
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 93

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 93

Espoo 2004 HUT-TCS-A93

SPECIFICATION-BASED TEST SELECTION IN FORMAL

CONFORMANCE TESTING

Tuomo Pyhälä

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 93

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 93

Espoo 2004 HUT-TCS-A93

SPECIFICATION-BASED TEST SELECTION IN FORMAL

CONFORMANCE TESTING

Tuomo Pyhälä

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Tuomo Pyhälä

ISBN 951-22-7240-7

ISSN 1457-7615

Multiprint Oy

Helsinki 2004

ABSTRACT: More complex systems require more efficient quality assurance.
Testing is a often used method to achieve this goal. In this work we consider
formal conformance testing, which is a field where formally defined con-
formance between specifications and implementations is studied. In prac-
tice this allows the construction of automated testing tools having a solid
theoretical foundation and being able to automatically test whether an im-
plementation conforms to its specification.

Test selection refers to the process of trying to select, from a potentially
very large set of possible test cases, the tests which most efficiently test the
implementation. We consider a set of tests to be efficient, if it tests a large
proportion of the implementation behaviour without containing too much
redundancy. The proposed test selection method is based on the assumption
that the implementation resembles the specification. Therefore, by this as-
sumption, having tested a large proportion of the specification behavior we
have also tested a large proportion of the implementation behavior.

To capture our notion of a large proportion of the specification behavior,
we formally define a specification-based coverage framework, including sev-
eral coverage metrics of different levels of granularity. We refine an existing
conformance testing algorithm to include the specification coverage based
test selection methods based on the framework. The algorithm and the cov-
erage metrics are tied together by a heuristic aiming to increase the coverage
metrics. Finally, we implement a tool incorporating the discussed algorithms
and make a number of experiments with the tool.

KEYWORDS: formal conformance testing, test selection, on-the-fly testing,
specification-based coverage

CONTENTS

1 Introduction 1
1.1 Software Testing Terminology 1
1.2 Improving Testing Activity 2
1.3 Formal Methods . 3
1.4 Research Background . 3
1.5 Contributions of this Report 4
1.6 Structure of the Report . 4

2 Formalisms for Conformance Testing 4
2.1 Labelled Transition Systems 5
2.2 Conformance Testing . 7
2.3 Conformance Relation ioco 8
2.4 Suspension Automata . 10
2.5 1-safe Petri Nets . 11

3 Introduction to Conformance Testing 13
3.1 Batch-mode Testing . 14
3.2 On-the-fly Testing . 20

4 Coverage 21
4.1 Coverage Framework for On-the-fly Testing 26

5 Algorithms 29
5.1 A Conformance Testing Algorithm 30
5.2 Soundness and Completeness of Heuristics 33

6 Implementation 38
6.1 Implementation in General 38

Input Format Module . 38
The Specification Module 39
Performance of the specification module 40
The Main Program and Communication with the IUT 41

6.2 Implemented Coverage Metrics 42
6.3 Implemented Heuristics . 42

Implementing Lookahead with Bounded Model Checking . . 43

7 Case Studies 43
7.1 Evaluation of Heuristics with Synthetic Examples 44

Test Setting . 44
Results . 44

7.2 Evaluation of the Test Selection Method 45
Conference Protocol . 46
Test Setting . 47
Results . 49

8 Conclusions 50

References 52

iv CONTENTS

1 INTRODUCTION

Nowadays software is present almost everywhere in the technologically ad-
vanced society. All the time we use systems containing substantial amount of
software. Some examples include cars, lifts, airplanes, telephone- and power-
distribution networks, not to even mention large computer systems enabling
required efficient data processing in our society.

The reliability of these services requires dependable software. Better meth-
ods to produce such software are constantly pursued. As always specifying
processes and introducing automation to dull and error prone tasks are ways
to improve quality.

One software process model is the waterfall model [34]. In the waterfall
model software development advances in steps from one phase to another.
The phases from the beginning are (i) requirements analysis and definition,
(ii) system and software design, (iii) implementation and unit testing, (iv) in-
tegration and system testing and (v) operation and maintenance. Of course,
software production process is not linear. If we find design flaws in system
testing, we have to return to an earlier phase.

The waterfall process will give an overview of activities required in creat-
ing new software. There are considerable amounts of testing in this process
definition. Therefore producing high quality software will require us to pay
close attention to testing activities.

1.1 Software Testing Terminology

Software can be thought consisting of components, which are divided to one
or more units. An unit is a work of a single programmer, maybe several hun-
dred lines of code. When components are integrated, they form bigger com-
ponents and ultimately the intended system, a complete piece of software.
[3]

Testing different pieces of software can be divided into unit testing, com-
ponent testing, integration testing and system testing. The concepts were
introduced in increasing size of the component being tested. [3]

To hide the complex details of software, programmers introduce interfaces
to units and components. Other programmers who build their software on
top of these pieces of software may then rely on these interfaces, and do not
have to know about the internals. Well defined simple interfaces are a part of
good software design. They can also be used as a basis for testing.

In black box testing, i.e., functional testing the interface of an implement-
ation under test (abbreviated as IUT) is tested [43]. This means that the
tester is unable to observe internal details of the IUT and cannot therefore
use these observations to make conclusions about the correctness of the im-
plementation. However, tester may take advantage of the specification of
the IUT in this task. On the other hand, white box testing, i.e., structural
testing takes advantage of internals of the component[43]. White box test-
ing may include inspections of code and design. Another white box testing
approach is to design test cases to execute all statements in the particular soft-
ware component at least once. Creation of such test cases is impossible with
the knowledge of the interface specification only.

1 INTRODUCTION 1

When testing software we can identify several subtasks. In the test gen-
eration phase we generate test cases. In the test execution phase test cases
are executed against an actual implementation. Before this the environment
has been prepared in the test setup phase, and after execution the results of
testing are produced and considered in the test results evaluation phase.

This report is about conformance testing which we define to be testing
whether an implementation conforms to its specification. We will define
conformance formally, but for now we can think conformance as behaving
in accordance with the specification. Conformance testing is mostly a black-
box testing method, although knowledge of the internals of implementation
is advantageous.

1.2 Improving Testing Activity

To see the present and future, it is important to survey the past. According to
[3] the view of testing has developed as follows.

In the early days of software testing was almost non-existent. At that time
there was no difference between debugging and testing. However, software
components were small and disposable, in the sense that they were not con-
stantly maintained and improved.

As software became more complicated, the way of thinking changed. Test-
ing was a way to prove that software works. “You see, all test runs work, there
are no bugs”, a software engineer of that time might have said. However, this
claim has no rigid foundation. If a particular test case is successful, it shows
that this particular behavior is correct. Practically even small components
have tremendous amount of inputs. For example, a routine taking two 32-bit
integers as parameters and returning the maximum of two has 264 test cases,
which is far too many to be practical. Every substantial software compon-
ent contains larger components and more complicated interfaces than this
simple routine.

After rejecting testing as a way of proving that software works, we could try
to prove that software does not work. After all an unsuccessful test case does
exactly this. Again, a large number of test cases is a problem, as in practice
there always exists one more test case to be run. At a certain point testing has
to end so that software may be delivered to customers and users.

Our objective is to stop testing after reaching the required certainty that
software works sufficiently well. Running a sensible set of test cases, a test
suite, whether passing or failing, reduces uncertainty about software reliabil-
ity. Ultimately we will have ubiquitous testing which will be present in the
whole software development process, i.e., development is done in a way that
software is easily testable.

One approach to make software more testable, is to utilize automation.
Test automation in all subtasks of testing will enable us to run several orders
of magnitude more of unique test cases. Increased testing quality will boost
substantially our ability to produce software. We can take advantage of new
methods in two ways, either increase the quality, or produce larger software
systems in the current quality level [3].

2 1 INTRODUCTION

1.3 Formal Methods

Formal methods could be described as the use of mathematical reasoning in
software development. Traditionally main activities include formal specific-
ation, proving properties of specification, constructing programs by mathem-
atically manipulating the specification and verifying program by mathem-
atical argument [18]. Examples of formal specification languages include
SDL [24] and Promela [23]. Formal methods have mostly been applied in
safety-critical and other systems with high-quality standards, although they
are useful in all kind of software systems.

We see following advantages of using formal methods: (i) finding errors
early, (ii) making developers think hard the system they are building, (iii)
creating more abstract and error proof specifications, (iv) decreasing the cost
of development and (v) helping clients understand what they are buying.
Slightly different viewpoint can be found in [18].

A flavor of the theory of formal conformance testing which we use in this
work has been introduced in [38]. Formal testing promises to be able to
automate deriving test cases from formal specifications and to verifying the
results of testing automatically.

1.4 Research Background

Testing can be divided on the basis of different subtasks are performed. In
the batch-mode testing an explicit test case is generated and then it can be
executed one or more times against the implementation. More recent ap-
proach is to combine generation and execution of test cases as well as evalu-
ation of the results as one automated and unified process.

Currently there exists several on-the-fly testing tools. Some of them are
based on the rigid formal theoretical background and others have been de-
veloped using practical experiences and intuition. Real running examples of
such on-the-fly testers are TorX [9] and TGV [13], but there are also several
other tools.

Existing work on selecting tests and measuring coverage includes, for ex-
ample, test selection and measuring coverage based on traces [12], test selec-
tion using test purposes [7], using coverage information to find bugs faster in
model checking Java programs [17], using heuristic methods for test selec-
tion [30], using bounded model checking in test sequence generation [44],
and using coverage criteria in test generation for white box testing [37].

To make such testing more feasible we need measures to make test se-
lection more intelligent. The existing on-the-fly testers have achieved very
positive results by just randomly sending valid inputs to the implementation
and checking whether the outputs are allowed according the specification.
We call this “poking around”, which is effective because an automated tool
is able to do this several decades faster than a human as humans lack the
precision and stamina generate all possible complicated tests nor the gener-
ation speed of the testing tool. However, an automated testing tool has the
disadvantage of executing too many similar tests, if they are generated ran-
domly. We address this disadvantage with test selection methods based on
specification coverage.

1 INTRODUCTION 3

1.5 Contributions of this Report

The contribution of this report is the design of formally defined specification
coverage based test selection methods for an on-the-fly testing tool, and the
implementation of this tool. Our design is based on the idea that we know
the specification, but the details of the implementation are hidden, although
we assume that the implementation resembles specification. Moreover, we
assume, that by having tested a large proportion of the specification behavior
we have tested also a large proportion of the implementation behavior. To
capture our notion of a large proportion of the specification behavior, we
define formally a framework for specification coverage including coverage
metrics on different levels of granularity. The framework contains the general
terminology and desirable properties of the coverage metrics.

We also refine the algorithm from [41] to include methods for test selec-
tion. We do this by introducing hooks for heuristics. Then we combine this
to the a coverage metric – Petri net transition coverage – by constructing
a heuristic to increase this coverage using either greedy search or bounded
model checking. We also adapt some existing terminology to analyze on-
the-fly testing algorithms. Specifically concepts of soundness, exhaustiveness
and completeness are defined to be similar as those for test suites in [39] and
related concept called omnipotentness is introduced.

To evaluate our tool in practice, we experiment with two different prob-
lems. One case is a conference protocol [11] which has been used to test
other testing tools [4]. Another case is a combinatoric lock which we suppose
to be hard to test with random testing.

1.6 Structure of the Report

The structure of the report is as follows. Chapter 2 will introduce necessary
formalisms for conformance testing. In Chapter 3 we consider the attach-
ment of tester to the implementation and different approaches to test execu-
tion and generation, should they be combined as in an on-the-fly tester or
not. Chapter 4 is to introduce a coverage concept and present our frame-
work for coverage metrics for test selection. Chapter 5 introduces algorithms
for testing which we extend with coverage based heuristics. We also discuss
soundness and completeness of extensions to the algorithms. Chapter 6 re-
views our implementation. In Chapter 7 we represent the results of the ex-
periments with our implementation. Chapter 8 draws the conclusions of this
work.

2 FORMALISMS FOR CONFORMANCE TESTING

In conformance testing we define conformance as a relation between imple-
mentations and specifications. To treat these formally, we need formalisms
to represent them. In this section we introduce labelled transition systems – a
formalism to represent specifications and implementations – and define the
ioco conformance relation using this formalism. However, a labelled trans-
ition system is a low level formalism in the sense that specifications in such

4 2 FORMALISMS FOR CONFORMANCE TESTING

a formalism are very large and at low abstraction level. We have chosen la-
belled transition systems as low level formalism, because they are well known,
there exists rigid theory of conformance testing for them and they are able to
specify practically any system.

There are lots of other formalisms, which have a higher abstraction level
and hence are more understandable. Such formalisms make the specifica-
tion easier as the specifications are in more compact form. They also induce
corresponding labelled transition systems specifying the same behavior. In
our tool we use 1-safe Petri nets [10], which are a bit higher level formalism,
although still straightforward to implement using simple algorithms. Besides
there are tools to create 1-safe Petri nets from high level nets having even
higher abstraction level. Therefore, it seems reasonable to use 1-safe Petri
nets which can be easily implemented and having existing tools giving sub-
stantial additional functionality in the form of higher level specifications.

2.1 Labelled Transition Systems

Labelled transition systems (abbreviated as LTS) are a well known formalism
to specify system behavior. A labelled transition system

consists of states and labelled transitions between states.

Definition 2.1. A labelled transition system is a four tuple (S, L, ∆, s0),
where S is set of states, L is a finite set of labels with a special symbol τ /∈ L,
∆ ⊆ S × (L ∪ {τ}) × S is the transition relation, and s0 is the initial state.

When testing systems we have visible events and hidden internal actions.
We define visible events as follows.

Definition 2.2. A transition t = (s, a, s′) of some LTS p = (S, L, ∆, s0)
is a visible transition if a ∈ L. The set of all visible transitions in the set of
transitions ∆ is denoted as ∆v ⊆ ∆

In connection with LTS’s we use the notation L∗, where L is some set of
symbols, to denote concatenation of these symbols, i.e., σ = a1 · a2 · a3 · · · ∈
L∗, iff ∀i ≤ |σ| : ai ∈ L.

Next we introduce a notation for labelled transition systems. The notation
used here is similar to that of [9].

Definition 2.3. With σ \ a we denote that we remove symbol a from a trace
σ ∈ L∗. This is defined inductively as follows. For σ = ε, σ \ a for any a is
ε. Otherwise, let σ = a1 · σ′, then the resulting trace σ \ a equals σ′ \ a if
a1 = a and a1 · (σ

′ \ a) if a1 6= a.

2 FORMALISMS FOR CONFORMANCE TESTING 5

Definition 2.4. We define the following for LTS p = (S, L, ∆, s0). In the
following definitions s, s′ ∈ S, µ, µi ∈ L ∪ {τ}, a, ai ∈ L, σ ∈ L∗ :

s
µ

−→ s′ =def (s, µ, s′) ∈ ∆,

s
µ1...µn

−→ s′ =def ∃s0, s1, . . . , sn : s = s0
µ1

−→ s1 · · ·
µn

−→ sn = s′,

s
µ1...µn

−→ =def ∃s′ : s
µ1...µn

−→ s′,

s
µ1...µn

6−→ =def ¬(s
µ1...µn

−→),

s
ε

=⇒ s′ =def s = s′ ∨ s
τ ...τ
−→ s′,

s
a

=⇒ s′ =def ∃s1, s2 : s
ε

=⇒ s1
a

−→ s2
ε

=⇒ s′,

s
a1...an=⇒ s′ =def ∃s0 . . . sn : s = s0

a1=⇒ s1
a2=⇒ · · ·

an=⇒ sn = s′,

s
σ

=⇒ =def ∃s′ : s
σ

=⇒ s′,

s
σ

6=⇒ =def ¬(s
σ

=⇒),

traces(s) =def {σ ∈ L∗ | s
σ

=⇒},

init(s) =def {µ ∈ L ∪ {τ} | s
µ

−→},

s after σ =def {s′ | s
σ

=⇒ s′}, and

vis(σ ∈ (L ∪ {τ})∗) =def σ \ τ.

