
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 92

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 92

Espoo 2004 HUT-TCS-A92

SIMPLE BOUNDED LTL MODEL CHECKING

Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi Junttila

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 92

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 92

Espoo 2004 HUT-TCS-A92

SIMPLE BOUNDED LTL MODEL CHECKING

Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi Junttila

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi Junttila

ISBN 951-22-7223-7

ISSN 1457-7615

Multiprint Oy

Helsinki 2004

ABSTRACT: We present a new and very simple translation of the bounded
model checking problem which is linear both in the size of the formula and
the length of the bound. The resulting CNF-formula has a linear number of
variables and clauses.

KEYWORDS: LTL, Bounded Model Checking, NuSMV

Contents

1 Introduction 1

2 Bounded Model Checking 1
2.1 LTL . 4

3 A New Translation 5
3.1 Optimising the Translation 8
3.2 Fairness . 8

4 Related Work 9

5 Experiments 10
5.1 Implementation . 13

6 Conclusions 13

References 14

iv CONTENTS

1 INTRODUCTION

Bounded model checking [2] (BMC) is a technique for finding bugs in finite
state system designs violating properties specified in linear temporal logic
(LTL). The method works by mapping a bounded model checking problem
to the satisfiability problem (SAT). Given a propositional formula encoding a
Kripke structure M representing the system, an LTL formula ψ and a bound
k, a propositional formula |[M,ψ, k]| is created that is satisfiable if and only
if the Kripke structure M contains a counterexample to ψ of length k.

BMC has established itself as a complementary method to symbolic
model checking based on (ordered) binary decision diagrams (BDDs). The
biggest advantage of BMC compared to BDDs is its space efficiency; there
are some Boolean functions which cannot be succinctly encoded as a BDD.
BMC also produces counterexamples of minimal length, which eases their
interpretation and understanding for debugging purposes. However, predict-
ing the cases where BMC is more efficient compared to BDD-based methods
is difficult [18]. Furthermore, BMC is an incomplete method unless we can
determine a value for the bound k which guarantees that no counterexample
has been missed. Several papers [2, 14, 6] have investigated techniques for
computing this bound.

The two main ways of improving the performance of BMC is either to
improve solver technology or to modify the encoding of the problem to SAT.
Improvements of the second kind usually rely on the appealing idea that sim-
pler is better. The intuition is that an encoding which results in fever variables
and clauses is usually easier to solve. We present a new simple encoding for
the BMC problem which is linear in the bound, the system description (i.e.
the size of the transition relation as a propositional formula) and the size of
the specification as an LTL formula. The resulting propositional formula has
both a linear number of variables and clauses.

We have experimentally evaluated our new encoding. Our experiments
compare the sizes of the encodings and the required time to solve the in-
stances.

2 BOUNDED MODEL CHECKING

In bounded model checking we consider finite sequences of states in the sys-
tem, while LTL formulas specify the infinite behaviour of the system. The
key observation by Biere et al. [2] was that a finite sequence can still repres-
ent an infinite path if it contains a loop. An infinite path π = s0s1s2 . . .
is a (k, l)-loop if there exists integers l and k such that sl−1 = sk and π =
(s0s1 . . . sl−1)(slsl+1 . . . sk)

ω (we also use the term k-loop). A bounded path
s0s1 . . . sk of length k can either have k + 1 unique states or represent an
infinite path with a (k, l)-loop if sk = sl−1 for some 1 ≤ l ≤ k. This can
actually be interpreted in two different ways (corresponding to the same infin-
ite path π). Either the back edge of the loop is from sk−1 to sl−1 (the dashed
back edge in Fig. 1) or the back edge is from sk to sl (the solid back edge
in Fig. 1). The new loop shape allows a more compact translation than [2],
replacing the k + 1 copies in the original translation for closing the loop by

2 BOUNDED MODEL CHECKING 1

s
l−1sks

l−1 sl

k l(,)−loop

s
k−10 =s0s sk

(a) no loop

Figure 1: The two possible cases for a bounded path

k comparisons between bit vectors encoding states. The new loop shape de-
picted on the right side of Fig. 1 requires k > 0 for k-loops, which we will
silently assume for the rest of the paper.

When k is fixed there are k + 1 different loop possibilities for a bounded
path. There are k different (k, l)-loops and it is of course also possible that no
loop exists. The basic idea of Biere et al. [2] was to write a formula which is
satisfiable iff the path is a model of the negation of the LTL specification, for
each of these cases. The complete translation simply joins the cases in one
big disjunction.

Example. Consider a Kripke structure M and the formula ψ = GF¬p,
“infinitely often not p”. The negation of the formula is FGp, “eventually
always p”. We will write a formula which encodes all possible witnesses of
length k for the formula FGp. First, we need a formula that captures all paths
of length k. Let T (s, s′) be the transition relation of M as a propositional
formula and I(s) a predicate over the state variables defining the initial states.
A path of length k is encoded by the formula:

|[M]|k := I(s0) ∧
k∧
i=1

T (si−1, si). (1)

