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ABSTRACT: This dissertation studies the verification of reachability prop-
erties of concurrent systems where the components of the system are La-
beled Transition Systems (LTSs) using a symbolic model checking technique
called Bounded Model Checking (BMC). BMC is a technique that seeks
to answer the question whether among the system’s executions shorter than
some given number of steps there is one (or more) violating a given prop-
erty. Answering this question is reduced to propositional satisfiability, i.e., to
a propositional formula that is satisfiable iff there is such a violating execu-
tion. The translation from a system to a formula is polynomial in the size of
the system but the running time of the propositional solver can be exponen-
tial in the number of atomic propositions in the formula. This number, on
the other hand, correlates directly with the number of execution steps that
the formula models.

Traditionally, LTSs are model checked by composing the components
into a synchronized product and then applying a model checking algorithm
on this product. The executions of the synchronized product are called inter-
leaving executions. The research hypothesis of this work is that by using other
composition operators than the one yielding the synchronized product, more
efficient BMC algorithms can be obtained. The added efficiency comes from
the fact that with these operators, propositional formulas with fewer atomic
propositions are obtained. The reduction in the number of atomic proposi-
tions follows from the fact that fewer execution steps are needed to cover the
same state space than when the synchronized product is used.

Three techniques to create composition operators are presented, namely
(i) partial-order semantics, (ii) on-the-fly determinization, and (iii) local tran-
sition merging. These techniques can be combined in many ways.

The dissertation demonstrates that given a system of LTSs and a bound, a
BMC formula modeling the executions of the products applying partial-order
semantics and on-the-fly determinization can be created efficiently. That
means that the translation effort is polynomial and the size of the resulting
formula is linear in the size of the system and the bound.

The third of the applied techniques, local transition merging, provides
potentially dramatic reductions to the bound needed to detect a violation of a
reachability property. The size of the BMC formula modeling this execution
model is no more linear, though, since a complicated constraint is needed.

The dissertation concludes with some experimental results comparing the
products against each other and two state-of-the-art model checking tools.

KEYWORDS: verification, symbolic methods, bounded model checking, la-
beled transition systems, partial order methods
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1 INTRODUCTION

Hardware and software systems are nowadays used in applications where fail-
ure is not an option, for instance, in air traffic control and medical equip-
ment. Therefore, a growing amount of effort is invested in order to ensure
correctness of these systems. The functionality of hardware and software sys-
tems is in most cases too complex to be analyzed manually and the complex-
ity tends to grow at a high rate. This is due to added features and concurrency,
i.e., the system is composed of several independently executing components.
Therefore there is a growing need for computer aided techniques.

Computer systems can be analyzed by simulating and testing their behav-
ior. However, these techniques typically address situations of standard opera-
tion whereas experience has shown that errors may arise from a sequence of
highly unlikely events. The central problem is that simulation and testing are
in general not exhaustive. Therefore, computer aided verification has been
suggested to complement these methods. The term refers to methods where
computational power is used to mathematically establish that the system un-
der study fulfills the given specification or state the conditions under which
this is the case.

One of the most widely studied method, also applied in this work, is model
checking first proposed in the early 1980’s independently by two groups [21,
77]. The central idea is to model the system under study in such a way that
it is possible to generate a reachability graph whose vertices represent the
states the system can reach and the edges the possible transitions from a state
to another. Each state of the graph is some unique value combination of the
system’s state variables. Based on the values of these state variables, each state
is labeled with a set of atomic propositions that hold in that particular state.

The obtained object is often referred to as a Kripke structure. The term
model checking refers to the fact that the specification to be verified is given
as a temporal logic formula. By employing a model checking algorithm, one
can verify that the Kripke structure is a model of that formula. If this is the
case, then the system fulfills the specification. Otherwise, a counterexample
demonstrating the violation of the specification is generated.

To perform model checking, the verifier has to model a concrete sys-
tem using some specification language. Several possibilities have been pro-
posed depending on the domain. Synchronous digital hardware is typically
modeled using a hardware description language whereas for asynchronous
systems diverse formalisms exist. A simple but very general formalism is
called transition systems [3]. The transitions of the system can be associ-
ated with some action that is used as a transition label. Such a system model
is referred to as a labeled transition system (LTS). Some of the other possi-
bilities for modeling asynchronous systems include Petri nets [31], process
algebras [68, 69], extended finite state machines (supported by the SPIN
tool [42]), protocol specification languages like SDL [45] and various pro-
gramming languages like Java [4]. However, in many cases the other for-
malisms can also be seen as describing transition systems. In [3], the relation
of both Petri nets and process algebras to transition systems is studied in more
detail. In this work, computer aided verification is studied using labeled tran-
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sition systems as the modeling formalism.
Applying temporal logic to specifying properties of concurrent programs

was first suggested by Pnueli [76]. The term temporal logic does not refer
to a single formal language but to a family of them. Two of the mostly ap-
plied ones are the computation tree logic (CTL) and the linear temporal
logic (LTL). In [22] the semantics of both of them are presented as well as
references to the vast literature discussing the merits of each of them.

The properties to be verified are typically characterized as belonging to
one of the following three categories: (i) reachability properties, (ii) safety
properties, and (iii) liveness properties. Reachability properties require that
a state where some particular combination of the state variables occur can
be reached. Intuitively, safety properties present claims like: “after a state
where p holds is reached a state where q holds can not be reached” (nothing
bad happens). Liveness properties state claims that something good hap-
pens, e.g., “when a state where p holds is reached, then eventually the system
reaches a state where q holds.”

Liveness properties are different from the two other categories in that their
counterexamples are infinite executions. With reachability and safety prop-
erties, a finite amount of execution steps suffices to demonstrate a property
violation. Furthermore, safety properties can often be reduced to reacha-
bility properties by introducing additional state variables, referred to as his-
tory variables [17]. This work concentrates on the verification of reachability
properties.

The application of model checking is impeded by the fact that the num-
ber of states a concurrent system can reach tends to grow rapidly when the
number of components grow. This due to concurrency and a combinato-
rial explosion due to combinations of values of state variables. Therefore a
straightforward application of model checking results in huge reachability
graphs and the approach of creating the graph and storing it in the mem-
ory of a computer thus quickly runs out of steam with larger systems. Several
techniques have been developed to alleviate this state explosion problem [86]
and apply model checking to larger systems. Some of these include:

• Representing sets of states compactly by using e.g. ordered binary de-
cision diagrams (OBDDs) [63, 13, 16].

• Constructing a reduced reachability graph by identifying symmetries
in the system [32, 47].

• Replacing the system with an abstraction that has a smaller reachability
graph [59, 38].

• Bounded Model Checking, considering only executions of some lim-
ited length [8, 7, 9, 11]. This dissertation concentrates on this tech-
nique.

• Considering only a subset of the possible paths in the reachability
graph by exploiting the independence of transitions (partial order re-
duction methods) [36, 54, 85].

The first item above is often called symbolic model checking referring
to the fact that the state space of the system is encoded in a symbolic form
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rather than explicitly constructing the reachability graph. The data struc-
ture usually employed, ordered binary decision diagram, is a canonical form
for representing Boolean functions. Its benefits are that there are efficient
algorithms for computing basic Boolean operations using OBDDs and that
an OBDD is typically more compact than the corresponding explicit graph.
Symbolic model checking has thus been applied to larger systems than pos-
sible using an explicit representation of the graph [16]. However, there are
also computational problems in applying OBDDs. Namely, different OB-
DDs modeling the same Boolean function can be constructed by ordering
the Boolean variables of the function differently. The size of the OBDD may
vary heavily depending on the chosen ordering and the problem of checking
that a given ordering yields the smallest OBDD is NP-complete [22, 15].1

Furthermore, there are Boolean functions (e.g., integer multiplication) for
which no compact OBDD exists [14, 15].

The symbolic representation of a reachability graph is not limited to OB-
DDs. The development of propositional logic solvers have brought about
proposals to represent sets of states with a propositional formula rather than
an OBDD [1, 64, 10, 65]. Hybrid methods combining propositional logic
and OBDDs have also been proposed [90, 67, 18, 5]. Results in these papers
show that these methods are in some cases able to solve quickly problems
hard for the BDD based approach.

Propositional satisfiability is also used in a technique coined as bounded
model checking (BMC). BMC encodes the reachability graph symbolically,
however, only up to some limited depth [8]. The idea bears close resem-
blance to that of SAT planning [55]. BMC seeks to answer the question of
whether there are executions shorter than this depth that violate the desired
property. The graph is encoded as a propositional formula that “unrolls” the
transition relation to the given depth. In general, this procedure is not com-
plete, i.e., if no violations are found, the results are inconclusive and the
search depth has to be increased. The process is only complete if it is possi-
ble to prove e.g., that all the paths in the graph are bound to loop within n
steps [57]. Implementations of the technique have compared favorably both
in terms of the running time and the memory used [9, 11, 25] when the
counterexamples are relatively short. However, in [2] it is argued that shal-
low counterexamples can also be found effectively using explicit state model
checking using randomization.

This dissertation applies BMC to concurrent systems where the compo-
nents are given as synchronizing LTSs. The goal is to make bounded model
checking more efficient. Namely, the BMC procedure consists of two phases.
Firstly, the system model is translated to a propositional formula. Secondly,
a propositional logic (SAT) solver is used to detect whether that formula has
a model. The first phase is polynomial in the size of the system whereas
the second can be exponential in the number of atomic propositions in the
formula.

Due to this second fact, the following research hypothesis is suggested.
The fewer atomic propositions the formula contains, the shorter time it takes
from a SAT solver to solve it. Such a hypothesis is, of course, not universally

1This dissertation refers to complexity classes in the way that they are defined in [73].
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true but should be considered as a rule of thumb for formulas having a “sim-
ilar structure.” In the context of BMC, the number of atomic propositions
in the formula directly correlates with the number of execution steps the for-
mula models, i.e., the bound. This dissertation aims to reduce the bound
needed to detect a violation of a reachability property of a system given as
LTSs. If this is achieved, then simpler (containing fewer atomic proposi-
tions) BMC formulas can be used. This reduction in the bound is obtained
by taking an alternative view on the transition relation of the concurrent
system, yet without losing reachable states. The dissertation presents three
techniques improve the performance of BMC. These are described briefly
below with references to related work. The contributions are presented in
more detail in Section 1.1.

The first technique to reduce the needed bound is to replace the standard
interleaving execution model with non-standard models allowing the execu-
tion of several visible actions simultaneously. This kind of work can be seen
as a subclass of partial order methods, more precisely partial order seman-
tics. The intuition is that the components forming a concurrent system may
execute local transitions and then communicate with their peers. From the
perspective of the global property, it is irrelevant in which order the local
actions occur. Indeed, they may even occur simultaneously. Thus, there is
an order between dependant events but since there is independence in the
system, this order is not total but partial.

Partial order semantics has been previously applied in the context of Petri
nets. In [71], a technique called net unfoldings is presented as a partial order
semantics for Petri nets. An unfolding of a Petri net is an acyclic net model-
ing the behavior of the original. However, in the general case the unfolding
can be infinite. McMillan [63, 62] is the first to apply net unfoldings to verifi-
cation. In [63], an algorithm is provided to compute a finite complete prefix
of a net unfolding. This prefix contains the full information of the behavior
of the Petri net but it can be exponentially more succinct than the reachabil-
ity graph of the net. Later improvements have been proposed to the original
unfolding algorithm (see, e.g. [34]). As shown in [56], the unfolding can also
be computed when the Petri Net is extended with integer variables with a fi-
nite domain. Finally, in [33], Esparza and Römer demonstrate that the same
formalism used in this work, labeled transition systems, can be verified using
the net unfolding approach.

Another partial order semantics for Petri nets is processes (see, e.g. [6]). A
Petri net induces several processes each of which can be seen as a partial or-
der version of an execution. A single process can correspond to exponentially
many (in the length of the execution) interleaving executions. Heljanko [39]
applies processes to verify reachability properties of 1-safe Petri nets using
BMC.

As stated above, the benefit of partial order semantics in the context of
bounded model checking is that if simultaneous execution of independent
events is allowed, the potential counterexamples demonstrating the violation
of a property are shorter. Put another way, if a BMC formula is created for
the standard interleaving semantics and a partial order semantics both using
the same bound, the latter covers at least as large and often a larger part of
the reachable states of the system than the former.
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The simplest partial order execution model presented in this work is called
step semantics, the actual executions being referred to as step executions. It
is possible to limit the number of executions of the system by only consid-
ering executions in a certain normal form, called process executions, also
presented in this work. The idea behind this normal form is similar to the
process semantics for Petri nets.

Even though some of the presented methods can be characterized un-
der the concept of partial order methods, they should not be identified as
applying partial order reduction. Partial order reduction is also an important
technique for alleviating the state explosion problem. The technique uses the
independence of transitions to build a reduced (smaller) reachability graph.
However, if the original system violates the property to be verified, then even
the reduced reachability graph contains a counterexample execution. There-
fore, the application of partial order reduction is also referred to as model
checking using representatives [22]. The executions of the reduced reacha-
bility graph, however, still adhere to the interleaving semantics, as contrast
to the presented work. More information on partial order reduction methods
can be found in [36, 88, 86, 54].

The second technique to possibly improve BMC performance is to model
the potentially non-deterministic LTSs as deterministic. It is well-known that
a finite-state automaton (FSA) can be determinized using a standard algo-
rithm (see e.g. [74]). An LTS, on the other hand, can be seen as a FSA.
However, the standard algorithm is potentially computationally expensive.
This dissertation demonstrates that it is possible to work around this by creat-
ing a propositional formula whose models correspond to the executions of the
determinized equivalents of the components. However, these determinized
equivalents are never actually constructed. This can help in reducing the
bound since transitions internal to a particular component are “compressed”
away from the executions.

The final technique considered in this work to make BMC more efficient,
is called local transition merging. In this approach, additional transitions are
added to the components forming the concurrent system. If a transition is
added, then the component has to contain a path between the transition’s
source and target states. However, the length of the path can be greater
than one, i.e., some intermediate states can be skipped. Similar ideas to
skip intermediate states (called path compression) have been presented in
for instance [91, 53, 60]. In those papers, however, the goal is to create a re-
duced reachability graph by replacing the original transitions with a smaller
set where several transitions of the original system are compressed to a sin-
gle transition. In this work, however, no transition of the original system is
removed.

The most comprehensive treatment on model checking is probably [22].
The state explosion problem is analyzed in more detail in [86].

1.1 THIS DISSERTATION

This dissertation studies bounded model checking of systems where the com-
ponents are given as labeled transition systems. Traditionally, model check-
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ing of such systems is performed by composing the system’s components to a
synchronous product on which a model checking algorithm is applied. The
research question studied is whether it is possible to define other composition
operators such that:

1. the counterexamples are potentially shorter and

2. the BMC encoding to a propositional formula is simple.

It is assumed that if a non-standard composition operator fulfills the first cri-
terion, then a BMC procedure based on this operator is more efficient than
a BMC encoding using the synchronized product. This is the case since
the propositional formulas resulting from the BMC encoding of the non-
standard composition operator typically contain fewer atomic propositions
than those from the synchronized product to cover the same state space.

The second criterion, simplicity of the encoding algorithm, is also im-
portant. In the extreme case, it is possible to conceive an encoding scheme
that, given the system and a bound, solves the BMC problem by some other
model checking algorithm and produces a propositional formula >, if the
verified property holds and ⊥ otherwise. In this dissertation, the criterion for
simplicity is that a comparable effort is needed to create a formula model-
ing non-standard executions than creating a formula modeling interleaving
executions.

The dissertation presents three mutually independent techniques that can
in principle be applied in any combination to create a non-standard compo-
sition operator. The applied techniques are as follows:

1. partial order semantics (two possibilities),

2. on-the-fly determinization, and

3. merging of local transitions.

The first of the techniques, partial order semantics, allows the simultane-
ous execution of independent actions resulting in potentially shorter coun-
terexamples to violating states. Two variants of this technique are presented.
Besides (i) allowing the simultaneous execution of independent actions it
is possible to limit the search space of the SAT solver by (ii) only consider-
ing executions in a certain normal form. The former model is called step
semantics and the latter process semantics.

The second of the techniques, on-the-fly determinization, determinizes
the components during their composition following the standard subset con-
struction [74]. The potential benefits that this brings about are the following:

1. the number of executions is reduced since non-determinism is removed
and

2. the counterexamples are shortened since the internal transitions are
removed from the components.

The third of the techniques, local transition merging, can be seen as in-
troducing additional transitions to the components. These transitions cor-
respond to the execution of a sequence of local actions. These modified
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components can then be composed respecting the standard synchronization
rules.

Having introduced these composition operators formally, the dissertation
proceeds by presenting for some of them an encoding to a propositional for-
mula. Thus, given a system of LTSs consisting of the components L1, . . . ,Ln,
it is possible to create a formula φ such that the models of φ are the non-
standard executions of the concurrent system formed by L1, . . . ,Ln. Ta-
ble 1.1 presents all possible combinations of the presented techniques (12
in total). It should be noted that the first one is the standard interleaving
semantics. Those that are considered in this work are marked with ∗, those
that are not are marked with −.

The columns in the table are as follows:

• p o sem.: Partial order semantics is applied. The possible values are I
for interleaving (partial order semantics not applied), S for step seman-
tics and P for process semantics.

• on-the-fly det.: If marked with a ∗, then on-the-fly determinization is
applied.

• trans. merging.: If marked with a ∗, then local transitions are merged.

• studied: Status in this work, if marked with a ∗, then studied and if
marked with a −, then not studied.

Table 1.1: Composition Operators Studied in This Work

p o sem. on-the-fly det. trans. merging studied
I - - ∗
S - - ∗
P - - ∗
I ∗ - ∗
S ∗ - ∗
P ∗ - ∗
I - ∗ −
S - ∗ ∗
P - ∗ −
I ∗ ∗ −
S ∗ ∗ ∗
P ∗ ∗ −

The four composition operators that are not studied are all such that they
apply local transition merging. In addition, they apply either interleaving or
process semantics. The reason for leaving out composition operators with in-
terleaving semantics and local transition merging is that from the experience
from preliminary work with execution models without local transition merg-
ing, step semantics seemed to perform better than interleaving semantics.

The reason for leaving out composition operators with process semantics
and local transition merging is that so far, no suitable criterion has been
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defined to limit the step executions with local transition merging to a sensible
normal form. This provides an interesting aspect for future work, though.

Most of the studied composition operators can be encoded compactly
using propositional logic. However, for the composition operator applying
step semantics, on-the-fly determinization, and local transition merging, this
seems not to be the case. This is unfortunate since this product could be
useful in BMC. The difficulties found when trying to encode this composi-
tion operation are later studied in more detail. Finally, after presenting the
operators some experimental results are reported. The different composi-
tion operators are compared against each other and also against established
model checking tools. Finally, it is analyzed whether the benefits given in
the original research hypothesis are obtained.

The dissertation extends the material previously presented in the follow-
ing publications: Firstly, in [51, 52], the non-standard execution models ap-
plying partial order semantics and on-the-fly determinization is presented.
Secondly, the paper [49] presents the execution model applying local transi-
tion merging. Finally, an iterative encoding of that composition operator is
presented in [50].

The structure of the dissertation is as follows. In Chapter 2, the formal
theory of labeled transition systems as well as the used non-standard compo-
sition operators are presented. Chapter 3 contains a survey of the literature
of bounded model checking. In Chapter 4, the propositional encodings for
the execution models applying partial order semantics and on-the-fly deter-
minization are presented. Chapter 5 presents the encoding for a version of
the execution model applying local transition merging. Then, in Chapter 6,
an implementation of the propositional encodings is described together with
optimization algorithms based on static analysis. Chapter 7 presents exper-
mental results of this implementation. Finally, Chapter 8 contains the con-
clusions and some ideas for further work.

8 1. INTRODUCTION



2 LABELED TRANSITION SYSTEMS

The BMC methods presented in Chapters 4 and 5 assume that the system
model is given as a set of synchronizing labeled transition systems (LTS). This
chapter presents a formal definition of an LTS as well as different composi-
tion operations for forming larger LTSs in such a way that their executions
correspond to the presented non-standard execution models.

Definition 1 A labeled transition system L is the 4-tuple 〈S, I ,Σ,∆〉 where

• S is a finite non-empty set of states,

• I ⊆ S is a finite non-empty set of initial states,

• Σ is a non-empty set of actions containing the special internal action
τ , and

• ∆ ⊆ S × Σ × S, is the transition relation, the elements of which are
called transitions of L.

Let t = (s, a, s′) be a transition of LTS L. Then s is the source state of t
and s′ its target state. Furthermore t is an outgoing transition of state s and
an incoming transition of state s′. All the actions a ∈ Σ\{τ} are visible. The
transitions whose middle component is τ are called internal (or alternatively
invisible). A transition is visible iff its middle component is a visible action.
An action a is executable or enabled in some state s of LTS L iff there is a
transition (s, a, s′) ∈ ∆.

In order to be able to compactly refer to the elements presented above,
the following definitions are used:

Definition 2 Let L = 〈S, I ,Σ,∆〉 be an LTS, s ∈ S its local state, and
t ∈ ∆ its local transition. Then

1. pr(s) is the set of incoming transitions of s,

2. pt(s) is the set of outgoing transitions of s,

3. sr(t) is the source state of t, and

4. tar(t) is the target state of t.

LTSs are typically represented graphically as graphs where the vertices are
the states (i.e., the elements of S in the definition above) and the edges are
the transitions (i.e., the elements of ∆). The edges are labeled with the action
associated with the transition.

The semantics of an LTS is defined in terms of its executions. The execu-
tion of a single transition of an LTS corresponds intuitively to the execution
of an atomic action of the system being modeled. An execution of an LTS
is then a connected sequence of transitions t1, t2, . . . such that the source
state of t1 is an initial state of the LTS. In general, executions can be finite or
infinite.
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Definition 3 Let σ be a sequence of transitions. The length of σ, denoted
|σ| is an element of the set N ∪ {ω}, where ω 6∈ N, such that:

• if σ is finite, i.e., σ = t1, . . . , tk, then |σ| = k and

• if σ is infinite, then |σ| = ω.

The standard operation < for natural numbers is extended to N ∪ {ω} by
defining n < ω for all n ∈ N. Furthermore, it holds that n+ω = ω+n = ω.
A formal definition of an execution is then:

Definition 4 Let L = 〈S, I ,Σ,∆〉 be an LTS. Its execution σ is the se-
quence of transitions such that

• if |σ| = k, k < ω, then

σ = (s1, a1, s2), (s2, a2, s3), . . . , (sk, ak, sk+1)

such that

1. s1 ∈ I and

2. for every 1 ≤ i ≤ k, (si, ai, si+1) ∈ ∆.

• if |σ| = ω, then

σ = (s1, a1, s2), (s2, a2, s3), . . .

such that

1. s1 ∈ I and

2. for every i ≥ 1, (si, ai, si+1) ∈ ∆.

In this work, bounded model checking is performed on finite executions.
In order to avoid the repetition of states s2, . . . , sk when presenting a finite
execution, a finite connected sequence of transitions is in the rest of the work
presented in the form:

s1
a1→ s2

a2→ · · ·
ak→ sk+1.

The execution above reaches state sk+1, also called the final state of the
execution.

Definition 5 Let σ be an execution of L. Then if σ is finite, i.e., of the form
s1

a1→ s2 · · ·
ak→ sk+1, then `(σ) = a1 . . . ak. If σ is infinite, i.e., of the form

s1
a1→ s2

a2→ · · · , then `(σ) = a1a2 . . . . Let vis(σ) be the sequence of labels
obtained by removing from `(σ) the labels τ .

Definition 6 Let σ = s1
a1→ · · ·

ak→ sk+1 be a finite execution of LTS L.
The execution σ is a deadlock execution iff the state sk+1 does not have any
outgoing transitions.

Given an execution σ of L, its ith step or step i is si
ai→ si+1. Any con-

nected sequence of transitions from an LTS is called an execution segment,
or a segment for short. If the last state of a segment is the same as the first
state of another segment, they can be combined as follows:
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Definition 7 Let σ = s1
a1→ · · ·

ai→ si+1 and σ′ = si+1
ai+1

→ · · ·
ak→ sk+1 be

finite execution segments. Then, the concatenation of σ′ to σ, denoted σσ′,
is the execution segment:

s1
a1→ · · ·

ai→ si+1
ai+1

→ · · ·
ak→ sk+1

The length of σσ′ is |σ| + |σ′|.

When the intermediate states of an execution segment σ are not of great

interest, the convention of presenting σ in the form s
`(σ)
→ s′ is applied if

σ is finite. The notation means that there is an execution from s to s′ such
that the labels of the execution are `(σ). In case of infinite executions, the

notation s
`(σ)
→ is used.

2.1 COMPOSITION OPERATORS

The treatment proceeds by defining an operation with which a tuple of LTSs
can be combined to a single LTS (called their synchronized product), whose
executions model the behavior of the components as a synchronizing con-
current system. The intuition of the definition below is that if a visible action
a is executed in the product, then every component with a in its alphabet has
to execute a transition labeled a. The internal action τ has the special role
that any component can execute a τ transition in isolation. The execution of
a transition labeled τ in the product corresponds to the case that exactly one
component executes a τ transition.

Definition 8 Let L1, . . . ,Ln be LTSs, such that each Li = 〈Si, Ii,Σi,∆i〉.
Their synchronized product, denoted L1 ‖ L2 ‖ · · · ‖ Ln, is the LTS L =
〈S, I ,Σ,∆〉 such that:

• S = S1 × S2 × · · · × Sn,

• I = I1 × I2 × · · · × In,

• Σ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn, and

• ∆ = {(〈s1, . . . , sn〉, l, 〈s
′
1, . . . , s

′
n〉) ∈ S × Σ \ {τ} × S | for all

1 ≤ i ≤ n, if l ∈ Σi, then (si, l, s
′
i) ∈ ∆i, otherwise s′i = si.} ∪

{(〈s1, . . . , sn〉, τ, 〈s
′
1, . . . , s

′
n〉) ∈ S×{τ}×S | there is 1 ≤ i ≤ n

such that (si, τ, s
′
i) ∈ ∆i and for all Lj , if i 6= j, then s′j = sj .}

The composition operation above defines the interleaving model of exe-
cution, i.e., in each time step at most one action is executed from the com-
ponents. For that reason, an execution of the synchronized product of com-
ponents L1, . . . ,Ln is also called their interleaving execution. The states
si forming the state tuples 〈s1, . . . , sn〉 ∈ S are referred to as local states
whereas the complete tuple is a global state or a state vector. Similarly, a
transition t ∈ ∆i for some component Li is a local transition whereas the
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Figure 2.1: Running Example

transitions t′ ∈ ∆ are global transitions. The transition relation of the syn-
chronized product is defined in such a way that if a visible action a is exe-
cuted, then every component having a in its alphabet executes a transition
labeled a. This fact is referred to as the synchronization requirement.

If the executed action is l ∈ Σ \ {τ} in a particular global transition t,
then every component i such that l ∈ Σi is scheduled in t. That is also the
case for a component Li if l = τ and Li is the one component that executes
a local transition. If neither of the cases above apply for a component Li and
a global transition t, then Li is idle in t.

Figure 2.1 presents 4 LTSs that are used as a running example. Their
synchronized product is presented in Figure 2.2. Following the definition,
the states of the synchronized product are 4-tuples, in which the elements
are states of the components. Every transition is labeled with either a visible
action or the internal action τ . The synchronized product in Figure 2.2 has
for instance the following interleaving execution:

〈s0, s1, s2, s3〉
a
→ 〈s5, s6, s2, s3〉

c
→ 〈s5, s6, s7, s8〉

d
→ 〈s5, s6, s10, s11〉

The definition of the synchronized product allows a case where it is not
possible to infer from a transition of the product which local transition is
executed from the components. The situation is illustrated in Figure 2.3.
On the left-hand-side there are two components consisting of a single state
and one τ transition that is a self-loop. Their synchronized product on the
right-hand side consists of precisely the same elements. However, from an
execution of the product, it is not possible to say which local transition is
executed in each step. The definition of the synchronized product says that
it can be either one. However, intuitively, the definition does not allow both
of them to be executed concurrently in a single step.

2.1.1 Composition with Partial Order Semantics

Concurrent systems typically have local transitions that can be considered in-
dependent. The precise definition of independence uses the following con-
cept.

Definition 9 Let L1, . . . ,Ln be LTSs and a ∈ Σ1 ∪ · · · ∪ Σn. Then the set
Ca is defined by Ca = {1 ≤ j ≤ n | a ∈ Σj}.
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〈s0, s1, s2, s3〉〈s4, s1, s2, s3〉〈s9, s6, s2, s3〉 〈s5, s6, s2, s3〉

〈s5, s6, s7, s8〉

〈s5, s6, s10, s11〉

a

Figure 2.2: Synchronized Product

τ τ τ

s1 s2 〈s1, s2〉

Figure 2.3: Two Components (left) and their Synchronized Product (right)

In this work, the criterion for independence is as follows:

Definition 10 Let L1, . . . ,Ln be LTSs, L their synchronized product, and
for some 1 ≤ i, j ≤ n, t1 ∈ ∆i and t2 ∈ ∆j be local transitions. Assume the
labels of t1 and t2 to be a1 and a2, respectively. The transitions t1 and t2 are
independent iff the following conditions hold:

1. if a1 = τ or a2 = τ , then i 6= j or

2. if a1, a2 ∈ Σ \ {τ}, then Ca1
∩ Ca2

= ∅.

It is possible to define other composition operations utilizing this indepen-
dence. This can be especially beneficial in the context of bounded model
checking since it is possible to prove that with carefully defined non-standard
execution models, the set of reachable states remains the same but in most
cases shorter executions are needed to reach a particular state.

The simplest of these non-standard execution models is the step execution
model. It allows, provided that the synchronization requirement is respected,
simultaneous execution of independent local transitions. The formal defini-
tion is as follows:

Definition 11 Let L1, . . . ,Ln be LTSs, such that each Li = 〈Si, Ii,Σi,∆i〉.
Their step product, denoted L1 ‖st L2 ‖st · · · ‖st Ln, is the LTS L =
〈S, I ,Σ,∆〉 such that:

• S = S1 × S2 × · · · × Sn,
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• I = I1 × I2 × · · · × In,

• Σ = (Σ1 ∪ {ε}) × (Σ2 ∪ {ε}) × · · · × (Σn ∪ {ε}), and

• ∆ = {(〈s1, . . . , sn〉, 〈l1, . . . , ln〉, 〈s
′
1, . . . , s

′
n〉) ∈

(S × Σ × S) | 〈l1, . . . , ln〉 6= 〈ε, . . . , ε〉, and
for all 1 ≤ i ≤ n,

1. if li ∈ Σi \ {τ}, then for all Lj such that li ∈ Σj , it holds
that lj = li and there is a transition (sj, lj, s

′
j) ∈ ∆j ,

2. if li = τ, then there is a transition (si, τ, s
′
i) ∈ ∆i, or

3. if li = ε, then s′i = si.}

The executions of the step product of the components L1, . . . ,Ln are
also called step executions. The convention is applied that an action a is
executable or enabled in the step (and later process) product in its state
s = 〈s1, . . . , sn〉 iff there is a transition (s, 〈a1, . . . , an〉, s

′) ∈ ∆ such that
for all 1 ≤ i ≤ n, if a ∈ Σi, then ai = a, else ai = ε. The internal action τ is
executable in s iff there is a transition (s, 〈a1, . . . , an〉, s

′) ∈ ∆ such that for
some 1 ≤ i ≤ n, ai = τ . Furthermore, action a is executed iff the executed
transition is labeled 〈a1, . . . , an〉 so that for some 1 ≤ i ≤ n, ai = a. Finally,
the action ε is called idling action whereas an action a ∈ Σ1 ∪ · · · ∪ Σn is a
non-idling action.

The step product is an extension of the synchronized product. Namely, it
holds that a whenever an action a is executable in the synchronized product,
it is also executable in the same state in the step product. In addition, the
same state is reached. A given interleaving execution can be seen as a step
execution where in each step all the executed local transitions share the same
label. However, the set of step executions contains more elements. These ex-
ecutions are characterized by the fact that in some steps several independent
transitions can occur simultaneously. The difference between the interleav-
ing and step execution models is illustrated in Figures 2.1, 2.2, and 2.4 that
give an example system, its synchronized, and step products, respectively.

In order to be usable, the step product, given the property to be verified,
has to give the same answer to a verification question as the synchronized
product. For reachability properties this is established as follows:

Theorem 1 Let L1, . . . ,Ln be LTSs. Let σI be an execution of the synchro-
nized product reaching the state 〈s1, . . . , sn〉. Then there is an execution σS

of the step product reaching the same state.

Proof. This follows directly from the fact that if action a is executable in the
synchronized product, it is executable in the step product and the same state
is reached. The step execution is obtained by replacing in each step of the
interleaving execution the executed action a with:

• if a is visible, the tuple 〈a1, . . . , an〉 such that for all 1 ≤ i ≤ n, if
a ∈ Σi, then ai = a, otherwise ai = ε and

• if a = τ , the tuple 〈a1, . . . , an〉 such that ai = τ for the component
executing a local τ transition and for all j 6= i, aj = ε.

2
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Theorem 2 Let L1, . . . ,Ln be LTSs. Let σS be an execution of the step prod-
uct reaching the state 〈s1, . . . , sn〉. Then there is an interleaving execution
σI reaching the same state.

Proof. The proof is by induction over the states of σS establishing the stronger
fact that for any state s of σS, an interleaving execution σI reaching s can be
constructed.

1. Base Case. The initial states in both the synchronized and the step
products are the same.

2. Induction Hypothesis. Assume σI can be constructed up to the lth
state 〈sl

1, . . . , s
l
n〉 of σS.