To extend previous definitions to state sets we define following:

Definition 2.5. Let p = (S, L, ∆, s0) be an LTS. In the following definitions
S ′ ⊆ S, µ, µi ∈ L ∪ {τ}, a, ai ∈ L :

init(S ′) =def

⋃

s∈S′

init(s),

S ′ after σ =def

⋃

s∈S′

s after σ

We also overload previous notations in following way. Often when consid-
ering the conformance, we consider what happens to an LTS in initial state
after a sequence of events. Therefore in the sake of simplicity we may use
LTS instead of it’s initial state. So whenever reader sees LTS in the place of
state, it denotes the initial state of the LTS.

Example 2.1. We use intuitive graphical notation for LTS’s, where states are
denoted by circles and transitions with arrows with the corresponding label
on the side. Consider as an example LTS in Fig. 1. Let us denote this as the
p. Let the set of labels be L = LI ∪ LU , where LI = {a} and LU = {b, c}
respectively. Later these sets are called the set of input labels and the set
of output labels. Then, for instance, p after a = {s1, s3} and s0

a
−→ s1,

s0

a

6−→ s3, s0
a

=⇒ s3.

Definition 2.6. A divergence free, or strongly convergent, LTS does not con-
tain an infinite execution of τ transitions, i.e., ∃n ∈ N : ∀s1, . . . , sn : if

s1
τ

−−−→ s1 · · · sn−2
τ

−−−→ sn−1 then sn−1

τ

−−6−→ sn.

6 2 FORMALISMS FOR CONFORMANCE TESTING

c

a

τ

b

a

s1

s0

s2

s3

FIGURE 1: Our running example p

Definition 2.7. An LTS p = (S, L, ∆, s0) has finite behavior if ∀ σ ∈ L∗

such that s0
σ

=⇒ it holds that |σ| < n for some fixed finite n.

In this work, we restrict ourselves to divergence free labelled transition
systems, which are denoted as LT S, with LT S(L) we denote labelled trans-
ition systems with label set L.

Our model of testing distinguishes between inputs and outputs, to be
more suitable for testing systems which have distinct inputs and outputs. To
achieve this, we define a subclass of labelled transition systems called input-
output transition systems (IOTS). We also require that IOTS must always
accept all inputs, therefore we don’t have to consider a situation where im-
plementation under test (abbreviated as IUT) is given input which is not
enabled.

Definition 2.8. An input-output transition system (abbreviated as IOTS) is
a LTS with the following restrictions. The set of labels L is divided into input
labels LI and output labels LU , such that L = LI ∪ LU and LI ∩ LU = ∅.
Furthermore, for an IOTS it is required that ∀s ∈ S : ∀a ∈ LI : s

a
===⇒.

The latter restriction forces that an IOTS must always accept all input labels.
We denote the set of all input-output transition systems with IOT S .

2.2 Conformance Testing

Conformance testing aims to show that a particular implementation con-
forms to its specification. This can be done by testing the implementation.
The problem is to generate, select and execute test cases and to verify their
results. Conformance testing is particularly useful in testing implementa-
tions of communication protocols. In tele- and data communication field
the products of different vendors must be able to cooperate, and this can
achieved by conforming to a common specification.

Formal conformance testing formalize the concepts of conformance test-
ing [38]. Essential notions include the implementation, specification and
conformance relation between these two. For treating implementations and
specifications, the formalisms introduced previously in this chapter are use-
ful. Conformance relation is relation between conforming implementations
and their specifications. If an implementation conforms to a specification,
it is in this relation with the specification. Therefore the relation defines
exactly the conformance.

2 FORMALISMS FOR CONFORMANCE TESTING 7

2.3 Conformance Relation ioco

The basic idea of conformance relation ioco is to model conformance in
a way that when testing with behavior found in the specification, the im-
plementation acts in the same way. We define ioco for labelled transition
systems [9].

Often real systems have states, where no output can be observed. To
take account in our formal theory the absence of outputs, the quiescence
concept has been introduced and the ioco conformance relation includes
this concept. Intuitively, it is defined that a state is quiescent if and only
if only input transitions exist in the state. No state with output or internal
transitions is quiescent.

Definition 2.9. A state s of i ∈ LT S with labelling L = LI ∪LU , LI ∪LU =

∅ is quiescent iff ∀µ ∈ LU ∪ {τ} : s
µ

−−6−→. We define quiescence function
δ(s) such that, if s is quiescent then δ(s) = true and otherwise δ(s) = false.

Example 2.2. In our running example quiescent states are s2 and s3.

The formal concept of out sets is introduced to represent the possible out-
puts of some particular state.

Definition 2.10. Let s be a state of i ∈ LT S with labelling L = LI ∪
LU , LI ∪ LU = ∅, then

out(s) =def {a ∈ LU | s
a

===⇒} ∪ {δ | δ(s)}.

Definition 2.11. Let S ′ ⊂ S be a set of states of i = (S, LI ∪ LU , ∆, s0) ∈
LT S (LI ∪ LU = ∅), then

out(S ′) =def

⋃

s∈S′

out(s).

Example 2.3. In our running example, the out set of state s0 out(s0) = ∅
and out({s0, s2}) = {δ}.

Suspension traces are the traces including suspensions, i.e., apart from
having symbols from the label set L, they also have δ symbols to denote sus-
pensions.

Definition 2.12. The notation s
µ

−−−→ s′ is extended to include the sus-
pensions in following way. If δ(s), then s

δ
−−−→ s. The s

a
===⇒ s′ as well

as other notations in Def. 2.4 are extended to use the redefined s
µ

−−−→ s′

as basis for them. The set of suspension traces is defined as

Straces(s) =def {σ ∈ {L ∪ {δ}}∗ | s
σ

===⇒}.

Example 2.4. The suspension trace ababaδ ∈ Straces(p), where p is our
running example. For instance, aδba /∈ Straces(p) is not a suspension trace
of our running example.

8 2 FORMALISMS FOR CONFORMANCE TESTING

Suspension free trace is a trace which does not contain any suspensions.
A suspension free trace can be obtained from suspension trace by removing
suspension 1.

Definition 2.13. If σ′ is a suspension trace, then the corresponding suspen-
sion free trace is obtained by σ = σ′ \ δ.

Example 2.5. Consider suspension trace σ = ababaδ. The corresponding
suspension free trace σ′ = σ \ δ = ababa.

Now we have introduced necessary concepts to formally define the ioco
conformance relation. Intuitively it models that some specific implementa-
tion conforms to corresponding specification. Formal definition follows [39]:

Definition 2.14. Let i ∈ IOT S be an implementation and s ∈ IOT S be
a specification, then

i ioco s =def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ).

a

τ

b

a

a

a

s1

s0

s2

s3

FIGURE 2: An example of an implementation p′1

c
b

a
a

a a

s1

s0

s2

FIGURE 3: An example of an implementation p′2

1Taking suspension free trace of a trace containing no suspensions is a no-op.

2 FORMALISMS FOR CONFORMANCE TESTING 9

Example 2.6. Consider conformance in the light of an example. In Fig. 2
there is an implementation IOTS p′1. Is this IOTS p′1 in ioco relation with
the specification p, where p is our running example? Obviously, implement-
ation p′1 has less functionality than specification p, it can’t ever output c.
However, it is conforming, so p′1 ioco p. If you look at the definition, this is
due that out(p′1 after a) = {b, δ} and out(p after a) = {c, b, δ} and there-
fore out(p′1 after a) ⊆ out(p after a).
Another example is p′2 in Fig. 3. Is this ioco conforming w.r.t. specifica-
tion p? Lets consider δa ∈ Straces(p). We find out the following out
sets out(p after δa) = {δ} and out(p′2 after δa) = {b, c, δ}. Therefore
out(p′2 after δa) 6⊆ out(p after δa) and p′2 ioco6 p.

2.4 Suspension Automata

A suspension automaton is a more explicit representation of suspension traces.
In a conventional specification LTS we do not have explicit suspension arcs,
and the LTS may be also non-deterministic. A suspension automaton is con-
structed by making suspensions explicitly visible and determinizing the res-
ult. We define suspension automaton (SA) as follows [39].

Definition 2.15. Let p = (S, L, ∆, s0) be a specification LTS (with the
requirements L = LU ∪ LI and LI ∩ LU = ∅) , then corresponding
suspension automaton is the LTS SA(p) = (Ssa, L ∪ {δ}, ∆sa, s0

sa), where

Ssa =def P(S) \ ∅,

∆sa =def {q
a∈L
−→ q′|q ∈ Ssa, q′ = {s′ ∈ S|∃s ∈ q : s

a
=⇒ s′} ∈ Ssa} ∪

{q
δ

−→ q′|q, q′ ∈ Ssa and q′ = {s ∈ q|δ(s)}}, and

s0
sa = {s ∈ S|s0

ε
=⇒ s}.

The construction used here is similar to the determinization of a finite
automaton [29], except for adding the suspensions. The suspension auto-
mata itself is of course also an LTS. However, it is different from the original
LTS, as it specifies all the suspension traces explicitly in a deterministic man-
ner. The suspension automata has also potentially exponentially more states
reachable from the initial states than the original specification LTS, as the
states of the suspension automata are the power set of the states of the ori-
ginal LTS.

Example 2.7. The suspension automaton of our running example is such
as in Fig. 4. States correspond to state sets of original suspension automaton
as follows S0 = {s0, s2}, S1 = {s1, s3}, S2 = {s2}, S3 = {s3}. There are
also other non reachable states resulting from Cartesian product used in the
definition, however, these are not listed here nor in the figure. Initial state of
the suspension automaton is S0.

10 2 FORMALISMS FOR CONFORMANCE TESTING

δ

b, ca

δ

δ

a

S2

S3S1

S0

FIGURE 4: The Suspension automaton of our running example

2.5 1-safe Petri Nets

Petri nets [10] are a formalism which enables a more compact representation
of systems than simple labelled transition systems as introduced in Def. 2.1.
A similar compact representation could also be achieved using synchroniz-
ations of such simple labelled transition systems, but for this work we chose
labelled 1-safe Petri nets.

Petri nets which are 1-safe are a simpler formalism than the general Petri
nets. They are guaranteed to induce LTS’s with a finite set of states, moreover
algorithms processing them are easier to implement. As the representation
of markings is guaranteed to be finite, the implementation does not need to
be able to grow data structures representing arbitrarily large markings. Also
the finite number of markings (states) guarantees, that we do not have to deal
with infinite sets. Therefore we felt that we can faster approach our goal, if
we do not spend so much time implementing our formalism and we chose
1-safe Petri nets for the task.

A three tuple N = (P, T, F) is a net, where P and T are finite sets of
places and transitions, respectively. The place and transition sets are distinct,
i.e., P ∩ T = ∅. The flow relation is F ⊆ (P × T) ∪ (T × P). Transitions
and places can also be called nodes. By F (x, y) we denote the characteristic
function of F . It is defined as if (x, y) ∈ F then F (x, y) = 1 and if (x, y) /∈ F
then F (x, y) = 0.

We use Fig. 5 as our running example of Petri nets during this section.
It is a graphical representation of a net. Places are represented with circles,
transitions with rectangles. The flow relation is represented with arrows. If
(x, y) ∈ F , then there is arrow starting from x and pointing to y. The addi-
tional features in the figure are to be represented later in this chapter.

Preset of a node a is •a =def {x | (x, a) ∈ F}. Similarly, postset of a node
a is a• =def {x | (a, x) ∈ F}. In our running example T6• = {P3, P6} and
•P6 = {T5, T6}.

A marking of a net (P, T, F) is a function M : P → N, where N is the set
of natural numbers including zero. Marking associates a number of tokens
with each place.

A four tuple N = (P, T, F, M0) is a Petri net if (P, T, F) is a net, and M0

is a marking of this net. A transition t is enabled in a marking M , iff ∀p ∈
•t : M(p) ≥ F (p, t). If transition t is enabled in a marking M , it can occur
leading to marking M ′, where ∀p ∈ P : M ′(p) = M(p) − F (p, t) + F (t, p).

This is denoted by M
t
→ M ′. In our running example, there is an initial

2 FORMALISMS FOR CONFORMANCE TESTING 11

T1 T2 T3 T4

T5T6

!GiveCoke !GiveSoda

?PressCola ?ReleaseCola ?ReleaseSoda ?PressSoda

?InsertCoin

P1 P2

P3 P4

P5

P6

T7

FIGURE 5: an Example of a Labelled Petri net

marking marked with black filled circles inside the places. In the initial
marking the transitions T1, T4 and T7 are enabled.

In further discussion we will discriminate between reachable markings
and all markings. There are infinitely many markings for most Petri nets, but
however, not all of these are reachable. In practice only markings reachable
from the initial marking affect the specified behavior and therefore no other
markings are significant from our point of view. We wish to analyze only
whether observed behavior corresponds to the specified behavior.

Definition 2.16. Let N = (P, T, F, M0) be a Petri net. The set of reachable
markings RM(N) is defined to be the smallest set fulfilling following two
conditions:

(i) M0 ∈ RM(N), and

(ii) If M ∈ RM(N) and M
t
→ M ′ then M ′ ∈ RM(N)

A marking M is reachable, iff M ∈ RM(N).

To model real systems, we wish to give some meaning to transitions. We
do this by defining a labelling on transitions.

Definition 2.17. A labelled net is a four tuple (P, T, F, λ), where (P, T, F)
is a net, and λ : T → L ∪ {τ} attaches labels to transitions from finite set of
labels L.

In our running example the λ is given by labels beside the transitions, for
example λ(T1) = “?PressCola” and λ(T5) = “!GiveSoda”.

To use our ioco conformance relation defined for LTS’s we have to define
how a LTS is formed on the basis of a Petri net. We include the reachable

12 2 FORMALISMS FOR CONFORMANCE TESTING

markings as the states of such an LTS and if some transition exists between
the states then we include an arc with the same label to the LTS. We define
an unfolding of a labelled Petri net to a LTS as follows

Definition 2.18. A labelled Petri net N = (P, T, F, λ, M0) induces a la-
belled transition system defined as LTS(N) = (S, L, ∆, s0), where S =
RM(N), L is the same set of labels as in the corresponding labelled net,

∆ = {(M, l, M ′) | ∃t ∈ T : M
t
→ M ′ ∧ λ(t) = l}, and s0 = M0.

A marking which contains at most one token in each place is called 1-safe
marking [10]. Formally marking M of net (P, T, F) is 1-safe, iff ∀p ∈ P :
M(p) ≤ 1. A 1-safe Petri net is a Petri net where all its reachable markings
are 1-safe. The example Petri net in Fig. 5 is 1-safe.

In testing context it is important to discriminate between visible events
and internal actions. To capture these with our labelled Petri nets we define
as follows

Definition 2.19. Visible labels for labelled Petri net N = (P, T, F, λ) are
those in L, where L is the set of labels. The τ is an internal action.

Definition 2.20. Visible transitions of labelled Petri net N = (P, T, F, λ)
are transitions t ∈ T such that λ(t) 6= τ . We denote with vistrans(N) the set
of visible transitions of N .

3 INTRODUCTION TO CONFORMANCE TESTING

Testing the implementation under test (IUT), contains several subtasks: gen-
erating tests, executing tests and evaluating the results are the main subtasks.
In this section we will introduce two ways of testing: batch mode testing and
on-the-fly testing. These ways organize the subtasks differently. At first, how-
ever, we will consider how to attach a tester to the implementation.

IUT

Environment

Tester

PCO

PCOPCO

PCO

IAP

IAPIAP

IAP

FIGURE 6: Overview of the test setup

3 INTRODUCTION TO CONFORMANCE TESTING 13

Our view of testing can be seen in the Fig. 6. A tester, being either some
automated tool or a human, drives the testing process. Point of control and
observation (abbreviated as PCO) is an attachment point between the tester
and the environment. On the other hand, the IUT communicates with the
environment through implementation access points, or IAPs. A similar view
of the testing has been presented in [31]. The IUT and environment together
form the SUT, system under testing.