Since the formula we are considering requires an infinite witness we can skip
the no loop case. For fixed k and l we use the following rules to build the
formula l|[¬ψ]|k for capturing witnesses of ¬ψ, adapted from [2] to our new
loop shape (the dashed back edge):

l|[Fφ]|ik :=
k−1∨

j=min(i,l−1)

l|[φ]|jk l|[Gφ]|ik :=
k−1∧

j=min(i,l−1)

l|[φ]|jk

Thus l|[ψ]|0k =
∨k
i=0

∧k−1
j=min(i,l−1) p(sj). For each possible (k, l)-loop we

must express the condition Ll := (sk = sl−1). Here the states si are bit
vectors and equality si = sj is defined by ∧nm=1si[m] ⇔ sj[m], assuming the
vectors have n elements and the m:th element is denoted si[m]. The final
formula which is satisfiable iff there exists a counterexample of length k > 0
is:

|[M]|k ∧

(
k∨
l=1

(
Ll ∧ l|[ψ]|0k

))
=I(s0) ∧

k∧
i=1

T (si−1, si)∧

k∨
l=1

Ll ∧ k−1∨
i=0

k−1∧
j=min(i,l−1)

p(sj)

2 2 BOUNDED MODEL CHECKING

p s3)(

p s2)(

p s1)(

p s0)(

L4

L1

L2

L3

Figure 2: Circuit encoding for the LTL formula FGp for k = 4

p

p

p

p

p

p

q

q

q

q

p

q

q

q

q

q

q

p

p

pp

pp p

p p

p

q

q

q

q

q

q

q

q

q

q

p

p p

ppp

p

p

p

pp

p

p

Figure 3: Non-linear number of cubes in the translation of G(r → (pUq))
for k = 4

Without sharing the formula is obviously cubic in k. Let us focus on the LTL
part, the big underlined disjunction over l = 1, . . . , k. A first level of sharing
can be obtained by associating the inner conjunction to the right, resulting
in a quadratic DAG representation. Using the same general idea, the inner
disjunction can be associated to the left. The overall size becomes linear. As
an example see the circuit in Fig. 2 for k = 4. It can still be further optimised
by applying a∨ (a∧ b) ≡ a, which essentially results in removing the middle
column of or-gates. However, as has been noted in [4], using associativity in
synthesis is difficult and in general does not avoid the worst case, which is at
least cubic.

As an example for the non-linear behaviour of the original translation [2]
consider the (E)LTL formula G(r → (pUq)). In the result of the translation
we focus on propositional subformulas, which represent the translation of the
inner temporal operator at all positions i = 0, . . . , k − 1 and all loop starts
l = 1, . . . , k. Following Def. 13 in [2] these formulas are sum of product
forms. Each product is a cube of the predicates p and q at various states. In
Fig. 3 we list all cubes that occur as subformulas for k = 4. Each cube is
represented by one row of the four matrices in Fig. 3. Each of the matrices
collects those cubes where q holds at the same position resp. in the same
state.

The number of cubes is at least quadratic in k. For each position j where

2 BOUNDED MODEL CHECKING 3

q holds, the p sequences can be shared. Therefore an upper bound on the
overall size is O(k3) and not O(k4). The exact size is hard to calculate, but
with Ω(k2) different cubes in the example, the size has a quadratic lower
bound as well.

2.1 LTL

An LTL formula ϕ is defined over a set of atomic propositions AP . An LTL
formula has the following syntax:

1. ψ ∈ AP is an LTL formula.

2. If ψ and ϕ are LTL formulae then so are ¬ψ, Xψ, ψUϕ, ψRϕ, ψ ∧ ϕ,
and ψ ∨ ϕ.

The operators are the next-time operator X, the until operator U, and its dual
the release operator R.

Each formula defines a set of infinite words (models) over 2AP . Let π ∈
(2AP)ω be an infinite word. We denote the suffix of a word π = σ0σ1σ2 . . .
by πi = σiσi+1σi+2 . . . where σi ∈ 2AP , and πi denotes the prefix πi =
σ0σ1 . . . σi. When a formula ψ defines a word π at time i this is denoted πi |=
ψ. The set of infinite words defined by a formula ψ is {π ∈ (2AP)ω | π |= ψ}.
The relation ’|=’ is inductively defined in the following way.

πi |= ψ ⇔ ψ ∈ σi for ψ ∈ AP .
πi |= ¬ψ ⇔ π 6|= ψ.
πi |= ψ ∨ ϕ ⇔ πi |= ψ or πi |= ϕ.
πi |= ψ ∧ ϕ ⇔ πi |= ψ and πi |= ϕ.
πi |= Xψ ⇔ πi+1 |= ψ.
πi |= ψUϕ ⇔ ∃n ≥ i such that πn |= ϕ and πj |= ψ for all i ≤ j < n.
πi |= ψRϕ ⇔ ∀n ≥ i, πn |= ϕ or πj |= ψ for some i ≤ j < n.

If π0 |= ψ we simply write π |= ψ. This presentation of the semantics is
intentionally redundant. The additional operators allow us to transform any
formula to a positive normal form. Formulas in positive normal form have
negations only in front of atomic propositions. Using the dualities ψUϕ ≡
¬(¬ψR¬ϕ), ¬Xψ ≡ X¬ψ and De Morgan’s law, any formula can be trans-
formed without blowup to positive normal form by pushing in the negations.
All formulas considered in this paper are assumed to be in positive normal
form. We also make use of the standard abbreviations> ≡ p∨¬p for some ar-
bitrary p ∈ AP ,⊥ ≡ ¬>, Fψ ≡ >Uψ (’finally’), and Gψ ≡ ⊥Rψ ≡ ¬F¬ψ
(’globally’).

