
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 86

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 86

Espoo 2003 HUT-TCS-A86

LOGIC PROGRAMMING WITH CARDINALITY CONSTRAINTS

Tommi Syrjänen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 86

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 86

Espoo 2003 HUT-TCS-A86

LOGIC PROGRAMMING WITH CARDINALITY CONSTRAINTS

Tommi Syrjänen

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Tommi Syrjänen

ISBN 951-22-6896-5

ISSN 1457-7615

Multiprint Oy

Helsinki 2003

ABSTRACT: In this work we examine cardinality constraint logic programs.
We give a formal definition of the stable model semantics for general cardi-
nality constraint programs and define a syntactic subclass of them, omega-
restricted programs, that stays decidable even when function symbols are
used. We show that the computational complexity of omega-restricted pro-
grams is 2-NEXP-complete in the general case and NEXP-complete if func-
tion symbols are not used. We give a general framework for extending the
semantics and give four extensions to the basic semantics, including classical
negation and partial stable model semantics. We show how the extensions
can be translated back to normal omega-restricted programs and give a simi-
lar translation for logic programs with ordered disjunction. We present some
implementation details of omega-restricted programs and give several exam-
ples of their use.

KEYWORDS: Logic programming, cardinality constraint, instantiation, sta-
ble model semantics, smodels

CONTENTS

List of Symbols and Notations . iii

1 Introduction 1
1.1 Outline of the Work . 5
1.2 Scientific Contributions . 5

2 The Stable Model Semantics of Normal Programs 6

3 Cardinality Constraint Programs 8

4 Stable Model Semantics of Cardinality Constraint Programs 11
4.1 Data Models . 12

Herbrand Interpretations . 15
Combining Herbrand Interpretations and Evaluated Functions 17

4.2 Removal of Global Variables 18
4.3 Expansion . 20
4.4 Reduct and Stable Model Semantics 22
4.5 Example . 25

5 Omega-Restricted Programs 27
5.1 Dependency Graphs . 28
5.2 The Stable Model Semantics of ω-Restricted Programs 35

6 Generalizing Cardinality Constraints 40
6.1 Cardinality Constraints . 40
6.2 Interpretations, Valuators, and Models 41
6.3 Imposing an Order over Models 42
6.4 Stable Models . 44
6.5 Variables in Cardinality Constraint Bounds 45
6.6 Weight Constraint Literals 46
6.7 Classical Negation . 47
6.8 Partial Models . 48

7 Translations for Semantic Extensions 54
7.1 Classical Negation . 55
7.2 Preferences . 56

8 Computational Complexity 61
8.1 Turing Machine Translation 63
8.2 Complexity Results for Omega-Restricted Programs 66

9 Implementation 77
9.1 Smodels . 77
9.2 Lparse . 78

Rewriter . 78
Instantiator . 79
Literals Sets . 81

iv CONTENTS

10 Examples 81
10.1 A Planning Puzzle . 82
10.2 Sokoban . 87
10.3 Creating Finite Automata . 90

11 Conclusions and Future Work 95
11.1 Future Work . 95
Acknowledgements . 96

References 96

A Source Code for Example Programs 103
A.1 Planning Puzzle . 103
A.2 Heavily Optimized Planning Puzzle 104
A.3 Sokoban . 106
A.4 Finite Automata Constructor 115

CONTENTS i

LIST OF SYMBOLS AND NOTATIONS

∅ the empty set
∪ set union
∩ set intersection
∧ logical and
∨ logical or
¬ logical not (classical negation)
not negation as failure
> an atom that is always true or the maxi-

mum truth value
⊥ the minimum truth value
ρX1 · · ·Xn.〈l : a1, . . . , am〉 a literal set
varsL(S) local variables of S
lit(S) the main literal of S
conds(S) the conditions of S
L ≤ {S1, . . . , Sn} ≤ U a cardinality constraint
boundL(C) the lower bound of C
boundU (C) the upper bound of C
L(C) the literal sets of C
pred(A) the predicate symbol of the atom A
vars(t) the set of variables occurring in t
h← l1, . . . , ln a rule
head(r) the head of r
body+(r) positive literals occuring in the body of r
body−(r) negative literals occuring in the body of r
bodys(r) simple constraint literals occurring in r
P a logic program
D a data model
〈P, D〉 a combined program and a data model
Σ a vocabulary
U an universe
I an interpretation
N a set of names
F the set of all function symbols
P the set of all predicate symbols
PD the set of data predicates
PP the set of program predicates
] data model augmentation operator
DP the final data model of an ω-restricted

program P
σ a substitution
inst(P, D) a partial instantiation of 〈P, D〉
E(S, D) the expansion of S w.r.t. D
E ′(S, D) the simple expansion of S w.r.t. D
E ′

s(S, D) the satisfied expansion of S w.r.t. D
HI(P, D) the Herbrand instantiation of 〈P, D〉
HIr(P, D) the relevant instantiation of 〈P, D〉
|= a satisfaction relation

ii LIST OF SYMBOLS AND NOTATIONS

cl(P) the deductive closure of P
PM reduct of P with respect to M
TP deductive closure operator
A(P, D) the set of all stable models of 〈P, D〉
D a dependency relation
S an ω-stratification
Ω an ω-valuation
Pi a stratum program
C a constraint literal signature
T a set of truth values
v a valuator
s a satisfier
I(P, T) the set of all interpretations of P
r a reducer
c a constraint reducer
× an ordered disjunction
P polynomial time complexity class
EXP exponential time complexity class
2-EXP doubly-exponential time complexity class
NC nondeterministic complexity class C

LIST OF SYMBOLS AND NOTATIONS iii

1 INTRODUCTION

Logic programming (LP) is a way to solve problems using formal logic. The
basic idea is to express the problem domain using a set of inference rules.
Then, an inference engine is used to find the solution for the problem. In its
purest form LP is a form of declarative programming where the programmer
does not explicitly write the algorithms to solve the problems but instead
describes what a valid answer should look like. At least this is how it works
in theory. In practice, many LP systems have some nondeclarative aspects in
them.

A normal logic program has four different kinds of syntactic elements:
terms, atoms, literals, and rules. Terms denote the elements from the uni-
verse of the problem domain, and atoms express statements about the ele-
ments and their relationships. For example, the atom parent(mother, son)
states that mother is a parent of son. A literal is either an atom A, or its nega-
tion not(A). In the classical case exactly one of A or not(A) is always true
but there are semantics where this does not hold. A rule then has the form:

h← l1, . . . , ln (1)

where an atom h is the rule head and the literals li form the rule body. The
intuition is that if all literals li are true, then also h has to be true.

Numerous different semantics for logic programs have been proposed
since van Emden and Kowalski published their ground breaking article The
Semantics of Predicate Logic as a Programming Language [79] in 1976
where they presented the mathematical foundation of the Prolog program-
ming language. It was soon found that Prolog had several weaknesses. For
example, it is not fully declarative as changing the order of literals or rules
may change the meaning of the program. We do not go into details here
since they are out of the scope of this work. A detailed discussion on capa-
bilities of Prolog can be found, for example, in Lloyd’s Foundations of Logic
Programming [37].

A number of different semantics have been proposed to overcome the
problems of Prolog. One of them, the stable model semantics by Gelfond
and Lifschitz [24, 25], has proven to be very suitable for many application
domains such as product configuration [66] and planning [34, 33].

A stable model of a logic program P is a set of atoms that is a classical
model1 of P that fulfills a few additional conditions that will be formalized
in Section 2. The stable models have two important properties:

1. minimality: If M is a stable model of P , then there is no stable model
M ′ that is a strict subset of M .

2. justification: Each atom a true in M has a non-circular justification.
That is, a occurs as a head of some rule with a satisfied body and where
none of the body literals are derived using a itself.

1A set of atoms is a classical model of a program if it is a model of the set of clauses that
is obtained by replacing each rule h← l1, . . . , ln by the implication l1 ∧ · · · ∧ ln → h.

1 INTRODUCTION 1

Consider a simple example:

a← not b

b← not a

c← b, not c

Here we have only one stable model, namely M1 = {a}. The other minimal
classical model would be M2 = {b, c} but this is not stable since c is not
justified in M2.

The stable model semantics of normal logic programs is one form of the
more general Answer Set Programming (ASP) paradigm [11, 21, 33, 39, 47].
In ASP a problem is encoded using a set of logical sentences P and the
answer is then a set of atoms that is a model of P that usually has to sat-
isfy the minimality and justification criteria. Most of the existing ASP sys-
tems are based on the stable model semantics for normal programs but a few
are based on other formalisms. Among the systems are SMODELS [50], As-
sat [36], Cmodels [3], and NoMoRe [1] that work for normal programs, DLV
for disjunctive programs, and ASPPS [18] for propositional schemata.

We can express a large number of problems nicely using normal logic
programs and ASP, but sometimes we run into conditions that cannot be ex-
pressed compactly. For example, in product configuration we might have a
rule of the form: “A computer must have at least one but at most four hard
disk drives.” A straightforward encoding of such a condition with n choices
out of m possibilities needs at least

(
m
n

)
rules to express it. However, con-

straints of this form can be easily expressed using the notion of cardinality
constraint literals that are a generalization of constraint rules that were pro-
posed in [68].

A cardinality constraint literal has the form:

L ≤ {l1, . . . , ln} ≤ U (2)

where U and L are integral lower and upper bounds and li are literals. The
intuition is that (2) is true if the number of true literals li is between the
bounds, inclusive. A constraint literal may occur in a rule in every place
where a basic literal may. For example, the rule:

1 ≤ {monitor15”, monitor17”, monitor19”} ≤ 1← computer

states that a computer has exactly one monitor that is of one of the three
available types.

Most of the earlier work on cardinality constraints [51, 68, 50, 65] has
concentrated on variable-free programs and variables have received only lit-
tle attention. A rule with variables is seen as a schema denoting its all ground
instances that are obtained by substituting constants that occur in the pro-
gram for variables. This interpretation is intuitively clear and works well
when the program does not have function symbols, but with functions the
situation gets more complicated.

In some cases we would like to use functions for computation. For exam-
ple, when we are instantiating the rule:

rectangle-area(X, Y, X × Y)← number(X), number(Y)

2 1 INTRODUCTION

with variable bindings {X/3, Y/2} we want to evaluate the product so that
we get the ground rule:

rectangle-area(3, 2, 6)← number(3), number(2)

instead of rectangle-area(3, 2, 3× 2). On the other hand, there are functions
that we do not want to evaluate in such a way. For example, if we have a
pairing function cons(a, b) we want to leave it as it is. Intuitively, we will take
the general approach that the functions are divided into two classes, inter-
preted built-in functions whose values are computed during the instantiation
process and uninterpreted function symbols that are left as they are.

One of the main aims of this work is to create a formal framework for using
cardinality constraint literals in conjunction with variables. The basic idea is
that the semantics of a program P is defined with respect to a data model D.
A program P contains two types of predicates: program and data. The idea
is that the rules of the program define when the program predicates are true
and the interpretations of the data predicates are given in the data model.
In addition to data predicates, the data model also contains definitions of the
universe of the problem instance and interpretations for all function symbols.

This approach is well-suited for developing uniform encodings [39] of
problems. An uniform encoding of a problem is a single logic program that
can be used to solve all instances of the problem by supplying the corre-
sponding data models. For example, the general graph coloring problem has
the following uniform encoding as a cardinality constraint program:

1 ≤ {has-color(X,C) : color(C)} ≤ 1← vtx(X)

← has-color(X,C), has-color(Y,C), edge(X, Y), color(C)

where the first rule demands that each vertex has exactly one color and the
second rule requires that two adjacent vertices have different colors. The
predicates color/1, vtx/1, and edge/2 are data predicates and has-color/2 is
the only program predicate.

The construct has-color(X, C) : color(C) is a literal set that denotes the
set of atoms has-color(X, c) for which it holds that color(c) is true. For exam-
ple, if there are three colors: red, blue, and green, then the literal set expands
to the set:

{has-color(X, red), has-color(X, blue), has-color(X, green)} .

Sometimes it is convenient to be able to define a part of the data model
directly as rules in a program. For example, in Section 10.2 we will exam-
ine the Sokoban game that is basically a form of a planning puzzle where
actions involve pushing boxes to different directions. There the data model
involves the predicate same-segment(X1, Y1, X2, Y2, Dir) that is true if the
squares (X1, Y1) and (X2, Y2) are along the same straight line in direction
Dir with no structural obstruction between them. As there is a large number
of possible lines in all but trivial cases, it would be impractical to define them
all explicitly in the data model. On the other hand, same-segment/5 can be

1 INTRODUCTION 3

easily defined using a set of rules of the form:

same-segment(X, Y, X + 1, Y, east)← square(X, Y), square(X + 1, Y)

same-segment(X, Y, Z + 1, Y, east)← same-segment(X, Y, Z, Y, east)
square(X, Y), square(Z, Y),

square(Z + 1, Y) .

We define a syntactic subclass of cardinality constraint programs, the ω-
restricted programs that allows the programmer to define parts of the data
model within the program. The predicate symbols that occur in the program
are arranged into a hierarchy where the predicates on a higher level are de-
fined in terms of predicates in the lower levels. A predicate is then a data
predicate if it does not depend negatively on itself or on predicates that do.
It is guaranteed that those predicates have the same extensions in all stable
models of the program so interpreting them as data predicates does not cause
any problems. Additionally, ω-restricted programs have the property that they
stay decidable even when function symbols are allowed.

We examine the computational complexity of ω-restricted programs and
it turns out it is equal to the case of normal logic programs so allowing car-
dinality constraints does not increase complexity. The program complexity
for the ground case is NP-complete [51], EXP-complete for programs with
variables and no non-constant function symbols, and 2-EXP-complete for
programs with variables and function symbols. In the last case syntactic prop-
erties of ω-restricted programs ensure that the problem stays decidable.

In the course of this work we will also examine various ways to further gen-
eralize the notion of cardinality constraints. Two extensions that are perhaps
the most intuitive ones are weight constraints [65] and classical negation [25].
A weight constraint works otherwise just as a cardinality constraint but each
literal in it has a weight assigned to it and the constraint is satisfied if the sum
of weights of satisfied literals is between the bounds. In programs with classi-
cal negation we allow an atom A to have two different kinds of negation, the
default negation not(A) and the classical negation ¬A. The difference is that
not(A) is true if cannot prove that A is true while ¬A is true if we can prove
that A is false.

We also consider a third extension, partial stable models [30]. Normal sta-
ble models are total in the sense that each atom of the program is either true
or false in the model. Now we introduce a third truth value, undefined, to
the semantics. Intuitively an atom is undefined in the model if both having
it true and false lead into a contradiction, or if it depends on an undefined
atom. Allowing partial models is particularly valuable when we are construct-
ing encodings for our problems, since they can be used to identify errors in
the rules. For example, the program:

1 ≤ {a, b} ≤ 1← c.

a← b

b← a

c←

does not have a stable model but it does have a partial stable model where c
is true and both a and b are undefined. This indicates that the contradiction

4 1 INTRODUCTION

in the program is somehow related to the atoms a and b and it provides a
starting point for debugging.2

The ω-restricted cardinality constraint programs have been implemented
in the SMODELS system [48, 49, 50, 65, 77]. The system is divided into
two parts, smodels, the actual inference engine, and lparse, a front end for
instantiating the user programs. The input language of smodels does not
include general cardinality constraints but they are instead translated into
simpler rules that may be implemented efficiently.

1.1 Outline of the Work

We define the cardinality constraint programs formally in Section 3 and de-
fine stable model semantics for them in Section 4. We then introduce ω-
restricted programs in Section 5. In Section 6 we generalize the notion of a
cardinality constraint and present a few extensions to the semantics. We then
show how the extensions can be translated back into standard ω-restricted
programs in Section 7. We analyse the computational complexity in Sec-
tion 8 and present some implementation details in Section 9. Finally, we
show a few larger programming examples in Section 10.

1.2 Scientific Contributions

The main scientific contributions of this work are the formal stable model se-
mantics for cardinality constraint programs with variables (Sections 3 and 4),
and the definition of the class of ω-restricted cardinality constraint programs
(Section 5).

Other contributions include a framework for generalizing cardinality con-
straint programs and a partial stable model semantics for cardinality con-
straint programs in Section 6, and analysis for computational complexity of
ω-restricted programs in Section 8. The computational complexity results
are partly based on previous work of the author [75].

2Here the first rule asserts that exactly one of a and b has to be true while the second two
rules demand that both have to be true.

1 INTRODUCTION 5

2 THE STABLE MODEL SEMANTICS OF NORMAL PROGRAMS

We start by giving the definition of the stable model semantics of proposi-
tional normal programs [24]. A rule is an expression of the form:

h← a1, . . . , an, not b1, . . . , not bm

where h, ai, and bi are all propositional atoms. A rule is fact if n = 0 and
m = 0, and it is a Horn rule if m = 0. A logic program P is a set of rules.

As Horn constraint rules are monotonic, a program consisting only of such
rules has a unique minimal model [79]. We can find this model by using the
operator TP . Let P be a Horn program and S be a set of atoms occurring
in P . Then TP (S) is defined as follows:

TP (S) = {h | h← a1, . . . , an ∈ P and {a1, . . . , an} ⊆ S} .

The minimal model is the least fixed point of TP [79].

Example 2.1 Let P be the program:

a← b, c d←
b← d e← f
c← .

Now, the computation of the minimal model proceeds as follows:

TP (∅) = {c, d}
TP ({c, d}) = {b, c, d}

TP ({b, c, d}) = {a, b, c, d}
TP ({a, b, c, d}) = {a, b, c, d} .

Thus, the minimal model of P is M = {a, b, c, d}.

Given a set of atoms S, the reduct P S of a program P with respect to S
is obtained by removing from P :

1. Every rule r such that the body of r contains a negative literal not(a)
where a ∈ S; and

2. All negative literals from bodies of remaining rules.

This process may be viewed as replacing a negative literal with the truth value
that it has in S so that a true one is replaced by T and a false one by F .

Now, a set of atoms S is a stable model of P if and only if S is the minimal
model the reduct P S .

Example 2.2 Let P be the program:

a← not b

b← not a

c← a, not b

6 2 THE STABLE MODEL SEMANTICS OF NORMAL PROGRAMS

Now, P has two stable models: M1 = {a, c} and M2 = {b}. We see that the
reduct PM1 is the set of rules:

a←
c← a

and the least fixed point of TP M1 is, indeed, {a, c}. The set M3 = {a, b, c} is
a model of P in the classical sense, but it is not stable since PM3 = ∅ whose
minimal model is also empty.

The properties of the reduct ensure that S is a model of P S if and only
if it is also a model of the original program P . When we define the stable
semantics for cardinality constraint programs we see that this condition does
not hold there, and we have to add an extra condition and explicitly state
that S has to be also a model of P .

2 THE STABLE MODEL SEMANTICS OF NORMAL PROGRAMS 7

3 CARDINALITY CONSTRAINT PROGRAMS

The basic component of a logic program is an atom of the form:

p(t1, . . . , tn)

where p is a n-ary predicate symbol (n ≥ 0) and t1, . . ., tn are terms. A term
is either a variable v, a constant c, or an m-ary function symbol f(t1, . . . , tm)
where t1, . . ., tm are terms. A 0-ary function symbol is a constant. The set
of all available function symbols is denoted by F . We denote the pred-
icate symbol of an atom a by pred(a). A basic literal is either an atom a
or its negation not(a). The set of all predicate symbols P is divided into
two classes, program (PP) and data (PD) predicates. Program predicates
are those whose values are defined by the program while extensions of data
predicates are fixed and come from some external data model. We demand
that PP should be finite. We also define a special atom,> that is always true.
For simplicity, we allow > to occur as both a program and a data predicate.

A literal set S is of the form:

ρX1 · · ·Xn.〈l : a1, . . . , am〉 (3)

where X1, . . ., Xn are the local variables, the basic literal l is the main literal,
and the basic atoms a1, . . . , am are conditions. The main literal has to be
a program predicate and only data predicates may occur among conditions.
Intuitively, the notation a1, . . . , an denotes the conjunction of the atoms ai.
In theory, we could replace the sequence by a single atom a where pred(a)
is a new data predicate whose extension is defined accordingly. However, we
do not do that because there are cases where the more verbose notation is
clearer.

We can suppose without loss of generality that none of the local variables
occur elsewhere in a program since we can always systematically rename
them.3 We denote the local variables, main literal, and the set of conditions
of S respectively by varsL(S), lit(S), and conds(S). We say that S is positive
if l is an atom a, otherwise S is negative.

The main idea of S of the form (3) is that it denotes the set of basic literals
l′ that is obtained by substituting a ground term for each local variable X ∈
varsL(S) in such a way that each literal ai is satisfied with the substitution .
We call this set the expansion of S and denote it with E(S). We present the
formal definition in the next section.

Example 3.1 Consider the literal set S = ρX.〈p(X) : q(X)〉. Then, S
denotes the set of literals E(S) = {p(a) | q(a) is true in the data model}.

A constraint literal C is of the form:

L ≤ {S1, . . . , Sn} ≤ U

where L and U are integral upper and lower bounds and S1, . . ., Sn are literal
sets. One or both bounds may be left out. In those cases we take 0 and∞ to

3However, in some example programs we use the same local variable in many literal sets
when the variables have a similar function.

8 3 CARDINALITY CONSTRAINT PROGRAMS

be the bounds. We use the notation boundL(C) = L, boundU (C) = U , and
L(C) = {S1, . . . , Sn}. However, we will often abuse the notation by using
S ∈ C in place of S ∈ L(C) in places where there is no risk of confusion.

The intuition is that a constraint literal is true whenever the number of
basic literals true in the union of the expansions of literal sets Si is between
L and U , inclusive. For example, 1 ≤ {ρX.〈select(X) : vtx(X)〉} ≤ 1 is true
when exactly one atom select(v) is true for which vtx(v) is also true.

The set of basic literals belonging to an expanded constraint literal is just
that, a set. It would be possible to extend the semantics to allow it to be a
multiset, but experience has shown that the set semantics is more intuitive
when encoding problems into cardinality constraint programs.

We use shorthand notations for several forms of constraint literals that
behave analogously to basic literals in normal logic programs. We use an
atom a to denote a constraint literal that is either of the form 1 ≤ {a : >}
when pred(a) is a program predicate, or 1 ≤ {> : a} if pred(a) is a data
predicate. Similarly, not(a) denotes constraint literals 1 ≤ {not a : >} and
1 ≤ {> : not a}.

A rule r is of the form:

C0 ← C1, . . . , Cn

where all Ci are constraint literals. Here C0 is the head and C1, . . ., Cn form
the body. We say that a rule is simple if boundL(C0) = 1, L(C0) = {〈h : >〉}
for some atom h, and boundU (Ci) = ∞ for each i ≥ 0. A simple rule is a
Horn constraint rule if all main literals that occur in it are positive. A logic
program P is a possibly infinite set of rules. The sets of literal sets occurring
in a rule r or a program P are denoted by L(r) and L(P), respectively.

Intuitively a rule asserts that if all constraint literals in the rule body are
satisfied, then the head must be true also. We will also allow rules with empty
heads that prune out unwanted model candidates; if the body of the rule is
true, then we get a contradiction. We can interpret such a rule as a shortcut
for a rule with an unsatisfiable head of the form: 2 ≤ {〈f : >〉} where f does
not occur anywhere else in the program4.

The set vars(t) of variables that occur in a term is defined as follows:

vars(t) =


∅ , if t is a constant;
{t} , if t is a variable; and⋃m

i=1 vars(ti) , if t is a function f(t1, . . . , tm) .

A variable occurs in a basic literal l if it occurs in at least one of its argu-
ments:

vars(l(t1, . . . , tm)) =
m⋃

i=1

vars(ti) .

A variable occurs in a literal set S if it occurs either in the main literal or

4When we deal with a general cardinality constraint program, having f occur in also
other places does not cause problems. However, it may problems when ω-restricted pro-
grams (as defined in Section 5) are used, so we forbid it also in the general case.

3 CARDINALITY CONSTRAINT PROGRAMS 9

in some condition and it is not a local variable:

vars(ρX1 · · ·Xn.〈l : a1, . . . , am〉) =

(vars(l) ∪
m⋃

i=1

vars(ai)) \ {X1, . . . , Xn}
(4)

A literal set is ground if n = 0 and vars(S) = ∅.
In a similar manner the set of variables that occur in a constraint literal C,

a rule r, or a program P is defined to be the union of the sets of variables that
occur in their components:

vars(C) =
⋃

S∈L(C)

vars(S)

vars(r) =
n⋃

i=0

vars(Ci)

vars(P) =
⋃
r∈P

vars(r) .

A constraint literal is ground if all literal sets in it are, and a rule is ground if
all constraint literals in it are.

10 3 CARDINALITY CONSTRAINT PROGRAMS

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

In this section we define the stable model semantics for cardinality constraint
programs. The basic semantics is defined directly for the ground programs,
and rules with variables are seen to denote the sets of their ground instances.
The instantiation is done relative to a data model. In some cases we might
use the Herbrand interpretation of the program as our model, but there are
cases where we want the data model to be more complex.

The definitions in this section are more complex than the corresponding
ones for normal logic programs. There are two main reasons for this:

1. we want to allow the use of some evaluated functions, for example
arithmetic operators, during the instantiation process; and

2. we have two kinds of variables, local and global.

We use the notation 〈P, D〉 to denote the combination of a program P
and a data model D. We do not restrict the ways how the data model may be
defined; in the simplest case it might be a set facts, or it might come from a
relational database.

The basic motivation for having a data model is that it provides a set of
built-in functions and predicates. For example, the data model may define
the basic arithmetic functions on integers (+, −, . . .) as well as some predi-
cates (<, ≤, >, . . .) that can be used to make programs more compact.

As usual in logic programming we give the basic semantics for ground
programs and rules with variables are seen as short-hand notations for denot-
ing the set of their ground instances. However, this interpretation is not as
straightforward as in most other cases since literal sets and their local variables
have to be handled carefully. In practice we have to do the instantiation in
two stages where we instantiate all global variables and then expand all literal
sets to remove local variables.

We define the semantics using a Gelfond-Lifschitz-style [24] reduction
that transforms a cardinality constraint program P into a simpler one that
has a unique minimal model M ′. The reduction is done with respect to some
set of atoms M . If it happens so that M satisfies P and coincides with M ′,
then M is a stable model of 〈P, D〉. Our definition of the reduct extends the
definition given in [65] by allowing the use of literal sets.

The definition of the stable model semantics is divided into three parts:

1. instantiation where global variables are removed from the rules;

2. expansion where each literal set with local variables in P is replaced
by a set of ground basic literals; and

3. reduction where each rule of P is replaced by a possibly empty set of
Horn constraint rules.

Next we will give the definitions for data models and the three parts of
stable model semantics. We will use the Hamiltonian cycle problem as a
running example:

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS 11

Example 4.1 In the Hamiltonian cycle problem we are given a directed
graph 〈V, E〉 and an initial vertex i ∈ V and the object is to find a cycle
that visits each vertex exactly once. This problem can be given the following
uniform encoding:

1 ≤ {ρY.〈hc(X,Y) : edge(X, Y)〉} ≤ 1← vtx(X)

1 ≤ {ρY.〈hc(Y,X) : edge(Y,X)〉} ≤ 1← vtx(X)

r(Y)← 1 ≤ {r(X), initial(X)}, hc(X,Y), edge(X, Y)

← 1 ≤ {ρX.〈not r(X) : vtx(X)〉}

(5)

The first two rules ensure that there is exactly one incoming and one outgoing
edge for each vertex. The last two rules ensure that each vertex is visited by
the path. Here, the predicates edge/2, vtx/1, and initial/1 are data predicates
defined in the data model, and the predicates hc/2 and r/1 are program
predicates.

4.1 Data Models

The semantics of a program P is given relative to a data model D = 〈U, Σ, I〉
where U is the universe, Σ = 〈PD,F ,N〉 is the vocabulary consisting of a
set of data predicate symbols PD, a set of function symbols F , a set of 0-ary
names N ⊆ F , and an interpretation I that assigns:

1. a relation I(p) ⊆ Uk for each k-ary predicate symbol p ∈ PD; and

2. a computable mapping I(f) : Uk → U for each k-ary function symbol
f ∈ F .

An interpretation I assigns a constant function I(c) = ε 7→ u for each 0-ary
constant symbol c ∈ F . In these cases we will identify this function with its
value and simply denote that I(c) = u.

The set N of names has to contain a unique 0-ary name for each ele-
ment u ∈ U . That is, the interpretation I has to map each name n ∈ N
to a different element of U and for each element u ∈ U there has to be an
element n ∈ N such that I(n) = u. We will denote the inverse function of
I restricted to N by N so that N(I(n)) = n for each n ∈ N . Note that I
restricted to the set of all 0-ary constants does not have to be injective and it
may map more than one constant to the same element of U .

The data model provides the universe and the interpretations for all data
predicates and function symbols that may occur in a program. The reason
for making a distinction between the elements of U and their names in N is
that we can then separate the syntax of a program from the semantics given
by U and I when handling quantification of variables in the rules.

We do not impose restrictions on the nature of U ; it may be a finite set
of elements, or perhaps an infinite set of terms. However, for the purpose
of defining the semantics we disregard any possible internal structure of el-
ements of U . In this section we will use the convention that the elements
of U are written using bold-face (e.g. 0, f(a)) while all syntactic elements are
written using italic font (e.g. 0, f(a)). Unless specified otherwise, the name
of an element x is defined as N(x) = x. For example, N(f(a)) = f(a).

12 4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

f(a)

1

f(a)

F

N

U

1

f(a)
I

I

I

N

N

Figure 1: The relationship of function symbols F , names N , and the uni-
verse U .

Note that the naming function is arbitrary and we do not in general assume
that the name of f(a) has to have any connection to the symbols f and a.