The distinction between IAPs and PCOs is made, because quite often a
tester cannot directly attach to an implementation. There might be protocol
layers, operating system or some other environment between the tester and
an actual implementation under test and therefore the communication is in-
direct. Thus the tester observes and produces events at PCOs. These facts
affect testing. Buffers, delays and other effects introduced by the environ-
ment have to be considered and somehow dealt with when testing the IUT.

The theory introduced so far is based on the idea of synchronous testing.
The specification and implementation are synchronized and events happen
instantaneously in both. There is no notion of communication, delays or
buffers between implementation and tester. The tester should be just a syn-
chronized specification tightly bound to an implementation. This model,
although formalizes nicely, is not applicable in most situations arising in
practice due to missing parts modeling important subset of the real IUT.

There are situations in the real world where asynchronous testing is re-
quired. Asynchronous testing includes features lacking from the synchron-
ous testing. However, formal treatment of asynchronous testing is somewhat
tricky, for an example of an approach see [38]. In the scope of this work we
won’t go through it formally.

We use the synchronous testing theory, and try to include the environ-
ment to our model in a way that we can synchronously attach to it at PCO’s.
This requires us to include buffers, delays and non-determinism in the spe-
cification. For example the order of outputs observed may vary and in fact
all the orders are correct. This is handled by non-determinism. Some inputs
may remain unprocessed inside the environment for some time and the IUT
may do something else at the same time. This is handled by the buffers.

This approach isn’t however easy. Modeling is not straightforward, be-
cause often the environment (protocol stack, operating system etc.) is provided
by some third party and no exact knowledge of implementational details is
available to practitioners of testing. And from the theoretical point of view,
for example infinite queues are used [38].

3.1 Batch-mode Testing

In batch mode testing the tester has previously created test cases, which it
executes (a set of test cases may be thought as a “batch” in contrast to on-
the-fly testing, where they are derived on-the-fly). Such a test case defines
how the tester (in batch-mode testing) proceeds. It can be seen as a LTS with
following restrictions [39].

14 3 INTRODUCTION TO CONFORMANCE TESTING

δ

s0

s1

a

s2

δ b, c

failpass

FIGURE 7: Test case tp for the running example

Definition 3.21.
A test case t is a labelled transition system (S, LI ∪LU ∪{δ}, T, s0) such that

1. t is deterministic and has finite behavior,

2. S contains the terminal states pass and fail, with init(pass) =
init(fail) = ∅, and

3. for any state s ∈ S of the test case one the following is true: (i) s ∈
{fail, pass} or (ii) init(s) = {a} for some a ∈ LI or (iii) init(s) =
LU ∪ {δ}.

The class of test cases over LU and LI is denoted as T EST (LU , LI).

These test cases are deterministic and therefore completely define tester
behavior in the sense that once the tester is executing a particular test case,
it doesn’t have to make any choices as it can follow the “instructions” en-
coded in the test case. An implementation may pass or fail particular test case
without any notion of conformance relation or specification. Intuitively syn-
chronized execution of a passing implementation and its specification does
not lead to fail state. We will define this more precisely soon.

Example 3.8. In Fig. 3.1 we have an example of test case tp. It has been
created for our running example and detects the faulty implementation in
Fig. 3, because when the test case and implementation are synchronized
they have a trace leading to fail state. We will explain this in detail after
defining properly when test case passes and when it fails.

A test suite is a collection of test cases. Formally, a test suite T is T ⊆
T EST (LU , LI).

Sometimes we need to synchronize LTS’s, for example to implementation
under testing and specification. To accomplish this, we define the following
2 (definition is very similar to that of [39].).

2The intended use is te|i, t being the test case and i being the implementation.

3 INTRODUCTION TO CONFORMANCE TESTING 15

Definition 3.22. The operator e| : LT S(LI∪LU∪{δ})×IOT S(LI , LU) →
LT S(LI ∪ LU ∪ {δ}) produces the synchronization of LTS’s. Let p =
(Sp, L, ∆p, s0

p) ∈ LT S and u = (Su, L, ∆u, s0
u) ∈ IOT S , then the

synchronization of p and u, pe|u = (S, L, ∆, s0) ∈ LT S , is defined as
S = Sp × Su, L is the common set of labels, ∆ is the smallest relation
fulfilling all of the following:

∀s, s′ ∈ Sp : (s
τ

−→ s′ implies ∀x ∈ Su : ((s, x), τ, (s′, x)) ∈ ∆),

∀x, x′ ∈ Su : (x
τ

−→ x′ implies ∀s ∈ Sp : ((s, x), τ, (s, x′)) ∈ ∆),

∀s, s′ ∈ Sp : ∀x, x′ ∈ Su :

∀a ∈ LI ∪ LU :

(s
a

−→ s′ and x
a

−→ x′ implies ((s, x), a, (s′, x′)) ∈ ∆),

∀s, s′ ∈ Sp : ∀x ∈ Su :

s
δ

−→ s′, s
τ

6−→, x
τ

6−→

and ∀a ∈ LU : x
a

6−→ implies ((s, x), δ, (s′, x)) ∈ ∆),

and s0 = (s0
p, s0

u).

Now we formally define a test trace and test execution according [39].

Definition 3.23.

1. A test trace of a test case t ∈ T EST (LU , LI) with an implementation
i = (Si, LI ∪ LU , ∆i, si

0 ∈ IOT S(LI , LU) is a trace σ ∈ traces(te|i) of
the synchronous parallel composition of t and i iff ∃i′ ∈ Si : (t, i)

σ
=⇒

(pass, i′) or (t, i)
σ

=⇒ (fail, i′).

2. An implementation i passes a test case t iff all their test traces lead to
the pass-state of t:

i passes t =def ∀σ ∈ traces(se|i), ∀i′ : (t, i)
σ

6=⇒ (fail, i′).

3. An implementation i passes a test suite T iff it passes all test cases in T :
i passes T =def ∀t ∈ T : i passes t.

4. An implementation fails a test suite T iff it does not pass it.

Example 3.9. Recall test case tp for our running example p in Fig. 3.1 and
faulty implementation p′2 in Fig. 3. The synchronization tpe|p

′
2 is in Fig. 8.

The implementation does not pass this test case because there exists the path

(s0, s0)
δ

−→ (s1, s0)
a

−→ (s2, s1)
b

−→ (fail, s0) and therefore a test trace δab,
which does not lead to a pass state of the test case.

An exhaustive test suite will not pass with non-conforming implementa-
tion, i.e., if exhaustive test suite terminates with verdict pass, then the im-
plementation is conforming. A sound test suite is a test suite, which will
not fail on conforming implementation. A complete test suite is sound and
exhaustive [39].

As an interesting note, Def. 3.23 works also with a suspension automaton
based explicit tester. Such a tester is constructed by adding from each state of
the suspension automaton arc to the fail-state state with each disabled label,

16 3 INTRODUCTION TO CONFORMANCE TESTING

(fail, s0)

δ

a a

δcb

(pass, s2)(fail, s0)

(s2, s1) (s2, s2)

(s1, s0)

(s0, s0)

FIGURE 8: Example of test case and implementation synchronized

i.e., if S is the set of the states in suspension automaton, ∀s ∈ S add an arc
with label LU \ out(s) to the fail-state. Such an explicit tester can also be
used in the place of test case t in Def. 3.23. We claim that this is a sound and
complete method, as all possible failing traces lead the fail-state in the tester.

The definitions here are theoretical. They are based on the assumption
that implementations are formal objects, not real hard- and software. Unfor-
tunately, in practice the implementation under testing is very likely to be a
non-formal object. For such object these definitions do not directly apply.

For example one may not be able to obtain all the traces of the imple-
mentation. A non-deterministic implementation may never select a possible
choice, and therefore all the obtainable test runs pass although the imple-
mentation is non-conforming. We consider this a hard problem, and avoid
detailed discussion of it by assuming that implementation lets us detect the
faults. By this we mean, that the implementation does not constantly keep
showing conforming behavior to the tester in the case that the trace leading
to non conforming behavior has been executed.

We represent also definitions for these terms when used in context of a
non-formal implementation. To model the communication with the IUT
we introduce some notation. In the following i is the implementation under
test. These concepts are abstractions of actual events at some of the PCOs.
Actual events vary from implementation to implementation, but we remain
on an abstract level to avoid details. By Stimulate(i, a) we mean that, the
implementation i is given input a, by ObserveOutput(x) we mean that the
output x has been observed from the implementation or that a timeout has
occurred, if x = δ. Timeout means that no output was observed within a time
bound. The exact time bound is an implementation dependent parameter.

Running a test case can be done as in Algorithm 3.10 [9].

3 INTRODUCTION TO CONFORMANCE TESTING 17

Algorithm 3.10. Let p = (S, LI ∪ LU ∪ {δ}, ∆, s0) ∈ T EST (LU , LI) be
the test case to be run

procedure ExecuteTest(p, i) {
s := s0;
while (s /∈ {pass, fail}) {

if (∃a ∈ init(s) : a ∈ LI) {
Stimulate(i,a);

}
else {

// OBSERVEOUTPUT RETURNS EITHER OUTPUT OBSERVED (x ∈ LU)
// OR TIMEOUT (δ)
x := ObserveOutput(i);
// UPDATE THE CURRENT STATE ACCORDING

// TO THE OBSERVED OUTPUT

s := s
x

−→;
}

}
if (s = pass) {

return pass ;
}
else { // s = fail

return fail ;
}

}

We have intentionally used the term run here. To test non-deterministic
systems you might prefer to have multiple runs of the same test case as the
test case execution. If any of the runs fails, then the execution fails.

In batch-mode testing the tester takes as an input a test suite, which has
been created in advance. The tester executes test cases in the test suite one by
one, and achieves a verdict for each test case. After execution of the test cases,
the verdict for test suite can be made based on the verdicts of the individual
test cases.

Automated test case generation for ioco is explained by the Algorithm
3.11 [9]. The algorithm non-deterministically makes a choice between all
possible alternatives for a test case. In this fashion it generates one test case
from the universe of all possible test cases testing ioco conformance.

According to the previous, the algorithm produces only test cases testing
ioco conformance. Therefore the algorithm is be sound. As it selects test
cases from the universe of all possible test cases for ioco conformance the set
of all possible test cases generated by it has to be also exhaustive. Therefore,
taking the union of all the test cases generated by all the possible runs of
algorithm, a complete test suite is produced. This has been formally proved
in [39].

At first glance it is not obvious that this is the case. First of all, why does the
algorithm produce sound test cases for ioco conformance? Each state added
to the set of unprocessed states SS in the algorithm has only a such trace
leading to it, that the trace exists in specification. First of all this obviously
holds for initial state added to SS, as there is only the empty trace, which exists

18 3 INTRODUCTION TO CONFORMANCE TESTING

Algorithm 3.11. Let p = (S, LI ∪ LU ∪ {δ}, ∆, s′0) ∈ LT S(LU ∪ LI) be
the specification

procedure GenerateTestCase (p) {
S := {s0, pass, fail};
∆ := ∅;
L := LI ∪ LU ∪ {δ};
U := {(s0, s

′
0 after ε)};

while (U 6= ∅) {
Take some (s, SS) ∈ U
U := U \ (s, SS);
// NONDETERMINISTICALLY CHOOSE

// BETWEEN GUARDED ALTERNATIVES

switch {
case of (∃a ∈ init(SS) ∩ LI) ->

// ADD ARC FROM THIS STATE TO A NEW STATE WITH AN INPUT

Select an a ∈ init(SS) ∩ LI ;
S := S ∪ {s′}; // s′ BEING A COMPLETELY NEW STATE

∆ := ∆ ∪ {(s, a, s′)};
U := U ∪ {(s′, SS after a)};

break ;
case of (true) ->

// ADD AN ARC FOR ENABLED OUTPUTS TO NEW STATE AND

// FOR DISABLED TO FAIL STATE

for ∀a ∈ out(SS) {
S := S ∪ {s′}; // s′ BEING A COMPLETELY NEW STATE

∆ := ∆ ∪ {(s, a, s′)};
U := U ∪ {(s′, SS after a)};

}
for ∀a ∈ (LU ∪ {δ}) \ out(SS) {

∆ := ∆ ∪ {(s, a, fail)};
}

break ;
case of (true) ->

// REMOVE THE STATE s AND REDIRECT

// INCOMING ARCS TO THE PASS STATE

if (s = s0) {
return ({pass, fail}, L, ∅, pass);

}
∆ := ∆ ∪ {(s′, a, pass)|(s′, a, s) ∈ ∆, s′ ∈ S};
∆ := ∆ \ {(s′, a, s)|(s′, a, s) ∈ ∆, s′ ∈ S};
S := S \ {s};

break ;
}

}
return (S,L,∆, s0);

}

in every specification. Secondly, cases 1 and 2 add new labels to the trace, but
according to the associated specification state (denoted by SS in algorithm)

3 INTRODUCTION TO CONFORMANCE TESTING 19

only those labels are added which are enabled in specification state. And after
this operation, which preserves the desired property, the state-specification
state pairs are added to the set of unprocessed states U. Therefore, in U there
are only states, which have only in traces existing in specification leading to
them.

Our second argument is that only states existing in U are added to the test
case being created (apart from pass and fail states of course). Therefore we
may conclude that the traces leading to states other than pass and fail exist in
specification. The case 3 transforms such state to a pass-state, and therefore
traces leading to pass state exist in specification. However, transitions to fail
state are added when such an output is observed, which is not enabled in a
specification state associated with a state. Therefore we may conclude, that
these test cases are sound.

Could there be a ioco nonconformant implementation i such that there
is no test case generated by the Algorithm 3.11 detecting the defect? The
answer should be no, if we wish that the set of all test cases generated by the
algorithm is exhaustive.

Assume that there is implementation i such that it does not conform in
the ioco sense to the specification s. Then, there must be a trace σ, such
that out(i after σ) 6⊆ out(s after σ). Now however due to non-determinism
Algorithm 3.11 is able to generate a test case containing state s, such that for
initial state of test case s0 it holds that s0

σ
=⇒ s, and for s it holds that for

any output not in out(s) there is a transition to the fail-state. Therefore we
conclude that test case detecting any fault can be generated and therefore
the union of all the test cases is exhaustive.

3.2 On-the-fly Testing

Generating test cases with Algorithm 3.11 is a computationally expensive
task. It requires one to consider many situations, which never actually occur
during testing. Regardless of the method used, exploring the high level spe-
cification may cause a state space explosion [40] to occur. On-the-fly testing
has the advantage of reducing the set of states, which have to be considered.
It gets outputs from the implementation immediately and therefore may ig-
nore all other possibilities immediately [9].

In on-the-fly testing no complete test suite is derived. Tester proceeds with
the knowledge of specification and all the time selecting inputs and verifying
the outputs from the specification. The tester does not have to consider any
situations, which do not arise during testing. On the other hand, it has to
be able to process the specification real time, as it cannot rely on previously
computed information, and as previously mentioned even traversing the spe-
cification may be computationally intensive due to the state space explosion.
We will present more details of on-the-fly testing, including algorithms, in
the Chapter 5.

20 3 INTRODUCTION TO CONFORMANCE TESTING

4 COVERAGE

Coverage of test events run by the on-the-fly tester is a concept to measure
the quality of the testing done. It should give us a measure of the amount
of testing done so that we can be confident enough in the IUT achieving
the desired quality level. There has been a considerable amount of previous
work with coverage, see for example [3, 6, 42]. In this chapter, we review
some background and existing approaches to coverage, and then introduce
our framework for coverage, partially based on these existing approaches.

In software testing community there are several coverage metrics in use.
These include for example statement coverage, branch coverage and path
coverage. Statement coverage is the percentage of executed statements un-
der some test. Achieving 100% branch coverage means that all choices in
branches have been made in some test. Path coverage measures percent-
age of executed control flow paths versus all possible program control flow
paths [3] 3.

if (x > 0) then
x++;

else
x−−;

if (y > 0) then
y++;

else
y−−;

if (z > 0) then
z++;

else
z−−;

FIGURE 9: Example source code for path coverage versus branch coverage

if (x < 0) then
x = x + a;

return x;

FIGURE 10: Example source code for statement and branch coverage

What is the difference between these coverage metrics? Path coverage
considers all paths from start to the end of the program. This includes
all combinations of choices, e.g., if the program contains three independ-
ent (see Fig. 9) choices, there are eight paths. Branch coverage considers
paths, which choose every possible alternative on each branch. For example,
if a program has three independent choices, then branch coverage may be

3This informal definition does not make it clear how to apply path coverage with non-
terminating programs, however, this generalization is out of the scope of this work.