A formula holds in a Kripke structure if all paths of the Kripke structure
are accepted by the formula. Formally, a Kripke structure is a tuple M =
(S, T, s0, L), where S is a set of states, T ⊆ S × S the transition relation,
s0 ∈ S the initial state, and L : S → 2AP a function labelling all states
with atomic propositions. We require that the transition relation is total. A
path of the Kripke structure is a sequence of states ξ = s0s1s2 . . . where
s0 is the initial state and for all i ≥ 0 we have that (si, si+1) ∈ T . The
corresponding word π of a path ξ = s0s1s2 . . . is π = L(s0)L(s1)L(s2)

4 2 BOUNDED MODEL CHECKING

We writeM |= ψ, if for all paths ξ = s0s1s2 . . . ofM the corresponding word
π is defined by ψ, i.e. π |= ψ.

Bounded model checking uses a bounded semantics of LTL which safely
under approximates the normal semantics. It allows us to use a bounded pre-
fix πk = s0s1 . . . sk of an infinite path π to check the formula. The semantics
does a case split depending on if the infinite π is a k-loop or not. Biere et
al. [2] have shown that if a formula ψ is true in the bounded semantics, de-
noted π |=k ψ, this implies that π |= ψ. The definition below assumes the
formula is in positive normal form.

Definition 1 ([2, 9]) Given an infinite path π and bound k ∈ N, a formula
ψ holds in a path π with bound k iff π |=0

k ψ where

π |=i
k p ⇔ p ∈ si for p ∈ AP

π |=i
k ¬p ⇔ p 6∈ si for p ∈ AP

π |=i
k ψ1 ∧ ψ2 ⇔ π |=i

k ψ1 and π |=i
k ψ2

π |=i
k ψ1 ∨ ψ2 ⇔ π |=i

k ψ1 or π |=i
k ψ2

π |=i
k Xψ ⇔

{
π |=i+1

k ψ π is a k-loop
π |=i+1

k ψ ∧ (i < k) otherwise

π |=i
k ψ1Uψ2 ⇔

{
∃j ≥ i : π |=j

k ψ2 ∧ ∀n, i ≤ n < j : π |=n
k ψ1 k-loop

∃j, i ≤ j ≤ k : π |=j
k ψ2 ∧ ∀n, i ≤ n < j : π |=n

k ψ1 otherwise

π |=i
k ψ1Rψ2 ⇔

{
∀j ≥ i : π 6|=j

k ψ2 =⇒ ∃n, i ≤ n < j : π |=n
k ψ1 k-loop

∃j, i ≤ j ≤ k : π |=j
k ψ1 ∧ ∀n, i ≤ n ≤ j : π |=n

k ψ2 otherwise

3 A NEW TRANSLATION

Our new translation takes advantage of the fact that for lasso-shaped Kripke
structures the semantics of LTL and CTL coincide [15, 19]. The intuition is
that when each state has one successor (i.e. the path is lasso-shaped) the se-
mantics of the path quantifiers A and E of CTL agree. An LTL formula can
therefore be evaluated in a lasso-shaped Kripke structure by a CTL model
checker by prefixing each temporal operator by an E path quantifier [19],
which results in a CTL formula.1 We can thus use the fixpoint characterisa-
tion of CTL model checking as a starting point for our translation. The new
translation also separates the concern of if the path has a (k, l)-loop from the
semantics to an independent part of the translation.

The intuition behind our translation is the following. Following [2], we
generate a propositional formula which generates all paths of length k. A
part is added to the translation which makes a choice between the following
possibilities. Either (a) there is no loop, or (b) there is a loop, i.e. a state
sl−1 such that sk = sl−1 for some index 1 ≤ l ≤ k. The choice and addi-
tional constraints under which the choice can be made are implemented as
follows. Fresh variables li, which do not depend on the state variables in any
way, are introduced with appropriate constraints such that if li is true then
si−1 = sk. We allow at most one li to be true in a satisfying truth assignment.
This results in a lasso-shaped Kripke structure or a simple finite path if no li is

1Naturally, we could also use the A path quantifier.

3 A NEW TRANSLATION 5

true. Allowing simple finite paths is an optimisation and does not affect cor-
rectness, but can in some cases (formulas with safety-counterexamples) result
in shorter counterexamples. Model checking is accomplished by generating
propositional formulas to evaluate the greatest and least fixpoints as required
by the implicit CTL formula.

Let M be the Kripke structure of the system and T (s, s′) the symbolic
transition relation. We consider an unrolling of states s0s1 . . . sk. Each si
is a vector of state variables. The unrolling is obtained by equation (1). We
require that the Kripke structure is lasso-shaped or a finite path. The variables
li can seen as selecting one (or possibly none) of the possible (k, l)-loops.
This is accomplished by the following constraints.

|[LoopConstraints]|k ⇔ Loopk ∧ AtMostOnek

Loopk ⇔
∧k
i=1 (li ⇒ (si−1 = sk))

AtMostOnek ⇔
∧k
i=1 (SmallerExists i ⇒ ¬li)

SmallerExists1 ⇔ ⊥
SmallerExists i+1 ⇔ SmallerExists i ∨ li, where 0 < i ≤ k

In contrast to [2], our definitions also allow the no loop case even if the path
has a (k, l)-loop.

The until operator E(ψ1Uψ2) can be evaluated by computing the least
fixed point E(ψ1Uψ2) = µZ.ψ2 ∨ (ψ1 ∧ EXZ) (see e.g. [5]) while the re-
lease operator E(ψ1Rψ2) can be evaluated by computing the greatest fixpoint
E(ψ1Rψ2) = νZ.ψ2∧ (ψ1∨EXZ). The fixpoints are evaluated by first com-
puting an approximation 〈〈·〉〉i for each state and subformula. After this the
results of the approximation are used to compute the final result |[·]|i. We
evaluate the fixpoints for si where 0 ≤ i ≤ k+1. The last case k+1 is added
to make the connections to fixpoints easier to see from the translation.