Here we want to emphasize that the different notations for f(a) are used
to make it more clear that the string of four characters ‘f(a)’ can occur in
three different roles:

1. it may denote the application of a function symbol f to the ground
term a;

2. it may denote the corresponding element of the universe; or

3. it may denote the name of the element.

Later on we will blur the distinction between names, terms, and elements
and use f(a) in all three roles.

The interpretation of a k-ary function symbol f ∈ F is total so it has to be
defined for each possible combination of arguments. The interpretation of a
compound term is defined in the standard way by using bottom-up evaluation
for interpreting its arguments.

Definition 4.1 The interpretation I(f(t1, . . . , tk)) of a term (k ≥ 0) under
a data model 〈U, 〈PD,F ,N〉, I〉 is the element:

I(f(t1, . . . , tk)) = I(f)(I(t1), . . . , I(tk)) . (6)

An interpretation I imposes a satisfaction relation for ground data atoms.

Definition 4.2 Given a data model D = 〈U, 〈PD,F ,N〉, I〉, a ground atom
p(t1, . . . , tk), p ∈ PD, is satisfied by D (denoted D |= p(t1, . . . , tk)) if and
only if 〈I(t1), . . . , I(tk)〉 ∈ I(p), and D |= not(p(t1, . . . , tk)) if and only if
D 6|= p(t1, . . . , tk).

Next, we give a few examples on how a data model may be defined and
how interpretations work. In the first example we define a simple data model.

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS 13

Example 4.2 Let D = 〈U, 〈PD,F ,N〉, I〉 be a data model where:

U = {0,1,2}
PD = {greater/2}
F = {+/2,×/2, 0, 1, 2} ∪ N
N = {0, 1, 2} .

We want to define the interpretation I so that the function + corresponds to
addition modulo 3, and × to multiplication modulo 3. We start by defining
the interpretation for the six constants (three names and three other con-
stants) of the model:

I(0) = I(0) = 0

I(1) = I(1) = 1

I(2) = I(2) = 2 .

Strictly speaking it is not necessary to separate a constant x from the name x
since the interpretations of constants 0, 1, and 2 already satisfy the naming
condition. However, they are included in the data model to illustrate the
situation that more than one constant may be mapped to the same element
of U .

The interpretation of a k-ary function symbol f ∈ F is some function
Uk → U . Thus, we set I(+) = h where h is defined as follows:

h(x,y) = x + y mod 3 .

Similarly, I(×) = g where g(x,y) = x× y mod 3.
The interpretation of the binary predicate greater/2 is defined as a set of

pairs of elements:

I(greater) = {〈x,y〉 | x,y ∈ U and x > y} .

In the second example we evaluate some ground terms and data atoms
using the simple data model.

Example 4.3 Let D be the data model defined in Example 4.2. We want to
find the truth values for two ground atoms:

A = greater(1, 2)

B = greater((2× 2) + 1, 1 + 2) .

To see whether a data atom is satisfied in a data model or not, we have to start
by finding the interpretations of the arguments. In the first case we have:

I(1) = 1

I(2) = 2 .

As 1 < 2, 〈1,2〉 /∈ I(greater) and D 6|= A.
Consider now the first argument of B. When we use a prefix notation the

term becomes +(×(2, 2), 1). By Definition 4.1,

I(+(×(2, 2), 1)) = I(+)(I(×(2, 2)), I(1)) .

14 4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

a b

c d

D = 〈U, Σ, I〉
U = {a,b, c,d, e}
Σ = 〈{vtx/1, edge/2, initial/1},N ,N〉
N = {a, b, c, d, e}

I(vtx) = {a,b, c,d}
I(edge) = {〈a,b〉, 〈b, c〉, 〈b,d〉, 〈c, a〉,

〈c,d〉, 〈d, c〉}
I(initial) = {a}

I(a) = a; I(b) = b; I(c) = c;
I(d) = d; I(e) = e

Figure 2: A sample data model for the Hamiltonian cycle example.

. Continuing the evaluation of I we get:

I(+(×(2, 2), 1)) = I(+)(I(×(2, 2)), I(1))

= h(I(×)(I(2), I(2)),1)

= h(g(2,2),1)

= h(1,1)

= 2 .

For the second argument the evaluation proceeds as:

I(+(1, 2)) = I(+)(I(1), I(2))

= h(1,2)

= 0 .

As 2 > 0, 〈2,0〉 ∈ I(greater) so D |= B.

Before we delve deeper into the realm of function symbols and their in-
terpretations, we present another simple data model that will be used later in
this section in the examples of rule instantiations.

Example 4.4 A sample data model for the Hamiltonian cycle problem that
was introduced in Example 4.1 is presented in Figure 2.

Herbrand Interpretations
Example 4.2 showed us how we can use functions that compute some con-
crete value in a data model. However, the standard practice in logic pro-
gramming is to use Herbrand interpretation for function symbols. There the
universe consists of all terms that can be formed by using the function sym-
bols and constants that occur in the program. A Herbrand universe is always
infinite if there exists at least one function symbol with arity greater than zero.
Next, we show how we can construct a data model that corresponds to the
Herbrand interpretation of the program.

Suppose that we have some program P and we want to use its Herbrand
interpretation. The actual literals and rules of P are not relevant when we
construct the interpretation, only the constants and other function symbols

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS 15

that occur in it. In practice, we have to define the sets U and N as well as
the interpretation I .

First, we define the sets C and F of function symbols that occur in P :

C = {c | c is a 0-ary function symbol (constant) occuring in P}
F = {f | f is a k-ary (k > 0) function symbol occurring in P} .

(7)

Then, we can define the set of names N . The intuition is that we add
each Herbrand term that can be constructed using C and F as a name inN .
The set N is the smallest set that fulfills the following two conditions:

1. For all c ∈ C, c ∈ N .

2. For all t1, . . ., tk ∈ N and f ∈ F , f(t1, . . . , tk) ∈ N .

As the definition leads to names with many underlines, we sometimes
simplify the notation and leave out the inner underlines. For example,

f(g(a), a) = f(g(a), a) .

Next, we define the universe U so that it contains exactly one element for
each name in N . The simplest way to do it to say that:

U = {x | x ∈ N} . (8)

Note that with this definition we end up with a situation where the universe
contains elements whose syntactic representations are underlined. We do
this because it makes it easier to define the interpretations of function sym-
bols.

Finally, we have to construct the interpretation I . We see that I should
map terms occurring in P to the corresponding Herbrand terms in U and
to do that in a consistent way. Thus, we have to ensure that, for example,
I(f(a)) = I(f(a)) = I(f(a)). This can be achieved by defining I(f) to be
the function f ′:

f ′(x) = ‘f ’ ◦ ‘(’ ◦ x ◦ ‘)’ (9)

where ◦ denotes the string concatenation. For all names n ∈ N , we set
I(n) = n, and for all other constants c ∈ F , we set I(c) = c.

We will use the notation DP,H later on to denote the data model that
corresponds to the Herbrand interpretation of P .

Example 4.5 Consider the case where we have two constants, a and b, and
one unary function symbol, f , occurring in a program and we want to use
the Herbrand interpretation for it. Then, the set of names N is the infinite
set:

N = {a, b, f(a), f(b), f(f(a)), . . .} .

The universe is then the set U :

U = {a,b, f(a), f(b), f(f(a)), . . .} .

16 4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

The interpretation I is defined as above. Suppose that we have to interpret
the term f(f(a)). Then,

I(f(f(a))) = I(f)(I(f(a)))

= f ′(I(f)(I(a)))

= f ′(f ′(a))

= f ′(f(a))

= f(f(a)) .

Thus, we can use “uninterpreted” function symbols by defining their in-
terpretation suitably.

Combining Herbrand Interpretations and Evaluated Functions
We can also define the data model so that some of the function symbols have
the Herbrand interpretation while the others are evaluated as in Example 4.2.
However, as interpretations are total, we have to define the value for nonsen-
sical applications of function, for example, f(b) + 5 has to evaluate to some
element of the universe. There are two basic approaches for this:

1. we can add a new element e to the universe to denote the error condi-
tion and define I(x + y) to be e whenever I(x) and I(y) are not both
natural numbers; or

2. we can use Herbrand interpretation for them.

In a practical implementation of the semantics we might want to take the
third approach and signal a type error to the programmer.

Example 4.6 Consider the following data model D:

D = 〈U, Σ, I〉
U = {e,0,1, f(e), f(0), f(1), f(f(e)), . . .}
Σ = {∅,F ,N}
F = {+/2, f/1, 0, 1, e} ∪ N
N = {e, 0, 1, f(e), f(0), f(1), f(f(e)), . . .}

where we want f/1 to have a Herbrand interpretation and +/2 to define
addition modulo 2. The definition of the interpretation of f can be defined
as in Example 4.5, that is I(f) = f ′ where f ′(x) = ‘f ’ ◦ ‘(’ ◦ x ◦ ‘)’.

For + we say that I(+) = h where:

h(x,y) =

{
x + y mod 2, if {x,y} ⊆ {0,1}
e, otherwise .

The intuition is that e acts as an error value that denotes that the value of the
function is undefined for x and y. Finally, I(e) = e, I(0) = 0, I(1) = 1,
and for each x ∈ N , I(x) = x.

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS 17

Consider now a compound term f(0 + 1) and its interpretation. By Defi-
nition 4.1:

I(f(0 + 1)) = I(f)(I(0 + 1))

= f ′(I(0 + 1))

= f ′(I(+)(I(0), I(1)))

= f ′(h(0,1))

= f ′(1)

= f(1) .

4.2 Removal of Global Variables

We start the formal definitions by the concept of a substitution where vari-
ables are replaced by ground terms.

Definition 4.3 Let P be a cardinality constraint program, ρ be a set of vari-
ables and D = 〈U, Σ, I〉 a data model. Then, a substitution σρ,D is a function

σρ,D : ρ→ N (10)

that associates an element σρ,D(v) ∈ N for each variable v ∈ ρ. We denote
the set of all substitutions on ρ and D by subs(ρ, D).

For clarity, we will often leave out the subscripts of a substitution where
there is no danger of confusion. We will use the notation X/a to denote that
a substitution maps the variable X to the name a.

Example 4.7 Let σρ,D = {x 7→ a, y 7→ b, z 7→ f(c, a)} be a substitution.
Then, an alternate representation would be {x/a, y/b, z/f(c, a)}.

Definition 4.4 Given a substitution σ ∈ subs(ρ, D), a (partial) instantiation
of a term t with respect to σ (denoted tσ) is defined recursively as follows:

tσ =



σ(t), if t is a variable and t ∈ ρ

t, if t is a variable and t /∈ ρ

N(I(f)(I(t1σ), . . . , I(tnσ))), if t = f(t1, . . . , tn) and
vars(f(t1σ, . . . , tnσ)) = ∅

f(t1σ, . . . , tnσ), if t = f(t1, . . . , tn) and
vars(f(t1σ, . . . , tnσ)) 6= ∅

(11)

An instantiation is total or ground if vars(t) ⊆ ρ.

Note that in the above a constant is a 0-ary function symbol.

Definition 4.5 Given a substitution σ ∈ subs(ρ, D), a (partial) instantiation
of an atom p(t1, . . . , tk) (denoted p(t1, . . . , tk)σ) is the atom p(t1σ, . . . , tkσ).

The partial instantiations of basic literals, literal sets, constraint literals,
are done in the same way, by instantiating all terms in them.

18 4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

Example 4.8 Consider an atom A = p(f(X + 5), Y) where + is evaluated
and f has the Herbrand interpretation, and a substitution σ = {X/3}. When
we apply σ to A, we do it in a bottom-up fashion by applying it first to the
innermost expressions that occur in A. There, we see that:

Xσ = 3

5σ = N(I(5)) = N(5) = 5

Y σ = Y .

Next, we examine the term X + 5:

(X + 5)σ = N(I(+)(I(Xσ), I(5σ)))

= N(I(+)(I(3), I(5))

= N(I(+)(3,5))

= N(8)

= 8 .

Moving one step up, we find that:

f(X + 5)σ = N(I(f)(I(X + 5)σ))

= N(I(f)(8))

= N(f(8))

= f(8) .

Thus,
p(f(X + 5, Y)σ = p(f(8), Y) .

Example 4.9 Let r be the rule

1 ≤ {〈a(X, Y + 2) : b(X, Y)〉} ← 1 ≤ {〈c(X) : >〉, 〈d(f(Y)) : e(Y)〉}

where +/2 is evaluated, f/1 has Herbrand interpretation, and σ = {Y/1} a
substitution. Then, the partial instantiation rσ is the rule:

1 ≤ {〈a(X, 3) : b(X, 1)〉} ← 1 ≤ {〈c(X) : >〉, 〈d(f(1)) : e(1)〉} .

A partial instantiation of a program P with respect to D is obtained by
replacing each rule r by the set of all instances that can be generated by
substituting elements from the set N of names for each global variable in r.

Definition 4.6 The partial instantiation of a cardinality constraint program
P with respect to a data model D is the set

inst(P, D) = {rσ | r ∈ P and σ ∈ subs(vars(P), D)} . (12)

Note that this definition leaves all local variables untouched, since by (4)
they do not belong to vars(r).

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS 19

Example 4.10 The first rule of (5) in Example 4.1 is instantiated to:

1 ≤ {ρY.〈hc(a, Y) : edge(a, Y)〉} ≤ 1← vtx(a)

1 ≤ {ρY.〈hc(b, Y) : edge(b, Y)〉} ≤ 1← vtx(b)

1 ≤ {ρY.〈hc(c, Y) : edge(c, Y)〉} ≤ 1← vtx(c)

1 ≤ {ρY.〈hc(d, Y) : edge(d, Y)〉} ≤ 1← vtx(d)

1 ≤ {ρY.〈hc(e, Y) : edge(e, Y)〉} ≤ 1← vtx(e) .

(13)

The five substitutions that give rise to these rules are: {X/a}, {X/b}, {X/c},
{X/d} and {X/e}.

4.3 Expansion

The expansion removes all local variables from a cardinality constraint pro-
gram. Each literal set is replaced by a set of basic literals. The set is con-
structed by applying all substitutions that satisfy all conditions to the main
literal.

Definition 4.7 The expansion of a literal set S = ρX1 · · ·Xn.〈l : a1, . . . , am〉
with respect to a data model D is the set

E(S, D) = {lσ | σ ∈ subs(varsL(S), D) ∧ ∀i ∈ [1, m] : D |= aiσ} . (14)

A constraint literal is expanded by expanding all literal sets in it.

Definition 4.8 The expansion of a constraint literal

C = L ≤ {S1, . . . , Sn} ≤ U

with respect to a data model D is defined as follows:

E(C, D) = L ≤ E(S1, D) ∪ · · · ∪ E(Sn, D) ≤ U . (15)

We say that E(C, D) is an expanded constraint literal.

The difference between unexpanded and expanded constraint literals is
that an unexpanded one contains literal sets while an expanded one contains
only basic literals. Note that after expansion there are only program predi-
cates left in the program. All simple data constraint literals 1 ≤ {〈> : a〉}
are replaced by 1 ≤ {>} if a is true, or by an unsatisfiable literal 1 ≤ {} if a
is false.

Example 4.11 Consider the constraint literal C:

C = 1 ≤ {ρX.〈a(X) : d1(X)〉, ρY.〈a(Y) : d2(Y)〉} ≤ 2 .

Suppose that the interpretations of d1 and d2 in a data model D are:

I(d1) = {0,1,3}
I(d2) = {0,2}

20 4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

Then, the expansions of the two literal sets are:

{a(0), a(1), a(3)}; and
{a(0), a(2)}

so the expansion of C is

E(C, D) = 1 ≤ {a(0), a(1), a(2), a(3)} ≤ 2 .

The expansion of a rule is defined analogously to Definition 4.7.

Definition 4.9 The expansion of a rule r = C0 ← C1, . . . , Cn with respect
to a data model D is defined as follows:

E(r, D) = E(C0, D)← E(C1, D), . . . , E(Cn, D) . (16)

Example 4.12 Continuing from Example 4.10, the first rule of (13) expands
to:

1 ≤ {hc(a, b)} ≤ 1← 1 ≤ {>}

since there is only one pair in I(edge) where a occurs in the first argument.
The corresponding rule for vertex c expands to:

1 ≤ {hc(c, a), hc(c, d)} ≤ 1← 1 ≤ {>} .

There is also one element e in the universe of the example that is not a vertex.
For it, the rule is expanded to:

1 ≤ {} ≤ 1← 1 ≤ {} .

Since the body is unsatisfiable, this rule has no effect at all and it may be
dropped from the instantiated program.

The final rule of (5) expands to:

← 1 ≤ {not r(a), not r(b), not r(c), not r(d)} .

Now we are ready to combine partial instantiation with expansion to de-
fine Herbrand instantiation HI for cardinality constraint rules and programs.

Definition 4.10 Let r = C0 ← C1, . . . , Cn be a rule and D be a data model.
Then, the Herbrand instantiation HI of r with respect to D is the set

HI(r, D) = {E(r′, D) | r′ ∈ inst(r, D)} . (17)

Definition 4.11 Let P be a cardinality constraint program and D be a data
model. Then, the Herbrand instantiation HI of P with respect to D is the
set

HI(P, D) =
⋃
r∈P

HI(r, D) . (18)

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS 21

4.4 Reduct and Stable Model Semantics

Thus far we have only performed syntactic manipulation for a program P in-
stantiating it with respect to a data model D. In this section we complete the
semantics by defining a reduction for instantiated programs. The reduction
is done with respect to a set M of ground atoms. Our presentation follows
the one in [65].

We start by noting that a ground atom a is satisfied by M (denoted M |= a)
if a ∈M and a ground negative literal not(a) if a /∈M . Additionally, M |= >
for all M .

Definition 4.12 A set of ground atoms M satisfies an expanded constraint
literal C = L ≤ {a1, . . . , an, not b1, . . . , not bm} ≤ U if and only if L ≤
w(C, M) ≤ U where

w(C, M) = |{ai | ai ∈M}|+ |{bi | bi /∈M}| (19)

is the number of basic literals in C that are satisfied by M .

An instantiated rule r = C0 ← C1, . . . , Cn is satisfied by S (S |= r) if and
only if S satisfies C0 whenever it satisfies each of C1, . . . , Cn. An instantiated
program P is satisfied by S (S |= P) if S satisfies each rule in P .

Example 4.13 Consider the expanded constraint literal C:

2 ≤ {a, b, not c} ≤ 3

Now, w(C, {a}) = 2 so {a} |= C. On the other hand, w(C, {a, c}) = 1 so
{a, c} 6|= C.

The reduct of a program consists of a set of Horn constraint rules. Since
there are only positive literals and no upper bounds, the rules are mono-
tonic [65] in the same way as ordinary Horn rules are; if M |= C, then
M ′ |= C for any set M ′ ⊇M so deducing new atoms can never render prior
deductions false.

Definition 4.13 The deductive closure cl(P) of a set P of ground Horn con-
straint rules is the least fixed point of the operator TP where TP is defined as
follows

TP (M) = {a | a← C1, . . . , Cn ∈ P and for all i, M |= Ci} . (20)

The deductive closure of a set P of ground Horn constraint rules corre-
sponds to the unique minimal model of P [65].

Example 4.14 Let P be the set of Horn constraint rules:

a← 1 ≤ {a}
b← 0 ≤ {b}
c← 2 ≤ {b, d}, 1 ≤ {b, a} .

The deductive closure of P is {b}. However, if we add the rule

d← 1 ≤ {a, b, c}

to the set, then the closure is {b, d, c}.

22 4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

Definition 4.14 The reduct CM of an expanded constraint literal C = L ≤
{a1, . . . , an, not b1, . . . , not bm} ≤ U with respect to a set of atoms M is the
constraint

L′ ≤ {a1, . . . , an} (21)

where the lower bound

L′ = L− |{bi | bi /∈M}| . (22)

In effect, all negative literals and the upper bound in the constraint are
removed and the number of satisfied negative literals is subtracted from the
lower bound.

Example 4.15 Given a constraint C

1 ≤ {a1, not b1, not b2} ≤ 3 ,

its reduct with respect to {b1} is the constraint

C{b1} = 0 ≤ {a1}

and with respect to {b1, b2}

C{b1,b2} = 1 ≤ {a1} .

Definition 4.15 Let P be an instantiated cardinality constraint program and
M a set of atoms. Then, the reduct PM of P with respect to M is defined as
follows:

PM = {p← CM
1 , . . . , CM

n | C0 ← C1, . . . , Cn ∈ P, p ∈ C0 and
M |= p, M |= C1, . . . , Cn}

(23)

The main idea here is that the reduct of a single rule r with respect to
M is a set of simple rules whose bodies are the reducts of the body of r and
heads are those atoms of head(r) that are true in M .

Definition 4.16 A set M of atoms is a stable model of an instantiated pro-
gram P if and only if the following two conditions hold:

1. M |= P ,

2. M = cl(PM)

The first condition ensures that all rules are satisfied by the model and
the second one ensures that all atoms in M occur in heads of rules in P and
every atom in it has a non-circular justification.

Example 4.16 Consider the instantiated program P :

1 ≤ {a, c} ≤ 1← 1 ≤ {not b}
b← 2 ≤ {a, not c} .

Now, P has only one stable model, {c}. We immediately see that {c} |= P .
The reduct P {c} is:

c← 0 ≤ {}
whose closure is {c}. Thus, {c} is stable. On the other hand, {a, c} is not
a stable model since it does not satisfy the first rule, and likewise {b} is not
since cl(P {b}) = ∅.

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS 23

Finally, we can put everything together and define the stable model se-
mantics for cardinality constraint programs with variables.

Definition 4.17 Given a cardinality constraint program P and a data model
D, a set M of ground atoms is a stable model of 〈P, D〉 if and only if M is a
stable model of HI(P, D). We denote the set of all stable models of 〈P, D〉
by A(P, D).

Next, we show that the stable model semantics for cardinality constraint
programs is a true generalization of the stable model semantics for normal
logic programs.

We say that a cardinality constraint program is normal if and only if all
rules in it are of the form:

1 ≤ {h : >} ← 1 ≤ {a1 : >}, . . . , 1 ≤ {an : >},
1 ≤ {not b1 : >}, . . . , 1 ≤ {not bm : >} .

(24)

A rule of this form corresponds directly to a normal rule

h← a1, . . . , an, not b1, . . . , not bm .

Theorem 4.1 Let P be a normal cardinality constraint program. Then, M
is a stable model of P if and only if M is a stable model of a normal logic
program Pn that is obtained from P by replacing all constraint literals 1 ≤
{l : >} by the literal l.

Proof. Let a rule r be of the form (24) and M be a set of atoms. Then, if
h /∈M the reduct rM is empty, and if h ∈M , the reduct is:

h← 1 ≤ {a1}, . . . , 1 ≤ {an}, . . . , l1 ≤ {}, . . . , lm ≤ {} (25)

where li = 1 if bi ∈M , and 0 otherwise. If li = 1 for any i, then rM contains
an unsatisfiable body literal and thus it is trivially true and cannot be used to
justify h in the stable model. Otherwise, all literals 0 ≤ {} are trivially true
and can be left out from the rule.

Let a rule rn be the normal logic program version of r. Then, the reduct
rM
n is the rule:

h← a1, . . . , an (26)

if for all i, bi /∈ M and empty otherwise. We immediately see that the rules
(25) and (26) behave exactly the same under the corresponding TP operators
and they are satisfied by the same sets of atoms.

The only case when the reducts rM and rM
n are essentially different is

when h /∈ M and all negative literals in the body are satisfied since then rM

is empty but rM
n is not. Suppose that ai are all true in cl(PM

n). Then, also
h ∈ cl(PM

n) so cl(PM
n) 6= M and M is not a stable model. Thus, in any

stable model M ′ of Pn, at least one ai is not true and the body of (26) is not
satisfied so it is not used to justify any atom in the model, and leaving it out
completely from PM does not change the minimal model of the reduct.

Thus, the sets of stable models of P and Pn are equal. �

24 4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

a

b

c

D = 〈U, Σ, I〉
U = {a,b, c, red,blue}
Σ = 〈{vtx/1, edge/2, color/1},N ,N〉
N = { a, b, c, red, blue }

I(vtx) = {a,b, c}
I(edge) = {〈a, c〉, 〈b, c〉}
I(color) = {red,blue}

I(a) = a; I(b) = b; I(c) = c; I(red) = red;
I(blue) = blue

Figure 3: A sample graph for vertex coloring

4.5 Example

Now we look at a simple cardinality constraint program and go through all
steps that are necessary in the definition of stable models. Let P be a program
that finds graph n-colorings:

1 ≤ {ρC.〈has-color(V, C) : color(C)〉} ≤ 1← vertex(V)

← has-color(X, C), has-color(Y,C), edge(X, Y), color(C) .

For the sake of the example, let us find a 2-coloring for the graph shown in
Figure 3. In the first step we remove all global variables by creating a partial
instantiation. For the sake of clarity, we leave out rules with trivially unsat-
isfiable bodies as well as atoms whose predicate symbols are data predicates.
The resulting instantiation is:

1 ≤ {ρC.〈has-color(a, C) : color(C)〉} ≤ 1←
1 ≤ {ρC.〈has-color(b, C) : color(C)〉} ≤ 1←
1 ≤ {ρC.〈has-color(c, C) : color(C)〉} ≤ 1←
← has-color(a, red), has-color(c, red)

← has-color(b, red), has-color(c, red)

← has-color(a, blue), has-color(c, blue)

← has-color(b, blue), has-color(c, blue)

Next, we expand the three literal sets to get the Herbrand instantiation of
P2 = HI(P1, D):

1 ≤{has-color(a, red), has-color(a, blue)} ≤ 1←
1 ≤{has-color(b, red), has-color(b, blue)} ≤ 1←
1 ≤{has-color(c, red), has-color(c, blue)} ≤ 1←
← has-color(a, red), has-color(c, red)

← has-color(b, red), has-color(c, red)

← has-color(a, blue), has-color(c, blue)

← has-color(b, blue), has-color(c, blue)

Consider first the model candidate:

M1 = {has-color(a, red), has-color(a, blue)} .

4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS 25

We see that M1 6|= P2, so M1 has to be rejected. Next we try:

M2 = {has-color(a, red), has-color(b, red), has-color(c, blue)

The reduct PM2
2 is

has-color(a, red)←
has-color(b, red)←
has-color(c, blue)←

← has-color(a, red),has-color(c, red)

← has-color(b, red),has-color(c, red)

← has-color(a, blue),has-color(c, blue)

← has-color(b, blue),has-color(c, blue)

The deductive closure is:

cl(PM2
2) = {has-color(a, red), has-color(b, red), has-color(c, blue)}

= M2,

so M2 is a stable model.

26 4 STABLE MODEL SEMANTICS OF CARDINALITY CONSTRAINT PROGRAMS

5 OMEGA-RESTRICTED PROGRAMS

In the previous section we defined the semantics of a program with global
variables to coincide with the stable models of its instantiation. While this
is theoretically a clean way to do the definition, there are several practical
problems with it. Perhaps the most important consequence is that if we use
the Herbrand interpretation for some function symbols, then the problem of
finding a stable model becomes undecidable [37].

Thus, we are interested in finding a class of cardinality constraint programs
for which we can guarantee that we can always compute its stable models.
Moreover, we want that the class is syntactic so that we can easily check
whether a program belongs to it or not.

Another practical viewpoint is that the size of the full Herbrand instanti-
ation of even a function-free program may be exponential compared to the
original program in the general case. A large number of rules that occur in
the Herbrand instantiation are irrelevant since their bodies cannot be satis-
fied in any stable model and they can be left out of the instantiation without
affecting the stable models.

One common strategy of reducing the size of the ground instantiation is
to demand that all rules of the program are range-restricted in the sense that
if a variable occurs in a rule, then it has to occur also in a positive literal in
the rule body. Thus, the rule

a(X, Y)← b(X), c(Y), not d(X, Y)

is range-restricted but

a(X, Y)← not d(X, Y)

is not since neither X nor Y occur in a positive literal in the rule body. This
way it is possible to compute the set of rules with possibly satisfiable bodies by
disregarding all negative literals and then computing the deductive closure of
the rules starting from ground facts. This approach makes it possible to use
deductive database techniques to further optimize the instantiation [23].

In this section we define a different form of range-restriction, namely the
class of ω-restricted programs that were originally introduced for normal logic
programs in [75]. Here we generalize the ω-stratification concept to handle
the new syntactic extensions.

A major motivation behind ω-restricted programs is to allow the program-
mer to define a data model of a program using the same syntax as the rest of
the program. We do it by allowing some program predicates that have fixed
extensions to act as data predicates for the rest of the program. We call them
domain predicates and they are defined using a stratifiable set of simple rules.
Such a set of rules has a unique least model and we add it to the data model.
Then we instantiate the rest of the program with respect to the augmented
data model.

In practice we construct a stratification of predicate symbols such that a
predicate p is on a at least as high level as a predicate q if q occurs in the
body of a rule for p. The unique stable model of the domain predicates
is then constructed one stratum a time, starting from the lowest one. The

5 OMEGA-RESTRICTED PROGRAMS 27

stratification contains an extra level, ω-stratum, to hold all the predicates
whose extensions cannot be syntactically guaranteed to be fixed.

In addition to domain predicates we may still use arbitrary data models.
In practice, a data model defines some built-in predicates and functions such
as equality (=) and arithmetic operators (+, −, . . .).

Since we now allow some program predicates to work as data predicates,
we also have to allow those predicates to occur in conditions of literal sets.
Also, from now on we do not have to use > as a program predicate anymore
so we can assign it to be solely a data predicate. We do this to simplify some
of the following definitions.

We say that a constraint literal in a rule body is simple if it is of the form
1 ≤ {a : >} where a is an atom. Intuitively, a rule is ω-restricted if each
variable that occurs in it occurs also in some positive simple constraint lit-
eral whose main predicate is on a strictly lower stratum than the head of the
rule. A program is ω-restricted if and only if all its rules are. This condition
ensures that even if there are some uninterpreted function symbols in a pro-
gram and its Herbrand instantiation is infinite, all its stable models are still
finite. Moreover, computing those models is decidable.