4 COVERAGE 21

achieved with two executions (compare this with eight executions required
for achieving path coverage). Difference between statement and branch cov-
erage is more subtle. Consider the program in Fig. 10. Say we have a spe-
cification for this piece of code, when x < 0 then return x + a otherwise
return x − a. Now executing this once with x < 0 executes all statements
once and returns the correct value, however there is a bug hidden, which
would be revealed by achieving the branch coverage.

When applied to formal conformance testing, a coverage metric should
tell us the level of confidence in the IUT behavior conforming to the spe-
cification. The problem is to formulate the coverage in a sensible way. In-
tuitively the coverage should increase as the possibility of detecting an erro-
neous implementation increases. Coverage level should measure the level of
confidence in the conforming implementation with respect to the specific-
ation. For example a customer might require one to test 50% of the state-
ments (w.r.t. statement coverage) to believe that there has been a reasonable
amount of testing done.

In this section we denote the set of all of suspension trace sets with Ω. This
is defined as follows.
Definition 4.24. Let L be the set of labels, then the set of all suspension
trace sets w.r.t. a specification s is Ω = {Γ | Γ ⊆ Straces(s)}.

To be more exact on what a coverage metric is, we define it as a function
from the set of all suspension trace sets to real numbers from the closed inter-
val [0, 1]. This idea fits to the concept of black box testing, as the traces are the
only observations that we make on the implementation. Unfortunately, for
general white box testing we need to take int oaccount the internal choices
of the implementation and thus this definition does not apply in general for
white box testing. In black box testing it applies, but we have to actually em-
ploy a family of functions. For example, we might have a different coverage
metric function for each specification. From now on we will loosely use the
term “coverage metric” to denote also such a family of coverage metrics.

A coverage metric function must be defined carefully, so that for all Γ ∈ Ω
there exists an image in [0, 1]. We denote closed interval between 0 and 1
with [0, 1], formally [0, 1] = {r ∈ R | 0 ≤ r ≤ 1}, where R is the set of real
numbers.
Definition 4.25. Coverage metric C is a function C : Ω → [0, 1], where Ω
is the set of all suspension trace sets as defined in Def. 4.24.

A set of traces achieves the coverage metric iff we reach a maxima of the
coverage metric in question with the set of traces. For ioco conformance we
consider only the suspension traces of the specification.

Definition 4.26. Let s be a specification. Coverage metric C is achieved for
this specification by the set of suspension traces Γ ∈ Ω, iff ∀Γ′ ∈ Ω : C(Γ) ≥
C(Γ′).

A necessary condition we impose on a coverage metric to be well defined
is the existence of such maxima. Optimal trace set for a coverage metric is
a set of traces with the smallest total length achieving the coverage metric.
Next we define the finite optimal trace set, as the definition for infinite op-
timal trace sets is cumbersome. Note that a finite optimal trace set does not
always exist neither is it unique.

22 4 COVERAGE

Definition 4.27. ΓO
C ⊆ Ω is a finite optimal trace set for coverage metric C

w.r.t. to a specification s iff: (i) ΓO
C is finite, (ii) ∀ finite Γ ∈ Ω :

∑

σ∈ΓO

C

|σ| ≤
∑

σ∈Γ |σ|, and (iii) coverage metric C is achieved by ΓO
C .

Intuitively a coverage metric should be monotonic, as executing more
tests should not decrease the confidence in conforming implementation if
they do not fail. We define this property for a coverage metric as follows.

Definition 4.28. Coverage metric C is monotonic if and only if ∀ Γ ∈ Ω :
∀ Γ′ ⊆ Γ : C(Γ′) ≤ C(Γ).

By definition a complete test suite is able to detect a defective implement-
ation. By definition one might be misled to think that executing such test
suite in a way that it detects all the faults would be easy. We are however
considering black box testing, which in practice hides these details from the
tester. Although the implementation may be modeled as LTS, we do not
know any explicit states, transitions or labels. We just observe events. Such an
implementation might also be non-deterministic. If this is the case, one may
not ever know, whether there is still some non-conforming behavior which
has not been observed, although all possible tests have been executed. Such
problems occur only when we do not know the internals of the implement-
ation and the actual states and transition relation are therefore unknown. If
we know the internals, we can compute the all possible traces without even
testing the implementation. Or, if we do not wish to compute all the traces
we may compute the resulting state after some particular trace and compute
the out set of this state. However, in some cases the computation might need
excessive resources.

So we conclude that, applying a theoretically complete test suite has two
major problems to be considered. First of all, when testing a non-deterministic
black box implementation, one may not be able to obtain all the traces of
such an implementation. Therefore by executing a complete test suite made
on the basis of the theory presented above may not detect all defects, as one
might wrongly assume on the basis of the definition of complete test suite.
Secondly, such a test suite is in general infinite and therefore impossible to
generate or to execute with finite testing resources, which in practice is al-
ways the case. Therefore executing or generating such a test suite would not
be finished in finite time with finite computing capacity.

However, in certain aspects this the best we can do. After all, infiniteness
of test suite is direct consequence of the ioco -definition. Detecting faults of
a non-deterministic system, which will not exhibit non-conforming behavior
when testing it, is also obviously impossible. Therefore we will, for now,
assume that best we can do is to select an appropriate subset of complete test
suite and assume that non-deterministic implementations will not prevent us
from detecting bugs. From now on, we will by default forget the problems
related to this non-determinism.

In this work we model the observations during testing with the trace set,
for which we use the symbol Γ. Precise definition how this set is constructed
during testing is given in Chapter 5 with the algorithms for testing, but in
general on-the-fly tester tests an implementation by sending inputs to imple-
mentation and receiving the outputs. Sequences of these inputs and outputs
are suspension traces, when the suspension is considered as output. The

4 COVERAGE 23

on-the-fly tester may also reset the implementation. When a reset happens,
the current test sequence is terminated and new sequence is started. This is
how the traces are formed. Alternatively we could have used traces with reset
symbols. Such symbols have been used in [21].

A coverage metric corresponding to executing a complete test suite would
be achieved by a trace set resulting from executing a complete test suite, for
example one produced by the Algorithm 3.11. Def. 2.14 involves the out sets
after all traces. First we assume the following: If the implementation may ex-
hibit non-conforming behavior after some trace, then it will do so every time.
This assumption is questionable for non-deterministic implementations, but
for now we do not concentrate on that issue. Such implementations occur
in practice, but we do not focus on them now for the sake of simplicity4.

As a complete test suite is able to detect all the bugs, we consider it a
good idea to have a coverage metric which resembles a complete test suite in
the sense that achieving it corresponds to executing the complete test suite
in question. Based on the previous discussion we can conclude that the set
of all suspension traces achieves the coverage metric corresponding to the
complete test suite.

In general the set of suspension traces of any non trivial specification is
infinite. We define Trace coverage of a trace set as a sequence which con-
verges towards 1, when the trace set approaches Straces(s). It is defined in a
way that the longer a trace is, the less it affects the coverage. However, the
trace coverage is not achieved until all traces have been observed. The se-
quence contains terms, which represent the proportion of traces of length k
whose continuation (continuation is a trace whose prefix a trace is) has been
observed. These terms are scaled with factor 1

αk , where k is the length of
trace, to make the series converging.

4Without this assumption it might be reasonable, for example, to define coverage in such
manner, that it would increase when a trace would be executed several times to gain more
confidence on the conforming behavior of nondeterministic implementations. This could
be implemented using a multiset based coverage, i.e., coverage where each trace should be
executed n times to reach the full coverage.

24 4 COVERAGE

Definition 4.29. Let s be a specification and Γ a trace set. Let Pref (Γ) be
the prefix closure of this set, defined as Pref (Γ) = {σ | ∃σ′ ∈ (L ∪ {δ})∗ :
σ · σ′ ∈ Γ}. Based on this we define as follows

Nk =def |{σ ∈ Straces(s) such that length of σ is k}|

Ck =def |{σ ∈ Pref (Γ) such that length of σ is k}|

and based on these

πk =def

{

1 if Nk = 0
Ck

Nk

otherwise.

The trace coverage of set Γ w.r.t. s is

CT (Γ) =def (α − 1)
∞

∑

k=1

1

αk
πk.

The series converges if the geometric series
∑∞

k=1
1

αk converges. This is
the case when α > 1. Observing any unobserved prefix increases the cover-
age, as it increases proportion of observed traces of this length. For example,
if we have not observed any continuation of σ with length n, then the cover-
age is (α − 1) 1

αnNk

lower than if σ had been observed.
This definition has advantages that first of all it is monotonic and secondly

it has a maxima with value 1, when Γ = Straces(s). It also works for infinite
traces and is quite simple. However, note that this definition should not be
interpreted as percentage although it has values between 0 and 1.

The coverage contains parameter α to make it applicable to variety of
cases where e.g. we may assume that the shorter traces are more important
than the longer. One may select α according how much the shorter traces
are more important than the longer. As the α gets larger the short traces
become more important. If α gets smaller the long traces get more weight in
the calculation.

Example 4.12. Consider our running example from Section 2 in
Fig. 1. This example has following traces with length smaller than
5: {a, ac, ab, aδ, aca, aba, aδδ, acab, acac, acaδ, abac, abab, abaδ, aδδδ}. This
results 1 trace of length 1, 3 of length 2 and 3 of length 3 and 7 of length 4.
Assume we have executed the following traces: {a, ab, aba, abab}. If we set
α = 2 then the resulting trace coverage of this set is about 0.63. Compare
this to the case where we set α = 4, the trace coverage is about 0.83. For
trace set {a, ab, ac, aδ} the trace coverages are 0.75 (α = 2) and about 0.94
(α = 4).

We do not have a practical motivation for the factors α except that obvi-
ously conforming behavior on smaller traces is most important. However, the
target is to achieve trace coverage. It would in general mean executing an
infinite amount of test cases. Therefore it is not a practical option. However,
we may at least approximate it in the following sense: we define an approx-
imating coverage metric in such a way that increasing it guarantees that the
trace coverage metric increases.

4 COVERAGE 25

Another possibility to handle the problems related to infiniteness of the
complete test suite and non-determinism is to define a fault model. A fault
model specifies which kind of defective implementations we expect to have.
We might define the following fault model for example: We target only de-
tecting implementations producing fault with traces up to length n and hav-
ing no non-determinism. This way, we are able to assure ourselves that we
have no faults w.r.t. the fault model. Defining reasonable fault models is not
straightforward. Examples of fault models for hardware, software and protocol
testing are presented in [6].

For fault models one may define a probabilistic coverage metric with a
formula, which calculates the conditional probability of verdict fail with the
condition that implementation is faulty. This is called effective coverage of

test suite, and for a test suite T we define it as ECT =
P

i∈IF
PF ail(T,i)Pi

P

i∈IF
Pi

, where

IF is the set of faulty implementations, Pi is the probability of implement-
ation being i, and PFail(T, i) is the probability that test suite T fails when
applied to the implementation i [6]. If we also assume that the test suite is
sound, this would be a very good coverage metric. Unsound test suites with
100% effective coverage are easy to generate as they contain test cases always
producing the fail verdict.

The hard part here is to define the probabilities for failing test cases, and
implementation being some particular implementation. Restricting ourselves
to some type of faults, and statistical analysis of typical faults in application
domain might help, but still makes this approach harder than it first looks.

Also interesting approach can be found in [2]. They generate tests by
generating mutants from the implementation with mutation operators and
then try to find counterexamples proving the mutations non conforming with
model checkers SPIN[22] and SMV[27]. Operators generating mutants can
be thought as fault models.

They further even refine this in [1] to include specification based cover-
age. However, this specification-based coverage is pretty different from ours.
They define it as the amount of mutants detected by test case set per all
mutants produced by mutation operators.

We will base our work on trying to increase trace coverage metric using
simple specification-based coverage metrics and moreover it is also inspired
by the branch coverage, and therefore our approach is also similar to those
used already in software testing community. As an interesting side note, we
can also see similarities between the trace coverage metric and path coverage,
and note that increasing branch coverage increases path coverage. In next
section we will define our coverage framework for on-the-fly testing in detail.

4.1 Coverage Framework for On-the-fly Testing

We define a coverage metric on three different levels: The suspension LTS
level, the labelled transition system level and on the labelled Petri net level.
For example, we may define coverage metric based on the state coverage
or the transition coverage. However, in this work we concentrate only on
transition coverage.

Let p = (S, L, ∆, s0) be a LTS specifying some system. We can see the

26 4 COVERAGE

traces of this system from two different perspectives: a practical and a theor-
etical perspective. The traces from a theoretical perspective are Straces(s0),
and from a practical perspective they are the sequences of events between
the IUT and the tester. A trace from practical viewpoint starts either by be-
ginning the testing or resetting the implementation. After a trace starts all
the events are included in it in sequence up to the reset or the ending of the
testing. All the traces observed during testing form the trace set Γ.

All the three transition coverage metrics to be defined are similar to the
branch coverage. Different levels can be intuitively thought as different levels
of abstraction. The smaller the specification is the higher the level of abstrac-
tion is. Less abstract levels approximate trace coverage more closely.

In the transition coverage of a Petri net and transition coverage of a LTS
we do not try to handle the suspensions. The reason for this is simplicity.
However in suspension automaton coverage we cover the suspensions. In fol-
lowing definitions we assume that the specification Petri net and specification
LTS have at least one visible transition, i.e., |∆v| ≥ 1 and |vistrans(N)| ≥ 1.
All useful specifications fulfill this criteria.

Definition 4.30. Let N = (P, T, F, λ, M0) be a specification Petri net,
and let LTS(N) = (S, L, ∆, s0) be the induced LTS. A suspension trace
σ ∈ (L ∪ {δ})∗ covers the visible transition t ∈ vistrans(N) iff there exists
σ′, σ′′ ∈ (L ∪ {δ})∗, s ∈ S, and M, M ′ ∈ RM(N) such that:

(i) σ = σ′ · λ(t) · σ′′,

(ii) s0
σ′

=⇒ s = M , and

(iii) M
t
→ M ′.

The set of covered transitions by a suspension trace σ is denoted as
covered(N, σ), and by a suspension trace set Γ as covered(N, Γ) =def
⋃

σ∈Γ covered(N, σ).

Definition 4.31. Transition coverage of a labelled Petri net N w.r.t. trace set

Γ is defined to be CT (N, Γ) = |covered(N,Γ)|
|vistrans(N)|

.

a

s3

s2s1

s0

a
b

c

τ
c b a τ

a

FIGURE 11: Petri net transition coverage of trace ab as a LTS (left) and a
Petri net (right)

4 COVERAGE 27

Example 4.13. The Petri net transition coverage of trace ab w.r.t. our
running example is presented in Figure 11. The running example is a LTS,
but there is trivial transformation producing corresponding labelled 1-safe
Petri net, which is formed from LTS by considering states as places and arcs
as transitions. This is shown on the right. Now the arcs with solid edges are
covered and dotted arcs are not. In the Petri net covered transitions have
solid edges around them and uncovered ones are dotted. Note that internal
transitions will never be covered.

Definition 4.32. Let σ be a suspension trace and p = (S, L, ∆, s0) be the
specifying LTS. A visible arc (s, a, s′) ∈ ∆ is covered by the trace σ iff there
exists σ′, σ′′ ∈ (L ∪ {δ})∗ such that

(i) σ = σ′ · a · σ′′,

(ii) s0
σ′

=⇒ s, and

(iii) s
a

−→ s′.

The set of covered arcs in LTS p by a trace σ is denoted as covered(p, σ) and
by a trace set Γ as covered(p, Γ) =def

⋃

σ∈Γ covered(p, σ).

