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ABSTRACT: This report presents a new nested depth-first search algorithm
for testing the emptiness of a language accepted by a generalized finite Büchi
automaton. Given an automaton with n states, m ≥ 1 sets of accepting
transitions and s bits in a state descriptor, the algorithm decides whether the
language accepted by the automaton is empty in at most m + 1 passes of
the state space, using n

(

s + dlog2(m + 1)e
)

bits of memory for the search
hash table in the worst case. In addition to the standard search stacks, the
algorithm also needs O

(

m log2(nm)
)

bits of memory for bookkeeping.
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1 INTRODUCTION

This research report is a follow-up to the article [9], which proposes an al-
gorithm for testing the emptiness of the language accepted by a finite Büchi
automaton with multiple acceptance conditions (i.e., sets of “accepting” tran-
sitions), generalizing the classic nested depth-first search algorithm of Cour-
coubetis et al. [1]. The algorithm presented in the article [9] has better worst-
case resource requirements (memory usage and number of states explored)
than the alternative approach based on applying the classic algorithm to a
nongeneralized automaton obtained by an intermediate automaton transfor-
mation [1, 3]. The reason for the improvement in the resource requirements
is that the reduction in the number of acceptance conditions may increase
the size of the automaton.

Similarly to the classic nested depth-first search algorithm, the general-
ized search proposed in the article [9] is based on a top-level search that
initiates second searches in the automaton. The key observation leading to
the improvement in resource usage is that these second searches never need
to explore parts of the automaton which have not been found in the top-level
search. As an optimization of the basic generalized algorithm, the article [9]
proposes also a version of the algorithm ([9], Figure 6) which tries to fur-
ther reduce the number of states explored by (essentially) combining second
searches together if possible, guided by the accepting transitions “seen” dur-
ing second searches. This optimization is called the condition heuristic in
the article [9].

The generalized search algorithm associates each state of the automaton
with an initially empty set of acceptance conditions that is populated during
the search with conditions fulfilled by paths to the state from other states in
the automaton. In this article, we develop the condition heuristic further
by replacing the sets of acceptance conditions with counters that are incre-
mented during the search according to an ordering given for the conditions.
Consequently, the number of additional bits to be stored in the search hash
table with each state reduces from linear to logarithmic in the number of
acceptance conditions. However, because the change alters the behavior of
the algorithm by possibly limiting the extent of second searches, it must be
checked that the modified algorithm remains complete. We provide a new,
more structured proof of the completeness of the algorithm. Additionally, we
incorporate the useful optimization proposed by Couveur et al. [2] into the
new algorithm to take full advantage of transition-based acceptance. (The
generalized algorithm presented in the article [9] waits for all successors of a
state to have been explored in the top-level search before considering second
searches from the state. As suggested by Couvreur et al. [2], this is actually
not necessary: a second search can be started from a transition immediately
after it and all previously unvisited states reachable by it have been explored.)

2 EMPTINESS CHECKING ALGORITHM

Let A = (Σ, Q, ∆, qI ,F) be a generalized Büchi automaton over an alpha-
bet Σ (with a finite set of states Q, transitions ∆ ⊆ Q × Σ × Q, initial
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state qI ∈ Q, and a finite nonempty set of acceptance conditions F =
{F1, F2, . . . , Fn} ⊆ 2∆, F 6= ∅). The indices of the acceptance condi-
tions induce an ordering between the conditions. The objective is to check
whether the language accepted by A is not empty, i.e., whether A has a cy-
cle that is reachable from its initial state qI and fulfills each condition Fi (in-
cludes a transition from each Fi). The new variant of the language emptiness
checking algorithm for generalized Büchi automata is shown in pseudocode
in Figure 1. We present the algorithm in recursive form, from which it is easy
to point out the relevant details.

The TOP-LEVEL-SEARCH procedure implements a simple depth-first
search in the automaton. After processing a transition (line 7), a second
search is started from the transition at line 9 [2] (in further discussion, the
term “second search” refers to all operations caused by a call to the SECOND-

SEARCH procedure made at line 9). Similarly to the basic generalized al-
gorithm, the purpose of this search is to propagate information about the
reachablility of states via paths which fulfill certain acceptance conditions.
Each second search is restricted to states that have been found during the
top-level search. The second search behaves almost identically to the basic
version augmented with the condition heuristic ([9], Figure 6); the main
change is in the condition on when to advance the search to another state
in the automaton (lines 17–18). We shall discuss this change in more detail
after introducing the main data structures used by the algorithm.

The algorithm uses the following (global) data structures:

path_stack : This stack collects the states entered in the top-level search but
from which the search has not yet backtracked. This stack is used only
to facilitate the correctness proof in Section 3 and thus all references
to it (lines 3 and 12) could be eliminated from the pseudocode.

visited : States found in the top-level search. When a state is added to this
set, it will never be removed.

count : A lookup table associating each state of the automaton with an in-
dex of an acceptance condition. Intuitively, if count [q] = c holds for
some q ∈ Q and 1 ≤ c ≤ n, then, for every acceptance condition
F1, F2, . . . , Fc ∈ F , there exists a nonempty path to the state q in the
automaton such that the path fulfills the condition. For all q ∈ Q,
count [q] will never decrease during the execution of the algorithm.