Example 5.1 We will continue to use the Hamiltonian cycle problem as our
running example. However, we now extend the program to make it work also
for undirected graphs. We do this by explicitly forcing the edge/2 predicate
to be symmetric by adding the rule:

edge(Y, X)← edge(X, Y), vtx(X), vtx(Y) .

Thus, the complete program is:

1 ≤ {ρY.〈hc(X, Y) : edge(X, Y)〉} ≤ 1← vtx(X)

1 ≤ {ρY.〈hc(Y, X) : edge(Y,X)〉} ≤ 1← vtx(X)

r(Y)← 1 ≤ {r(X), initial(X)}, hc(X, Y), edge(X, Y)

edge(Y,X)← edge(X, Y), vtx(X), vtx(Y)

← 1 ≤ {ρX.〈not r(X) : vtx(X)〉}

Also, we now use a data model without any data predicates at all. Instead,
we define both vtx/1 and edge/2 as domain predicates. That is, they are
program predicates with fixed extensions that act as data predicates for other
predicates.

Our sample graph that was first presented in Figure 2 on page 15 can be
encoded as the set of following ten facts:

vtx(a)← vtx(b)← vtx(c)← vtx(d)←
edge(a, b)← edge(b, c)← edge(b, d)← edge(c, d)←
edge(c, a)← edge(d, c)← .

5.1 Dependency Graphs

In this section we define what it means for a predicate to depend on an-
other. We start by defining some auxiliary notations. Given a rule r =

28 5 OMEGA-RESTRICTED PROGRAMS

vtx initial

edge

hc

r

positive
negative

Figure 4: The dependency graph of the Hamiltonian cycle program.

C0 ← C1, . . . , Cn, we use head(r) to denote the set of main literals of lit-
eral sets that occur in C0, that is head(r) =

⋃
S∈C0

lit(S).
We also use the notations body+(r) and body−(r) to denote the sets of

positive and negative basic literals that occur somewhere in the body of a
rule r, either as a main literal or in some condition, and whose predicate
symbols are program predicates. Similarly, we use bodys(r) to denote the set
of basic literals that occur in simple constraint literals of the form 1 ≤ {a :
>} somewhere in the rule body.

Definition 5.1 Let P be a cardinality constraint program. Then, the one-
step dependency relation D1(P) ⊆ PP (P)× PP (P) is defined as follows:

D+
1 (P) = {〈pred(h), pred(l)〉 | ∃r ∈ P :

h ∈ head(r) ∧ l ∈ body+(r)} (27)
D−

1 (P) = {〈pred(h), pred(l)〉 | ∃r ∈ P :

h ∈ head(r) ∧ l ∈ body−(r)}
∪{〈pred(l), pred(a)〉 | ∃S ∈ L(P) : (28)

l = lit(S) ∧ a ∈ conds(S)}
∪{〈pred(p), pred(p)〉 | ∃r ∈ P :

p ∈ head(r) and r is not simple}
D1(P) = D+

1 (P) ∪D−
1 (P) (29)

Note that we define the dependency relation only over program predi-
cates. The reason for this that otherwise we could not guarantee that a finite
ω-restricted program has a finite stable model, since an infinite data model
might force the models to be also infinite. This point is further discussed in
Section 8. Another note is that since we defined PP (P) to be finite, also
D1(P) is finite even if P is infinite.

The definition of D−
1 (P) may seem unnecessarily complex. Again, we

defer explaining the motivation behind it to Section 5.2 where we give the
formal definition of stable models for ω-restricted programs.

The one-step dependency relation may be drawn as a graph. For example,
the dependency graph of the program in Example 5.1 is shown in Figure 4.

We now generalize the one-step dependency relation to a full dependency
relation. The intuition is that a predicate p depends on a predicate q if there

5 OMEGA-RESTRICTED PROGRAMS 29

is a path from p to q in the dependency graph. If at least one of the edges
between p and q is negative, then p depends negatively on q.

Definition 5.2 A dependency path πP of a logic program P is a sequence

πP = 〈p1, p2, . . . , pn〉 (30)

where pi ∈ PP (P) for 1 ≤ i ≤ n and 〈pj, pj+1〉 ∈ D1(P) for 1 ≤ j < n.
A path πP is negative (denoted by πP) if and only if 〈pj, pj+1〉 ∈ D−

1 (P) for
some 1 ≤ j < n. The set of all dependency paths of P is denoted by ΠP and
the set of all negative dependency paths of P is denoted by ΠP .

Definition 5.3 The dependency relation D(P) ⊆ PP (P)×PP (P) of a logic
program P is defined as follows:

1. D(P) = {〈p, q〉 | ∃π ∈ ΠP : π = 〈p, . . . , q〉};

2. D−(P) = {〈p, q〉 | ∃π ∈ ΠP : π = 〈p, . . . , q〉}; and

3. D+(P) = D(P) \D−(P).

Next, we define the concept of ω-stratification. The definition extends the
usual definition of stratification [2] by adding a new stratum, the ω-stratum,
for the predicates that depend negatively on each other.

Definition 5.4 An ω-stratification of a program P is a function S : PP (P)→
N ∪ {ω} such that:

1. ∀p1∀p2(〈p1, p2〉 ∈ D+(P)⇒ S(p1) ≥ S(p2)); and

2. ∀p1∀p2(〈p1, p2〉 ∈ D−(P)⇒ S(p1) > S(p2) ∨ S(p1) = ω) .

A stratification S is strict if

1. S(p1) > S(p2) whenever 〈p1, p2〉 ∈ D+(P), 〈p2, p1〉 /∈ D(P), and
S(p2) < ω.

2. for all p1 ∈ PP (P) it holds that if S(p1) = ω, then there exists a
predicate p2 ∈ PP (P) such that S(p2) = ω and 〈p1, p2〉 ∈ D−(P).

We use the convention that ω > n for all n ∈ N. The first condition asserts
that a predicate p1 that depends positively on a predicate p2 has to be on at
least as high stratum as p2. The second condition states that if p1 depends
negatively on p2, then p1 has to be on a higher stratum or they both must be
in the ω-stratum.

Intuitively, a stratification is strict when it assigns all dependent predicates
that do not necessarily have to be on a same stratum to different strata and
does not put any predicate to ω-stratum if that is not necessary. Later in this
section we will present an algorithm that will compute a strict ω-stratification
for an arbitrary cardinality constraint program P if we are given its depen-
dency graph.

30 5 OMEGA-RESTRICTED PROGRAMS

vtx initial

edge

hc r

0

1

ω

Figure 5: A stratification of the Hamiltonian cycle program

Example 5.2 Consider Example 5.1. We can construct a strict ω-stratificat-
ion S for the program by looking at its dependency graph. As there are no
edges leading from vtx/1 or initial/1, we set S(vtx) = S(initial) = 0. As
edge/2 depends on vtx, we have S(edge) = 1. As hc/2 depends negatively
on itself and r/1 depends on it, we are forced to set S(hc) = S(r) = ω.

Example 5.3 Consider the program P :

odd(X + 1)← even(X), number(X)

even(X + 1)← odd(X), number(X)

Here we can set S(number) = 0 since it depends on nothing. As odd/1 and
even/1 depend on each other positively, we set S(odd) = S(even) = 1 to
complete the strict stratification S.

As the set of program predicates PP (P) is finite, the following proposition
immediately follows:

Proposition 5.1 The number of non-empty strata in an ω-stratification of a
cardinality constraint program is finite.

Next, we will extend the ω-stratification to cover also rules and variables
by defining the concept of an ω-valuation.

Definition 5.5 The ω-valuation of a rule r under an ω-stratification S is the
function:

Ω(r,S) = max({S(pred(l)) | l ∈ head(r)}) (31)

The ω-valuation of a global variable V in a rule r under an ω-stratification S
is the function:

Ω(V, r,S) = min({S(pred(a)) | a ∈ bodys(r)∧V ∈ vars(a)}∪ {ω}) (32)

Example 5.4 Let S be as defined in Example 5.2. Consider the rule r:

1 ≤ {ρY.〈hc(X, Y) : edge(X, Y)〉} ≤ 1← vtx(X)

Now

Ω(r,S) = S(hc) = ω

Ω(X, r,S) = min{S(vtx), ω} = 0

5 OMEGA-RESTRICTED PROGRAMS 31

Definition 5.6 A literal set ρX1 · · ·Xn.〈l : a1, . . . , am〉 is ω-restricted under
a stratification S if and only if S(pred(l)) > S(pred(ai)) for all i ∈ [1, m]
and {X1, . . . , Xn} ⊆

⋃
i∈[1,n] vars(ai).

In practice, this definition means that the main literal has to be on a strictly
higher stratum than the conditions, and that all local variables have to occur
in conditions.

A rule is ω-restricted if all literal sets in it are restricted and if all global
variables that occur in it also occur in a positive body literal that belongs to a
strictly lower stratum than the head. A program is ω-restricted if all its rules
are ω-restricted.

Definition 5.7 A cardinality constraint program P is ω-restricted if and only
if there exists a strict stratification S such that for all rules r ∈ P it holds that

∀V ∈ vars(r) : Ω(V, r,S) < Ω(r,S) .

and all literal sets L(r) are ω-restricted under S.

Example 5.5 Consider the rule r:

s(f(X))← s(X) .

This rule is not ω-restricted since ∀S : Ω(r,S) = Ω(X, r,S).

Finally, we divide the predicate symbols into two classes, domain pred-
icates that are on finite strata and non-domain predicates that are on the
ω-stratum.

Definition 5.8 Let P be an ω-restricted program. Then a predicate p ∈
PP (P) is a domain predicate if and only if there exists a strict ω-stratification
S such that S(p) < ω.

We will use the term domain literal to denote a simple constraint literal
whose predicate is a domain predicate. We note here that if a predicate is on a
finite stratum in one strict stratification, then it is on a finite one in each such
stratification, since a predicate may be on the ω-stratum only if it depends on
some predicate that depends on itself negatively. Also, it turns out that every
cardinality constraint program has a strict ω-stratification. We devote rest of
this section to showing this.

We can create a strict ω-stratification of a program P using the algorithm
presented in Figure 7. Next, we explain what that algorithm does in practice.

Definition 5.9 Let P be a cardinality constraint program. Then, its strongly
connected component graph SCC(P) = 〈VP , EP , NP 〉 is defined as follows:

1. v ∈ VP if and only if the following three conditions hold:

(a) v ⊆ PP (P);

(b) ∀x, y ∈ v : 〈x, y〉 ∈ D(P) ∧ 〈y, x〉 ∈ D(P); and

(c) ∀x, y ∈ PP (P) : x ∈ v ∧ 〈x, y〉 ∈ D(P)∧ 〈y, x〉 ∈ D(P) implies
that y ∈ v.

32 5 OMEGA-RESTRICTED PROGRAMS

even(X + 1) ← odd(X), number(X)
odd(X + 1) ← even(X), number(X)
{choose(X)} ← odd(X)

(a) Program

number

even odd

choose

number

odd
even

choose

(b) Dependency graph (c) SCC graph

Figure 6: An example of SCC graph formation.

2. 〈v1, v2〉 ∈ EP iff ∃x ∈ v1 : ∃y ∈ v2 : x 6= y and 〈x, y〉 ∈ D(P).

3. NP ⊆ VP such that

NP = {v | ∃x, y ∈ v : 〈x, y〉 ∈ D−(P)} .

In effect, the nodes of SCC(P) correspond with the strongly connected
components of the dependency graph of P . The set NP contains all those
strongly connected components that contain predicates that depend nega-
tively on itself.

The basic intuition of the algorithm create_stratification (Figure 7) is that
it first marks all components in NP as belonging to the ω-stratum, and then
it computes a depth-first search on SCC(P). The nodes of VP that have
no successors and do not belong to NP are allocated on the 0-stratum. If
a node v has successors, then the maximum s of their strata is computed
recursively, and all predicates in v are assigned to the stratum s + 1 where
we suppose that ω + 1 = ω. In Figure 8 we see a sample SCC graph where
nodes belonging to NP are colored black and the resulting stratification that
the algorithm computes for it.

Proposition 5.2 Let P be a cardinality constraint program. Then, the result
S computed by the algorithm create_stratification is a strict ω-stratification
of P .

Proof. Suppose that for predicates p1 and p2 it holds that 〈p1, p2〉 ∈ D+(P).
Then there are two further possibilities. If 〈p2, p1〉 ∈ D(P), both predicates
belong to the same SCC and find_stratum assigns the same stratum for both
of them, so S(p1) ≥ S(p2). Otherwise, they belong to different components
and there is an edge in SCC graph from the component of p1 to the compo-
nent of p2. As find_stratum assigns a component to the stratum s+1 where s
is the maximum of the strata of its successors, we see that S(p1) ≥ S(p2)
where the equality holds only if S(p2) = ω.

Next, consider the case where 〈p1, p2〉 ∈ D−(P). Then, if 〈p2, p1〉 /∈
D(P), find_stratum behaves as above and either S(p1) > S(p2) or S(p2) =
S(p1) = ω. On the other hand, if 〈p2, p1〉 ∈ D(P), then both p1 and p2

5 OMEGA-RESTRICTED PROGRAMS 33

function create_stratification(Program P)
Let S be an empty stratification
Let G := 〈V, E, N〉 be the SCC graph of P
foreach v ∈ V do

find_stratum(〈V, E, N〉, v, S)
end foreach
return S

end function

function find_stratum(Graph 〈V, E, N〉, Component v, Stratification S)
s := 0
if v ∈ N then s := ω
foreach v′ such that 〈v, v′〉 ∈ E do

s′ := find_stratum(〈V, E, N〉, v′, S)
if s′ ≥ s then s := s′ + 1

end foreach
foreach p ∈ v do

S(p) := s
end foreach
return s

end function

Figure 7: Creating an ω-stratification

0

0

1

1

2
3 ω ω

Figure 8: A sample SCC graph and its stratification

belong to the same component v ∈ Np so find_stratum assigns both to the
ω-stratum. Thus, S is an ω-stratification.

We see that S is strict since the only time when dependent predicates
p1 and p2 are assigned on the same stratum is when they both depend on
each other or when they both are on the ω-stratum. Moreover, only those
predicates that belong to some v ∈ Np or depend on such a predicate are
assigned to the ω-stratum so also the other requirement of strictness is met.

�

Corollary 5.1 Let P be a cardinality constraint program. Then, there exists
a strict stratification S of P .

Theorem 5.1 The problem of deciding whether a finite cardinality constraint
program is ω-restricted is decidable in a polynomial time.

Proof. The SCC graph of a cardinality constraint program P can be con-
structed in a linear time using, for example, the well-known Tarjan’s algo-

34 5 OMEGA-RESTRICTED PROGRAMS

rithm [61, pp. 481–483]. After that the algorithm create_stratification cre-
ates a strict ω-stratification S for P using a quadratic amount of time.5 After
that, we can check that each rule of P is ω-restricted in a linear time.

Furthermore, suppose that P is not ω-restricted under S but there is an-
other strict ω-stratification S ′ such that P is ω-restricted under it. Then
there exists some rule r and some variable V where Ω(V, r,S) ≥ Ω(r,S)
but Ω(V, r,S ′) < Ω(r,S ′). The first condition implies that for literals l ∈
bodys(r) such that V ∈ vars(l), S(pred(l)) ≥ Ω(r,S). Since for all h ∈
head(r) and l ∈ bodys(r) it holds that 〈pred(h), pred(l)〉 ∈ D(P), we see
that Ω(V, r,S) = Ω(r,S) and all h and l either belong to the same SCC
or are belong to the ω-stratum since else the algorithm create_stratification
would have assigned the heads on a strictly higher stratum. However, this
causes contradiction with the assumption that Ω(V, r,S ′) < Ω(r,S ′) as a
strict stratification may not assign a predicate p into a lower stratum than a
predicate q if 〈p, q〉 ∈ D. �

5.2 The Stable Model Semantics of ω-Restricted Programs

The stable model semantics of an ω-restricted program P is defined by split-
ting P into n smaller programs where n is the number of different strata in
its stratification. A stable model is constructed incrementally, starting from
rules for predicates on 0-stratum, continuing upwards until the ω-stratum is
reached, if necessary.

Definition 5.10 Let P be a cardinality constraint program and S be its strict
ω-stratification such that P is ω-restricted under S. Then, the stratum pro-
gram P S

i is defined as follows:

P S
i = {r ∈ P | Ω(r,S) = i} . (33)

The data model of the program is also constructed incrementally, with
each strata progam instantiated with respect to the stable model of the previ-
ous strata.

As all rules belonging to finite strata are simple, their instantiations are of
the form:

1 ≤ {h} ← C1, . . . , Cn

where h is an atom and all constraint literals Ci are of the form:

L ≤ {a1, . . . , an, not b1, . . . , not bm}

where all atoms bi belong to a strictly lower stratum than the head h and their
total extensions are known at the instantiation time. Thus, for each atom bi

we know whether not(bi) is true or false, and we can replace it by its truth
value. If we also replace the head 1 ≤ {h} by the corresponding atom h,
the resulting rules will be Horn constraint rules and thus we can find their
deductive closure using the cl operator.

Formally, we alter the definitions of expansions of literal sets, constraint
literals, and rules so that data predicates that occur as main literals in literal

5The algorithm can be modified to achieve a linear time bound by caching results of
find_stratum.

5 OMEGA-RESTRICTED PROGRAMS 35

sets are evaluated. Then, the Herbrand instantiation for simple rules is de-
fined in the same way as in the previous section but the new definitions for
expansions are used instead.

Definition 5.11 The simple expansion of a literal set S = ρX1 · · ·Xn.〈l :
a1, . . . , am〉 with respect to a data model D is the set:

E ′(S, D) = {lσ | l /∈ PD ∧ σ ∈ subs(varsL(S), D)

∧ ∀i ∈ [1, m] : D |= aiσ} .
(34)

The satisfied expansion of S with respect to D is the set:

E ′
s(S, D) = {lσ | l ∈ PD ∧ σ ∈ subs(varsL(S), D) ∧D |= lσ

∧ ∀i ∈ [1, m] : D |= aiσ} .
(35)

Definition 5.12 The simple expansion of a constraint literal C = L ≤
{S1, . . . , Sn} ≤ U with respect to a data model D is defined as follows:

E ′(C, D) = L′ ≤ E ′(S1, D) ∪ · · · ∪ E ′(Sn, D) ≤ U (36)

where
L′ = L− |E ′

s(S1, D) ∪ · · · ∪ E ′
s(Sn, D)| . (37)

Definition 5.13 The simple expansion of a simple rule r = 1 ≤ {h : >} ←
C1, . . . , Cn with respect to a data model D is:

E ′(r, D) = h← E ′(C1, D), . . . , E ′(Cn, D) .

Example 5.6 Let C = 3 ≤ {ρX.〈a(X) : d(X)〉, ρY.〈not b(Y) : d(Y)〉} be
a constraint literal where d/1, b/1 ∈ PD and a/1 /∈ PD. Suppose further
that D is defined so that the extension of d/1 is {1, 2} and the extension of
b/1 is {1}. Let S1 = ρX.〈a(X) : d(X)〉 and S2 = ρY.〈not b(Y) : d(Y)〉.
Then,

E ′(S1, D) = {a(1), a(2)}
E ′

s(S1, D) = ∅
E ′(S2, D) = ∅
E ′

s(S2, D) = {not b(2)} .

Thus, the expansion of C is:

E ′(C, D) = 2 ≤ {a(1), a(2)} .

Definition 5.14 Let r = C0 ← C1, . . . , Cn be a simple rule and D a data
model. Then, its Herbrand instantiation is the set:

HI′(r, D) = {E ′(r′, D) | r′ ∈ inst(r, D)} . (38)

Let P be a set of simple rules. Then:

HI′(P, D) =
⋃
r∈P

HI′(r, D) .

36 5 OMEGA-RESTRICTED PROGRAMS

We start the construction of the full data model from an arbitrary data
model D and augment it by extensions of domain predicates.

Definition 5.15 Let D = 〈U, 〈PD,F〉, I〉 be a data model and M be a set of
ground atoms. Then D augmented by M (denoted D]M) is the data model
D′ = 〈U, 〈P ′D,F〉, I ′〉 where

P ′D = PD ∪ {p | p is a predicate occurring in M}

and for all p ∈ P ′D:

I ′(p) =

{
I(p) ∪ {〈I(t1), . . . , I(tn)〉 | p(t1, . . . , tn) ∈M}, if p ∈ PD

{〈I(t1), . . . , I(tn)〉 | p(t1, . . . , tn) ∈M}, if p /∈ PD .

Let M1, . . ., Mn be sets of ground atoms. Then,

D] {Mi}ni=0 = D]M1] · · ·]Mn

Definition 5.16 Let P be a cardinality constraint program, S be its strict ω-
stratification, and D be a data model. Then, MS

0 = cl(HI′(P S
0 , D)), DS

0 =
D]M0, and for each i ∈ N we define recursively:

1. MS
i+1 = cl(HI′(P S

i+1, D
S
i))

2. DS
i+1 = DS

i]MS
i+1

The data model of P is the set DS
P = D] {Mi}∞i=0.

Note that by Proposition 5.1 only a finite number of strata are not empty,
so in practice we can compute DS

P in a finite number of steps.

Proposition 5.3 Let P be a cardinality constraint program and S1 and S2

be two different strict ω-stratifications such that P is ω-restricted under both.
Then, DS1

P = DS2
P .

Proof. Suppose that DS1
P 6= DS2

P . Then, there is a ground atom a on which
DS1

P and DS2
P disagree and which has the lowest ranking in both S1 and S2,

This means that if min{S1(pred(a)),S2(pred(a))} = k, then DS1
k−1 = DS2

k−1.
Let S denote the stratification for which DS

k |= a and S denote the one with
DS

k 6|= a. If there are more than one such atom, then let a be the one with
the shortest derivation where the length of a derivation is defined to be the
number of times the T operator has to applied before we know that a is in
the minimal model of HI′(P S

k , DS
k−1).

Now, there exists a rule a ← body in the instantiation of P S
k such that

every constraint literal in body is of the form:

L ≤ {l1, . . . , ln}

and at least L of the basic literals li are either satisfied in DS
k−1 or have shorter

derivations in HI′(P S
k , DS

k−1) than a. In particular, if li is negative, then it
has to belong to a lower stratum than a.

5 OMEGA-RESTRICTED PROGRAMS 37

The same rule occurs also in the instantiation of P S
k′ (where S(pred(a)) =

k′ < ω) but DS
k′ 6|= body. Thus, body contains some ground literal li such

that DS
P |= li but DS

P 6|= li. However, this contradicts our assumptions since li
is either on a lower stratum than a or it has a shorter derivation than a. Thus,
DS1

P = DS2
P . �

Because of the above proposition, we can simply leave the stratification
out of the definition of P S

i and DS
P and simply write Pi and DP .

Now we are ready to define stable models of ω-restricted programs.

Definition 5.17 Let P be an ω-restricted program and D a data model.
Then, M is a stable model of P if and only if M is a stable model of 〈Pω, DP 〉.

Proposition 5.4 For each i ∈ N, Mi is the unique stable model of 〈Pi, D]
{Mi}i−1

j=0〉.

Proof. All rules on stratum 0 are ground facts of the form a←. Thus, cl(P0) is
trivially the unique stable model of 〈P0, D〉. Suppose that there exists k ∈ N
such that claim holds for all i ≤ k. Now, consider stratum k+1. Either Pk+1

is empty and ∅ is the unique stable model of 〈Pk+1, D] {Mj}k−1
j=0〉; or Pk+1

consists of monotonic simple rules and cl(HI′(Pk+1, D] {Mj}k−1
j=0)) is the

unique stable model. �
We can now see the motivation behind the definition of D−(P) in (28).

There we added a negative dependency between a main literal l and its con-
ditions ai in a set literal. In practice, this forces l to be on a strictly higher
stratum than any of ai, so the full extensions of ai are known before the set
literal is expanded.

Predicates that occur in heads of non-simple rules depend negatively on
themselves because intuitively a rule of the form: {a} ← introduces a choice
where we can make a either true or false, so its extension is not fixed and
we cannot use it as a domain predicate. However, there are also some non-
simple rules, for example, 2 ≤ {a, b} ≤ 2←, that would behave in a similar
fashion than simple rules. Since it is not trivial to identify these rules in every
situation and they can be rewritten as a set of simple rules, we chose to allow
only simple rules for domain predicates.

In the Herbrand instantiation there may be many rules that do not affect
the computation of stable models since their bodies are necessarily false. In
particular, if a ground rule r has a domain atom a in its body where DP 6|= a,
it may never justify any atom in a stable model. We define that a rule is
relevant if all domain literals in it are satisfied.

Definition 5.18 Let R be a set of ω-restricted rules and D be a data model.
Then, relevant instantiation HIr(R,D) is the set:

HIr(R,D) = {E(r, D) | r ∈ inst(R,D) and D |= Ci for all positive
domain literals Ci in the body of r} .

(39)

Similarily, we use HI′r(P, D) to denote the analogous relevant instantiation
of simple rules.

When we compare this definition to the Definition 4.10, we see that
HIr(P, D) ⊆ HI(P, D).

38 5 OMEGA-RESTRICTED PROGRAMS

Theorem 5.2 Let P be an ω-restricted program and D a data model. Then,
HI(Pω, DP) and HIr(Pω, DP) have the same stable models.

Proof. To make the proof more legible, we use the shorthand notations PG =
HI(Pω, DP) and Pr = HIr(Pω, DP).

Let M be a stable model of PG. As Pr ⊆ PG, we see that M is a model
of Pr. Suppose that M is not stable with respect to Pr. Then there exists an
atom a ∈M such that a /∈ cl(PM

r) but a ∈ cl(PM
G). As a ∈ cl(PM

G), there is
a rule r = a ← body ∈ PM

G such that M |= body. The rule r is a reduct of
a rule r′ = h ← body′ where M |= body′. However, since M is a model of
Pr, this implies that r′ /∈ Pr. Since by definition PG \ Pr contains only rules
with unsatisfiable bodies, we have M 6|= body′, a contradiction. Thus, M is a
stable model of HIr(Pω, DP).

Next, let M be a stable model of Pr. As PG \ Pr contains only rules with
unsatisfiable bodies, M is a model of PG. Moreover, it is stable since no rule
in (PG \ Pr)

M can contribute any new atoms to cl(PM
G). �

5 OMEGA-RESTRICTED PROGRAMS 39

6 GENERALIZING CARDINALITY CONSTRAINTS

Thus far, we have examined the case where the bounds for constraint literals
are integers and the satisfaction criterion is the sum of satisfied basic literals
inside the constraints. However, we can also consider some other ways to
define the satisfaction relation. We do this by defining general valuation
functions that check whether a set of literals is satisfied. This approach was
originally inspired by set constraint programs of Marek and Remmel [42].

6.1 Cardinality Constraints

A cardinality constraint consists of a set of literal sets and two integral bounds.
The two bounds can be seen as attributes that are associated with the literal
sets. We now generalize the notation by allowing a constraint literal to have
a number of attributes.

Definition 6.1 A constraint literal signature C is a set of pairs 〈t, n〉 where t
is a type identifier and n ∈ N the arity.

Each constraint literal C that occurs in a program belongs to one of the
types defined in the signature C and has n terms associated with it.

Definition 6.2 A constraint literal is a triple C = 〈t, S, A〉 where

• t is a type identifier;

• S = 〈S1, . . . , Sm〉 is a sequence of literal sets; and

• A = 〈t1, . . . tn〉 a sequence of terms.

A constraint literal belongs to the signature C if there exists a pair 〈t, n〉 ∈ C.

Here we define S as a sequence instead of a set since we might want to
add attributes directly to the literal sets so we need a way that attributes are
correctly associated. However, we will continue using the set notation in
cases where the order is not significant.

Example 6.1 The cardinality constraints have the signature 〈card, 2〉 and an
individual cardinality constraint L ≤ {a(X) : b(X)} ≤ U is then expressed
as 〈card, {a(X) : b(X)}, 〈L, U〉〉

For most of the time we will consider only ground programs in this section.
In particular this means that all literal sets that we use will be of the form
l : > where l is a ground basic literal and that we can treat all functions as
constants. We use the notation Lits(P , C) to denote the set of all constraint
literals that can be constructed using the predicate signatureP and constraint
literal signature C, and Rules(P , C) to denote all possible ground rules. A
formula is either a basic literal, a constraint literal, or a rule. The set of all
formulas that occur in a program P is denoted by F(P) and the set of all
atoms occurring in it by At(P).

40 6 GENERALIZING CARDINALITY CONSTRAINTS

6.2 Interpretations, Valuators, and Models

An interpretation is a function that assigns a truth value from a finite set T
for each atom in At(P). For most of the time we will use the set TB = {T, F}
containing the classical truth values true and false, but in Section 6.8 we add
a third value: undefined U . For each set of truth values we also associate a
partial order ≤ such that the partially ordered set (poset) 〈T ,≤〉 is a lattice.

Definition 6.3 A poset 〈S,≤;∨,∧〉 is a lattice if for all elements x, y ∈ S
the following two conditions hold:

1. there exists a unique least upper bound z = (x ∨ y) ∈ S such that for
all z′: x ≤ z′ ∧ y ≤ z′ implies that z ≤ z′; and

2. there exists a unique greatest lower bound z = (x ∧ y) ∈ S such that
for all z′: z′ ≤ x ∧ z′ ≤ y implies that z′ ≤ z.

A lattice is complete if for all subsets S ′ ⊆ S, the elements
∨

S ′ and
∧

S ′

exist.

Since 〈T ,≤〉 is finite, there exist a unique minimum (denoted also by ⊥)
and a maximum (denoted >) truth value [14]. If x ≤ y and x 6= y, we write
x < y.

Example 6.2 For the boolean truth values TB = {F, T} we have F < T .