3. Induction Step. Consider the step

〈sl
1, . . . , s

l
n〉

〈a1,...,an〉
→ 〈sl+1

1 , . . . , sl+1
n 〉

in σS. The interleaving execution σI is extended with an execution se-
quence σ′

I starting from 〈sl
1, . . . , s

l
n〉 that can contain several steps. Let

〈t1, . . . , tn〉 be a temporary state variable, initially 〈sl
1, . . . , s

l
n〉. Simi-

larly, let σ′
I be the empty execution segment. The algorithm is as fol-

lows:

1. If 〈a1, . . . , an〉 = 〈ε, . . . , ε〉 return the execution obtained by con-
catenating σ′

I to σI.

2. Pick any symbol aj except ε from 〈a1, . . . , an〉. If aj is a visible
action, replace aj with ε in all the positions k such that ak = aj .
If aj = τ , replace aj with ε.

3. Add the step 〈t1, . . . , tn〉
aj

→ 〈t′1, . . . , t
′
n〉 to σ′

I where

(i) if aj is visible and aj ∈ Σk, then t′k = sl+1
k ,

(ii) if aj = τ , then t′j = sl+1
j , or

(iii) if neither of the cases apply for a component k, then t′k = tk.

Let 〈t1, . . . , tn〉 = 〈t′1, . . . , t
′
n〉. Goto step 1.

It should be justified that the step 〈t1, . . . , tn〉
aj

→ 〈t′1, . . . , t
′
n〉 added in

step 3 of the algorithm above is a transition of the synchronized prod-
uct. This follows from the fact that initially 〈t1, . . . , tn〉 is 〈sl

1, . . . , s
l
n〉.

From that state, all the local actions forming the tuple 〈a1, . . . , an〉 can
be executed in the synchronized product. Then, when an action aj is
processed, the reached state 〈t′1, . . . , t

′
n〉 is such that if aj is visible, only

the components with aj in their alphabet move to a new state whereas
the others remain in the same state. This is also the case if aj = τ for
other components than Lj. Therefore, the remaining actions in the tu-
ple 〈a1, . . . , an〉 are still executable. Indeed, any order for processing
the actions can be chosen. When every symbol has been processed,
σIσ

′
I reaches the state 〈sl+1

1 , . . . , sl+1
n 〉. 2

Corollary 1 The reachable states of the synchronized product and the step
product coincide.
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〈s0, s1, s2, s3〉〈s4, s1, s2, s3〉〈s9, s6, s2, s3〉 〈s5, s6, s2, s3〉

〈s5, s6, s7, s8〉

〈s5, s6, s10, s11〉

〈s9, s6, s10, s11〉

〈a, a, ε, ε〉 〈τ, ε, ε, ε〉 〈a, a, ε, ε〉

〈a, a, ε, ε〉

〈a, a, ε, ε〉

〈τ, ε, ε, ε〉

〈τ, ε, ε, ε〉

〈a, a, ε, ε〉

〈a, a, ε, ε〉

〈a, a, c, c〉

〈a, a, d, d〉

〈a, a, c, c〉

〈a, a, d, d〉

〈ε, ε, d, d〉

〈ε, ε, c, c〉 〈ε, ε, c, c〉

〈ε, ε, d, d〉

〈ε, ε, c, c〉〈ε, ε, c, c〉

〈ε, ε, d, d〉 〈ε, ε, d, d〉

〈τ, ε, c, c〉

〈τ, ε, d, d〉

Figure 2.4: Step Product

The step product of the system in Figure 2.1 is presented in Figure 2.4.
Since the step executions defined by this product are a superset of the in-
terleaving executions, every transition of the synchronized product is also
present in the step product. However, the labels are different corresponding
to the different alphabet. For instance, the label a is replaced by the tuple
〈a, a, ε, ε〉 since a is only in the alphabet of the first two components. The sys-
tem formed by the components in Figure 2.1 has for instance the following
step execution that is not an interleaving execution:

〈s0, s1, s2, s3〉
〈a,a,c,c〉
→ 〈s5, s6, s7, s8〉

〈ε,ε,d,d〉
→ 〈s5, s6, s10, s11〉 (2.1)

In order to convert the step execution in (2.1) to an interleaving execution,
the algorithm given in the proof of Theorem 2 has to be applied. The first
tuple of the step execution is 〈a, a, c, c〉. If action a is processed first, the
sequence σ′

I is:

〈s0, s1, s2, s3〉
a
→ 〈s5, s6, s2, s3〉

c
→ 〈s5, s6, s7, s8〉 (2.2)

For the second step, the tuple is 〈ε, ε, d, d〉. The interleaving execution
segment for this step is obtained by merely replacing the tuple with the single
action d as follows:

〈s5, s6, s7, s8〉
d
→ 〈s5, s6, s10, s11〉 (2.3)

The step executions of an LTS typically contain several executions that
intuitively correspond to the same concurrent behavior. Keeping the appli-
cation area, bounded model checking, in mind, it could be sensible to try to
limit the search space of the solver so that for each execution only some nor-
mal form is considered. This is the reasoning behind the following definition
that gives a product whose transition relation is more restrictive than in the
case of the step product. However, the product might contain more states.
The purpose of the additional restriction is to disallow certain executions.

16 2. LABELED TRANSITION SYSTEMS



These executions are characterized by the fact that an action a becomes ex-
ecutable in some step of the execution. It is not, though, immediately ex-
ecuted but the components that are scheduled when a is executed idle for
some steps and only then execute a.

Definition 12 Let L1, . . . ,Ln be LTSs, such that each Li = 〈Si, Ii,Σi,∆i〉.
Their process product, denoted L1 ‖pr L2 ‖pr · · · ‖pr Ln, is the LTS L =
〈S, I ,Σ,∆〉 such that:

• S = S1 × {>,⊥} × S2 × {>,⊥} × · · · × Sn × {>,⊥},

• I = I1 × {>} × I2 × {>} × · · · × In × {>},

• Σ = (Σ1 ∪ {ε}) × (Σ2 ∪ {ε}) × · · · × (Σn ∪ {ε}), and

• ∆ = {(〈s1, b1, . . . , sn, bn〉, 〈l1, . . . , ln〉, 〈s
′
1, b

′
1 . . . , s

′
n, b

′
n〉) ∈

(S × Σ × S) | 〈l1, . . . , ln〉 6= 〈ε, . . . , ε〉.
For all 1 ≤ i ≤ n,

1. if li ∈ Σi \ {τ}, then there is a 1 ≤ j ≤ n such that
li ∈ Σj , bj = > and for every Lk such that li ∈ Σk, it
holds that lk = li, there is a transition (sk, lk, s

′
k) ∈ ∆k,

and b′k = >,
2. if li = τ, there is a transition (si, τ, s

′
i) ∈ ∆i, bi = >

and b′i = >, or
3. if li = ε, then s′i = si and b′i = ⊥.}

Given a tuple of components, the executions of their process product are
also called process executions. To be able to verify reachability properties,
the process product should also preserve the set of reachable states. This
is established by proving that the reachable states of the step and process
products coincide when the truth values present in the state vectors of the
process product are omitted. 1 Thus, by Corollary 1, the reachable states are
preserved.

The proof makes use of the following concept:

Definition 13 Let

〈s1
1, . . . , s

1
n〉

〈l1
1
,...,l1n〉
→ · · ·

〈lk
1
,...,lkn〉
→ 〈sk+1

1 , . . . , sk+1
n 〉

be an execution σS of the step product of the components L1, . . . ,Ln. A non-
idling action lji fulfills the process condition iff one of the following three
cases holds:

1. the value of j is 1, i.e., the action is executed in the first step,

2. if j > 1 and lji is visible, then some component k such that lji ∈ Σk is
scheduled in step j − 1, or

3. if j > 1 and lji = τ , then i is scheduled in step j − 1.

1The reachability properties are defined in terms of component state combinations, so
nothing is lost in the process.
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The execution σS fulfills the process condition iff every non-idling action in
its every step fulfills the process condition.

Lemma 1 Let L1, . . . ,Ln be LTSs and Lpr and Lst be their process and step
products, respectively. An execution of the form

〈s1
1, b

1
1, . . . , s

1
n, b

1
n〉

〈l1
1
,...,l1n〉
→ · · ·

〈lk
1
,...,lkn〉
→ 〈sk+1

1 , bk+1
1 , . . . , sk+1

n , bk+1
n 〉

is an execution of Lpr iff

〈s1
1, . . . , s

1
n〉

〈l1
1
,...,l1n〉
→ · · ·

〈lk
1
,...,lkn〉
→ 〈sk+1

1 , . . . , sk+1
n 〉

is an execution of Lst fulfilling the process condition.

Proof. The intuition of the lemma above is that if the truth values bji are
omitted from the state vectors of an execution of the process product, then
an execution of the step product of the same components is obtained. Fur-
thermore, that step execution fulfills the process condition. Conversely, a
step execution fulfilling the process condition can be converted to a process
execution by inserting the truth values to the state vector of the step execution
in such a way that the definition of the transition relation of Lpr is respected
(elaborated below).

Firstly, the transition relations of Lpr and Lst are otherwise the same, but
∆pr imposes an additional condition on the truth values in the state vector of
the transition’s source state. Thus, if

〈si
1, b

i
1, . . . , s

i
n, b

i
n〉

〈l1
1
,...,l1n〉
→ 〈si+1

1 , bi+1
1 , . . . , si+1

n , bi+1
n 〉 ∈ ∆pr,

then

〈si
1, . . . , s

i
n〉

〈li
1
,...,lin〉
→ 〈si+1

1 , . . . , si+1
n 〉 ∈ ∆st.

The proof in the first direction (from Lpr to Lst) is by induction over the
steps of the given process execution. Let the step and process executions in
question be denoted σS and σP, respectively.

Base Case. Firstly, by definition of the products Lst and Lpr, the state
〈s1

1, . . . , s
1
n〉 ∈ Ist. Secondly, all the actions in the first transition fulfill

the process condition.

Induction Hypothesis. Assume that up to some state l, σS is an execu-
tion of Lst fulfilling the process condition.

Induction Step. Consider the step

〈sl
1, b

l
1, . . . , s

l
n, b

l
n〉

〈ll
1
,...,lln〉
→ 〈sl+1

1 , bl+1
1 , . . . , sl+1

n , bl+1
n 〉

of σP. If action lli is visible, then by definition of Lpr, in the process
product, the truth value blj = > for at least one component j such that
lli ∈ Σj . However, this implies that the component j is scheduled in
step l and thus lli fulfills the process condition. If, on the other hand,
lli = τ , then by definition of Lpr, bli = >. However, this implies
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that component i is scheduled in step l and thus lli fulfills the process
condition.

Thus, in step

〈sl
1, . . . , s

l
n〉

〈ll
1
,...,lln〉
→ 〈sl+1

1 , . . . , sl+1
n 〉

every action fulfills the process condition.

The other direction of the proof states that if σS is an execution of Lst

fulfilling the process condition, then an execution σP of Lpr can be con-
structed by inserting the truth values > for the values b1i . For the remaining
steps, if component i executes an action in step j, then bj+1

i = >, otherwise
bj+1
i = ⊥. That the execution σP obtained in this way is an execution of Lpr,

is established by induction over the transitions of σS.

Base Case. By definition of the products Lst and Lpr, if 〈s1
1, . . . , s

n
1〉 ∈

Ist, then 〈s1
1,>, . . . , s

n
1 ,>〉 ∈ Ipr Secondly, since every bj1 = >, the

first transition of σP is a transition of ∆pr.

Induction Hypothesis. Assume that up to some state l, σP is an execu-
tion of Lpr.

Induction Step. Consider the step

〈sl
1, . . . , s

l
n〉

〈ll
1
,...,lln〉
→ 〈sl+1

1 , . . . , sl+1
n 〉

of σS. By definition of the process condition, if lli is a visible action, then
some component j such that lli ∈ Σj is scheduled in step l. However,
by induction hypothesis, then blj = > and thus it is possible to execute
lli in step l.

Secondly, if lli = τ , since σS fulfills the process condition, that com-
ponent is scheduled in step l. However, by induction hypothesis, then
bli = > and it is possible to execute τ in that particular component in
step l. Therefore, the lth transition of σP is also a transition of Lpr. 2

Lemma 2 Let L1, . . . ,Ln be LTSs and Lst their step product. If

〈s1
1, . . . , s

1
n〉

〈l11,...,l1n〉
→ · · ·

〈lk1 ,...,lkn〉
→ 〈sk+1

1 , . . . , sk+1
n 〉

is an execution σS of Lst but some action l in some step t violates the process
condition, then σS can be converted to another step execution σ′

S of Lst such
that:

1. l no longer violates the process condition,

2. |σ′
S| ≤ |σS|,

3. σ′
S reaches the same state as σS, and

4. for every action l′ executed in steps 1 ≤ k < t in σS, the process
condition for l′ holds in σ′

S iff it holds in σS.
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Proof. The conversion process is as follows. Initially, let σ′
S = σS. Since l

in step t violates the process condition, then one of the following two cases is
true:

• if l is visible, then no component k such that l ∈ Σk is scheduled in
step t − 1, or

• if l = τ and the local transition is executed from Li, then Li is not
scheduled in step t − 1.

However, this implies in the former case that for all the components Lk

where l ∈ Σk, st

k = st−1
k and in the latter case for the single component Li

that st

i = st−1
i . Since these local states are the same in both global states t−1

and t, action l can be moved to step t − 1. More precisely, the modifications
to σ′

S are:

• if the violating action l is visible, then set lt−1
k = l and ltk = ε in all the

components k such that l ∈ Σk. The component states st

k and st+1
k of

σ′
S both become st+1

k of σS, or

• if the violating action l = τ , then set lt−1
i = τ and lti = ε. The compo-

nent states st

i and st+1
i of σ′

S both become st+1
i of σS.

It may be the case that after the above transformation the same action l,
this time in step j − 1, does still not fulfill the process condition. However,
then the above procedure can be repeated. Action l is eventually bound
satisfy the process condition since it is always pushed to the direction of the
beginning of σS and if it reaches the first step, then it fulfills the process
condition.

If it is the case that after removing l from a particular action tuple, the
tuple becomes 〈ε, . . . , ε〉, then the tuple and the following global state are
removed from σ′

S. Therefore, the execution σ′
S can only become shorter

than σS.
Since in both executions σS and σ′

S all the components execute the same
local transitions in the same order, in both of them all the components reach
the same local states. Finally, proposition 4 in the lemma states that action l
can not alter the process condition of any executed actions in steps prior to j.
This is due to the fact that the process condition on actions executed in any
step t (besides the first one) is defined based on scheduling of components
in step t − 1. If l is moved from step t to t − 1, it does not change the
scheduling of any component prior to step t − 1 and thus can not alter the
process condition of any executed action in steps up to t − 1. 2

Now the following theorem can be established:

Theorem 3 Let L1, . . . ,Ln be LTSs. If σS is an execution of their step prod-
uct reaching the state 〈s1, . . . , sn〉, then there is an execution σP of their
process product reaching the state 〈s1, b1, . . . , sn, bn〉 for some Boolean val-
ues b1, . . . , bn.

Proof. By repeated application of the construct in Lemma 2, σS can be con-
verted to another step execution that reaches the same state and fulfills the
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〈s0, s1, s2, s3〉〈s4, s1, s2, s3〉〈s9, s6, s2, s3〉 〈s5, s6, s2, s3〉

〈s5, s6, s7, s8〉

〈s5, s6, s10, s11〉

〈s9, s6, s10, s11〉

〈a, a, ε, ε〉 〈τ, ε, ε, ε〉 〈a, a, ε, ε〉

〈a, a, ε, ε〉

〈ε, ε, d, d〉

〈ε, ε, c, c〉

〈ε, ε, d, d〉 〈ε, ε, d, d〉

〈τ, ε, c, c〉 〈a, a, c, c〉

〈a, a, d, d〉

Figure 2.5: Process Product (partial state vector)

process condition. Since the number of executed actions in σS is finite, this
process is bound to terminate. Then, by Lemma 1, for any such execution
there is a process execution σP such that in the final states of σS and σP, the
component states are the same. 2

Corollary 2 Given n components, the reachable states of their synchronized
and process products coincide.

Figure 2.5 presents the process product of the components presented in
Figure 2.1. Let s be any state of Figure 2.5. It holds that the corresponding
state in Figure 2.4 has at least as many outgoing transitions as s. However,
the reachable global states are preserved.

Due to space restrictions, Figure 2.5 applies the convention of only pre-
senting the state vector partially, omitting the Boolean values associated with
the states. As stated above, the Boolean value of some component Li is > iff
(i) the global state is an initial state or (ii) along the incoming edges to the
global state, Li is scheduled. The step execution in (2.1) fulfills the process
condition and can thus be converted to a process execution as follows.

〈s0,>, s1,>, s2,>, s3,>〉
〈a,a,c,c〉
→ 〈s5,>, s6,>, s7,>, s8,>〉

〈ε,ε,d,d〉
→

〈s5,⊥, s6,⊥, s10,>, s11,>〉 (2.4)

If a step execution is to be converted to a process execution, the construct
given in the proof of Lemma 2 has to be applied. Consider the following
execution of the step product where the action c in the second step does not
fulfill the process condition:

〈s0, s1, s2, s3〉
〈a,a,ε,ε〉
→ 〈s5, s6, s2, s3〉

〈ε,ε,c,c〉
→

〈s5, s6, s7, s8〉
〈ε,ε,d,d〉
→ 〈s5, s6, s10, s11〉
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Now, pushing action c back one step leads to the following:

〈s0, s1, s2, s3〉
〈a,a,c,c〉
→ 〈s5, s6, s7, s8〉

〈ε,ε,ε,ε〉
→

〈s5, s6, s7, s8〉
〈ε,ε,d,d〉
→ 〈s5, s6, s10, s11〉

The execution above contains the label 〈ε, ε, ε, ε〉 that has to be removed.
Removing it yields:

〈s0, s1, s2, s3〉
〈a,a,c,c〉
→ 〈s5, s6, s7, s8〉

〈ε,ε,d,d〉
→ 〈s5, s6, s10, s11〉

Now, every action fulfills the process condition and the execution can be
converted to an execution of the process product. That process execution is
already presented in (2.4).

It should be noted that even though process executions are characterized
by saying that actions occur as early as possible, the execution model is not
such that starting from the initial state, a maximal set of independent ac-
tions has to be executed. Indeed, such an execution model would lose some
reachable states. Rather, the execution model is such that executions where
if some action a is possible in the ith step, the components with a in their
alphabet can not idle only to execute a some steps later.

2.1.2 Composition with On-the-fly Determinization

So far, no limitations have been imposed on the structure of the component
LTSs. In general, an LTS can be seen as a finite state automaton (FSA) [74],
where every state of the LTS is an accepting state. One way of characterizing
FSAs is by dividing them to deterministic and non-deterministic ones. Deter-
ministic automata are such that they have only one initial state, no internal
transitions exist and from every state there is precisely one transition for ev-
ery action in their alphabet. Non-deterministic automata, on the other hand,
can be determinized so that the accepting sequences of visible actions are the
same.

This fact could be beneficial in the context of bounded model check-
ing since eliminating internal τ transitions yields product LTSs with poten-
tially shorter counterexamples. Furthermore, it is a working hypothesis that
the search space of the SAT solver is smaller since given a sequence of visi-
ble actions, a deterministic system has precisely one execution (sequence of
reached states) with that action sequence. In the non-deterministic system,
on the other hand, this number can be exponential (in the length of the
sequence).

Thus, replacing potentially non-deterministic components with their de-
terministic equivalents before applying a composition operator may lead to
gains in the running time of the verification task. Non-deterministic au-
tomata can be determinized by using the standard construct presented in
textbooks, e.g. [74]. In the construct, the states in the determinized au-
tomaton represent sets of states in the original, non-deterministic automaton.
Thus, the algorithm is potentially expensive since if the original automaton
has n states, the resulting deterministic equivalent can have as many as 2n

states.
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There is also another problem in applying the standard determinization
procedure. That is the fact that the transition relation is a function from
the Cartesian product of the states and the alphabet and thus defined for
every state-action pair. If there is no state reachable in the non-deterministic
automaton by executing an action from a particular state, the deterministic
counterpart contains an “error” state that has a self-loop for every action in
the alphabet.

Applying the standard determinization procedure thus has the undesired
effect that an interesting reachability property, namely a deadlock, a global
state where no transition is possible, is lost. Therefore, in order to reach the
desired improvement in bounded model checking, the determinization algo-
rithm has to allow the transition relation to be partial. This determinization
construct applies the following concepts:

Definition 14 Let L = 〈S, I ,Σ,∆〉 be an LTS and S ′ ⊆ S. The τ -closure
of S ′, denoted τ(S ′), is the maximal set of states S ′′ such that S ′ ⊆ S ′′ and
s′ ∈ S ′′ iff there is an execution segment from a state s ∈ S ′ to s′ labeled
with only τ transitions.

Definition 15 Let L = 〈S, I ,Σ,∆〉 be an LTS, S ′ ⊆ S and a ∈ Σ. Then
∆a

S′ = {(s, a, s′) ∈ ∆ | s ∈ S ′}, i.e., the set of transitions labeled a whose
source state is in the state set S ′.

Definition 16 Let L = 〈S, I ,Σ,∆〉 be an LTS and ∆′ ⊆ ∆. Then pt(∆′) =
{s′ ∈ S | (s, l, s′) ∈ ∆′}, i.e., the set of target states of the transitions in ∆′.

The determinization construct suitable for deadlock checking is then as
follows:

Definition 17 Let L = (S, I ,Σ,∆) be an LTS. Its determinized equivalent
is the LTS Ld = (Sd, I d,Σd,∆d) where:

• Sd = 2S ,

• I d = τ(I),

• Σd = Σ, and

• ∆d = {(S ′, l, S ′′) ∈ Sd × Σd \ {τ} × Sd | ∆l
S′ 6= ∅ and

S ′′ = τ(pt(∆l
S′)).}

However, it is not necessary to require deterministic components nor to
determinize then using the modified construct above. It is possible to define
composition operations that determinize the components “on-the-fly” so that
the benefits of deterministic components are obtained.

Definition 18 Let L1, . . . ,Ln be LTSs, such that each Li = 〈Si, Ii,Σi,∆i〉.
Their determinized synchronized product, denoted L1 ‖d L2 ‖d · · · ‖d Ln,
is the LTS L = 〈S, I ,Σ,∆〉 such that:

• S = 2S1 × 2S2 × · · · × 2Sn ,
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• I = τ(I1) × τ(I2) × · · · × τ(In),

• Σ = (Σ1 ∪ Σ2 ∪ · · · ∪ Σn), and

• ∆ = {(〈T1, . . . , Tn〉, l, 〈T
′
1, . . . , T

′
n〉) ∈ S × Σ \ {τ} × S |

For all 1 ≤ i ≤ n, if l ∈ Σi, then ∆l
Ti

6= ∅ and
T ′

i = τ(pt(∆l
Ti

)). Otherwise T ′
i = Ti.}

As noticed from the definition above, the transition relation of the deter-
minized synchronized product does not contain any transitions labeled τ .
The same idea can be similarly applied with the composition operators ap-
plying partial order semantics.

Definition 19 Let L1, . . . ,Ln be LTSs, such that each Li = 〈Si, Ii,Σi,∆i〉.
Their determinized step product, denoted L1 ‖d

st L2 ‖d
st · · · ‖d

st Ln, is the
LTS L = 〈S, I ,Σ,∆〉 such that:

• S = 2S1 × 2S2 × · · · × 2Sn ,

• I = τ(I1) × τ(I2) × · · · × τ(In),

• Σ = ((Σ1 \{τ})∪{ε})× ((Σ2 \{τ})∪{ε})×· · ·× ((Σn \{τ})∪{ε}),
and

• ∆ = {(〈T1, . . . , Tn〉, 〈l1, . . . , ln〉, 〈T
′
1, . . . , T

′
n〉) ∈ S × Σ \ {τ} × S |

〈l1, . . . , ln〉 6= 〈ε, . . . , ε〉, and for all 1 ≤ i ≤ n,
1. if li 6= ε, then for all Lj such that li ∈ Σj , it holds that

lj = li, ∆
lj
Tj

6= ∅ and T ′
j = τ(pt(∆

lj
Tj

)), or

2. if li = ε, then T ′
i = Ti.}

Definition 20 Let L1, . . . ,Ln be LTSs, such that each Li = 〈Si, Ii,Σi,∆i〉.
Their determinized process product, denoted L1 ‖d

pr L2 ‖d
pr · · · ‖d

pr Ln, is
the LTS L = 〈S, I ,Σ,∆〉 such that:

• S = 2S1 × {>,⊥} × 2S2 × {>,⊥} × · · · × 2Sn × {>,⊥},

• I = τ(I1) ×> × τ(I2) ×>× · · · × τ(In) ×>,

• Σ = ((Σ1 \{τ})∪{ε})× ((Σ2 \{τ})∪{ε})×· · ·× ((Σn \{τ})∪{ε}),
and

• ∆ = {(〈T1, b1, . . . , Tn, bn〉, 〈l1, . . . , ln〉, 〈T
′
1, b

′
1 . . . , T

′
n, b

′
n〉) ∈

S×Σ\{τ}×S | 〈l1, . . . , ln〉 6= 〈ε, . . . , ε〉, and for all 1 ≤ i ≤ n,
1. if li 6= ε, then there is a 1 ≤ j ≤ n such that
li ∈ Σj , bj = >, and for all Lk such that li ∈ Σk, it holds that
lk = li, ∆li

Tk
6= ∅, T ′

k = τ(pt(∆li
Tk

)) and b′k = >, or
2. if li = ε, then T ′

i = Ti and b′i = ⊥.}

As can be seen in the definitions above, the number of states is poten-
tially exponential compared to the non-determinizing products. However, as
can be seen later, this does not adversely affect the size of the propositional
formula resulting from the BMC encoding procedure. Namely, given n com-
ponents it is possible to create a formula whose size is linear in the size of the
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〈{s0, s4}, {s1}, {s2}, {s4}〉

c c

d d

a

a

a

〈{s0, s4}, {s1}, {s7}, {s8}〉

〈{s5, s9}, {s6}, {s2}, {s4}〉

〈{s5, s9}, {s6}, {s7}, {s8}〉

〈{s5, s9}, {s6}, {s10}, {s11}〉〈{s0, s4}, {s1}, {s10}, {s11}〉

Figure 2.6: Determinized Synchronized Product

〈{s0, s4}, {s1}, {s2}, {s4}〉

〈{s0, s4}, {s1}, {s7}, {s8}〉

〈{s5, s9}, {s6}, {s2}, {s4}〉

〈{s5, s9}, {s6}, {s7}, {s8}〉

〈{s5, s9}, {s6}, {s10}, {s11}〉〈{s0, s4}, {s1}, {s10}, {s11}〉 〈a, a, ε, ε〉

〈a, a, ε, ε〉

〈ε, ε, c, c〉 〈ε, ε, c, c〉

〈ε, ε, d, d〉 〈ε, ε, d, d〉

〈a, a, ε, ε〉

〈a, a, c, c〉

〈a, a, d, d〉

Figure 2.7: Determinized Step Product

system but whose models correspond to the executions of the determinized
products above.

Figures 2.6, 2.7, and 2.8 are the determinized synchronized, determinized
step, and determinized process products of the running example given in Fig-
ure 2.1. From these products it can be seen that with this example, removing
non-determinism reduces the number of states, for instance the step product
(given in Figure 2.2) contains 12 states whereas the determinized step prod-
uct (given in Figure 2.7) contains only 6 states. The state vectors are more
complicated, though, since each component can be in a set of states.

2.1.3 Composition with Local Transition Merging

Both step and process products are such that due to the additional edges exe-
cuting several independent actions, the paths to undesirable states are poten-
tially shorter than in the LTS resulting from composing components using
the standard synchronized product. However, step and process products are
by no means the most general of such composition operators. Indeed, it is
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〈{s0, s4}, {s1}, {s2}, {s4}〉

〈{s0, s4}, {s1}, {s7}, {s8}〉

〈{s5, s9}, {s6}, {s2}, {s4}〉

〈{s5, s9}, {s6}, {s7}, {s8}〉

〈{s5, s9}, {s6}, {s10}, {s11}〉〈{s0, s4}, {s1}, {s10}, {s11}〉

〈a, a, ε, ε〉

〈ε, ε, c, c〉

〈ε, ε, d, d〉 〈ε, ε, d, d〉

〈a, a, c, c〉

Figure 2.8: Determinized Process Product

possible to define a composition operator such that any violation of a reach-
ability property can be detected by an execution of length one. However, as
elaborated below, the BMC encoding of this product is probably not polyno-
mial in the size of the system.

Definition 21 Let L1, . . . ,Ln be LTSs, where each Li = 〈Si, Ii,Σi,∆i〉.
Let Lst = (Sst, Ist,Σst,∆st) be the step product L1 ‖st · · · ‖st Ln. The
path product of L1, . . . ,Ln, denoted L1 ‖pt L2 ‖pt · · · ‖pt Ln, is the LTS
L = 〈S, I ,Σ,∆〉 such that:

• S = S1 × S2 × · · · × Sn,

• I = I1 × I2 × · · · × In,

• Σ = {r〈s1,...,sn〉,〈s′1,...,s′n〉| 〈s1, . . . , sn〉 ∈ S, 〈s′1, . . . , s
′
n〉 ∈ S}, and

• ∆ = {〈s1, . . . , sn〉, r〈s1,...,sn〉,〈s′1,...,s′n〉, 〈s
′
1, . . . , s

′
n〉| there is an

execution from 〈s1, . . . , sn〉 to 〈s′1, . . . , s
′
n〉 in Lst.}

The definition of the transition relation ∆ above can be intuitively char-
acterized by saying that it is obtained from the transition relation of the cor-
responding step product by adding all the transitive edges. The label of a
transition should somehow characterize the execution segments in Lst from
its source state 〈s1, . . . , sn〉 to its target state 〈s′1, . . . , s

′
n〉. However, the lan-

guage formed by all such label sequences is necessarily regular. This follows
from the fact that it is possible to construct an automaton from Lst whose
initial state is 〈s1, . . . , sn〉 and the only final state is 〈s′1, . . . , s

′
n〉. Clearly, the

accepting of runs of this automaton are execution segments from 〈s1, . . . , sn〉
to 〈s′1, . . . , s

′
n〉 in Lst and all of these executions form a regular language [74].

Thus, labels of the form r〈s1,...,sn〉,〈s′1,...,s′n〉 are employed.
If a reachability property holds, then the step product has an execution

that is a witness of the property. By definition of the transition relation of the
path product, it has an edge between the initial and final states of the witness.
From this it follows that if a reachability property holds, then the path product
has a witness of length one. Therefore, it is assumed that given n components
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it is hard to conceive a bounded model checking scheme encoding the exe-
cutions of the path product so that the resulting formula is polynomial in the
size of the system. Namely, if this was the case, a PSPACE-complete prob-
lem (reachability of a state in the synchronized product of LTSs [58]) would
be solved in NP.

Due to the theoretical result above, the approach taken in this dissertation
is to consider a limited version of the path product. This product employs the
idea of merging local transition to a single step. However, a local loop can be
executed at most once and action repetition is disallowed. This construction,
its BMC encoding (whose size is polynomial in the size of the system), and
reasons for the chosen limitations are discussed in Chapter 5.

Lemma 3 Given n LTSs, the reachable states of their synchronized and path
products coincide.

Proof. This follows from the definition of the transition relation of the path
product. A path product has a transition between two states iff there is an
execution in the step product between those states. Thus, the reachable states
of the step and path products are the same. By Corollary 1, the reachable
states of the step and the synchronized product are the same, which proves
the lemma. 2

Similarly as in the case for composition operators applying partial order se-
mantics, local transition merging can also be combined with on-the-fly de-
terminization. The composition operator is as follows:

Definition 22 Let L1, . . . ,Ln be LTSs, where each Li = 〈Si, Ii,Σi,∆i〉. Let
Ld

st be the determinized step product L1 ‖d
st · · · ‖

d
st Ln. The determinized

path product of L1, . . . ,Ln, denoted L1 ‖d
pt · · · ‖d

pt Ln, is the LTS L =
〈S, I ,Σ,∆〉 such that:

• S = 2S1 × 2S2 × · · · × 2Sn ,

• I = τ(I1) × τ(I2) × · · · × τ(In),

• Σ = {r〈T1,...,Tn〉,〈T ′

1
,...,T ′

n〉| 〈T1, . . . , Tn〉 ∈ S, 〈T ′
1, . . . , T

′
n〉 ∈ S}, and

• ∆ = {〈T1, . . . , Tn〉, r〈T1,...,Tn〉,〈T ′

1
,...,T ′

n〉, 〈T
′
1, . . . , T

′
n〉| there is an

execution from 〈T1, . . . , Tn〉 to 〈T ′
1, . . . , T

′
n〉 in Ld

st.}

Similarly as in the case of the path product, it is assumed that the deter-
minized path product can not be encoded compactly (to a BMC formula
whose size of polynomial in the size of the system). However, with the de-
terminized path product even the limited version, for which a polynomial
encoding exists for the path product, the encoding seems hard. These diffi-
culties are discussed in more detail in Section 5.3.

Finally, the term on-the-fly determinization is justified, i.e., it is shown
that the same LTSs is obtained with the determinized products as with a
technique that first determinizes the system’s components (given in Defini-
tion 17) and then composes them with the standard composition operators.
The situation is illustrated in Figure 2.9. This is proved as follows:
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L1, . . . ,Ln

Ld
1, . . . ,L

d
n

Ld
1 ‖∗ · · · ‖∗ L

d
n L1 ‖d

∗ · · · ‖d
∗ Ln

Figure 2.9: Determinization and Composition vs. Determinized Composi-
tion

Theorem 4 Let ‖∗ be one of the composition operators above, i.e., yielding
the synchronized, step, process, or path product and let L1, . . . ,Ln be LTSs.
Then the reachable parts of the LTSs Ld′

∗ = Ld
1 ‖∗ · · · ‖∗ L

d
n and Ld

∗ = L1 ‖
d
∗

· · · ‖d
∗ Ln are the same.