Iseen: A set of indices of acceptance conditions “seen” in a path from the
source state of a transition from which a second search was started at
line 9 to the state referred to by the program variable q in a nested re-
cursive call of the SECOND-SEARCH procedure. The conditions “seen”
in this path include also the conditions that were associated with the
source state of the search at the beginning of the search (line 8). In
each nested call to the SECOND-SEARCH procedure, the algorithm
first collects the indices of all previously “unseen” acceptance condi-
tions fulfilled by the transition given as a parameter for the procedure
(line 16). These indices are then added to the Iseen set later at line 21
before any nested recursive calls to the procedure.
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Initialize: A := (Σ, Q,∆, qI ,F): Nondeterministic generalized Büchi automaton
with F = {F1, F2, . . . , Fn} ⊆ 2∆, F 6= ∅;

path_stack := [empty stack];
visited := ∅;
count := [q1 7→ 0, . . . , q|Q| 7→ 0];
depth := 1;
condition_stack := [stack initialized with the element (0, 0)].

1 TOP-LEVEL-SEARCH(q ∈ Q)

2 begin

3 push q on path_stack ;

4 visited := visited ∪ {q};

5 for all t = (q, σ, q′) ∈ ∆ do

6 begin

7 if (q′ /∈ visited) then TOP-LEVEL-SEARCH(q′);
8 Iseen :=

{

1, 2, . . . , count [q]
}

;

9 SECOND-SEARCH(t);
10 if (count [q] = |F|) then report “The language of A is not empty”;

11 end;

12 pop q off path_stack ;

13 end

14 SECOND-SEARCH((q, σ, q′) ∈ ∆)

15 begin

16 Iunseen_fulfilled :=
{

1 ≤ i ≤ |F| (q, σ, q′) ∈ Fi

}

\ Iseen;

17 c := max
{

0 ≤ i ≤ |F| j ∈ Iseen ∪ Iunseen_fulfilled for all 1 ≤ j ≤ i
}

;

18 if (c > count [q′]) then

19 begin

20 count [q′] := c;

21 Iseen := Iseen ∪ Iunseen_fulfilled;

22 for all i ∈ Iunseen_fulfilled do push (i, depth) on condition_stack ;

23 depth := depth + 1;

24 for all t = (q′, σ′, q′′) ∈ ∆ such that q′′ ∈ visited do SECOND-SEARCH(t);
25 depth := depth − 1;

26 (i, d) := topmost element of condition_stack ;

27 while (d = depth) do

28 begin

29 Iseen := Iseen \ {i};

30 pop (i, d) off condition_stack ;

31 (i, d) := topmost element of condition_stack ;

32 end

33 end

34 end

Figure 1: Generalized nested depth-first search algorithm. The emptiness check is
started by calling the TOP-LEVEL-SEARCH procedure with the initial state qI of the
automaton as a parameter.
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depth: An integer variable representing the number of transitions in a path
from the source state of the transition from which a second search was
started to the state referred to by the program variable q′ in a nested
recursive call of the SECOND-SEARCH procedure.

condition_stack : A stack used for recording a (partial) history of changes
made to the Iseen set during a second search in the automaton. To
simplify the presentation of the SECOND-SEARCH procedure, the stack
is initialized with a sentinel element that will never be removed from
the stack (and thus the stack can never be empty at lines 26 or 31).

To simplify the presentation of the algorithm, the global variables depth and
Iseen could be modelled as parameters of the SECOND-SEARCH procedure
(in which case also the variable condition_stack could be eliminated). How-
ever, we treat these variables as globals to facilitate the analysis of the algo-
rithm’s memory requirements.

In the original version of the condition heuristic [9], a second search in
the automaton proceeds from a state q to its successor q′ in the automaton if
the set of acceptance conditions associated with the state q′ does not include
all conditions “seen” in a path from the source state of the search to the state
q′. Because we now associate states of the automaton with counters instead of
sets, we make the second search proceed from a state q to its successor q′ only
if the conditions “seen” in a path to q′ include the next condition (or possibly
several consecutive conditions in the acceptance condition ordering), the
index of which is not yet recorded in the value of count [q′]. At line 17, the
algorithm finds the maximal index of an acceptance condition which has
been “seen” along with all of its predecessors (in the acceptance condition
ordering) during the second search; whether to proceed to a successor of q is
then decided at line 18.

2.1 Resource requirements

Clearly, the count table associates each state of the automaton with an inte-
ger that will never exceed the number of acceptance conditions (denoted by
|F| in the following) in the automaton. Because entering a state q′ during a
second search (line 19) implies incrementing the value of count [q′], it is easy
to see that the algorithm needs at most |F|+1 passes of the state space of the
automaton. Similarly, it is easy to see that the worst-case bounds for the sizes
of search stacks remain the same as in the article [9] (at most |Q| elements
in the top-level search stack, and, because of the condition heuristic, at most
|Q| · |F| + 1 elements in the implicit recursion stack used for nested calls
of the SECOND-SEARCH procedure). If the count table is represented as a
hash table indexed with state descriptors, each of which consumes s bits of
memory, the table has to store |Q| ·

(

s + dlog2(|F| + 1)e
)

bits in the worst
case. (The visited set can be combined with this table by inserting states to
the table as they are entered in the top-level search.)