Definition 6.4 Given a ground program P and a set of truth values T , an
interpretation I is a function:

I : At(P)→ T (40)

that assigns a truth value I(A) for each atom A ∈ At(P). The set of all
interpretations of P using truth values T is denoted by I(P, T).

We will use the symbol⊥ to also denote the interpretation that assigns the
minimum truth value ⊥ for all atoms when there is no risk of confusion.

A valuation extends an interpretation to cover all formulas of F(P). As
the way how we create a valuation depends on the exact semantics used, we
define the concept of a valuator function. A valuator is a function that takes
as its argument a formula and an interpretation and returns the valuation of
the formula.

Definition 6.5 Given a ground program P and a set T of truth values, a
valuator v is a function:

v : F(P)× I(P, T)→ T (41)

that associates a truth value v(f, I) for a formula f under an interpretation I
such that v(A, I) = I(A) for all A ∈ At(P).

6 GENERALIZING CARDINALITY CONSTRAINTS 41

Example 6.3 A valuator vC for standard expanded cardinality constraint lit-
erals C = 〈card, {l1, . . . , ln}, 〈L, U〉〉 can be defined as follows:

vC(C, I) =

{
T, if L ≤ |{li | 1 ≤ i ≤ n ∧ I(li) = T}| ≤ U

F, otherwise .

We also need the valuator to assign a truth value to each rule r = C0 ←
C1, . . . , Cn. This can be done as follows:

vC(r, I) =

{
T, if vC(C0, I) = T or vC(Ci, I) = F for some i ∈ [1, n]

F, otherwise .

When we defined the stable model semantics in Definition 4.16 we had
two conditions that a candidate model had to fulfill: each rule of the program
had to be satisfied and the deductive closure of the reduct had to be the same
as the model candidate. The rule satisfaction condition is simple in all two-
valued logics as the rule is either true or false. However, when there are more
truth values it is no longer clear what a satisfied rule is. Because of this we
also have to define a two-valued version of a valuator that tells what truth
values are acceptable for rules. For example, when we define the partial
stable models in Section 6.8, a rule may be either true or undefined in a
partial model, but it may not be false.

Definition 6.6 Let P be a ground program, and v be a valuator. Then a
v-satisfier sv is a function:

sv : F(P)× I(P, T)→ TB . (42)

We use the notation I |=v f to denote the case where sv(f, I) = T . An
interpretation I is a v-model of P if for all rules r ∈ P , I |=v r. The set of all
v-models of P is denoted by Av(P).

We can say that a satisfier defines a semantics. That is, given a program
P , a satisfier sv assigns a set of models {M |M |=v P} to the program.

6.3 Imposing an Order over Models

When we have an ordered set of truth values 〈T ,≤〉, we can extend the order
to cover the set I(P, T) for a given program P so that I1 ≤ I2 if all atoms
have at least as high truth value in I2 as in I1. The reason why we want to
impose an ordering over the set of interpretations is that it gives us a way to
define the minimality of a model when there are more than two truth values
involved.

Definition 6.7 Let P be a ground program, and 〈T ,≤〉 an ordered set of
truth values. Then, the order 〈I(P, T),≤〉 is defined as follows:

I1 ≤ I2 ⇐⇒ ∀A ∈ At(P) : I1(A) ≤ I2(A) . (43)

If I1 ≤ I2 and I1 6= I2, then we write I1 < I2.

42 6 GENERALIZING CARDINALITY CONSTRAINTS

Here we immediately note that 〈I(P, T),≤〉 is a poset since the relation≤
is reflexive, transitive, and antisymmetric. Reflexivity and transitivity are triv-
ial, and we see the antisymmetry by noting that the relation 〈T ,≤〉 is anti-
symmetric.

Definition 6.8 Given a ground program P , a valuator v, and an ordered set
of truth values 〈T ,≤〉 then a v-model M of P is minimal if there does not
exist a model M ′ ∈ Av(P) such that M ′ < M .

The second concept encountered in the definition of the stable semantics
is the justification property: each atom true in a model should have some
reason be in there; if we cannot show that an atom A has to be true in a
model, then it should be false. When we take this intuition and extend it
to cover the case where there are possibly more than two truth values, it
translates into finding models that are minimal in the sense of Definition 6.8.

On page 6 of Section 2 we defined the TP operator that operates over sets
of atoms and whose fixpoint corresponds to the minimal model of a set of
monotonic Horn rules. On page 22 we then saw a similar operator for Horn
constraint rules. Now, we generalize the notion and say that a class of rules
has the Horn property if a set P of such rules always has a unique minimal
model and the model can be found as the least fixed point of an operator ΦP .

When we are seeking for a suitable fixpoint operator we are assisted by the
fact that we can construct a complete lattice out of the order 〈I(P, T),≤〉
by giving suitable definitions for the binary join (x ∨ y) and meet (x ∧ y)
operators. By the well-known Knaster-Tarski fixpoint theorem, each order-
preserving operator on a complete lattice has a least fixed point6 so when
given such an operator we only have to prove that the fixpoint corresponds to
the minimal model.

Definition 6.9 Let I1, I2 ∈ I(P, T). Then, the operators ∨ and ∧ are de-
fined as follows:

I1 ∨ I2 = {(A, t) | A ∈ At(P) and t = max(I1(A), I2(A))}
I1 ∧ I2 = {(A, t) | A ∈ At(P) and t = min(I1(A), I2(A))} .

(44)

Example 6.4 In case of classical truth values TB where an interpretation I
can be identified with the set of atoms M = {a | I(a) = T} that it makes
true, the operations I1 ∨ I2 and I1 ∧ I2 can be identified with the union
M1 ∪M2 and the intersection M1 ∩M2.

Proposition 6.1 Let P be a ground program, and 〈T ,≤〉 be a lattice of truth
values. Then, the structure 〈I(P, T),≤;∨,∧〉 is a complete lattice.

Proof. In case of 〈I(P, T),≤;∨,∧〉 we see that both I1 ∨ I2 and I1 ∧ I2

assign a truth value for each atom in At(P) and thus they are interpretations
in I(P, T), so 〈I(P, T)〉 is a lattice.

Next, given a set of interpretations S ⊆ I(P, T), we define two interpre-
tations, Imin and Imax as follows:

∀a ∈ At(P) : Imin(a) = min{I(a) | I ∈ S} ∪ {⊥}
∀a ∈ At(P) : Imax(a) = max{I(a) | I ∈ S} ∪ {>} .

We see that Imin =
∧

S and Imax =
∨

S, so the lattice is complete. �

6See, for example, discussion in Chapter 7 in [14].

6 GENERALIZING CARDINALITY CONSTRAINTS 43

Definition 6.10 Let P be a ground program and v a valuator. Then, an
operator ΦP : I(P, T)→ I(P, T) is order-preserving if and only if:

∀I1, I2 ∈ I(P, T) : I1 ≤ I2 ⇒ ΦP (I1) ≤ ΦP (I2) . (45)

Definition 6.11 Given a valuator v, a class of ground rules H ⊆ Rules(P , C)
has the Horn property under v if and only if the following two conditions
hold:

1. P has a unique minimal v-model for each set of rules P ⊆ H ; and

2. there exists an order-preserving operator Φ such that for all sets P ⊆ H ,
the least fixed point of ΦP equals to the minimal v-model of P .

The minimal model of a set P ⊆ H is denoted by clv(P).

6.4 Stable Models

We define the stable model semantics for general constraint literal programs
via the notion of a reducer. A reducer is a function that creates a Gelfond-
Lifschitz-style reduct out of a Rules(P , C) program with respect to a given
interpretation. The rules that belong to the reduct should have the Horn
property as defined in the last section so that we can compute their minimal
model using an order-preserving operator. If this minimal model agrees with
the given interpretation and it satisfies all rules of the original program, then
it is stable. For the rest of this section, we use the notation RulesH(P , C) to
denote the class of rules that can belong to the reduct.

Definition 6.12 Given a ground program P , an ordered set of truth values
T , and a signature 〈P , C〉, a constraint reducer c is a function:

c : Lits(P , C)× I(P, T)→ 2Lits(P,C) (46)

that associates a set of constraint literals c(C, I) with each pair 〈C, I〉 where C
is a constraint literal and I is an interpretation.

A reducer r is a function

r : Rules(P , C)× I(P, T)→ 2RulesH(P,C) (47)

that associates a set of rules r(r, I) for each pair 〈r, I〉 where r is a rule and I
is an interpretation.

Example 6.5 Given an extended cardinality constraint

C = 〈card, {a1, . . . , an, not b1, . . . , not bm}, 〈L, U〉〉

and a set of basic literals M , we can define the reducer c for it as:

c(C, M) = {〈card, {a1, . . . , an}, 〈L− |{bi | bi /∈M |,∞〉〉} . (48)

This definition corresponds to the one given in Definition 4.14. Similarly,
we can construct the reducer r for a rule r = C0 ← C1, . . . , Cn as:

r(r, M) = {p← c(C1, M), . . . , c(Cn, M) | p ∈ C0 ∩M

∧M |=vC
C1, . . . , Cn}

(49)

where vC is defined as in Example 6.3.

44 6 GENERALIZING CARDINALITY CONSTRAINTS

After a reducer has been defined, we can generalize the concept of stable
models for instantiated constraint programs.

Definition 6.13 Given an ordered set of truth values T , a valuator v, a satis-
fier sv, a reducer r, and a ground program P , an interpretation I ∈ I(P, T)
is a v, r-stable model if and only if:

1. ∀r ∈ P : I |=v r; and

2. clv(
⋃

r∈P r(r, I)) = I .

In the rest of this section we show how we can use valuators and reducers
to extend the language of cardinality constraint programs.

6.5 Variables in Cardinality Constraint Bounds

We can start extending the cardinality constraints by allowing the use of vari-
ables and interpreted functions that evaluate to numbers in the rule bounds.
Thus, now we allow upper and lower bounds of the form f(X, Y) as long as it
evaluates to an integer that can then be used as a cardinality bound. We will
also take the approach that if either of the bounds does not evaluate to a valid
integer, the cardinality constraint is not satisfied. In a practical programming
system we would generate an error when this happens.

Definition 6.14 Let C = 〈card, {S1, . . . , Sn}, 〈L, U〉〉 be a cardinality con-
straint where L and U are (possibly non-ground) terms, σ be a total substi-
tution, D a data model, and M a set of ground atoms. Then, the valuator
vC′(C, M, D, σ) is defined as follows:

vC′(C, M, D, σ) =


T, if Lσ, Uσ ∈ N and

Lσ ≤ |{l | l ∈ E(C, D) ∧M |= l}| ≤ Uσ

F, otherwise
(50)

where the expansion E(C, D) =
⋃n

i=1 E(Si).

The constraint reducer may be defined otherwise as the one presented
in (48), but it evaluates the lower bound L before performing the subtraction.
As we always end up with normal expanded cardinality constraint literals, we
do not have to define a new reducer or inference operator T .

Example 6.6 Suppose that we have a program that plans routes for pipelines.
One of the constraints of such a program would be that the route should not
be too long. This constraint could be implemented as:

←M + 1 ≤ {used-pipe-segment(P) : segment(P)}, max-length(M)

If we want to make some further deductions on the number of used pipe
segments, we can count their number by using the rule:

num-used(N)← N ≤ {used-pipe-segment(P) : segment(P)} ≤ N, d(N)

where d(i) is defined to be true for 0 ≤ i ≤ n when n is the number of facts
segment(p) that are true.

6 GENERALIZING CARDINALITY CONSTRAINTS 45

6.6 Weight Constraint Literals

Another straightforward way to extend cardinality constraints is to allow the
literals to have an integral weight. Satisfaction is then defined in terms of
the weights of the satisfied basic literals. A weight constraint W is of the
form [65]:

L ≤ [S1 = w1, . . . , Sn = wn] ≤ U (51)

where wi are positive integral weights. In the notation of Definition 6.2 we
would express (51) as:

W = 〈weight, 〈S1, . . . , Sn〉, 〈L, U,w1, . . . , wn〉〉

The idea is now that the sum of weights of satisfied basic literals in the
expansions of Si has to be between L and U for the weight constraint to be
satisfied. Each basic literal in the expansion of Si gets wi as its weight. We
can define a valuator vW for an expanded weight constraint W = L ≤ [a1 =
wa1 , . . . , an = wan , not b1 = wb1 , . . . , not bm = wbm] ≤ U as follows:

vW (W, M) =

{
T, if L ≤

∑
ai∈M wai

+
∑

bi /∈M wbi
≤ U

F, otherwise
(52)

The notion of a reduct for a weight constraint literal is defined analogously
to cardinality constraint literals.

cW (W, M) = L′ ≤ [a1 = wa1 , . . . , an = wan] (53)

where the lower bound

L′ = L−
∑
bi /∈M

wbi
.

The resulting rules are essentially identical with Horn constraint rules, so
we can again use the same inference operator TP .

Example 6.7 Consider the weight constraint literal W = 2 ≤ [a = 1, b =
2, not c = 3] ≤ 3. Then, its reduct with respect to M1 = {b, c} is:

2 ≤ [a = 1, b = 2]

and the reduct with respect to M2 = {a} is:

0 ≤ [a = 1, b = 2]

since wc = 2 and c /∈M2.

The weight constraint literals may be further extended by allowing the use
of negative weights. Suppose that there is a literal a = −w ∈ W . Now, since
having a true reduces the sum of the satisfied weights by w, we get the same
result if we had not a = w ∈ W and the bounds were L + w and U +
w. Thus, we can interpret negative weights as shortcuts for complementary
literals and we do not have to worry about them. Note that this is only one of

46 6 GENERALIZING CARDINALITY CONSTRAINTS

the many possible semantics for negative weights. However, a discussion on
the different possibilities is out of the scope of this work.

In case of non-ground programs it is very useful to allow variables in weight
constraints. They may be defined using a similar mechanism that was used
in the previous section to add variables to cardinality constraint bounds. In
this case we also have to evaluate the weights during instantiation.

Example 6.8 Consider the problem of programming a robot to do grocery
shopping. Then, the following rule would state that the sum of the costs of
purchased items should not exceed the money reserve:

← R + 1 [buy(What, Cost) : item(What, Cost) = Cost], reserve(R)

As long as the second argument of item/2 is always a number, the atom
weights are well-defined.

6.7 Classical Negation

When stable models are defined in the usual way, the negations are inter-
preted as negation-as-failure. That is, not(A) is true if we cannot prove that
A is true. However, in some cases it is desirable to have a stronger notion
of negation. Thus, we now extend our language to allow the use of classical
negation ¬A in literals.

The literal ¬A differs from not(A) in that ¬A is true only if we can prove
that A is false. As a practical case where the difference matters, consider the
case where we want to cross a road. We want to be certain that a car is not
coming so we want to prove ¬car before crossing. Here having not(car) is
not enough since there may be many reasons why car would not be true even
if a car was coming. For example, we might decide to close our eyes so that
we cannot see the approaching car and get not(car) true that way.

In [25] Gelfond and Lifschitz presented a way to add classical negation
for logic programs under the stable model semantics. Our definition is based
on this approach but there is a small difference: we do not allow inconsistent
stable models as they are difficult to implement properly and they do not cor-
respond to valid solutions of problems. A set of basic literals M is inconsistent
if for some atom A, both A ∈M and ¬A ∈M .

We now extend our definitions of basic literals by stating that if A is an
atom, then A, ¬A, not A, and not ¬A are basic literals. Of these, we say that
A and ¬A are positivistic since they do not contain default negation. With
this definition we can define the valuator and the reducer for constraint liter-
als exactly as in the case of normal cardinality constraint programs. However,
we have to alter the definition of the rule reducer slightly as we want to forbid
inconsistent stable models.

Definition 6.15 Let M be a set of positicistic basic literals and r = C0 ←
C1, . . . , Cn a ground cardinality constraint rule. Then the reducer r¬(r, M)
is defined as follows:

r¬(r, M) =

{
r(r, M), if M is consistent,
∅, if M is inconsistent .

(54)

6 GENERALIZING CARDINALITY CONSTRAINTS 47

Example 6.9 Let P be the program:

1 ≤ {¬a} ← 1 ≤ {not b}
1 ≤ {a} ← 1 ≤ {not b}
1 ≤ {b} ← 1 ≤ {not ¬a}

Then the unique stable model is M1 = {b}. The other candidate M2 =
{a,¬a} is not consistent, so r(P, M2) = ∅ whose minimal model is empty, so
M2 is not stable.

6.8 Partial Models

In this section we consider how a more complicated semantics, namely the
three-valued partial stable model semantics [53, 54], can be constructed for
cardinality constraint programs using valuators and reducers. Earlier an atom
had to be either true or false in a model, but now we allow that it may have
an undefined value.

We start by defining our set of truth values. We will use the set

Tp = {F, U, T}

where U represents the undefined truth value. The truth values are ordered
so that

F < U < T .

A partial interpretation assigns one of the three truth values for each atom.
A partial interpretation I divides a set of basic literals S into three subsets:

I+(S) = {l ∈ S | I(l) = T}
I−(S) = {l ∈ S | I(l) = F}
Iu(S) = {l ∈ S | I(l) = U}

We represent a partial interpretation I of P as the set {a | a ∈ I+(At(P))} ∪
{not a |∈ I−(At(P))}.

In [54] the reduct is defined with the help of a special atom u whose truth
value is undefined in all interpretations. The atom u is used in reducts to
signify negative literals not(A) whose truth values are undefined. Here we
follow this example but the set nature of cardinality constraints demands that
we actually use a countably infinite set {ui | i ∈ N} of undefined atoms.

Next, we define the valuator for cardinality constraints and rules. A car-
dinality constraint is true if the number of true literals in it meets the lower
bound and the total number of true and undefined literals does not exceed
the upper bound. It is false if the number of true and undefined literals is
less than the lower bound or the number of true literals is greater than the
upper bound. If neither of these conditions hold, then it is undefined. A rule
is true if the truth value of its head is greater or equal than the truth value of
its body, and false otherwise. So, a rule may not have undefined value.

Definition 6.16 Let C = L ≤ {a1, . . . , an, not b1, . . . , not bm} ≤ U be a
ground cardinality constraint, I be a partial interpretation. Then, the valua-

48 6 GENERALIZING CARDINALITY CONSTRAINTS

tor vp(C, I) is defined as follows:

vp(C, I) =


T, if L ≤ |I+(C)| and |I+(C)|+ |Iu(C)| ≤ U

F, if |I+(C)|+ |Iu(C)| < L or |I+(C)| > U

U, otherwise
(55)

Let r = C0 ← C1, . . . , Cn be a rule, then vp(r, I) is defined as follows:

vp(r, I) =

{
T, if vp(C0, I) ≥ vp(Ci, I) for all 1 ≤ i ≤ n

F, otherwise .
(56)

If vp(r, M) = T for all r ∈ P , then M |=p P .

Example 6.10 Consider the ground rule r1:

r1 = 1 ≤ {a, b} ← 1 ≤ {c, not d, e} ≤ 2

where C0 = 1 ≤ {a, b} and C1 = 1 ≤ {c, not d, e} ≤ 2. Let us define a
partial interpretation I = {a, c, not d}. Now,

|I+(C0)| = |{a}| = 1 |I+(C1)| = |{not d, c}| = 2
|I−(C0)| = |∅| = 0 |I−(C1)| = |∅| = 0
|Iu(C0)| = |{b}| = 1 |Iu(C1)| = |{e}| = 1

As |I+(C0)| > 1 and |I+(C0)| + |Iu(C0)| < ∞, vp(C0, I) = T . On the
other hand, |I+(C1)| + |Iu(C1)| = 3 > 2, so vp(C1, I) is not true. Since
|I+(C1)| < 2, it is not false either, so vp(C1, I) = U . Now the rule r1 is
satisfied by I (I |=p r1) since vp(C0, I) ≥ vp(C1, I).

Consider further the rule r2:

r2 = 1 ≤ {c, a, d} ≤ 1← {b, d} ≤ 1

Now vp(C0, I) = F and v(C1, I) = U . Thus, r2 is not satisfied (I 6|=p r2).

A partial interpretation M is a partial model of a program P if M satisfies
all rules in it. Furthermore, M is a minimal partial model if it holds that
there does not exist a partial model M ′ such that M ′ < M .

Next we want to define the reducers for constraint literals and rules. Intu-
itively, a constraint reducer works in two phases for C = L ≤ {l1, . . . , ln} ≤
U :

1. The upper bound is removed by replacing C by two constraint literals:

C ′ = L ≤ {l1, . . . , ln}
C ′′ = n− U ≤ {l1, . . . , ln} .

The lower bound of C ′′ is true exactly when the upper bound of C is
true.

2. Each negative literal is removed from both C ′ and C ′′ as usual. How-
ever, each negative literal not bi whose truth value is undefined is re-
placed by the atom ui.

6 GENERALIZING CARDINALITY CONSTRAINTS 49

Definition 6.17 Let S = {a1, . . . , an, not b1, . . . , not bm} be a set of liter-
als and I a partial interpretation. Then, the functions lower and upper are
defined as follows:

lower(S, I) = {a1, . . . , an} ∪ {ui | bi ∈ Iu(S)}
upper(S, I) = {b1, . . . , bm} ∪ {ui | ai ∈ Iu(S)}

(57)

Definition 6.18 Given a constraint literal C = L ≤ {a1, . . ., an, not b1, . . .,
not bm} ≤ U , and a partial interpretation I , reduct cp(C, M) is defined as
follows:

cp(C, I) = {L′ ≤ lower(C, I), U ′ ≤ upper(C, I)} (58)

where

L′ = L− |{not b1, . . . , not bm} ∩ I−(C)|
U ′ = m + n− U − |{a1, . . . , an} ∩ I−(C)| .

(59)

Example 6.11 Let C = 1 ≤ {a, b, not f, not d} ≤ 2 and I = {a, not d}.
Then,

lower(C, I) = {a, b, uf}
upper(C, I) = {f, d, ub}

and

L′ = 1− |{not d}| = 0

U ′ = 2 + 2− 2− |{a}| = 1

so
cp(C, I) = {0 ≤ {a, b, uf}, 1 ≤ {f, d, ub}} .

Definition 6.19 Given a rule C0 ← C1, . . . , Cn and a partial interpretation
I , the reduct rp(r, I) is defined as follows:

rp(r, I) = {a← cp(C1, I), . . . , cp(Cn, I) | a ∈ C0 ∧ I(a) ≥ U} . (60)

The reduct rp(P, I) of a program P is the set {rp(r, I) | r ∈ P}.

Example 6.12 Let I = {a, not b}. Consider the rule r:

1 ≤ {a, e} ≤ 2← 2 ≤ {not b, c, not d} ≤ 3 .

Now, rp(r, I) contains the following two rules:

a← 1 ≤ {c, ud}, 1 ≤ {b, uc, d}
e← 1 ≤ {c, ud}, 1 ≤ {b, uc, d}

The rules of a reduct are Horn constraint rules, and each set of such rules
has a unique minimal partial model.

Theorem 6.1 Let P be a set of Horn constraint rules. Then, P has a unique
minimal model.

50 6 GENERALIZING CARDINALITY CONSTRAINTS

Proof. This proof is analogous to one presented in [54]. We denote by Ppos

the program that is obtained by replacing all undefined atoms ui by the truth
value T and by Pneg the one obtained by replacing them by the truth value
F .

Let Mpos be a minimal total model of Ppos. We see that Mpos is also a
model of Pneg since the rules of Pneg that have satisfiable bodies all belong to
Ppos. Let Mneg be any minimal total model of Pneg such that Mneg ≤ Mpos.
Now, the interpretation:

M = M+
neg(At(P)) ∪ {not a | a ∈M−

pos(At(P))}

is a minimal partial model of P . To see that this is the case consider a rule
r. First, suppose that all literals in the body of r are true in M . As Mneg is a
model of Pneg, this implies that r ∈ Pneg and that the head atom of r is also
true in M so r is satisfied. Next, suppose that none of the body literals of r
are false in M . This implies that all its body literals are true in Mpos so its
head is true in Mpos so it is not false in M . Thus, M is a model of P .

Consider a partial model M ′ ≤ M . Then, M ′+(At(P)) ⊆ M+
neg(At(P))

and M−
pos(At(P)) ⊆ M ′−(At(P)). As the only difference between programs

P and P¬ is that all undefined atoms have been removed from constraint
literals, no constraint literal may have a higher truth value in M ′ than in
Mneg. Thus, M+

neg(At(P)) ⊆ M ′+(At(P)). We can do a similar analysis to
compare Mpos to M ′− and see that M ′−(At(P)) ⊆M−

pos(At(P)) so M ′ = M
and the minimal model is unique. �

Theorem 6.2 Let P be a set of Horn constraint rules. Then, the unique
minimal partial model M =

∧
Ap(P).

Proof. First we show that M is a partial model. Suppose that this is not the
case. Then, there exists a rule r : C0 ← C1, . . . , Cn such that M(C0) <
min({M(Ci) | i ∈ [1, n]}). As for all I ∈ Ap, I |=p r, we know that I(C0) ≥
min({I(Ci) | i ∈ [1, n]}). However, as (

∧
Ap(P))(Ci) = min({I(Ci) | I ∈

Ap(P)}), it necessarily holds that M(C0) ≥ min({M(Ci) | i ∈ [1, n]}), a
contradiction so M is a model.

Next, suppose that there exists a model M ′ < M . Then, there exists an
atom a such that M ′(a) < M(a). Now (M ′ ∧M)(a) = M ′(a) < M(a) =∧
Ap(P)(a), another contradiction. �
We now define an order-preserving operator T̂ for the three valued logic.

Definition 6.20 Let P be a set of Horn constraint rules. Then the operator
T̂P : I(P, Tp)→ I(P, Tp) is defined as follows:

T̂P (I) = { a | ∃a← C1, . . . , Cn ∈ P : I(Ci) = T for all i ∈ [1, n]}∪
{ not a |6 ∃a← C1, . . . , Cn ∈ P : I(Ci) ≥ U for all i ∈ [1, n]} .

Theorem 6.3 The operator T̂P is order-preserving.

Proof. Suppose that T̂P is not order-preserving. Then there are two interpre-
tations I1 and I2 such that I1 ≤ I2 and T̂P (I1) > T̂P (I2). This implies that
there exists an atom a such that I1(a) ≤ I2(a) and T̂P (I1)(a) > T̂P (I2)(a).

6 GENERALIZING CARDINALITY CONSTRAINTS 51

However, for all rules a ← C1, . . . , Cn it holds that I2(Ci) ≥ I1(Ci), so also
T̂P (I2)(a) ≥ T̂P (I1)(a) as all rules are Horn constraint rules, which causes a
contradiction. Thus, T̂P is order-preserving. �

Corollary 6.1 The operator T̂P has a least fixed point.

Example 6.13 Let P be the program:

a←
b← 1 ≤ {a, f, e}
f ← 1 ≤ {uf} .

Now,

T̂P (⊥) = {a, not e}
T̂P ({a, not e}) = {a, b, not e}

T̂P ({a, b, not e}) = {a, b, not e}

and a fixpoint is reached.

Proposition 6.2 Let P be a set of Horn constraint rules and I a partial inter-
pretation. Then, T̂P (I)(a) = max({min({I(C1), . . . , I(Cn)} ∪ {T}) | a ←
C1, . . . Cn ∈ P} ∪ {F}).

Proof. Follows directly from Definition 6.20. �

Proposition 6.3 Let P be a set of Horn constraint rules. Then I is a partial
model of P if and only if T̂P (I) ≤ I .

Proof. Suppose that I 6|=p P . Then there exists a rule r = C0 ← C1, . . . , Cn

such that I(C0) < min({I(Ci) | i ∈ [1, n]}). Thus

T̂P (I)(C0) ≥ min({I(Ci) | i ∈ [1, n]}) > I(C0)

and T̂P (I) > I . Similarly, if T̂P (I) > I , then there exists a rule that is not
satisfied in I so I is not a model. �

Theorem 6.4 Given a set of Horn constraint rules P , the least fixed point of
the operator T̂P is the unique minimal partial model M =

∧
Ap(P) of P .

Proof. By Proposition 6.3 M ′ = lfp(T̂P (⊥)) ∈ Ap(P). So, we know that
M ≤ M ′ and we have only to show that M ′ ≤ M . Suppose that this
is not the case, that is, M ′ > M . Then there exists an atom a such that
M ′(a) > M(a) and for all rules a ← C1, . . . , Cn, M ′(a) > min({M(Ci) |
i ∈ [1, n]}). However, this is impossible since by Proposition 6.2 T̂P (I)(a) =
max({min({I(C1), . . . , I(Cn)}∪{T}) | a← C1, . . . Cn ∈ P}∪{F}). Thus,
M ′ ≤M . �

Now we are finally ready to define partial stable models of cardinality
constraint programs.

52 6 GENERALIZING CARDINALITY CONSTRAINTS

Definition 6.21 A partial interpretation M is a partial stable model of a
ground cardinality constraint program P iff

1. M |=p P ; and

2. M is the least fixed point of T̂(rp(P,M)).

Example 6.14 Consider the following ground program P :

a←
b← 1 ≤ {a, not f} ≤ 1

f ← 1 ≤ {not f}

We immediately see that this program has no stable models, since the third
rule causes a contradiction. However, it has a unique partial stable model
M1 = {a}. We notice that it satisfies all rules since it satisfies the head of
the first rule and in the last two rules all constraint literals are undefined. Its
reduct rp(P, M1) is:

a←
b← 1 ≤ {a, uf}, 1 ≤ {uf}
b← 1 ≤ {f}
f ← 1 ≤ {uf}

We see that cl(rp(P, M1)) = {a} = M1.

As the last thing in the section we note that partial models of cardinality
constraint programs are a true generalization of partial models as defined
in [54]. There, the reduct rI of a normal rule r with respect to a partial
interpretation I is obtained by replacing each negative literal not a by the
truth value I(a) where T = F , F = T and U = U .