Definition 4.33. LTS p = (S, L, ∆, s0) visible transition coverage w.r.t.

trace set Γ is defined to be CT (p, Γ) = |covered(p,Γ)|
|∆v|

.

For a suspension automaton the definitions are almost the same as for an
LTS, except that the original LTS is replaced by the suspension automaton.
Therefore this coverage is in general different from the original LTS cover-
age.

Definition 4.34. Let σ be a suspension trace and SA(N) = (S, L, ∆, s0)
the suspension automaton of the specification. A visible arc (s, a, s′) ∈ ∆ is
covered by the trace σ iff there exists σ′, σ′′ ∈ (L ∪ {δ})∗ such that

(i) σ = σ′ · a · σ′′,

(ii) s0
σ′

=⇒ s, and

(iii) s
a

−→ s′.

The set of covered arcs in SA(N) by a trace σ is denoted as covered(p, σ) and
by a trace set Γ as covered(SA(N), Γ) =def

⋃

σ∈Γ covered(SA(N), σ).

Definition 4.35. The suspension automaton (of specification N) visible
transition coverage w.r.t. trace set Γ is defined to be CT (SA(N), Γ) =
|covered(SA(N),Γ)|

|∆v|
, where |∆v| refers to the number of visible arcs in the sus-

pension automaton. Note that the δ is a visible symbol of the suspension
automaton.

We remind that we have already defined trace coverage of a trace set in
the Def. 4.29.

Proposition 4.1. All previous coverage metrics (including trace coverage)
grow monotonically, as the trace set Γ grows.

Theorem 4.2. Consider a trace sets Γ and Γ′ such that Γ ⊂ Γ′.
Now if CT (N, Γ′) > CT (N, Γ) holds for a labelled Petri net N , then
CT (LTS(N), Γ′) > CT (LTS(N), Γ).

28 4 COVERAGE

Proof This is a proof by contradiction. Let Γ′ be some trace set and Γ ⊂ Γ′.
Assume following holds for a labelled Petri net N = (P, T, F, λ, M0):
CT (N, Γ′) > CT (N, Γ) and CT (LTS(N), Γ′) ≤ CT (LTS(N), Γ). By mono-
tonicity it does not hold that CT (LTS(N), Γ′) < CT (LTS(N), Γ) and thus
CT (LTS(N), Γ′) = CT (LTS(N), Γ). Because the total number of visible
transitions remains the same in both cases, ∃t ∈ T , covered by some
σ ∈ Γ′ \ Γ, but not covered by any trace in Γ. However, by our assump-
tion σ does not increase the LTS transition coverage. It follows that for each
arc (s, a, s′) covered by σ there is a trace σ′ ∈ Γ which covers it. However,
this means that each Petri net transition covered by σ is covered with some
trace σ′ ∈ Γ and therefore we have a contradiction and the theorem follows.
This is due that for each arc there exists one transition in the Petri net which
is covered by all the traces covering the arc. �

Theorem 4.3. Consider trace sets Γ and Γ′ such that Γ ⊂ Γ′. Now for
the Petri net N induced LTS LTS(N) following holds: if CT (LTS(N), Γ′) >
CT (LTS(N), Γ) then CT (SA(N), Γ′) > CT (SA(N), Γ).

Proof Some trace σ ∈ Γ covers an arc (s, a, s′) in an LTS p, which is not
covered by Γ. Obviously a prefix σ′ of σ such that s ∈ S = p after σ′. In

the suspension automaton we have a state S such that s0
σ′

=⇒ S and an arc
(S, a, S ′) (where S ′ = S after a) which has not been covered by Γ. This due
the fact that, if Γ had covered this, then it would have covered also the arc
(s, a, s′) in the LTS. �

Theorem 4.4. Consider trace sets Γ and Γ′ such that Γ ⊂ Γ′. For the suspen-
sion automaton SA(N) following holds: If CT (SA(N), Γ′) > CT (SA(N), Γ),
then CT (Γ′) > CT (Γ).

Proof First of all, there must exist a trace σ in the set Γ′ such that it covers arcs
in the suspension automaton which are not covered by any trace belonging
to Γ. Assume that all the prefixes of σ are also prefixes of some trace in the set
Γ. However this would mean that all the arcs of the suspension automaton
covered by σ would be covered by Γ too. Therefore this is a contradiction
and σ has to have a prefix which is not a prefix of any trace in Γ.
Secondly, all the prefixes of traces in Γ are included in prefixes of Γ′. This is
obvious as Γ ⊂ Γ′. Therefore we conclude that the Γ′ contains more unique
prefixes that Γ and the trace coverage is thus higher. �

Based on Theorem 4.2, Theorem 4.3, Theorem 4.4 we may conclude
that increasing any of the following three coverage metrics (i) transition cov-
erage of a labelled Petri net, (ii) LTS transition coverage, or (iii) suspension
automaton transition coverage, increases the trace coverage. Increased trace
coverage increases our chances to detect bugs.

5 ALGORITHMS

In this section we study conformance testing algorithms for on-the-fly test-
ing. We present a general framework into which we fit our approach and
existing on-the-fly testing algorithm by Tretmans et al [9]. The extension we
present allows us to build heuristics for this algorithm. After algorithms we

5 ALGORITHMS 29

consider what properties could be used for analyzing the capabilities of these
algorithms. We adapt the definitions of soundness, exhaustiveness and com-
pleteness for on-the-fly testing algorithms and define the omnipotentness.
Then we consider which properties the algorithms presented satisfy.

5.1 A Conformance Testing Algorithm

First we present Algorithm 5.14, which is our general on-the-fly testing al-
gorithm. This algorithm lets the heuristics to be defined later. The algorithm
returns fail when it has detected that the implementation has failed to con-
form to the specification and pass otherwise.

We use here a few data objects worth of describing. First of all a super state
is a collection of states. Often specification contains some nondeterminism,
i.e., some sequence of actions does not lead to some specific state, but pos-
sibly to many different states. As we model all the behavior contained in
the specification we take account all of these states and use super states to
analyze the specification behavior.

We also use data objects called traces and trace sets. Trace sets are set
of traces, but what is trace? It is a suspension trace from Chapter 2, i.e., a
sequence of events describing the observed behavior of the implementation.
By ε we denote an empty trace containing no events and by ∅ we denote
empty trace set, containing no traces.

By defining a random heuristic as in Algorithm 5.15 we get the on-the-fly
testing algorithm of [9] presented from an implementation perspective. The
resulting algorithm is actually very similar to Algorithm 3.11 which is able to
generate a test suite for ioco conformance testing based on specification as
LTS. The algorithm can be considered as the on-the-fly testing version of the
Algorithm 3.11.

In Algorithm 5.14 we model the general on-the-fly test process. With
TestMove algorithm we present the choice of next action. The actual heur-
istic lies behind this routine. By making a random choice as in Algorithm
5.15 we model non-deterministic choice. We also present more sophistic-
ated heuristic in Algorithm 5.16.

Apart from deciding the next action with guidance from heuristics, the
algorithm also sends inputs to implementation and observes outputs from
it. We use similar notation to Chapter 3. By Stimulate(i,x) we denote that
implementation i is sent an input x and the subroutine ObserveOutput(i)
returns the output observed from the implementation i including suspension
δ. Suspension δ is caused by situation where no output was observed.

The algorithm also keeps track of tests executed. In this task we use
TestLog() subroutine which is introduced in detail in Algorithm 5.19. It
basically adds executed events to currenttrace, and completed traces to ex-
ecutedtraces.

Algorithm 5.15 represents a heuristics which is implemented to give a ran-
dom answer. It has constants Prob_input, Prob_reset and Prob_terminate
to denote the probabilities of giving input, resetting the implementation and
terminating. These constants may affect the performance of testing, for ex-
ample see [15]. The subroutine TrueWithProbability returns true with prob-
ability given as parameter and false with the complement probability.

30 5 ALGORITHMS

Algorithm 5.14.

procedure OnTheFlyTest(IOT S(LI ∪ LU) i, LT S(LI ∪ LU) s) {
currenttrace := ε;
executedtraces := ∅;
S := {s0}; // AT BEGINNING CURRENT SUPER

// STATE CONTAINS THE INITIAL STATE s0 OF THE SPECIFICATION S

S := S after ε;

while (true) {
move := TestMove(currenttrace, executedtraces, S); // RETURNS EITHER

// MOVE ∈ LI OR MOVE ∈ {output , terminate , reset}
switch (move) {
case of terminate :

TestLog(currentttrace, executedtraces, S, pass);
return pass ;

case of reset :
TestLog(currenttrace, executedtraces, S, reset);
break ;

case of move ∈ LI :
// TestMove() INSTRUCTED TO MAKE AN INPUT

x := move; // TestMove() MUST GUARANTEE THAT x ∈ (init(S) ∩ LI)
Stimulate(i, x); // STIMULATE THE IMPLEMENTATION WITH INPUT X

TestLog(currenttrace, executedtraces, S, x); // LOG THE INPUT SENT

S := S after x;
break ;

case of output : // MOVE = output

// TestMove(S) INSTRUCTED TO OBSERVE AN OUTPUT

x := ObserveOutput(i);

if (x ∈ out(S)) then { // HANDLES SUSPENSIONS TOO

S := S after x;
// LOG THE OUTPUT OR TIMEOUT OBSERVED

TestLog(currenttrace, executedtraces, S, x);
} else {

// AN OUTPUT WAS OBSERVED, BUT THE SPEC CAN NOT MAKE IT

TestLog(currenttrace, executedtraces, S, fail);
return fail ;

}
break ;

}
}

}

FIGURE 12: The on-the-fly testing algorithm main loop

5 ALGORITHMS 31

Algorithm 5.15.

procedure RandomTestMove(SuperState S) {
inputs := init(S) ∩ LI ;
if (TrueWithProbability(Prob_terminate) then {

return terminate ;
}
elsif (TrueWithProbability(Prob_reset) then {

return reset ;
}
elsif (inputs 6= ∅ ∧ TrueWithProbability(Prob_input)) then

move := PickRandomElement(inputs);
} else {

move := output ;
}
return move;

}

FIGURE 13: Implementation of test move making random moves

The idea in our improved TestMove(Algorithm 5.16) is to pick a random
action by small probability or with a higher probability to greedily choose
an action which is likely to lead to a higher coverage. Why we have the
small chance to choose randomly a test move is to make our testing algorithm
complete, i.e., being able to detect any bug in the implementation. It is also
possible to tune parameters to have greater chance for randomly selecting
the action, however, we see this kind of parameter setting less likely.

Greedily choosing an action is done first by looking for an immediately
enabled transitions, and if there is no such transition leading to a higher cov-
erage, using the Bounded Model Checking (BMC) [5] technique to look
ahead more than one step. BMC returns a move of sequence leading to this
uncovered transition. However, the sequence is not guaranteed to lead to
increasing coverage as it may contain some output transitions. The output
transitions are not guaranteed to fire, as they are controlled by the imple-
mentation, i.e, it may send some other output instead of the one we were
wishing for. How the BMC exactly computes the sequence will be explained
later in 6.3.

The heuristic may also reset the implementation or terminate testing. The
heuristic terminates testing when either reaching full coverage or executing
the amount of testing events specified by user as the bound. User may also
set a reset interval, i.e., implementation is reset after n events, where n is a
bound chosen by the user of our tool.

The look ahead is straightforward. First the look ahead queries BMC for
an execution leading to higher coverage. The execution is restricted by an
user specified bound on the length and therefore such an execution is not
guaranteed to exist. If such execution is found, heuristic stores this execution
and returns an action to do the first step of the execution. It is either sending
an input or waiting for an output. The latter lets the implementation to
disturb our newly found execution, as it may return any output, not the one

32 5 ALGORITHMS

Algorithm 5.16.

procedure HeuristicTestMove(
Trace currenttrace, TraceSet executedtraces, SuperState S) {

move := none ;
if (|executedtraces| > maxruns ∨ coverage > requiredcoverage) {

return terminate ;
}
if (|currenttrace| > resetInterval) {

return reset ;
}
if (TrueWithProbability(Prob_greedy)) then {

move := GreedyTestMove(S);
}

if (move = none) then {
move := RandomTestMove(S);

}

return move;
}

FIGURE 14: Heuristic test selection combining greedy and random elements

we had in our execution. If an execution is not found it returns none which
causes the RandomTestMove to be called in the callee function.

During testing the algorithm Algorithm 5.14 keeps track of the traces ex-
ecuted. The set executedtraces equals to the set of executed traces Γ in pre-
vious section and therefore this is how that set is exactly obtained. Every
executed event is appended to current trace and once the implementation
i s reset current trace is added to the set of executed traces. This happens
in TestLog() subroutine (Algorithm 5.19), which also updates the coverage
information.

Updating the coverage information means marking new covered trans-
itions as covered. The covered transitions by some trace are specified in
Def. 4.30. In this algorithm we only have the current super state and the
new event. However, this information is sufficient to update the coverage
as the previously covered transitions have already been marked covered. By
combining the information of the current super state and the event executed
we know which transitions are covered by this event. If S is the current super
state, then the event x covers all visible transitions on every path s

x
=⇒ s′,

where s ∈ S and s′ ∈ (S after x).

5.2 Soundness and Completeness of Heuristics

When classifying algorithms, we must first define the notion of the algorithm.
Algorithm is understood to be something, which can be computed (for ex-
ample by a Turing machine) with a finite number of steps. However, we
use this term in this section loosely and do not require our algorithms to

5 ALGORITHMS 33

Algorithm 5.17.

procedure GreedyTestMove(SuperState S) {
input_uncovered := UncoveredInputIsEnabled(S);
output_uncovered := UncoveredOutputIsEnabled(S);

if (input_uncovered ∧ output_uncovered) then {
if (TrueWithProbability(Prob_input)) then }

choice := input ;
} else {

choice := output ;
}

} elsif (input_uncovered ∧ ¬output_uncovered) then {
choice := input ;

} elsif (¬input_uncovered ∧ output_uncovered) then {
choice := output ;

} else {
choice := none ;

}

if (choice = input) then {
move := PickRandomUncoveredInput(S);

} elsif (choice = output) then {
move := output ;

} else {
move := LookaheadTestMove(S);

}

return move;
}

FIGURE 15: Coverage based greedy test selection subroutine

terminate in a finite number of steps. Such algorithms are often called semi-
algorithms. The semi-algorithms might not terminate with some inputs, but
algorithms (in strict sense) do terminate with every input after a finite number
of elementary operations (for example transitions in an execution of a Turing
machine). Note that every algorithm is also a semi-algorithm. In this section
if we say that algorithm returns a value, it also means that it has terminated.

We use notion a(x, y, z) = value to denote that algorithm a with inputs
x, y and z terminated returning value value. In the case that algorithm does
not terminate, we define that it returns a special value notterminated .

In this subsection we will restrict ourselves to a deterministic implement-
ation, by which we mean that it’s behavior is determined by the inputs sent
only (no internal non-determinism). This simplifies the analysis, because
non-deterministic implementations complicate most of the aspects.

In this subsection we wish to define some concepts to classify on-the-fly
testing algorithms. We define four classes of algorithms: sound, exhaustive,
complete and omnipotent. First three are as previously defined for the test
suites, and the last is to denote an algorithm which might detect any bug, but

34 5 ALGORITHMS

Algorithm 5.18.

procedure LookaheadTestMove(SuperState S) {

With limited computational resources try to find a (preferably) short execution:

S
σ

===⇒ S′, such that any test run beginning with σ increases coverage.

move := none ;
if (σ was found) then {

Let x be the first action of σ
if (x ∈ LI) then {

move := x;
} else {

move := output ;
}

}

return move;
}

FIGURE 16: An abstract subroutine description for coverage based looka-
head

the conclusion of implementation being conforming does not guarantee that
the implementation is conforming.