The Iseen set can be represented as a bit vector with |F| bits. Because
elements are added to condition_stack only when there are conditions with
indices still missing from the Iseen set, it is easy to see that this stack will
never contain more than |F| + 1 elements. Note that this bound would not
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be as obvious if the depth and Iseen variables were modelled as parameters
of the SECOND-SEARCH procedure: in this case the information stored in
condition_stack would be implicit in the activation records of nested recur-
sive procedure calls (and would amount to |Q| · |F| + 1 instead of |F| + 1
elements in the worst case). It is straightforward to check that the integer
depth, the Iseen set and the elements in the condition_stack stack need
O

(

|F| log2(|Q| · |F|)
)

bits for their representation in the worst case.
Additionally, the search procedures need (in a standard way) to keep track

on how to generate the next transition starting from a state in the loops at
lines 5–11 and line 24 such that the information is preserved over nested
recursive calls of the procedures.

3 CORRECTNESS OF THE ALGORITHM

In this section we prove the correctness of the algorithm. We use notation
and terminology from the article [9], Section 2.

Let A = (Σ, Q, ∆, qI ,F) (F 6= ∅) be a generalized Büchi automaton
given as input for the algorithm. It is easy to see that the algorithm will start
a second search at line 9 from each transition, the source state of which is
reachable from the initial state qI of the automaton, and the second search is
started exactly once from each of these transitions. Therefore the transitions
are processed in some well-defined order: we write t ≤ t′ (t, t′ ∈ ∆) to indi-
cate that the second search from t is started at line 9 before the second search
from t′ (or t = t′). (Other inequalities between transitions are defined in the
obvious way.) Additionally, we write visited(t) and path_stack(t) to refer to
the contents of the visited set and the top-level search stack (respectively) at
the beginning of a second search from the transition t; note that these data
structures remain unchanged in all recursive calls to the SECOND-SEARCH

procedure. We also write path_stack(q) to denote the contents of the top-
level search stack at line 13 of the algorithm when the top-level search is
about to backtrack from a state q ∈ Q.

It is easy to check (by induction on the number of nested recursive calls of
the SECOND-SEARCH procedure) that, if depth = d and Iseen = I hold for
an integer d and a set of indices of acceptance conditions I ⊆

{

1, 2, . . . , |F|
}

when the algorithm is about to enter the loop at line 24, then depth and Iseen

will have these same values at the beginning of each iteration of the loop.

3.1 Soundness

In this section we prove the soundness of the algorithm. We first formalize
the following simple fact about the states in the top-level search stack.

Lemma 1 Let q and q′ be states in path_stack such that q = q′, or q was
pushed before q′ on the stack. Then, q′ is reachable from q in A.

Proof: The result holds trivially if q = q′. Otherwise q′ was pushed on the
stack in a recursive call of the top-level search procedure (started at line 7
when q was on top of the stack), and it is easy to see that there exists a
nonempty path from q to q′ in the automaton. �
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The soundness of the algorithm is based on the fact that every state in the
top-level search stack known to be reachable via a path fulfilling an accep-
tance condition is actually in a cycle that fulfills the condition.

Lemma 2 Let t ∈ ∆ be a transition from which the algorithm starts a second
search at line 9. Assume that count [q] ≥ n holds for some q ∈ path_stack(t)
and 1 ≤ n ≤ |F| during a second search started at line 9 from the transition
t. Then, the automaton contains a cycle that visits the state q and fulfills the
acceptance condition Fn.

Proof: We claim that there exists an integer 1 ≤ k < ω, states q0, q1, . . . , qk ∈
Q (with q0 = q) and transitions t0, t1, . . . , tk ∈ ∆ such that for all 0 ≤
i < k, qi and qi+1 are reachable from each other via nonempty paths in the
automaton, ti ≥ ti+1 for all 0 ≤ i < k, and qk−1 is reachable from qk via
a path that fulfills the acceptance condition Fn. Clearly, if such sequences
exist, then q0 (= q) is in a cycle that fulfills the acceptance condition Fn, and
the result follows.

We prove the claim by constructing sequences with the required proper-
ties. Let q0 = q, and let t0 = t. Because count [q0] ≥ n > 0 holds during
the second search from t0, there exists a transition t1 ∈ ∆, t1 ≤ t0, such that
count [q0] was updated for the first time to a value greater than or equal to n
during a second search started at line 9 from the transition t1. Let q1 ∈ Q be
the source state of t1.

Assume that qi and ti have been defined for some 1 ≤ i < ω such that
count [qi−1] is updated for the first time to a value greater than or equal to
n during a second search started at line 9 from the transition ti ≤ ti−1. If
count [qi] ≥ n > 0 already holds at the beginning of this second search, there
exists a transition t′ ∈ ∆, t′ < ti, such that count [qi] was updated for the first
time to a value greater than or equal to n during a second search started from
the transition t′ (with source state q′ ∈ Q). In this case we let qi+1 = q′ and
ti+1 = t′ and continue the construction.