Theorem 6.5 Let P be a normal logic program. Then, I is a minimal partial
model of P I if and only if it is a minimal partial model of cp(P, I).

Proof. Consider a rule r = h ← a1, . . . , an, not b1, . . . , not bm. When the
negative literals are interpreted as a shortcuts of cardinality constraint literals
1 ≤ {not bi}, we see that their reducts cp(bi, I) are

cp(bi, I) =


1 ≤ {}, I(bi) = T

1 ≤ {ubi
}, I(bi) = U

0 ≤ {}, I(bi) = F

We see that these reducts are equivalent to the reducts in the case of rI , so
the reducts P I and cp(P, I) are equivalent and have the same minimal partial
model. �

6 GENERALIZING CARDINALITY CONSTRAINTS 53

7 TRANSLATIONS FOR SEMANTIC EXTENSIONS

A number of different semantics for logic programs has been proposed during
recent years. The basic aim of these new semantics is to provide a framework
for solving some problem that is difficult to solve using the existing ones.
However, without a working implementation of the semantics it is of little
practical use. Also, it is possible that in some cases the semantics gives unin-
tended results and these cases may be difficult to find without an implemen-
tation. Often the fastest way to construct a prototype implementation for a
semantics is to define a translation from it to some previously implemented
semantics.

Here we will use a notation where C denotes a class of logic programs and
AC(P) denotes the set of all models of a program P ∈ C under the semantics
of C. A translation τ is a function that transforms a logic program P ∈ C into
a program τ(P) ∈ C′ [29]. We are interested in translations that are faithful
in the sense that the models of the translation τ(P) have to correspond to
the models of the original program P and that given a model of τ(P) we can
identify which atoms are true in the corresponding model of P .

Definition 7.1 Translation τ : C → C ′ is faithful if and only if for all pro-
grams P ∈ C:

1. there exists an injective function f : At(P)→ At(τ(P)); and

2. there exists a bijection g : AC(P) → AC′(τ(P)) such that for all mod-
els M ∈ AC(P) and basic literals l,

l ∈M ⇔ f(l) ∈ g(M) .

Even though the faithfulness is the most important property of a transla-
tion [29], there are two other conditions that make translations more usable
in practice:

• Modularity. A translation τ is modular if τ(A∪B) = τ(A)∪ τ(B) for
all logic programs A, B ∈ C.

• Polynomiality. A translation τ is polynomial if it can be computed in a
polynomial time with respect to the length of P .

In this section we examine how we can translate various extensions of the
basic semantics into normal cardinality constraint programs. Namely, we
give translations for the classical negation semantics. In addition we show
how cardinality constraint programs can be used to implement normal logic
programs with ordered disjunction [7, 10] using a two-program translation.
Again, we give the translations only for ground programs.

Even though it would be possible to give a similar translation also for
weight constraint programs we do not give it since it is much more efficient
to alter the stable model computation engine to support weights directly.

54 7 TRANSLATIONS FOR SEMANTIC EXTENSIONS

7.1 Classical Negation

Cardinality constraint programs with classical negation can be implemented
along the lines presented in [25]. For each atom a we add a new predicate
atom a′ to denote the classical negation ¬a. The basic idea then is to keep
the program otherwise as it was but to add a number of rules of the form:

← a, a′

to weed out inconsistent stable models. In practice,

Definition 7.2 Let l be an extended basic literal. Then, the function f¬(l)
is defined as follows:

f¬(l) =


a(t1, . . . , tn), if l = a(t1, . . . , tn)

a′(t1, . . . , tn), if l = ¬a(t1, . . . , tn)

not a(t1, . . . , tn), if l = not a(t1, . . . , tn)

not a′(t1, . . . , tn), if l = not ¬a(t1, . . . , tn)

Let C = L ≤ {l1, . . . , ln} ≤ U be an extended cardinality constraint literal.
Then, the translation f¬(C) is the standard cardinality constraint literal:

f¬(C) = L ≤ {f¬(l1), . . . , f¬(ln)} ≤ U .

Definition 7.3 Let P be a ground cardinality constraint program. Then, the
translation τ¬(P) is the program:

τ(P) = {f¬(C0)← f¬(C1), . . . , f¬(Cn)} | C0 ← C1, . . . , Cn ∈ P}
∪ {← a′, a | a ∈ At(P)}

(61)

Theorem 7.1 The translation τ¬ is faithful, modular and polynomial for all
ground programs.

Proof.

• Faithfulness. First we note that f¬ is an injective function from At(P)
to At(τ(P)) so the first condition is satisfied. Next, suppose that M is
a stable model of P . By Definition 6.15 M has to be consistent since
if it is not, then by definition cl(c¬(P, M)) = ∅ 6= M . Thus, for all
atoms a, either a /∈ M or ¬a /∈ M so every rule ← a′, a is satisfied
in τ(P). As other rules of τ(P) are equivalent to rules in P , the set
{f¬(l) | l ∈ M} is a stable model of τ(P). The same argument works
also in the other direction.

• Modularity. It is easy to see that the translation is modular.

• Polynomial. We can create τ(P) by going through P once changing
all negative literals ¬a to a′ and adding the rules← a, a′ for them. This
takes a linear time.

�

7 TRANSLATIONS FOR SEMANTIC EXTENSIONS 55

7.2 Preferences

In some cases not all stable models are the same. For example, if the stable
models of a program correspond to valid plans on how to travel from a place
A to B, then we might prefer to a fast route to a slower one, or perhaps a
cheap route to an expensive one.

When we formalize such preference information, we get a preference se-
mantics for logic programs. A large body of literature on preferences has
been published during the last decade, with new different semantics being
defined every year.

The great number of different priority semantics makes it difficult to pre-
sent a comprehensive overview on the subject. One such overview appears
in [8] but it does not contain any recent work.

The different preference semantics can be divided into two classes de-
pending on whether the preferences are assigned over the rules [6, 9, 15, 57,
27] or over the atoms [59, 7].

In this section we take one of the many proposed, namely Brewka’s logic
programs with ordered disjunction [7] (denoted LPOD) and show how they
can be implemented using ω-restricted programs. This presentation extends
the one given in [10]. Note that the semantics is presented here in a slightly
different way than in [7] and [10].

An ordered disjunction is a rule of the form:

C1 × · · · × Cn ← A1, . . . , Am, not B1, . . . , not Bk (62)

where the Ci are all atoms and Ai, Bi are all atoms. The intuition here is that
if the body is true, then at least one of the atoms Ci has to be true. The atoms
Ci are listed in the order of preference, so if it is possible to have C1 true, it
should be chosen. If not, then C2 and so on until if all other choices are not
possible, then at least Cn has to be true.

Given a set P of ground rules of the form (62) and a set of ground atoms
M , then the reduct PM is the set:

PM = { Ci ← Ai, . . . , Am |
C1 × · · · × Cn ← A1, . . . , Am, not B1, . . . , Bk ∈ P,

Ci ∈M ∧M ∩ {C1, . . . , Ci−1, Bi, . . . , Bk} = ∅}
(63)

A set M of atoms is a stable model of P if M satisfies all rules of the
program and it is the least model of PM .

Example 7.1 Let P be the LPOD :

r1 : a× b← not c

r2 : b× c← not d

Then, P has three stable models: M1 = {a, b}, M2 = {c}, M3 = {b}. Their
reducts are as follows:

PM1 = {a←; b←}
PM2 = {c←; }
PM3 = {b←}

56 7 TRANSLATIONS FOR SEMANTIC EXTENSIONS

On the other hand, M4 = {b, c} is not a stable model since its reduct is:

PM4 = {b←} .

Next, we define a preference relation over the setA(P) of all models of P .
Three different preference criteria are defined in [10] and here we consider
only the simplest one, Pareto-optimality. The intuition is that we prefer a
stable model M1 of P over M2 if M1 satisfies at least one rule of P better
than M2 and it satisfies all the rest rules of P at least as well as M2.

We start formalizing this criterion by defining how well a model M satis-
fies a rule r.

Definition 7.4 Let M be a stable model of an LPOD P . Then M satisfies
the rule

C1 × · · · × Cn ← A1, . . . , Am, not B1, . . . , not Bk

• to degree 1 if Aj 6∈M , for some j, or Bi ∈M , for some i; or

• to degree j (1 ≤ j ≤ n) if all Aj ∈ M , no Bi ∈ M , and j = min{r |
Cr ∈M}.

The degrees can be seen as penalties: the lower the degree, the better satisfied
we are. If the body of a rule is not satisfied, then the choice does not come
into play and we can assign the best degree 1 to it. We denote the degree of
r in M by degM(r).

Example 7.2 Let r1 be the rule

r1 : a× b← not c

from Example 7.1. Furthermore, let M1 = {a, b}, M2 = {c}, and M3 = {b}.
Then,

degM1(r) =1

degM2(r) =1

degM1(r) =2 .

Next, we define the actual Pareto criterion as follows.

Definition 7.5 Let M1 and M2 be stable models of an LPOD P . Then M1

is Pareto-preferred to M2 (M1 >p M2) iff there is r ∈ P such that degM1(r) <
degM2(r), and for no r′ ∈ P degM1(r

′) > degM2(r
′).

Example 7.3 Let P be as in Example 7.1, M1 = {a, b}, M2 = {c}, and
M3 = {b}. Then, M1 >p M3 as degsM1(r1) = 1 < 2 = degsM3(r2) while
degsM1(r2) = 1 = degsM3(r2). Similarly, M1 >p M2. However, models M2

and M3 are incomparable since they satisfy different rules to the first degree.

Definition 7.6 A set of literals M is a Pareto-preferred stable model of an
LPOD P iff M is a stable model of P and there is no stable model M ′ of P
such that M ′ >p M .

7 TRANSLATIONS FOR SEMANTIC EXTENSIONS 57

From this on we will drop out the Pareto qualifier whenever we discuss
preferred stable models.

Example 7.4 In Example 7.1 the only preferred stable model is M1 = {a, b}.

Now we would like to have a translation from LPODs to cardinality con-
straint programs. Since the existence of a preferred stable model for a ground
LPOD is ΣP

2 -complete [10] while the same problem for cardinality con-
straint programs is NP-complete [65], a polynomial translation from LPODs
to cardinality constraints can exists only if the polynomial hierarchy collapses.
It would be possible to define an exponential translation between them, but
that would make computing preferred models even more intractable that it
currently is.

Even though a single polynomial time translation is probably impossible,
we can translate an LPOD P into two cardinality constraint programs:

• A generator G(P) whose stable models correspond to the stable models
of P ; and

• A tester T (P, M) for checking whether a given stable model M of P is
preferred.

The two programs are run in an interleaved fashion. First, the generator
constructs a stable model M of P . Next, the tester tries to find a stable
model set M ′ that is strictly better than M . If there is no such M ′, we know
that M is a preferred stable model. Otherwise, we use G(P) to construct the
next candidate. When we want to find only one preferred stable model we
can save some effort by taking M ′ directly as the new candidate.

The basic idea of G(P) is to add a number of bookkeeping atoms to P to
ensure that each rule r is used to derive only at most one atom to the model.
In practice, this is done by adding a number of atoms of the form c(r, k) to
denote the case where we choose to use the rule r to derive the atom Ck.

To make model comparison easier we also add another set of new atoms,
s(r, k) to denote that the rule r is satisfied to the degree k. These atoms are
not strictly necessary but they make the programs more readable.

Definition 7.7 Let P be an LPOD and r = C1×· · ·×Cn ← body be a rule
in P . Then the translation G(r, k) of the kth option of r is defined as follows:

G(r, k) = {Ck ← c(r, k), not C1, . . . , not Ck−1, body; (64)
← not c(r, k), Ck, not C1, . . . , not Ck−1, body} (65)

The satisfaction translation S(r) is:

S(r) = {s(r, 1)← not c(r, 1), . . . , not c(r, n)}∪ (66)
{ s(r, i)← c(r, i) | 1 ≤ i ≤ n} (67)

The translation G(r) is:

G(r) =
{
1 ≤ {c(r, 1), . . . , c(r, n)} ≤ 1← body

}
∪

⋃
{G(r, k) | 1 ≤ k ≤ n} ∪ S(r)

(68)

The generator G(P) is defined as follows:

G(P) =
⋃
{G(r) | r ∈ P} (69)

58 7 TRANSLATIONS FOR SEMANTIC EXTENSIONS

Also, the reason for having two rules in G(r, k) may not be clear, since
(64) already ensures that only correct stable models of the program P ′ will be
generated. To see why it is necessary, consider the situation where some Cj ,
j < k, is a consequence of a different part of the program. Then without (65)
we could have a stable model where c(r, k) is true, but Ck is not because Cj

blocks (64). In other words, we would have chosen to satisfy r to the degree
k, but it actually would be satisfied to the degree j. The rule (65) prevents
this unintuitive behavior by always forcing us to choose the lowest possible
degree.

Example 7.5 The program P in Example 7.1 is translated to:

1 {c(1, 1), c(1, 2)} 1← not c a← c(1, 1), not c
1 {c(2, 1), c(2, 2)} 1← not d b← c(2, 1), not d

← not c(1, 1), a, not c b← c(1, 2), not a, not c
← not c(1, 2), b, not a, not c c← c(2, 2), not b, not d
← not c(2, 1), b, not d s(1, 1)← not c(1, 1), not c(1, 2)
← not c(2, 2), c, not b, not d s(2, 1)← not c(2, 1), not c(2, 2)

s(1, 1)← c(1, 1) s(1, 2)← c(1, 2) s(2, 1)← c(2, 1) s(2, 2)← c(2, 2)

The three stable models are:

M1 = {a, b, c(1, 1), c(2, 1), s(1, 1), s(2, 1)}
M2 = {b, c(1, 2), c(2, 1), s(1, 2), s(2, 1)}
M3 = {c, c(2, 2), s(1, 1), s(2, 2)} .

Note that in the last case there is no atom c(1, k) since the body of the first
rule is not satisfied.

Proposition 7.1 Let P be an LPOD . If M is a stable model of G(P), then
M ∩ At(P) is a stable model of P . If M is a stable model of P , then there
exists a set of atoms A ⊆ At(G(P))\At(P) such that M ∪A is a stable model
of G(P).

Proof. Let M be a stable model of P . Now, for each rule r = C1 × · · · ×
Cn ← body define p(M, r) = {c(r, k), s(r, k) | body is satisfied in M,Ck ∈
M, and ∀i < k : Ci /∈ M} ∪ {s(r, 1) | r ∈ P and body is unsatisfied in M}.
Let M ′ = M ∪

⋃
r∈P p(M, r). By definition of p(M, r), M ′ satisfies all rules

(64)–(67). Finally, (68) is satisfied since exactly one atom c(r, k) was added
to M ′ for each rule r that had its body true. Also, each atom c(r, k) and
s(r, k) that occur in M ′ occur in a head of a rule whose body is satisfied in
the reduct of G(P) so they belong to the deductive closure and M ′ is stable.

Now, suppose that M ′ is a stable model of G(P). Then for each atom
Ck ∈ M = M ′ ∩ Lit(P), there exists a rule r′ of the form (64) where Ck

is the head and some atom c(r, k) ∈ M ′ occurs positively in the body and
c(r, i) /∈ M ′ for all i < k. The rule r′ belongs to the translation of some
rule r ∈ P . When we take the reduct of the rule r with respect to M we get
the rule:

rM = Ck ← A1, . . . , An

7 TRANSLATIONS FOR SEMANTIC EXTENSIONS 59

since no atom Ci, i < k may be in M . As the only way to derive the
atom c(r, k) to M ′ is that the body of r is true, we see that Ck ∈ cl(PM).
Thus, for all atoms C ∈M , C ∈ cl(PM) so M is a stable model of P . �

Next we consider the tester program T (P, M). Since we want the tester
to find a stable model M ′ that is strictly better than a given M , we define
two new atoms, namely better and worse.7 The intuition is as follows: better
(worse) is true when M ′ is in some aspect better (worse) than M . If both are
true, then the models are incomparable.

Definition 7.8 Let P be an LPOD . Then the tester C(T, M) is defined as
follows:

T (P, M) = G(P) ∪ {o(r, k) | s(r, k) ∈M} ∪ {rule(r)←| r ∈ P}
∪ {degree(d)←| ∃r ∈ P such that r has at least d options}
∪ {← not better; ← worse,

better← s(R, I), o(R, J), I < J, rule(R),

degree(I), degree(J)

worse← s(R, J), o(R, I), I < J, rule(R),

degree(I), degree(J)}

Proposition 7.2 Let P be an LPOD and M be a stable model of G(P). If
M ′ is a stable model of T (P, M), then M ′ ∩ At(P) is a stable model of P
that is preferred to M . If there exists a stable model M ′ of P that is preferred
to M then there exists a set of atoms A such that M ′ ∪ A is stable model of
T (P, M).

Proof. First, suppose that T (P, M) has a stable model M ′. Then better ∈M ′

and worse /∈ M ′. We see that better is true exactly when ∃r : degM ′(r) <
degM(r). Since worse /∈ M ′, we know that ¬∃r : degM ′(r) > degM(r) so
M ′∩At(P) >p M . Conversely, if there exists M ′ >p M , then M ′ is generated
by the G(P) part of T (P, M) so M ′ ∪

⋃
{p(M ′, r) | r ∈ P} ∪ {better} is a

stable model of Tp(P, M). �
The following corollary is immediate from Proposition 7.2:

Corollary 7.1 Let P be an LPOD and M be a stable model of G(P). Then
M is preferred if and only if T (P, M) does not have any stable models.

7This translation could also be made without these two atoms but they make the program
more readable.

60 7 TRANSLATIONS FOR SEMANTIC EXTENSIONS

8 COMPUTATIONAL COMPLEXITY

In this section we examine the computational complexity of ω-restricted pro-
grams. This section expands [75] where most of these results were originally
proven. We are mainly interested in two different problems:

• INSTANTIATION: Given an ω-restricted program P , a data model D0,
and a ground atom p(t1, . . . , tn) (where p is a domain predicate), does
DP |= p(t1, . . . , tn) hold?

• MODEL: Given an ω-restricted program P and a data model D0, does
〈P, D0〉 have a stable model?

Intuitively, INSTANTIATION tells us how difficult it is to create the rel-
evant instantiation of a program with variables and MODEL then tells how
hard it is to find a stable model of a program with variables.

As a data model D0 may be infinite, we represent it by a Turing machine
that computes the interpretations of function symbols and data predicates.
The intuition is that whenever we have to compute a value of a function, we
give the function symbol and its arguments as input to the Turing machine
and let it compute the value. Similarily, if we give a ground atom as an input,
the machine gives the truth value of the atom as its output.

Throughout this section we use as our data model the Herbrand interpre-
tation DP,H of the program P as defined in Section 4.1. We do this because
our definition of a data model allows us to use arbitrary complex functions in
programs and their evaluation may dominate the instantiation process. Thus,
we limit us to the simplest possible case where function evaluation does not
significantly affect the necessary time to solve INSTANTIATION or MODEL.

In particular, the initial data model DP,H has the following properties:

1. There are no pure data predicates. Instead, all predicate symbols are
program predicates and domain predicates are used to give values to all
variables.

2. All function symbols have the trivial interpretation I(f(a)) = f(a).

In addition to proving complexity results for the whole class of ω-restricted
programs, we examine how the computational complexity of INSTANTIA-
TION and MODEL changes when we restrict our attention to some subclasses
of programs. We use two parameters to divide the ω-restricted programs into
four classes:

• The maximum number of variables is fixed to some constant d or it is
unlimited; and

• The programs can contain arbitrary function symbols or only 0-ary con-
stants.

If the number of variables is fixed, then each rule in a program may con-
tain at most d global variables, and each literal set in the rule body may
contain at most d local variables.

8 COMPUTATIONAL COMPLEXITY 61

Variables Functions INSTANTIATION MODEL

No — — NP-complete
Fixed No P-complete NP-complete

Yes 2-EXP-complete 2-NEXP-complete
Unlimited No EXP-complete NEXP-complete

Yes 2-EXP-complete 2-NEXP-complete

Table 2: Computational complexity

P Polynomial time (nk)
NP Non-deterministic polynomial time
EXP Exponential time (2nk)

NEXP Non-deterministic exponential time
2-EXP Doubly exponential time (22nk

)
2-NEXP Non-deterministic doubly exponential time

Figure 9: Complexity Classes

The main complexity results8 are presented in Table 2. The MODEL com-
plexity for ground weight constraint programs with the stable model seman-
tics has been presented in [65] and for normal logic programs in [45, 13].
Since ω-restricted programs are essentially a subclass of more general weight
constraint rules, the complexity results of [65] apply. The meanings of the
complexity classes are shown in Figure 9. For a comprehensive account on
computational complexity see, for example, [52].

We start the complexity analysis by noting that MODEL is always at least
as difficult as INSTANTIATION since for any program P and ground atom
p(t1, . . . , tn) we can create a program P ′ such that P ′ has a stable model
only if DP |= p(t1, . . . , tn). The program P ′ is defined as follows:

P ′ = P \ Pω ∪ {← not p(t1, . . . , tn)} .

In effect, we remove all rules that belong to the ω-stratum, and check whether
the query atom p(t1, . . . , tn) is a logical consequence

Theorem 8.1 Problems INSTANTIATION and MODEL are decidable for fi-
nite ω-restricted programs.

Proof. First note that for a ground ω-restricted program INSTANTIATION
amounts to evaluating all terms in it, computing the minimal model of do-
main definitions

⋃
i∈N Pi, and then checking whether a given atom a is sat-

isfied in the minimal model, and this is decidable since by definition the
interpretation I has to be computable.

Also, if we have a finite ground ω-restricted program, MODEL is decidable
since there are only a finite number of possible model candidates and we can
check them all.

8The article [75] contains an error in the fixed-variable non-constant function symbols
allowed case. There it was claimed that they were NEXP-complete while the correct result
is that they are 2-NEXP-complete.

62 8 COMPUTATIONAL COMPLEXITY

Next, we show by induction that given a finite ω-restricted program P and
a data model D, the sizes of relevent ground instantiations of strata program
Pi, i ∈ N, are all finite, and so their stable models Mi can be computed.
Since only a finite number of Pi are nonempty, this implies that the union
M =

⋃
i∈N Mi is also finite. It is enough to consider the relevant instantiation

since by Theorem 5.2 both HI(Pω, DP) and HIr(Pω, DP) have the same
stable models.

Consider first the stratum program P0. Since all rules on the 0-stratum
have to be ground, we see that HIr(P0, D) is finite. Hence, M0 is finite, so
in D0 = D]M0 the interpretations of domain predicates are finite.

Next, suppose that HIr(Pi, Di−1) is finite when 1 ≤ i ≤ n for some
n ∈ N.

Now, if Pn+1 is empty, then its instantiation is also empty and Mi+1 = ∅.
Otherwise, consider a rule r ∈ Pn+1. Each variable that occurs in r has to
occur also on a domain literal l that belongs to some stratum i ≤ n. By
induction hypothesis the interpretation of pred(l) is finite, so HIr(r, Dn) is
also finite.

We can generate this instantiation by systematically going through the
interpretations of the domain literals in the rule body and creating all possible
substitutions that correspond to the interpretations, and instantiate the rule
using them. As Pn+1 is finite, also HIr(Pn+1, Dn) has to be finite.

A naive algorithm that computes the relevant instantiation of 〈P, D0〉 is
presented in Figure 10. �

Note that this result holds for an arbitrary data model D since by definition
a data model may not contain uncomputable functions.

We can now see that the computational complexity of a subclass of ω-
restricted programs is directly related to the number of relevant rules in their
instantiations.

8.1 Turing Machine Translation

We establish the complexity hardness results in this work by proving that
the computations of a Turing machine M can be simulated by a logic pro-
gram P (M). The basic idea is that the configurations of M are encoded as
sets of atoms of P (M) so that P (M) has a stable model where the atoms cor-
responding to an accepting configuration exactly when that configuration is
reachable from the initial configuration of M .

The program consists of two parts, a fixed one that implements the tran-
sition function of an arbitrary Turing machine when its transition relation is
given as a set of facts, and an input-specific part that encodes the input x of M
as well as its working tape. The size of the input-specific part is polynomial
in the size of x.

Definition 8.1 A deterministic Turing machine is a quadruple

M = (K, Σ, δ, s)

where K is a finite set of states, Σ is a finite alphabet containing the blank
symbol t, s ∈ K is the initial state and δ is a transition function δ : K×Σ→
(K ∪ {y, n})× Σ× {−1, 0, 1}.

8 COMPUTATIONAL COMPLEXITY 63

function instantiate(P , D0)
S := create_stratification(P)
D := D0

for i := 0 to number of non-omega strata in S do
P ′ := instantiate_rules(P S

i , D)
M := cl(P ′)
D := D]M

end for
P ′ := instantiate_rules(P S

ω , D)
return 〈P ′, D〉

end function

function instantiate_rules(Ruleset R, Data D)
S := ∅
foreach r ∈ R do

S ′ := {E(r′, D) | r′ ∈ inst(r, D) and D |= bodys(r
′) }

S := S ∪ S ′

end foreach
return S

end function

Figure 10: Simple instantiation algorithm

A computation of a Turing machine M given an input x starts from the
configuration (s,tx) and each computation step yields a new configura-
tion according to δ until one of the halting states y (accept) or n (reject)
is reached.

We encode the states of a Turing machine M using the predicate state(q),
the alphabet using symbol(σ), and the transition function using the predi-
cate transition(q1, σ1, q2, σ2, d), where d ∈ {l, s, r} denoting left, stationary,
and right, respectively. The atom at-place(σ, p, t) is used to denote that
the tape cell p contains the symbol σ at the time step t. The predicate
current-state(q, p, σ, t) indicates that the machine is in the state q and the
head is over the tape cell p looking at the symbol σ at the time step t.

We encode one computation step using the two rules:

at-place(S2, P, T ′)← transition(Q1, S1, Q2, S2, D),

current-state(Q1, P, S1, T), (70)
place(P), time(T), time(T ′),

next(T, T’)
current-state(Q2, P

′, S3, T
′)← transition(Q1, S1, Q2, S2, D),

next-place(P, D, P ′),

current-state(Q1, P, S1, T), (71)
at-place(S3, P

′, T), time(T),

time(T ′), place(P), symbol(S3),

next(T, T’) .

The rules above handle the cell where the read/write-head is currently po-

64 8 COMPUTATIONAL COMPLEXITY

sitioned. In addition, we have to assert that the state of the other tape cells
stays constant:

at-place(S1, P1, T
′)← current-state(Q, P2, S2, T), next(T, T’),

at-place(S1, P1, T), time(T), time(T’),
symbol(S1), symbol(S2), state(Q),

place(P1), place(P2), not equal(P1, P2) .

(72)

In the initial configuration all tape cells that are not part of the input are
empty:

at-place(t, P, 1)← place(P), not part-of-input(P) . (73)

The first |x| tape cells are initialized from the input and they also belong to
the extension of part-of-input/1.

The predicate next-place/3 connects the adjacent tape cells together so
that the read/write-head can be moved to the correct direction:

next-place(P1, right, P2)← next(P1, P2)

next-place(P1, left, P2)← next(P2, P1)

next-place(P, stationary, P)← place(P) .

(74)

Finally, we want to recognize whether the Turing machine halts in an
accepting state or not:

accept← current-state(y, P, S, T), place(P), symbol(S), time(T)

reject← current-state(n, P, S, T), place(P), symbol(S), time(T) .
(75)

Note that we have not yet given definitions for the predicates time/1, place/1,
next/2 that encode the time steps, tape cells, and the successor relation. In
the following complexity proofs we show how we can define them in a poly-
nomial number of rules using tools that are available for the four different
ω-restricted program classes.

We can generalize the translation to allow non-deterministic Turing ma-
chines by forcing the machine to choose between possible transitions at all
computation steps. This can be done by changing the rules (70) and (71) to:

at-place(S2, P, T ′)← chosen(Q1, S1, Q2, S2, D, T)

transition(Q1, S1, Q2, S2, D),

current-state(Q1, P, S1, T), (70’)
place(P), time(T), time(T ′),

next(T, T’)
current-state(Q2, P

′, S3, T
′)← chosen(Q1, S1, Q2, S2, D, T)

transition(Q1, S1, Q2, S2, D),

next-place(P, D, P ′),

current-state(Q1, P, S1, T), (71’)
at-place(S3, P

′, T), time(T),

time(T ′), place(P), symbol(S3),

next(T, T’) .

8 COMPUTATIONAL COMPLEXITY 65

and adding the rule:

1 ≤ {ρQ2S2D.〈chosen(Q1, S1, Q2, S2, D, T) :

transition(Q1, S1, Q2, S2, D)〉} ≤ 1←
current-state(Q1, P, S1, T),

place(P), time(T)

(76)

A similar translation for normal logic programs has been presented earlier by
V. W. Marek and J. B. Remmel in [40].

8.2 Complexity Results for Omega-Restricted Programs

In this section we give our main complexity results. All proofs are divided
into two parts, inclusion and hardness. When proving inclusion, we show
that the problem belongs to some complexity class. We establish it by show-
ing that the size of the ground instantiation does not grow faster than some
upper bound. When proving hardness, we show that we can translate an ar-
bitrary deterministic Turing machine that solves some problem in the com-
plexity class and its input into an ω-restricted program where DP |= accept
exactly when the machine accepts its input. This translation is polynomial
with respect to the size of the input of the machine.

Before presenting the results we have to define what the size of a program
means. In the proofs we make a simplifying assumption that each literal and
non-constant function symbol occurring in a program has the same number
of arguments and that every rule has equally many literals in it.

Definition 8.2 The size of a term t is defined inductively as follows:

1. for all 0-ary constants c, size(c) = 1 ; and

2. for all compound terms f(t1, . . . , tn), n > 0,

size(f(t1, . . . , tn)) = 1 +
n∑

i=1

size(ti) .