:= i ≤ k i = k + 1

|[p]|i pi
∨k
j=1 (lj ∧ pj)

|[¬p]|i ¬pi
∨k
j=1 (lj ∧ ¬pj)

|[Xψ]|i |[ψ]|i+1

∨k
j=1

(
lj ∧ |[ψ]|j+1

)
|[ψUϕ]|i |[ϕ]|i ∨

(
|[ψ]|i ∧ |[ψUϕ]|i+1

) ∨k
j=1

(
lj ∧ 〈〈ψUϕ〉〉j

)
|[ψRϕ]|i |[ϕ]|i ∧

(
|[ψ]|i ∨ |[ψRϕ]|i+1

) ∨k
j=1

(
lj ∧ 〈〈ψRϕ〉〉j

)
〈〈ψUϕ〉〉i |[ϕ]|i ∨

(
|[ψ]|i ∧ 〈〈ψUϕ〉〉i+1

)
⊥

〈〈ψRϕ〉〉i |[ϕ]|i ∧
(
|[ψ]|i ∨ 〈〈ψRϕ〉〉i+1

)
>

The auxiliary translation 〈〈·〉〉 which computes the approximations for the
fixpoints is defined in the last two rows.

Let us consider the case ψ = ψ1Rψ2. We initialise 〈〈ψ〉〉k+1 to true since
we are approximating a greatest fixpoint. When 0 ≤ i ≤ k, the auxili-
ary translation 〈〈ψ〉〉i is the normal fixpoint definition of the release oper-
ator. The computed approximation of the fixpoint 〈〈ψ〉〉 is used to initialise
|[ψ]|k+1 with the value of 〈〈ψ〉〉l (this value is in fact exact), the successor of

6 3 A NEW TRANSLATION

sk, when we are dealing with a (k, l)-loop. Finally, |[ψ]|i, where 0 ≤ i ≤ k,
computes the accurate values for each state si, again using the standard fix-
point characterisation of release.

Given a Kripke structure M , an LTL formula ψ, and a bound k, the com-
plete encoding as a propositional formula is given by |[M,ψ, k]|.

|[M,ψ, k]| = |[M]|k ∧ |[LoopConstraints]|k ∧ |[ψ]|0

Theorem 1 Given a finite Kripke structure M , a bound k ∈ N and an LTL
formula ψ, M has a path π with π |=k ψ iff |[M,ψ, k]| is satisfiable.

Proof:
The proof sketch follows the argument at the beginning of this Section. For
both directions we can assume that π is given and is a path of M . Further
assume that π is a (k, l) loop. The other case is obvious from the definitions.
The bounded semantics on a (k, l) loop coincides with the unbounded se-
mantics. What remains to be proven is that the LTL part of the translation
when partially instantiated with π is satisfiable iff π |= ψ.

Instead of checking whether ψ holds along π we check the correspond-
ing CTL formula ψ′ on π interpreted as a Kripke structure itself. The CTL
formula ψ′ is obtained from ψ by prefixing every temporal operator with the
existential path quantifier E. The ECTL formula ψ′ can be translated into
an alternation free formula of the modal mu-calculus, which in turn can be
transformed into a set of mutual recursive boolean equations with fixpoint
semantics as in [7]. The event-driven linear fix point algorithm of [7] is then
reformulated symbolically as a non-recursive boolean equation system, which
is equivalent to our definition of |[·]|. ut

As in Theorem 9 of [2] we can lift our Theorem 1 to the unbounded
semantics. An upper bound on k would then be of the order O(|ψ| · |M | ·
2|ψ|). This is easy to show using the automata-theoretic approach to model
checking [21, 16, 20]. However, our main result is the following:

Theorem 2 |[M,ψ, k]| seen as Boolean circuit is linear in |T |, |ψ|, and k.
More precisely, it is of the size O(|I| + ((|T | + |ψ|) · k)), where |I| and |T |
are the sizes of the initial state predicate and the transition relation seen as
Boolean circuits, respectively.2

Proof:
Obviously the translation of LoopConstraintsk is linear w.r.t. k, since both
Loopk and AtMostOnek loop once over k. We will argue the linearity of |[·]|
using the until-case, as it is the most complex. For each 0 ≤ i ≤ k, the
translation adds a constant number of constraints. The case i = k+ 1 adds k
constraints that refer to 〈〈U〉〉i. This does not result in a quadratic formula,
even though 〈〈U〉〉i is linear, because 〈〈U〉〉i can clearly be shared between
the constraints. Linearity of 〈〈U〉〉i is obvious as only a constant number of
constraints are added for each 0 ≤ i ≤ k + 1. ut

2 This bound applies to both to the number of gates and the number of wire connections
between the gates of the Boolean circuit in question.

3 A NEW TRANSLATION 7

3.1 Optimising the Translation

A simple way to optimise the translation is to introduce special translations
for certain derived operators. We have developed special translations for
Gψ,Fψ,GFψ and FGψ. These formulas have similarities which can also
be seen in the way they share translations in the case i = k + 1. Note that
the translations of |[GFψ]|i and |[FGψ]|i are only dependent on the case
i = k + 1 since the semantics of the formulas only places requirements on
states inside the loop.