By repeating the construction, we obtain a sequence of states q0, q1, q2, . . .
and a sequence of transitions t0 ≥ t1 > t2 > · · · such that for all i =
0, 1, 2, . . ., count [qi] was updated for the first time to a value greater than or
equal to n in a second search started from the transition ti+1 with source
state qi+1. Because the automaton is finite, the sequence of transitions is
finite, and because count [q′] = 0 initially holds for all q′ ∈ Q, there exists an
index k such that count [qk] < n holds at the beginning of a second search
from the transition tk.

Let 0 ≤ i < k. Because count [qi] is updated for the first time to a value
greater than or equal to n during a second search started from the transition
ti+1 ≤ ti, qi is reachable from the source state qi+1 of ti+1 via a nonempty
path, and qi ∈ visited(ti+1) holds. On the other hand, because ti+1 ≤ ti
holds, the top-level search could not have backtracked from the state qi before
backtracking from qi+1, and thus qi ∈ path_stack(ti+1) holds. Because qi+1

is on top of path_stack during the second search from ti+1, it follows by
Lemma 1 that qi+1 is reachable from qi, and thus the states are reachable
from each other via nonempty paths in the automaton.

Because count [qk] < n holds at the beginning of the second search from
tk, n /∈ Iseen holds at line 16 when the second search procedure is called at
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line 9. Because count [qk−1] is nevertheless updated to a value greater than or
equal to n during the second search from tk (at line 20), it is easy to see that
n must be inserted to Iunseen_fulfilled during the search, and thus the second
search from tk must reach qk−1 via a path that contains a transition which
fulfills the acceptance condition Fn. Therefore qk−1 and qk are in a cycle
that fulfills the condition Fn, and the result follows. �

It is now easy to prove the soundness of the algorithm using Lemma 2.

Theorem 1 Let A = (Σ, Q, ∆, qI ,F) (F 6= ∅) be the nondeterministic gen-
eralized Büchi automaton given as input for the algorithm. Let t ∈ ∆ be
a transition from which the algorithm starts a second search at line 9. If
count [q] = |F| holds during this search for a state q ∈ path_stack(t), then
A contains an accepting cycle reachable from the initial state qI . In particu-
lar, this holds if the algorithm reports that the language of A is not empty.

Proof: Because the top-level search is started from the initial state qI of the
automaton, qI ∈ path_stack(t) certainly holds, and there exists a (possibly
empty) path from qI to q in A by Lemma 1. Because count [q] ≥ i holds
for all 1 ≤ i ≤ |F|, it follows by Lemma 2 that for all 1 ≤ i ≤ |F|, the
automaton contains a cycle that visits the state q and fulfills the acceptance
condition Fi. Because all of these cycles share the state q, the cycles can
be merged together to obtain an accepting cycle for the automaton. The
soundness of the algorithm now follows from the condition at line 10 of the
top-level search procedure since the program variable q refers to the topmost
state of path_stack at this point. �

3.2 Completeness

We now turn to the completeness of the algorithm. Again, we start by listing
several basic facts about the behavior of the algorithm for future reference.

Lemma 3 Let t = (q, σ, q′) ∈ ∆ be a transition from which the algorithm
starts a second search at line 9. Then, q′ ∈ visited(t).

Proof : The result follows from the condition at line 7 of the algorithm: if
q′ /∈ visited holds at this point, the algorithm calls the TOP-LEVEL-SEARCH

procedure recursively for the state q′, and q′ is added to the visited set at
line 4 of the algorithm before a second search from the transition t. �

Lemma 4 Let t ∈ ∆ be a transition from which the algorithm starts a second
search at line 9. If there exists a state q ∈ visited(t) that has a successor
q′ ∈ Q \ visited(t), then q ∈ path_stack(t).

Proof : Let q be a state satisfying the assumptions. Because q ∈ visited(t)
holds, the top-level search has entered q. If the search had also backtracked
from q, then the algorithm would have reached line 12 with q on top of the
top-level search stack. Therefore the algorithm would have started a second
search from all transitions having q as its source state, in particular, from a
transition (q, σ, q′) ∈ ∆. But then q′ ∈ visited would hold at the beginning of
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the search from t by Lemma 3, which is a contradiction. Therefore, the top-
level search has not yet backtracked from q, and q ∈ path_stack(t) holds. �

Lemma 5 Let (q, σ, q′) ∈ ∆ be a transition for which the algorithm calls the
second search procedure at line 9 or 24 such that c ≥ n holds at line 18 for
some 0 ≤ n ≤ |F|. Then, count [q′] ≥ n holds when this call returns.

Proof: If count [q′] < n holds at line 18, count [q′] is updated to the value
c ≥ n at line 20 of the algorithm, and the result follows from the fact that
count [q′] never decreases during the execution of the algorithm. �

Lemma 6 Assume that the algorithm reaches line 20 during a second search
started from a transition t ∈ ∆ such that c ≥ n holds for some 1 ≤ n ≤ |F|,
and the program variable q′ refers to a state q ∈ Q. The second search
procedure will be called recursively for each transition having q as its source
state such that c ≥ n holds at line 18 at the beginning of each call.