Definition 8.3 Let P be an ω-restricted program. Then, its size is defined to
be:

size(P) = m · d · ` · T (77)

where:

• m is the number of rules in P ;

• d is the arity of predicates and non-constant function symbols of P ;

• ` is the number of basic literals in each rule; and

• T is the maximum size of a term that occurs in P .

We will also use the convention that the upper limit for variables occurring
in a rule or a literal set is equal to the maximum arity d.

In some cases parts of the definition of size(P) are constant and may there-
fore be left out since we are interested only in the asymptotic behavior.

When we instantiate a program P , the size explosion of HIr(P) comes
mainly from two sources:

66 8 COMPUTATIONAL COMPLEXITY

1. Creating new terms using function symbols with rules of the form:

p(f(X,Y))← d(X), d(Y)

If the extension of d/1 has c different ground terms, then instantiating
this rule generates c2 new ground terms that may then be used when
instantiating rules that depend on p/1.

2. Constructing the cartesian product of existing ground terms using rules
of the form:

p(X1, . . . , Xn)← d(X1), . . . , d(Xn) .

Instantiating a rule of this form results in tn ground instances if there
are t ground terms in the extension of d/1.

There are two more factors that increase the size of the instantiated pro-
gram but whose contributions are small compared with the two cases above:

3. When a literal set l(X1, . . . , Xn) : d(X1), . . . , d(Xn) is expanded, the
resulting ground rule will have tn ground instances of the literal l in
its body. The reason why this does not affect as much as the first case is
that the particular ground rule can be used to derive only one ground
atom, so this size increase does not propagate to predicates that are
derived using the head of the rule.

4. When a function symbol f is applied to the terms t1, . . ., tn, then the
size of the new term is the sum of the sizes of the argument terms.

Theorem 8.2 INSTANTIATION of an ω-restricted program is P-complete
when the number d of variables occurring in each rule is fixed and there
are no non-constant function symbols in it.

Proof. We construct the proof in two parts:

(a) Inclusion. Let P be a program with d distinct variables. First we note
that all ground terms that may occur in HIr(Pi+1) for some i have to
occur somewhere in P since non-constant function symbols are not
allowed. Thus, each rule in P may have at most nd ground instances
where n is the number of different constants that occur in P . Simi-
larity, the expansion of a literal set may have at most nd basic literals
in it so the total size of the instantiation is polynomial in the size of
the program P and it can be computed in polynomial time using the
algorithm instantiate.

(b) Hardness. The problem of deciding whether an atom a belongs to
the least model of a ground stratified normal logic program P is P-
complete [13]. Such programs are a special case of ω-restricted pro-
grams. Thus, it is P-hard to decide whether DP |= a.

�

8 COMPUTATIONAL COMPLEXITY 67

Theorem 8.3 MODEL for an ω-restricted program with a fixed number d of
variables and no non-constant function symbols is NP-complete.

Proof.

(a) Inclusion. As we saw in the previous proof, the instantiation of a fixed-
variable ω-restricted program can be computed in a polynomial time
and it has a polynomial number of rules so we can non-deterministi-
cally guess a stable model and verify it in a polynomial time.

(b) Hardness. MODEL for ground normal logic programs is NP-complete
[45] and they are a special case of ω-restricted programs.

�

Theorem 8.4 The INSTANTIATION problem of an unlimited-variable ω-res-
tricted program is EXP-complete if no non-constant function symbols are
allowed.

Proof.

(a) Inclusion. Consider an ω-restricted program P and let size(P) = n.
Suppose that there are c different ground terms in P . We now prove by
induction over d = 1, 2, . . . where d is the maximum number of vari-
ables in rules and literal sets that the maximum size of the instantiation
of P is:

size(HIr(P)) ≤ md`c2d ≤ dn2n+2

where m is the number of rules and ` the number of literals in each rule
and size(P) = n = md`. (Since no new ground terms are generated
during the instantiation, the maximum term length T is constant and
may be left out of consideration.) Thus, it turns out that the size of the
instantiation grows O(2n2

).

We divide our analysis in two parts. First, we show that the number of
ground instances of rules in HIr(P) is at most mcd, and then we show
that each such rule may have at most `cd ground literals in it.

Consider a single rule r. In the basic case d = 1 we see that it may have
at most c instances that are obtained by substituting the sole variable
by each ground term at a time. So,

|HIr(r)| ≤ c .

Next, suppose that for all programs that have at most k different vari-
ables X1, . . ., Xk in them, |HIr(r)| ≤ ck for each rule r.

Consider the case where d = k + 1. Here we can do the instantiation
of a rule r in two steps:

1. first instantiate only the variable Xk+1 and leave the other vari-
ables still in place; and

68 8 COMPUTATIONAL COMPLEXITY

2. instantiate variables X1, . . ., Xk in the rules that were produced
in the previous step.

The first step directly corresponds with the basic case d = 1, so we
see that we can get at most c partially instantiated rules. By induction
hypothesis, each one of them may have at most ck ground instances
and:

|HIr(r)| ≤ ck · c = ck+1

so se have established that a single rule may have at most cd instances.
As P has m rules, the total number of instantiated rules in HIr(P) is:

|HIr(P)| ≤ mcd .

We can make exactly the same induction to show that the expansion
of a literal set occurring in the rule body may contain at most cd basic
literals, so the body of an instantiated rule may contain at most `cd

literals. Combining these two figures we get:

size(HIr(P)) ≤ (mcd) · d · (`cd) = md`c2d ≤ dn2d+2 .

The last inequality holds since m ≤ n, ` ≤ n, and also necessarily
c ≤ n.

Since also d is linear to the size of n, the size of the ground instantiation
grows O(n2n+3). When we compare the growth rates of f(n) = n2n+3

and g(n) = 2n2 , we see that:

lg f(n) = (2n + 3) lg n

lg g(n) = n2

and conclude that g(n) grows asymptotically faster than f(n) since
lg 2 is a monotonic function and n2 grows faster than (2n + 3) lg n.
Thus, n2n+3 = O(2n2

) and the size of the ground instantiation of P is
bounded from above by an exponential function. Thus, INSTANTIA-
TION is in EXP.

(b) Hardness. First we note that a deterministic EXP-time Turing ma-
chine M uses at most 2nk time steps for some k when the length of
the input is n. We have to show that we can generate an exponential
number of atoms representing time steps and tape cells using a pro-
gram whose size is polynomial with respect to the size of M . To do
this, we need to implement a nk-bit binary counter that runs from 0

to 2nk − 1. This can be done by encoding the numbers as vectors of
binary variables:

number(x1, . . . , xnk)← bit(x1), . . . , bit(xnk) . (78)

The predicate bit/1 is auxiliary with the extension {0, 1}. The succes-
sor relation can be encoded with the rule:

next(x1, . . . , xnk , y1, . . . , ynk)← add(x1, 1, y1, c1),

add(x2, c1, y2, c2),

...
add(xnk , cnk−1, ynk , cnk)

(79)

8 COMPUTATIONAL COMPLEXITY 69

where add/4 encodes one-bit addition and is defined using the follow-
ing four facts:

add(0, 1, 1, 0)← add(0, 0, 0, 0)←
add(1, 0, 1, 0)← add(1, 1, 0, 1)← .

(80)

Now the time steps and tape positions can be defined in terms of num-
bers:

time(x1, . . . , xnk)← number(x1, . . . , xnk)

place(x1, . . . , xnk)← number(x1, . . . , xnk) .
(81)

Finally, we replace all references to time/1 and place/1 by time/nk

and place/nk and add all necessary domain predicates to the rule bod-
ies.

�

Theorem 8.5 The MODEL problem of an unlimited-variable ω-restricted
program is NEXP-complete if no non-constant function symbols are al-
lowed.

Proof. As in Theorem 8.3. �
When we consider INSTANTIATION when we allow the use of function

symbols, the binary counter construction in the hardness direction is quite
convoluted. Thus, we prepare the way for it by proving a simpler result,
namely, that INSTANTIATION is EXP-hard for such programs.

Lemma 8.1 INSTANTIATION of a fixed-variable ω-restricted program P that
uses non-constant function symbols is EXP-hard, if the number of variables
in each rule d ≥ 8 and there are at least two different non-constant function
symbols available.

Proof. We need to construct a binary counter from 0 up to 2nk − 1. We do
this by encoding an m-bit binary number x as a function b1(b2(· · · bm(0) · · ·))
where bi is f if the ith bit of x is 0 and t if it is 1. The m-bit binary numbers
can be generated recursively from m − 1-bit numbers by the following two
rules:

numberm(t(X))← numberm−1(X)

numberm(f(X))← numberm−1(X)
(82)

Here we need m + 1 different number predicates since otherwise the rules
would not be ω-restricted. As the basic case of the recursion, we define one
0-bit number as:

number0(0)← . (83)

The successor relation can also be defined recursively:

nexti+1(t(X), t(Y))← nexti(X, Y)

nexti+1(f(X), f(Y))← nexti(X, Y)

nexti+1(f(X), t(Y))← lasti(X), firsti(Y)

(84)

70 8 COMPUTATIONAL COMPLEXITY

where lasti/1 and firsti/1 are defined as:

lasti(ti(0))←
firsti(f i(0))← .

(85)

The translation uses 7nk+3 rules to create all nk-bit numbers so we now have
a polynomial reduction from EXP-time Turing machines to ω-restricted pro-
grams using only function symbols and the proof is complete. �

Theorem 8.6 INSTANTIATION of a fixed-variable ω-restricted program that
uses non-constant function symbols is 2-EXP-complete, if the maximum
number of variables occuring in a rule or a literal set d ≥ 8.

Before we present the proof of the theorem we define four lemmas that
help us manage the inclusion size of the proof. With these lemmas we break
the size of the ground instantiation into its component pieces.

Lemma 8.2 Let P be an ω-restricted program where the maximum arity of
a function symbol is d and whose largest ground term has the size T . Then,
the size of the largest term that occurs in HIr(P) is bounded above by 2sdsT
where s is the number of strata in P .

Proof. We prove by induction over the number of strata that the largest
ground term ti that occurs in the relevant instantiation of the stratum pro-
gram Pi is at most 2idiT .

As the basic case we note that all rules on the 0-stratum are ground, so
size(t0) = T ≤ 20d0T . Next, suppose that the claim holds for all strata up
to k. As the maximum arity of a function symbol is d, the largest possible
term on the k + 1-stratum is:

tk+1 = f(tk, . . . , tk︸ ︷︷ ︸)
d times

where f is a function symbol of maximal arity. We see that:

size(tk+1) = d · size(tk) + 1

≤ 2d · size(tk) .

Here we use the induction hypothesis to note that:

2d · size(tk) = 2d · 2kdkT = 2k+1dk+1T

and the induction is complete. �

Lemma 8.3 If P is an ω-restricted program such that at most ci ground atoms
are true in the union of answer sets

⋃
j∈[0,i] Mi of the first i+1 strata programs

Pj , then for each rule r ∈ Pi+1 it holds that |HIr(r)| ≤ cd where d is the
number of global variables in r.

Proof. Each global variable that occurs in r has to occur also in a positive
domain literal in the rule body that belongs to some stratum j ≤ i so there
are at most cj variable substitutions that satisfy it. As there are d variables, the
rule has at most cd

i ground instances with satisfiable bodies. �

8 COMPUTATIONAL COMPLEXITY 71

Lemma 8.4 Let P be a cardinality constraint program with s strata with m
rules each. Then, HIr(P) has less than 2ds

mds+1 ground rules if the number
of variables d > 1.

Proof. We prove a slightly stronger claim. Let ci be the number of ground
atoms that are true in the union of answer sets

⋃
j∈[0,i] Mi of the first i + 1

strata programs Pj . Then,

ci ≤ 2
∑i−1

j=0 dj ·m
∑i

j=0 dj

when i > 0 and d > 1. We prove this by induction over the number of strata
in P . First, we note that

c0 ≤ m

c1 ≤ m ·md + m = md+1 + m

≤ 2md+1 = 2
∑0

i=0 di ·m
∑1

i=0 di

The value for c0 comes from the fact that all rules on the 0-stratum are ground
and for c1 we note that there are m rules on 1-stratum and by Lemma 8.3 each
of them may have at most cd

0 instances. Next, suppose that the claim holds
for all strata up to some k.

Each of the m rules in the k + 1-stratum may have at most cd
k instances,

so:
ck+1 = m · cd

k + ck ≤ 2m · cd
k .

Next, we use the induction hypothesis to replace ck by its upper bound and
get:

ck+1 ≤ m(2
∑k−1

i=0 di ·m
∑k

j=0 dj

)d + 2
∑k−1

i=0 di ·m
∑k

j=0 dj

≤ 2m(2
∑k−1

i=0 di ·m
∑k

j=0 dj

)d .

When we perform the outermost exponentation we get:

2m(2
∑k−1

i=0 di ·m
∑k

j=0 dk

)d = 2m · 2d
∑k−1

i=0 di ·md
∑k

j=0 dj

= 2m · 2
∑k−1

i=0 ddi ·m
∑k

j=0 ddj

= 2m · 2
∑k−1

i=0 di+1 ·m
∑k

j=0 dj+1

= 2m · 2
∑k

i=1 di ·m
∑k+1

j=1 dj

= 21+
∑k

i=1 di ·m1+
∑k+1

j=1 dj

= 2
∑k

i=0 di ·m
∑k+1

j=0 dj

and the induction is complete. We can simplify the final expression by noting
that:

k∑
i=0

di =
1− dk+1

1− d
< dk+1

when d > 1 so we get the upper bound 2ds ·mds+1 for the number of rules in
HIr(P). �

72 8 COMPUTATIONAL COMPLEXITY

Lemma 8.5 The expansion of a literal set S that occurs in a rule on the k-
stratum of an ω-restricted program contains at most 2dk ·mdk+1 basic literals
where m is the number of rules per strata and d the number of local variables
in S.

Proof. First we note that if S has d local variables, then there are at most cd
k−1

basic literals in the expansion of S where ck−1 is the number of ground atoms
that can be derived using rules on the first k strata. By Lemma 8.4 we know
that ck ≤ 2dk ·mdk+1 . �

Proof. (of Theorem 8.6)

(a) Inclusion. Without a loss of generality we may assume that there are
s strata with m rules each in a program P . Since the number of vari-
ables d is fixed in this case, we ignore it from the size definition and
use size(P) = n = sm`T where ` is the number of basic literals in
each rule and T the size of the largest term occurring in P .

Let m′, `′, and T ′ denote the number of rules, basic literals, and maxi-
mum term size of HIr(P). By Lemmas 8.2–8.5 we know that:

m′ ≤ 2ds

mds+1

`′ ≤ 2ds

mds+1

`

T ′ ≤ 2sdsT .

Thus, the total size of the instantiation is:

size(HIr(P)) ≤ 2ds

mds+1 · 2ds

mds+1

` · 2sdsT .

As each of s, m, `, and T are less than n, we get that:

size(HIr(P)) ≤ 2dn

ndn+1 · 2dn

ndn+1

` · 2ndnn .

When we rearrange the terms we see that:

size(HIr(P)) ≤ 22dn+nn2dn+1+1 ≤ n4dn+1+1 (86)

when n ≥ 2. We now compare the growth rate of f(n) = n4dn+1+1 to
the growth rate of g(n) = 22n2

.

lg f(n) = (4dn+1 + 1) lg n ≤ 5dn+1 lg n

lg(5dn+1 lg n) = lg 5 + (n + 1) lg d + lg lg n

lg g(n) = 2n2

lg lg g(n) = n2 .

As n2 grows strictly faster than n+lg lg n, we know that size(HIr(P)) =

O(22n2

), and so INSTANTIATION is in 2-EXP.

(b) Hardness. We have to construct a binary counter running from 0 to
22nk

for a given nk. We follow the example of the proof of Lemma 8.1

8 COMPUTATIONAL COMPLEXITY 73

and implement the numbers as terms. However, in this case we start
with n rules:

number0(0)←
...

number0(n)←

Then, we create the further levels of numbers using:

numberi+1(f(X, Y))← numberi(X), numberi(Y) . (87)

The intuition is that number1 is seen as a n2-base number, number2
as (n2)2 = n4 base, and so on. At the total we will have nk different
levels.

Let ci be the size of the extension of numberi/1. Here we see that:

c0 = n

c1 = n2

c2 = (n2)2 = n4

...
ci = (ci−1)

2 = n2i

...

cnk = n2nk

Thus, we can create n2nk

different terms using nk + n rules. As 22nk

≤
n2nk

, we now see that it is enough to model all necessary integers. Next,
we have only to show that we can handle the arithmetic of the terms
by defining the successor relation. We start by defining n ground facts
for the basic case:

next0(i, i + 1)←
and continuing with a recursive definition:

nexti+1(f(X, Y), f(X, Z))← numberi(X), nexti(Y, Z)

nexti+1(f(X, L), f(Y, F))← firsti(F), lasti(L), nexti(X, Y) .

Finally, we have:

first0(0)←
last0(n)←

firsti+1(f(X, X))← firsti(X)

lasti+1(f(X, X))← lasti(X)

and the proof is complete.

�
We now present a simple example program that illustrates the doubly-

exponential growth of ground instantiation.

74 8 COMPUTATIONAL COMPLEXITY

Example 8.1 Consider the following program P with two variables:

d0(0)←
d0(1)←

d1(f(X, Y))← d0(X), d0(Y)

d1(t(X, Y)) ← d0(X), d0(Y)

d2(f(X, Y))← d1(X), d1(Y)

d2(t(X, Y)) ← d1(X), d1(Y)

d3(f(X, Y))← d2(X), d2(Y)

d3(t(X, Y)) ← d2(X), d2(Y) .

Each of the predicate symbols belong to a stratum by itself. The number of
rules in the ground instantiations of the four strata are:

|HIr(P0)| = 2 = 221−1

|HIr(P1)| = 2 · |HIr(P0)|2 = 2 · 22 = 8 = 222−1

|HIr(P2)| = 2 · |HIr(P1)|2 = 2 · 82 = 128 = 223−1

|HIr(P3)| = 2 · |HIr(P2)|2 = 2 · 1282 = 32768 = 224−1 .

If we add a fifth predicate d4/1 and identical rules for it, then it will have
2 · 327682 = 2, 147, 483, 648 = 231 = 225−1 instances.

On the other hand, if we add a new ground fact d0(2) ← and a rule
di+1(h(X, Y)) ← di(X), di(Y) for each three other strata, then the sizes of
the instantiations will be:

|HIr(P0)| = 3 = 321−1

|HIr(P1)| = 3 · |HIr(P0)|2 = 3 · 32 = 27 = 322−1

|HIr(P2)| = 3 · |HIr(P1)|2 = 3 · 272 = 2187 = 323−1

|HIr(P3)| = 3 · |HIr(P2)|2 = 3 · 21872 = 14, 348, 907 = 324−1 .

Thus, we see that if there are n strata and n rules in each stratum, then there
are n2k−1 ground instances on the kth stratum, so there are in total:

n∑
k=1

n2k−1

instances. In this sum the final term n2n−1 dominates the value and we can
say that it grows O(n2n

).

Theorem 8.7 The MODEL problem for a fixed-variable ω-restricted program
that uses function symbols is 2-NEXP-complete, if d ≥ 8.

Proof. As in Theorem 8.3. �

Theorem 8.8 The INSTANTIATION problem of an ω-restricted program is
2-EXP-complete.

Proof.

8 COMPUTATIONAL COMPLEXITY 75

(a) Inclusion. In (86) in proof of Theorem 8.6 we saw that size(HIr(P))
is bounded above by:

size(HIr(P)) ≤ n4dn+1+1

The same result holds also in this case, but here d is not fixed but is
linear to n. Thus,

size(HIr(P)) ≤ n4nn+1+1

and further:

lg n4nn+1+1 = (4nn+1 + 1) lg n ≤ (5nn+1) lg n

lg(5nn+1 lg n) = lg 5 + (n + 1) lg n + lg lg n .

As n lg n + lg lg n = O(n2), we see again that size(HIr(P)) = O(22n2

)
and the proof is complete.

(b) Hardness. Follows directly from Theorem 8.6.

�

Theorem 8.9 MODEL for an ω-restricted program is 2-NEXP-complete.

Proof. As in Theorem 8.3. �

76 8 COMPUTATIONAL COMPLEXITY

h← l1, . . . , ln Basic Rule
h← L ≤ {l1, . . . , ln} Constraint Rule
h← L ≤ [l1 = w1, . . . , ln = wn] Weight Rule

{h1, . . . , hn} ← l1, . . . , ln Choice Rule

Figure 11: Internal smodels rule types

9 IMPLEMENTATION

The ω-restricted subset of cardinality constraint programs has been imple-
mented in the SMODELS [77] tool. SMODELS has two parts, smodels proper
that implements the stable model semantics for ground programs and lparse
that instantiates programs with variables. The tools are available for down-
load at http://www.tcs.hut.fi/Software/smodels .

In addition to standard stable semantics SMODELS has also support for
several other semantics including partial model [30] and preferred model
[10] semantics. These semantics are implemented by translating the input
programs into ω-restricted programs whose stable models coincide with the
models under different semantics.

9.1 Smodels

The smodels started as an efficient logic engine for computing the stable
model semantics for ground normal logic program and it has been aug-
mented with three special rule types, constraint, weight, and choice rules.
The exact combination of the new rule types were chosen so that the ex-
pressive power of constraint literals could be reached while still allowing fast
truth-value propagation during computation.

A basic rule is the standard logic program rule of the form:

h← a1, . . . , an, not b1, . . . , not bm (88)

where h, ai, and bi are all ground atoms. A constraint rule has the form

h← L ≤ {a1, . . . , an, not b1, . . . , not bm} (89)

where L is an integral lower bound and h, ai, and bi are again atoms. A
weight rule is otherwise similar to a constraint rule but each basic literal in
the body may have an integral weight attached to it:

h← L ≤ [a1 = w1, . . . , an = wn, not b1 = wn+1, . . . , bm = wn+m] (90)

Finally, a choice rule has the form:

{h1, . . . , hn} ← a1, . . . , an, not b1, . . . , bm (91)

where hi, ai, and bi are all atoms.
The implementation details have been presented in [65] and [64].

9 IMPLEMENTATION 77

Parser
Semantic
Rewriter Rewriter

Instantiator
Semantic
Instantiator

Figure 12: How lparse processes an input program

9.2 Lparse

The instantiator lparse has two main functions: it removes variables from
user programs and it translates complex constructs into simpler ones. Con-
ceptually lparse processes its input in three distinct phases:

1. parser reads the input programs and creates their dependency graphs;

2. semantic rewriter translates any rules with non-standard semantics into
standard rules;

3. rewriter translates complex constructs into simple ones;

4. instantiator removes variables from rules; and

5. semantic instantiator instantiates control rules when a non-standard
semantics is used.

In practice the different phases are interleaved so that, for example, in many
simple cases rewriting happens on the fly in the instantiator.

Rewriter
Since the smodels engine understand only four internal rule types, we have
to translate more complex constructs into these rules. In particular, an smod-
els rule may have at most one constraint literal in it. If it is in the head,
there may be no bounds at all, and if it is in the body, it must be the only
body literal and it may not have an upper bound. Thus, any rule that has a
constraint literal with both bounds in it has to be translated to two smodels
internal rules.

The basic idea of the translation is that if a constraint literal

L ≤ {l1, . . . , ln} ≤ U

occurs in a rule body, it is replaced by two literals int1 and not int2 where
neither int1 nor int2 occurs elsewhere in the program and two rules:

int1 ← L ≤ {l1, . . . , ln}
int2 ← U + 1 ≤ {l1, . . . , ln}

If there are any global variables in the constraint literal, then they are added
as arguments to int1 and int2. The rewritten rules are not necessarily ω-
restricted but we can get around that problem by using the domain predicates
of the original rule to find out the relevant ground instances.

78 9 IMPLEMENTATION

Example 9.1 Consider the rule:

a(X)← 2 ≤ {ρY.〈c(X, Y) : d(X, Y)〉} ≤ 3,

1 ≤ {ρZ.〈e(Z) : f(Z)〉} ≤ 2, f(X) .

This rule is translated into

a(X)← int1(X), not int2(X), int3, not int4, f(X)

int1(X)← 2 ≤ {c(X, Y) : d(X, Y)}
int2(X)← 4 ≤ {c(X, Y) : d(X, Y)}

int3 ← 1 ≤ {e(Z) : f(Z)}
int4 ← 3 ≤ {e(Z) : f(Z)}

If the constraint literal occurs in the head, we drop the bounds from the
original rule and add two new rules to ensure that the correct number of head
atoms will be satisfied. So, a rule of the form

L ≤ {a1, . . . , an} ≤ U ← body

is translated to:

{a1, . . . , an} ← body

← n− L + 1 ≤ {not a1, . . . , not an}, body

← U + 1 ≤ {a1, . . . , an}, body

Here n is the number of ground basic literals in the expansions of literal
sets in the head. Thus, this translation has to be done after they have been
expanded. Also, if body is not empty, the two new rules have also to be
rewritten.

Instantiator
The instantiator works in two phases:

1. domain generation; and

2. program instantiation

In the domain generation phase the domain predicates are identified auto-
matically and their extensions computed. In the program instantiation phase
the domain predicates are used as a data model to instantiate all program
predicates.

The domain predicates are detected using the algorithm create_stratificat-
ion that was presented in Figure 7 on page 34.

The rules are instantiated one at a time, starting from domain predicates
on the lowest stratum and continuing up to the ω-stratum. In the case of
domain predicates we then compute the deductive closure of their rules and
store those instances in the data model. The rules for program predicates are
output as they are created.

The same algorithm is used for both domain and program predicates.
Conceptually, we create a natural join over the extensions of the domain

9 IMPLEMENTATION 79

procedure instantiate(Rule R)
{ Create the lits array }
pos := 0
while pos ≥ 0 do

instance := get_next_ground_instance(lits[pos])
if bind_literal(lits[pos], instance) = T do

if pos = max do
emit(R)

else
pos := pos + 1

endif
else

remove_binding(lits[pos])
pos := pos− 1

endif
endwhile

Figure 13: The lparse instantiator algorithm

predicates in the rule body, and then use that to find out all relevant variable
bindings.

However, we do not create a relational table for the join explicitly. Instead,
we find the possible bindings one row at a time and output a ground instance
as soon as one row is completed. This has the advantage that it is quick when
the rule bodies are relatively simple and it uses potentially less memory than
computing the full tables. However, if many rules have almost identical
bodies, we end up having to do unnecessary work as we have to create the
same join again and again.

The rules are instantiated one at a time. When we instantiate a rule R
we start by creating an array lits for storing the positive domain literals of the
rule body. The domain literals are sorted in ascending order on the size of
their extensions. Then we start an iteration where we find a ground instance
of the first domain literal, bind the global variables according to it, and try to
find a compatible instance of the next literal. This is continued until either
all variables are bound or no compatible ground instance exists. In the latter
case we backtrack and remove the latest variable bindings. This algorithm
is shown in Figure 13. The variable max in the algorithm description is the
index of the last domain literal of the rule.

Here we abstract away the details of functions get_next_ground_instance
and bind_literal. The former iterates over the instantiation of the domain lit-
erals keeping an internal state, and returns a null-instance when all instances
are processed. The latter binds the values of global variables to the instance
in question and returns T if it succeeds and F if instance is a null-instance
or contains conflicting values for already bound variables.

The actual implementation of the algorithm has some additional opti-
mizations. For example, if there is a negative literal not A in the rule body,
its truth value is checked as soon as all variables in it have been bound. If
it turns out that A is necessarily true, we discard the partial instance. Also,

80 9 IMPLEMENTATION

we create indices for the extensions where possible so that we do not have to
always iterate through the whole extensions of all domain predicates.

Literals Sets
We also expand literal sets using the instantiate procedure. We take the
atoms occurring in the condition to be the rule body and the set literal to be
the head. The literal set is then replaced by the instantiated set of literals. A
literal set is expanded as early as possible. If there are no global variables in
it, it is expanded before the rule is instantiated. We can do this because those
literal sets have always the same expansion.

10 EXAMPLES

In this section we give three examples of using ω-restricted cardinality con-
straint programs to model problems. The first problem is a classical planning
puzzle where a number of people have to be transported over a river, and in
the second one we want to find nondeterministic finite automata that satisfy
certain structural requirements when they are determinised.

Even though both problem domains are rather simple, they are not toy
problems. The optimal length of the solution for the planning puzzle is 16
steps long9 and the search space is large enough that the most obvious encod-
ing of the puzzle fails to find a solution. In the automata theoretic example
we have to determinize a nondeterministic automaton as a subproblem, so
the size of the instantiated program is guaranteed to be exponential with re-
spect to size of the input.

We include the SMODELS source code for all example programs in Ap-
pendix A.

In this section we use a few notational shortcuts to make the rules more
legible. First, we leave out most domain literals from the rule bodies. We
take the approach that the global variables are strictly typed. For example, in
first two examples the variable I will have the type time/1. The intuition is
that there is an implicit literal time(I) in the body of each rule that contains I
somewhere in it.

Second, we write a literal set ρX.〈l(X) : a1(X), . . . am(X)}〉 as:

l(X) : a1(X) ∧ · · · ∧ am(X)

and use the convention that a variable is local only if it occurs in one literal
set of the rule and it occurs there in some condition ai. Otherwise, it is
global. Thus, in a rule:

1 ≤ {hc(X, Y) : edge(X, Y)} ≤ 1← vtx(X)

the variable X is global since it occurs in two places and Y is local as it occurs
only in one literal set. Another example is the rule:

← 2 ≤ {push(X, Y, Dir, I) : m-square(X, Y) ∧ direction(Dir)}
Here X , Y , and Dir are local variables since they are explicitly mentioned in
the conditions of push, but I is global since it is not.

9Sam Loyd, the originator of the puzzle found a 17-step answer [38]. This author does
not know of any previously published 16-step answers.