:= i ≤ k i = k + 1

|[Gψ]|i |[ϕ]|i ∧ |[Gψ]|i+1

∨k
j=1

(
lj ∧ 〈〈Gψ〉〉j

)
|[Fψ]|i |[ϕ]|i ∨ |[Fψ]|i+1

∨k
j=1

(
lj ∧ 〈〈Fψ〉〉j

)
|[GFψ]|i |[GFψ]|k+1

∨k
j=1

(
lj ∧ 〈〈Fψ〉〉j

)
|[FGψ]|i |[FGψ]|k+1

∨k
j=1

(
lj ∧ 〈〈Gψ〉〉j

)
〈〈Gψ〉〉i |[ϕ]|i ∧ 〈〈Gψ〉〉i+1 >
〈〈Fψ〉〉i |[ϕ]|i ∨ 〈〈Fψ〉〉i+1 ⊥

The translations for the above derived operators can be further optimised at
the cost of introducing k+1 additional variables. However, the new variables
are functionally dependent on the variables li and are shared by all subfor-
mulas using them. The variables InLoopj , where 0 < j ≤ k, express the fact
that the state sj is in the loop selected by the li variables. Additionally, we
introduce the variable LoopExists which is true iff the path s0s1 . . . sk has
a (k, l)-loop. In other words, LoopExists is false iff πk is treated as a simple
path without a loop. This is encoded by the following definitions.

InLoopi+1 ⇔ InLoopi ∨ li+1 for 0 < i < k

InLoop1 ⇔ l1

LoopExists ⇔ InLoopk

With the InLoopi variables we can eliminate the need for the auxiliary trans-
lation 〈〈·〉〉 for the derived operators. This simplifies the translation in most
cases. The change in the translation is small as only the case i = k + 1
changes. Sharing also occurs between the translation for different operators
as the translations for Gψ and FGψ, and for Fψ and GFψ are the same.

|[Gψ]|k+1 = |[FGψ]|k+1 = LoopExists ∧
∧k
i=1 (¬InLoopi ∨ |[ψ]|i)

|[Fψ]|k+1 = |[GFψ]|k+1 =
∨k
i=1 (InLoopi ∧ |[ψ]|i)

3.2 Fairness

In many cases we wish to restrict the possible executions of the system to dis-
allow executions which are unrealistic or impossible in the physical system.
The standard way is to add fairness constraints to the model in order to only
obtain interesting counterexamples.

8 3 A NEW TRANSLATION

There are a few well-known notions of fairness. Justice (weak fairness) re-
quires that certain conditions are true infinitely often. Compassion (strong
fairness) requires that if certain conditions are true infinitely often then cer-
tain other conditions must also hold infinitely often.

Let {J1, . . . , Jj} be a set of Boolean predicates over the state variables
which define the conditions that should be true infinitely often. Justice can
then be expressed as the LTL formula

J =

j∧
i=1

GFJi.

Similarly, compassion can be expressed as an LTL formula. A set of pairs
of Boolean predicates {(L1, U1), . . . , (Lc, Uc)} over the state variables define
the compassion sets. Compassion is defined by the formula

C =
c∧
i=1

(GFLi ⇒ GFUi) .

We include the fairness constraints in the specification. Thus, instead of
model checking the formula ψ, we check the formula J ∧ C → ψ. Since our
propositional encoding of LTL formulas is linear, our overhead for handling
fairness is linear in the number of fairness constraints.

4 RELATED WORK

This work can be seen as a continuation of the work done in [11]. There the
bounded model checking problem for LTL is translated into the problem
of finding a stable model of a normal logic program (another NP-complete
problem, see references in [11]) of essentially (modulo a constant) the same
size as the translation presented here. The main differences to that work
are the following. (i) The translation of [11] uses the close correspondence
between the stable model semantics with the notion of a least fixpoint of a
set of Boolean equations. The “formula variable dependency graphs” of the
translation of [11] are in fact cyclic, while in this work they are acyclic. See-
ing the translation of [11] as a propositional formula would result in a transla-
tion which is not sound. By using the correspondence between least fixpoints
and stable models the translation for until and release formulas in [11] do
not require the auxiliary translations 〈〈·〉〉. Thus the translation of [11] had
to be significantly changed in order to use SAT. Additionally, the best known
automatic translation of the stable model problem to SAT is non-linear [13].
(ii) The translation in [11] employs a different system modelling formalism,
which allows for partial order semantics based optimisations. (iii) Moreover,
the translation in [11] also allows for deadlocking systems with LTL inter-
preted over finite paths in the case of a deadlock, a feature left for further
work in this paper. (iv) Finally, the implementation presented in this work is
new, and based on the NuSMV2 [3] system.

Others have also considered the problem of improving the BMC encod-
ing [4, 9, 6]. Cimatti et al. [4] analyse the original encoding [2] and suggest

4 RELATED WORK 9

several optimisations. For instance, they propose a linear encoding for for-
mulas of the form GFp. Their translation is, however, not linear in general.
Frisch et al. [9] approach the translation problem by using a normal form
of LTL and take advantage of the properties of the normal form. Their pro-
cedure modifies the original model and is similar to symbolic tableau-style
approaches for LTL model checking. According to their experiments their
approach produces smaller encodings than [4]. However, their encoding is
also non-linear in the general case. The non-linearity occurs at least in those
cases when model checking a formula ψ such that after converting ¬ψ to
positive normal form it contains until or finally operators. Closest to their
method is the so called semantic translation for BMC [8, 6]. The method
follows closely the standard automata theoretic approach to model check-
ing and creates a product system M ×B¬ψ, where B¬ψ is a Büchi automaton
representing the negation of the property. The existence of a counterexample
is demonstrated by finding a fair loop in the product system. Since only fair
loops are accepted the method does not find counterexamples without a loop.
This is the main drawback of the method, and is something which could be
improved upon in the future. The greatest advantage of the method is that it
can leverage the significant amount of research which has been invested in
improving the efficiency of LTL to Büchi automata translators. The transla-
tion results in a linear number of variables but a quadratic number clauses
because of the way fairness is handled. Naturally, the semantic translation
could also be improved to linear by e.g. using the translation presented in
this work or that of [4]. Furthermore, the approach used in the experiments
of [6] results in a translation which is exponential in the LTL formula length
as the Wring system used produces explicit state Büchi automata instead of
symbolic ones.