Proof. The proof is similar for any of the composition operators. Consider
the case for the process product. Thus Ld′

∗ and Ld
∗ become Ld′

pr and Ld
pr,

respectively. Firstly, the state spaces, initial states and the alphabet for both
Ld′

pr and Ld
pr are precisely the same.

It needs to be shown that the transition relations are the same in both
LTSs. Firstly, let t = (〈S1, b1, . . . , Sn, bn〉, 〈l1, . . . , ln〉, 〈S

′
1, b

′
1, . . . , S

′
n, b

′
n〉)

be a transition from ∆d′

pr.
If li 6= ε, then there has to be a transition (Si, li, S

′
i) ∈ ∆d

i . This implies
that ∆i contains a transition from a state s ∈ Si labeled with li and S ′

i is the
τ -closure of all the states reachable via such transitions. However, that is also
the definition of S ′

i in Ld
pr. If li = ε, then S ′

i = Si. This is also the case in

Ld
pr. Therefore t ∈ ∆d

pr. The proof to the other direction (from ∆d
pr to ∆d′

pr)

is similar. Finally, since all the elements of Ld′

pr and Ld
pr are the same, their

reachable parts are also the same. 2

Corollary 3 Given the components L1, . . . ,Ln the reachable states of their
determinized synchronized, step, process and path products coincide.
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3 BOUNDED MODEL CHECKING

The previous chapter presents the formal theory of the system modeling for-
malism needed in this work. The purpose of the dissertation is to apply
bounded model checking on the LTSs obtained with the presented com-
position operators.

Bounded model checking is a technique that seeks to answer the question
of whether among the executions up to some fixed length k, there is one (or
more) that violates a given specification. If such an execution is found, it is
given as a counterexample. If no such execution is found, the verification
engineer knows that the system behaves correctly up to the bound k.

Even though a fixed bound k is necessarily finite, it should be noted that
BMC can be used to reason about some infinite executions, namely those
that loop within the bound k. In such executions only k steps suffice to
provide complete information of its executed actions and its reached states.

The concept of BMC as presented above does not in general limit the way
the executions are represented. One could, for instance, answer the posed
question of whether among the execution of length k, a violating one exists
by simulating them one by one and halting if a violating one is found.

In the seminal paper [8], the executions of length k are represented sym-
bolically as a propositional logic formula. At least two reasons for this can be
identified:

• such a formula is easy to create from the transition relation of the sys-
tem and its size is linear in the bound and size of the system and

• propositional satisfiability is the most studied NP-complete problem
and there are several efficient tools for solving SAT formulas.

The ideas presented in [8] provide several interesting possibilities for re-
search. Firstly, it is possible to cover more of the system’s state space by con-
ceiving the system’s transition relation differently, i.e. applying non-standard
execution semantics. In [39, 41, 40], this idea is applied to 1-safe Petri
Nets, in [41] using a logic programming approach instead of propositional
satisfiability. In these papers, the presented non-standard execution models
correspond to the step and process semantics presented in this dissertation.
However, no on-the-fly determinization and no local transition merging is ap-
plied. A non-standard execution model is also presented in [72] for Petri nets.
In this paper, the presented execution model bears some resemblence to the
idea of local transition merging. It is namely possible to execute several local
transitions in the same time step with the goal of reducing the needed bound.
However, the executed transitions do not necessarily form paths and the per-
formance of the technique relies on a preprocessing algorithm computing a
total order on the transitions of the Petri net. In [78], non-standard execution
models for artificial intelligence planning problems are presented. In addi-
tion to step and process semantics, another semantics (called 1-linearization)
bearing some resemblance to local transition merging is presented. How-
ever, the domain and the details of the semantics are different. The ideas
presented in the papers [39, 41, 40, 72, 78] are the closest related work to this
dissertation that the author is familiar with.
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In addition to applying non-standard execution models, it is possible to
improve on the way the properties to be verified are encoded. In [8], an en-
coding for LTL is presented where a temporal formula is translated to a propo-
sitional formula whose size is quadratic in the bound. That encoding is im-
proved in [20] but it is still of the same complexity in the worst case. In [61],
it is shown that a linear size translation of LTL to propositional satisfiability is
possible (the translation is inspired by the translation with logic programming
presented in [41]). All of these translations are based on encodings that use
LTL syntax to devise a direct translation of the problem. Originally, however,
model checking LTL properties is done using an algorithm where the tem-
poral formula is translated to a Büchi automaton [87] and model checking
is reduced to the question of checking language emptiness of an automaton.
In the context of bounded model checking, an LTL property can also be
encoded using the corresponding Büchi automaton [30, 24]. Encodings for
other temporal logics than LTL have also been studied. For instance, in [75],
a translation of the universal fragment of CTL is presented.

Research has also been conducted in the area of creating SAT solvers that
are especially tuned for bounded model checking problems [43, 82]. Most
SAT solvers (see e.g. [70, 37]) are based on variations of the Davis-Putnam
procedure [29]. A propositional formula is typically solved by traversing a
search tree and at each node of the tree, the solver heuristically chooses a
variable and assigns to it a Boolean value determining the next subtree to be
traversed. In [82, 84, 44, 89, 92] it is demonstrated that the performance of
the SAT solver can be improved if the default solver heuristics is overridden
with other methods based on the knowledge that the propositional formula
to be solved encodes a BMC problem.

Most SAT solvers also add clauses (called conflict clauses) to the proposi-
tional instance to be solved during the traversal of the search tree based on
the choices made so far. In [82, 84] it is shown that the symmetric nature of
a BMC formula allows the default algorithm of a SAT solver to be extended
so that more clauses are inferred. These additional constraints may help the
solver to solve the instance faster.

When applying bounded model checking, the verifier seeks counterex-
amples of increasing lenght. This involves solving a sequence of proposi-
tional formulas whose structure is similar. Therefore, some of the clauses
learned during one SAT check can also be used when solving successive in-
stances [83]. This incremental SAT solving is applied for instance in [44, 35]
with promising results.

Compared to other model checking techniques, BMC has compared fa-
vorably both in terms of the running time and memory usage even in indus-
trial examples [9, 11, 25].

3.1 COMPLETENESS

Bounded model checking has the undesirable property that it is not com-
plete. Since the length of the executions is limited to some bound k, it is
in general not the case that all the violations of a property are caught. The
BMC procedure is complete only if the verification engineer can compute a
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sufficienty small bound within which a counterexample is guaranteed to be
found if one exists. In general, this number depends on the property. In [8],
several upper bounds are presented for different kinds of temporal formulas.
For instance, for reachability properties it suffices to unroll the transition re-
lation up to the diameter of the Kripke structure. The formal definition of
a Kripke structure is as follows: Let A be a finite, non-empty set of atomic
propositions.

Definition 23 A Kripke structure is a tuple M = 〈S, I, T, `〉 where

• S is a set of states,

• I ⊂ S is a set of initial states,

• T ⊆ S × S is a transition relation between state, and

• ` : S → P(A) is a labeling of the states with atomic propositions A
which hold in that state.

Then, the diameter of a Kripke structure is defined as follows [8]:

Definition 24 Given a Kripke structure M , the diameter of M is the min-
imal number d ∈ N with the following property. For every sequence of
states s0, · · · , sd+1 with (si, si+1) ∈ T for i ≤ d, there is a sequence of states
t0, . . . , tl where l ≤ d such that t0 = s0 and tl = sd+1 and (tj , tj+1) ∈ T for
j < l.

Intuitively, the diameter d of a Kripke structure is the longest shortest path
of between any two states. This bound is sufficient to find a counterexample
of a reachability property. However, it can be too large since there is no need
to consider the longest shortest path from any state to another state but it
is sufficient for the starting state to be an initial state (called the initialized
diameter).

However, given a symbolic representation of the Kripke structure, the di-
ameter is not easy to compute. In [8] it is shown that given a Kripke structure
and a number k, finding whether k ≤ d can be done by solving a Quantified
Boolean Formula (QBF). Solving a sequence of QBFs for different values of
k is computationally very expensive [57].

It is possible to overapproximate the diameter by another value that is eas-
ier to compute, namely the recurrence diameter r [8, 7]. A recurrence diam-
eter of a graph is its longest loop-free path between any two states. Obviously,
a shortest path from one state to another is loop-free, thus it holds that d ≤ r.
In the case of BMC, also with the recurrence diameter, it is sound to limit
the starting states to initial states, i.e., to compute the initialized recurrence
diameter. Unfortunately, there are graphs for which the recurrence diameter
is much larger than the diameter. Consider, for example, a fully connected
graph with |S| states. Its diameter is one and its recurrence diameter |S| − 1.
Biere et al. [8] show that given a number k it is possible to determine whether
k ≤ r by solving a propositional formula whose size is quadratic in k.

The idea to compute the initialized recurrence diameter in [8] is as fol-
lows. Firstly, a formula that is a conjunction containing the constraint on
initial states and k copies of the transition relation of the system is created.
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However, this time an additional constraint is added. It requires that all the
states along the path are distinct. When k is increased one by one, even-
tually this formula becomes unsatisfiable. This fact implies that all paths of
length k are bound to visit some state twice, thus k − 1 is the recurrence
diameter. Therefore, the obtained bound is sufficient for a complete SAT-
based model checking procedure for reachability properties. As it is shown
in Section 4.7, this technique can be easily implemented to the presented
framework. However, the resulting formula is quadratic in the bound since
O(k2) state comparisons are performed. In [57], it is shown that the size of
the formula can be reduced to O(k log k) using sorting networks.

Another technique that can be seen as an extension of the procedure
above is called temporal induction [81]. The goal is to prove for some k
that (i) all the paths from the initial states of length k do not violate the in-
variant property to be verified and that (ii) along any path of length k where
the invariant property holds in all the states, it is not possible from the last
state of the path to reach a state where the invariant property does not hold.
The first statement above can be seen as the base case of an inductive proof
and the second as the induction step. The model checking algorithm incre-
ments the value of k until either a counterexample is found or both of the
claims above can be proved. As stated in [81], to guarantee that the proof
can be established for some k (completeness), the base case of the temporal
induction has to contain the constraint that all the states of the path are dis-
tinct. In [35], it is shown that the performance of temporal induction can be
increased by applying incremental satisfiability.

McMillan has also studied complete SAT-based model checking tehniques
in, for instance [64, 65, 66]. An especially promising technique close to stan-
dard BMC seems to be the model checking procedure for reachability prop-
erties in [65, 66]. This approach is based on the observation that it is possible
to compute a symbolic overapproximation of the states of a system reachable
in one step as the Craig interpolant [28] of two formulas, (i) a formula encod-
ing the initial states of the system and its transition relation one step and (ii)
a formula unrolling the transition relation k steps together with the reacha-
bility property. Thus, the former formula represents executions of length one
from an initial state and the latter formula execution segments of lenght k
(not necessarily from an initial state) where the reachability property holds in
at least one state. The paper [65] presents an iterative procedure and proves
that if k is equal to the diameter of the system’s state space, the procedure
terminates either proving or disproving the property.

Even though the diameter suffices to guarantee completeness also with
standard BMC, as discussed above, starting from symbolic representations its
value is hard to compute. Indeed, if a verification engineer is unable to com-
pute the diameter, he may have to proceed up to the potentially much larger
recurrence diameter. Compared to standard BMC, McMillan’s algorithm
has the additional benefit that experiments have shown that it can terminate
with much smaller values of k than the diameter [65].

It is also possible to use BMC together with some complete model check-
ing procedure (for instance BDD based) to create a complete model check-
ing algorithm. The techniques presented in [67, 18] use a SAT solver to pro-
duce from unsatisfiable propositional instances a resolution proof. The basic
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idea in [67] is as follows. (i) Create a BMC formula of the system to some
depth k. (ii) If this formula is satisfiable, return a counterexample, otherwise
return the resolution proof of its unsatisfiability. (iii) Use the resolution proof
to create an abstraction of the original system to which an unbounded model
checking procedure is applied.

The proof of unsatisfiability of the BMC formula contains only clauses
that are relevant to the property to be verified. Thus, this proof is a good
source for creating the abstraction. Obviously, phase (iii) above can return
a (possibly spurious) counterexample, however, necessarily longer than the
initial bound k. Then, the procedure can be restarted with a larger bound.

In [18], the applied procedure is intuitively as follows: (i) Create an ab-
straction of the system based on the property to be verified. (ii) Apply an
unbounded model checking procedure to this abstraction. (iii) If no coun-
terexample is returned, then terminate. (iv) If a counterexample is returned,
simulate it symbolically using a BMC formula.

In this simulation phase, if the counterexample turns out to be spurious,
then the BMC formula together with this counterexample is unsatisfiable.
The proof of this can be used to refine the original abstraction created in
phase (i) of the algorithm above and the procedure started with this refined
system. In both papers, experiments demonstrate that the results compare
favorably to a standard BDD based model checker.
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4 ENCODING ALGORITHMS

Chapter 2 presents the formal theory of the non-standard composition oper-
ators studied in this work. This chapter presents the translation algorithms of
some of these operators, namely those that apply partial order semantics and
on-the-fly determinization, to a BMC formula. The treatment of the operator
applying local transition merging is postponed to Chapter 5.

The chapter starts by giving the encoding of the simplest model, inter-
leaving executions without on-the-fly determinization (standard interleaving
semantics). When the execution model is changed some of the constraints
remain the same (or similar). Thus, the presentation is in such cases lim-
ited to giving the required changes. The encodings are supplemented with
theorems of soundness and completeness.

4.1 GENERAL CONVENTIONS

The work presents several encodings of execution models to propositional
formulas. In these presentations, certain conventions are applied. Firstly, the
syntax and semantics of propositional logic are as expected. A propositional
formula consists of atomic propositions and connectives. The truth value of a
propositional formula f can be evaluated based on a valuation (in this work
denoted V) that assigns to every atomic proposition of f a truth value. A
valuation V of f is satisfying or a model of f iff f evaluates to true when the
atomic propositions are assigned the truth values from V .

In this work, all of the Boolean formulas share the following atomic propo-
sitions:

• in(s, t) that is true iff local state s is reached in global state t,

• ex (t, t) that is true iff transition t is executed in execution step t,

• ex (a, i, t) that is true iff action a is executed in component Li in exe-
cution step t,

• ex (a, t) that is true iff action a is executed in execution step t, and

• sc(i, t) that is true iff some transition is executed from component Li

in execution step t.

In order to be able to infer an execution of a product of components from
a model of the corresponding BMC formula, only the first and second of the
propositions above suffice. The additional literals are used for compactness
and readability. All the encodings are given by presenting the propositional
constraints one by one and in the end the structure of the complete formula
(a conjunction of the constraints) is described. As seen above in the list of
literals, the constraints contain propositions of the form ex (t, t) that in spite
of the fact that they look like predicates with arguments are to be viewed as
propositional atomic formulas. In the complete formula, these are grounded
to actual instances of the system, for instance ex(1, 2), that is on the imple-
mentation level fed to the SAT solver as a literal of the form ��� ���.
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In the presented constraints, every variable is bound except for the one de-
noting the execution step (t). This is due to the fact that in all the constraints,
t is instantiated from the first step 1 to the bound k. This grounding is further
illustrated when the entire formula for a particular execution model is given.

The constraints contain conjunctions and disjunctions with instantiation
rules like

∨
aj∈Σi

ex (aj, i, t). In general, it might be the case that such a

conjunction or disjunction turns out to be empty. The convention is applied
that an empty conjunction is always true and an empty disjunction is always
false.

Certain conditions are compactly encoded using a formula of the type:

card1
0{a1, . . . , an}

card1
1{a1, . . . , an}

The formulas above are instances of cardinality constraints and they are not
part of standard propositional logic. Their semantics is that the former eval-
uates to true iff at most one of the literals a1, . . . , an are true. The latter is
more restrictive, it evaluates to true iff precisely one of the literals a1, . . . , an

evaluates to true. These cardinality constraints do not adversely affect the
complexity of the resulting formula since they can be simulated using O(n)
new variables and connectives using traditional propositional logic.

Finally, the following notational conventions are introduced for readabil-
ity:

• ∆a
i = {(s, a, s′) ∈ ∆i}, i.e., it is the set of transitions in component Li

labeled with a and

• Ca = {1 ≤ i ≤ n | a ∈ Σi}, i.e., it is the set of component indexes i
such that the alphabet of component Li contains a.

4.2 INTERLEAVING EXECUTIONS

This section presents an encoding of interleaving executions. It provides the
basic case to which the encodings of the non-standard execution models are
compared both in terms of the complexity of the encoding and the perfor-
mance.

To guarantee that the execution starts from an initial state in each compo-
nent, the following constraints are needed:

∧

1≤i≤n

card1
1{in(sj, 1) | sj ∈ Ii}. (4.1)

Secondly, no other states may be reached in execution state 1:
∧

1≤i≤n

(
∧

sj∈Si\Ii

¬in(sj , 1)). (4.2)

In order to obtain a sound encoding, the executed transitions have to start
from a reached state. Formally:

∧

1≤i≤n

(
∧

tj∈∆i

(ex (tj, t) → in(sr(tj), t))) (4.3)
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where

• sr(tj) is the source state of tj.

At most one transition can be executed from each component. The con-
straint to implement this is as follows:

∧

1≤i≤n

card1
0{ex (tj , t) | tj ∈ ∆i}. (4.4)

In order to be able to respect the synchronization requirement in the defi-
nition of the synchronized product, a literal ex (ai, j, t) is needed. It encodes
the fact that action ai is executed in component Lj in execution step t. It is
defined based on the executed transitions as follows:

∧

ai∈Σ

(
∧

j∈Cai

(ex (ai, j, t) ↔
∨

tk∈∆
ai
j

ex (tj , t))) (4.5)

where

• Cai
= {1 ≤ j ≤ n | ai ∈ Σj}, i.e., it is the set of component indexes j

such that the alphabet of component Lj contains ai and

• ∆ai

j = {(s, ai, s
′) ∈ ∆j}, i.e., it is the set of transitions in component

Lj labeled with ai.

The actual implementation of the synchronization requirement states that
all the ex (ai, j, t) literals have to have the same truth value when the action
ai is fixed but the component j is different. This is guaranteed by setting
them all equivalent to the literal ex(ai, t):

∧

ai∈Σ\{τ}

(
∧

j∈Cai

(ex (ai, t) ↔ ex(ai, j, t))). (4.6)

The internal transition τ requires a different treatment since it does not
have any synchronization requirements:

ex(τ, t) ↔
∨

i∈Cτ

ex(τ, i, t). (4.7)

At most one component can execute a τ transition:

card1
0{ex (τ, i, t) | i ∈ Cτ}. (4.8)

In the interleaving execution model, it is only possible to execute pre-
cisely one action in each step. Restricting the number of executed actions is
achieved by the following cardinality constraint:

card1
1{ex(ai, t) | ai ∈ Σ}. (4.9)

Finally, the reached state in each component has to be correctly updated.
This is managed using the following constraint:

∧

1≤i≤n

(
∧

sj∈Si

(in(sj , t+1) ↔ (in(sj, t)∧¬sc(i, t))∨
∨

tk∈pr(sj)

ex (tk, t))) (4.10)

where

36 4. ENCODING ALGORITHMS



• pr(sj) is the set of incoming transitions to sj .

The formula above uses the literal sc(i, t) that encodes the fact that some
action is executed from the component Li. Its definition is then as follows:

∧

1≤i≤n

(sc(i, t) ↔
∨

aj∈Σi

ex(aj , i, t)). (4.11)

The complete formula is created by instantiating the constraints (4.1)
to (4.11) above. Given n components and a bound k, the complete formula
is denoted IL(L1, . . . ,Ln, k) and is of the following form:

IL(L1, . . . ,Ln, k) = IS(L1, . . . ,Ln) ∧
∧

1≤i≤k

TR(L1, . . . ,Ln, i)

where

• IS(L1, . . . ,Ln) encodes the allowed initial states i.e., it is the conjunc-
tion of constraints (4.1) and (4.2) and

• TR(L1, . . . ,Ln, i) represents the unrolling of the transition relation
from state i to i + 1, i.e., it is the conjunction of the constraints (4.3)
to (4.11) where the time variable t is instantiated to the value i.

Thus, the first two constraints are used to encode the initial states of the
synchronized product and the rest to describe its transition relation. In the
following, the soundness of the encoding is established. As stated above,
the in(si, t) literal encodes the reached component states and the ex(ai, t)
the executed actions. The soundness proof states that if from any satisfying
valuation of IL(L1, . . . ,Ln, k), the true in(si, t) and ex (ai, t) literals are used
to construct a sequence of states and actions, an interleaving execution is
obtained.

In every encoding presented in this work, the soundness proof is con-
structed in two phases. For the interleaving case, it is firstly shown that from
satisfying valuations of IL(L1, . . . ,Ln, k), state-action sequences of a certain
type are obtained. Then, it is shown that every step in such a sequence is a
transition of the synchronized product.

In order to map the models of the formula to the executions of the system,
the following definition is needed:

Definition 25 Given the components L1, . . . ,Ln and an integer k, let V be
a valuation of any formula containing the following atomic propositions:

• for all sj ∈ Si, 1 ≤ i ≤ n and all 1 ≤ t ≤ k + 1, the proposition
in(sj , t) and

• for all actions ai ∈ Σ1 ∪ · · · ∪ Σn and all 1 ≤ t ≤ k, the proposition
ex (ai, t).

Then, the V -sequence corresponding to V is the sequence:

〈T 1
1 , . . . , T

1
n〉

L1→ · · ·
Lk→ 〈T k+1

1 , . . . , T k+1
n 〉

such that each T t

i , 1 ≤ t ≤ k + 1, is a set of states and a component state
sl ∈ T t

i iff sl ∈ Si and V(in(sl, t)) = true. Each Lt, 1 ≤ t ≤ k, is a set of
actions and an action al is in Lt iff V(ex(al, t)) = true.
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Definition 26 Given the V -sequence corresponding to a satisfying valuation
V of the formula IL(L1, . . . ,Ln, k), it is a valid interleaving sequence iff the
following conditions hold:

1. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k + 1, |T t

i | = 1 and

2. for all 1 ≤ t ≤ k, |Lt| = 1.

Lemma 4 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation V of the
formula IL(L1, . . . ,Ln, k), then the corresponding V -sequence is an inter-
leaving sequence.

Proof. By definition of an interleaving sequence (Definition 26), it has to
be shown that in each step of the V -sequence, the in(sj, t) literal is true for
precisely one state from each component. Secondly, the ex(a, t) literal is
true for precisely one action a.

The former condition can be established by induction over the states of
the V -sequence.

1. Base Case. It is true in state 〈T 1
1 , . . . , T

1
n〉 by constraints (4.1) and (4.2).

2. Induction Hypothesis. Assume that the number of true in(sj, t) lit-
erals is true for precisely one state from each component up to some
state l.

3. Induction Step. Consider the state 〈T l+1
1 , . . . , T l+1

n 〉. The desired con-
dition follows from the fact that (4.4) limits the number of true ex(tj , l)
literals to at most one in each component.

Namely, if the number of ex (tj , l) literals is zero in component Li,
then by constraint (4.5), the number of true ex (aj, i, l) literals is zero
and thus, by constraint (4.11), the literal sc(i, l) is false. Then however,
constraint (4.10) reduces to:

∧

sj∈Si

(in(sj , l + 1) ↔ in(sj, l)).

By the formula above, the in(sj , l + 1) literal is true for precisely the
same states than in the state l, the number of which is one by induction
hypothesis.

If the number of true ex (tj, l) literals is one in component Li, then
by constraint (4.5), there is one true ex (aj, i, l) literal. Then, by con-
straint (4.11), the literal sc(i, l) is true and constraint (4.10) reduces
to: ∧

sj∈Si

(in(sj , l + 1) ↔
∨

tk∈pr(sj)

ex(tk, l)).

Since ex(tk, l) literal is true for precisely one transition, the in(sj , l+1)
literal is true for precisely the unique target state of that transition.
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The latter condition (that the ex(a, t) literal is true for precisely one action
a) follows directly from constraint (4.9). 2

Given an interleaving sequence, let for all 1 ≤ i ≤ n and 1 ≤ t ≤ k + 1,
st

i be the single element of T t

i . Furthermore, for all 1 ≤ i ≤ k, let li be the
single element of Li.

Definition 27 An interleaving sequence of formula IL(L1, . . . ,Ln, k) is an
execution of the synchronized product Lil of L1, . . . ,Ln, iff the following
conditions hold:

1. for all components 1 ≤ i ≤ n, s1
i ∈ Ii and

2. for all 1 ≤ t ≤ k, 〈st

1, . . . , s
t

n〉
lt→ 〈st+1

1 , . . . , st+1
n 〉 ∈ ∆il.

The soundness of the encoding is then established as follows:

Theorem 5 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation V of the
formula IL(L1, . . . ,Ln, k), then the corresponding V -sequence is an execu-
tion of the synchronized product of L1, . . . ,Ln.

Proof. By Lemma 4, any V -sequence of IL(L1, . . . ,Ln, k) is an interleaving
sequence. Now it has to be established that the interleaving sequence starts
from an initial state and that every one of its steps is a transition of the syn-
chronized product. To justify that a particular step in the V -sequence is a
transition of the synchronized product, knowledge about the executed transi-
tions is needed. These are encoded using the ex(tj , t) literals (V(ex (tj , t)) =
true iff transition tj is executed in time step t). The proof is by induction over
the states of the interleaving sequence.

1. Base Case. Due to the element IS(L1, . . . ,Lk) (conjunction of con-
straints (4.1) and (4.2)) in IL(L1, . . . ,Ln, k), in any V -sequence the
state in component Li such that V(in(sj , 1)) = true has to be an ini-
tial state. Thus, the tuple of states obtained is an initial state of the
synchronized product.

2. Induction Hypothesis. Assume that up to some state l, all the steps in
the interleaving sequence are transitions of the synchronized product.

3. Induction Step. Consider the step 〈sl
1, . . . , s

l
n〉

ll→ 〈sl+1
1 , . . . , sl+1

n 〉. It
is shown that:

(a) if ll is visible, then every component i such that ll ∈ Σi executes
exactly one transition labeled ll,

(b) if ll = τ , then exactly one component executes exactly one tran-
sition labeled τ ,

(c) all the executed transitions are labeled ll,

(d) the executed transitions start from reached component states, and

(e) the state 〈sl+1
1 , . . . , sl+1

n 〉 is a state of the synchronized product
that is reached from the state 〈sl

1, . . . , s
l
n〉 by executing the action

ll.
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The first condition concerning visible actions is established as follows.
Firstly, constraint (4.6) states that if V(ex(ll, l)) = true, then it holds
that V(ex (ll, i, l)) = true for all the components Li having ll in their
alphabet. However, then by constraint (4.5) every such component has
to execute a transition labeled ll.

The second condition concerning the internal action τ is established
by constraint (4.8) limiting the number of true literals in the literal set
{ex(τ, i, l) | i ∈ Cτ} to at most one. Constraint (4.5), on the other
hand, allows an execution of a transition labeled τ in component Li

in step l iff ex(τ, i, l) is true. In both cases (visible / internal action)
the fact that exactly one transition is executed is guaranteed by con-
straint (4.4).

The third condition is guaranteed by constraint (4.5) since it requires
that if a transition labeled ai 6= ll is executed, then the literal ex (ai, j, l)
has to be true for the component Lj containing the transition. Then,
however, by constraint (4.6), the literal ex(ai, l) has to be true and
constraint (4.9) is violated.

The fourth condition that the executed transitions start from reached
states is guaranteed by (4.3).

Finally, it needs to be established that the state 〈sl+1
1 , . . . , sl+1

n 〉 is of
correct form, i.e., that constraints (4.10) and (4.11) do not allow un-
intended models. The treatment is divided to two cases, components
that are idle and components that execute a transition in step l. Keep-
ing in mind the definition of the sc(i, t) literal, then for the former the
constraint encoding control flow becomes:

∧

sj∈Si

(in(sj , l + 1) ↔ in(sj, l)).

Therefore, idle components remain in the same state. This adheres to
the definition of the synchronized product. For components executing
a transition the constraint becomes:

∧

sj∈Si

(in(sj , l + 1) ↔
∨

tk∈pr(sj)

ex(tk, l)).

Thus, the control flow in the global state l + 1 reaches local states
that are the target states of executed transitions. Thus, the reached
global state is reachable in the synchronized product from 〈sl

1, . . . , s
l
n〉

by executing action ll. 2

Theorem 6 Let L1, . . . ,Ln be LTSs. Given any execution of the synchro-
nized product of L1, . . . ,Ln, it is a V -sequence of some satisfying valuation
V of IL(L1, . . . ,Ln, k).

Proof. The proof presents a mapping from an execution to a valuation and
shows that if the truth values of the literals are assigned according to this
mapping, all the constraints of IL(L1, . . . ,Ln, k) are satisfied. Any execution
of the synchronized product can be presented in the form:

〈s1
1, . . . , s

1
n〉

l1→ · · ·
lk→ 〈sk+1

1 , . . . , sk+1
n 〉.
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The mapping V is as follows:

• V(in(sj , t)) = true iff for some 1 ≤ i ≤ n, st

i = sj,

• V(ex (ai, t)) = true iff lt = ai,

• If lt ∈ Σ \ {τ}, the following conditions hold:

1. V(ex(tj , t)) = true iff for some 1 ≤ i ≤ n, (st

i, lt, s
t+1
i ) = tj ,

2. V(ex(ai, j, t)) = true iff lt = ai, and

3. V(sc(i, t)) = true iff lt ∈ Σi.

• If lt = τ , the following conditions hold:

1. V(ex(tj , t)) = true iff (st

i, lt, s
t+1
i ) = tj and there is no m < i

such that (st

m, lt, s
t+1
m ) ∈ ∆m, 1

2. V(ex(τ, i, t)) = true iff (st

i, lt, s
t+1
i ) ∈ ∆i and there is no m < i

such that (st

m, lt, s
t+1
m ) ∈ ∆m, and

3. V(sc(i, t)) = true iff (st

i, lt, s
t+1
i ) ∈ ∆i and there is no m < i such

that (st

m, lt, s
t+1
m ) ∈ ∆m.

The proof is by induction over the steps t in IL(L1, . . . ,Ln, k).

1. Base Case. For all 1 ≤ i ≤ n, the states s1
i are elements of Ii. Thus,

the constraints (4.1) and (4.2) are satisfied.

2. Induction Hypothesis. Assume that every conjunct is satisfied in for-
mula IL(L1, . . . ,Ln, k) up to the state l.

3. Induction Step. Consider the step 〈sl
1, . . . , s

l
n〉

ll→ 〈sl+1
1 , . . . , sl+1

n 〉.
The goal is to show that mapping V satisfies all the conjuncts of the
formula TR(L1, . . . ,Ln, l). By definition of the synchronized prod-
uct, if a component executes a transition tj , then its source state is
reached and constraint (4.3) is satisfied. In any interleaving execu-
tion, each component can execute at most one transition. Therefore,
constraint (4.4) is satisfied. Component Li executes an action a iff it
executes a transition labeled a. Therefore, constraint (4.5) is also satis-
fied.

By definition of the synchronized product, if a visible action is exe-
cuted, then all components having that action in their alphabet have
to execute one transition labeled with that action. Therefore, con-
straint (4.6) is satisfied. The internal action τ is executed iff exactly
one component executes a τ transition. Constraint (4.7) is therefore
satisfied. In any interleaving execution in any step, at most one com-
ponent may execute a τ transition and constraint (4.8) is satisfied. The
number of executed actions is precisely one in every interleaving exe-
cution. Thus, constraint (4.9) is satisfied.

1In general, it can be the case that there are several possible choices for the executed
τ transition. This is a design choice of setting the ex(tj , l) literal true for a transition in a
component with the smallest index. Another choice could be made as well.
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If a component does not execute any transitions, the control flow in
that component remains in the same state. Thus, constraint (4.10) is
satisfied for such idle components. If a component executes a transi-
tion, then the control flow moves to the target state of that transition
and constraint (4.10) is also satisfied for these scheduled components.
Finally, the literal sc(i, t) is true iff component Li executes a transition.
Thus, constraint (4.11) is satisfied. 2

The encoding presented above is thus sound and complete with respect to
the interleaving execution model. When the encoding for step and process
models is considered, it is seen that they are obtained from the encoding of
interleaving executions with small modifications.

4.3 STEP EXECUTIONS

The difference between the executions of the step product and the synchro-
nized product is that the former is more general, it contains additional ex-
ecutions characterized by the fact that several independent actions are exe-
cuted simultaneously. Therefore, given n components and a bound k, the
encoding formula for the step product, denoted ST (L1, . . . ,Ln, k), has to be
weaker than IL(L1, . . . ,Ln, k), i.e., have more models.

The simplest way to obtain more models is to omit some constraints. In-
deed, in the encoding of the interleaving model, constraint (4.9) limits the
executed actions in each step to precisely one. If this is omitted, then several
actions can be executed in each step but the system is also able to idle. The
step model is obtained when the cardinality constraint in constraint (4.9) is
replaced with constraint (4.12), a disjunction:

∨

ai∈Σ

ex(ai, t). (4.12)

In addition, the step product allows several components to execute an
internal τ action. To allow this is easy, constraint (4.8) is omitted. Given
n components and a bound k, the formula encoding the executions of their
step product of length k is of the form:

ST (L1, . . . ,Ln, k) = IS (L1, . . . ,Ln) ∧
∧

1≤i≤k

TRs(L1, . . . ,Ln, i).

The first conjunct, IS(L1, . . . ,Ln), is precisely the same as in the case
of the synchronized product. The latter part, TRs(L1, . . . ,Ln, i), encodes
again the transition relation from state i to i + 1. It is otherwise the same
as TR(L1, . . . ,Ln, i) but constraint (4.9) is replaced by constraint (4.12) and
constraint (4.8) is omitted.