10 EXAMPLES 81

Variable Domain literal
L, Li place(L), place(Li)
S, Si sex(S), sex(Si)
P, Pi person(P), person(Pi)

I time(I)

Table 3: Domain literals of the planning puzzle

10.1 A Planning Puzzle

Consider the following logical puzzle by Sam Loyd [38]:

It is told that four men eloped with their sweethearts, but in car-
rying out their plan were compelled to cross a stream in a boat
which would hold but two persons at a time. In the middle of
the stream, as shown in the sketch, there is a small island. It
appears that the young men were so extremely jealous that not
one of them would permit his prospective bride to remain at any
time in the company of any other man or men unless he was also
present.

Nor was any man to get into a boat alone when there happened
to be a girl alone, on the island or shore, other than the one to
whom he was engaged. This leads one to suspect that the girls
were also jealous and feared that their fellows would run off with
the wrong girl if they got a chance. Well, be that as it may, the
problem is to guess the quickest way to get the whole party across
the river.

Let us suppose the river to be two hundred yards wide, with an
island in the middle on which any number can stand. How many
trips would the boat make to get the four couples safely across in
accordance with the imposed conditions?

The first step in solving this puzzle is to define the vocabulary of predi-
cates. As the most important concepts of the puzzle are persons, their loca-
tions, and movement, we will construct the problem around the following
predicates:

• at(L, S, P, I) — the person of sex S from the couple P is at location L
at the time step T .

• boat(L, I) — the boat is at the location L at the time step T .

• row(S, P, I) — the person of sex S from the couple P changes his or
her location on the time step T .

The domain definitions for global variables are shown in Table 3.
Conceptually we divide the ω-restricted program into two parts, generator

and constraints. The generator part is used to construct all possible plans to
get all persons across, and the constraint part prunes out all candidate plans
that do not satisfy the conditions of the puzzle.

82 10 EXAMPLES

The core of the generator is two choice rules that are used to generate the
possible choices of persons who move at each time step and possible locations
of boats:

{row(S, P, I)} ← at(L, S, P, I), boat(L, I)

{boat(L, I)} .

Then, we add to the generator rules stating that all persons who row in the
boat end up in the place where the boat is going, and those who do not move
stay in the same place:

at(L, S, P, I + 1)← row(S, P, I), boat(L, I + 1)

at(L, S, P, I + 1)← at(L, S, P, I), not row(S, P, I) .

The constraint part can further be divided into two parts. The first part
ensures that the world stays consistent and the second part that ensures that
the constraints given in the puzzle are satisfied.

First three constraints state that the boat has to be in one place at a time
and it has to move on each time step:

← 2 ≤ {boat(X, I) : place(X)}
← {boat(X, I) : place(X)} ≤ 0

← boat(L, I), boat(L, I + 1)

Since a boat cannot travel empty, we have to add constraints to force at
least one and at most two travelers at each time step:

← 3 ≤ {row(S ′, P ′, I) : person(S ′, P ′)}
← {row(S ′, P ′, I) : person(S ′, P ′)} ≤ 0

Note that we do not need to explicitly state that a person has to be in a
single place since our rules for at/4 already ensure that.

Next, we start modeling the constraints given in the puzzle. First, no
woman may be in the company of men if her own groom is not present:

← at(L, woman, P1, I), not at(L, man, P1, I), at(L, man, P2, I), P1 6= P2 .

Second, no man may row alone if there is some woman other than his fiance
alone in any place. To model this constraint we need two additional predi-
cates, has-company(S, P, I) that is true if the person S-P is not alone at the
time step I and two-move(I) that is true when two persons are moving on
the time step I .

← row(man, P1, I), not two-move(I),

not has-company(woman, P2, I), P1 6= P2

two-move(I)← 2 ≤ {row(P ′, S ′, I) : person(P ′, S ′)}
has-company(woman, P, I)← 1 ≤ {at(L, S ′, P ′, I) : person(S ′, P ′)

∧ P 6= P ′},
at(L, woman, P, I) .

10 EXAMPLES 83

Finally, we define the initial state and add a constraint to force all persons to
end in the correct side of the river:

at(left, S, P, 1)

← 1 ≤ {not at(right, S ′, P ′, t + 1) : person(S ′, P ′)} .

Here t is a 0-ary constant that evaluates to the desired length of the plan.
Similarily, p is a constant that evaluates to the number of couples in the
puzzle.

The only thing that is left is to define the domain predicates that are used
above. They can be defined using the rules:

pair(1)←; . . . ; pair(p)←
time(1)←; . . . ; time(t)←

place(left)←; place(right)←; place(island)←
sex(woman)←; sex(man)←

person(S, P)← sex(S), pair(P) .

The stable models of the program above correspond to valid solutions of the
puzzle. However, the search space of the program is so large, that finding any
stable model for it takes many hours using lparse-1.0.11 and smodels-2.26 on
a 1GHz AMD Athlon XP.

If we want to find the optimal solution in a reasonable time, we have to
make our program more efficient. We can do this by encoding our knowledge
of the problem domain into constraints. For example, we know for certain
that in an optimal plan the boat may not have an identical load for two time
steps in a row since otherwise the plan could be shortened by leaving the first
move out. This constraint can be encoded as:

id-move(I)← row(S1, P1, I), row(S1, P1, I + 1),

row(S2, P2, I), row(S2, P2, I + 1),

1 ≤ {S1 6= S2, P1 < P2}
id-move(I)← row(S, P, I), row(S, P, I + 1),

not two-move(I), not two-move(I + 1)

The constraint literal 1 ≤ {S1 6= S2, P1 < P2} is true when the two persons
either belong to a different couple or they are of different sex. The use of the
<-relation is a further optimization that ensures that only one rule is created
for each pair of persons.

Another optimization that can be done is to note that it is not possible for
two persons that are of different sex and belong to different couples to move
at the same time:

← row(woman, P1, I), row(man, P2, I), P1 6= P2 .

Perhaps the most important way of reducing complexity in this case is to
reduce symmetries in it. In the puzzle each couple is identical in the sense
that they all follow the same rules. If we have a valid solution, then system-
atically swapping all moves of persons in couples i and j together results in

84 10 EXAMPLES

n
Le

n
So

l
B

as
ic

en
co

di
ng

W
ith

co
ns

tra
in

ts
O

pt
im

iz
ed

#A
t

#R
l

T
im

e
#A

t
#R

l
T

im
e

#A
t

#
R

l
T

im
e

1
1

Y
43

41
0

s
34

41
0.

01
s

43
50

0
s

2
5

Y
19

2
36

7
0.

02
s

20
1

46
8

0.
02

s
23

2
50

6
0.

01
s

4
N

15
7

29
5

0.
01

s
16

4
37

4
0

s
19

0
40

4
0

s
3

11
Y

54
0

12
41

5.
29

s
58

3
18

30
0.

48
s

64
6

19
15

0.
33

s
10

N
49

3
11

29
12

0.
86

s
53

2
16

63
0.

52
s

59
0

17
40

0.
59

4
16

Y
97

3
25

72
—

10
48

41
92

13
0.

79
s

11
74

43
20

46
.0

6
s

15
N

91
4

24
12

—
10

31
39

31
16

5.
44

s
11

03
40

49
15

6.
41

Ta
bl

e
4:

A
co

m
pa

ris
on

of
di

ffe
re

nt
en

co
di

ng
so

ft
he

pu
zz

le

10 EXAMPLES 85

Move Left Island Right
1 BCDbcd Aa+
2 ABCDbcd+ a
3 ABCDd a bc+
4 ABCDbd+ a c
5 BDbd a ACc+
6 ABDbd+ a Cc
7 ADd a BCbc+
8 ADd ab+ BCc
9 ADad+ b BCc

10 ad b ABCDc+
11 ad Bb+ ACDc
12 ad ABCDbc+
13 abd+ ABCDc
14 d ABCDabc+
15 Dd+ ABCabc
16 ABCDabcd+

Table 5: A balanced optimal solution for the 4-elopers puzzle

another valid plan. It is possible that during stable model computation bits
of these plans get mixed; each subplan is a part of a consistent answer but to-
gether they yield a contradiction. If we remove as many of these symmetries
as we can by adding suitable constraints, then we are likely to get answers
much faster than with them.

We define that two couples are equivalent if both men and both women
are in the same places. Then, we demand that persons of the lower numbered
couple have to move first.

equivalent(P1, P2, I)← at(L1, S1, P1, I), at(L1, S1, P2, I),

at(L2, S2, P1, I), at(L2, S2, P2, I),

S1 6= S2, P1 < P2

← row(S, P2, I), not row(S, P1, I),

equivalent(P1, P2, I)

After adding these constraints we could find an optimal plan in 118 sec-
onds on the same computer system. Proving optimality takes about twice
longer, 243 s. We also present a further optimized version of the program
in Appendix A.2. With this encoding, the optimal solution can be found in
46 s and the optimality proven in 156 s. We compared the three different
encodings also in cases where there are less than 4 couples. These results are
presented in Table 4.

One optimal solution for the puzzle is shown in Table 5. The men are
denoted using capital and the women with lower case letters. The location
of the boat is marked using the +-symbol. This solution is balanced in the
sense that both men and women move as many times.

86 10 EXAMPLES

Figure 14: A Sokoban game instance

10.2 Sokoban

In the game of Sokoban, the player takes the role of a warehouse keeper
(“Sokoban”) who has to rearrange a number of boxes. The Sokoban can
move boxes only by pushing them in one of the four main directions and
he cannot climb over or squeeze between them. One example Sokoban
puzzle10 is shown in Figure 14.

The first step in modeling Sokoban is to decide what a move will be. One
possibility would be to use the Sokoban’s movement directly, so that one step
of the Sokoban is one move. However, this approach has the problem that
the plans quickly become dozens or hundreds of steps long, far too long to
be solved in a reasonable amount of time. Instead, we take the approach that
a move begins when the Sokoban starts to push a box into a direction, and
ends when the box finally comes to rest and Sokoban starts to move another
box. Thus, if a box is pushed four squares in a row, it is taken to be a single
move.

In the encoding of the Sokoban problem we use extended cardinality con-
straint programs, that is, we use classical negation in some rules. The most
important predicates in use are:

• has-box(X, Y, I) — there is a box at location (X, Y) at the time step I;

• push(X, Y, Dir, I) — the Sokoban pushes the box that is at (X,Y) to
the direction Dir at the time step I ;

• can-push(X,Y, Dir, I) — the box that is at (X, Y) can be pushed to
the direction Dir at the time step I ;

• move-to(X, Y, I) — a box is pushed to (X, Y) at the time step I ;

• reachable(X,Y, I) — the Sokoban can reach (X, Y) at the time step
I ; and

• at(X, Y, I) — the Sokoban is at (X,Y) at the time step I .

When defining the domain of a puzzle, we classify the possible locations
of the warehouse into two different classes:

• square(X, Y) — there is an open space at location (X, Y); and

10This level is designed by Yoshio Murase and it is downloaded from
http://www.ne.jp/asahi/ai/yoshio/sokoban/main.htm .

10 EXAMPLES 87

Variable Domain literal
X, Y ; Xi, Yi m-square(X,Y), m-square(Xi, Yi)

Dir direction(Dir)
I time(I)

Table 6: Domain literals of Sokoban

• m-square(X, Y) — there is an open space at location (X, Y) such that
it is possible to push a box from (X, Y) to one of the target squares.

We use the predicate m-square/2 to reduce the number of possible rules.
For example, if we push a box into a corner (x, y), then there is no way
to move it again and such a move cannot belong to a valid plan. In this
case square(x, y) would be true but m-square(x, y) would not. The predicate
m-square/2 is a domain predicate that is defined using recursive rules.

As was the case in the previous section, we divide the program into two
parts, one of which generates all possible plans, and one that ensures that all
constraints of the problem are satisfied.

The core of the generator is again formed by two choice rules, one that
selects which box is pushed and another that selects the target:

{push(X, Y, Dir, I)} ← has-box(X,Y, I), can-push(X, Y, Dir, I),

has-neighbor(X, Y, Dir)
1 ≤ {move-to(X2, Y2, I) : same-segment(X1, Y1, X2, Y2, Dir)} ≤ 1←

push(X1, Y1, Dir, I), has-neighbor(X1, Y1, Dir)

Here the predicates in the rule bodies abstract much of the complexity of the
problem domain. The predicate can-push(X, Y, Dir, I) is true if the Sokoban
can push the box in (X, Y) to Dir at I . The predicate has-neighbor/3 is
a domain predicate that is true if there is possibly an empty space to the
direction Dir from (X,Y).

The predicate same-segment(X1, Y1, X2, Y2, Dir) is a domain predicate
that encodes the fact that (X1, Y1) and (X2, Y2) are on the same straight line
and there are no structural obstructions between them.

Next, we add a rule to say that we can move only one box at a time, and
the box may not be pushed over or onto another:

← 2 ≤ {push(X, Y, Dir, I) : m-square(X, Y) ∧ direction(Dir)}
← push(X1, Y1, Dir, I), move-to(X3, Y3, I), has-box(X2, Y2, I),

same-segment(X1, Y1, X2, Y2, Dir), same-segment(X2, Y2, X3, Y3, Dir)
← has-box(X, Y, I), move-to(X, Y, I) .

A box that is pushed ends up in the new place, and a box that is not moved
stays in place:

has-box(X, Y, I + 1)← move-to(X, Y, I)

¬has-box(X, Y, I + 1)← push(X, Y, Dir, I)

has-box(X, Y, I + 1)← not ¬has-box(X, Y, I + 1), has-box(X, Y, I)

88 10 EXAMPLES

Next, we define when the Sokoban can push boxes. Here we need four rules,
one for each direction. All rules share the same form:

can-push(X,Y, east, I)← has-box(X, Y, I), not has-box(X + 1, Y, I),

reachable(X − 1, Y, I), square(X − 1, Y)

m-square(X, Y), m-square(X + 1, Y) .

The predicate reachable/3 denotes all locations that the Sokoban can reach
at a given time step. It is computed as a transitive closure of unblocked
squares that are adjacent to the Sokoban:

reachable(X,Y, I)← square(X,Y), at(X, Y, I)

reachable(X + 1, Y, I)← reachable(X, Y, I), not has-box(X ′ + 1, Y ′, I)

square(X,Y), square(X + 1, Y) .

Similar rules are needed also for the other three directions. We explicitly
mention the domain literals square/2 in the bodies of these rules to empha-
size that the Sokoban can himself move to places where he should not push
boxes into.

Before defining the domain predicates, we have to add a rule that explains
where the Sokoban is after a move:

at(X, Y, I + 1)← push(X, Y, Dir, I) .

In defining the domain predicates we once again have to use transitive
closure in defining some recursive relations. First, we define the predicates
square/2 and target-square/2 directly as facts according to the given problem
instance. Based on this predicate we define the predicate m-square/2 to be
the set of squares from where it is possible to push a box to some target loca-
tion. This rules out, for example, squares in a corner since if a box is pushed
to the corner, it may never be retrieved from it.

m-square(X, Y)← square(X, Y), has-target-route(X, Y)

has-target-route(X, Y)← target-square(X, Y)

has-target-route(X + 1, Y)← has-target-route(X, Y), square(X, Y),

square(X + 1, Y), square(X − 1, Y) .

In the third rule the atom square(X − 1, Y) was necessary so that we can
ensure that there is really space to push the box to the correct direction.
Obviously, we again need four rules of this form, one for each direction.

The final missing domain predicate is same-segment/4 that again has to
be defined recursively using eight rules of the form:

same-segment(X, Y, X + 1, Y, east)← m-square(X, Y),

m-square(X, Y).

same-segment(X1, Y, X2 + 1, Y, east)← same-segment(X1, Y, X2, Y, east),

m-square(X1, Y),

m-square(X2, Y),

m-square(X2 + 1, Y) .

10 EXAMPLES 89

Our goal state is such that all target squares have to have a box in the final
step:

← 1 ≤ {not has-box(X, Y, t + 1) : target-square(X, Y)} .

As in the planning puzzle example, we can make the program more ef-
ficient by adding certain constraints to prune out incorrect branches of the
search tree. For example, the Sokoban should never push two boxes together
along a wall since they will be stuck there. This constraint can be encoded
as:

edge-pair(X,Y, X + 1, Y)← not target-square(X, Y),

not target-square(X + 1, Y),

square(X, Y), square(X + 1, Y),

not square(X,Y − 1),

not square(X + 1, Y − 1) .

← edge-pair(X1, Y1, X2, Y2),

has-box(X1, Y1, I), has-box(X2, Y2, I) .

Similar rules may be used to forbid cases where three boxes are pushed to an
L-shape around a corner or four boxes are pushed together to form a square.

There are also optimizations that make candidate solutions shorter. For
example, a box should not be pushed twice to the same direction:

push-dir(Dir, I)← push(X, Y, Dir, I)

← push-dir(Dir, I), move-to(X, Y, I),

push(X, Y, Dir, I + 1) .

This program can be used to find the solution for the puzzle instance
shown in Figure 14. An optimal 10-step solution is shown in Figure 15.

10.3 Creating Finite Automata

A deterministic finite automaton (DFA) is a five-tuple M = 〈Q, Σ, δ, s, F 〉
where Q is a finite set of states, Σ a finite alphabet, s the initial state, F ⊆ Q a
set of accepting states, and a transition function δ : Q×Σ→ Q that associates
a new state to each pair of a state and input symbol. A non-deterministic finite
automaton (NFA) is otherwise similar but instead of a transition function
there is a transition relation ∆ ⊆ Q× Σ ∪ {ε} ×Q. Each nondeterministic
automaton can be translated into a possibly exponentially larger deterministic
automaton using the well-known subset construction (see, for example, [32]).

In this section we consider the problem of creating finite automata that
satisfy certain structural properties. When teaching a basic course on the-
oretical computer science, there is a need for a large number of automata
theoretic exercises especially if each student should have exercises that are
unique for him or her. Even though there are many published exercises in
the numerous text books on the subject, they are likely to run out if the num-
ber of students on the courses reaches several hundreds. We would like to
generate a number of exercises that are not too easy or too difficult and that
are all roughly equally difficult.

90 10 EXAMPLES

Figure 15: Solution of the Sokoban instance

Here we concentrate on the problem of determinising a finite automa-
ton. In practice, we want to generate a number of non-deterministic finite
automata M such that determinising them leads to interesting deterministic
automata. We are interested in the following parameters of automata:

• n — the number of states in the NFA;

• mind, maxd — the minimum and the maximum number of states in a
corresponding DFA;

• minf , maxf — the minimum and the maximum number of accepting
states in a corresponding DFA;

• minE, maxE — the minimum and the maximum number of edges in
the NFA;

• minσ — the minimum number of transitions in NFA for each symbol
of the alphabet Σ;

• minε, maxε — the minimum and the maximum number of empty ε-
transitions in the NFA; and

• mina, maxa — the minimum and maximum number of states in the
NFA that have two or more transitions sharing the same input symbol.

In the first part of the program we nondeterministically generate a NFA.
We start by defining the states and the alphabet of the NFA. We will use
Σ = {a, b} as the alphabet.

nd-state(1)←; · · ·; nd-state(n)←
symbol(a)←; symbol(b)←;

nd-symbol(S)← symbol(S)

nd-symbol(ε)← .

10 EXAMPLES 91

Next, we choose the sets of transitions and final states of the NFA:

{nd-transition(Q1, S,Q2)} ← nd-state(Q1), nd-state(Q2), nd-symbol(S)

{nd-final(Q)} ← nd-state(Q) .

The transitions of the NFA have to fullfill the given parameters:

okE ← minE ≤ {nd-transition(Q1, S,Q2) : nd-state(Q1)∧
nd-symbol(S) ∧ nd-state(Q2)} ≤ maxE

okε ← minε ≤ {nd-transition(Q1, ε, Q2) : nd-state(Q1)∧
nd-state(Q2)〉} ≤ maxε

oka ← mina ≤ {has-two(Q) : nd-state(Q)} ≤ maxa

has-two(Q1)← 2 ≤ {nd-transition(Q1, S,Q2) : nd-state(Q2)},
nd-symbol(S), nd-state(Q1)

okσ ← minσ ≤ {nd-transition(Q1, S,Q2) : nd-state(Q1)∧
nd-state(Q2)}, symbol(S)

← 1 ≤ {not okε, not oka, not okE, not okΣ, not okd} .

Additionally, we want to impose some sanity constraints for the NFA. Namely,
every state of the automaton should be reachable from the initial state, and
there should not states with no path to an accepting state.

reachable(1)←
reachable(Q2)← nd-transition(Q1, S,Q2), reachable(Q1),

nd-state(Q1), nd-state(Q2), symbol(S)

← nd-state(Q), not reachable(Q)

accepts(Q)← nd-final(Q), nd-state(Q)

accepts(Q1)← nd-transition(Q1, S,Q2), accepts(Q2),

nd-state(Q1), nd-state(Q2), symbol(S)

← nd-state(Q), not accepts(Q)

Finally, every symbol in alphabet should occur in the machine, no state
should have only a single ε-transition leading out from it, and there should
be no empty self-loops:

← {nd-transition(Q1, S,Q2) : nd-state(Q1) ∧ nd-state(Q2)} ≤ 0,

symbol(S)

← {nd-transition(Q1, ε, Q2) : nd-state(Q2)} ≤ 1,

{nd-transition(Q1, S,Q3) : nd-state(Q3) ∧ nd-symbol(S)} ≤ 0,

nd-state(Q1)

← nd-transition(Q, ε, Q), nd-state(Q) .

Next, we want to determinize the NFA that was generated by the above
rules. Each state of the DFA corresponds to a set of states of the NFA. Deter-
minizing an n-state NFA may result in a 2n state DFA so we will encode the
states of the DFA using n bit natural numbers. The idea is that if the ith bit

92 10 EXAMPLES

of the DFA state q is true, then the state qi of the NFA belongs to the state
set of q. We model this relation using the predicate in(Qn, Qd) that is true
exactly when qn ∈ qd. The state predicates are defined explicitly by the set of
facts:

{in(i, j)←| the jth bit of i is 1} ∪ {d-state(i)← i ∈ [0, 2n − 1]}

When we create the states of the DFA, we have to compute the ε-closures of
the states of the NFA:

closure(Q,Q)← nd-state(Q)

closure(Q1, Q2)← nd-transition(Q1, ε, Q2), nd-state(Q1), nd-state(Q2)

closure(Q1, Q3)← nd-transition(Q2, ε, Q3), closure(Q1, Q2),

nd-state(Q1), nd-state(Q2), nd-state(Q3) .

The initial state of the DFA contains the whole ε-closure of the initial state
of the NFA and nothing more. Here the definition is simpler if we use two
auxiliary predicates: not-initial/1 to denote the DFA states that contain NFA
states that do not belong to the ε-closure of the initial state and impossible/1
to denote the DFA states that are not ε-closed:

d-initial(Q)← d-state(Q), in-state(1, Q),

not impossible(Q),

not not-initial(Q)

not-initial(Q)← in-state(N, Q), not closure(1, N)

impossible(Q)← in-state(N1, Q), not in-state(N2, Q), closure(N1, N2),

d-state(Q), nd-state(N1), nd-state(N2) .

There is a transition from a ε-closed DFA state qi to qj with symbol a if
qj contains the ε-closure of all states q′ such that there is a NFA transition
(qi, a, q′) ∈ ∆. The simplest way to define this relation with rules is via its
complement; assume by default that all transitions are possible, but remove
all incorrect transitions:

d-transition(Q1, S,Q2)← not impossible(Q2), not wrong(Q1, S,Q2)

d-state(Q1), d-state(Q2), symbol(S),

d-reachable(Q1) .

The predicate d-reachable/1 is used to simplify the resulting DFA by re-
moving all unreachable states and their transitions from it. The predicate
wrong/3 is defined as follows:

wrong(Q1, S,Q2)← in-state(N1, Q1), not in-state(N2, Q2),

nd-transition(N1, S,N2), symbol(S)

wrong(Q1, S,Q2)← in-state(N, Q2), not has-transition(Q1, S,N),

d-state(Q1), symbol(S)

The predicate has-transition(Q1, S,N) encodes the fact that there is some
way to reach from some state belonging in Q1 to the NFA state N while

10 EXAMPLES 93

NFA:

q1

q2 q3 q4

a

ε

a
b

b

b

a, ε b

b

DFA:

q13

q14

q10

q12
q8

q2

q0

a b

b

a

a

b

a

b

a
b

b a

a, b

Figure 16: A NFA and the corresponding DFA

reading the symbol S from input:

has-transition(Q,S, N2)← in-state(N1, Q), nd-transition(N1, S,N2),

nd-state(N2), symbol(S)

has-transition(Q,S, N2)← has-transition(Q,S, N1), closure(N1, N2),

q-state(Q), symbol(S),

nd-state(N1), nd-state(N2) .

We find the set of reachable DFA states by computing the transitive closure
of the transition function:

d-reachable(Q)← d-initial(Q), d-state(Q)

d-reachable(Q2)← d-transition(Q1, S,Q2), d-state(Q1),

d-state(Q2), symbol(S) .

Finally, a DFA state is accepting if some NFA state belonging to it is:

d-final(Q)← d-reachable(Q), in-state(N, Q), nd-final(N) .

Finally, we want to ensure that the resulting DFA has a correct number of
states:

okd ← mind ≤ {d-reachable(Q) : d-state(Q)} ≤ maxd

okf ← minf ≤ {d-final(Q) : d-state(Q)} ≤ maxf

← 1 ≤ {not okd, not okf} .

As the size of the ground instantiation of the program is always exponen-
tial to the number of states in the NFA and computing a stable model is NP-
complete with respect to size of the instantiation, we can expect it to handle
only small problem instances. In practice, this is not a severe restriction since
at least the first exercises on a basic course should be quite small.

The Figure 16 shows a NFA and the corresponding DFA created with the
program. The parameters were:

n = 4 minσ = 2 mind = 7 maxd = 9
minE = 6 maxE = 20 minf = 2 maxf = 3
minε = 2 maxε = 3 mina = 2 maxa = 4 .

94 10 EXAMPLES

11 CONCLUSIONS AND FUTURE WORK

In this work we defined the stable model semantics for cardinality constraint
programs. The semantics of a program is defined with respect to a data
model. The basic idea is that all rules with variables are replaced by their
ground instantiations. The instantiation is done in two steps: first the global
variables in a rule are instantiated, and then the local variables that occur in
literal sets are expanded.

We also defined ω-restricted programs that allow a programmer to define
the data model using inference rules. The basic idea is to construct a hier-
archy of predicate symbols occurring in the program so that more complex
data predicates are defined in terms of simpler predicates. The ω-restricted
programs have the property that they stay decidable even if function sym-
bols are allowed. The ω-restricted programs have been implemented in the
SMODELS system.

We gave a framework for extending the stable model semantics for dif-
ferent types of constraint literals and as an example defined four different
semantics: cardinality constraints with variables in bounds, weight constraint
literals, classical negation, and partial model semantics.

We showed how some of these semantics can be implemented using stan-
dard cardinality constraint rules and also showed how the ordered disjunction
semantics can be implemented using a dual-program construction.

We analyzed the computational complexity and found that in the general
case ω-restricted programs are 2-NEXP-complete, and NEXP-complete if
function symbols are not allowed.

Finally, we presented a few implementation details of the SMODELS sys-
tem as well as three larger programming examples where ω-restricted pro-
grams were used to solve practical problems.

11.1 Future Work

This work leaves room for further work on several different areas of cardinality
constraint programs. For example, the formal definitions for data models
presented in Section 4 are complex and it may be possible to find a simpler
way to explain the necessary concepts.

Another interesting area is identifying and analyzing different data models
that define different types of built-in functions and predicates. For example,
the SMODELS system contains built-in range definitions of the form

d(1 . . n)←

where n may be any term evaluating to an integer. This rule defines the set
of n + 1 facts:

{d(i)←| 1 ≤ i ≤ n} .

It is clear that range definitions cause significant increase in computational
complexity but it is not at all clear how difficult the resulting programs are to
solve.

One further possible area of research is to investigate different kinds of
constraint literals. In some cases we might want to compute aggregates like

11 CONCLUSIONS AND FUTURE WORK 95

averages, minima, and maxima of some arguments of a set of literals. For
example, if we model the behavior of some shopping agent we might want
to know if the highest-priced item on our shopping list costs more than some
predetermined limit. We could express that using syntax like:

expensive← max(M, 2) {buy(X,P) : price(P) ∧ in-list(X)},
limit(L), M > L

where max(M, 2) denotes that M should get the maximum value occurring
in the second argument of the literals in the set.

A fourth avenue of research is to provide translations from various logic
programming semantics into cardinality constraint programs. This provides
a method for quick prototyping logic program implementations. Cardinality
constraint programs are quite expressive and you often can create translations
along the line of those presented in Section 7 that can easily implemented
and so the properties of the different semantics can be examined without
having to create a complete implementation from the scratch.

In conclusion, we see that the subject of cardinality constraints and similar
constructs still contains many topics suitable for future research.

ACKNOWLEDGEMENTS

I am thankful to Professor Ilkka Niemelä who gave me an opportunity to work
in the Laboratory for Theoretical Computer Science and who instructed me
during this work. I am also grateful to Docent Tomi Janhunen for his helpful
comments on this work.

This work has been financed by Helsinki Graduate School in Computer
Science and Engineering as well as by the Academy of Finland (project
53695).

REFERENCES

[1] C. Anger, K. Konczak, and T. Linke. Nomore : A system for non-
monotonic reasoning under answer set semantics. In Proceedings of the
6th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’01), pages 406–410, September 2001.

[2] K. Apt and R. Bol. Logic programming and negation: A survey. Journal
of Logic Programming, 19–20:9–71, 1994.

[3] Y. Babovich and M. Maratea. Cmodels-2: SAT-based answer set solver
enhanced to non-tight programs. In Proceedings of the 7th Interna-
tional Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’04), to appear, Miami, Florida, January 2004.