Proof: The result holds trivially if q has no successors. Otherwise, let t′ =
(q, σ, q′) be a transition having q as its source state. It is easy to see from
line 20 that count [q] ≥ n holds at the end of the second search from t.

Assume that q′ ∈ visited(t) holds. Denote by I the contents of the Iseen

set at the beginning of the first iteration of the loop at line 24 when the
program variable q′ refers to the state q with c ≥ n. Because c ≥ n, it is easy
to see that {1, 2, . . . , n} ⊆ I holds at this point. Because Iseen = I holds
at the beginning of each iteration of the loop (and therefore, in particular,
at the beginning of the recursive call of the second search procedure for the
transition t′), line 17 guarantees that c ≥ n holds at line 18 in the beginning
of this call.

If q′ /∈ visited(t), the algorithm has not yet started a second search from
the transition t′ (Lemma 3), and thus t′ > t holds. Furthermore, q ∈
path_stack(t) holds by Lemma 4, i.e., the top-level search has not back-
tracked from the state q before the second search from t. Clearly, a second
search is started from the transition t′ before the top-level search backtracks
from q. Because count [q] ≥ n holds at the end of the second search from t,
it follows from the initialization of the Iseen set at line 8 that c ≥ n will hold
at line 18 when the second search is started from the transition t′ at line 9.�

In the following results, we shall refer to a maximal strongly connected
component C ⊆ Q ∪ ∆ that contains a state reachable from the initial state
of the automaton. Clearly, the top-level search will in this case explore all
states in the component, and thus there exists a state q̂ ∈ C ∩ Q that is the
first state of C pushed on the top-level search stack. Because the elements of
this stack are accessed in “last in, first out” order, it is easy to see that q̂ is the
last state of C from which the top-level search backtracks.

Our goal is to show that if the component C contains an accepting cycle
(i.e., a cycle that fulfills all acceptance conditions in F ), then there exists a
state q ∈ C∩Q in the component (namely, the first state q̂ of the component
entered in the top-level search) for which count [q] = |F| holds when the

8 3 CORRECTNESS OF THE ALGORITHM



top-level search is about to backtrack from the state q. Clearly, this implies
that the algorithm will report that the language accepted by the automaton
is not empty (at the latest) at line 10 with q̂ on top of path_stack . (Because
C contains an accepting cycle, C contains at least one transition having q̂ as
its source state, and thus it is easy to see that the algorithm will in fact reach
line 10 with q̂ on top of the top-level search stack before the top-level search
backtracks from q̂.)

In general, we shall be interested in finding states q ∈ C ∩ Q for which
count [q] ≥ n holds for some 1 ≤ n ≤ |F| when the top-level search is
about to backtrack from the state q at line 13. Given a nonempty path in the
automaton, the last state (in the path) for which count [q] ≥ n holds at the
end of a second search started in the first state of the path is guaranteed to
have this property unless the path ends in the state q.

Lemma 7 Let q0, q1, . . . , qk ∈ Q be the list of consecutive states in a non-
empty path from the state q0 to the state qk in the automaton for some 1 ≤
k < ω. Assume that there exists a maximal index 0 ≤ ` ≤ k for which
count [q`] ≥ n holds for some 1 ≤ n ≤ |F| at the end of a second search
from a transition t ∈ ∆ having q0 as its source state (line 10). If ` < k holds,
then q` is a state for which count [q`] ≥ n already holds when the top-level
search backtracks from the state q`. More precisely, in this case count [q`] ≥ n
actually holds before the algorithm starts a second search from any transition
from q` to q`+1.

Proof: Because n ≥ 1, there exists a transition t′ ∈ ∆, t′ ≤ t, such that
the second search started from t′ reached line 20 of the algorithm such that
the program variable q′ referred for the first time to the state q` with c ≥ n.
Clearly, q` ∈ visited(t′) holds, and the top-level search had entered q` at
some point. By Lemma 6, the algorithm calls the second search procedure
recursively for a transition from q` to q`+1 such that c ≥ n holds at line 18 at
the beginning of this call. If q`+1 ∈ visited(t′) holds, such a call occurs dur-
ing the second search started from the transition t′. But then count [q`+1] ≥ n
would hold at the end of the call by Lemma 5, and therefore also at the end
of the second search from t. This contradicts the maximality of `, however. It
follows that q`+1 /∈ visited(t′) holds, and by Lemma 4, q` ∈ path_stack(t′).
Thus the top-level search backtracks from the state q` after the second search
from t′, and count [q`] ≥ n holds when this occurs. The second claim follows
from Lemma 3: because q`+1 /∈ visited(t′), no second search can have been
started at line 9 from a transition from q` to q`+1 before updating count [q`] to
a value greater than or equal to n (in the second search from t′). �

Using Lemma 7, we can prove the following result, whose corollary then
shows that the reachability information (i.e., the knowledge on reachablity
via paths fulfilling certain acceptance conditions) stored in the count table
propagates towards the first state of the maximal strongly connected compo-
nent C entered in the top-level search.