The formula ST (L1, . . . ,Ln, k) can be proved sound and complete with
respect to the executions of the step product. The proofs apply the concept
of a Vs-sequence defined below. The definition is a modified version of the
one used in interleaving executions recognizing the fact that the executed
actions in the step product are tuples.
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Definition 28 Given the components L1, . . . ,Ln and an integer k, let Vs be
a valuation of any formula containing the following atomic propositions:

• for all sj ∈ Si, 1 ≤ i ≤ n and all 1 ≤ t ≤ k + 1, the proposition
in(sj , t) and

• for all action–component pairs (a, i) ∈
⋃

1≤i≤n(Σi × {i}) and all 1 ≤
t ≤ k, the proposition ex (a, i, t).

Then, the Vs-sequence corresponding to Vs is the sequence:

〈T 1
1 , . . . , T

1
n〉

〈L1
1
,...,L1

n〉
→ · · ·

〈Lk
1
,...,Lk

n〉
→ 〈T k+1

1 , . . . , T k+1
n 〉

such that each T t

i , 1 ≤ t ≤ k + 1, is a set of states and a component state
sl ∈ T t

i iff sl ∈ Si and V(in(sl, t)) = true. Each Lt

i, 1 ≤ t ≤ k, is a set of
actions and an action aj is in Lt

i iff Vs(ex (aj, i, t)) = true.

The proof of the soundness of the encoding is established in two phases
similarly as in the case of interleaving executions. The proof uses the follow-
ing concept:

Definition 29 Given the Vs-sequence corresponding to a valuation Vs of the
formula ST (L1, . . . ,Ln, k), it is a valid step-sequence iff the following con-
ditions hold:

1. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k + 1, |T t

i | = 1 and

2. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k, |Lt

i| ≤ 1.

Lemma 5 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation Vs of the
formula ST (L1, . . . ,Ln, k), then the corresponding Vs-sequence is a step-
sequence.

Proof. The proof is similar than in the case of interleaving executions. It has
to be shown that in each step of the Vs-sequence, the in(sj, t) literal is true
for precisely one state from each component. Secondly, the ex (a, i, t) literal
is true for precisely one action a in the alphabet of component Li.

The proof of the former condition is precisely the same as in Theorem 4
for the interleaving model.

The latter condition on the cardinality of the sets Lj
i is guaranteed by the

fact that constraint (4.4) allows the number of true ex (tm, t) literals from any
fixed component to be at most one. If every one of those literals is false, then
by constraint (4.5) every ex (a, i, t) literal for that component is also false.
If precisely one of the ex(tm, t) literals is true, then by the constraint (4.5),
there is precisely one ex (a, i, t) literal for that component that is true. 2

Given a step-sequence of length k, let for all 1 ≤ i ≤ n and 1 ≤ t ≤ k+1, st

i

be the single element of T t

i . Furthermore, for all 1 ≤ i ≤ n and 1 ≤ t ≤ k,
since |Lt

i| ≤ 1, let lti denote either the single element of Lt

i or if Lt

i = ∅, let lti
denote ε.

Definition 30 A step-sequence of formula ST (L1, . . . ,Ln, k) is an execu-
tion of the step product Lst of L1, . . . ,Ln iff the following conditions hold:
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1. for all components 1 ≤ i ≤ n, s1
i ∈ Ii and

2. for all 1 ≤ t ≤ k, 〈st

1, . . . , s
t

n〉
〈lt

1
,...,ltn〉
→ 〈st+1

1 , . . . , st+1
n 〉 ∈ ∆st.

Theorem 7 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation Vs of
the formula ST (L1, . . . ,Ln, k), then the corresponding Vs-sequence is an
execution of the step product of L1, . . . ,Ln.

Proof. By Lemma 5, given any Vs-sequence of ST (L1, . . . ,Ln, k), it is a
step-sequence. Now it has to be established that the step-sequence starts
from an initial state and that every one of its steps is a transition of the step
product. To justify that a particular step in the Vs-sequence is a transition of
the step product, knowledge about the executed transitions is needed. These
are encoded using the ex(tj , t) literals (Vs(ex(tj , t)) = true iff transition tj
is executed in time step t). The proof is by induction over the states of the
step-sequence.

1. Base Case. Due to the element IS(L1, . . . ,Lk) (conjunction of con-
straints (4.1) and (4.2)) in ST (L1, . . . ,Ln, k), in any Vs-sequence the
state in component Li such that Vs(in(sj , 1)) = true has to be an ini-
tial state. Thus, the tuple of states obtained is an initial state of the step
product.

2. Induction Hypothesis. Assume that up to some state l, all the steps in
the step-sequence are transitions of the step product.

3. Induction Step. Consider the step

〈sl
1, . . . , s

l
n〉

〈ll
1
,...,lln〉
→ 〈sl+1

1 , . . . , sl+1
n 〉.

It is shown that:

(a) the tuple 〈ll1, . . . , l
l
n〉 can not be 〈ε, . . . , ε〉,

(b) if lli is visible, then for every component Lj such that lli ∈ Σj , l
l
j =

lli,

(c) if lli 6= ε , then component Li executes exactly one transition and
that transition is labeled lli,

(d) if lli = ε, then the component Li executes no transition,

(e) the executed transitions start from reached component states, and

(f) the state 〈sl+1
1 , . . . , sl+1

n 〉 is a state of the step product reached
from the state 〈sl

1, . . . , s
l
n〉 by executing the action 〈ll1, . . . , l

l
n〉.

The first condition, disabling idling in the step product, is guaranteed
by the new constraint (4.12). Since at least one ex (a, l) has to be true,
at least one ex (a, i, l) literal has to be true.

The second condition is guaranteed by constraint (4.6) implementing
the synchronization requirement.

The third condition in guaranteed by constraint (4.5) forcing some
transition with the correct label to be executed and constraint (4.4)
limiting the number of executed transition to at most one.
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The fourth condition is guaranteed solely by constraint (4.5).

The fifth condition is guaranteed by constraint (4.3).

The final condition concerning the state 〈sl+1
1 , . . . , sl+1

n 〉 is established
by analysis of constraint (4.10) in precisely the same way as in the proof
of Condition 3e in Theorem 5. The control flow stays in the same local
state for components that do not execute any actions and if a compo-
nent executes an action, then the control flow moves to the target state
the executed local transition. 2

Theorem 8 Let L1, . . . ,Ln be LTSs. Given any execution of the step prod-
uct of L1, . . . ,Ln, it is a Vs-execution of some satisfying valuation Vs of
ST (L1, . . . ,Ln, k).

Proof. The proof is similar as in the case of interleaving executions. Any step
execution of the components L1, . . . ,Ln of length k is of the form:

〈s1
1, . . . , s

1
n〉

〈l1
1
,...,l1n〉
→ · · ·

〈lk
1
,...,lkn〉
→ 〈sk+1

1 , . . . , sk+1
n 〉

The literals of ST (L1, . . . ,Ln, k) are mapped using a mapping Vs in a similar
fashion as in the proof of Theorem 6, namely:

• Vs(in(sj, t)) = true iff for some 1 ≤ i ≤ n, st

i = sj ,

• Vs(ex(tj , t)) = true iff for some 1 ≤ i ≤ n, (st

i, l
t

i, s
t+1
i ) = tj ,

• Vs(ex(ai, j, t)) = true iff lti = ai,

• Vs(ex(ai, t)) = true iff for some 1 ≤ j ≤ n, ltj = ai, and

• Vs(sc(i, t)) = true iff lti 6= ε.

The proof is by induction over the steps t in ST (L1, . . . ,Ln, k).

1. Base Case. Any execution starts from some initial state. Thus, con-
straints (4.1) and (4.2) are satisfied.

2. Induction Hypothesis. Assume that no conjunct is violated in formula
ST (L1, . . . ,Ln, k) up to the state l.

3. Induction Step. Consider the step

〈sl
1, . . . , s

l
n〉

〈ll1,...,lln〉
→ 〈sl+1

1 , . . . , sl+1
n 〉.

The goal is to show that mapping Vs satisfies all the conjuncts of the for-
mula TRs(L1, . . . ,Ln, l). By definition of the step product, if a com-
ponent executes a transition ti, then its source state is reached and
condition (4.3) is satisfied. In any step execution, each component
can execute at most one transition. Hence, constraint (4.4) is satisfied.
Component Li executes action a iff it executes a transition labeled a.
Therefore, constraint (4.5) is also satisfied.
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By definition of the step product, if a visible action is executed, then all
components with that action in their alphabet have to execute a tran-
sition labeled with that action. Therefore, constraint (4.6) is satisfied.
The internal action τ is executed iff at least one component executes a
τ transition. Constraint (4.7) is therefore satisfied.

The definition of the step product does not allow the executed tuple
of actions to be 〈ε, . . . , ε〉. Thus, all the components of the system can
not be idle and constraint (4.12) is satisfied.

If a component does not execute any transitions, the control flow in
that component remains in the same state. Thus, constraint (4.10) is
satisfied for such idle components. If a component executes a transi-
tion, then the control flow moves to the target state of that transition
and constraint (4.10) is also satisfied for these scheduled components.
Finally, the literal sc(i, t) is true iff component Li executes some tran-
sition. Thus, constraint (4.11) is satisfied. 2

4.4 PROCESS EXECUTIONS

Even though the process product of a system can have more states than the
step product, its executions (when the truth values associated with the states
are omitted) are a subset of the executions of the step product. Namely those
executions that fulfill the process condition given in Definition 13. Thus,
when the bounded executions of length k of the process product of a system
with n components are encoded, the resulting formula, which is denoted
PR(L1, . . . ,Ln, k), has to be stronger than ST (L1, . . . ,Ln, k). Indeed, the
correct encoding is obtained by adding two constraints.

The additional constraints limit the models of ST (L1, . . . ,Ln, k) to exe-
cutions that fulfill the process condition. For visible actions, the condition
states that if an action is executed in step t+1, then some component having
that action in its alphabet has to be scheduled in step t. The encoding for
visible actions is as follows:

∧

ai∈Σ\{τ}

(ex (ai, t + 1) →
∨

j∈Cai

sc(j, t)). (4.13)

For τ transitions the treatment is different. The definition of the process
condition states that if a τ transition is executed in the step t + 1, the compo-
nent containing the transition is scheduled in step t:

∧

i∈Cτ

(ex(τ, i, t + 1) → sc(i, t)). (4.14)

Given n components and a bound k, the formula to encode process exe-
cutions of length k, denoted PR(L1, . . . ,Ln, k), is of the following form:

PR(L1, . . . ,Ln, k) = IS(L1, . . . ,Ln) ∧
∧

1≤i≤k

TRs(L1, . . . ,Ln, i)

∧

1≤i<k

PRC (L1, . . . ,Ln, i)

where
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• IS(L1, . . . ,Ln) is the constraint on the initial state,

• TRs(L1, . . . ,Ln, i) encodes the transition relation from state i to i+1,
and

• PRC (L1, . . . ,Ln, i) is the constraint to encode the process condition,
i.e., it is the conjunction of constraints (4.13) and (4.14) with the vari-
able t instantiated to i.

Notice that in PRC (L1, . . . ,Ln, i), the maximum value of i is k − 1.
Soundness and completeness are established as follows:

Definition 31 Let Lst be the step product of L1, . . . ,Ln. A Vs-sequence
of formula PR(L1, . . . ,Ln, k) is an execution of the process product of the
components L1, . . . ,Ln iff the following conditions hold:

1. for all components 1 ≤ i ≤ n, s1
i ∈ Ii,

2. for all 1 ≤ t ≤ k, 〈st

1, . . . , s
t

n〉
〈lt

1
,...,ltn〉
→ 〈st+1

1 , . . . , st+1
n 〉 ∈ ∆st, and

3. this step execution fulfills the process condition.

Theorem 9 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation Vs of
the formula PR(L1, . . . ,Ln, k), then the corresponding Vs-sequence is an
execution of the process product of L1, . . . ,Ln.

Proof. Firstly, since the formula PR(L1, . . . ,Ln, k) is stronger than the for-
mula ST (L1, . . . ,Ln, k) every one of its Vs-sequences is a step execution.
However, the additional constraints (4.13) and (4.14) are verbatim transla-
tions of the the process condition given in Definition 13. Thus, a model of
PR(L1, . . . ,Ln, k) is a step executions that fulfills the process condition and
by Lemma 1 an execution of the process product of L1, . . . ,Ln. 2

Completeness is established in the same way:

Theorem 10 Let L1, . . . ,Ln be LTSs. Given any execution of the process
product of L1, . . . ,Ln, the corresponding step execution is a Vs-sequence of
some satisfying valuation Vs of PR(L1, . . . ,Ln, k).

Proof. Given any execution of the process product, an execution of the step
product is obtained by omitting the truth values from the global states. If
the truth values of the literals of PR(L1, . . . ,Ln, k) are defined using the
mapping of Theorem 8 a valuation Vs is obtained. This valuation satisfies all
the constraints in ST (L1, . . . ,Ln, k). These constraints are also present in
PR(L1, . . . ,Ln, k) and are thus satisfied.

Remains to show that Vs also satisfies constraints (4.13) and (4.14). This
follows from the fact that the step executions obtained from executions of
the process product fulfill the process condition (Definition 13). Keeping
in mind the fact that the literal sc(i, t) is true iff component Li executes
a transition in step t, the new constraints for step t evaluate to true iff the
process condition for that step holds. Thus, these constraints are satisfied. 2
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4.5 INCLUDING ON-THE-FLY DETERMINIZATION

This section presents the encoding for the products presented in Sections 4.2,
4.3 and 4.4 when on-the-fly determinization is added. They key differences
brought about by on-the-fly determinization are the following:

• the execution of an action corresponds to the execution of every tran-
sition that is labeled with the action and whose source state is in the
reached set of states in a particular component and

• the τ transitions of the components are compressed away.

As a consequence of on-the-fly determinization, each component can after
a sequence of actions be in a set of states instead of being in a single state. The
encoding assumes that the LTSs do not have loops containing only τ transi-
tions involving more than one state (called non-trivial τ loops). The reason
for this assertion is rather technical, however necessary, and it is elaborated
after the encoding for determinized interleaving executions is presented. To
guarantee the non-existence of non-trivial τ loops, a preprocessing algorithm
is performed on all the components of the system. The algorithm uses the
concept of a maximal strongly connected component defined as follows:

Definition 32 Let G = (V,E) be a directed graph with vertices V and edges
E ⊆ V × V . A strongly connected component C of G is a set of vertices
C ⊆ V such that for any two vertices v, v′ ∈ C, there is a path from v to v′ in
G.

Definition 33 A strongly connected component C of G = (V,E) is maxi-
mal iff for any vertice v ∈ V \C, the set C ∪ {v} is not a strongly connected
component.

The preprocessing algorithm is then as follows. Let L1, . . . ,Ln be the
components of the analyzed system. For all 1 ≤ i ≤ n:

1. Compute all the maximal strongly connected components C1, . . . , Cj

of Li restricted to τ transitions.

2. Replace Li = (Si, Ii,Σi,∆i) with L′
i = (S ′

i, I
′
i ,Σ

′
i,∆

′
i) where

• S ′
i = {s′1, . . . , s

′
j},

• I ′
i = {s′k ∈ S ′

i | Ck ∩ Ii 6= ∅},

• Σ′
i = Σi, and

• ∆′
i = {(s′k, a, s

′
l) ∈ S ′

i × Σ′
i × S ′

i | there are s ∈ Ck, a ∈ Σi,
and s′ ∈ Cl such that (s, a, s′) ∈ ∆i.}

A strongly connected component of an LTS restricted to τ transitions is
referred to as a τ -component. The above construction takes the original LTS
and replaces each MSCC Ci with a single representative state s′i. The in-
coming and outgoing transitions of a particular representative state are then
the union of the incoming and outgoing transitions of the states forming
the corresponding MSCC. Let repr() be a function from Si to S ′

i such that
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repr(sj) = s′k iff sj ∈ Ck. It holds that if the original system reaches a global
state 〈s1, . . . , sn〉 with some execution, then the modified system contains an
execution with the same visible actions that reaches the global state where
each of the local states is replaced by its τ -component, i.e., the global state
〈repr(s1), . . . , repr(sn)〉. In addition, as is shown in Section 4.6, even with
the preprocessing above, it is still possible to verify reachability properties of
the original system.

As in the case of the non-determinized versions, the formulas are given
fully for the interleaving model and for the step and process execution mod-
els, the presentation is limited to the required changes to the interleaving
model. For simplicity, it is assumed that when referring to an LTS with no-
tation like Li, the LTS in question does not contain non-trivial τ loops. If an
LTS under discussion is not preprocessed, then this is explicitly mentioned.

4.5.1 Determinized Interleaving Executions

The differences between the determinized synchronized product and the
standard synchronized product are reflected already in the constraint encod-
ing the initial states. Whereas in the execution models not applying on-the-fly
determinization, each component is required to start from one initial state, in
the determinized version each component starts from the set of states formed
by the τ -closure of every initial state. The set can be easily computed stati-
cally and encoded in the following formula:

∧

1≤i≤n

(
∧

sj∈τ(Ii)

in(sj, 1)). (4.15)

where

• τ(Ii) denotes the τ -closure of the set Ii.

Secondly, no other states may be reached in execution state 1:

∧

1≤i≤n

(
∧

sj∈Si\τ(Ii)

¬in(sj , 1)). (4.16)

In the determinized version, the executed action determines the executed
transitions uniquely. To achieve this, the implication in constraint (4.3) is
changed into an equivalence as follows:

∧

1≤i≤n

(
∧

aj∈Σi\{τ}

(
∧

tk ∈∆
aj
i

(ex (tk, t) ↔ (in(sr(tk), t) ∧ ex (aj, t))))) (4.17)

where

• sr(tk) is the source state of tj and

• ∆
aj

i = {(s, aj, s
′) ∈ ∆i}, i.e., the set of transitions in component i

labeled with aj .
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In the non-determinized version, the encoding proceeds by giving a con-
straint limiting the executed transitions in each component to at most one.
In the determinized version, this constraint is not sound. The next constraint
is the same as (4.5). The intuition is that some action a is executed in compo-
nent Lj iff at least one transition from that component labeled a is executed:

∧

ai∈Σ\{τ}

(
∧

j∈Cai

(ex (ai, j, t) ↔
∨

tk∈∆
ai
j

ex (tk, t))). (4.18)

• Cai
= {1 ≤ j ≤ n | ai ∈ Σj}, i.e., it is the set of component indexes j

such that the alphabet of component Lj contains ai.

Also in the determinized model, the synchronization between compo-
nents needs to be respected. Synchronization is implemented as follows:

∧

ai∈Σ\{τ}

(
∧

j∈Cai

(ex (ai, t) ↔ ex(ai, j, t))). (4.19)

At most one action can be executed in each step. The cardinality con-
straint to implement this, and also disable idling, is as follows:

card1
1{ex (ai, t) | ai ∈ Σ \ {τ}}. (4.20)

What remains is the definition of the progress of control flow. Compared
to the non-determinized model, the definition has to the contain the possibil-
ity of reaching a state due to it being in the τ -closure of some state reached by
executing its incoming transition. To simplify the presentation, the following
notational convention is applied:

Definition 34 Let Li = 〈Si, Ii,Σi,∆i〉 be an LTS and sj ∈ Si. Then, the set
psτ (sj) = {sk ∈ Si \ {sj} | (sk, τ, sj) ∈ ∆i}, i.e., it is the set of states from
which sj is reachable by executing a single τ transition that is not a self-loop.

The formula is then as follows:
∧

1≤i≤n

(
∧

sj∈Si

(in(sj, t + 1) ↔ (
∨

tk∈pr(sj)\∆τ
i

ex (tk, t) ∨

(sc(i, t) ∧
∨

sl∈psτ (sj)

in(sl, t + 1)) ∨

(in(sj, t) ∧ ¬sc(i, t))))). (4.21)

The definition above applies the sc(i, t) literal whose definition is similar
to that of the non-determinized model, namely:

∧

1≤i≤n

(sc(i, t) ↔
∨

aj∈Σi\{τ}

ex (aj, i, t)). (4.22)

The determinized interleaving executions are encoded by instantiating
the constraints above. The complete formula, denoted ILd(L1, . . . ,Ln, k) is
of the following form:

ILd(L1, . . . ,Ln, k) = IS d(L1, . . . ,Ln) ∧
∧

1≤i≤k

TRd(L1, . . . ,Ln, i)

where
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Figure 4.1: Purpose of Preprocessing

• IS d(L1, . . . ,Ln) encodes the initial states, i.e., it is a conjunction of
constraints (4.15) and (4.16) and

• TRd(L1, . . . ,Ln, i) encodes the transition relation from step i to i+ 1
and is a conjunction of constraints (4.17) to (4.22) where t is instanti-
ated to i.

Purpose of Preprocessing
Constraint (4.21) encoding the progress of control flow appears in the same
form also in the determinized step and process models. That constraint is the
reason why the preprocessing procedure presented in Section 4.5 is applied.
Namely, if the preprocessing procedure were not applied, the resulting for-
mula would allow unintended models. These models are such that whenever
component Li is scheduled in step t, the in(sj , t + 1) literals are true for all
the states sj in some non-trivial τ -component even though its states do not
belong to the τ -closure of a state whose incoming transition is executed.

This fact is due to the second disjunct in constraint (4.21). Assuming
that component Li contains a non-trivial τ -component and that Li is sched-
uled but no transition ending in a state of the τ -component is executed, con-
straint (4.21) reduces to in(sj , t) ↔

∨
sl∈psτ (sj)

in(sl, t) for every state sj in

the τ -component. Then, the truth value of the literal in(sj , t) for the states
sj in the τ -component can be either true or false as long as it is the same for
all the states.

The situation is illustrated in Figure 4.1 that presents a system consist-
ing of two components. The component L1 on the left has a non-trivial
τ -component that consists of the states s2 and s3. Consider the determinized

interleaving execution 〈{s0}, {s4}〉,
a
→ 〈{s1}, {s5}〉 and a model for the for-

mula ILd(L1,L2, 1) obtained using the mapping V given in the proof of The-
orem 12. Since the action a is executed, then component L1 is scheduled.
In addition, its transition labeled b is not executed. With this information,
constraint (4.21) for states s2 and s3 in the global state 2 can be simplified to:

in(s2, 2) ↔ in(s3, 2) and

in(s3, 2) ↔ in(s2, 2).

This however, allows besides the intended model where both the literals
in(s2, 2) and in(s3, 2) are false a model where both of them are true.
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By now, it has been established that if non-trivial τ -components are not
preprocessed, then the BMC formula can have too many models. It should
also be shown that the preprocessing algorithm removes the problem. This
is shown in Theorem 11 proving the soundness of the encoding. The intu-
itive explanation is that the preprocessing removes the possibility of cyclic
dependencies in the instances of constraint (4.21).

Since also in the determinized model of interleaving executions only one
action is executed in a time step, the soundness of the encoding is established
using the concept of a V -sequence defined in Definition 25. That definition
is repeated here for completeness:

Definition 35 Given the components L1, . . . ,Ln and an integer k, let V be
a valuation of any formula containing the following atomic propositions:

• for all sj ∈ Si, 1 ≤ i ≤ n and all 1 ≤ t ≤ k + 1, the proposition
in(sj , t) and

• for all actions a ∈ Σ1 ∪ · · · ∪ Σn and all 1 ≤ t ≤ k, the proposition
ex (a, t).

Then, the V -sequence corresponding to V is the sequence:

〈T 1
1 , . . . , T

1
n〉

L1→ · · ·
Lk→ 〈T k+1

1 , . . . , T k+1
n 〉

such that each T t

i , 1 ≤ t ≤ k + 1 is a set of states and a component state
sl ∈ T t

i iff sl ∈ Si and V(in(sl, t)) = true. Each Lt, 1 ≤ t ≤ k is a set of
actions and an action ai is in Lt iff V(ex (ai, t)) = true.

Definition 36 Given a V -sequence corresponding to a satisfying valuation
V of the formula ILd(L1, . . . ,Ln, k), it is a valid determinized interleaving
sequence iff the following conditions hold:

1. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k + 1, |T t

i | 6= ∅ and

2. for all 1 ≤ t ≤ k, |Lt| = 1.

Lemma 6 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation V of the
formula ILd(L1, . . . ,Ln, k), then the corresponding V -sequence is a deter-
minized interleaving sequence.

Proof. By definition of a determinized interleaving sequence (Definition 36),
it has to be shown that in each step of the V -sequence, the in(s, t) literal is
true for at least one state from each component. Secondly, the ex (a, t) literal
is true for precisely one action a.

The former condition can be established using induction over the states
of the V -sequence.

1. Base Case. It is true in state 〈T 1
1 , . . . , T

1
n〉 since constraint (4.15) re-

quires the in(sj, 1) to be true for those states sj in each component
that form the τ -closure of the component’s initial states. The set of
initial states is by definition non-empty and thus also its τ -closure.
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2. Induction Hypothesis. Assume that the number of true in(sj, t) liter-
als is non-zero for every component up to some state l.

3. Induction Step. Consider the state 〈T l+1
1 , . . . , T l+1

n 〉. The desired con-
dition follows from analysis of constraint (4.21). Firstly, if the number
of true ex(ti, l) literals is zero for every transition of a component Li,
then constraint (4.21) reduces to:

∧

sj∈Si

(in(sj , l + 1) ↔ in(sj, l)).

Thus, the in(sj, l+ 1) literals have the same truth value for all compo-
nent states in both global states l and l + 1. By induction hypothesis,
the number of true literals in state l is non-zero.

Secondly, if the literal ex (tk, l) is true for some transitions tk from a
component, constraint (4.21) becomes:

∧

sj∈Si

(in(sj, l + 1) ↔ (
∨

tk∈pr(si)\∆τ
i

ex (tk, l) ∨
∨

so∈psτ (sj)

in(so, l + 1))).

Since some ex (tk, l) literal is true, the in(sj, l + 1) literal is true for at
least the target state of tk.

The latter constraint (that for all 1 ≤ i ≤ k, |Li| = 1) is guaranteed by
constraint (4.20). 2

Given a determinized interleaving sequence, let for all 1 ≤ i ≤ k, li be the
single element of Li.

Definition 37 A determinized interleaving sequence of ILd(L1, . . . ,Ln, k)
is an execution of the determinized synchronized product Ld

il of L1, . . . ,Ln

iff the following conditions hold:

1. for all components 1 ≤ i ≤ n, T 1
i = τ(Ii) and

2. for all 1 ≤ t ≤ k, 〈T t

1, . . . , T
t

n〉
lt→ 〈T t+1

1 , . . . , T t+1
n 〉 ∈ ∆d

il.

In order to demonstrate that the encoding is sound for LTSs that are pre-
processed with the algorithm given in Section 4.5, the concept of a topologi-
cal order is needed. It is defined as follows:

Definition 38 Let G = (V,E) be a directed acyclic graph (DAG). A topo-
logical order of G is an order si1 < · · · < sin of its vertices V = {s1, . . . , sn}
such that for each edge (sj, sk) ∈ E, sj < sk.

The soundness of the encoding is then established as follows:

Theorem 11 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation V of
the formula ILd(L1, . . . ,Ln, k), then the corresponding V -sequence is an
execution of the determinized synchronized product of L1, . . . ,Ln.
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Proof. In the proof of Lemma 6 it is shown that any V -sequence obtained
from a valuation V of formula ILd(L1, . . . ,Ln, k) is a determinized interleav-
ing sequence. Now it needs to be established that every step in this sequence
is a transition of the determinized synchronized product. For this, informa-
tion of the executed transitions in components is needed. This is encoded
using the ex(tj , t) literals (V(ex (tj , t)) = true iff transition tj is executed in
step t). The proof is by induction over the states of the V -sequence.

1. Base Case. Due to constraints (4.15) and (4.16), in every valuation V
of ILd(L1, . . . ,Ln, k) the state 〈T 1

1 , . . . , T
1
n〉 is the initial state of the

determinized synchronized product.

2. Induction Hypothesis. Assume that the V -sequence is valid deter-
minized interleaving execution up to some step l.

3. Induction Step. Consider the step 〈T l
1, . . . , T

l
n〉

ll→ 〈T l+1
1 , . . . , T l+1

n 〉.
The proof of the induction step is a modified version of the proof for
the non-determinized version, namely:

(a) it is shown for the executed action ll that every component Li

such that ll ∈ Σi executes a transition labeled ll,

(b) all the executed transitions are labeled ll,

(c) it is shown that the executed transitions start from reached com-
ponent states, and that every such transition labeled ll is executed,
and

(d) it is shown that the state 〈T l+1
1 , . . . , T l+1

n 〉 is the state of the de-
terminized synchronized product that is reached from the state
〈T l

1, . . . , T
l
n〉 by executing the action ll.

The first condition that every component with transitions labeled ll
executes one is guaranteed by (4.18).

The second condition that no transitions with another label are exe-
cuted is established as follows. If ex (tj, l) is true for some transition
not labeled with ll, the literal ex (a, i, l) has to be true as well for the
component Li and the action a that transition tj is labeled with. Then
however, constraint (4.20) is violated.

The third condition is guaranteed by constraint (4.17). The equiva-
lence forces the ex (tj, l) literals to true for every reached transition
labeled ll.

The final condition that the reached state is the correct one is a similar
case analysis as in the case of the non-determinized versions. However,
in the presented model the case for scheduled components is different.
For idle ones, the literal sc(i, l) defined in constraint (4.22) is false and
constraint (4.21) becomes:

∧

sj∈Si

(in(sj , l + 1) ↔ in(sj, l)).
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Thus, such components remain in the reached state. For scheduled
ones, noticing that for them constraint (4.22) forces the sc(i, l) literal
to be true, the constraint is:

∧

sj∈Si

(in(sj , l + 1) ↔
∨

tk∈pr(sj)\∆τ
i

ex (tk, l) ∨
∨

so∈psτ (sj)

in(so, l + 1)).

Since no LTS contains non-trivial τ -loops (due to the preprocessing
algorithm), it holds that when such an LTS is restricted to τ transitions,
the remaining structure is a directed acyclic graph. This implies that
this structure has a topological order.

Using this topological order, it is possible to show that for all the local
states si, the value of in(si, l+1) is determined. In addition, in(si, l+1)
is true iff si belongs to the τ -closure of a state whose incoming transi-
tion is executed in step l.

The first state si in the topological order is such that it has no incoming
τ transitions. Thus, its truth value is defined based on the truth values
of the ex (tk, l) literals for its incoming transitions. For such states,
in(si, l + 1) is true iff some incoming transition of si is executed in
step l.

For all the remaining states sj, the truth value of the literal in(sj, l+1)
is evaluated based on the execution of their incoming transitions and
the truth value of the literals in(si, l + 1) for states si earlier in the
topological order than sj. For these states si, the value of in(si, l + 1)
has been correctly determined.

Therefore, for the following states sj, in(sj, l + 1) is true iff some in-
coming transition of sj with a visible action is executed in step l or sj

belongs to the τ -closure of such a state. 2

Theorem 12 Let L1, . . . ,Ln be LTSs. Given any execution of the deter-
minized synchronized product of L1, . . . ,Ln, it is an V -execution of some
satisfying valuation V of ILd(L1, . . . ,Ln, k).

Proof. The idea is to define the literals of ILd(L1, . . . ,Ln, k) based on the
execution and then check that every constraint of the formula is satisfied. Any
determinized interleaving execution of length k can be presented as follows:

〈T 1
1 , . . . , T

1
n〉

l1→ · · ·
lk→ 〈T k+1

1 , . . . , T k+1
n 〉

The mapping V is as follows:

• V(in(sj , t)) = true iff for some 1 ≤ i ≤ n, sj ∈ T t

i ,

• V(ex (tj, t)) = true iff for some 1 ≤ i ≤ n, (st

i, lt, s
t+1
i ) = tj such that

st

i ∈ T t

i and st+1
i ∈ T t+1

i

• V(ex (ai, t)) = true iff lt = ai,

• V(ex (ai, j, t)) = true iff lt = ai, and
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• V(sc(i, t)) = true iff lt ∈ Σi.

The proof is by induction over the conjuncts corresponding to different
states of the execution (different values for t).

1. Base Case. Every determinized interleaving execution starts from the
τ -closure of the initial states. Thus, constraints (4.15) and (4.16) are
satisfied.

2. Induction Hypothesis. Assume no conjunct is violated in formula
ILd(L1, . . . ,Ln, k) up to the state l.

3. Induction Step. Consider the step 〈T l
1, . . . , T

l
n〉

ll→ 〈T l+1
1 , . . . , T l+1

n 〉.
The goal is to show that mapping V satisfied all the conjuncts of the
formula TRd(L1, . . . ,Ln, l). By definition of a determinized interleav-
ing execution, every transition labeled ll and having its source state
in the reached set of states is executed. Therefore constraint (4.17) is
satisfied.

Component Li executes an action ll iff it executes a transition labeled
ll. Constraint (4.18) is thus satisfied.

Any determinized interleaving execution respects the synchronization
requirement encoded in constraint (4.19).

By definition of a determinized interleaving execution, ll is unique.
This satisfies constraint (4.20).

The control flow remains in the same state for idle components and
moves to the τ -closure of the target states of executed transitions. This
satisfies constraint (4.21).

The definition of the sc(i, t) literal in constraint (4.22) satisfied. 2

4.5.2 Determinized Step Executions

Similarly as in the case of the composition operators not applying on-the-fly
determinization, when step and process models are presented, the presenta-
tion is limited to studying the differences to the interleaving model.

In the determinized interleaving model, the cardinality constraint given
in (4.20) limits the number executed actions. The upper limit is lifted by
replacing the cardinality constraint by a disjunction as follows:

∨

ai∈Σ\{τ}

ex (ai, t) (4.23)

However, only this modification has in the determinized model, where
the number of executed transitions in a single component is not limited, the
undesired effect that the resulting formula has models where several actions
can be executed from a particular component. This can be ruled out with
the following constraint:

∧

1≤i≤n

card1
0{ex(aj , i, t) | aj ∈ Σi \ {τ}} (4.24)
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Again, the executed actions are tuples, thus the concept of Vs-sequence,
defined in Definition 28 and repeated here, is applied in the proofs.