Many researchers have also investigated improving SAT solver efficiency.
Strichman [18] uses the special properties of the formula Gp to improve
solver efficiency of BMC problems. As most safety properties can be reduced
to checking invariants, the methods introduced are applicable for safety prop-
erties in general. Gupta et al. [10] use BDD model checking runs for training
the solvers to achieve better performance.

5 EXPERIMENTS

In order to evaluate the practical impact of our new linear translation we have
performed two series of experiments. The first series of experiments evalu-
ates the performance of the encoding on random formulae in small random
Kripke structures, while the second series of experiments benchmarks the
performance on real-life examples. Our implementation is compared against
two bounded LTL model checking algorithms. Firstly we compare against
the standard NuSMV encoding [3], which includes many of the optimisa-
tions of [4]. We also compare against the encoding of [9] which we will call
Fixpoint. We do not compare against the SNF encoding also available in [9]
since generally the Fixpoint encoding performs better than SNF. In order to
make all other implementation differences as small as possible, all of the en-
codings were benchmarked on top of the NuSMV version of D. Sheridan [9]

10 5 EXPERIMENTS

(obtained from his homepage on 18th of March 2004) which contains sev-
eral BMC related optimisations not included in the standard NuSMV 2.1
distribution. We expect that benchmarking the implementations on top of
NuSMV 2.1 would result in larger running times for all the implementations
in question at least in the random Kripke structures benchmark. It should be
noted that the compact CNF conversion [12] option of the tool was disabled.

In the first series of experiments we generated small random Kripke struc-
tures and random formulae using techniques from [19]. The experiments
give us some sense of how the implementations scale when the bound or the
size of the formula is increased. To demonstrate the cases where the non-
linearity of the Fixpoint translation occurs we generated formulas ¬ψ which
in positive normal form contains a larger percentage of finally and until op-
erators than other temporal operators. For each formula size we generate 40
formulas, which we then model check by forcing the model checker to look
for counterexamples which are of exactly the length specified by the bound.
The random Kripke structures we use contain 30 states and one weak fairness
constraint which holds in two randomly selected states. We measure the time
used to solve the SAT instance and the number clauses and variables in the
instance.

When benchmarking against NuSMV default translation we varied the
size of the formula from 3 to 10. For each formula size we let the bound
grow up to k = 30.

When benchmarking against Fixpoint translation we were able to increase
both the bounds used and the formula sizes to better demonstrate the differ-
ences between the two translations. We varied the size of the formula from 3
to 14. For each formula size we let the bound grow up to k = 50.

In Figures 4 and 5 there are nine plots in each figure which depict the res-
ults from tests with random formulae of the new translation against NuSMV
and Fixpoint, respectively. The three top plots show the average time, aver-
age number of clauses, and average number of variables for each formula size
over all bounds. In the second row the we have computed the same measures
when averaged for each bound over all formula sizes. The last row shows the
averages when the size of formula is fixed at ten. The plots clearly show the
non-linearity of the competing translations [4, 9] with respect to the bound.
Something the plots do not show is time for generating the problems. Our ex-
perience is that the new implementation and Fixpoint generated the Boolean
formulas almost instantaneously while for the NuSMV encoding there were
cases where generation time dominated. In fact, a couple of NuSMV data
points had to be omitted from the averages due to the fact that the generation
of the SAT instance took several hours.

In the second series of experiments we used real-life examples. As specific-
ations we favoured longer formulas since all implementations can translate
simple formulas linearly. The models we used were a model of the altern-
ating bit protocol (abp), a distributed mutual exclusion algorithm (dme), a
bounded resource protocol (brp), a model of a pci bus (pci), and a model
of a 16-bit shift register (srg16). The results for the real-life examples are
summarised in Table 1. We measured the number of variables, cumulat-
ive number of clauses and the time used to verify formulas for the reported
maximum bound. For the real-life examples, Fixpoint or the new translation

5 EXPERIMENTS 11

0 5 10
0.5

1

1.5
x 10

4

|f|

va
ria

bl
es

0 5 10
1

2

3

4
x 10

4

|f|

cl
au

se
s

0 5 10
0

1

2

3

|f|

tim
e

[s
]

0 10 20 30
0

1

2

3
x 10

4

k

va
ria

bl
es

0 10 20 30
0

2

4

6

8
x 10

4

k
cl

au
se

s
0 10 20 30

0

2

4

6

8

k

tim
e

[s
]

0 10 20 30
0

1

2

3

4
x 10

4

k

va
ria

bl
es

0 10 20 30
0

5

10

15
x 10

4 |f| = 10

k

cl
au

se
s

0 10 20 30
0

5

10

15

k

tim
e

[s
]