The presented algorithms depend on random numbers. Random num-
bers in algorithms are interesting topic of their own, and interested reader is
pointed to for example [28, 26]. Basically we have pseudo-random and true-
random bits and also something between. The random number generators
available through “random()” library routines in commonly used program-
ming languages are based on on mathematical algorithm producing “ran-
dom” numbers from a finite initial seed. The sequence is a function of the
seed, and therefore not random. However, in this theoretical treatment of
testing algorithms we consider a random bit source such that the bits are
truly random. Such source is random variable whose realizations are infin-
ite sequences of bits {x1, x2, . . .} where ∀i > 0 : P (xi = 0) = 0.5 and
∀i > 0 : P (xi = 1) = 0.5. One must not be able to conclude anything by
the previous bits either, and therefore ∀i > 0 : ∀ Y = y1 ·y2 · · · yi−1 : P (xi =
0|x1·x2 · · ·xi−1 = Y) = 0.5 as well as ∀i > 0 : ∀ Y = y1·y2 · · · yi−1 : P (xi =
1|x1 · x2 · · ·xi−1 = Y) = 0.5.

To analyse algorithms including random variables we introduce two views,
to view them either as deterministic or non-deterministic algorithms. The es-
sence is to model our algorithms, so we can model same algorithm in differ-
ent ways. Deterministic algorithm is deterministic when run with the same
realization of the random source and same responses by the implementation
to the stimuli sent by the testing algorithm. When these prerequisites are true
the deterministic algorithm has a unique run.

The non-deterministic view analyses all possible runs of the algorithm cor-
responding to the different realizations of the random source. This view is

5 ALGORITHMS 35

Algorithm 5.19.

procedure TestLog(Trace currenttrace, TraceSet executedtraces,
SuperState S, action x) {
// CURRENTTRACE AND EXECUTEDTRACES ARE PASSED BY REFERENCE

if (x /∈ {reset , pass , fail}) {
currenttrace = currenttrace · x;
// INITIALLY ALL TRANSITIONS ARE UNCOVERED

Mark all transitions with label x and enabled in S as
covered according Def. 4.30

}
else {

executedtraces = {currenttrace} ∪ executedtraces;
currenttrace = ε;

}

FIGURE 17: This algorithm constructs executed traces from individual
events

similar to the non-deterministic Turing machines [29]. The result of such
an algorithm is pass, iff all possible realizations of the random source either
(1) terminate with the verdict pass or (2) do not terminate. The result of
non-deterministic algorithm is fail when the result is not pass.

Definition 5.36. Deterministic testing algorithm a is sound if, for all imple-
mentations i and specifications s and realizations of the random source r it
holds that if a(i, s, r) = fail , then i ioco6 s.

Definition 5.37. Deterministic testing algorithm a is exhaustive if, for all
implementations i and specifications s and realizations of the random source
r it holds that if a(i, s, r) = pass then i ioco s.

Definition 5.38. Deterministic testing algorithm a is complete if it is sound
and exhaustive.

Definition 5.39. Deterministic testing algorithm a is omnipotent, if it is
sound and when i ioco6 s then there is a realization of the random source r
such that a(i, s, r) = fail .

Example 5.20. Trivial sound algorithm is “return pass” and trivial exhaust-
ive algorithm is “return fail”. Obviously you cannot get trivial complete al-
gorithm by combining these. Actually no algorithm can guarantee termina-
tion and completeness at the same time. Trivially one can just not terminate
and that is a complete testing algorithm, although not very useful. More
interesting is a complete algorithm (possibly non-terminating), that system-
atically asks for an output after every possible suspension trace and therefore
does not terminate for specifications with an infinite number of suspension
traces. Actually, all specifications happen to have an infinite number of sus-
pension traces, however, by limiting ourselves to suspension traces having
only one suspension in a row we get the things intuitively right. Omnipotent
algorithm is produced by adding the possibility terminate with some probab-
ility with verdict “pass” to the non-trivial complete algorithm.

36 5 ALGORITHMS

The Algorithm 5.14 produces fail, only when after some trace σ we either
observe an output x /∈ out(s after σ) or absence of output δ /∈ out(s after σ)
therefore we may conclude that w.r.t. ioco conformance relation our al-
gorithm is sound. This result is independent of heuristics (TestMove() -
subroutine) used.

The omnipotentness of Algorithm 5.14 depends on the heuristics used.
A sufficient condition for omnipotentness is the following: there is nonzero
probability for sending any enabled input or receiving an output every time,
i.e., TestMove() subroutine has always non-zero probability to return output or
any of the enabled inputs.

Reset of the algorithm is not visible in the algorithm is not considered as
an input or an output, but rather an “out of band” event.

Example 5.21. The omnipotentness of Algorithm 5.14 combined with
Algorithm 5.16 could be achieved by setting the following parameters
requiredcoverage = 1.0, maxruns = ∞ and resetInterval = ∞. By setting
these values the algorithm has no guarantee of termination. If any of these
parameters is set to a lower value, then at certain point the probability of
sending any output or input becomes zero, as algorithm certainly terminates
at the point of reaching the decreased value.

The exhaustiveness of Algorithm 5.14 depends on the heuristics and im-
plementation. Recall, that we have already made restriction to the determin-
istic implementations. If the heuristics is omnipotent, and does not terminate
until (i) all the sequences of inputs and output requests allowed by the spe-
cification have been used against the implementation (sequences start from
the starting state after reset) and (ii) corresponding outputs observed: it will
be exhaustive. Practically this produces algorithm, which does not terminate
for a conforming IUT. If we extend our framework with the restriction that
suspension traces do no contain two suspensions in a row there would be
a small subset of specifications (those having a finite amount of traces) for
which a complete algorithm might terminate (in a combination with con-
forming IUT).

Example 5.22. The previous omnipotentness example is actually also ex-
haustive as it never terminates when i ioco s! We can conclude that this is
complete algorithm, as it was already known to be sound.

Practically implementing an exhaustive on-the-fly testing algorithm is awk-
ward, because it must not terminate (in general) after a finite number of steps.
As you have seen in our example, the Algorithm 5.14 does not terminate with
the parameters making it complete.

We can also conclude that our heuristic gives a sound deterministic al-
gorithm5, which is not omnipotent, exhaustive or complete until the para-
meters are chosen very carefully (i.e., as in Example 5.21).

We can also make exactly same definitions for non-deterministic algorithms.
If the suspension traces are executed in such manner that before any finite
trace only a finite number of events are executed, then for non-deterministic
algorithms the complete and omnipotential are equivalent.

5Possibly non-terminating algorithm.

5 ALGORITHMS 37

For nondeterministic implementations we must have some assumptions,
say a fairness assumption that if some input is sent infinitely many times,
then all possible output behaviors can be observed. The analysis made in
this section was based on assumption that implementation is deterministic.

6 IMPLEMENTATION

We have implemented an extensible testing tool called Bomotest. This tool
is an on-the-fly testing tool, and it supports labelled 1-safe Petri nets as the
input formalism. There are also several heuristics, and a coverage metric im-
plemented. Additional related implemented utilities include a simulated im-
plementation under testing, from now on SimIUT and Reachability analyzer
for 1-safe Petri nets. SimIUT is a tool for simulating an implementation spe-
cified with 1-safe Petri net. The 1-safe Petri net, which is given as a parameter
to SimIUT, specifies the behavior of the implementation to be simulated. It
can be attached to Bomotest and it responds to stimuli according the 1-safe
Petri net given to SimIUT. This gives us a possibility to rapidly experiment
without truly implementing the IUT. Also making mutants is easy with such
a tool available, as, for example, one may disable or add some transitions eas-
ily to achieve a slightly different simulated implementation. This is useful
when analyzing the capabilities of the testing tool.

In this chapter we will concentrate on the implementation of the Bomotest
tool. SimIUT and Reachability analyzer are based on the same code on the
low level and therefore their implementational details can be mostly under-
stood on the basis of Bomotest. Bomotest is based on the algorithms de-
veloped in Chapter 5. Here our objective is only to fill in the implementa-
tional perspective. To understand this chapter you should be already familiar
with the algorithms of Chapter 5.

6.1 Implementation in General

The implementation has been made with C++ programming language [36].
The implementation uses some object oriented features of the language, al-
though it has many algorithmic problems, where object oriented program-
ming offers no advantage. The implementation consists of about 8500 lines
of code.

The implementation is divided to several modules. These are the input
format module, the specification module, the main program and the heur-
istics based coverage module.

Input Format Module
The input format module is for reading the 1-safe Petri net specification
in PEP [16]-format. The format used is an older version (FORMAT_N)
containing a header, place descriptions, transition descriptions, transition to
places arcs and places to transition arcs in this order. The minimal net with
no transitions or places goes as follows

���

�����

38 6 IMPLEMENTATION

��������
��
��
��

��

An example of a place definition is

�� ����	
���

��������	���������� ����� �

55 is place number,
���	
���

��������	����������

the place name
and 0@0k1 is optional information, which is not used by Bomotest. The
initial marking is given in place definitions. You can add token to place in
initial marking by appending M1 to the place definition.

Transitions are specified after TR line using lines like

���
��
�� �����	
������ ��� ����
��� ����

Where 1 is transition number, and
��
��
�� �����	
������ ��� ����
��� �

is the name of the transition. Rest of the line is not used by the Bomotest-
tool. Transitions with prefix �
� !!

are output transitions, those with prefix
 ��� !!

are input transitions and transitions with neither of these prefixes
are internal transitions. The semantic name of an output or an input is given
after the prefix, for example ����	� !!

defines an input transition with
semantic name ack.

The arcs are defined in sections after TP and PT keywords. They contain
transitions to places arcs and places to transitions arcs, respectively. Defini-
tion of an arc from transition 1 to place 11 is as follows in TP section

�" ��

And for an arc from place 108 to transition 9 we use following syntax in PT
section

��#"$

The Specification Module
The specification module provides functionality to maintain super states, tra-
verse specification and obtain out sets and enabled inputs. The key question
is to implement super states. They are set of states, so we need some way to
store a set. Intensively used operations are to check whether a particular state
already exists in the set and adding a state to the set.

There are several data structures which enable these operations. For ex-
ample linked list is simple but inefficient alternative. Also many kinds of
trees offer alternative, but we chose to use a hash table. Hash table offers
amortized constant time addition and check of existence [8]. With trees these
operations are likely to take time proportional to the logarithm of the amount
of elements in the tree.

Therefore we have implemented a hash table to hold the markings in the
current super state. We have collision resolution by chaining, so elements
having an equal key are stored in linked list at the hash table position with
key.

6 IMPLEMENTATION 39

The size of the hash table is determined dynamically. The initial hash
table size is 1024 slots and it is grown dynamically every time the current size
is less than half the number of items in the hash table. At this point, the size
of the hash table is doubled. Exponential growth of the amount of hash table
slots quickly reduces the need for rehashing.

StateSetHash is an implementation of the hash table containing the states.
It contains two important routines. First is to obtain all transitions enabled
in the super state and detecting quiescence. This corresponds to operation
out(S), when the we select only output transitions and add δ when the state
is quiescent. Second one is to fire transitions. Firing transitions with label a
corresponds to S after a.

The hash tables almost never get smaller, only the situation when this
happens is calculating S after δ. Otherwise when the after operation is used
on regular labels, a new hash table is created for the resulting super state.
This combines neatly with our rehashing strategy, as the situation having
large hash table with only a small number of elements is unlikely.

Besides StateSetHash the implementation of specification modules in-
cludes classes DecodedState and EncodedState modeling markings. Inten-
tion is to model compact markings with no operations enabled with En-
codedState and with DecodedState marking-net-pair having operations en-
abled. Operations of DecodedState are retrieving enabled transitions and
firing them as well obtaining the resulting markings.

StateSetHash is also linked to coverage based heuristics by enabling regis-
tration of heuristics to the StateSetHash and informing the registered heurist-
ics about fired transitions as well as replying to their queries about the current
super state. StateSetHash uses CoverageCriteriaSet, which is built according
a singleton pattern [14], containing all the registered heuristics. A heuristic
is represented by the interface CoverageCriteria, which enables the heuristic
to obtain information about fired transitions and affect the decisions made.
Each coverage criterion in CoverageCriteriaSet has a priority. These enable
use of multiple coverage criteria in fashion that first criteria with higher pri-
orities are achieved and then the achieving lower priority criteria is targeted.

Performance of the specification module

As you might have noticed, the Algorithm 5.14 has to calculate the after op-
eration after each successful input, output or timeout from the implementa-
tion. To calculate this, basically we have to check each marking in the super
state and check whether any transition with the specified label is enabled.
Therefore implementation of this routine is essential when considering the
overall performance of the Bomotest-tool. Fortunately, not all specifications
give arise to large super states causing excessive computations.

To implement the after -operation we have to loop over all the markings
in the current super state. This is implementing by looping over all the slots
in the hash table. If the hash table contains a lot of empty slots, this is inef-
fective. However, if there is small number of suspensions when compared to
other events then we know by previous that most of the time the hash table
has of size n has max(1023, n

2
) empty elements.

For each marking, we have to check all the transitions which are enabled
and have the given label. This requires us to loop over all the transitions

40 6 IMPLEMENTATION

with the enabled label. We have implemented labels and label types (input,
output or internal) as integers to speed up this operation. Using strings causes
excessive overhead, as comparing them consumes most of the CPU time.
Another optimization made is that first we compare whether the transition
has the given label. This requires only two checks of integers, which are
directly addressable. Only if it matches given label, we check whether it is
enabled. This requires us to traverse through the net structure checking that
all pre-places of the transition have a token in the current marking.

The Main Program and Communication with the IUT

The main program is basically the Algorithm 5.14 and the heuristic presen-
ted in Chapter 5 implemented in the C++ programming language. It accepts
several command line options. The options enable user to choose the spe-
cification, to set the adapter used to communicate with the IUT, and to limit
the CPU time used. Also, one is able to modify select several options affect-
ing the heuristic. One can select BMC heuristic, greedy heuristic or random
heuristic. Finally, the user may set coverage bound, maximum number of
events before termination and the reset interval giving even finer grained
control over the choices made by the heuristic.

The communication with implementation under test is done using Unix
pipes and an adapter sitting at the other end of the pipe. Adapter is an IUT
specific component translating Bomotest events to actual events understood
by the IUT. Once invoked the Bomotest tool is given an adapter as a para-
meter. It executes the adapter redirecting its standard input and output file
descriptors to Unix pipes which it reads and writes at the other end.

The adapter program must be prepared to accept and respond commands
from the tester which it receives from the standard input. The Bomotest-
tool uses messages separated by the new line mark to give commands. The
messages are stimulate and response. A stimulate command has the syntax
are ��� �� ���
��� ���� � 	 �����
���

, where x is the current trace
length, y and z are currently unused. Once stimulate command has been
received the adapter is supposed to send an action corresponding to

�����

���

to the IUT. The response command has the syntax ��� ��
�
�
� 	,
where x is the current trace length. After receiving the response command,
the adapter is expected to give the output of the IUT to the tester. The output
may either be actual output or a quiescence, i.e., timeout. The response
to this message is to write output message or

�
– denoting quiescence – to

standard output and terminate the message with newline character.
This protocol makes the implementation of an adapter straightforward.

You just have to wait for the commands and act upon them. Unfortunately
there are still some practical implementation issues. The adapter must have
some sort of timeouts to implement quiescence. Sometimes selecting such
timeouts is hard because making them too long introduces delay to testing
and on the other hand, making them too short introduces false quiescences
and therefore false fail-verdicts. Also encoding complicated messages includ-
ing data is confusing and might introduce really big specifications. Therefore
often the adapter has to fill messages with some data not chosen by the tester
and due this the tester is not aware of possible defects related to this data.
However, throughly testing at least the control of the IUT is a good start.

6 IMPLEMENTATION 41

6.2 Implemented Coverage Metrics

Currently we have implemented only one coverage metric: the Petri net
transition coverage. We have defined formally this in Def. 4.31. Adding new
coverage metrics is easy, because there is a well defined interface between the
other parts of the tester and the coverage metric combined with a heuristic.
Also the tester enables the use of multiple criteria simultaneously. In the
Petri net transition coverage the aim is to fire all transitions at least once and
select the next input in a way that the amount of transitions fired at least once
is likely to increase.