Definition 39 Given the components L1, . . . ,Ln and an integer k, let Vs be
a valuation of any formula containing the following atomic propositions:

• for all sj ∈ Si, 1 ≤ i ≤ n and all 1 ≤ t ≤ k + 1, the proposition
in(sj , t) and

• for all action–component pairs (a, i) ∈
⋃

1≤i≤n(Σi × {i}) and all 1 ≤
t ≤ k, the proposition ex (a, i, t).

Then, the Vs-sequence corresponding to Vs is the sequence:

〈T 1
1 , . . . , T

1
n〉

〈L1
1
,...,L1

n〉
→ · · ·

〈Lk
1
,...,Lk

n〉
→ 〈T k+1

1 , . . . , T k+1
n 〉

such that each T t

i , 1 ≤ t ≤ k + 1, is a set of states and a component state
sl ∈ T t

i iff sl ∈ Si and V(in(sl, t)) = true. Each Lt

i, 1 ≤ t ≤ k, is a set of
actions and an action aj is in Lt

i iff Vs(ex (aj, i, t)) = true.

Definition 40 Given a Vs-sequence corresponding to a valuation Vs of the
formula ST d(L1, . . . ,Ln, k), it is a valid determinized step-sequence iff the
following conditions hold:

1. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k + 1, |T t

i | 6= ∅ and

2. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k, |Lt

i| ≤ 1.

Lemma 7 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation Vs of the
formula ST d(L1, . . . ,Ln, k), then the corresponding Vs-sequence is a deter-
minized step-sequence.

Proof. It has to be proven that in all the global states of the Vs-sequence
the number of local states is non-zero. Secondly, in each step, the ex(a, i, t)
literal is true for at most one action a from the alphabet Σi \ {τ}.

The former condition, on the number of reached states is proven in pre-
cisely the same way as for the determinized interleaving model in the proof
of Theorem 6. The latter condition is guaranteed by constraint (4.24). 2

Given a determinized step-sequence, for all 1 ≤ i ≤ n and 1 ≤ t ≤ k, if
Lt

i 6= ∅, let the single element of Lt

i be denoted lti. Otherwise, let lti denote
the empty action ε.

Definition 41 A determinized step-sequence of ST d(L1, . . . ,Ln, k) is an ex-
ecution of the determinized step product Ld

st of L1, . . . ,Ln, iff the following
conditions hold:

1. for all components 1 ≤ i ≤ n, T 1
i = τ(Ii) and

2. for all 1 ≤ t ≤ k, 〈T t

1, . . . , T
t

n〉
〈lt1,...,ltn〉
→ 〈T t+1

1 , . . . , T t+1
n 〉 ∈ ∆d

st.
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Theorem 13 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation Vs of
the formula ST d(L1, . . . ,Ln, k), then the corresponding Vs-sequence is an
execution of the determinized step product of L1, . . . ,Ln.

Proof. In Lemma 7 it is shown that a Vs-sequence corresponding to a valu-
ation Vs of ST d(L1, . . . ,Ln, k) is a determinized step-sequence. Now it has
to be established that every one of its steps is a transition of the determinized
step product of components L1, . . . ,Ln. For that knowledge about the exe-
cuted transition, encoded using the ex(tj , t) literals, is needed.

The proof is by induction over the states in the Vs-sequence. The base case
and the induction hypothesis are similar than in the case of the determinized
interleaving model, namely:

1. Base Case. Due to constraints (4.15) and (4.16), in every valuation Vs

of ST d(L1, . . . ,Ln, k) the state 〈T 1
1 , . . . , T

1
n〉 is the initial state of the

determinized step product.

2. Induction Hypothesis. Assume that the Vs-sequence is valid deter-
minized step execution up to some state l.

3. Induction Step. Consider then the execution step 〈T l
1, . . . , T

l
n〉

〈ll
1
,...,lln〉
→

〈T l+1
1 , . . . , T l+1

n 〉. The proof of the induction step is a modified version
of the proof for the non-determinized version. It is shown that:

(a) the tuple 〈ll1, . . . , l
l
n〉 can not be 〈ε, . . . , ε〉.

(b) if lli is visible, then for every component j such that llj ∈ Σj , l
l
j =

lli,

(c) if lli 6= ε, then component Li executes a transition labeled lli,

(d) if lli = ε, then component Li executes no transition,

(e) the executed transitions start from reached component states and
every such transition labeled ll is executed, and

(f) 〈T l+1
1 , . . . , T l+1

n 〉 is the state of the determinized step product that
is reached from the state 〈T l

1, . . . , T
l
n〉 by executing the action tu-

ple 〈ll1, . . . , l
l
n〉.

The first condition that components may not idle is guaranteed by con-
straint (4.23).

The second condition, the synchronization requirement, is guaranteed
by constraint (4.19).

The third condition requires that a transition labeled with lli is exe-
cuted. This is guaranteed by constraint (4.18).

The fourth condition follows from the fact that if lli = ε, then for all
a ∈ Σi, the literal ex(a, i, l) is false. Then by constraint (4.18), no
transition is executed.

The two last items concerning the executed transitions and the progress
of the control flow are established in precisely the same way as in the
case of determinized interleaving executions. 2
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Theorem 14 Let L1, . . . ,Ln be LTSs. Given any execution of the deter-
minized step product of L1, . . . ,Ln, it is a Vs-execution of some satisfying
valuation Vs of ST d(L1, . . . ,Ln, k).

Proof. The proof presents a mapping that gives all the atomic propositions of
ST d(L1, . . . ,Ln, k) a truth value based on the elements of the given execu-
tions. Any determinized step execution of length k can be presented in the
following form:

〈T 1
1 , . . . , T

1
n〉

〈l1
1
,...,l1n〉
→ · · ·

〈lk
1
,...,lkn〉
→ 〈T k+1

1 , . . . , T k+1
n 〉

The mapping Vs is as follows:

• Vs(in(sj, t)) = true iff for some 1 ≤ i ≤ n, sj ∈ T t

i ,

• Vs(ex(tj , t)) = true iff for some 1 ≤ i ≤ n, (st

i, l
t

i, s
t+1
i ) = tj such that

st

i ∈ T t

i and st+1
i ∈ T t+1

i ,

• Vs(ex(ai, j, t)) = true iff ltj = ai,

• Vs(ex(ai, t)) = true iff for some 1 ≤ j ≤ n, ltj = ai, and

• Vs(sc(i, t)) = true iff lti 6= ε.

The proof is by induction over conjuncts in ST d(L1, . . . ,Ln, k) correspond-
ing to different states of the execution (different values for t).

1. Base Case. Every determinized step execution starts from the unique
initial state. This is precisely the state in which constraints (4.15)
and (4.16) are satisfied.

2. Induction Hypothesis. Assume that all the conjuncts of the formula
ST d(L1, . . . ,Ln, k) are satisfied up to time step l.

3. Induction Step. Consider the step

〈T l
1, . . . , T

l
n〉

〈ll
1
,...,lln〉
→ 〈T l+1

1 , . . . , T l+1
n 〉.

The goal is to show that mapping Vs satisfies all the conjuncts in the
formula TRd

s(L1, . . . ,Ln, l). If action a is executed in component Li,
then it holds that every reached transition labeled a is executed and
constraint (4.17) is satisfied. Indeed, at least one such transition has to
be executed and constraint (4.18) is satisfied.

The synchronization requirement, i.e. that an action can be executed
iff every component having that action in its alphabet participates,
guarantees that constraint (4.19) is satisfied.

Since the executions in the determinized step product are such that it
is not possible to idle, constraint (4.23) is satisfied. Secondly, a single
component can execute only a single action and (4.24) is satisfied.

Finally, in determinized step executions, idle components do not ex-
ecute any transitions and remain in the same control state, in accor-
dance with the constraints (4.21) and (4.22).
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The constraints are also satisfied for scheduled components where the
reached state set is the τ -closure of the target states of executed transi-
tions. The first disjunct in constraint (4.21) guarantees reachability for
immediate target states and the second for their τ -closure. 2

4.5.3 Determinized Process Executions

The needed modification to move from the determinized step executions
to determinized process executions is similar than in the case of the non-
determinized version. In fact, it is the same except for the fact that on-the-
fly determinization handles τ transitions differently. The single additional
constraint is as follows:

∧

a∈Σ\{τ}

ex (a, t + 1) →
∨

j∈Ca

sc(j, t) (4.25)

Due to on-the-fly determinization, no constraint corresponding to (4.14)
is needed. Given n components and a bound k, the formula to encode de-
terminized process executions of length k, denoted PRd(L1, . . . ,Ln, k), is of
the following form:

PRd(L1, . . . ,Ln, k) = IS d(L1, . . . ,Ln) ∧
∧

1≤i≤k

TRd
s(L1, . . . ,Ln, i)

∧

1≤i<k

PRC d(L1, . . . ,Ln, i)

where

• IS d(L1, . . . ,Ln) is the constraint on the initial state,

• TRd
s(L1, . . . ,Ln, i) encodes the transition relation from state i to i+1,

and

• PRC d(L1, . . . ,Ln, i) is the constraint to encode the process condition,
i.e., constraint (4.25) with the variable t instantiated to i.

Definition 42 Let Ld
st be the determinized step product of L1, . . . ,Ln A Vs-

sequence of PRd(L1, . . . ,Ln, k) is an execution of the determinized process
product of L1, . . . ,Ln, iff the following conditions hold:

1. for all components 1 ≤ i ≤ n, T 1
i = τ(Ii),

2. for all 1 ≤ t ≤ k, 〈T t

1, . . . , T
t

n〉
〈lt

1
,...,ltn〉
→ 〈T t+1

1 , . . . , T t+1
n 〉 ∈ ∆d

st, and

3. this step execution fulfills the process condition.

The theorems of soundness and completeness are as follows:

Theorem 15 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation Vs of
the formula PRd(L1, . . . ,Ln, k) then the corresponding Vs-execution is an
execution of the determinized process product of L1, . . . ,Ln.
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Proof. Firstly, any Vs-execution constructed from a model of the formula
PRd(L1, . . . ,Ln, k) is a determinized step execution. Then, the proof is the
same as that of Theorem 9. 2

Theorem 16 Let L1, . . . ,Ln be LTSs. Given any execution of length k of
the determinized process product of L1, . . . ,Ln, the corresponding deter-
minized step execution is a Vs-execution of some satisfying valuation Vs of
PRd(L1, . . . ,Ln, k).

Proof. Firstly, any step execution obtained from an execution of the deter-
minized process product satisfies all the constraints in ST d(L1, . . . ,Ln, k).
These constraints are also present in PRd(L1, . . . ,Ln, k).

Then, the proof is the same as that of Theorem 10. 2

4.6 REACHABILITY PROPERTIES

This dissertation focuses on bounded verification of reachability properties
of concurrent systems where the components are given as LTSs. Bounded
verification of reachability properties of such systems equals answering the
question of whether in the product of the components there is an execution
of some bounded length to a state where the property holds. The product,
which is a single LTS, can be different depending on the execution model.
This section demonstrates how the Boolean representations of reachability
properties are combined with the BMC formulas presented in the previous
sections. This is done in a different manner depending on whether on-the-fly
determinization is applied or not.

In this work, it is assumed that a reachability property to be verified is given
as a propositional formula over the local states of the components forming the
system. Assume that the system consists of n components, each component
Li contains li local states and the local states of component Li are repre-
sented in the reachability property with variables si1, . . . , sili , exactly one of
which is true at a time. Then a reachability property is the formula:

φ(s11, . . . , s1l1 , . . . , sn1, . . . , snln).

The formula evaluates to true iff the true variables sij are such that they
form a global state where the property holds. The verification of a reacha-
bility property is performed as follows. All of the presented translation con-
straints contain a literal in(s, t) for every local state of every component. The
literal is true in a model of the formula iff the local state s is reached in state
t. The question one is interested in answering is whether there is an exe-
cution whose last global state satisfies the reachability property. The models
of the BMC formulas are limited to such executions by forming a conjunc-
tion where the first conjunct is the BMC formula (the symbolic unrolling
of the transition relation k steps) and the second conjunct is the reachabil-
ity predicate. However, the state variables sij in the reachability property
have to replaced with the literal in(sij, k + 1). For instance, assuming that a
step product is formed from the components L1, . . . ,Ln, then the complete
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formula is:

ST (L1, . . . ,Ln, k) ∧

φ(in(s11, k + 1), . . . , in(s1l1 , k + 1), . . . , in(sn1, k + 1), . . . , in(snln , k + 1))

However, the presentation above can be applied only if in the construc-
tion of the product on-the-fly determinization is not applied. If that is not the
case, the situation is harder. For this, there are two reasons: (i) When on-the-
fly determinization is applied, the global states of the product are such that
each component is in a set of local states. Thus, a global state in the product
represents a set of global states of the system under study. (ii) On-the-fly de-
terminization requires a preprocessing step that eliminates non-trivial τ -loops
from the components. Therefore, a local state of the preprocessed system can
represent several local states of the original system.

If on-the-fly determinization is applied, the in(s, k+1) literals in the mod-
els of the corresponding BMC formula can be true for several local states
from each component of the preprocessed system. However, the BMC for-
mulas can be augmented with additional constraints. This can be done in
such a way that the resulting formula has a model iff a particular global state
of the original system is reachable with an execution of the desired execution
semantics (interleaving / step / process) of length k.

The additional constraints to the formula contain a new literal fs(sij , k +
1). This literal is used to encode the fact that the original (not preprocessed)
component Li is in the (original) state sij. The literal is constrained in two
ways. Firstly, when sij is the reached state (of the original system), then in the
model of the BMC formula the state repr(sij) representing its τ -component
has to be reached. Secondly, precisely one state can be reached from each
component. Formally:

∧

1≤i≤n

∧

1≤j≤li

fs(sij, k + 1) → in(repr(sij), k + 1) (4.26)

∧

1≤i≤n

card1
1{fs(sij, k + 1) | 1 ≤ j ≤ li} (4.27)

where

• repr(sij) is the state representing the τ -component corresponding to
state sij of the original system.

Given the components L1, . . . ,Ln and a bound k, let the conjunction of
the constraints (4.26) and (4.27) be denoted by ψ(L1, . . . ,Ln, k + 1). The
models of, for instance, the determinized step product are then modified to
those reaching a global state where the reachability predicate holds as follows:

ST d(L1, . . . ,Ln, k) ∧

ψ(L1, . . . ,Ln, k + 1) ∧

φ(fs(s11, k + 1), . . . , fs(s1l1 , k + 1), . . . , fs(sn1, k + 1), . . . , fs(snln , k + 1))

As can be seen, the variables sij of the original reachability predicate are
now replaced with the fs(sij, k+1) literals encoding the reached global state.
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Figure 4.2: The Literal fs(si, t)

Indeed, constraints (4.26) and (4.27) are needed if on-the-fly determinization
is applied and the reachability predicate is global. This is the case even if the
original components do not contain non-trivial τ -loops. If one is interested
in local reachability, constraints (4.26) and (4.27) are not needed.

The situation is illustrated in Figure 4.2. Consider a reachability predicate
that holds only in the state 〈s2, s4〉 of the product of these components. With
any of the presented execution models that apply on-the-fly determinization,
the two LTSs reach this state after executing a. The component on the left-
hand side is thereafter in the state set {s1, s2} and the component on the
right-hand side in the state set {s4}. Thus, if the in(si, t) literal is used in a
reachability predicate, this predicate evaluates to false, since the literal is true
for both the state s1 and s2. The purpose of the fs(si, t) literal is to allow
the model where fs(s2, t) is true and fs(s1, t) is false. This allows the correct
detection of the witness to the property.

A deadlock state predicate which holds for exactly those global states from
which no execution can be extended by any transition is a particularly in-
teresting reachability property. Indeed, the state 〈s2, s4〉 in for instance the
synchronized product of the components in Figure 4.2 is a deadlock. It is
possible to encode a deadlock by analyzing the system statically and listing
all the global states from which no transition is possible. Then, the reachabil-
ity property would be a disjunction where each disjunct is a conjunction of
the form s1i1 ∧ · · · ∧ snin , exactly one state from each component. However,
the number of such states can be as large as the state space of the product
and most of these states are probably not reachable.

The same states can be encoded in a more compact manner by introduc-
ing two additional literals that are evaluated based on the sij literals encoding
the local states. The literal en(a, i, k + 1) evaluates to true iff the reached
local state in component Li in the global state k + 1 has an outgoing vis-
ible transition labeled a. The other literal, en(a, k + 1), is true iff all the
components having a in their alphabet are in local states having an outgoing
visible transition labeled a. The deadlock state predicate is then completed
by requiring that the deadlock predicate holds in a global state s iff no action
is enabled in s. However, the above treatment does not take into account
states having outgoing τ transitions. No such local state can be an element
of a global deadlocking state (because a τ transition is possible).
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Formally, the encoding of the deadlock state predicate is the conjunction
of four items. Firstly, a constraint ruling out local states with outgoing τ tran-
sitions. Secondly, the definitions of the two new literals given above. Finally,
a constraint ruling out state vectors where some visible action is enabled. In
presenting the constraint, the following definition is applied:

Definition 43 Let Li = 〈Si, Ii,Σi,∆i〉 be an LTS and s ∈ Si. Then the
set ac(s) = {a ∈ Σi | (s, a, s′) ∈ ∆i}, i.e, the set of transition labels of the
outgoing transitions of the state s.

The formula to encode the deadlock state predicate is then as follows:

∧

1≤i≤n

(
∧

sij∈Si,τ∈ac(sij)

¬sij) ∧

∧

1≤i≤n

(
∧

a∈Σ\{τ}

(en(a, i, k + 1) ↔
∨

sij∈Si,a∈ac(sij)

sij)) ∧

∧

a∈Σ\{τ}

(en(a, k + 1) ↔
∧

i∈Ca

en(a, i, k + 1)) ∧

∧

a∈Σ\{τ}

¬en(a, k + 1).

Depending on whether deadlock checking is performed using execution
models applying on-the-fly determinization or not, the sij literals in the pred-
icate above are replaced with the fs(sij , k + 1) or in(sij, k + 1) literals, re-
spectively.

4.7 COMPLETENESS

Section 3.1 presents briefly a technique to guarantee completeness by com-
puting a number called the recurrence diameter, the longest loop-free path
between two states, using propositional satisfiability. The idea in the en-
coding is to create a formula encoding all the executions of some length k
together with the constraint that all the states are different. Then, if this for-
mula is unsatisfiable, no such execution exists and the bound k suffices for a
complete verification procedure.

The verifier can then apply the idea above by starting from a small bound
and if the resulting formula is satisfiable (there is an execution where all the
states are different), increase the bound step by step until either the formula
turns out to be unsatisfiable or the computational resources are exhausted.

In general, the reached states in the presented encodings is encoded using
the literal in(s, t). The literal is true iff the local state s is reached in state t.
The encoding of the condition that all the state have to be different is then as
follows. Firstly, let sa(t1, t2) be a new literal that is true iff the global states t1

and t2 are the same. Its definition is then as follows:

sa(t1, t2) ↔ (
∧

1≤i≤n

∧

sj∈Si

in(sj, t1) ↔ in(sj , t2)). (4.28)
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Then, the complete constraint to implement the requirement that all the
states in the execution of length k are different is:

∧

1≤t1≤k

(
∧

t1<t2≤k+1

¬sa(t1, t2)). (4.29)

It should be noted that since constraint (4.29) has to be instantiated for
all the state pairs from 1 to k + 1, the resulting formula is quadratic in the
bound k.

However, the situation is more complex, when the process or determinized
process products are studied. With them, namely, the state vector consists of
component states and truth values carrying information of the executed ac-
tions in the previous step. Thus, implementing the check that all states are
different using the constraint (4.28) (omitting the truth values from the state
vector) above might result in too small a bound. It turns out, though, that
this is not the case. This is shown by demonstrating that if there is a process
execution σP having two states that have exactly the same component states
(but possibly different Boolean values in the state vectors), then σP can al-
ways be converted to a shorter execution σ′

P whose final global state contains
exactly the same component states as the final state of σP.

Lemma 8 Given the components L1, . . . ,Ln and their process product Lpr,
if

〈s1
1, b

1
1, . . . , s

1
n, b

1
n〉

〈l11,...,l1n〉
→ · · ·

〈lk1 ,...,lkn〉
→ 〈sk+1

1 , bk+1
1 . . . , sk+1

n , bk+1
n 〉

is an execution σP of Lpr such that there is are integers 1 ≤ i ≤ k, i < j ≤
k + 1 where for all 1 ≤ l ≤ n, si

l = sj
l , then there is an execution σ′

P of Lpr

for which it holds that:

• σ′
P reaches the state 〈sk+1

1 , b1, . . . , s
k+1
n , bn〉 for some Boolean values b1,

. . . , bn and

• |σP| < k.

Proof. The proof is as follows. Firstly, omitting the truth values from the state
vectors of σP results in an executions of Lst where, by the assumption in the
theorem, the states i and j are identical. Then, however, the execution

〈s1
1, . . . , s

1
n〉

〈l11,...,l1n〉
→ · · ·

〈li−1

1
,...,li−1

n 〉
→ 〈sj

1, . . . , s
j
n〉

〈lj
1
,...,l

j
n〉

→ · · ·

〈lk
1
,...,lkn〉
→ 〈sk+1

1 , . . . , sk+1
n 〉

is an execution of Lst. Now, for this execution σS, it holds that its length is
|σS| < k and it reaches the state k+1 of σP when the truth values are omitted
from the state vector. However, it can be the case that σS does not fulfill the
process condition. If that is the case, by repeated application of Lemma 2 in
Chapter 2, it can be converted to an execution of Lst that fulfills the process
condition and reaches the same state. Secondly, by Lemma 1 in Chapter 2,
for any such execution, there is an execution σ′

P of Lpr. 2
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Theorem 17 Given the components L1, . . . ,Ln and their process product
Lpr, any execution σP of Lpr can be converted to another execution σ′

P of
Lpr such that:

• σ′
P reaches the same state than σP,

• |σ′
P| ≤ |σP|, and

• σ′
P contains no two states i and j such that for all 1 ≤ l ≤ n, si

l = sj
l .

Proof. The proof is by repeated application of the construct given in the
proof of Lemma 8. Since σP is of bounded length, and any application of
the construct renders it shorter, eventually it can not contain states where
only the truth values of the state vector are different. 2

The theorem above states that any process execution that has two global states
having the same component states but differing in the values bi in the state
vectors, can be converted to a process execution reaching the same state and
in which all the state vectors differ also in the component states. However,
from this it follows that the definition of the literal sa(t1, t2) given in con-
straint (4.28) can be soundly used also with the process product.
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5 ENCODING ALGORITHM WITH LOCAL TRANSITION MERGING

This chapter analyzes the problems of encoding the executions of the path
product, i.e., the execution model where local transition merging is used.
The path product has a transition between two states iff the step product
of the same components has one or more executions between these states.
The label on the transition denotes the regular language that is obtained by
considering all the executions of the step product between the transition’s
source and target states. If such executions of arbitrary length are allowed
(as in the most general model), the violation of any reachability property
can be demonstrated with a counterexample of length one. It is assumed
that a BMC encoding of this most general model can not be polynomial.
Namely, if that was the case, then a PSPACE-complete problem, reachability
of a state in the synchronized product of LTSs [58], could be solved in non-
deterministic polynomial time (NP). This is generally considered unlikely
(see [73] for further discussion on these complexity classes).

This chapter also presents a composition operator that yields an LTS fol-
lowing the idea of local transition merging but with additional constraints.
The encoding of the executions of this product is possible but the resulting
formula is cubic in the size of the alphabet. However, analyzed test cases
support the claim that this encoding can in some cases be effective, espe-
cially if performed iteratively. Finally, the chapter is concluded by analyzing
the problems encountered when trying to lift the presented limitations to the
path product.

The following definition characterizes the additional constraints applied
on local transition merging:

Definition 44 Let L1, . . . ,Ln be LTSs and Lst their step product. An exe-
cution

〈s1
1, . . . , s

1
n〉

〈l11,...,l1n〉
→ · · ·

〈lk1 ,...,lkn〉
→ 〈sk+1

1 , . . . , sk+1
n 〉

of Lst is simple iff

1. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k, if lti = a and a ∈ Σi \ {τ}, then for all
t
′ 6= t, lt

′

i 6= a and

2. for all 1 ≤ i ≤ n, 1 ≤ t < k, if lti 6= ε, then for all t
′ ≤ t, st

′

i 6= st+1
i .

Intuitively, simple executions are step executions such that each compo-
nent executes a path of transitions where each visible action from the compo-
nent’s alphabet appears at most once. Furthermore, if along the path some
local state is visited twice, then the component can not execute further tran-
sitions.

Definition 45 Let L1, . . . ,Ln where each Li = 〈Si, Ii,Σi,∆i〉, 1 ≤ i ≤ n,
be LTSs. Let Lst = 〈Sst, Ist,Σst,∆st〉 be the step product L1 ‖st · · · ‖st Ln.
The limited path product of L1, . . . ,Ln, denoted L1 ‖

l
pt L2 ‖

l
pt · · · ‖

l
pt Ln, is

the LTS Ll
pt = 〈S, I ,Σ,∆〉 such that:

• S = S1 × S2 × · · · × Sn,
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• I = I1 × I2 × · · · × In,

• Σ = {r〈s1,...,sn〉,〈s′1,...,s′n〉| 〈s1, . . . , sn〉 ∈ S, 〈s′1, . . . , s
′
n〉 ∈ S}, and

• ∆ = {〈s1, . . . , sn〉, r〈s1,...,sn〉,〈s′1,...,s′n〉, 〈s
′
1, . . . , s

′
n〉| there is a

simple execution from 〈s1, . . . , sn〉 to 〈s′1, . . . , s
′
n〉 in Lst.}

In each step at least one component has to be scheduled and the maxi-
mum length for a simple execution is therefore

∑
1≤i≤n |Si|. Secondly, the

number of outgoing transitions (outdegree) from each state is finite. Thus,
the number of simple executions between any two states in Lst is necessarily
finite and therefore the language describing these executions regular. That is
why the labels of the transitions are of the form r〈s1,...,sn〉,〈s′1,...,s′n〉.

Similarly as in the case of the execution models applying on-the-fly de-
terminization, in order to the encoding presented in Section 5.1 to work,
the component LTSs have to be preprocessed. However, the reason for the
preprocessing and the preprocessing algorithm are different. The algorithm
applies the following concept.

Definition 46 Let Li = 〈Si, Ii,Σi,∆i〉 be an LTS. A state s ∈ Si is a diver-

gence state iff it holds that s
τω

→. The set of all divergence states of LTS Li is
denoted div(Li).

The preprocessing algorithm is as follows: Let L1, . . . ,Ln be LTSs. For
all 1 ≤ i ≤ n:

Replace Li = 〈Si, Ii,Σi,∆i〉 with the LTS L′
i = 〈S ′

i, I
′
i ,Σ

′
i,∆

′
i〉 such

that:

• S ′
i = Si,

• I ′
i = Ii,

• Σ′
i = Σi, and

• ∆′
i = {(s, τ, s) | s is a divergence state in Li} ∪

{(s, a, s′) ∈ Si × Σi \ {τ} × Si | there is a path

s
τ∗aτ∗

→ s′ in Li.}

The intuitive idea of the algorithm above is to eliminate from all the LTSs
all the τ transitions except for self-loops. This is needed in order to be able
to encode compactly the constraint to be presented in Section 5.1.1. The
preprocessing algorithm is illustrated in Figure 5.1 that gives an LTS (left
hand side) and the LTS obtained after preprocessing it (right hand side).

In the present work, the BMC encodings are used to detect deadlocks. In
the following, it is established that preprocessing the components with the
algorithm above does not introduce any new nor remove any deadlocks from
the components’ limited path product.

Lemma 9 Let Li be an LTS and L′
i its preprocessed version. A Li contains

the execution s1
`(σ)
→ s2 iff L′

i contains the execution s1
`(σ′)
→ s2 such that

vis(σ) = vis(σ′).
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Figure 5.1: Preprocessing Algorithm

Proof. The labels of any execution σ of Li can be presented in the form
τ ∗a1τ

∗ . . . τ ∗akτ
∗ (where for all 1 ≤ j ≤ k, aj 6= τ ). Let σ′ be the execu-

tion of L′
i to be constructed. By definition of the transition relation in the

preprocessing algorithm, if σ contains a segment si
τ∗aiτ

∗

→ si+j , then L′
i con-

tains a transition si
ai→ si+j. Thus, σ′ can be constructed from s1 along these

transitions up to the state s2.
The labels of any execution σ′ of L′

i can also be presented in the form
τ ∗a1τ

∗ . . . τ ∗akτ
∗ (where for all 1 ≤ j ≤ k, aj 6= τ ). However, since the

τ ∗ sequences are executions of self-loops, then there is an execution with the
same initial and final states with labels a1 . . . ak. Let σ be the execution of
Li to be constructed. If σ′ contains a transition si

ai→ si+1, then σ contains a

segment si
τ∗aiτ

∗

→ si+1. Thus, σ can be constructed up to state s2. 2

Lemma 10 Let Li be an LTS and L′
i its preprocessed version. It holds that

div(Li) = div(L′
i).

Proof. Let Li = 〈Si, Ii,Σi,∆i〉 and L′
i = 〈S ′

i, I
′
i ,Σ

′
i,∆

′
i〉. The transition

relation ∆′
i contains a transition (s, τ, s) iff s ∈ Si is a divergence state in Li.

Because of the transition (s, τ, s), s is a divergence also in L′
i.

Because these transitions are the only τ transitions in ∆′
i, no other states

in L′
i are divergences and the result follows. 2

The following theorem establishes that if the components are preprocessed
before the composition yielding their limited path product, deadlock execu-
tions are preserved. However, it can be the case that in the preprocessed
version a deadlock is detected a few steps earlier than in the original. The
precise relationship is as follows:

Theorem 18 Let L1, . . . ,Ln be LTSs and for all 1 ≤ i ≤ n, let L′
i be the

preprocessed version of Li. The LTS Lpt = L1 ‖
l
pt · · · ‖

l
pt Ln has a deadlock
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execution reaching state 〈s1, . . . , sn〉 iff L′
pt = L′

1 ‖l
pt · · · ‖

l
pt L

′
n has a dead-

lock execution reaching 〈s′1, . . . , s
′
n〉 and it holds that for all 1 ≤ i ≤ n, Li

has a path s′i
τ∗

→ si.

Proof. Firstly, if any state 〈s1, . . . , sn〉 in a limited path product of n com-
ponents does not have outgoing transitions, then no state si, 1 ≤ i ≤ n can
have outgoing τ transitions. For every visible action a ∈ Σ\ {τ}, there has to
be some component Li such that a ∈ Σi but there is no outgoing transition
from si labeled a.

If Lpt has a deadlock execution reaching state s = 〈s1, . . . , sn〉, then L′
pt

has an execution reaching s′ = 〈s1, . . . , sn〉. This follows from Lemma 9. It
is shown that s′ in L′

pt is a deadlock state. For all 1 ≤ i ≤ n, if si ∈ s does
not have outgoing τ transitions, then si ∈ s′ can not have a self-loop labeled
τ . Secondly, if si ∈ s does not have an outgoing visible transition labeled a

nor outgoing τ transitions, then si ∈ s′ can not have an outgoing transition
labeled a. Thus s′ in L′

pt does not have outgoing transitions.
If L′

pt has a deadlock execution reaching state s′ = 〈s′1, . . . , s
′
n〉, then Lpt

has an execution reaching s = 〈s′1, . . . , s
′
n〉. Since no si ∈ s′ has outgoing

τ transitions, by Lemma 10, no state s′i ∈ s can be a divergence. Therefore

Li has a (possibly empty) path s′i
τ∗

→ si where all the outgoing transitions of
si are labeled with visible actions. Let then Ai be the set of labels of the
outgoing transitions tj ∈ ∆i from state si in Li and A′

i the set of labels of
the outgoing transitions t′j ∈ ∆′

i from s′i in L′
i. It holds that Ai ⊆ A′

i. Thus
〈s1, . . . , sn〉 in Lpt is a deadlock state. 2

If the LTSs L1, . . . ,Ln are preprocessed using the algorithm above, the local
transition sequences of the simple executions of their step product are such
that if some component executes a τ transition, that transition has to be the
last one on the path. This follows directly from the fact that the τ transitions
are limited to self-loops and thus, if such a transition is executed, a local state
is visited twice and the local path has to terminate.

5.1 ENCODING ALGORITHM FOR LIMITED PATH PRODUCT

The encoding of the bounded executions of the limited path product follows
the ideas and uses the literals used in the encoding of the execution models
already presented. The encoding starts with constraints on the initial states.
These are precisely the same as in the non-determinized models, i.e., the
following constraints have to be added:

∧

1≤i≤n

card1
1{in(sj, 1) | sj ∈ Ii} and (5.1)

∧

1≤i≤n

(
∧

sj∈Si\Ii

¬in(sj , 1)). (5.2)

The following constraints are needed to limit the possible choices of ex-
ecuted transitions to paths. Firstly, if a transition is executed, then either its
source state has to be reached (it is the first transition on the path) or some
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incoming transition to its source state is executed. The incoming transition
can not be a self-loop. The constraint applies the following concept.

Definition 47 Let Li = 〈Si, Ii,Σi,∆i〉. Then for all sj ∈ Si, prn(sj) =
{(sk, a, sj) ∈ ∆i | sk 6= sj}, i.e., the set of incoming transitions of state sj

that are not self-loops.

The constraint is then as follows:
∧

1≤i≤n

(
∧

tj∈∆i

(ex (tj , t) → in(sr(tj), t) ∨
∨

tk∈prn(sr(tj))

ex(tk, t))) (5.3)

where

• sr(tj) is the source state of transition tj and

• prn(sr(tj)) is the set of incoming transitions of the source state of tj
that are not self-loops.

The constraint above is still not sufficient to limit transitions to paths.
Namely, several outgoing transitions from a particular state can be executed.
This is ruled out as follows:

∧

1≤i≤n

∧

sj∈Si

card1
0{pt(sj)} (5.4)

where

• pt(sj) is the set of outgoing transitions of state sj.