Lemma 8 Let C be a maximal strongly connected component of the au-
tomaton, and let q̂ ∈ C ∩ Q be the first state of the component entered in
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the top-level search. Let q ∈ C ∩ Q, q 6= q̂, be another state in the compo-
nent such that count [q] ≥ n holds for some 1 ≤ n ≤ |F| when the top-level
search is about to backtrack from the state q at line 13. There exists a state
q′ ∈ C ∩ Q, q′ 6= q, such that the top-level search backtracks from q′ after
backtracking from q, and count [q′] ≥ n holds when this occurs at line 13.

Proof: Because q and q̂ belong to the same maximal strongly connected
component, there exists a nonempty path from q to q̂ in the automaton.
Clearly, all states in this path are contained in C. Let q0, q1, . . . , qk ∈ C ∩ Q
(1 ≤ k < ω, q0 = q, qk = q̂) be the list of consecutive states in this path.
Because count [q0] ≥ n holds when the top-level search is about to backtrack
from the state q0 at line 13, there exists a maximal index 0 ≤ ` ≤ k such that
count [q`] ≥ n holds at this point. Clearly, count [q`] ≥ n holds already at the
end of a second search started at line 9 from the last transition t ∈ ∆ (with
source state q0) which was processed in the loop between lines 5 and 11 (and
such a transition exists because C contains a nonempty path from q0 to qk).

If ` = k, the result follows immediately (with q′ = q̂) by the choice of
q̂. Otherwise, by Lemma 7, count [q`] ≥ n holds at the beginning of each
second search starting at line 9 from a transition from q` to q`+1 (and still
when the top-level search is about to backtrack from the state q`). Let t′ ∈
C ∩∆ be a transition from q` to q`+1. If the top-level search had backtracked
from q` before backtracking from q0 (or if q` = q0), a second search would
have been started from the transition t′. But then, because count [q`] ≥ n
holds at the beginning of this second search (and because q`+1 ∈ visited(t′)
necessarily holds by Lemma 3 at this point), it follows by Lemma 5 that
count [q`+1] ≥ n would hold when the top-level search backtracks from the
state q0. This, however, contradicts the maximality of `. Therefore, q` 6= q0

holds, and the top-level search backtracks from q` only after backtracking
from q0 (= q). The result now follows with q′ = q`. �

Corollary 1 Let C be a maximal strongly connected component of the au-
tomaton, and let q̂ ∈ C ∩ Q be the first state of the component entered in
the top-level search. Let q ∈ C ∩ Q be a state in the component such that
count [q] ≥ n holds for some 1 ≤ n ≤ |F| when the top-level search is about
to backtrack from q at line 13. Then, count [q̂] ≥ n holds when the top-level
search is about to backtrack from q̂.

Proof: The result holds trivially if q = q̂. Let thus q 6= q̂. Because count [q] ≥
n ≥ 1 holds when the top-level search is about to backtrack from the state q
at line 13, then, by Lemma 8, there exists a state q′ ∈ C ∩ Q, q′ 6= q, from
which the top-level search backtracks after backtracking from the state q, and
count [q′] ≥ n holds when this occurs.

By repeating the argument, we can now construct a sequence of pairwise
distinct states q, q′, . . . ∈ C∩Q such that for any state q′′ in the sequence, the
top-level search backtracks from the state q′′ only after backtracking from all
its predecessors in the sequence, and count [q′′] ≥ n holds when the top-level
search backtracks from q′′. Because C is finite and q̂ is the last state in C
from which the top-level search backtracks, the sequence ends with the state
q̂, and the result follows. �
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On the other hand, when the top-level search is about to backtrack from
the first state q̂ of the component C entered in the top-level search, the
following relationship holds between count [q̂] and the values stored in the
count table for other states in the component.

Lemma 9 Let C be a maximal strongly connected component of the au-
tomaton, and let q̂ ∈ C ∩ Q be the first state of the component entered in
the top-level search. Assume that count [q̂] = n holds for some 0 ≤ n ≤ |F|
when the top-level search backtracks from q̂ at line 13. Then, count [q] ≥ n
holds for all q ∈ C ∩ Q at this point.

Proof: The result holds trivially if n = 0. For the rest of the proof, we assume
that n > 0 holds. Let q ∈ C ∩ Q. Because q and q̂ belong to the same
maximal strongly connected component, there exists a path from q̂ to q in
the component. We proceed by induction on the number of transitions in a
path from q̂ to q.

If the path contains no transitions, then q = q̂, and the result holds for the
state q trivially.

Assume that the result holds for all states in C that are reachable from
q̂ via a shortest path of 0 ≤ k < ω transitions, and let q ∈ C ∩ Q be a
state that is reachable from q̂ via a shortest path (ti)

k
i=0 of k + 1 transitions

(ti = (qi, σi, qi+1) ∈ ∆ for all 0 ≤ i ≤ k, q0 = q̂, and qk+1 = q). Clearly, qk is
reachable from q̂ via a shortest path having k transitions, and because q̂, q ∈
C, qk ∈ C holds also. By the induction hypothesis, count [qk] ≥ n > 0 holds
when the top-level search backtracks from q̂. This implies the existence of a
transition t ∈ ∆ such that count [qk] was first updated to a value greater than
or equal to n during a second search started (at line 9) from the transition t.
It follows that the algorithm reached line 20 such that the program variable q′

referred to the state qk with c ≥ n. Let t′ ∈ C∩∆ be a transition from qk to q.
By Lemma 6, the algorithm will call the second search procedure recursively
for the transition t′ such that c ≥ n holds at line 18 at the beginning of this
call. Furthermore, by the choice of q̂, this call occurs before the top-level
search backtracks from the state q̂. By Lemma 5, it follows that count [q] ≥ n
holds when the top-level search backtracks from q̂.