NuSMV
New

Figure 4: Plots for NuSMV and New, averages over random formulae

0 5 10
0.5

1

1.5

2

2.5
x 10

4

|f|

va
ria

bl
es

0 5 10
2

3

4

5

6

7
x 10

4

|f|

cl
au

se
s

0 5 10
0

5

10

15

|f|

tim
e

[s
]

0 20 40
0

1

2

3

4
x 10

4

k

va
ria

bl
es

0 20 40
0

5

10

15
x 10

4

k

cl
au

se
s

0 20 40
0

10

20

30

40

k

tim
e

[s
]

0 20 40
0

1

2

3

4

5
x 10

4

k

va
ria

bl
es

0 20 40
0

5

10

15
x 10

4 |f| = 10

k

cl
au

se
s

0 20 40
0

10

20

30

40

50

k

tim
e

[s
]

New
Fixpoint

Figure 5: Plots for Fixpoint and New, averages over random formulae

12 5 EXPERIMENTS

Table 1: Benchmarks

Model k NuSMV Fixpoint New
vars clauses time vars clauses time vars clauses time

abp 16 19,476 57,373 32.3 18,643 54,637 43.7 18,024 52,969 7.4
10 7,599 21,811 1.3 8,550 24,256 1.2 7,471 21,397 1.5

brp 15 11,494 33,226 18.7 13,150 37,636 22.0 11,116 32,047 17.9
20 15,514 45,016 471 18,050 51,916 351 14,761 42,697 484
10 53,400 141,438 2.0 54,407 144,022 0.9 53,293 141,087 2.6

dme 20 104,885 283,733 180 107,527 290,902 263 104,173 281,537 471
30 156,870 427,528 1,199 161,847 441,382 1,855 155,053 421,987 1,544
10 56,414 167,753 58.3 56,232 167,042 56.6 55,911 166,214 51.5

pci 15 85,359 254,133 568 84,372 250,947 370 83,756 249,279 382
20 115,204 343,213 5,921 112,612 335,152 2,216 111,601 332,344 2,102
20 N/A N/A N/A 10,540 28,786 2.3 5,196 14,921 2.7

srg16 40 N/A N/A N/A 25,600 71,686 16.6 10,336 29,841 22.3
60 N/A N/A N/A 45,460 128,986 105 15,476 44,761 83.0

are usually the fastest.
Our new translation is the most compact one in all cases. However, the

differences are small as the model part of the translation dominates the trans-
lation size. The shift register example (srg16) shows the strength of a linear
translation. NuSMV could not manage k = 20 in a reasonable time while
Fixpoint displays non-linear growth with respect to k.

All experiments were performed on a computer with an AMD Athlon XP
2000+ processor and 1 GiB of RAM using the SAT solver zChaff [17], ver-
sion 2003.12.04.

5.1 Implementation

The translation can be straightforwardly implemented as a recursive proced-
ure which does case analysis based on the translation. Implementation sim-
plicity is, in our opinion, one of the main strengths of the new translation.
The only implementation optimisation used was a simple cache, implemen-
ted as a lookup table, for the values of |[·]|i and 〈〈·〉〉i. This avoids a blow up
in run time for certain formulas and speeds up the generation of the Boolean
formula. All encoding optimisations mentioned in Sect. 3.1 have of course
been implemented.

6 CONCLUSIONS

We have presented a translation of the bounded LTL model checking prob-
lem to SAT which is linear in the bound and the size of the formula. The
translation produces a linear number of variables and clauses in the resulting
CNF.

Our benchmarks show that our new translation scales better both in size of
the bound and the size of the formula than previous implementations [4, 9].
The translation remains linear in all cases. However, in some cases either
the size of the formula or the bound must be made large before the benefit
shows. One avenue of future work is to include some of the optimisations
presented in [4] in order to the improve the performance of our translation
for short formulas and small bounds.

6 CONCLUSIONS 13

Other avenues of future work also exist. One fairly straightforward gen-
eralisation of our translation is the ability to handle deadlocking executions.
This could probably be done in a manner similar to [11]. Another inter-
esting topic is generalising our translation to include past temporal logic as
the translation of [1]. The presented translation could also benefit from spe-
cific SAT solver optimisations. When the translation is seen as producing
Boolean circuits, all of the circuits are monotonic if the InLoop variables and
state variables (and their negated versions) are given as inputs. A solver (also
CNF-based) could be optimised to take advantage of this.

Acknowledgements

We gratefully acknowledge the financial support of Helsinki Graduate
School in Computer Science (HeCSE), the Academy of Finland (project
53695 and grant for research work abroad), the Nokia Foundation, FET pro-
ject ADVANCE contract No IST-1999-29082, and EPSRC grant 93346/01
(An Automata Theoretic Approach to Software Model Checking). This work
has also been sponsored by the CALCULEMUS! IHP-RTN EC project, con-
tract code HPRN-CT-2000-00102, and has thus benefited of the financial
contribution of the Commission through the IHP programme.

We would also like to thank D. Sheridan for sharing his NuSMV imple-
mentation with us.

REFERENCES

[1] M. Benedetti and A. Cimatti. Bounded model checking for past LTL.
In Tools and Algorithms for Construction and Analysis of Systems
(TACAS’2003), volume 2619 of LNCS, pages 18–33. Springer, 2003.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model check-
ing without BDDs. In Tools and Algorithms for the Constructions and
Analysis of Systems (TACAS’99), volume 1579 of LNCS, pages 193–
207. Springer, 1999.