Obviously, the path executions have to implement the synchronization
requirement central to the definition of the semantics of synchronizing LTSs:

∧

ai∈Σ\{τ}

(
∧

j∈Cai

(ex (ai, j, t) ↔
∨

tk∈∆
ai
j

ex (tk, t))). (5.5)

The ex(ai, j, t) literals are required to have the same truth value for a
particular action ai:

∧

ai∈Σ\{τ}

(
∧

j∈Cai

ex(ai, t) ↔ ex (ai, j, t)). (5.6)

Finally, as in the other execution models, the control flow has to be en-
coded. However, for that purpose, the last state on the path has be inferred
based on the used literals. This is a bit cumbersome, therefore an additional
literal lst(sj , t) is introduced. In the final formula, the literal evaluates to
true iff sj is the last state on the path. Thereafter, the formula for control
flow is:

∧

1≤i≤n

(
∧

sj∈Si

(in(sj , t + 1) ↔ (lst(sj, t) ∨ (in(sj, t) ∧ ¬ sc(i, t))))). (5.7)

If an execution is simple, then along all the local paths of the components,
if some local state is encountered twice, the latter instance has to be the last
state on the path. From this fact it follows that the local paths are of the
following form:
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• straight segments (all local states different),

• loops to the initial state, or

• loops ending to some intermediate state (lasso-shaped).

The definition of the literal lst(sj, t) is a disjunction of these three cases.
Firstly, a state terminates a straight segment iff one of its non-looping incom-
ing transitions and no outgoing transitions are executed. Secondly, a state
ends a loop to the initial state iff that state is reached in the previous global
state and some incoming transition to it is executed. Finally, a state termi-
nates a lasso-shaped path iff more than one of its incoming transitions are
executed. Formally:

∧

1≤i≤n

(
∧

sj∈Si

(lst(sj, t) ↔ ((
∨

tk∈prn(sj)

ex(tk, t) ∧
∧

tl∈pt(sj)

¬ex (tl, t)) ∨

(
∨

tm∈pr(sj)

(ex(tm, t) ∧ in(sj, t − 1))) ∨

¬card1
0{pr(sj)})). (5.8)

Once again, the definition of the control flow in constraint (5.7) makes
use of the sc(i, t) literal that is defined in the same way as previously:

∧

1≤i≤n

(sc(i, t) ↔
∨

aj∈Σi

ex(aj , i, t)). (5.9)

Figure 5.2 gives an example LTS. In the following, some examples of
the instantiation of constraint (5.8) are given. State s1 is the initial state of
the system. In subsequent steps it is the last state of the executed path of
transitions iff the path is a straight segment or a loop to the initial state. This
is the case since it only has one incoming transition. Consider, for instance,
executions of length two. Constraint (5.8) for state s1 and step 2 becomes:

lst(s1, 2) ↔ (ex (l4, 2) ∧ ¬ex (l1, 2)) ∨ (ex(l4, 2) ∧ in(s1, 1))

State s2, on the other hand, can close a straight segment, a loop to the initial
state, or a lasso-shaped path. Notice that if transition l2 is executed, then the
executed path is either a loop or lasso-shaped. The encoding for step 2 is as
follows:

lst(s2, 2) ↔ (ex (l1, 2) ∧ (¬ex (l2, 2) ∧ ¬ex (l3, 2))) ∨

((ex (l1, 2) ∨ ex (l2, 2)) ∧ in(s2, 1)) ∨

¬card1
0{ex (l1, 2), ex(l2, 2)}

In many cases, constraint (5.8) can be simplified. For instance, if a state
does not have any outgoing transitions, it can not close a loop. In addition,
it is always the case that none of its (non-existent) outgoing transitions are
executed. Consider the state s4 in Figure 5.2. It is the last state on the
executed path of transitions iff transition l5 is executed. Formally for step 2:

lst(s4, 2) ↔ ex (l5, 2)
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l4, c

s1 s2 s3 s4

l1, a l3, b l5, d

l2, f

Figure 5.2: Running Example

It may seem that constraint (5.8) is not sound. After all, what prevents
for instance the executed path of transitions from being l1, l2 and l3. Then
the lst -predicate would be true for both the state s2 and s3, which is incor-
rect. However, constraint (5.4) rules out that path. In fact, as elaborated
below, constraint (5.4) plays a crucial role in proving the soundness of con-
straint (5.8).

5.1.1 Consistency Check

If the constraints (5.1) to (5.9) above are instantiated for some LTSs and time
steps 1 to k, some formula f is obtained. However, that formula has too many
models, i.e., the encoding is still not sound. Extra models arise from three
sources.

Firstly, no attention is paid to the order of the executed actions. The
situation is illustrated on the left hand side of Figure 5.3. If only the schemes
above were taken as a basis for the encoding, the three components would
have an execution of length one where every transition is executed. However,
their step product (and thus their limited path product) consists of a single
state from which no transition is possible. This is due to the fact that every
visible action is present in two components but in conflicting orders.

s0

s1

s2

s3

s4

s5

s6

s7

s8

b ca

a

b

b

c

c

a

Figure 5.3: Inconsistent Executions and the Ordering Graph

Secondly, by constraint (5.3) if a transition is executed, then either its
source state is reached or some incoming transition to its source state is ex-
ecuted. This opens up for the possibility that every transition “justifies” its
execution by the fact that some incoming transition to its source state is exe-
cuted. Then, provided that the synchronization requirements are respected,
f has a model corresponding to an execution where unreached transition
cycles are executed. For instance, if the constraints (5.1) to (5.9) are instanti-
ated for the LTS on the left hand side of Figure 5.4 for bound 1, the resulting
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formula has a model corresponding to an “execution”, where the transitions
drawn with a thicker line are executed. Obviously, the step product of the
single LTS (which is the original LTS) has no such execution.

b

c

a

d
c d

a

Figure 5.4: Unreachable Transition Cycles and the Ordering Graph

Finally, so far there has been no limitation on the number of executed
transitions with the same label from a single component. However, the def-
inition of a simple execution (Definition 44) limits this number to at most
one.

A sound encoding of the limited path product needs an additional scheme
that considers the order of the executed transitions. For each component, the
executed path of transitions induces a sequence of transition labels. These
sequences have to be consistent, i.e., it must be possible to choose a global
ordering of all the actions appearing in the sequences so that all the local
orderings are respected.

This consistency is modeled by constructing a global ordering graph based
on the local label sequences. Its vertices are the actions appearing in the
local sequences and there is an edge between two vertices ai and aj iff ai

occurs immediately before aj in some local sequence. Then, the local label
sequences are consistent iff the the ordering graph is acyclic. The formal
definitions of the ordering graph and consistency are as follows:

Definition 48 Let L1, . . . ,Ln be LTSs where each Li = 〈Si, Ii,Σi,∆i〉 and
let σ1, . . . , σn be label sequences from the alphabets Σ1, . . . ,Σn, respectively.
The ordering graph G = (V,E) of σ1, . . . , σn is such that:

1. V = (Σ1 ∪ · · · ∪ Σn) \ {τ} and

2. E = {(ai, aj) ∈ V × V | ai occurs immediately before aj in some σk,
where 1 ≤ k ≤ n.}

The definition of consistency in the context of the limited path product is
then as follows:

Definition 49 Let L1, . . . ,Ln be LTSs where each Li = 〈Si, Ii,Σi,∆i〉 and
let σ1, . . . , σn be label sequences from the alphabets Σ1, . . . ,Σn, respectively.
The sequences σ1, . . . , σn are consistent iff their ordering graph is acyclic.

It should be easy to see that all the three sources of extra models are such
that they induce cyclic ordering graphs. Therefore, the remaining element

74 5. ENCODING ALGORITHM WITH LOCAL TRANSITION MERGING



of constructing a sound encoding for the limited path product is to create
schemes for first modeling the ordering graphs for each step of the execution
and then for ruling out cyclic graphs. The possible cycle in the ordering
graph is detected by first computing the individual edges. These are then
used to compute a reachability predicate. Finally, if the graph has a cycle,
then every node in that cycle is reachable from itself. The edge computation
has to take into account the possibility of a loop.

The idea is to define for each state-action pair the literals inc(si, aj, t)
and og(si, aj , t) whose semantics are that an incoming (outgoing) transition
to (from) state si labeled aj is executed, respectively. However, for reasons
elaborated below, for the target state s of the last transition on the path, the
literal inc(s, aj, t) should not evaluate to true for any action aj . The defini-
tions of the literals inc(si, aj, t) and og(si, aj , t) are then as follows:

∧

1 ≤i≤n

(
∧

si∈Si

(
∧

aj∈Σi

(inc(si, aj, t) ↔
∨

tk∈prn(si) ∩ ∆
aj
i

(ex (tk, t) ∧ ¬ltr (tk, t)))))

(5.10)

∧

1 ≤i≤n

(
∧

si∈Si

(
∧

aj∈Σi

(og(si, aj, t) ↔
∨

tk∈pt(si) ∩ ∆
aj
i

ex(tk, t)))) (5.11)

The edges of the graph are then encoded using the literal ed(ai, aj, t)
whose definition is as follows:

∧

ai,aj∈Σ\{τ}

(ed(ai, aj, t) ↔
∨

1≤k≤n

(
∨

sl∈Sk

(inc(sl, ai, t) ∧ og(sl, aj, t)))) (5.12)

The intuition behind the constraint above is that the graph contains an
edge from ai to aj iff there is a local state sl to which an incoming transition
labeled ai and an outgoing transition labeled aj is executed.

Constraint (5.10) above contains an atomic proposition ltr(tk, t) that has
not been used so far. The intuitive idea of this proposition is that ltr(tk, t)
evaluates to true in the satisfying valuations of the final BMC formula iff
transition tk is the last executed transition on a local path. If the executed
transition sequences were limited to straight segments, this literal could be
left out from the conjunction ex (tk, t) ∧ ¬ltr (tk, t). However, with looping
paths this would result in that an extra edge would be inferred. The situation
is illustrated in Figure 5.5. Consider the case where the local path of exe-
cuted transitions is such that the transitions labeled a, b, and c are executed
in that order. If constraint (5.12) were implemented without the ltr(tk, t)
literal, the ed(ai, aj, t) literal would in this case be true for the action pairs
(a, b), (b, c), and (c, b) of which the last one is incorrect.

a b

c

Figure 5.5: Literal ltr (tk, t).
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The literal ltr (tk, t) is constrained based on the reasoning presented be-
low. Firstly, if the executed transition is a self-loop, then it is the last transition
on the path. Secondly, if a transition is the last transition on a path, then it
has to be executed and its target state has to be the last state on the path.
Finally, if a component is scheduled, then exactly one transition is the last
transition on the path. Let the set of transitions that are self-loops be defined
as follows:

Definition 50 Let L = 〈S, I ,Σ,∆〉 be an LTS. Then the set sl(L) = {ti ∈
∆ | ti = (s, a, s)}, i.e., the set of transitions from L that are self-loops.

The atomic proposition ltr(tk, t) literal is then constrained as follows:

∧

1≤i≤n

(
∧

tj∈sl(Li)

(ex (tj, t) → ltr(tj , t))), (5.13)

∧

1≤i≤n

(
∧

tj∈∆i

(ltr(tj , t) → ex(tj , t) ∧ lst(tar(tj), t))), and (5.14)

∧

1≤i≤n

(sc(i, t) → card1
1{ltr(tj , t) | tj ∈ ∆i}), (5.15)

where

• tar(tj) is the target state of transition tj .

Graphs with cycles are then ruled out by modeling reachability from a
single action to another by transitive edges of the graph and by constraining
the models in such a way that no action is reached from itself. An action is
reachable from another iff there is a direct edge or some transitive edge:

∧

ai,aj∈Σ\{τ}

(rch(ai, aj, t) ↔ (ed(ai, aj, t) ∨

∨

ak∈Σ\{τ}

(rch(ai, ak, t) ∧ ed(ak, aj, t)))). (5.16)

Finally, to disallow cyclic graphs, no action should be reachable from it-
self. Formally: ∧

ai∈Σ\{τ}

¬rch(ai, ai, t). (5.17)

In the following, the constraints used to encode the consistency check
(constraints (5.16) and (5.17)) are proved sound, i.e., it is shown that if the
ed(a1, a2, t) literal is used to encode the edges of a graph, constraints (5.16)
and (5.17) rule out graphs that are cyclic. The idea is based on the following
proposition.

Proposition 1 A graph is cyclic iff the irreflexive transitive closure of its edge
relation has an element (vi, vj) such that vi = vj .

In the following, Γ denotes a set of actions and f a formula containing
the literal ed(ai, aj, t) for every (ai, aj) ∈ Γ × Γ and every 1 ≤ t ≤ k.
Furthermore, f ′ denotes the formula where constraint (5.16) is instantiated
for every action pair (ai, aj) ∈ Γ × Γ and every 1 ≤ t ≤ k.
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Lemma 11 Let V be a satisfying valuation of f and Gt = (V t, Et) the graph
such that V t = Γ and (ai, aj) ∈ Et iff V(ed(ai, aj, t)) = true. Then for
every satisfying valuation V ′ of the formula f ∧ f ′ such that V ⊂ V ′ it
holds that if the irreflexive transitive closure of Gt has the edge (ai, aj), then
V ′(rch(ai, aj, t)) = true.

Proof. The goal is to show that if a formula f ∧ f ′ where f models the
graphGt and f ′ contains the instantiations of constraint (5.16) has a satisfying
valuation, then the literal rch(ai, aj, t) models an overapproximation of the
irreflexive transitive closure of Gt.

Firstly, it holds that if V ′(ed(ai, aj, t)) = true, then V ′(rch(ai, aj, t)) =
true by the first argument of the disjunction on the right hand side of con-
straint (5.16). Since this holds, then, again by the second disjunct of (5.16),
V ′(rch(ai, ak, t)) = true for action pairs connected with paths consisting of
two transitions in Gt. However, then Vt(rch(ai, al, t)) = true also for action
pairs corresponding to paths consisting of three transitions and so on.

Constraint (5.16) does not precisely model the irreflexive transitive clo-
sure of graphs Gt, 1 ≤ t ≤ k, though. Let a satisfying valuation V of f
model the graph presented in Figure 5.6. Then, f ∧ f ′ has a satisfying val-

c

a

b

d

Figure 5.6: Cyclic Ordering Graph

uation where the rch(a1, a2, t) is true for the action pairs (d, a), (d, b) and
(d, c), i.e., from a vertice d not connected to the rest of the graph to its every
vertice.

This problem arises from the fact that f ′ contains, for instance, the follow-
ing elements:

rch(d, a, t) ↔ . . . (rch(d, b, t) ∧ ed(b, a, t))

rch(d, b, t) ↔ . . . (rch(d, a, t) ∧ ed(a, b, t))

Due to the fact that the graph contains the edges (a, b) and (b, a), the defi-
nitions of the reachability predicates above can be simplified to rch(d, a, t) ↔
rch(d, b, t) and rch(d, b, t) ↔ rch(d, a, t). Thus, both can either be false (the
correct irreflexive transitive closure) or true. In the general case, this prob-
lem extends to every vertice outside a cycle in the graph and unfortunately,
for larger graphs f ∧ f ′ can have many models that are overapproximations
of the irreflexive transitive closure of Gt.
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However, if the graph is acyclic, constraint (5.16) models precisely its ir-
reflexive transitive closure. Let f model an acyclic graph Gt = (V t, Et), f ′

defined as previously, and V ′ be a satisfying valuation of f ∧ f ′.
Since Gt is acyclic, then it has one or more vertices with no incoming

edges. By constraint (5.16), for all vertices ai with no incoming edges, it
holds that V ′(rch(aj, ai, t)) = false for every vertice aj in Gt. Thus, in the
models of f ′, the rch -literal is correctly evaluated for transitive edges whose
target state is ai.

Consider then the graph Gt
′

= (V t
′

, Et
′

) obtained from Gt by removing
all the vertices with no incoming edges. Since Gt is acyclic, then also Gt

′

has vertices with no incoming edges. For such vertices, their only incoming
edges are from vertices ai ∈ V t \ V t

′

. Thus, for the vertices in Gt
′

with no
incoming edges ak, constraint (5.16) reduces to:

∨

aj∈Σ\{τ}

rch(aj, ak, t) ↔ ed(aj, ak, t)∨
∨

ai∈V t\V t′

(rch(aj , ai, t)∧ ed(ai, ak, t)).

The crucial point in the formula above is that the literals rch(aj, ai, t) are
evaluated correctly (in this case to false for every aj). From this it follows that
the irreflexive transitive closure modeled by the rch-literal can not contain
false edges whose target state is ak.

Due to acyclicity, removing the edges ak from Gt
′

introduces again ver-
tices al with no incoming edges (or alternatively, whose only incoming edges
are from already removed vertices). For these nodes it can again be shown
that the literal rch(aj, al, t) is correctly evaluated since an instance can be
true iff some other instance of the rch-literal is true and secondly it holds
that that particular instance is correctly evaluated. This argument can be
repeated until all the nodes of Gt have been analyzed. 2

To show the correctness of the formulas used to encode the consistency
check, let Γ denote a set of actions and f a formula containing the literal
ed(ai, aj, t) for every (ai, aj) ∈ Γ × Γ and every 1 ≤ t ≤ k. Furthermore,
let f ′ denote the formula where constraint (5.16) is instantiated for every ac-
tion pair (ai, aj) ∈ Γ × Γ and every 1 ≤ t ≤ k and finally f ′′ the formula
containing instantiations of constraint (5.17) for all actions ai ∈ Γ and all
1 ≤ t ≤ k.

Lemma 12 Let V be a satisfying valuation of the formula f ∧ f ′ ∧ f ′′ and for
all 1 ≤ t ≤ k,Gt = (V t, Et) be the graph such that V t = Γ and (ai, aj) ∈ Et

iff V(ed(ai, aj, t)) = true. V is a model of f ∧ f ′ ∧ f ′′ iff every Gt is acyclic.

Proof. Follows directly from Proposition 1 and Lemma 11, and the fact
that the rch-literal models the exact irreflexive transitive closure for acyclic
graphs. 2

Given the components L1, . . . ,Ln and a bound k, let the formula encoding
the executions of length k of the limited path product of the components be
denoted PA(L1, . . . ,Ln, k). It is of the following form:

PA(L1, . . . ,Ln, k) = IS (L1, . . . ,Ln) ∧
∧

1≤i≤k

TRpt(L1, . . . ,Ln, i)
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where

• IS(L1, . . . ,Ln) is the constraint on initial state, i.e., a conjunction of
the constraints (5.1) and (5.2) and

• TRpt(L1, . . . ,Ln, i) encodes the transition relation from state i to i+1
and is a conjunction of the constraints from (5.3) to (5.17) where the
variable t is instantiated to i.

Compared to the execution models applying partial order semantics or
on-the-fly determinization, the size of the encoding for the limited path prod-
uct is no more linear. The translation up to the consistency check (con-
straints (5.1) to (5.9)) are linear but for constraints (5.10), (5.11), (5.12),
and (5.16) used to encode the consistency check this is not the case.

It may seem that constraints (5.10) and (5.11) defining the inc(si, aj, t)
and og(si, aj, t) literals have to be instantiated for every state - action pair.
However, this can be optimized by considering only such state - action pairs
where actual incoming (outgoing) transitions with a particular label exist.
If this is done, then a tighter bound is obtained, namely, the size of con-
straint (5.10) is O(|S| · ni) where |S| is the number of local state and ni the
maximum indegree, i.e., the maximum number of incoming transitions of a
local state of the system. Similarly, the size of constraint (5.11) is O(|S| · nj)
where nj is the maximum outdegree of a local state of the system.

Constraint (5.12) defines the literal ed(ai, aj, t) encoding the edges in the
ordering graphs. Thus, it has to be instantiated for every action pair for which
there exists a local state with an incoming transition labeled ai and an out-
going transition labeled aj. The size of the entire constraint is therefore
O(|S| · ni · nj) in the worst case. Finally, constraint (5.16) encoding the
rch(ai, aj, t) literal is also not linear. This constraint needs to be instantiated
for every action pair Furthermore, on the right-hand side, a third action is
needed. Thus, the entire constraint is cubic in the size of the alphabet, i.e.,
O(|Σ|3) in the worst case.

Purpose of Preprocessing

The reason for applying the preprocessing algorithm given in Section 5 is that
otherwise the encoding of the consistency check given in Section 5.1.1 does
not work properly. Namely, if an LTS can contain τ transitions that are not
self-loops, it may, for instance, execute a transition sequence with following
labels: aττb. The internal τ transitions do not have any synchronization
requirements and should therefore not contribute to the ordering graph of
the sequence but the graph should contain an edge between the vertices
labeled a and b. However, the literal ed(a, b, t) in constraint (5.12) evaluates
to true iff a transition labeled a is executed immediately before a transition
labeled b. Since the τ transitions are limited to self-loops, the local state is
not changed when such a transition is executed and thus constraint (5.12) is
sound.

Obviously, constraint (5.12) could be implemented differently by consid-
ering paths of the form aτ ∗b (where τ ∗ denotes zero or more τ labels). One
idea to implement such a scheme is to propagate information about the last
executed visible transition over the following τ transitions and then infer a
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new edge to the graph when a visible action is again encountered. However,
in that case constraint (5.12), even though still polynomial, would become
more complex.

Another way to avoid the preprocessing algorithm is to consider every in-
ternal transition as actually begin labeled with a unique visible label. How-
ever, the adverse effect of this approach is that the alphabet of the systems
grows with the number of internal transitions. This, on the other hand af-
fects adversely the size of constraint (5.16) that is cubic in the alphabet size.

Soundness and Completeness
In the following, the soundness and completeness of the encoding of the ex-
ecutions of the limited path product is established. The presentation follows
the same ideas as in Chapter 4 for the execution models applying partial
order semantics and on-the-fly determinization.

The soundness of the encoding is established using two auxiliary lem-
mata. Firstly, it is shown that if the reached states and executed transitions
for each global state and execution step, respectively, are read from a satisfy-
ing valuation of PA(L1, . . . ,Ln, k), certain kind of sequences are obtained
(Lemma 14).

These sequences (defined in Definition 52) are such that in each global
state, each component is in exactly one local state. In each step, the executed
local transitions from each component form a path from the source state of
the first transition to the target state of the last transition.

Then, in Lemma 15, it is shown that these local transition segments can be
combined to a step execution segment. Finally, in Theorem 19, it is shown
that the first execution segment starts from a initial state of the limited path
product and that all the step execution segments are simple. Thus, from all
satisfying valuations of PA(L1, . . . ,Ln, k), an execution of the limited path
product of L1, . . . ,Ln is obtained.

The proof of completeness is similar, i.e., uses a mapping from an execu-
tion to the literals of PA(L1, . . . ,Ln, k) and shows that with this mapping, all
the constraints in PA(L1, . . . ,Ln, k) are satisfied.

Definition 51 Given the components L1, . . . ,Ln and an integer k, let Vt be
a valuation of any formula containing the following atomic propositions:

• for all sj ∈ Si, 1 ≤ i ≤ n and all 1 ≤ t ≤ k + 1, the proposition
in(sj , t) and

• for all tj ∈ ∆i, 1 ≤ i ≤ n and all 1 ≤ t ≤ k, the proposition ex (tj, t).

Then, the Vt-sequence corresponding to Vt is the sequence:

〈T 1
1 , . . . , T

1
n〉

〈L1
1,...,L1

n〉
→ · · ·

〈Lk
1 ,...,Lk

n〉
→ 〈T k+1

1 , . . . , T k+1
n 〉

such that each T t

i is a set of states and a component state sk ∈ T t

i iff sk ∈ Si

and Vt(in(sk, t)) = true. Each Lt

i is a set of local transitions and transition tl
is in Lt

i iff tl ∈ ∆i and Vt(ex(tl, t)) = true.

Definition 52 Given the Vt-sequence corresponding to a satisfying valuation
Vt of the formula PA(L1, . . . ,Ln, k), it is a path sequence iff the following
conditions hold:
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1. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k + 1, |T t

i | = 1 and

2. for all 1 ≤ i ≤ n, 1 ≤ t ≤ k, the transitions in Lt

i form a connected
sequence from the unique state forming T t

i to the unique state forming
T t+1

i .

Lemma 13 Let L1, . . . ,Ln be LTSs and σM a Vt-sequence of length k cor-
responding to a satisfying valuation Vt of PA(L1, . . . ,Ln, k). If |T t

i | = 1 for
some 1 ≤ i ≤ n and 1 ≤ t ≤ k in σM, then the local transitions in Lt

i form a
single path that is either (i) a straight segment, (ii) a loop to the initial state,
or (iii) a lasso-shaped path.

Proof. By constraint (5.4), at most one outgoing transition of a state can be
executed. Thus, the executed transitions divide to connected sequences that
do not have common states.

By constraint (5.3), if a transition is executed in step t, then either its
source state is reached in the previous global state or some incoming tran-
sition to its source state is executed in the same step. If for component Li,
|T t

i | = 1, it follows that the connected sequences of executed transitions are
such that there is precisely one sequence for which it holds that the source
state of the first transition is reached in the previous global state. By con-
straint (5.3), all the remaining sequences have to form cycles (referred to as
unreachable cycles).

It remains to show that if Vt is a satisfying valuation of PA(L1, . . . ,Ln, k),
no unreachable cycles are possible. Firstly, if for all the transitions tj in
such a cycle in time step t it holds that Vt(ltr(tj, t)) = false, then by con-
straint (5.12), a cyclic ordering graph is induced. Then, by Lemma 12, Vt

can not be a satisfying valuation of PA(L1, . . . ,Ln, k).
Therefore, it has to be the case that for all unreachable cycles, there has to

be at least one transition tj in the cycle for which Vt(ltr(tj , t)) = true. Then
however, by constraint (5.14), Vt(lst(tar(tj), t)) has to be true. This, how-
ever, can not be the case by constraint (5.8). This is shown by a case analysis
of the three cases of constraint (5.8). For tar(tj) it holds that (i) both an in-
coming and an outgoing transition to it is executed, (ii) by assumption of the
cycle being unreachable, Vt(in(tar(tj), t−1)) must be false, and (iii) exactly
one of its incoming transitions are executed. Therefore, Vt(lst(tar(tj), t))
has to be false, a contradiction. From this it follows that no unreachable
cycles can exist in the satisfying valuations of PA(L1, . . . ,Ln, k). 2

Lemma 14 Let L1, . . . ,Ln be LTSs. Given any satisfying valuation Vt of the
formula PA(L1, . . . ,Ln, k), then the corresponding Vt-sequence is a path
sequence.

Proof. The following proof establishes by induction that in each component
1 ≤ i ≤ n and each global state 1 ≤ t ≤ k + 1, |T t

i | = 1 and for each 1 ≤
t
′ ≤ k, if some local transitions are executed from Li the single state forming
T t

′+1
i is the target state of the last transition in the connected sequence of

transitions in the set Lt
′

i . Otherwise T t
′+1

i = T t
′

i .

1. Base Case. Constraints (5.1) and (5.2) guarantee that in the first global
state, the local state from each component is unique.
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2. Induction Hypothesis. Assume that up to some global state l all the
local states are unique.

3. Induction Step. Consider the step

〈T l
1, . . . , T

l
n〉

〈Ll
1
,...,Ll

n〉
→ 〈T l+1

1 , . . . , T l+1
n 〉.

By induction hypothesis, it holds that for all 1 ≤ i ≤ n, |T l
i | = 1. By

Lemma 13, it follows that transitions in step l form a single path that
is either (i) a straight segment, (ii) a loop to the initial state, or (iii) a
lasso-shaped path. It is shown that for all 1 ≤ i ≤ n, |T l+1

i | = 1 and
that if Ll

i is non-empty (component Li is scheduled), then the single
local state forming it is the target state of the last state on the local path
of executed transitions in step l. Otherwise, T l+1

1 = T l
1.

The set T l+1
i is defined from the literal in(sj , l + 1) that is defined in

constraint (5.7). The treatment is divided to idle and scheduled com-
ponents (for which the sc(i, j) literal is false and true, respectively).
For idle components, constraint (5.7) reduces to:

∧

sj∈Si

(in(sj , l + 1) ↔ in(sj, l)).

Thus, idle components remain in the same state that is unique by in-
duction hypothesis. For scheduled components, the same constraint
reduces to: ∧

sj∈Si

(in(sj , l + 1) ↔ lst(sj, l)).

It remains to show that, given the form of the path of executed transi-
tions, the lst(sj, l + 1) literal (defined in constraint (5.8)) evaluates to
true for exactly one local state from each component. Firstly, it holds
that for all the local states not along the single path, no incoming nor
any outgoing transitions are executed. Thus, for any such state sj , the
literal lst(sj, l + 1) is false.

If the executed path is (i) a straight segment, it holds that no incoming
transition to the local state reached in the global state l is executed
(otherwise the path would be a loop). Furthermore, there is no local
state such that more than one of its incoming transitions are executed
(since then the executed path would be a lasso). However, there is
exactly one state such that one incoming and no outgoing transitions
are executed, the last state on the path. That is also the only state for
which lst(sj , l) is true.

If the executed path is (ii) a loop to the initial state, then there is no
local state along the path such that no outgoing transitions of that state
are executed. Neither is there a local state along the path such that
more than one incoming transitions to that state are executed. How-
ever, an incoming transition to the state reached in step l is executed,
the last state on the path. That is also the only state for which lst(sj, l)
is true.
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If the executed path is (iii) lasso shaped, then there is no local state
along the path such that no outgoing transitions of that state is exe-
cuted. Neither is an incoming transition to the local state reached in
step l executed. However, there is a state such that two of its incoming
transitions are executed, the last state on the path. That is also the only
state for which lst(sj , l) is true.

Thus, in every case, there is exactly one local state from each compo-
nent for which lst(sj, l) and thus in(sj , l + 1) is true. That state is the
target state of the last executed transition on the local path.

2

For every 1 ≤ i ≤ n, 1 ≤ t ≤ k, let the single element of T t

i be denoted
st

i. The path sequence is still rather far away from an execution of the limited
path product. In order to prove the soundness of the encoding, it has to
be shown that the local connected sequences of transitions form a simple
step execution. This is shown in two phases. Firstly, in Lemma 15, it is
shown that the local connected sequences form a step execution and finally,
in Theorem 19 it is shown that this execution is simple.

Lemma 15 Let L1, . . . ,Ln be LTSs and Vt a satisfying valuation of the for-
mula PA(L1, . . . ,Ln, k) and

〈s1
1, . . . , s

1
n〉

〈L1
1
,...,L1

n〉
→ · · ·

〈Lk
1
,...,Lk

n〉
→ 〈sk+1

1 , . . . , sk+1
n 〉

the path sequence corresponding to Vt. Let Lst = L1 ‖st . . . ‖st Ln. It holds
that for all 1 ≤ t ≤ k, Lst contains a path from 〈st

1, . . . , s
t

n〉 to 〈st+1
1 , . . . , st+1

n 〉
such that for all 1 ≤ i ≤ n, the executed local transitions from component
Li are Lt

i.

Proof. By Lemma 14, the transitions in Lt

1, . . . , L
t

n form connected se-
quences in the respective components. Furthermore, for every component
1 ≤ i ≤ n, the source state of the first transition in the sequence Lt

i is st

i

and the target state of the last transition is st+1
i . The claim of Lemma 15

follows from the fact that transition sequences Lt

1, . . . , L
t

n (i) respect the syn-
chronization requirement in the definition of the step product and (ii) are
consistent.

The first condition follows from the fact that PA(L1, . . . ,Ln, k) contains
constraint (5.6) that guarantees that if action a is executed, then every com-
ponent executes a transition labeled a. The second condition (on the consis-
tency of the execution) is guaranteed by the following two facts.

Firstly, if the ordering graph of the executed local sequences in step t con-
tains an edge (ai, aj), then Vt(ed(ai, aj, t)) = true. Secondly, the ordering
graph that the local sequences form is acyclic.

The first condition is shown as follows. If the ordering graph contains
the edge (ai, aj), then there is a local state s for which an incoming transi-
tion labeled ai and an outgoing transition labeled aj is executed. By con-
straint (5.11) Vt(og(s, aj, t)) = true. By constraint (5.10), Vt(inc(s, ai, t)) =
true iff for the incoming transition t labeled ai, it holds that Vt(ltr(t, t)) =
false.
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Thus, to show that Vt(inc(s, ai, t)) is indeed true, it has to be shown
that Vt(ltr(t, t)) = true iff t is the last executed transition on the path.
In Lemma 14, it is shown that executed transitions are either straight seg-
ments, loops to the initial state, or lasso-shaped. By constraint (5.14), if
Vt(ltr(t, t)) = true, then Vt(lst(tar(t), t)) = true. It has already been shown
in the proof of Lemma 14 that if this it the case, then tar(t) has to be the
target state of the last executed transition.

If the executed path is a straight segment or a loop to the initial state, there
is only one transition, for which the target state is the last state on the path
and therefore only one possible transition t for which Vt(ltr(t, t)) = true.
This is the last transition on the path. If the executed path is lasso-shaped,
there are two transitions whose target state is the last state on the path. It
has to be shown that in satisfying valuations of PA(L1, . . . ,Ln, k), the literal
ltr(t, t) can only be true for the correct one. Firstly, by constraint (5.15),
ltr(t, t) can not be true for both of them. Secondly, if this literal was true
for the first transition on the path entering the last state of the path, then
the remaining segment would form a cycle. In this cycle, for all the tran-
sitions tk, Vt(ltr (tk, t)) = false. However, then Vt can not be a satisfying
valuation of PA(L1, . . . ,Ln, k) since constraint (5.17) is violated. Therefore,
Vt(ltr(t, t)) = true for the last transition also in this case.

Thus, the literal ed(ai, aj, t) models the edges of the ordering graph. That
the graph is acyclic is guaranteed by Lemma 12. 2

Given a satisfying valuation Vt of PA(L1, . . . ,Ln, k), let the execution seg-
ment of Lst for 1 ≤ t ≤ k be σt.