The result now follows by induction for all states q ∈ C ∩ Q. �

A maximal strongly connected component C that contains an accepting
cycle includes a transition from each set of accepting transitions. We wish to
use Corollary 1 to show that the existence of these transitions forces the con-
dition at line 10 to hold in the first state of C entered in the top-level search.
However, Corollary 1 does not directly refer to accepting transitions. We
therefore need the following technical result, which establishes a connection
between the existence of a transition (in C) which fulfills the nth acceptance
condition (1 ≤ n ≤ |F|) and a state q ∈ C ∩Q for which count [q] ≥ n holds
when the top-level search is about to backtrack from the state.

Lemma 10 Let C be a maximal strongly connected component of the au-
tomaton, and let q̂ ∈ C ∩Q be the first state of the component entered in the
top-level search. Let tF = (qF , σF , q′F ) ∈ C ∩ ∆ ∩ Fn+1 be a transition that
fulfills the acceptance condition Fn+1 for some 0 ≤ n < |F|. Assume that,
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before the top-level search backtracks from the state q̂, the SECOND-SEARCH

procedure is called at line 9 or 24 of the algorithm with tF as a parameter
such that c ≥ n holds at the beginning of this call at line 18. There exists a
state q ∈ C ∩ Q such that count [q] ≥ n + 1 holds when the top-level search
is about to backtrack from the state q at line 13.

Proof: Clearly, the call to the SECOND-SEARCH procedure with tF as a pa-
rameter occurs during a second search started at line 9 from a transition
t ∈ ∆ such that there exists a (possibly empty) path from the source state
of t to the state qF in the automaton. Because c ≥ n holds at line 18 and
tF ∈ Fn+1, it actually follows that c ≥ n + 1 holds at line 18, and thus
count [q′F ] ≥ n+1 holds at the end of the second search from t by Lemma 5.

Because q′F ∈ C holds, there exists a nonempty path from q′F to q̂ in the
automaton, and this path visits only states in C. Thus there exists a nonempty
path from the source state q0 of t to q̂ in the automaton. Let q0, q1, . . . , qk ∈ Q
(1 ≤ k < ω, qk = q̂, qi = q′F for some 1 ≤ i ≤ k, and qj ∈ C for all i ≤ j ≤
k) be the list of consecutive states in this path. Because count [q′F ] ≥ n + 1
holds at the end of the second search from t, there exists a maximal index
i ≤ ` ≤ k such that count [q`] ≥ n + 1 holds at this point.

If ` = k, then the result follows (with q = q̂) by the choice of q̂. Otherwise
count [q`] ≥ n + 1 holds when the algorithm is about to backtrack from the
state q` by Lemma 7, and the result holds with q = q` because q` ∈ C. �

We can now prove the completeness of the algorithm.

Theorem 2 Let A = (Σ, Q, ∆, qI ,F) (where F = {F1, F2, . . . , Fn} ⊆ 2∆

for some 1 ≤ n < ω) be the nondeterministic generalized Büchi automa-
ton given as input for the algorithm. If A contains an accepting cycle, the
algorithm reports that the language of A is not empty.

Proof: Because the automaton contains an accepting cycle, there exists a
maximal strongly connected component C ⊆ Q∪∆ that contains a transition
from each Fi for all 1 ≤ i ≤ |F|. Let q̂ be the first state of C entered in the
top-level search.

Assume that count [q̂] = m < n holds when the top-level search is about
to backtrack from the state q̂. By Lemma 9, it follows that count [q] ≥ m
holds for all q ∈ C ∩ Q at this point.

Because C contains an accepting cycle, there exists a transition tm+1 ∈
C ∩ ∆ ∩ Fm+1 which fulfills the acceptance condition Fm+1. We claim
that the algorithm calls the second search procedure at line 9 or 24 for the
transition tm+1 such that c ≥ m holds at line 18 at the beginning of this
call. This is clear if m = 0, because a second search is started from every
transition in C before the top-level search backtracks from the state q̂. If
m > 0, then, because count [q] ≥ m holds for all q ∈ C ∩ Q before the
top-level search backtracks from the state q̂ (but count [q] = 0 holds for all
q ∈ C ∩ Q initially), the algorithm reached line 20 such that the program
variable q′ referred to the source state of tm+1 with c ≥ m before the top-level
search backtracks from q̂. In this case the second search procedure will be
called for the transition tm+1 (before the top-level search backtracks from q̂)
such that c ≥ m holds at line 18 at the beginning of this call by Lemma 6.
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Because c ≥ m holds at line 18 when the second search procedure is
called with the transition tm+1 ∈ Fm+1 as a parameter, it now follows by
Lemma 10 that there exists a state qm+1 ∈ C ∩ Q such that count [qm+1] ≥
m + 1 holds before the top-level search backtracks from qm+1. But then, by
Corollary 1, count [q̂] ≥ m + 1 holds when the top-level search backtracks
from the state q̂. This contradicts the assumption that count [q̂] = m < n
holds at this point.

