such as produc-
tion planning, energy-aware message routing in large communication net-
works, resource allocation, and vehicles navigating systems.

This work includes new theoretical results, extensions, and applications
on the A∗ path finding algorithm.

First, we compared the computational work of several path planning algo-
rithm classes to that of A∗ in situations, where the heuristic function guiding
the search process is nonadmissible.

We showed in Theorem 3.2.7 that A∗ is optimal over certain admissible
BF∗ algorithms independent of the admissibility of the heuristic. An admis-
sible BF∗ algorithm is guaranteed to find an optimal path whenever A∗ does
if they both are guided by the same admissible heuristic. Theorem 3.2.7 is a
generalization of the corresponding results in [18].

We showed in Theorem 3.2.5 that A∗ is optimal over globally compatible
DP strategies, independent of the admissibility of the heuristic. However,
Theorem 3.2.5 needs an assumption that the search graph can also have neg-
ative edge costs. A globally compatible DP strategy is guaranteed to find an
optimal path whenever A∗ does if they both are guided by the same heuristic,
possibly a nonadmissible one. Dechter and Pearl [18] proved a similar the-
orem constrained on admissible heuristics and graphs with strictly positive
edge costs.

We also showed that A∗ is optimal over some greedy path finding algo-
rithms in Theorem 3.2.6. In greedy algorithms of this work, the most promis-
ing node next to be explored is chosen from the set of nodes with the mini-
mum heuristic value.

Otherwise, it seems hard to generalize theorems like the ones in [18] that
need the assumption of admissible heuristic. The price to pay for the nonad-
missibility appears in various additional constraints in the other theorems in
Chapter 3.

Second, we presented an algorithm A∗
A that improves a given static admis-

sible heuristic dynamically, during search. We showed that A∗
A guided by

the new dynamic heuristic is optimal over A∗ guided by the static heuristic
alone. We also showed that when A∗

A expands a node for the first time, it has
found an optimal path to the node. It follows that no reexpansions of nodes
are necessary, which is an important property considering the efficiency of
the search.
A∗

A can utilize more information about the search history of the origi-
nal problem than A∗ does. The new information, called an approximating
model, is used as a “guide map” to improve the heuristic function during
search. We assume that searching the approximating problem is less costly
than searching the original problem. If the construction of an effective ap-
proximating model is possible, then a problem specific tie-breaking rule of
A∗

A reduces the total number of node expansions in the original problem
on all “layers” of nodes n for which f(n) = constant ≤ C∗. A tie-breaking

8. CONCLUSIONS 113



rule of A∗, on the other hand, affects only expansions of nodes m for which
f(m) = C∗. In this way, a user has more freedom to adapt the program
structure to a particular problem instance than only constructing admissible
static heuristics.

Third, we examined how A∗ can be used as a resource allocation policy
among several path planning algorithms solving the same task or its subtasks.
We used bidirectional search as an example of a resource allocation problem
between two path finding algorithms.

In some cases, (Meta)A∗ is the optimal resource allocation policy among
certain DP strategies by Theorem 5.4.1. This requires the possibility of un-
derestimating, during the search, the number of the nodes still to be ex-
panded at least in that subgraph, where a goal is found; in other words,
the heuristic has to be admissible in that subgraph, see also Corollary 3.2.2.
However, if the path planning algorithms exchange information, then the
optimality of (Meta)A∗ is relative to its tie-breaking rule.

If the heuristic guiding the resource allocation process has been nonad-
missible, then (Meta)A∗ is still an optimal resource allocation strategy among
certain admissible DPBF and BF∗ strategies, see Theorems 3.2.6 and 3.2.7.

Fourth, we presented and tested four hierarchical robot path planning algo-
rithms using five simulated robot workcells. Two of the algorithms are based
on the new resource allocation scheme Meta A∗. In the algorithms, we do
not have to guess right the coarsest resolutions of the graphs on which so-
lution paths exist, i.e., the minimum robot movement discretizations. If we
discretize the robot movements slightly too finely, then the Meta A∗ based
path planners do not unnecessarily expand very many additional fine resolu-
tion nodes. The Meta A∗ based path planning can also be done by reducing
the minimum allowed search resolution step by step starting from a coarse
one.

The simulation data suggests that Meta A∗ is a useful mechanism that re-
duces path planning times and memory consumption in hierarchical path
planning. The algorithms can be “plugged into” roadmap methods as local
planners: to find collision free paths between any two subgoals chosen by a
global planner.

Fifth, we described three A∗-based algorithms for power-aware routing of
messages in large communication networks where future message sequences
are not known. We seek to maximize the average lifetime of the network.
The lifetime of the network is the number of the messages with random start
and goal nodes that can be sent via intermediate nodes within their energy
capacities. For achieving this goal the algorithms use different optimization
criteria.

The new algorithms are simpler and their running times are shorter than
those of the widely quoted max-min zPmin algorithm. In addition, they are
not as sensitive to parameter settings as max-min zPmin. We showed em-
pirically that one of the algorithms produces longer average lifetimes than
max-min zPmin.
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Sets in Abelian Groups with Distinct Sums of Pairs. February 2004.

HUT-TCS-A88 Harri Haanpää
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