To implement the Petri net transition coverage, we have a bit array which
records whether transitions have been covered. At startup the Petri net cov-
erage module is registered to the CoverageCriteriaSet and therefore it re-
ceives information whenever some transition is fired. When a transition is
fired it simply marks the corresponding bit in the bit array. Implementation
is very simple and straightforward. The only problem is that a redundant
specification might have transitions which are never enabled and for such
specifications we can never achieve the Petri net transition coverage. The
Petri net transition coverage we have implemented does not check whether
such transitions exist, because it is a time consuming operation as it requires
reachability analysis, which is a computationally hard problem [40].

6.3 Implemented Heuristics

To increase the coverage, we have implemented heuristics. Heuristics are
coverage metric dependent. Currently our implementation has the reset and
termination conditions in the main program and not separated to the heur-
istic modules. A heuristic can only choose between which input to take or
whether to ask an output. Termination of the algorithm happens when cov-
erage reaches coverage bound or the maximum test events limit is reached.
These are both parameters given by the user. The reset frequency is also a
parameter to the Bomotest tool. It is given as a number of events, including
input and output events, and once this number of events reaches the reset
frequency parameter value the implementation is reset.

The random heuristic is not really a heuristic. It combines Algorithm 5.14
with Algorithm 5.15, which just makes a random choice between the enabled
transition just like the greedy heuristic does when there are no non-covered
inputs enabled.

Greedy heuristic is greedy search in the current super state. It basically
looks for an enabled input or output which causes some non-covered trans-
ition to fire. With small probability it chooses a random transition instead
of a greedily selected one, or if there exists no uncovered enabled transition
it randomly chooses a enabled transition. Random choice here means uni-
form distribution between transitions. Another obvious possibility would be
to have a uniform distribution between labels. This heuristic is Algorithm
5.16 with the LookAheadTestMove being random test move.

The BMC heuristic resembles greedy heuristic, but it uses the actual Al-
gorithm 5.18 instead of random choice when there is no immediately en-
abled uncovered transition.

42 6 IMPLEMENTATION

Implementing Lookahead with Bounded Model Checking

Our implementation of the Algorithm 5.18 is based on the bounded model
checking (BMC) algorithm for 1-safe Petri nets described in [20], incorpor-
ating the process semantics optimization described in [19]. Bounded model
checking is a recently introduced method [5] for exploring all the possible be-
haviors of a finite state system (such as a sequential digital circuit or a 1-safe
Petri net) up to a fixed bound k. The idea is roughly the following. Given
e.g., a sequential digital circuit, a (temporal) property to be verified, and a
bound k, the behavior of the sequential circuit is unfolded up to k steps as a
Boolean formula S and the negation of the property to be verified is repres-
ented as a Boolean formula R. The translation to Boolean formulae is done
so that S ∧R is satisfiable iff the system has a behavior violating the property
of length at most k.

In our case the temporal property to be verified says that all executions
of length k (of the specification) starting from a given state si ∈ S, where
S is the current super state of the specification, are such that the last event of
that execution is invisible or a covered transition. Thus a property violation
is an execution of length k with a last transition which is both visible and
uncovered. Tests beginning with such an execution can lead to increasing
visible Petri net transition coverage.

Our implementation tries to find an execution of length k by trying values
of k from 2 to 10. If no execution could be found with bound of 10, we give
up, and use fully random test move selection. We try several initial states si

for each bound k, thus increasing our chances to find a suitable execution.
The maximum number of initial states randomly sampled from the super
state S is picked from the sequence (32, 16, 8, 4, 2, 1, 1, 1, 1), e.g., for k = 3
we generate 16 different BMC instances.

The implementation of BMC uses the Smodels system [32] as underlying
engine to solve the bounded model checking instances. The Bomotest tool
creates problem instance based on the selected initial state and length of ex-
ecution. This instance is then given to the Smodels system. If Smodels finds
a solution to this problem, it is returned. This equals to finding an execution
σ yielding higher coverage. Bomotest takes advantage of the returned execu-
tion σ by executing the first visible action of this sequence as well as storing
the rest of the execution to continue, if possible, the desired execution on the
next step. Of course continuing execution is not always possible, if an output
given by the implementation is not the one in the execution.

The Algorithm 5 can in our implementation also be disabled, in which
case we call it a "greedy heuristic". When it is enabled, we call it a "BMC
heuristic".

To learn the exact details of the Bomotest testing tool reader is suggested to
take a look at the source code, which is available through the author’s home
page at ���� 	����� �� 	
 ���� �� ��������
��.

7 CASE STUDIES

We have experimented with the Bomotest implementation using simple syn-
thetic experiments and larger real software based experiments. With syn-

7 CASE STUDIES 43

thetic examples we can evaluate effectiveness of the heuristics. By experi-
menting with real, though academic, software we wish to evaluate how ef-
fective our coverage metric is in finding real defects.

7.1 Evaluation of Heuristics with Synthetic Examples

Our synthetic examples are derived from the simple idea of having a combin-
atoric lock. It is a device often found in suitcases, where one has to select the
correct numbers to open the lock. With this experiment we wish to verify that
our heuristic is able to efficiently increase the coverage. It was also interesting
to find out how efficiently Bomotest detects the faulty implementations.

s0
0

a6=0,a∈LI s1
1

a6=1,a∈LI

s2
2

a6=2,a∈LI

s3
3

a6=3,a∈LI

s4
DoorOpens

Li

s5

FIGURE 18: Combinatoric lock with code 0123 as a LTS

Test Setting
In the first combinatoric lock experiment we ran the tests using SimIUT sim-
ulating the correct implementation according the specification. In this ex-
periment we did not target finding faults, but increasing coverage efficiently.
Therefore we did not use faulty implementations but SimIUT with correct
specification instead. As the result we observed how fast the coverage rose.

In the second experiment with locks we used faulty implementations to
measure how efficiently Bomotest is able to detect them using different heur-
istics. This enables us to compare the practical efficiency of heuristics when
targeting to find the bugs.

We used maximum CPU time usage of 900 seconds and no resets as op-
tions to Bomotest during testing. The tests were run on a 1GHz AMD Athlon
processor running Debian GNU Linux 3.0 and Linux kernel version 2.4.18.

Results
The results of the first experiment for the simple combinatoric locks are
presented in Table 1. The table contains the arithmetic average of the num-
ber of events required to obtain 100% coverage and the average of CPU
seconds used during the testing for each heuristic. The average is calculated
from 10 runs. The table is parametrized with the length of the lock being
tested. The table contains text FAIL if all the runs did not complete before
exceeding the CPU usage limit.

As the second experiment we have analyzed the capability of Bomotest
to detect a faulty implementation. We used locks having incorrect sequence
and tried to detect these with the Bomotest. The number of mutants detected
versus the number of test events executed is plotted in Fig 19. It is desirable
to detect faulty implementation with as small number of events as possible.

44 7 CASE STUDIES

Random Greedy BMC
Length CPU Events CPU Events CPU Events

3 3.454 10456.9 0.611 1839.1 0.112 65.7
4 25.985 71819.7 6.675 18476.5 0.244 112.7
5 311.691 786563.8 75.481 188763.3 0.425 163.8
6 FAIL FAIL 743.713 1729456.8 0.73 230.6
7 FAIL FAIL FAIL FAIL 1.148 306.2
8 FAIL FAIL FAIL FAIL 1.824 405.2
9 FAIL FAIL FAIL FAIL 2.786 516.7

10 FAIL FAIL FAIL FAIL 4.427 661

TABLE 1: Results for simple combinatoric lock, CPU being the CPU time
used in seconds

The mutants used are such that the two last digits of the code have been
altered. With lock of length four there are 99 possible mutants, and all of
these have been run with 10 different seeds totaling 990 mutants.

A combinatoric lock is an example of a specification which is hard to cover
(w.r.t. Petri net transition coverage) with purely random heuristic. Time
and events required to cover the simple combinatoric lock grow exponen-
tially. Another observation which can be made is that greedy heuristic is
able to achieve the coverage for one step longer locks within the specified
time bound and uses around one fourth of the events to achieve the coverage
on equal length lock. Therefore we may conclude that greedy heuristic is
more effective than random, although it does change the amount of required
events only by a constant factor and the growth rate of CPU time seems to
be exponential still. Especially, if you look at the number of mutants detec-
ted with certain number of executed test events the greedy heuristic does not
differ much from the random heuristic.

The BMC based heuristic performs exceptionally well in this case. How-
ever, the lookahead looks 10 steps forward and therefore the performance is
likely to get worse with locks containing a longer code. Fortunately, up to
this point we obtained exceptionally good results with the BMC heuristic. If
you look at the number of mutants detected versus the number of test events
used you can notice that BMC is performing very effectively when compared
to greedy and random in this case.

7.2 Evaluation of the Test Selection Method

To evaluate the coverage metric, we wish to find out whether it is successful
in finding errors. For this, we need an appropriate case, i.e., some system
which we may test with our Bomotest-tool. Tretmans et al have used confer-
ence protocol implementation [11] to test their testing tools [9]. We decided
to use the same implementation, as it is already available, and we wish to
compare our results to those of Tretmans et al.

7 CASE STUDIES 45

 0

 200

 400

 600

 800

 1000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

#d
et

ec
te

d
m

ut
an

ts

#events

Random
Greedy

BMC

FIGURE 19: Cumulative number of detected mutants versus number of test-
ing events in Combinatoric lock experiment.

Conference Protocol

The conference protocol implements a chat service. It enables users to form
conferences and exchange messages with other partners in the conference.
[11]

A conference service access point (abbreviated CSAP) offers the service
primitives: join(nickname, conference), datareq(message), dataind(nickname,
message) and leave with no parameters. At first a user has to join a con-
ference. Once an active member of a conference, an user is able to send
messages to other members using datareq and receive such messages sent by
others using dataind. Once finished conferencing, the user may issue leave()
primitive.

A Conference protocol entity (abbreviated CPE) uses UDP as the lower
level service to implement the conference service. Each service primitive
maps as one or more received or sent UDP PDU. The CPE has two sets, a
preconfigured set of all potential conference partners and a dynamic set of
current conference partners.

Issuing a join primitive causes CPE to send all the potential partners an
UDP PDU, called join-PDU, containing who is joining to which conference.
Existing members of the conference then add the joiner to their dynamic
member sets and reply with an answer PDU, called answer-PDU. Receiving
answer-PDU causes corresponding CPE add the sender of the PDU to their
conference partner set. Once datareq primitive is issued, CPE sends data-
PDU to all partners in the set of current conference partners. Receiving data-
PDU causes a dataind primitive to be issued in respective CPE. Receiving
leave-PDU causes respective CPE to remove the sender from conference
member set. Sending the leave-PDU is caused by leave primitive at CSAP,
and it is sent to all the members of the current conference.

46 7 CASE STUDIES

CPE CPE CPE

UDP

CSAP CSAP CSAP

USAP USAPUSAP

FIGURE 20: The conference protocol with 3 CPEs

Test Setting

We have run the experiments with the conference protocol using the Bomotest
tool. Apart from the Bomotest tool and conference protocol implementation,
we have a Petri net specification of the conference protocol and an adapter.

The specification has been developed as a high level net [33], which can
be converted to a 1-safe Petri net. A high level net is more expressive than
1-safe Petri net, and hence we are able to have a smaller and more under-
standable specification describing exactly the same I/O behavior. In the con-
version to labelled 1-safe Petri net we have used Maria [25] analyzer and
custom made Perl scripts.

Basically we have modeled the situation as in Fig. 21. The IUT is a CPE,
and we have also two virtual CPEs. The PCOs are the USAPs of the virtual
implementations and the CSAP of the IUT. The adapter communicates with
the CPE using Unix pipes and it receives and sends messages of the virtual
CPEs using UDP sockets.

The specification contains no buffering for inputs from the virtual CPEs.
It models messages from virtual partners and from CSAP as being received
immediately. Output through UDP contains such buffering, that the PDU
sent is put to a place called “Internet”, which is able to contain at maximum
of 1 PDU of each (receiver, sender, type)-combination. Once a packet is
in the place “Internet”, it may be received by a virtual CPE at any moment
through transition ReceiveVirtual. The full high-level specification is avail-
able through the web.

The conversion process has been made using Maria and Perl. Maria is
able to translate the high-level net to a Petri-net in input format of the PEP-
tool [16]. The resulting net is 1-safe, if the high-level net has been carefully
designed to be such, which we have done. We also used the reduction option
M of the Maria while unfolding the net. Once in the PEP-format, we used a
Perl script to mark the transitions as visible or internal. This process resulted
a 1-safe Petri net specification suitable to be used with Bomotest.

Besides the specification the Bomotest requires the adapter to convert the
messages suitable for the IUT. Adapter is implemented in very straightfor-
ward way. Each message from Bomotest can be directly translated to a mes-
sage in PCOs - the UDP sockets or the pipe. If the Bomotest requests for an
output, adapter will check if some of the PCOs has an input available. This

7 CASE STUDIES 47

Virtual Virtual
CPE

CSAP

BOMOTEST

ADAPTER

UDP

USAP USAPUSAP

CPE CPE

FIGURE 21: An Overview of the Test Setup

is done non-deterministically using the Unix select [35] system-call. To give
implementation possibility respond to our stimuli, we used a timeout of one
second before the response was interpreted as suspension.

To reset an implementation, we have used a strategy where we kill the
existing CPE instance using Unix signals. Then we flush all the sockets and
wait for few seconds to any leftover messages to arrive. After this we restart
the implementation and continue.

Testing was carried out in the Linux environment. We measured com-
bined number of events at all PCO’s. These events are inputs, outputs and
resets. We assumed that major cost (cost equals to time here) in testing would
be executing an event at PCO. This seems to be the case in our case too be-
cause of the timeouts mentioned. Of course some events are more expensive
than others. Reset and suspension especially take some time.

The CPE used contains intentional errors, which can be enabled with
command-line switch -mutant. We have tested a supposedly conforming im-
plementation of the CPE and also intentionally mutated instances of it. In
mutant column there is mutant code, or original for the original conforming
implementation. Tests have been run until Bomotest-tool has reached 100%
coverage, or detected a non-conforming implementation.

The results in Table 2 have been obtained using no resets at all, averages
correspond to 10 runs with different pseudo random generator seeds, and the
average is the arithmetic average. Ratio gives the ratio between heuristic 2
(BMC) testing events and heuristic 0 (random) testing events. The pseudo
random generator used is the BSD random function (random()) found in the
libc-library of Debian GNU/Linux system version 2.1. See the URL provided
in the end of chapter for more information.

48 7 CASE STUDIES

Figure 22 shows graphically how fastly mutants are detected with each
heuristic. In x-axis we have the number of test events executed and in the
y-axis we have the number of mutants detected with less or equal than this
amount of executed testing events.

Results

The results in Table 2 show that in all cases except one the BMC heuristic
was better on average than random heuristic. However in one case BMC
heuristic was slightly worse. The BMC heuristic found all the faulty im-
plementations, although we had to set maximum testing events and not use
100% transition coverage as a termination condition. Therefore we may con-
clude that 100% transition coverage is not sufficient condition to detect these
mutants.

We have not analyzed in detail why 100% transition coverage is not suf-
ficient to detect these mutants. However, we see that transition coverage
is a very high level coverage metric in the sense of hierarchy presented in
Chapter 4 and as such it is able to only guide testing at a very high level
and therefore we need randomness to gain the traces leading to errors. Only
firing all the transitions once does not induce enough testing.

During testing, we had also a faulty implementation of the adapter, which
did never give the data indication at IUT CSAP message. This kind of a
fault was efficiently detected with greedy heuristic and Petri net transition
coverage. It is a fault associated with one transition only, and therefore we
assume that our heuristics and coverage metric would be very efficient against
such faults.

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250 300 350 400

#d
et

ec
te

d
m

ut
an

ts

#events

Random
Greedy

BMC

FIGURE 22: Conference protocol: Cumulative number of detected mutants
versus testing events

The Fig 22 shows that most of the time BMC heuristic is able to detect
more mutants with test effort limited to n events, the same happens to greedy
heuristic. It is interesting that we see almost no benefit over greedy heuristic
when using BMC.