It follows that count [q̂] ≥ n necessarily holds when the top-level search
backtracks from q̂ (and count [q̂] = n, because c ≤ n clearly holds always at
line 20, the only location where the value of count [q̂] may change). There-
fore, because q̂ ∈ C is the source state of at least one transition, the algorithm
will report that the language of the automaton is not empty at line 10 before
the top-level search backtracks from q̂ (at the latest, after a second search from
the last transition examined in the loop between lines 5 and 11 with q̂ on top
of path_stack ). �

4 DISCUSSION

The proposed algorithm was obtained by modifying the condition heuristic
presented in the article [9]. This heuristic is based on keeping track of all
acceptance conditions “seen” in a path to the state currently referred to by
the program variable q in a second search. This is not strictly necessary for
completeness, however: it is actually sufficient to keep track of only the max-
imal index of a condition that has been “seen” along with all its predecessors
in the acceptance condition ordering. Using this observation, the algorithm
could be simplified by replacing the Iseen set with a counter representing this
maximal index and using condition_stack to record the history of changes
to this counter: when the value of the counter changes, the old value of the
counter could then be pushed on or popped off the stack in a single opera-
tion instead of iterating through indices of acceptance conditions. However,
because this change makes second searches more dependent on the condi-
tion ordering, the simplified algorithm would in some cases have to explore
more states and transitions than the algorithm in Figure 1 before detecting
an accepting cycle (for example, in an automaton that consists of a ring of
transitions in which the conditions occur in “reverse” order).

We stress that the completeness of the new algorithm nevertheless de-
pends critically on the ability to take acceptance conditions “seen” in second
searches into account when updating the count table during the searches.
For example, it is not possible to obtain an even simpler algorithm by mod-
ifying the basic generalized search algorithm from [9] (i.e., nested search
without condition heuristic) to use counters: because the basic algorithm
ignores all acceptance conditions encountered in a second search that were
not “seen” already at the beginning of the search (or in the transition from
which the search was started), it is easy to find examples in which the or-
dering chosen for the conditions interferes with the updating of counters in
a way that makes the algorithm fail to detect the existence of an accepting
cycle in an automaton even if such a cycle exists.

In comparison with the condition heuristic from [9], advancing second
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Figure 2: Automata for showing neither of the original and new algorithms to per-
form universally better than the other. In the figures, C can be an arbitrarily large
(finite) component of the automaton. The transitions marked with • fulfill an accep-
tance condition that precedes the condition containing the transitions marked with
◦ in the ordering for the conditions.

searches in the automaton by incrementing counters associated with states
of the automaton may sometimes reduce the total number of states and tran-
sitions explored in second searches. For example, if the component C of
the automaton shown in Figure 2 (a) contains no accepting transitions, the
new algorithm avoids starting a second search from the transition t, whereas
the original algorithm proposed in the article [9] will perform a redundant
second search in case the top-level search explores the left part of the au-
tomaton before entering the state with the self-loop. On the other hand,
using a stricter condition for advancing second searches may also have neg-
ative effects on performance as illustrated in Figure 2 (b). If the top-level
search explores the source state of the transition t2 before entering the com-
ponent C, the original algorithm can (with the condition heuristic) detect
the existence of an accepting cycle immediately after a second search from
t2 without ever entering the component C. Because of the ordering chosen
for the acceptance conditions, the new algorithm will not detect this cycle
until after a second search from the transition t1; however, at this point also
all states in C have been explored at least once (in the top-level search). It is
apparent from this example that, similarly to automata degeneralization con-
structions needed for applying the classic nested depth-first search algorithm
to generalized automata, the performance of the new algorithm depends on
the ordering chosen for the acceptance conditions.

Because the new algorithm differs from the basic algorithm with the con-
dition heuristic only in the search strategy used for second searches, almost
all notes from the article [9] concerning the construction of accepting cy-
cles and the compatibility of the algorithm with enhancements suggested in
the literature apply directly to the new algorithm. Although the existence
of an accepting cycle in an automaton can be reported immediately when
incrementing count [q] to |F| at line 20 for a state q currently in the top-level
search stack (using an additional bit of memory stored with each state in the
count table to record its presence in the stack [6]), constructing an actual
cycle that fulfills all acceptance conditions is not possible in general with-
out extra effort [2, 9]. The algorithm can be made compatible with partial
order reduction [7] identically to the classic nested depth-first search algo-
rithm [6], and with probabilistic state exploration techniques [5, 8, 10] or
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state space caching [4] in a more limited way [9].1 The algorithm can also be
made to support weights to speed up the detection of accepting cycles as sug-
gested in the article [2]; however, in comparison with the basic generalized
algorithm, the more restrictive condition used for advancing second searches
may reduce opportunities for applying this optimization successfully. The
only extension from [9] not supported by the new algorithm is the detection
of cycles fulfilling a given number of acceptance conditions since the new
algorithm does not treat the conditions symmetrically.
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