Definition 53 The Vt-sequence corresponding to a satisfying valuation Vt

of PA(L1, . . . ,Ln, k) is an execution of the limited path product Lpt =
〈Spt, Ipt,Σpt,∆pt〉 of the components L1, . . . ,Ln iff

1. for all components 1 ≤ i ≤ n, s1
i ∈ Ii and

2. for all 1 ≤ t ≤ k, 〈st

1, . . . , s
t

n〉
σt

→ 〈st+1
1 , . . . , st+1

n 〉 ∈ ∆pt.

Theorem 19 Let Vt be a satisfying valuation of PA(L1, . . . ,Ln, k). Then
the corresponding Vt-sequence is an execution of the limited path product of
L1, . . . ,Lk.

Proof. In Lemma 15 it is shown that for all 1 ≤ t ≤ k, σt is an execution
segment in the step product Lst of L1, . . . ,Ln. Theorem 19 is established by
showing that (i) σ1 starts from an initial state of Lst and that (ii) all the exe-
cution segments σt are simple. The first condition follows from the fact that
PA(L1, . . . ,Ln, k) contains the constraints (5.1) and (5.2). Furthermore, for
all 1 ≤ j ≤ n it holds that the in(sk, 1) literal has to evaluate to true for the
source state sk of the first transition in the connected sequence of transitions
in L1

j .
The second condition is established by showing that the executions σt ful-

fill the requirements in Definition 44. Firstly, for all σt it holds that if some
local state sk is traversed twice, sk has to be the last state on the local path.
This follows from constraint (5.8). Furthermore, it holds for all the visible
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actions a of Σ1 ∪ · · ·∪Σn that σt can contain at most one action tuple where
the local action a is present. This follows from constraints (5.12), (5.16),
and (5.17) modeling the ordering graph and (an overapproximation of) its ir-
reflexive transitive closure, and ruling out cyclic graphs. If some σt contained
two action tuples containing action a, then some component Lj would ex-
ecute a transition labeled a twice. However, then the ordering graph Gt is
necessarily cyclic and constraint (5.17) violated. Thus, for all 1 ≤ t ≤ k, σt

is simple. 2

The completeness of the encoding is shown in the following. The proof uses
the following concept.

Definition 54 Let L1, . . . ,Ln be LTSs and Lst their step product. Further-
more, let σ be a finite execution of Lst. Then for all 1 ≤ i ≤ n, let
pai(σ) = t1, . . . , tji

be the sequence of local transitions executed from Li

in σ.

Theorem 20 Let L1, . . . ,Ln be LTSs. Given any execution of the limited
path product product of L1, . . . ,Ln, it is a Vt-sequence of some satisfying
valuation Vt of PA(L1, . . . ,Ln, k).

Proof. The proof presents a mapping Vt from the execution to the atomic
propositions of PA(L1, . . . ,Ln, k) and shows that if the truth values of the
atomic propositions are defined based on Vt, every constraint of the formula
PA(L1, . . . ,Ln, k) is satisfied. Any limited path execution of length k can be
presented as follows:

〈s1
1, . . . , s

1
n〉

σ1

→ · · ·
σk

→ 〈sk+1
1 , . . . , sk+1

1 〉

where for all 1 ≤ t ≤ k, σt is a an execution of the step product of the
component L1, . . . ,Ln.

Let 〈l11, . . . , l
1
n〉, . . . , 〈l

pt

1 , . . . , l
pt

n 〉 be the sequence of actions executed in
σt. The notational convention of writing ti ∈ paj (σ

t) for every transition
ti appearing in the sequence paj (σ

t) is applied. Similarly, for any label
〈lt

′

1 , . . . , l
t
′

n〉 appearing in σt, 〈lt
′

1 , . . . , l
t
′

n〉 ∈ σt.
The mapping is as follows:

• Vt(in(sj, t)) = true iff for some 1 ≤ i ≤ n, st

i = sj ,

• Vt(ex(tj , t)) = true iff for some 1 ≤ i ≤ n, tj ∈ pai(σ
t),

• Vt(ex(a, i, t)) = true iff for some label 〈lj1, . . . , l
j
n〉 ∈ σt, lji = a,

• Vt(ex(a, t)) = true iff for some label 〈li1, . . . , l
i
n〉 ∈ σt, for a 1 ≤ j ≤ n

lij = a,

• Vt(sc(i, t)) = true iff there is a label 〈lj1, . . . , l
j
n〉 ∈ σt, such that lji 6= ε,

• Vt(lst(sj , t)) = true iff for some 1 ≤ i ≤ n, Vt(sc(i, t)) = true and
st+1

i = sj ,

• Vt(ltr(ti, t)) = true iff for some 1 ≤ j ≤ n, ti ∈ ∆j and paj (σ
t) =

t1, . . . , ti,
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• Vt(inc(sj, a, t)) = true iff there is a transition tl = (sm, a, sj) such that
Vt(ex(tl, t)) = true and it holds that Vt(ltr(tl, t)) = false,

• Vt(og(sj, a, t)) = true iff there is a transition tl = (sj, a, sm) such that
Vt(ex(tl, t)) = true,

• Vt(ed(a, a ′, t)) = true iff for some 1 ≤ i ≤ n, there is a local state
sj such that it holds that sj has an incoming transition tk labeled a,
Vt(ex(tk, t)) = true, and Vt(ltr(tk, t)) = false. Secondly, sj has an
outgoing transition tl labeled a ′ and Vt(ex (tl, t)) = true, and

• Vt(rch(a, a ′, t)) = true iff (a, a ′) ∈ St where St ⊆ Σ×Σ is the smallest
set such that:

1. if Vt(ed(a, a ′, t)) = true, then (a, a ′) ∈ St and

2. if (a, a ′) ∈ St and (a ′, a ′′) ∈ St, then (a, a ′′) ∈ St.

The proof is by induction over the step t in PA(L1, . . . ,Ln, k).

1. Base Case. Any limited path execution starts from an initial state.
Thus, the constraints (5.1) and (5.2) are satisfied.

2. Induction Hypothesis. Assume that every conjunct in the formula
PA(L1, . . . ,Ln, k) is satisfied up to some global state l.

3. Induction Step. Consider the step

〈sl
1, . . . , s

l
n〉

σl

→ 〈sl+1
1 , . . . , sl+1

n 〉.

The goal is to show that the mapping Vt is consistent with the formula
TRpt(L1, . . . ,Ln, l). The executed transitions in each step in each
component form paths. For the first transition it is the case that its
source state is reached and for the following transitions it holds that
some incoming transition to their source state is executed. Thus, con-
straint (5.3) is satisfied. In addition, by the fact that the step executions
in step l is simple, the executed path can either be a straight segment,
loop to the initial state, or lasso-shaped. Thus, at most one outgoing
transition from each state is executed and constraint (5.4) satisfied.

An action is executed in a limited path execution iff some transition
labeled with the action is executed. This adheres to constraint (5.5).
In addition, the synchronization requirement is respected also in the
limited path product and constraint (5.6) is satisfied.

In any limited path execution after a particular step, the control flow
reaches local states that are:

• the same state as in the previous global state for idle components
or

• the target state of the last executed transition on the executed
path.
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Therefore, constraint (5.7) is satisfied by the presented mapping. An
analysis of constraint (5.8) follows. Firstly, is a component Li is not
scheduled, then constraint (5.8) is satisfied by setting the lst(sj, l)-
literal to false for all the local states of Li, as done in the presented
mapping.

If a component is scheduled, then if the path of executed transitions
in some component forms a straight segment, then the constraint can
be satisfied for all the local states of that component with the mapping
above, i.e., setting the literal true for the target state of the last executed
transition (one of its incoming and none of its outgoing transitions is
executed) and false for the rest of the states.

Secondly, if the path of executed transitions forms a loop to the ini-
tial state, lst(sj, l) can be set to true for the last state of the path since
its source state is reached in the global state l and one of its incom-
ing transitions is executed. For all the remaining local states of that
component, the literal can be set to false.

Finally, if the path of executed transitions forms a lasso, then the literal
lst(sj, l) can be set to true for the last state of the path since two of its
incoming transitions are executed. Again, for all the remaining local
states of that component, the literal can be set to false.

Constraint (5.9) is satisfied. Constraints (5.10) and (5.11) are satis-
fied, since the literal inc(si, a, l) (resp. og(si, a, l)) is mapped to true
iff some incoming (outgoing) transition of si labeled a is executed.
Constraint (5.13) is satisfied, since a transition is that is a self-loop can
only be the last executed transition on the path. Constraint (5.14) is
also satisfied, since if ti ∈ paj (σ

l), then Vt(ex (ti, l)) = true. In each
scheduled component, only one transition is such that Vt(ltr(ti, l)) =
true and constraint (5.15) is satisfied.

Constraint (5.12) is satisfied and indeed, Vt(ed(ai, aj, l)) = true iff
the ordering graph for time step l has an edge from ai to aj. All the
executions of the limited path product are consistent and thus no ver-
tice of the ordering graph is reachable from itself. Therefore, con-
straints (5.16) and (5.17) are satisfied.

2

So far, it has been established that PA(L1, . . . ,Ln, k) correctly encodes the
executions of length k of the limited path product of L1, . . . ,Ln. However,
the main drawback of the consistency check is that it is cubic in the size of the
alphabet probably rendering the complete encoding too complex compared
to the interleaving, step and process models.

For these reasons, it is sensible to seek alternative approaches for encoding
the consistency check (or the more general problem of finding a cycle in a
graph using propositional satisfiability). The following section presents one
such approach.
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5.1.2 An Alternative Approach for Consistency Check

An alternative, possibly simpler way (proposed by K. Heljanko and indepen-
dently by V. Khomenko [79]) of ruling out inconsistent executions is as fol-
lows. Given the executed transitions, introduce for every executed action an
integer and require that the actions occurring earlier in a particular compo-
nent have smaller numbers than those occurring later. If the execution is
inconsistent, then conflicting requirements arise and the model candidate is
ruled out. More formally, the following kind of scheme is required.

∧

ai,aj∈Σ\{τ}

(ed(ai, aj, t) → (f (ai, t) < f (aj, t)))

With the encoding presented above, log2(|Σ|) additional bits are needed
for each visible action of the alphabet. Furthermore, a Boolean implemen-
tation of the < operation on those bits encoding an integer value needs to be
implemented. However, that operation can be implemented linearly in the
size (number of bits) of the arguments.

Consider the execution in Figure 5.3. If every transition is executed,
then the scheme above requires the following inequalities to hold: f (a, 1) <
f (b, 1), f (b, 1) < f (c, 1) and f (c, 1) < f (a, 1). That is not possible for any
valuation and the false execution is ruled out.

5.1.3 Iterative Approach

Encoding the consistency check completely as presented above can be seen
as modeling all the possible ordering graphs for all time steps independent
of the actually executed transitions. The analysis of test cases (presented in
detail Chapter 6) warrants the following facts. With these cases

• the size of the resulting formula is in some cases dominated by the
literals of the consistency check and

• the are examples where the spurious counterexamples that the check
prevents do not materialize.

Thus, with the analyzed examples, some of the deadlocks are detected
faster if the consistency check is completely dropped. In addition, the points
above also suggest a procedure that analyzes the counterexamples and then if
the counterexample is incorrect, adds additional clauses to the formula such
that this spurious counterexample is not among the models.

The complete procedure is easy. The counterexample is analyzed by cre-
ating the ordering graph and checking its cyclicity. Secondly, a spurious
counterexample is ruled out by instantiating the same schemes as presented
above but only based on the executed transitions in the spurious counterex-
ample. However, the complete story is not that simple, since it is theoretically
easy to conceive an example that has a real deadlock but also many inconsis-
tent deadlocking executions. This is done in Figure 5.7. The figure presents
a parameterized example where the parameter n is the number of branches
in the component on the left hand side. Branch i is labeled with the actions
ai, bi. Each branch has a corresponding component LTS where the actions
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are in reverse order. The example has one real deadlock (depth 1) and n
spurious ones.
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Figure 5.7: A Hard Example for Iterative Strengthening

The presented approach can be seen as a special case of counterexample
guided abstraction refinement [23]. The abstraction is based on relaxing a
particular requirement of the used non-standard execution model, namely
the consistency check. Thus the initial formula may have models that do not
correspond to the real executions of the system (spurious counterexamples).
The initial formula is then automatically iteratively strengthened (the model
is refined) with additional clauses until either a correct counterexample is
found or the formula is proved unsatisfiable. The approach will in the worst
case converge to the full consistency check formula in a polynomial number
of iterations. See [50] for more details.

5.2 LIFTING CONSTRAINTS FROM LIMITED PATH PRODUCT

The limited path product has a transition between two states iff the step
product of the same components has a simple execution between the two
states. The following subsections analyze the problems encountered when
a more general model is attempted. It is noticed that in many cases lift-
ing the presented limitations renders the interpretation of the model harder,
i.e., a model of the formula could correspond to several different executions.
When this problem is addressed, it is noticed that the additional complexity
outweighs the potential gains brought about by the possibly reduced bound.

5.2.1 Limitations on the Structure of the Path

The simple executions used in the definition of the transition relation of the
limited path product are required to visit a particular component state at most
once. This section examines why this limitation is used.

Figure 5.8 presents the two basic cases ruled out by the limitations. On
the left hand side the idea is to examine what problems would be caused if an
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5/3
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Figure 5.8: Paths Not Allowed

encoding is desired where it is possible to execute a path entering the local
state s0 from the left, proceeding along the transitions from s0 to s1, then
back to s0 and then along the transition from s0 to s1 a second time (the
transition is marked with 2×).

The central problem arises when trying to maintain the uniqueness of
the model and an easy mapping between the executed transitions and the
true literals of the model of the resulting formula. If it is possible to execute a
transition a second time there should be a literal true iff that is the case. Thus,
an additional literal is needed for all the transitions. Indeed, if repetition of
n times is desired, n literals are needed.

Thus, to be able to execute a loop twice to in the best case halve the
needed bound you need to approximately double the number of literals. Any
savings in the bound are therefore lost in the additional complexity of the
encoding of the consistency check. Finally, to generally determine a suitable
repetition count based on the structure of the system seems to be non-trivial.

On the right hand side of Figure 5.8 the idea is to illustrate the idea that a
state (in this case s2) is exited twice, but to different states. Consider first the
case where the control flow proceeds from the transition labeled 1 along the
numbers on the left hand side of the slash sign (/) and finally reaches the state
s3. Thus 4 transitions are executed and the visited states are s2, s4, s2 and s3.
If such paths are allowed the simple cardinality constraint in scheme (5.4)
would have to be replaced. It seems hard to conceive a simple scheme allow-
ing this type of paths and still maintaining the soundness of the encoding, i.e.
being able to rule out all the models that are not executions of the system.

The situation is even more complicated if the path above is extended
adding the transition from s3 to s4 (the dashed line). Assuming the verifier
is presented with a formula stating that these transitions are executed, how
should it be interpreted ? There are two possibilities, following the number-
ing on the left and the right side of the slash sign, respectively. Thus, only
having literals of the form ex(t1, t) is not sufficient, but the order has to be
taken into account. (This is relevant when synchronizing with the other com-
ponents of the system.) It seems that a literal encoding the fact that transition
t1 is executed as the nth transition on the path is needed. This renders the
encoding so complex (a new literal for every transition in every possible posi-
tion on the path) that the possible gains in the bound are again outweighed.

5.2.2 Limitations on the Repetition of Same Action

The simple executions can not contain repeated actions. Thus, for instance
the execution of all the transitions from the component in Figure 5.9 is not
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possible.

a b a

Figure 5.9: Repetition of Actions

The argument to rule out these kind of executions is similar to that of
ruling out executions where a particular transition is executed several times.
Firstly, it should be noted that if executions repeating visible actions were
allowed the consistency check could not be implemented in the same way as
presented in Section 5.1.1. This due to the fact that the executed transitions
from a single component would induce a circular ordering graph and thus
such valuation is not a model of the formula.

Therefore for instance, the second time an action appears has to be differ-
entiated from the first time. But then, two literals are needed for any action.
Again, if an action appears n times, n literals are needed. Thus, the formula
resulting from the presented encoding is probably still easier to solve even
though a few additional time steps might be needed.

5.3 DETERMINIZED LIMITED PATH PRODUCT

This section considers the problems encountered when trying to reduce the
bounds needed for a counterexample by applying on-the-fly determinization
to the domain of the limited path product. The definition of a determinized
limited path product is easy and is as follows:

Definition 55 Let L1, . . . ,Ln where each Li = 〈Si, Ii,Σi,∆i〉, 1 ≤ i ≤ n
be LTSs. Let Ld

st = (Sst, Ist,Σi,∆st) be the determinized step product L1 ‖
d
st

· · · ‖d
st Ln. The determinized limited path product of L1, . . . ,Ln, denoted

L1 ‖
ld
pt L2 ‖

ld
pt · · · ‖

ld
pt Ln, is the LTS 〈S, I ,Σ,∆〉 such that:

• S = 2S1 × 2S2 × · · · × 2Sn ,

• I = τ(I1) × τ(I2) × · · · × τ(In),

• Σ = {r〈T1,...,Tn〉,〈T ′

1
,...,T ′

n〉| 〈T1, . . . , Tn〉 ∈ S, 〈T ′
1, . . . , T

′
n〉 ∈ S},

• ∆ = {〈T1, . . . , Tn〉, r〈T1,...,Tn〉,〈T ′

1
,...,T ′

n〉, 〈T
′
1, . . . , T

′
n〉| there is a

simple execution from 〈T1, . . . , Tn〉 to 〈T ′
1, . . . , T

′
n〉 in Ld

st}.

The problem in devising an encoding to the product above lies in the fact
that from a reached set of state, the same actions in the same order should be
executed.

Enforcing this seems to have the following difficulties. To maintain the
correct order to rule out inconsistency in the component level requires a
local version of the consistency check. This introduces additional complexity,
but is probably possible. However, the consistency check can not be the same
as presented above to detect global inconsistency. The problem is illustrated
in Figure 5.10. Namely, if the singleton set {s0} is reached and the sequence
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Figure 5.10: On-the-fly Determinization

abc is executed, the reached set should be {s4}. However, both versions of
the consistency checks presented above in Sections 5.1.1 and 5.1.2 would
allow the reached set to be {s4, s6}. This due to the fact that the sequence
ac is not inconsistent with abc, it merely omits an action. What is lacking is
a local synchronization requirement that enforces the local ordering graph
to be a chain. However, a harder problem is to enforce that every path from
the reached set of states having the same visible labels in the same order are
executed.

The limited path product model seems to provide a reasonable compro-
mise in that in some test cases it is possible to reduce the needed bound
significantly. Still, a reasonable encoding is possible and in some test cases,
especially if performed iteratively, that encoding compares favorably to the
encodings of other execution models.
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6 IMPLEMENTATION

The ideas presented have been implemented to a toolset that reads system
models specified as labeled transition systems and produces a Boolean for-
mula in CNF form whose models correspond to the executions of the chosen
execution model (interleaving, step, process, and limited path executions).

6.1 OPTIMIZATIONS BASED ON STATIC ANALYSIS

The presented execution models allow certain optimizations based on the
structure of the system. The idea is to compute for each state and transition
a number that tells the earliest possible moment ` that a particular state can
be reached or a particular transition executed, respectively. If this is done
in a sound manner, nothing is lost if the literals in(sj, t) and ex(tk, t) are
replaced with ⊥ when the value of t is less than the computed value ` for
the state or transition. The purpose of this is to simplify the resulting BMC
formula.

For the interleaving, step, and process execution models without on-the-
fly determinization, the optimization is based on first computing locally the
smallest distance (the number of transitions) from an initial state to every
other state. The earliest execution moment for a local transition, if the com-
ponent is considered in isolation, is then the value obtained for its source
state.

Then, based on the structure of all the components to be composed, it is
checked whether some transitions can still be postponed. The reasoning in
this latter step is that if for action a, the earliest moment it can be executed is
` in some component Li, then other components can not execute it earlier
either. Even if they could execute a in isolation in, say ` − 2, they can not
proceed due to having to synchronize with Li. Therefore, the earliest exe-
cution moments in components other than Li are updated to `. Thereafter,
the process is iterated by computing the local values again based on the com-
ponent structure and the obtained new synchronization information. The
process is repeated until no value is changed.

Let L1, . . . ,Ln be LTSs and the earliest execution moment for every local
state si and transition tj be denoted er(si) and er(tj), respectively. Assume
further that the BMC process is initiated with bound k. The complete algo-
rithm that computes the earliest possible execution moment for every local
state and transition is as follows:

1. For all Li, 1 ≤ i ≤ n, let for all sj ∈ Si, nsj
be the length (the number

of transitions) of the shortest path to sj from an initial state. If nsj
< k,

then er(sj) = nsj
+ 1, otherwise er(sj) = k + 1. For every local

transition tl ∈ ∆i, let er(tl) = er(pr(tl)).

2. For all visible actions a and all components Li containing transitions
labeled a, let T ⊆ ∆i be the set of transition labeled a from Li. Let
na,Li

be the smallest value er(tj) such that tj ∈ T . Let then na be
the maximum of the values na,Li

and L the set of components with
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na,Li
= na . If tl = (s, a, s′), tl ∈ ∆m, Lm 6∈ L and er(tl) < na , then

er(tl) = na .

3. If no value is changed in step 2, terminate.

4. For all Li, 1 ≤ i ≤ n:

(a) for all local states sj ∈ Si \ Ii, let n be the lowest value er(tl) of
the incoming transitions tl of sj . If n+1 > er(sj), then er(sj) =
n+ 1. However, if n > k, then er(sj) = k + 1 and

(b) for all local transitions tj ∈ ∆i, if er(tj) < er(pr(tj)), then
er(tj) = er(pr(tj)). If er(tj) is changed for some local transi-
tion repeat step 4.

5. Goto step 2.

a/1

b/2

c/3

a/1

L1 : L2 :

1 1

2

3

4

2

d/2

3

c/2

3

d/3

4

Figure 6.1: Optimization Algorithm (Beginning)
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Figure 6.2: Optimization Algorithm (End)

An example is given in Figures 6.1 and 6.2 where the transitions are la-
beled for instance c/3 denoting the fact that the action of the transition is c
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and that the algorithm computed that the earliest moment it can be executed
is the third step. Similarly next to the local states, there is a number telling
the earliest global state where that local state can be reached.

These numbers are obtained by first computing the minimum distances
for each local state from an initial state. For each transition, the number
is that of its source state. These numbers are given in Figure 6.1. In the
second phase, it is noticed that the action c can occur only in the third step
in component L1. Therefore the field c/2 in the component L2 is updated
to c/3. However, this implies, due to the local structure of L2, that action d
in component L2 can only take place in the fourth step. This information
can then be propagated back to L1 after which the process is complete. The
final result is shown in Figure 6.2.

It should be noted that limiting the values of the local states and transi-
tions to the given bound is not done only due to computational efficiency.
Namely, if this is not done, the algorithm may in some cases continue to
increment the earliest values ad infinitum. The situation is illustrated in Fig-
ure 6.3. Since in the example system the transitions labeled a and b occur in
conflicting orders, their synchronized, step, and process products deadlock in
the initial state. The preprocessing algorithm computes first for the local tran-
sitions in component L1 the values a/1 and b/2 and for component L2 the
values b/1 and a/2, respectively. Based on synchronization requirements, the
earliest moment for execution becomes 2 for all the local transitions. Then,
based on the local structure of L1, the values of its local transitions become
a/2 and b/3, respectively. For L2, the values become b/2 and a/3 and the
algorithm never stops. The limitation of the maximum value attached to a
state or transition to the used bound is thus necessary.

With that limitation, the optimization algorithm is bound to terminate.
This can be seen from the fact that it updates

∑
1≤i≤n(|Si| + |∆i|) counters

whose value is a natural number that can only grow during the execution of
the algorithm. Furthermore, the algorithm maintains the invariant that if the
value er(si) or er(tj) is k for some state si or transition tj , state si can not
be reached and transition tj can not be executed in less than k steps, respec-
tively. This can be seen by analyzing the steps of the algorithm. Firstly, at the
outset the invariant holds. Secondly, every step in the algorithm maintains it.
Finally, due to the polynomial (in the size of the system) number of updated
counters, the running time of the algorithm is polynomial.

The optimization algorithm above works correctly for the standard inter-
leaving, step, and process models. If on-the-fly determinization is used, the
algorithm has to be modified slightly. The modification is such that τ transi-
tions do not contribute when computing the values attached to states / tran-
sitions. This means that in step 1, when the initial values for states are com-
puted based on the length of the shortest path to the state, if a τ transition is
encountered, that transition is not added to the length of the path. Secondly,
in phase 4a, when computing er(si) of a local state si based on its incom-
ing transitions tj , the value er(tj) is incremented only if tj is labeled with a
visible action.

For the limited path execution model, the algorithm above does not pro-
vide correct results. However, a similar earliest value can be computed for
every local state and transition. The reasoning behind the optimization al-
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Figure 6.3: Example System

gorithm is based on the fact that simple executions used in the definition of
the limited path product (Definition 45) do not allow the repetition of visible
actions. Thus, if all the paths from the initial states to a particular local state
contain a lot of repeated actions, then it takes several steps to reach that state.
For instance, consider an LTS with the alphabet {a, b, c, d}. The execution

of the path s0
aaabb
→ s1 takes 4 steps (the execution steps being a, a, ab and

b) whereas the path s0
abcd
→ s2 can be executed in a single step. If these are

the only paths to the state s1 and s2, respectively, the state s1 can be reached
only using an execution of length 4 whereas the state s2 can be reached with
an execution containing one step. In general, the computed number for a
particular state is obtained from the path from an initial state that can be
executed in the fewest number of steps.

However, in this case, the earliest step that a transition can be executed
is not simply the number obtained for its source state. Namely, it depends
on the label of the transition. Consider again an LTS with the alphabet

{a, b, c, d} and a path s0
aabb
→ s1 and assume that s0 is its initial state and that

the presented path is the only one to state s1. It takes three steps to execute
the path (the steps being a, ab, and b). Consider then the possible transitions
leaving state s1. Every transition whose label is not b can be combined to the
last step b of the given path aabb. Thus, such transitions can be executed in
the third step. For transitions labeled b, though, this is not the case since then
the last step becomes bb, which is not allowed. Therefore, for any outgoing
transitions from s1 labeled b, their earliest execution step is four.

The local algorithm is again supplemented with a global analysis based on
the synchronization requirements that may further postpone the execution of
some actions. This phase is similar as in the algorithm for the interleaving,
step, and process models. The complete algorithm is then again an iteration
of a local and a global part until no value is changed.

The algorithm uses the following notation. Similarly as in the algorithm
for interleaving, step, and process models, er(ti) and er(sj) denote the earli-
est possible execution moment for transition ti and state sj, respectively. In
addition, it is assumed that the given bound is k. In this case a new counter,
er(sj, al), is introduced. It denotes the earliest moment that a transition la-
beled al leaving state sj can be executed. The algorithm is as follows:

1. For all Li, 1 ≤ i ≤ n, let for all sj ∈ Si and al ∈ Σi, nsj ,al
be

the minimum number of transitions labeled al with which sj can be
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reached from some initial state. If nsj ,al
< k, then er(sj, al) = nsj ,al

+
1, otherwise er(sj, al) = k + 1.

2. For all Li, 1 ≤ i ≤ n, let for all sj ∈ Si, nsj
be the maximum of

er(sj, al) for all al ∈ Σi. For all am ∈ Σi, if er(sj, am) < nsj
, then

er(sj, am) = nsj
−1. For all tn ∈ ∆i, let er(tn) = er(pr(tn), a) where

a is the label of tn.

3. For all visible actions a and all components Li containing transitions
labeled a, let T ⊆ ∆i be the the set of transition labeled a from Li.
Let na,Li

be the smallest value er(tj) such that tj ∈ T . Let then na

be the maximum of the values na,Li
and L the set of components with

na,Li
= na . If tl = (s, a, s′), tl ∈ ∆m, Lm 6∈ L and er(tl) < na , then

er(tl) = na .

4. If no value changed in step 3, then let for all Li, 1 ≤ i ≤ n and all
sj ∈ Si, er(sj) be the minimum of all er(sj, al), al ∈ Σi. Terminate.

5. For all Li, 1 ≤ i ≤ n:

(a) For all local states sj ∈ Si \ Ii and all visible actions al ∈ Σi.
Compute for sj and al the value nal,tm over all the transitions
tm = (s, a, sj) ∈ pr(sj) obtained as follows: If tm is labeled with
al, then nal,tm = er(s, al) + 1, otherwise nal,tm = er(s, al). Let
nal,sj

be the minimum of these values. If er(sj , al) < nal,sj
, then

if nal,sj
< k + 1, er(sj, al) = nal,sj

, otherwise er(sj, al) = k + 1.

(b) For all transitions tj = (s, a, s′) ∈ ∆i. If er(tj) < er(s, a), then
er(tj) = er(s, a).

(c) If the value for some transition changed in step 5b, repeat step 5.

6. Goto step 2.

c/2

a/2

c/1

b/2

L1: L2:
〈1, 1〉〈1, 1〉

〈1, 2〉

〈2, 3〉

〈3, 3〉

a/1

〈2, 1〉

〈2, 2〉

〈3, 2〉

a/2

Figure 6.4: Optimization Algorithm after Step 2, Limited Path Model

An example is given in Figures 6.4 and 6.5. The values er(sj, a) are in
each state given as a tuple of integers following the alphabetical order of ac-
tions. LTS L1 has the alphabet {a, b} and L2 the alphabet {a, c}. Figure 6.4
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c/2

a/2

a/2 c/1

b/2

a/3

L1: L2:
〈1, 1〉〈1, 1〉

〈3, 3〉

〈4, 3〉

〈1, 2〉〈3, 2〉

〈2, 3〉

〈3, 3〉

Figure 6.5: Completed Optimization Algorithm, Limited Path Model

shows the intermediate result after step 2. Then it is noticed that a can be
postponed in L1 due to the structure of L2 to time step 2. Since it has to
occur before b and the second a due to the structure of L1 those values are
adjusted accordingly. The final result is shown in Figure 6.5.

The optimization algorithm for the limited path product model is also
bound to terminate. This time it updates

∑
1≤i≤n(|Si| · |Σi|+ |∆i|) counters

whose value is a natural number that can only grow during the execution of
the algorithm. However, the value of each counter is bound by the number
k + 1 where k is the given bound. Similarly as in the case for the algorithm
for interleaving, step, and process models it can be shown that the algorithm
maintains the invariant that the er()-values are conservative approximations
of the earliest moment a state can be reached or a transition executed. Fi-
nally, the number of updated counters is polynomial and the running time
of the algorithm thus polynomial in the size of the system.

6.2 TRANSLATION TO A BOOLEAN FORMULA

A toolset has been implemented that, given a set of components to be com-
posed, the desired execution model, and the bound k on the length of the
executions, yields a Boolean formula in DIMACS form. The models of this
formula are the executions of length k of that product of the components
that corresponds to the given execution model. Besides the algorithm based
on static analysis, the translation is optimized in the following way. Firstly,
the resulting formula is represented as a Boolean circuit (elaborated below).
Secondly, the circuit is reduced by simplification rules, substructure sharing
and cone of influence reduction [48]. The reduced circuit is transformed to
CNF using a linear size translation introducing a new atom for each gate in
the circuit. The circuit reduction and mapping are done using a tool called
BCzChaff [46] which is integrated with the zChaff SAT solver [70] so that
zChaff can be run directly on the generated CNF formula.

The Boolean circuit representation of a BMC formula is as follows: for
each atom and connective in the formula, a gate is introduced in the circuit.
This is easy as the tool used supports directly the extended set of Boolean
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functions used in the translation, including the cardinality constraints. The
left hand side of Figure 6.6 presents, for instance, a possible instantiation of
constraint (4.4) from the interleaving execution model. To obtain a sound
encoding, this gate has to be constrained to the value of true.

ex(a, 1, t) ex (b, 1, t)ex (t1, t) ex(t2, t)

card1
0 ∨sc(1, t)

Figure 6.6: Example Circuits

However, the representation is optimized when translating constraints that
are equivalences, like for instance constraint (4.11). For such constraints, no
gate for the atom on the left nor for the equivalence connective are intro-
duced. Rather, the atom on the left is identified with the gate for the main
connective on the right hand side of the equivalence. For example, the right
hand side of Figure 6.6 presents the subcircuit for the literal sc(1, t) (instance
of constraint (4.11)) defined as being equivalent to the disjunction of the lit-
erals ex (a, 1, t) and ex(b, 1, t).

The complete process of translating an LTS system to a Boolean circuit en-
coding the presented execution models results in a circuit whose schematic
diagram can be seen in Figure 6.7. It presents the transitions relation un-
rolled three steps. The circuit is a faithful representation of the encoding as
a propositional formula because the satisfying truth valuations of the BMC
formula and the satisfying valuations of the circuit coincide. A satisfying val-
uation of the circuit is a truth value assignment for the input gates (gates
with no incoming edges) of the circuit such that the resulting value of each
constrained gate matches it’s specified value (true).

The circuit in Figure 6.7 corresponds to the execution models not apply-
ing on-the-fly determinization. This can be seen from the fact that the input
gates of the circuits are labeled ex (ti, t) for the time steps {0, 1, 2}. If a cir-
cuit is created for the interleaving, step, or process models applying on-the-fly
determinization, the input gates are the ex (a, t) literals where a varies over
the visible actions of the system.

In order to limit the execution to those violating a reachability property,
additional gates encoding the property are added after the last step in the
circuit.
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Figure 6.7: Schematic Diagram
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7 TEST CASES

This dissertation presents different techniques to create composition opera-
tors for labeled transition systems with the goal of creating efficient BMC
algorithms. This chapter presents some experimental results. Firstly, the dif-
ferent composition operators are compared to each other and, secondly, to
existing state-of-the-art model checking tools.