7 CASE STUDIES 49

In this example we have already noticed that firing all the transitions is
not sufficient to detect all the mutants. We can see that avoiding redundant
work is advantageous, but there is also advantage from randomly traversing
the specification. Latter detects bugs, whose detection is not implied by ful-
filling our coverage criteria. Specification is also connected in a manner,
that there are no special sequences of events leading to a totally new area in
specification. Compare this to the combinatorial lock, where such sequence
exists. Bugs have neither been distributed evenly around the specification.
Actually it is not required to test everything to detect small set of bugs.

We speculate that performance of the greedy heuristic is related to the fact
that it avoids some of the redundant work while maintaining higher amount
(than BMC) of random walking around the specification. First is disadvant-
age and latter is advantage when compared to the BMC heuristic. As total
effect the performance of it is almost the same as the BMC’s.

For further information on the experiments found in this chapter, please
see the web site at the address:
���� 	����� �� 	
 ���� �� ��������
����� �� �� ���
��
	���
�
�. It con-
tains specifications for the experiments.

8 CONCLUSIONS

Automated testing tools are an emerging technology. Best of the tools will
contain automated test selection methods to improve the quality of testing.
In this work we have formally defined a framework for specification cover-
age aided test selection. This includes a precise definition of some coverage
metrics as well as a refined algorithm of [41] for implementing test selection
taking advantage of the metrics. As an interesting implementation technique
we have used bounded model checking (BMC) for searching executions in-
creasing the coverage. Finally an on-the-fly testing tool with specification
coverage based test selection methods was implemented.

The contribution also includes experiments with the implemented tool,
which is called Bomotest. We can conclude from the experiments that in
some situations such test selection method is able to increase the perform-
ance by several orders of magnitude, however, in some other situations we
see only little difference. Further analyzing where these methods are most
useful and why is left for future work.

However, we believe that in this work we have given the testing com-
munity more experiences on test selection with a new method. In future we
see that it is possible to improve the presented ideas and try to apply them to
more realistic case studies. The conference protocol case study is, although
a good starting point, a little bit academic, and quite a small one. Also the
errors in the implementation are artificial, not real. Having more case studies
would also give better insight whether the ideas and the methods have use
in practice. The coverage metric used is simple and therefore it can be im-
proved. For example, implementing the LTS coverage presented in Chapter
4 would give more granularity, although it might be impossible for large spe-
cifications due to larger memory consumption needed to store the coverage
information.

50 8 CONCLUSIONS

Mutant Random Greedy BMC BMC
Random

467 74.5 48.8 36.5 0.49
687 68.8 39.7 36.3 0.52
293 80.0 48.4 43.8 0.54
856 97.3 70.6 53.8 0.55
214 103.3 51.3 58.7 0.56
777 103.3 51.3 58.7 0.56
332 122.6 74.8 71.8 0.58
348 93.6 74.1 59.0 0.63
294 154.4 156.4 105.7 0.68
111 38.9 29.2 27.4 0.70
247 38.8 29.2 27.2 0.70
674 15.1 10.6 10.6 0.70
345 55.2 38.9 40.2 0.72
945 45.2 34.0 32.7 0.72
749 20.3 15.2 15.2 0.74
358 45.5 35.7 34.4 0.75
289 73.1 52.3 56.1 0.76
276 23.2 18.0 18.0 0.77
384 47.8 43.2 39.0 0.81
548 75.3 88.9 62.8 0.83
462 84.7 59.5 71.8 0.84
738 84.7 59.5 71.8 0.84
100 42.1 38.8 41.2 0.97
836 42.1 38.8 41.2 0.97
398 94.7 79.4 103.6 1.09

TABLE 2: Number of events required to detect faults in the conference pro-
tocol experiment

8 CONCLUSIONS 51

Of course, there are things to improve in the heuristics, too. We have
assumed that implementation is co-operating with us in the sense that it lets
us to uncovered areas of specification. We can also consider testing as a two
player game. If the implementation plays against us, we could try to build
strategies which would enable the tester to achieve the coverage metric used
also while the implementation plays the best possible strategy to prevent us
from achieving the coverage. We see that this could be similar in spirit to
min-max algorithms used when designing artificial intelligence for games
like chess.

We also see that to be able to compare the heuristics and coverage metrics
a definition of some kind framework to enable these comparisons is needed.
Carefully defined fault models could prove to be such a framework. There-
fore it would be interesting to see the theory behind fault models to mature.
Concepts like completeness and soundness are far too rough tools to analyze
heuristics, coverage metrics and algorithms in detail. We need more refined
tools for analyzing fault detection capabilities.

We have not analyzed in detail the connection between increased fault
detection capability of testers and increased coverage. Testing is in practice
only sound in the sense that it is able to detect bugs, but not able to prove
the program correct. On the other hand, for example sending inputs to the
IUT may increase the coverage, although it is impossible to detect bugs by
sending inputs. The faults are detected by observing outputs. The problem
is: what is the efficient way to detect bugs?

ACKNOWLEDGMENTS

This is the report version of my Master’s Thesis. The report was done in the
Laboratory for Theoretical Computer Science at HUT while I was a research
assistant. I would like to thank my instructor D.Sc. (Tech.) Keijo Heljanko,
M.Sc. (Tech.) Antti Huima from Conformiq Oy Ltd. and supervisor Prof.
Niemelä for patience, guidance, discussions and comments on draft versions.
I’m also thankful for the financial support for the research behind this report,
namely Conformiq Oy Ltd. and Academy of Finland (Project no. 53695).

Also many others from the laboratory staff have been very helpful and nice
to me and I’ve had great time working with you.

As last, but not least, I would like to thank my parents and siblings as well
as my friends for support in non-technical matters.

REFERENCES

[1] P.E. Ammann and P.E. Black. A specification-based coverage metric
to evaluate test sets. International Journal of Reliability, Quality and
Safety Engineering, 8(4):275–300, December 2001.

[2] P.E Ammann, P.E. Black, and W. Majurski. Using model checking
to generate tests from specifications. In M.G. Staples, J. Hinchey and
S. Liu, editors, 2nd IEEE International Conference on Formal Engin-

52 REFERENCES

eering Methods (ICFEM’98), pages 46–54, Brisbane, Australia, 1998.
IEEE Computer Society.

[3] B. Beizer. Software testing techniques - 2nd ed. International Thomson
Computer Press, The United States of America, 2001.

[4] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,
S. Mauw, and L. Heerink. Formal test automation: A simple experi-
ment, 1999.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proceedings of the 5th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), pages 193–207. Springer, March 1999.

[6] G.V. Bochmann, A. Das, R. Dssouli, M. Dubuc, A. Ghedamsi, and
G. Luo. Fault models in testing. In Kroon J., Heijink R.J., and Brinksma
E., editors, Protocol Test Systems IV, volume C-3 of IFIP Transactions,
pages 17–30. North-Holland, 1992.

[7] R. Castanet and D. Rouillard. Generate certified test cases by combin-
ing theorem proving and reachability analysis. In Testing of Commu-
nicating Systems XIV, Applications to Internet Technologies and Ser-
vices, Proceedings of the IFIP 14th International Conference on Test-
ing Communicating Systems, pages 267–282, Berlin, Germany, March
2002.

[8] T.H. Cormen, C.E Leiserson, and R.L. Rivest. Introduction to Al-
gorithms. MIT Press/McGraw-Hill, USA, 1990.

[9] R.G. de Vries and J. Tretmans. On-the-fly conformance testing using
SPIN. Software Tools for Technology Transfer, 2(4):382–393, March
2000.

[10] J. Desel and W. Reisig. Place/transition Petri nets. Lecture Notes in
Computer Science: Lectures on Petri Nets I: Basic Models, 1491:122–
173, 1998.

[11] J. Feenstra. Conference protocol case study. WWW pages at address
���� 	����� �	
 �������� ��
��
����
�, last updated 1999-11-18.

[12] L. M. G. Feijs, N. Goga, S. Mauw, and J. Tretmans. Test selection,
trace distance and heuristics. In Testing of Communicating Systems
XIV, Applications to Internet Technologies and Services, Proceedings
of the IFIP 14th International Conference on Testing Communicating
Systems, pages 267–282, Berlin, Germany, March 2002.

[13] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly veri-
fication techniques for the generation of test suites. In A. Alur and
T. Henzinger, editors, Conference on Computer-Aided Verification
(CAV ’96), New Brunswick, New Jersey, USA, LNCS 1102. Springer-
Verlag, July 1996.

REFERENCES 53

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments od Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. Addison-Wesley Publishing Company, New
York, NY, 1995.

[15] N. Goga. An optimization of the TorX test generation algorithm. In
SAM2000 - 2nd Workshop on SDL and MSC, pages 173–188, Col de
Porte, Grenoble, June 2000. VERIMAG, IRISA, SDL Forum Society.

[16] B. Grahlmann. The PEP tool. In Orna Grumberg, editor, Computer
Aided Verification, 9th International Conference, CAV ’97, Haifa, Is-
rael, June 22-25, 1997, Proceedings, volume 1254 of Lecture Notes in
Computer Science, pages 440–443. Springer-Verlag, 1997.

[17] A. Groce and W. Visser. Model checking Java programs using structural
heuristics. In Proceedings of the International Symposium on Software
Testing and Analysis, pages 12–21, July 2002.

[18] J.A Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19,
September 1990.

[19] K. Heljanko. Bounded reachability checking with process semantics.
In Proceedings of the 12th International Conference on Concurrency
Theory (CONCUR’2001), volume 2154 of Lecture Notes in Computer
Science, pages 218–232, Aalborg, Denmark, August 2001. Springer.

[20] K. Heljanko and I. Niemelä. Bounded LTL model checking with stable
models. In Proceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’2001), volume
2173 of Lecture Notes in Artificial Intelligence, pages 200–212, Vienna,
Austria, September 2001. Springer.

[21] J. Helovuo and S Leppänen. Exploration testing. In 2nd IEEE Interna-
tional Conference on Application of Concurrency to System Design
(ICACSD 2001), pages 201–210, Newcastle upon Tyne, U.K., June
2001. IEEE Computer Society.

[22] G. Holzmann. The model checker SPIN. IEEE Transactions on Soft-
ware Engineering, 23(5):279–295, 1997.

[23] G.J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

[24] International Telecommunication Union, Geneva, Switzerland.
CCITT Specification and Description Language (SDL), recommend-
ation z.100, October 1996.

[25] M. Mäkelä. Maria: modular reachability analyser for algebraic system
nets. In Javier Esparza and Charles Lakos, editors, Application and
Theory of Petri Nets 2002, 23rd International Conference, ICATPN
2002, volume 2360 of Lecture Notes in Computer Science, pages 434–
444, Berlin, Germany, 2002. Springer-Verlag.

54 REFERENCES

[26] U.M. Maurer. A universal statistical test for random bit generators. Lec-
ture Notes in Computer Science, 537, 1991.

[27] K.L. McMillan. Symbolic model checking. Kluwer Academic Publish-
ers, 1993.

[28] C.H. Papadimitriou. Computational Complexity. Addison-Wesley,
USA, 1995.

[29] C.H. Papadimitriou and Harry R. Lewis. Elements of the theory of
computation. Prentice-Hall, 2nd edition, 1998.

[30] A. Pretschner. Classical search strategies for test case generation with
constraint logic programming. In Proceedings of Formal Approaches
to Testing of Software (FATES’01), pages 47–60, Aalborg, Denmark,
August 2001.

[31] A. Rautiainen. Conformance testing in distributed testing architec-
ture. Master’s thesis, Helsinki University of Technology, Espoo, Fin-
land, 1995.

[32] Patrik Simons. Extending and implementing the stable model se-
mantics. Research Report A58, Helsinki University of Technology, De-
partment of Computer Science and Engineering, Laboratory for The-
oretical Computer Science, Espoo, Finland, April 2000. Doctoral dis-
sertation.

[33] E. Smith. Principles of high-level net theory. Lecture Notes in Com-
puter Science: Lectures on Petri Nets I: Basic Models, 1491:174–210,
1998.

[34] I. Sommerville. Software engineering - 6th ed. Addison Wesley, Pear-
son Education Limited, Edinburgh Gate, Harlow, Essex CM20 2JE,
England, 2001.

[35] W. R. Stevens. UNIX Network Programming. Prentice Hall, USA,
1990.

[36] B. Stroustroup. The C++ Programming Language – 3rd ed. Addison
Wesley, USA, 1997.

[37] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated
framework for structural test-data generation. In Proceedings of the 13th
IEEE Conference on Automated Software Engineering (ASE), 2001,
October 1998.

[38] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis,
University of Twente, Enschede, The Netherlands, 1992.

[39] J. Tretmans. Test Generation with Inputs, Outputs and Repetitive Qui-
escence. Software—Concepts and Tools, 17(3):103–120, 1996.

REFERENCES 55

[40] A. Valmari. The state space explosion problem. Lecture Notes in Com-
puter Science: Lectures on Petri Nets I: Basic Models, 1491:429–528,
1998.

[41] R.G. de Vries and J. Tretmans. On-the-Fly Conformance Testing using
SPIN. In G. Holzmann, E. Najm, and A. Serhrouchni, editors, Fourth
Workshop on Automata Theoretic Verification with the SPIN Model
Checker, ENST 98 S 002, pages 115–128, Paris, France, November 2,
1998. Ecole Nationale Supérieure des Télécommunications.

[42] S. T. Vuong and J. Alilociv-Curgus. On test coverage metrics for
communication protocols. In Jan Kroon, Rudolf Jan Heijink, and
Ed Brinksma, editors, Protocol Test Systems IV, volume C-3 of IFIP
Transactions, pages 31–45. North-Holland, 1992.

[43] J.A. Whittaker. What is software testing? And why it is so hard? IEEE
Software, 17(1):70–79, 2000.

[44] G. Wimmel, H. Lötzbeyer, A. Pretschner, and O. Slotosch. Specifica-
tion Based Test Sequence Generation with Propositional Logic. Journal
on Software Testing Verification and Reliability, 10(4):229–248, 2000.

56 REFERENCES

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A80 Tommi Junttila

On the Symmetry Reduction Method for Petri Nets and Similar Formalisms.

September 2003.

HUT-TCS-A81 Marko Mäkelä

Efficient Computer-Aided Verification of Parallel and Distributed Software Systems.

November 2003.

HUT-TCS-A82 Tomi Janhunen

Translatability and Intranslatability Results for Certain Classes of Logic Programs.

November 2003.

HUT-TCS-A83 Heikki Tauriainen

On Translating Linear Temporal Logic into Alternating and Nondeterministic Automata.

December 2003.

HUT-TCS-A84 Johan Wallén

On the Differential and Linear Properties of Addition. December 2003.

HUT-TCS-A85 Emilia Oikarinen

Testing the Equivalence of Disjunctive Logic Programs. December 2003.

HUT-TCS-A86 Tommi Syrjänen

Logic Programming with Cardinality Constraints. December 2003.

HUT-TCS-A87 Harri Haanpää, Patric R. J. Östergård

Sets in Abelian Groups with Distinct Sums of Pairs. February 2004.

HUT-TCS-A88 Harri Haanpää

Minimum Sum and Difference Covers of Abelian Groups. February 2004.

HUT-TCS-A89 Harri Haanpää

Constructing Certain Combinatorial Structures by Computational Methods. February 2004.

HUT-TCS-A90 Matti Järvisalo

Proof Complexity of Cut-Based Tableaux for Boolean Circuit Satisfiability Checking.

March 2004.

HUT-TCS-A91 Mikko Särelä

Measuring the Effects of Mobility on Reactive Ad Hoc Routing Protocols. May 2004.

HUT-TCS-A92 Timo Latvala, Armin Biere, Keijo Heljanko, Tommi Junttila

Simple Bounded LTL Model Checking. July 2004.

HUT-TCS-A93 Tuomo Pyhälä

Specification-Based Test Selection in Formal Conformance Testing. August 2004.

ISBN 951-22-7240-7

ISSN 1457-7615