[3] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
Marco Roveri, R. Sebastiani, and Armando Tacchella. NuSMV 2:
An opensource tool for symbolic model checking. In Computer
Aided Verification (CAV’2002), volume 2404 of LNCS, pages 359–364.
Springer, 2002.

[4] A. Cimatti, M. Pistore, M. Roveri, and R. Sebastiani. Improving the
encoding of LTL model checking into SAT. In Verification, Model
Checking, and Abstract Interpretation (VMCAI’2002), volume 2294 of
LNCS, pages 196–207. Springer, 2002.

[5] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT
Press, 1999.

[6] E. Clarke, D. Kroenig, J. Oukanine, and O. Strichman. Completeness
and complexity of bounded model checking. In Verification, Model

14 REFERENCES

Checking, and Abstract Interpretation (VMCAI’2004), volume 2937 of
LNCS, pages 85–96. Springer, 2004.

[7] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm
for the alternation-free modal mu-calculus. Formal Methods in System
Desing, 2(2):121–147, 1993.

[8] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for
bounded model checking. In Conference on Automated Deduction
(CADE’02), volume 2392 of LNCS, pages 438–455. Springer, 2002.

[9] A. Frisch, D. Sheridan, and T. Walsh. A fixpoint encoding for bounded
model checking. In Formal Methods in Computer-Aided Design (FM-
CAD’2002), volume 2517 of LNCS, pages 238–255. Springer, 2002.

[10] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar. Learning from
BDDs in SAT-based bounded model checking. In Proceedings of the
40th Conference on Design Automation, pages 824–829. IEEE, 2003.

[11] K. Heljanko and I. Niemelä. Bounded LTL model checking with stable
models. Theory and Practice of Logic Programming, 3(4–5):519–550,
2003.

[12] P. Jackson and D. Sheridan. The optimality of a fast CNF conversion
and its use with SAT. Technical Report APES-82-2004, APES Research
Group, March 2004. Available from http://www.dcs.st-and.ac.

uk/~apes/apesreports.html.

[13] T. Janhunen. A counter-based approach to translating logic programs
into set of clauses. In Proceedings of the 2nd International Workshop
on Answer Set Programming (ASP’03), volume 78, pages 166–180. Sun
SITE Central Europe (CEUR), 2003.

[14] D. Kroenig and O. Strichman. Efficient computation of recurrence
diameters. In Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI’2003), volume 2575 of LNCS, pages 298–309. Springer,
2003.

[15] O. Kupferman and M.Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[16] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press, 1994.

[17] M. Moskewicz, C. Madigan, Y. Zhao, L.Zhang, and S. Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th Design
Automation Conference, 2001.

[18] O. Strichman. Accelerating bounded model checking of safety proper-
ties. Formal Methods in System Design, 24(1):5–24, 2004.

[19] H. Tauriainen and K. Heljanko. Testing LTL formula translation into
Büchi automata. STTT - International Journal on Software Tools for
Technology Transfer, 4(1):57–70, 2002.

REFERENCES 15

http://www.dcs.st-and.ac.uk/~apes/apesreports.html
http://www.dcs.st-and.ac.uk/~apes/apesreports.html

[20] M.Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for Concurrency: Structure versus Automata, volume 1043 of
LNCS, pages 238–266. Springer, 1996.

[21] M.Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Proceedings of the First Symposium on
Logic in Computer Science, pages 322–331, Cambridge, 1986.

16 REFERENCES

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE
RESEARCH REPORTS

HUT-TCS-A79 Heikki Tauriainen

Nested Emptiness Search for Generalized Büchi Automata. July 2003.

HUT-TCS-A80 Tommi Junttila
On the Symmetry Reduction Method for Petri Nets and Similar Formalisms.
September 2003.

HUT-TCS-A81 Marko Mäkelä
Efficient Computer-Aided Verification of Parallel and Distributed Software Systems.
November 2003.

HUT-TCS-A82 Tomi Janhunen
Translatability and Intranslatability Results for Certain Classes of Logic Programs.
November 2003.

HUT-TCS-A83 Heikki Tauriainen
On Translating Linear Temporal Logic into Alternating and Nondeterministic Automata.
December 2003.

HUT-TCS-A84 Johan Wallén

On the Differential and Linear Properties of Addition. December 2003.

HUT-TCS-A85 Emilia Oikarinen

Testing the Equivalence of Disjunctive Logic Programs. December 2003.

HUT-TCS-A86 Tommi Syrjänen

Logic Programming with Cardinality Constraints. December 2003.

HUT-TCS-A87 Harri Haanpää, Patric R. J. Östergård

Sets in Abelian Groups with Distinct Sums of Pairs. February 2004.

HUT-TCS-A88 Harri Haanpää

Minimum Sum and Difference Covers of Abelian Groups. February 2004.

HUT-TCS-A89 Harri Haanpää

Constructing Certain Combinatorial Structures by Computational Methods. February 2004.

HUT-TCS-A90 Matti Järvisalo
Proof Complexity of Cut-Based Tableaux for Boolean Circuit Satisfiability Checking.
March 2004.

HUT-TCS-A91 Mikko Särelä

Measuring the Effects of Mobility on Reactive Ad Hoc Routing Protocols. May 2004.

HUT-TCS-A92 Timo Latvala, Armin Biere, Keijo Heljanko, Tommi Junttila

Simple Bounded LTL Model Checking. July 2004.

ISBN 951-22-7223-7

ISSN 1457-7615

	Introduction
	Bounded Model Checking
	LTL

	A New Translation
	Optimising the Translation
	Fairness

	Related Work
	Experiments
	Implementation

	Conclusions
	References