Whereas direct comparison of the different presented BMC methodolo-
gies is feasible, the task of comparing to other tools is not trivial, since there
are several sources of bias. Firstly, these tools may have been written to dif-
ferent types of systems and their input syntax vary. Secondly, to verify that the
models for the tools indeed represent the system to be verified in the same
way (for instance, contain the same number of states) is hard. In [26] Corbett
performs comparative study of different deadlock detection techniques. He
compares the following systems that have different approaches to the state
explosion problem.

• SPIN, an explicit state model checker applying partial order reduc-
tion [42],

• SMV, a symbolic model checker [63], and

• INCA, a tool based on inequality necessary conditions [27].

The choice of tools is justified by their different way of alleviating the
state-explosion problem. In the paper [26], the input files to the SPIN, SMV,
and INCA tools are created from models where the systems are described
as synchronizing labeled transitions systems (in the paper called finite state
automata). Corbett analyzes the difficulties caused by the different input syn-
taxes and tries to ensure that given a system description as LTSs, the resulting
SPIN, SMV, and INCA descriptions model the system in the same way.

Since the system models are available in different input languages, some
of the presented tests are used here to compare the established tools against
the step, process, and transition merging execution models. Since some of
the examples are scalable, they have been scaled up to take into account the
added computer power since the paper’s publication. Here, the comparison
is limited to the state-of-the-art model checking tools SPIN, version 4.2.4 [42]
and NuSMV, version 2.2.3 [19]. 1

The presented examples are as follows (entry of the type Name(n) indi-
cates scalability, where n is the parameter):

Dac(n): A program modeling a divide and conquer computation by
forking up to n solver tasks that proceed in parallel. When n = 200,
this system contains ca. 1.2 · 1052 reachable states.

Dartes: The communication skeleton of a fairly complex Ada program
with 32 tasks. This system contains ca. 1013 reachable states.

DP(n): The dining philosopher’s problem. When n = 12, this system
contains 531440 reachable states.

1the latest versions available in March 2005
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Elev(n): A model of a controller for a building with n elevators. When
n = 4, this system contains 47436 reachable states.

Hartstone(n): The communication skeleton of an Ada program in
which one task starts and then stops n worker tasks. This system con-
tains n+ 2 reachable states.

Key(n): The communication skeleton of an Ada program that manages
the keyboard / screen interaction in a window manager. When n = 4,
this system contains 44819 reachable states. When n = 5, the system
contains 398760 reachable states.

Mmgt(n): The communication skeleton of an Ada program imple-
menting a memory management scheme with n users. When n = 4,
this system contains 66308 reachable states.

Q(n): The Ada skeleton of an RPC client / server-based user interface.
When n = 1, this system contains 123596 reachable states.

Sentest(n): The communication skeleton of an Ada program that starts
n tasks to test sensors. When n = 400, this system contains 1962
reachable states.

Speed: The communication skeleton of an Ada program to regulate
the speed of a car. This system contains 8689 reachable states.

In order to test the special characteristics of the execution model applying
transition merging, the above set is extended with the following case:

Tree(n): The example presented in Section 5.1.3. It is trivial for the
step and process models but potentially hard for the transition merging
model due to the fact that it contains a lot of inconsistent executions.
This system contains n+ 1 reachable states.

It is known that all these examples have a deadlock. Furthermore, for
all examples the bound with which the deadlock is reached is known from
earlier work with these models for all the presented composition operators. It
is an unfortunate fact that most of the examples have a small reachable state
space for modern computers. However, the author is not aware of any other
deadlock checking benchmark collection for LTSs.

When reporting results, the following conventions are applied. The run-
ning time for a particular instance is obtained from �� ���� �� �� ��� and it is
the sum of the user time and the system time. In all the test runs, a time limit
of one hour is used. If the running time of a particular instance exceeds this
limit, the result is reported in the form > 1h. All the tests are run using an
AMD Athlon machine with a 1400 MHz CPU with one gigabyte of memory
running the Debian GNU/Linux operating system.

The first results are presented in Table 7.1. The table compares the bound
and the running time of interleaving and parallel order (step and process)
semantics. In this case, no on-the-fly determinization nor any static analysis
is applied. The columns in the table are as follows:

• Problem, the name of the test case,
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Table 7.1: Test Results of Interleaving, Step and Process Models

Problem Il. k Il. s St. k St. t Pr. k Pr. s

Dac(200) 3 0.51 3 0.98 3 0.87
Dartes 32 2.7 32 3.4 32 4.0
Dp(12) 12 > 1h 1 0.02 1 0.02
Elev(4) 17 268 10 4.0 10 3.1

Hart.(100) 201 97.7 201 81.2 201 147
Key(4) 50 962 37 9.9 37 264
Key(5) 52 1610 38 6.2 38 348

Mmgt(4) 12 6.4 8 0.43 8 0.70
Q(1) 21 2.1 9 0.36 9 0.42

Sentest(400) 413 337 408 199 408 471
Speed(1) 7 0.03 4 0.03 4 0.01
Tree(100) 100 18.5 100 19.8 100 23.2

• Il. k, the bound using interleaving executions,

• Il. s, the running time in seconds using interleaving executions,

• St. k, the bound using step executions,

• St. s, the running time in seconds using step executions,

• Pr. k, the bound using process executions, and

• Pr. s, the running time in seconds using process executions.

The reported time is the time it takes to solve the single SAT formula
corresponding to the reported bound using the solver BCzChaff that uses
zChaff version 2004.11.15 as a back end. The reported bound is the smallest
number of steps required to reach a deadlock. For all examples, the best
running time is highlighted.

From Table 7.1 it can be seen that in many cases, the bound needed to
detect a deadlock is smaller using a composition operator applying partial
order semantics than using interleaving semantics. In one example, Dp(12),
the bound reduces from 12 to one when interleaving semantics is replaced by
step semantics. In this example, also the running time reduces from over one
hour to a fraction of a second. It seems to be the case that in many examples
the reduced bound of partial order semantics yields a shorter running time of
the solver. This analysis can also be supported mathematically by computing
the arithmetic average a of the ratio (running time step semantics / running
time interleaving semantics) for the used examples. Then, the number 1 −
a is used as an indication of the average speedup of using step semantics.
The average speedup in the running time using step semantics compared to
interleaving semantics is 32% (excluding Dp(12) since it did not terminate
within an hour using interleaving semantics). However, an assessment of the
superiority of step semantics is not conclusive for at least two reasons. Firstly,
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the set of test cases is limited and secondly, using another SAT solver, the
running times could be different.

When step and process semantics are compared, it can firstly be (trivially)
seen that the bound needed to detect a deadlock is the same. A second obser-
vation is a bit surprising. In most cases, the running time with step semantics
is smaller than with process semantics. In average, the speedup of using step
semantics instead of processes is 13 %. Compared to the formula modeling
step semantics, the formula modeling process semantics contains one addi-
tional constraint. This constraint reduces the number of models but does
not seem to provide a performance gain, at least not with BCzChaff. This
fact is interesting since it is in direct conflict with the conclusions of [39].
It would be interesting to know whether there is something in the test setup
used in [39] that renders process semantics more competitive than step se-
mantics.

Table 7.2 presents the same examples with the same execution models,
however, this time applying the static analysis algorithm presented in Sec-
tion 6.1. Even though not comprehensively reported, the size of the Boolean
circuit is typically significantly reduced when this algorithm is applied. For
instance, for the example Dartes, the size of the circuit for interleaving se-
mantics reduces from roughly 6.7 megabytes to 4.0 megabytes when static
analysis is applied. This seems in most cases to be reflected also in the run-
ning times. Indeed, comparing the circuits encoding step semantics from
Table 7.2 to those from Table 7.1, in average the running times of the former
are 28% shorter. Also with static analysis (within Table 7.2), step semantics
seems to outperform interleaving and process semantics.

Table 7.2: Test Results of Interleaving, Step and Process Models (Static Anal-
ysis)

Problem Il. k Il. s St. k St. t Pr. k Pr. s

Dac(200) 3 0.24 3 0.17 3 0.29
Dartes 32 2.9 32 1.8 32 2.2
Dp(12) 12 > 1h 1 0.05 1 0.01
Elev(4) 17 119 10 1.9 10 1.7

Hart.(100) 201 88.2 201 75 201 131
Key(4) 50 2151 37 3.1 37 26.3
Key(5) 52 1168 38 5.6 38 431

Mmgt(4) 12 4.6 8 0.42 8 1.4
Q(1) 21 1.5 9 0.22 9 0.17

Sentest(400) 413 197 408 324 408 341
Speed(1) 7 0.03 4 0.00 4 0.03
Tree(100) 100 8.6 100 12.6 100 13.5

Table 7.3 presents the same examples, this time with interleaving, step
and process models applying on-the-fly determinization. Static analysis is
also applied. Compared to tables 7.1 and 7.2, the needed bounds in 7.3 to
detect a deadlock are never greater, in many examples they are lower. This
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follows from the fact that the internal transitions of the components do not
contribute to the length of the execution. For interleaving semantics, the
difference is in general larger than for the execution models applying partial
order semantics. For instance, for the example Elev(4), the bound reduces
from 17 to 10. In this case, the running time of BCzChaff is also significantly
smaller. In Table 7.3, step and process semantics give comparable results,
the average speedup of step semantics (excluding the examples Dp(12) and
Speed(1) with trivial running times) is only 8%.

When step semantics with on-the-fly determinization (from Table 7.3) is
compared to step semantics with static analysis (from Table 7.2), the running
times using the former are 169% worse in average. An important contribut-
ing factor to this is the very good running times of the examples Key(4) and
Key(5) in Table 7.2. If these two examples are excluded from the compari-
son, the average speedup of on-the-fly determinization using step semantics
is 20%.

Table 7.3: Test Results of Interleaving, Step and Process Models (Static Anal-
ysis and On-the-fly Determinization)

Problem Il. k Il. s St. k St. t Pr. k Pr. s

Dac(200) 2 0.14 2 0.1 2 0.07
Dartes 31 2.9 31 1.3 31 2.9
Dp(12) 12 > 1h 1 0.00 1 0.00
Elev(4) 10 2.6 9 1.6 9 1.2

Hart.(100) 200 84.3 200 74.4 200 79
Key(4) 47 98.4 37 51.7 37 36.3
Key(5) 49 450 38 21.0 38 36

Mmgt(4) 8 1.7 8 0.58 8 0.60
Q(1) 19 0.88 9 0.18 9 0.16

Sentest(400) 412 786 408 56.4 408 236
Speed(1) 7 0.04 4 0.01 4 0.00
Tree(100) 100 7.4 100 10.5 100 14.7

One source of bias to the presented experimental data is the fact that so
far, only a single solver, BCzChaff, is applied. Therefore, some of the harder
examples for BCzChaff were rerun using another solver, siege_v4 [80]. The
examples are Dp(12), Elev(4), Key(4), and Key(5). The reason for choos-
ing these examples is that at least with some execution semantics, they have
running times exceeding 100 seconds. For Dp(12), this is the case only for
interleaving semantics. However, since that running time exceeds one hour,
comparison to siege_v4 is interesting. Secondly, the chosen examples con-
tain relatively complex component LTSs. Simple structure is the reason why
the examples Sentest(400), Hartstone(100) and Tree(100) are left out, even
though their running time in some cases exceeds 100 seconds.

The results are presented in Tables 7.4, 7.5, and 7.6. The columns of the
tables are as follows:

• Il.(B), the running time in seconds of BCzChaff with interleaving se-
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mantics,

• Il.(s), the running time in seconds of siege_v4 with interleaving se-
mantics,

• St.(B), the running time in seconds of BCzChaff with step semantics,

• St.(s), the running time in seconds of siege_v4 with step semantics,

• Pr.(B), the running time in seconds of BCzChaff with process seman-
tics, and

• Pr.(s), the running time in seconds of siege_v4 with process semantics.

The presentation follows the conventions applied when presenting Ta-
bles 7.1, 7.2 and 7.3. In Table 7.4 the running times are presented when no
static analysis nor on-the-fly determinization is applied. In Table 7.5 static
analysis is added and finally in Table 7.6 both static analysis and on-the-fly
determinization are applied. However, siege_v4 is based on a randomized
algorithm and the running times for a particular instance may vary depend-
ing on the seed value given to the random number generator. To remove this
potential source of bias, the running times for siege_v4 are the arithmetic
average for 5 runs using different seed values. In all tables, the running time
of the better solver is highlighted.

The presented results justify the fact that if the tests cases are run using
only a single SAT solver, a source of bias is introduced. Namely, there are
many examples where siege_v4 performs better than BCzChaff, for instance
in all the test cases with interleaving semantics. For instance in the example
Dp(12), when interleaving semantics and static analysis are applied, the run-
ning time of over one hour of BCzChaff reduces to 51.6 seconds. However,
there are also examples where BCzChaff performs better that siege_v4. It
should be noted that also with siege_v4, the running times using step seman-
tics compare favorably to those using interleaving and process semantics.

Table 7.4: Comparison between BCzChaff and siege_v4

Problem Il. (B) Il. (s) St. (B) St. (s) Pr. (B) Pr. (s)

Dp(12) > 1h 51.6 0.02 0.00 0.02 0.01
Elev(4) 268 15.0 4.0 5.1 3.1 4.3
Key(4) 962 108 9.9 13.9 264 80.0
Key(5) 1610 491 6.2 50 348 122

In Table 7.7 results are presented when local transition merging is applied.
The results are presented for both the implementation with the full (cubic)
consistency check and the implementation applying iterative strengthening.
In addition, the table contains again the results for step semantics from Ta-
ble 7.1. These are given to be able to easier compare the cubic and iterative
encodings to the fastest applicable (not applying static analysis and on-the-fly
determinization) linear encoding. The columns of the table are as follows:
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Table 7.5: Comparison between BCzChaff and siege_v4 (Static Analysis)

Problem Il. (B) Il. (s) St. (B) St. (s) Pr. (B) Pr. (s)

Dp(12) > 1h 385 0.05 0.01 0.01 0.01
Elev(4) 119 19.9 1.9 0.62 1.7 1.0
Key(4) 2151 168 3.1 23.8 26.3 99.9
Key(5) 1169 187 5.6 26.5 341 157

Table 7.6: Comparison between BCzChaff and siege_v4 (Static Analysis and
On-the-Fly Determinization)

Problem Il. (B) Il. (s) St. (B) St. (s) Pr. (B) Pr. (s)

Dp(12) > 1h 1636 0.00 0.01 0.00 0.01
Elev(4) 2.6 0.93 1.6 0.69 1.22 0.96
Key(4) 98 45.2 52 36.9 36.3 36.4
Key(5) 451 43.3 21.0 52.6 36.5 20.2

• Pt. k, the bound with local transition merging,

• Pt. s, the running time in seconds of BCzChaff with local transition
merging,

• Pt.(ite) s, the running time in seconds when iterative strengthening is
applied,

• ite, the number of iterations needed to detect a rule out spurious coun-
terexamples,

• St. k, the bound using step semantics from Table 7.1, and

• St. s, the running time in seconds using step semantics from Table 7.1.

Compared to interleaving and partial order execution models, the bounds
in Table 7.7 are dramatically smaller. Indeed, there are many cases where a
single step suffices to detect a deadlock. This suggests that the benchmarks
contain many deadlocks of a simple nature. However, when the complete
consistency check is encoded, the reduction in the size of the formula due
to the smaller bound is quickly offset by the complexity of the consistency
check.

Compared to the already presented execution models, the performance of
local transition merging varies depending on the example. There are exam-
ples, like Hartstone(100) and Sentest(100) where the significant reductions
in the bound compared to step semantics result in lower running times, even
with the full consistency check. However, in the case of the example Sen-
test(n), the alphabet of the example obtained with parameter value 400 is
prohibitely large. Therefore, the value is reduced to 100 for the transition
merging model (the running time for step semantics is obviously also for
Sentest(100) in Table 7.7).
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Table 7.7: Test Results of Local Transition Merging Model

Problem Pt. k Pt. s Pt.(ite) s ite St. k St. s

Dac(200) 1 514 1.2 0 3 0.98
Dartes 1 57.0 0.41 0 32 3.4
Dp(12) 1 0.73 0.06 0 1 0.02
Elev(4) 1 60.2 530 22 10 4.0

Hart.(100) 1 0.36 0.25 0 201 81.2
Key(4) 16 868 3600 0 37 9.9
Key(5) 16 2231 > 1h N/A 38 6.2

Mmgt(4) 1 0.56 0.21 0 8 0.43
Q(1) 1 3.2 0.67 3 9 0.36

Sentest(100) 6 1.5 13.8 0 108 7.7
Speed(1) 1 0.05 0.02 0 4 0.03
Tree(100) 1 107 54.1 98 100 19.8

Table 7.7 also presents the experimental results obtained from the imple-
mentation where the cubic complex constraint to detect inconsistent exe-
cutions is initially left out. This introduces spurious counterexamples and
rightmost column presents the number of refinement cycles needed to ob-
tain a correct counterexample. The results indicate that when zero or only a
few iterative cycles are needed, the implementation using iterative strength-
ening is superior to that encoding the full consistency check. However, for
instance with the example Elev(4), so many iterations are needed that the
encoding with the full consistency check (not to mention step semantics)
performs better. Finally, it should be noted that the example Key(4) is actu-
ally solved exactly within the time limit.

Table 7.8: Test Results of Local Transition Merging Model (Static Analysis)

Problem Pt. k Pt. s Pt.(ite) s ite St. k St. s

Dac(200) 1 486 1.1 0 3 0.17
Dartes 1 59.9 0.41 0 32 1.8
Dp(12) 1 0.74 0.07 0 1 0.05
Elev(4) 1 8.1 0.36 0 10 1.9

Hart.(100) 1 17.7 0.36 0 201 75.1
Key(4) 16 896 3600 0 37 3.1
Key(5) 16 2630 3600 0 38 5.6

Mmgt(4) 1 0.20 0.04 0 8 0.42
Q(1) 1 2.6 0.43 3 9 0.22

Sentest(100) 6 2.6 1.7 1 108 5.6
Speed(1) 1 0.02 0.01 0 4 0.00
Tree(100) 1 109 50.3 98 100 12.6

Table 7.8 presents the results of the same execution model as in Table 7.7,
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however, this time with the static analysis algorithm presented in Section 6.1
activated. These are compared against the step execution model from Ta-
ble 7.2 where static analysis is also applied. Comparison of tables 7.7 and 7.8
show that when full consistency check is encoded, applying static analysis
does not seem to affect the performance.

When the encoding is performed iteratively, comparison of Tables 7.7
and 7.8 show that the number of iterations needed is in some cases reduced.
For instance, in the example Elev(4), the 22 refinement cycles of Table 7.7
are reduced to zero in Table 7.8. This phenomenon can be explained as fol-
lows. An analysis of the spurious counterexamples of the test cases presented
in Table 7.7 shows that they are spurious because unreachable transition cy-
cles are executed. However, these transition cycles are “deep” in the compo-
nents and thus the impossibility of the transitions being executed is detected
by the static analysis algorithm.

The experimental part concludes with a comparison to the state-of-the-art
model checking tools NuSMV and SPIN. NuSMV contains both a BDD
based symbolic model checking back end and a SAT based BMC back end.
The comparison is performed against both of them. From the BMC en-
codings the most efficient (arguably) non-iterative semantics is chosen for
comparison, namely step semantics with static analysis and on-the-fly deter-
minization. In addition, NuSMV and SPIN are compared against the iter-
ative local transition merging model. Since both BDD based NuSMV and
SPIN are complete model checking techniques it is not fair to a compare
them against a BMC run of a single propositional formula corresponding to
the smallest depth where a deadlock is found. Therefore, in this case, the
running time for the BMC techniques is the sum it takes to solve successive
propositional instances corresponding to increasing depth starting from zero.

The general convention of applying a time limit of one hour is still ap-
plied. In some cases, this time limit is not sufficient to solve all the propo-
sitional instances until the depth of the deadlock is reached. If this is the
case, the bound is reported in the form> k where k is the depth correspond-
ing to the last instance whose unsatisfiability could be established within the
time limit. Compared to the presented BMC implementations, NuSMV
and SPIN seem to require large amounts of memory. In these comparisons
the maximum amount of virtual memory and maximum resident set size are
limited to 900 megabytes. With this limitation, SPIN reports running out of
memory with two examples, Dartes and Dp(12). With these examples, the
running time is marked with a dagger (†).
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Figure 7.1: NuSMV BDD command file

When NuSMV’s BDD based model checking is used, NuSMV is started
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in interactive mode and the commands given in Figure 7.1 are executed. The
first command sets the input file containing the SMV specification. The sec-
ond allows the dynamic reordering of BDD variables. This can potentially
reduce the size of the BDDs. The command “�� 	” initializes the system for
verification. Then, the reachable states are computed and finally, the com-
mand “��������� 	” checks the transition relation for totality, i.e., whether
there is a reachable deadlock.

��� ������� ��� � ��� �������� ���� 	
��� �
�������� ���
�� 	����� � 	
���������������� � �� �� �� ����� �� ��� �� � 	� �� 	

Figure 7.2: NuSMV BMC command file

When NuSMV’s BMC is applied, NuSMV is started in interactive mode
and the commands given in Figure 7.2 are executed. Again, the first com-
mand gives the input file containing the SMV specification created using the
encodings from Corbett. The second sets the used SAT solver, in this case
zChaff. The command “����� � 	” initializes the system for BMC. Finally,
the command “���������������� �” verifies whether the given LTL speci-
fication holds for all execution up to the given bound. The specification is “

�
�� ����” where

� ��� is a predicate that evaluates to true iff some action can
be executed in the reached state. The bound follows after the switch “��”
and is in Figure 7.2 set to 100. The argument “�� �” limits the search of
counterexamples to non-looping executions.

The results of the comparison of step semantics with on-the-fly deter-
minization against NuSMV’s BDD based and BMC implementations are
presented in Table 7.9. The columns of the table are as follows:

• Problem, the name of the test case,

• St. k, the depth reached using step semantics with static analysis and
on-the-fly determinization,

• Σ St. s, the running time in seconds using step semantics with static
analysis and on-the-fly determinization,

• SMV s, the running time in seconds of NuSMV BDD,

• SMV(B) k, the depth reached using NuSMV BMC, and

• Σ SMV(B) s, the running time in seconds of NuSMV BMC.

The results in Table 7.9 indicate that many of the examples are so small
that they can be easily solved using NuSMV with BDDs. However, no-
table exceptions to this trend are the examples Dac(200), Dartes and Sen-
test(400). When step semantics with on-the-fly determinization is compared
against the interleaving BMC implementation of NuSMV, it compares fa-
vorably. Obviously, the translation from the LTS specifications to the input
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Table 7.9: Test Results of Comparison Against NuSMV

Problem St. k Σ St. s SMV s SMV(B) k Σ SMV(B) s

Dac(200) 2 0.15 663 7 623
Dartes 31 15.3 272 > 28 1944
Dp(12) 1 0.00 0.21 > 8 549
Elev(4) 9 2.6 4.7 > 8 2063

Hart.(100) > 184 3544 6.2 > 97 957
Key(4) > 27 3153 1.2 > 21 3574
Key(5) > 24 111 3.4 > 19 1758

Mmgt(4) 8 4.4 0.32 9 1660
Q(1) 9 0.41 4.9 > 13 1927

Sentest(400) > 249 3597 > 1h > 8 201
Speed(1) 4 0.03 0.13 7 0.23
Tree(100) 100 300 6.5 > 90 994

syntax of NuSMV adopted from Corbett [26] can introduce bias. Corbett
translates the synchronizing LTSs to a NuSMV transition relation. This trans-
lation was devised before BMC was introduced. The translation used is quite
straightforward and might be done more efficiently in many ways.

Table 7.10 compares NuSMV’s BDD based model checking to the iter-
ative implementation of the execution model with local transition merging.
The results in the table indicate that with BCzChaff, iterative strengthening
compares favorably to NuSMV with the examples where a single step suffices
to detect a deadlock. An exception to this is the example Tree(100) that con-
tains lot of inconsistent executions. With the examples Key(4) and Key(5),
however, NuSMV clearly outperforms even the iterative strengthening tech-
nique.

When the presented methods are compared to SPIN, SPIN is used as
follows. Firstly, a verifier is created from the PROMELA specification using
the command “�� �� �
 � ��� �����”. The resulting model checker is then
compiled with the following options:

• ����� to use breadth first search. This is needed to detect the shortest
deadlocks.

• ���������� to reduce memory usage by compressing state vectors,
and

• ������	
 to optimize the performance for reachability properties.

Table 7.11 presents the results of the comparison to SPIN. The columns
of the table are:

• Problem, the name of the test case,

• St. k, the depth reached using step semantics with static analysis and
on-the-fly determinization,
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Table 7.10: Test Results of Iterative Encoding against NuSMV BDD

Problem Pt.(ite) k Σ Pt.(ite) s SMV s

Dac(200) 1 1.0 663
Dartes 1 0.41 272
Dp(12) 1 0.07 0.21
Elev(4) 1 0.36 4.7

Hart.(100) 1 0.36 6.2
Key(4) > 11 2002 1.2
Key(5) > 10 1922 3.4

Mmgt(4) 1 0.04 0.32
Q(1) 1 0.43 4.9

Sentest(100) 6 29.3 > 1h
Speed(1) 1 0.02 0.13
Tree(100) 1 109 6.52

• Σ St. s, the running time in seconds using step semantics with static
analysis and on-the-fly determinization,

• Pt.(ite) k, the depth reached using local transition merging with static
analysis,

• Σ Pt.(ite) s, the running time in seconds using local transition merging
with static analysis,

• SPIN k, the depth of the shortest found deadlocking execution using
SPIN, and

• SPIN s, the running time in seconds of SPIN.

Table 7.11: Test Results of Comparison Against SPIN

Problem St. k Σ St. s Pt.(ite) k Σ Pt.(ite) s SPIN k SPIN s

Dartes 31 15.3 1 0.41 - †
Dp(12) 1 0.00 1 0.07 - †
Elev(4) 9 2.6 1 0.4 34 0.06

Hart.(100) > 184 3544 1 0.36 502 0.06
Key(4) > 27 3153 > 11 2002 158 5.9
Key(5) > 24 111 > 10 1922 183 72.8

Mmgt(4) 8 4.4 1 0.04 28 0.90
Q(1) 9 0.41 1 0.43 171 39.2

Speed(1) 4 0.03 1 0.02 30 0.19

The results presented in Table 7.11 reiterate the result that there are sys-
tems, where explicit-state model checking (even with partial order reduction)
requires too much memory, whereas using BMC, it is possible to find errors.
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This is the case with the examples Dartes and Dp(12). However, when avail-
able memory permits, SPIN seems to be very efficient. In Table 7.11, the
depths of the deadlocking executions are reported also for SPIN. These have
been obtained using breadth first search (switch �����) in order to detect
the shortest deadlocks.

However, even though SPIN applies interleaving semantics, the reported
bounds are not the same as for the interleaving semantics reported in Ta-
ble 7.1. This difference can be traced to the way, the LTS (fsa) to PROMELA
translation is done in [26]. The execution of a visible action in the LTS
domain corresponds to a rendez-vous communication in the SPIN domain.
Thus, every visible action introduces a single step to the LTS counterexample
and two steps to the SPIN counterexample. In addition, when SPIN is used,
process creation introduces additional steps to the counterexample, one for
each created process.

Finally, for some of the examples that have been scaled up or created
from scratch, no PROMELA model is available. These are the examples
Dac(200), Sentest(400) and Tree(100) that have therefore been left out from
Table 7.11.
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8 CONCLUSIONS

The research goal of this dissertation has been to develop efficient bounded
model checking techniques for concurrent systems composed of labeled tran-
sition systems. The idea is to replace the standard interleaving semantics with
non-standard execution models. The potential added efficiency of these new
execution models comes from two sources. Firstly, the counterexamples are
shortened and secondly, the search space of the SAT solver can potentially
be reduced by limiting the number of executions of the system.

When standard interleaving semantics is applied, in each component ex-
actly one action is executed in each time step. The counterexamples of this
standard semantics are shortened using three techniques. Firstly, a partial
order semantics, referred to as step semantics, is applied. Step semantics
allows the simultaneous execution of independent actions. Thus, several ac-
tions can be executed in a single time step, however, at most one from a
single component. The second technique to shorten counterexamples is by
determinizing the components (LTSs) of the system. When this is done, the
executions of the concurrent system no longer contain steps where transi-
tions internal to a component are executed. The final technique to shorten
counterexamples is to allow local transitions to be merged. This execution
model lifts the limitation that at most one action can be executed in a single
time step from each component.

The second potential source for added BMC efficiency is based on lim-
iting the number of executions of the system. In this dissertation, this is
done using two techniques. Firstly, the components of the system can be
determinized. Besides shortening the counterexamples, this also reduces the
number of executions. Secondly, when step semantics is applied, it is possi-
ble to disallow executions that are not in a certain normal form. The resulting
partial order semantics is called process semantics.

To be applicable for efficient BMC, the initial states and the transition
relation of the non-standard execution models should not be too difficult to
encode compared to those of the interleaving semantics. In addition, the
resulting formula should not be too large or too difficult for the used SAT
solvers. It turns out that it is easy to encode the execution model using step
semantics. Furthermore, limiting the executions to the studied normal form
(process semantics) requires only a single additional constraint to the for-
mula for step semantics. Similarly, it is easy to encode the execution model
modeling the system where the original components are determinized. In
addition, combining the two techniques above, i.e. partial order semantics
with determinized components is also easy. All the BMC formulas from these
execution models are linear in the size of the original system, as is the case
with interleaving semantics.

The situation is not so easy when local transition merging is applied.
Firstly, it is likely that an execution model allowing arbitrary local transition
merging can not be encoded with a formula whose size is polynomial in the
size of the system. Namely, if this were the case, the shortest counterexam-
ple demonstrating a violation of a reachability property would be of length
one. Then, however, the PSPACE-complete problem of the reachability of
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a global state would be solved in NP.

The dissertation demonstrates that a polynomial encoding applying lim-
ited local transition merging is possible. The limitations are such that (i)
from each component at most one transition labeled with a given visible ac-
tion can be executed and that (ii) each component may execute a loop at
most once. However, even with these limitations, the encoding is no more
linear. This is due a complex constraint, presented in Section 5.1.1, needed
to detect that executions from different components are consistent.

The dissertation applies local transition merging together with partial or-
der semantics. Local transition merging can, in principle, also be applied
with on-the-fly determinization. This construct could be beneficial in creat-
ing an efficient BMC technique. However, as demonstrated in Section 5.3, it
seems hard to conceive a simple encoding for this execution model. Another
way of obtaining the product from this composition operator is to determinize
the components offline using the standard subset construction. Even though
it might work with some examples, the determinization construct can in the
worst case result in an exponential blow-up of the components.

The dissertation presents some experimental results comparing the pre-
sented non-standard execution models to an implementation of the inter-
leaving semantics. With the studied test cases and with the used SAT solver,
the following conclusions can be drawn. In many cases the lower bound ob-
tained using step semantics results in a lower running time of the SAT solver.
However, it is a bit surprising that limiting the executions to a normal form,
i.e., applying process semantics, typically results in longer running times than
those for step semantics. As a second conclusion, applying on-the-fly deter-
minization seems to yield lower running times. Also in this case, applying
process semantics seems not to be a good idea.

When local transition merging is applied, with these test cases drastic re-
ductions in the bound are achieved. Indeed, many deadlocks are found in
a single step. However, this is not fully reflected in the running times of the
SAT solver. This is due to the fact that the encodings for execution mod-
els applying step / process semantics and on-the-fly determinization are lin-
ear whereas the encoding for the execution model applying local transition
merging is cubic in the size of the system’s alphabet. With these test cases,
the running times are comparable to those of the other execution models.

The cubic complexity of the encoding for local transition merging is due
to a single constraint modeling the consistency of the executed actions (see
Section 5.1.1). The experimental section contains also data from an itera-
tive approach (presented in Section 5.1.3) where this constraint is initially
omitted and thus a linear formula is obtained. Omitting a constraint has
the obvious impact of potentially introducing spurious counterexamples. To
rule these out, iteration is needed. With the studied test cases, the iterative
approach performs very well, when only a few steps of iteration is needed.
However, there are examples where the iterative technique is clearly worse
than the step / process execution models and also the local transition merging
model with full consistency check.

Finally, the non-standard execution models are compared to state-of-the-
art model checking tools. This comparison reiterates the already known re-
sults concerning BMC, namely that compared to complete model checking
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techniques:

• BMC is at its best in finding shallow errors and

• there can be system models whose transition relation is too large for,
for instance, BDD based techniques but from which BMC techniques
can find errors.

8.1 FUTURE WORK

The presented work suggest interesting topics for future research. Some of
them are as follows:

• This dissertation does not combine process semantics with local tran-
sition merging. A topic for future work is to define a suitable process
criterion and see if any gains in the running time can be obtained.

• Given a tuple of LTSs, their process product and determinized process
product can contain fewer transitions than their synchronized product.
This could be used in creating an efficient explicit state model check-
ing technique.

• Work has been carried out to develop solvers that in addition to propo-
sitional logic are able to solve integer equations (see e.g. [12]). Us-
ing such a solver, it is possible to extend the studied system model,
LTSs, with more PROMELA like features, like integer variables and
FIFOs. Then, however, the condition of independence of actions be-
comes more complex than in the case of simple action labels. The
same holds for the process condition.

• In this dissertation, the properties to be verified are limited to reacha-
bility properties. An extension to handle, for instance, full LTL is in-
teresting. This work could use the ideas presented in [41] as a starting
point.

• By using on-the-fly determinization, it seems possible to modify a BMC
encoding so that the models of the formula represent actions sequences
that are not executions of the system (complementation). This could
be used to solve bounded trace containment between two concurrent
systems.

In general, taking an alternative view on the transition relation of a con-
current system, as is done in this dissertation, is by no means limited to BMC.
Therefore, the presented composition operators can also be applied to create
for instance a BDD based model checker. An interesting topic for further
work is the use of the proposed methods inside a counterexample based ab-
straction refinement framework.
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