[4] P. A. Bonatti. Resoning with infinite stable models. In Proceedings of
the 17th International Joint Conference on Artificial Intelligence (IJ-
CAI’01), pages 603–610, August 2001.

96 REFERENCES

[5] G. Brewka. Adding priorities and specificity to default logic. In Logics
in Artificial Intelligence, European Workshop, JELIA ’94, pages 247–
260, York, UK, 1994.

[6] G. Brewka. Well-founded semantics for extended logic programs with
dynamic preferences. Journal of Artificial Intelligence Research, 4:19–
36, 1996.

[7] G. Brewka. Logic programming with ordered disjunction. In Proceed-
ings of the Eighteenth National Conference on Artificial Intelligence
and Fourteenth Conference on Innovative Applications of Artificial In-
telligence (AAAI-02), pages 100–105. Morgan Kaufmann, 2002.

[8] G. Brewka and T. Eiter. Preferred answer sets for extended logic pro-
grams. Artificial Intelligence, 109:297–356, 1999.

[9] G. Brewka and T. Eiter. Prioritizing default logic. In Intellectics and
Computational Logic, pages 27–45, 2000.

[10] G. Brewka, I. Niemelä, and T. Syrjänen. Implementing ordered dis-
junction using answer set solvers for normal programs. In The Pro-
ceedings of the 8th European Conference on Logics in Artificial Intel-
ligence (JELIA’02), pages 444–455, 2002.

[11] F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in
disjunctive datalog. In Proceedings of the 4th International Conference
on Logic Programming and Non-Monotonic Reasoning, pages 2–17.
Springer-Verlag, 1997.

[12] P. Cholewiński, V. W. Marek, and M. Truszczyński. Default reason-
ing system DeReS. In L. C. Aiello, J. Doyle, and S. Shapiro, editors,
KR’96: Principles of Knowledge Representation and Reasoning, pages
518–528. Morgan Kaufmann, San Francisco, California, 1996.

[13] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and
expressive power of logic programming. ACM Computing Surveys,
33:374–425, 2001.

[14] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[15] J. P. Delgrande, T. Schaub, and H. Tompits. Logic programs with com-
piled preferences. In Proceedings of the 14th European Conference on
Artificial Intelligence (ECAI’2000), pages 464–468, Berlin, Germany,
August 2000.

[16] T. Dell’Armi, W. Faber, G. Ielpa, C. Koch, N. Leone, S. Perri, and
G. Pfeifer. System description: Dlv. In Proceedings of the 6th Interna-
tional Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’01), pages 424 – 428, Vienna, Austria, September 2001.
Springer-Verlag.

REFERENCES 97

[17] Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning prob-
lems in nonmonotonic logic programs. In Proceedings of the Fourth
European Conference on Planning, pages 169–181, 1997.

[18] D. East and M. Truszczyński. Propositional satisfiability in answer-set
programming. In Proceedings of Advances in Artificial Intelligence,
Joint German/Austrian Conference on AI (KI-2001), pages 138–153,
2001.

[19] T. Eiter, W. Faber, G. Pfeifer, and N. Leone. Computing preferred an-
swer sets by meta-interpretation in answer set programming. Research
Report 1843–02–01, Institut Für Informationssysteme, Technische Uni-
versität Wien, January 2002.

[20] T. Eiter and G. Gottlob. Propositional circumscription and extended
closed-world reasoning are ΠP

2 -complete. Theoretical Computer Sci-
ence, 114:231–245, 1993.

[21] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Trans-
actions on Database Systems, 22(3):364–418, September 1997.

[22] Eiter, T., Leone, N., Pfeifer G., Mateis C., and Scarcello, F. The kr
system dlv : Progress report, comparisons and benchmarks. In Pro-
ceedings of the Sixth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’98), pages 406–417. Morgan
Kaufmann Publishers, 1998.

[23] W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using database op-
timization techniques for nonmonotonic reasoning. In Proceedings
of the Seventh International Workshop on Deductive Databases and
Logic Programming (DDLP’99), pages 135–139, 1999.

[24] M. Gelfond and V. Lifschitz. The stable model semantics for logic
programming. In Proceedings of the 5th International Conference on
Logic Programming, pages 1070–1080, Seattle, USA, August 1988. The
MIT Press.

[25] M. Gelfond and V. Lifschitz. Logic programs with classical negation.
In Proceedings of the 7th International Conference on Logic Program-
ming, pages 579–597, Jerusalem, Israel, June 1990. The MIT Press.

[26] M. Gelfond and V. Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365–385, 1991.

[27] M. Gelfond and T. Son. Reasoning with prioritized defaults. In Se-
lected Papers presented at the Workshop on Logic Programming and
Knowledge Representation (LPKR’97), pages 164–223, 1998.

[28] K. Heljanko. Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe petri nets. In Proceed-
ings of the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 240–254. Springer-Verlag,
1999.

98 REFERENCES

[29] T. Janhunen. Comparing the expressive powers of some syntactically
restricted classes of logic programs. In Proceedings of the First Interna-
tional Conference on Computational Logic (CL 2000), pages 852–866,
London, UK, July 2002.

[30] T. Janhunen, I. Niemelä, P. Simons, and J.-H. You. Unfolding par-
tiality and disjunctions in stable model semantics. In Principles of
Knowledge Representation and Reasoning: Proceedings of the 7th In-
ternational Conference, pages 411–419. Morgan Kaufmann Publishers,
April 2000.

[31] N. Leone, S. Perri, and F. Scarcello. Improving asp instantiators
by join-ordering methods. In Proceedings of the 6th International
Conference Logic Programming and Nonmonotonic Reasoning (LP-
NMR’01), pages 280–294, Vienna, Austria, September 2001.

[32] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Com-
putation (2nd ed). Prentice Hall, 1998.

[33] V. Lifschitz. Answer set planning. In D. De Schreye, editor, Pro-
ceedings of the 16th International Conference on Logic Programming
(ICLP’99), pages 25–37, Las Cruces, New Mexico, December 1999.
The MIT Press.

[34] V. Lifschitz. Answer set programming and plan generation. Artificial
Intelligence, 138:39–54, 2002.

[35] V. Lifschitz and H. Turner. Splitting a logic program. In Proceedings of
the Eleventh International Conference on Logic Programming, pages
23–37, 1994.

[36] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic pro-
gram by SAT solvers. In Proceedings of the 18th National Conference
on Artificial Intelligence, pages 112–118, Edmonton, Alberta, Canada,
July/August 2002. The AAAI Press.

[37] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
1987.

[38] S. Loyd. Mathematical Puzzles of Sam Loyd. Dover, 1959.

[39] V. Marek and M. Truszczyński. Stable models and an alternative logic
programming paradigm. In K. Apt, V. Marek, M. Truszczyński, and
D. Warren, editors, The Logic Programming Paradigm: a 25-Year Per-
spective, pages 375–398. Springer-Verlag, 1999. cs.LO/9809032.

[40] V. W. Marek and J. B. Remmel. On the foundations of answer set pro-
gramming. In Answer Set Programming: Towards Efficient and Scal-
able Knowledge Representation and Reasoning, pages 124–131. AAAI
Press, March 2001.

[41] V. W. Marek and J. B. Remmel. On logic programs with cardinality
constraints. In Proceedings of the 9th International Workshop on Non-
Monotonic Reasoning, pages 219–228, 2002.

REFERENCES 99

[42] V. W. Marek and J. B. Remmel. Set constraints in logic programming,
2002. Unpublished draft.

[43] V. W. Marek and M. Truszczyński. Nonmonotonic Logic. Springer-
Verlag, 1993.

[44] W. Marek and M. Truszczyński. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm: a 25-
year Perspective, pages 375–398. Springer-Verlag.

[45] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of the
Association for Computing Machinery, 38:588–619, 1991.

[46] I. Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. In Proceedings of the Workshop on Computa-
tional Aspects of Nonmonotonic Reasoning, pages 72–79, 1998.

[47] I. Niemelä. Logic programs with stable model semantics as a constraint
programming paradigm. Annals of Mathematics and Artificial Intelli-
gence, 25(3,4):241–273, 1999.

[48] I. Niemelä and P. Simons. Efficient implementation of the well-
founded and stable model semantics. In M. Maher, editor, Proceed-
ings of the Joint International Conference and Symposium on Logic
Programming, pages 289–303, Bonn, Germany, September 1996. The
MIT Press.

[49] I. Niemelä and P. Simons. Smodels – an implementation of the stable
model and well-founded semantics for normal logic programs. In Pro-
ceedings of the 4th International Conference on Logic Programming
and Non-Monotonic Reasoning, pages 420–429, Dagstuhl, Germany,
July 1997. Springer-Verlag.

[50] I. Niemelä and P. Simons. Extending the smodels system with cardinal-
ity and weight constraints. In J. Minker, editor, Logic-Based Artificial
Intelligence, pages 491–521. Kluwer Academic Publishers, 2000.

[51] I. Niemelä, P. Simons, and T. Soininen. Stable model semantics of
weight constraint rules. In Proceedings of the 5th International Con-
ference on Logic Programming and Nonmonotonic Reasoning, pages
317–331, El Paso, Texas, USA, December 1999. Springer-Verlag.

[52] C. H. Papadimitriou. Computational Complexity. Addison-Wesley
Publishing Company, Inc, 1994.

[53] T. C. Przymusinski. Stationary semantics for disjunctive logic pro-
grams. In Proceedings of the North American Logic Programming
Conference, pages 40–59, Austin, Texas, 1990. MIT Press.

[54] T. C. Przymusinski. Stable semantics for disjunctive programs. New
Generation Computing Journal, 9(3):401–424, 1991.

[55] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–
132, 1980.

100 REFERENCES

[56] J. Rintanen. Lexicographic Ordering as a Basis of Priorities in Default
Reasoning. PhD thesis, Helsinki University of Technology, Finland,
1997.

[57] J. Rintanen. Lexicographic priorities in default logic. Artificial Intelli-
gence, 106(2):221–265, 1998.

[58] C. Sakama and K. Inoue. An alternative approach to the semantics of
disjunctive logic programs and deductive databases. Journal of Auto-
mated Reasoning, 13:145–172, 1994.

[59] C. Sakama and K. Inoue. Prioritized logic programming and its applica-
tion to commonsense reasoning. Artificial Intelligence, 123(1-2):185–
222, 2000.

[60] T. Schaub and K. Wang. A comparative study of logic programs with
preference. In Proceedings of the 17th International Joint Conference
on Artificial Intelligence (IJCAI’01), pages 597–602, Seattle, Washing-
ton, USA, 2001.

[61] R. Sedgewick. Algorithms in C. Addison-Wesley Publishing Company,
Inc, 1990.

[62] P. Simons. Towards constraint satisfaction through logic programs and
the stable model semantics. Research Report 47, Helsinki University of
Technology, Helsinki, Finland, August 1997.

[63] P. Simons. Extending the stable model semantics with more expressive
rules. In Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning, pages 305–316, El Paso,
Texas, USA, December 1999. Springer-Verlag.

[64] P. Simons. Extending and implementing the stable model semantics.
Research Report 58, Helsinki University of Technology, Helsinki, Fin-
land, 2000.

[65] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing
the stable model semantics. Artificial Intelligence, 138(1–2):181–234,
2002.

[66] T. Soininen. An Approach to Knowledge Representation and Reason-
ing for Product Configuration Tasks. PhD thesis, Helsinki University of
Technology, Finland, 2000.

[67] T. Soininen and I. Niemelä. Formalizing configuration knowledge us-
ing rules with choices. Technical Report TKO-B142, Laboratory of In-
formation Processing Science, Helsinki University of Technology, 1998.

[68] T. Soininen and I. Niemelä. Developing a declarative rule language
for applications in product configuration. In Proceedings of the First
International Workshop on Practical Aspects of Declarative Languages,
pages 305–319. Springer-Verlag, January 1999.

REFERENCES 101

[69] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen. Representing
configuration knowledge with weight constraint rules. In Proceedings
of the AAAI Spring 2001 Symposium on Answer Set Programming: To-
wards Efficient and Scalable Knowledge, Stanford, USA, March 2001.

[70] T. Syrjänen. Implementation of local grounding for logic programs
with stable model semantics. Technical Report B 18, Helsinki Univer-
sity of Technology, Helsinki, Finland, October 1998.

[71] T. Syrjänen. A rule-based formal model of software configuration. Re-
search Report A 55, Helsinki University of Technology, Laboratory for
Theoretical Computer Science, Helsinki, Finland, December 1999.

[72] T. Syrjänen. Including diagnostic information in configuration models.
In Proceedings of the First International Conference on Computational
Logic, pages 837–851, London, UK, July 2000. Springer-Verlag.

[73] T. Syrjänen. Modelling the game of life using logic programs. In
N. Husberg, T. Janhunen, and I. Niemelä, editors, Leksa Notes in Com-
puter Science, Festschrift in Honour of Professor Leo Ojala, pages 115–
124. 2000.

[74] T. Syrjänen. Optimizing configurations. In Proceedings of the ECAI
Workshop W02 on Configuration, pages 85–90, Berlin, Germany, Au-
gust 2000.

[75] T. Syrjänen. Omega-restricted logic programs. In Proceedings of
the 6th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’01), Vienna, Austria, September 2001.
Springer-Verlag.

[76] T. Syrjänen. Version spaces and rule-based configuration management.
In Working notes of the IJCAI 2001 Workshop on Configuration, Au-
gust 2001.

[77] T. Syrjänen and I. Niemelä. The smodels system. In Proceedings of the
6th International Conference on Logic Programming and Nonmono-
tonic Reasoning, Vienna, Austria, September 2001. Springer-Verlag.

[78] T. Syrjänen. Lparse User’s Manual. Available at:
<url:http://www.tcs.hut.fi/Software/smodels>.

[79] M. van Emden and R. Kowalski. The semantics of predicate logic as
a programming language. Journal of the Association for Computing
Machinery, 23:733–742, 1976.

[80] A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics
for general logic programs. Journal of the Association for Computing
Machinery, 38(3):620–650, July 1991.

102 REFERENCES

A SOURCE CODE FOR EXAMPLE PROGRAMS

Here we give the complete smodels source codes for the example problems
of Section 10.

A.1 Planning Puzzle

pair(1..p).
time(1..t).
place(left; right; island).
sex(woman; man).
person(S, P) :- sex(S), pair(P).

{ row(S, P, I) } :-
at(From, S, P, I),
boat(From, I),
time(I),
place(From),
person(S, P).

{ boat(L, I) : place(L) } :- time(I).
boat(right, t+1).

at(To, S, P, I+1) :-
row(S, P, I),
boat(To, I+1),
time(I),
place(To),
person(S, P).

at(X, S, P, I+1) :-
at(X, S, P, I),
not row(S, P, I),
time(I),
place(X),
person(S, P).

:- 2 { boat(X, I) : place(X) }, time(I).
:- { boat(X, I) : place(X) } 0, time(I).
:- boat(X, I), boat(X, I+1), place(X), time(I).
:- 3 { row(S, P, I) : person(S, P) }, time(I).
:- { row(S, P, I) : person(S, P) } 0, time(I).

:- at(X, woman, P_1, I),
not at(X, man, P_1, I),
at(X, man, P_2, I),
pair(P_1 ; P_2), P_1 != P_2,
place(X), time(I).

A SOURCE CODE FOR EXAMPLE PROGRAMS 103

:- row(man, P_1, I),
not two_move(I),
not has_company(woman, P_2, I),
P_1 != P_2,
pair(P_1 ; P_2),
time(I).

two_move(I) :-
2 { row(S, P, I) : person(S, P) },
time(I).

has_company(woman, P_1, I) :-
1 { at(X, S, P, I) : person(S, P)

: P != P_1 },
at(X, woman, P_1, I),
pair(P_1),
place(X),
time(I).

at(left, S, P, 1) :- person(S, P).
:- 1 { not at(right, S, P, t+1)

: person(S, P) } .

A.2 Heavily Optimized Planning Puzzle

pair(1..p).
time(1..t).
place(left; right; island).
sex(woman; man).
person(S, P) :- sex(S), pair(P).

{ row(S, P, I) } :-
at(From, S, P, I),
boat(From, I),
time(I),
place(From),
person(S, P).

{ boat(L, I) : place(L) } :- time(I).
boat(right, t+1).

at(To, S, P, I+1) :-
row(S, P, I),
boat(To, I+1),
time(I),
place(To),
person(S, P).

at(X, S, P, I+1) :-

104 A SOURCE CODE FOR EXAMPLE PROGRAMS

at(X, S, P, I),
not row(S, P, I),
time(I),
place(X),
person(S, P).

:- 2 { boat(X, I) : place(X) }, time(I).
:- { boat(X, I) : place(X) } 0, time(I).
:- boat(X, I), boat(X, I+1), place(X), time(I).
:- 3 { row(S, P, I) : person(S, P) }, time(I).
:- { row(S, P, I) : person(S, P) } 0, time(I).

:- at(X, woman, P_1, I),
not at(X, man, P_1, I),
at(X, man, P_2, I),
pair(P_1 ; P_2), P_1 != P_2,
place(X), time(I).

:- row(man, P_1, I),
not two_move(I),
not has_company(woman, P_2, I),
P_1 != P_2,
pair(P_1 ; P_2),
time(I).

two_move(I) :-
2 { row(S, P, I) : person(S, P) },
time(I).

has_company(woman, P_1, I) :-
1 { at(X, S, P, I) : person(S, P)

: P != P_1 },
at(X, woman, P_1, I),
pair(P_1),
place(X),
time(I).

at(left, S, P, 1) :- person(S, P).

:- 1 { not at(right, S, P, t+1)
: person(S, P) }.

%% Optimizations
% No identical moves:
id_move(I) :-

row(S, P_1, I),
row(S, P_2, I),
row(S, P_1, I+1),
row(S, P_2, I+1),

A SOURCE CODE FOR EXAMPLE PROGRAMS 105

time(I), I < t,
sex(S),
pair(P_1; P_2), P_1 < P_2.

id_move(I) :-
row(S_1, P, I),
row(S_2, P, I),
row(S_1, P, I+1),
row(S_2, P, I+1),
time(I), I < t,
sex(S_1 ; S_2), S_1 < S_2,
pair(P).

id_move(I) :-
row(S, P, I),
row(S, P, I+1),
not two_move(I),
not two_move(I+1),
time(I), I < t,
person(S, P).

:- id_move(I), time(I), I < t.

:- row(woman, P_1, I),
row(man, P_2, I),
pair(P_1 ; P_2), P_1 != P_2,
time(I).

equivalent(P_1, P_2, I) :-
at(L_1, S_1, P_1, I),
at(L_1, S_1, P_2, I),
at(L_2, S_2, P_1, I),
at(L_2, S_2, P_2, I),
pair(P_1 ; P_2), P_1 < P_2,
sex(S_1 ; S_2), S_1 < S_2,
place(L_1 ; L_2),
time(I).

:- equivalent(P_1, P_2, I),
row(S, P_2, I),
not row(S, P_1, I),
pair(P_1 ; P_2), P_1 < P_2,
sex(S),
time(I).

A.3 Sokoban

time(1..n).
direction(north ; east ; west ; south).

106 A SOURCE CODE FOR EXAMPLE PROGRAMS

% We only try to move to places from where there
% is a route to a target location:
move_square(X, Y) :-

square(X, Y),
has_target_route(X, Y).

has_target_route(X, Y) :-
target_square(X, Y).

has_target_route(X, Y) :-
square(X, Y ; X+1, Y; X-1, Y),
has_target_route(X+1, Y).

has_target_route(X, Y) :-
square(X, Y ; X-1, Y; X+1, Y),
has_target_route(X-1, Y).

has_target_route(X, Y) :-
square(X, Y ; X, Y+1; X, Y-1),
has_target_route(X, Y+1).

has_target_route(X, Y) :-
square(X, Y ; X, Y+1; X, Y-1),
has_target_route(X, Y-1).

% A box may be pushed if it can be pushed:
{ push(X, Y, Dir, I) } :-

can_push(X, Y, Dir, I),
has_box(X, Y, I),
has_neighbor(X, Y, Dir),
possible_box(X, Y, I),
time(I).

% No two boxs may be pushed at one time
:- 2 { push(X, Y, Dir, I) : move_square(X, Y)

: direction(Dir) },
time(I).

% A box ends where it is pushed to
has_box(X, Y, I+1) :-

move_to(X, Y, I),
move_square(X, Y),
time(I).

% A box moves away when pushed
-has_box(X, Y, I+1) :-

push(X, Y, Dir, I),
time(I),

A SOURCE CODE FOR EXAMPLE PROGRAMS 107

has_neighbor(X, Y, Dir).

% A box stays at a place if not pushed
has_box(X, Y, I+1) :-

not -has_box(X, Y, I+1),
has_box(X, Y, I),
time(I),
move_square(X, Y).

% A box ends to exactly one position
% along the push direction
1 {move_to(X_2, Y_2, I)

: same_segment(X_1, Y_1, X_2, Y_2, Dir)} 1 :-
push(X_1, Y_1, Dir, I),
has_neighbor(X_1, Y_1, Dir),
time(I), I < n.

% A box may not be pushed over another
:- has_box(X_2, Y_2, I),

push(X_1, Y_1, Dir, I),
move_to(X_3, Y_3, I),
time(I),
same_segment(X_1, Y_1, X_2, Y_2, Dir),
same_segment(X_2, Y_2, X_3, Y_3, Dir).

% A box may not be pushed onto another
:- has_box(X, Y, I),

move_to(X, Y, I),
move_square(X, Y),
time(I).

% This predicate is used in optimizings
push_dir(Dir, I) :-

push(X, Y, Dir, I),
has_neighbor(X, Y, Dir),
time(I).

% After pushing, sokoban is "at" the point
% where the moved box was
at(X, Y, I+1) :-

push(X, Y, Dir, I),
move_square(X, Y),
has_neighbor(X, Y, Dir),
time(I).

% A box can be pushed in a direction if the
% worker can reach it and there is space
% immediately in front of it.

108 A SOURCE CODE FOR EXAMPLE PROGRAMS

can_push(X, Y, east, I) :-
has_box(X, Y, I),
move_square(X, Y ; X+1, Y),
square(X-1, Y),
not has_box(X-1, Y, I),
not has_box(X+1, Y, I),
reachable(X-1, Y, I),
possible_box(X, Y, I),
time(I).

can_push(X, Y, west, I) :-
has_box(X, Y, I),
move_square(X, Y ; X-1, Y),
square(X+1, Y),
possible_box(X, Y, I),
not has_box(X-1, Y, I),
not has_box(X+1, Y, I),
reachable(X+1, Y, I),
time(I).

can_push(X, Y, north, I) :-
has_box(X, Y, I),
square(X, Y-1),
possible_box(X, Y, I),
move_square(X, Y ; X, Y +1),
not has_box(X, Y-1, I),
not has_box(X, Y+1, I),
reachable(X, Y-1, I),
time(I).

can_push(X, Y, south, I) :-
has_box(X, Y, I),
move_square(X, Y-1 ; X, Y),
not has_box(X, Y-1, I),
not has_box(X, Y+1, I),
square(X, Y +1),
possible_box(X, Y, I),
reachable(X, Y+1, I),
time(I).

% The worker can reach all places that are not
% blocked.
reachable(X, Y, I) :-

square(X, Y),
time(I),
at(X, Y, I).

reachable(X+1, Y, I) :-
square(X, Y ; X+1, Y),
time(I),
reachable(X, Y, I),
not has_box(X+1, Y, I).

reachable(X-1, Y, I) :-

A SOURCE CODE FOR EXAMPLE PROGRAMS 109

square(X, Y ; X-1, Y),
time(I),
reachable(X, Y, I),
not has_box(X-1, Y, I).

reachable(X, Y+1, I) :-
square(X, Y ; X, Y+1),
time(I),
reachable(X, Y, I),
not has_box(X, Y+1, I).

reachable(X, Y-1, I) :-
square(X, Y ; X, Y-1),
time(I),
reachable(X, Y, I),
not has_box(X, Y-1, I).

% The initial situation:
at(X, Y, 1) :-

initial_at(X, Y).
has_box(X, Y, 1) :-

initial_box(X, Y).

% When squares have neighbors:
has_neighbor(X, Y, east) :-

move_square(X, Y ; X +1, Y).
has_neighbor(X, Y, west) :-

move_square(X, Y ; X -1, Y).
has_neighbor(X, Y, north) :-

move_square(X, Y ; X, Y+1).
has_neighbor(X, Y, south) :-

move_square(X, Y ; X, Y-1).

% Find out the segments of the level
same_segment(X, Y, X+1, Y, east) :-

move_square(X, Y),
move_square(X, Y).

same_segment(X, Y, X-1, Y, west) :-
move_square(X, Y),
move_square(X-1, Y).

same_segment(X, Y, X, Y+1, north) :-
move_square(X, Y),
move_square(X, Y+1).

same_segment(X, Y, X, Y-1, south) :-
move_square(X, Y),
move_square(X, Y-1).

same_segment(X_1, Y, X_2+1, Y, east) :-

110 A SOURCE CODE FOR EXAMPLE PROGRAMS

same_segment(X_1, Y, X_2, Y, east),
move_square(X_1, Y; X_2, Y; X_2+1, Y).

same_segment(X_1, Y, X_2-1, Y, west) :-
same_segment(X_1, Y, X_2, Y, west),
move_square(X_1, Y; X_2, Y; X_2-1, Y).

same_segment(X, Y_1, X, Y_2+1, north) :-
same_segment(X, Y_1, X, Y_2, north),
move_square(X, Y_1; X, Y_2; X, Y_2+1).

same_segment(X, Y_1, X, Y_2-1, south) :-
same_segment(X, Y_1, X, Y_2, south),
move_square(X, Y_1; X, Y_2; X, Y_2-1).

%%% Constraints pruning out the search space:
% The final move has to be to a target square:
1 { move_to(X_2, Y_2, n)

: same_segment(X_1, Y_1, X_2, Y_2, Dir) :
target_square(X_2, Y_2) } 1 :-
push(X_1, Y_1, Dir, n),
has_neighbor(X_1, Y_1, Dir).

% A box may not be pushed twice to the same
% direction:

:- push_dir(Dir, I),
move_to(X, Y, I),
push(X, Y, Dir, I +1),
has_neighbor(X, Y, Dir),
time(I).

% no immediate undoing of a move, if the worker
% could reach the other side of the box before

:- push(X, Y, west, I),
push_dir(east, I),
move_to(X, Y, I+1),
time(I), I < n,
has_neighbor(X, Y, west),
reachable(X-2, Y, I).

:- push(X, Y, east, I),
move_to(X, Y, I+1),
push_dir(west, I),
time(I), I < n,
has_neighbor(X, Y, east),
reachable(X+2, Y, I).

:- push(X, Y, north, I),
push_dir(south, I),

A SOURCE CODE FOR EXAMPLE PROGRAMS 111

move_to(X, Y, I+1),
time(I), I < n,
has_neighbor(X, Y, north),
reachable(X, Y+2, I).

:- push(X, Y, south, I),
push_dir(north, I),
move_to(X, Y, I+1),
time(I), I < n,
has_neighbor(X, Y, north),
reachable(X, Y-2, I).

% Check if goal is reached:
goal(I) :- { not has_box(X, Y, I)

: target_square(X, Y) } 0,
time(I).

% Do not push after goal is reached:
:- 1 { move_to(X, Y, I) : move_square(X, Y) },

time(I),
goal(I).

% Treat first two moves special because we know
% what moves are possible:
possible_box(X, Y, 1) :-

initial_box(X, Y).

possible_box(X_2, Y_2, 2) :-
same_segment(X_1, Y_1, X_2, Y_2, Dir),
move_square(X_2, Y_2),
initial_box(X_1, Y_1).

possible_box(X, Y, 2) :-
initial_box(X, Y).

possible_box(X, Y, I) :-
time(I), I >= 3,
move_square(X, Y).

% Don’t push two boxes adjacent each other along
% the edge.
edge_pair(X, Y, X+1, Y) :-

move_square(X, Y ; X+1, Y),
not target_square(X, Y),
not target_square(X+1, Y),
not square(X, Y-1),
not square(X+1, Y-1).

edge_pair(X, Y, X+1, Y) :-

112 A SOURCE CODE FOR EXAMPLE PROGRAMS

move_square(X, Y ; X+1, Y),
not target_square(X, Y),
not target_square(X+1, Y),
not square(X, Y-1),
not square(X+1, Y+1).

edge_pair(X, Y, X+1, Y) :-
move_square(X, Y ; X+1, Y),
not target_square(X, Y),
not target_square(X+1, Y),
not square(X+1, Y-1),
not square(X, Y+1).

edge_pair(X, Y, X+1, Y) :-
move_square(X, Y ; X+1, Y),
not target_square(X, Y),
not target_square(X+1, Y),
not square(X, Y+1),
not square(X+1, Y+1).

edge_pair(X, Y, X, Y+1) :-
move_square(X, Y ; X, Y+1),
not target_square(X, Y),
not target_square(X, Y+1),
not square(X-1, Y),
not square(X-1, Y+1).

edge_pair(X, Y, X, Y+1) :-
move_square(X, Y ; X, Y+1),
not target_square(X, Y),
not target_square(X, Y+1),
not square(X+1, Y),
not square(X-1, Y+1).

edge_pair(X, Y, X, Y+1) :-
move_square(X, Y ; X, Y+1),
not target_square(X, Y),
not target_square(X, Y+1),
not square(X-1, Y),
not square(X+1, Y+1).

edge_pair(X, Y, X, Y+1) :-
move_square(X, Y ; X, Y+1),
not target_square(X, Y),
not target_square(X, Y+1),
not square(X+1, Y),
not square(X+1, Y+1).

A SOURCE CODE FOR EXAMPLE PROGRAMS 113

:- edge_pair(X_1, Y_1, X_2, Y_2),
time(I),
has_box(X_1, Y_1, I),
has_box(X_2, Y_2, I).

% Don’t push three boxes into a L-turn:
l_turn(X,Y, X+1, Y, X+1, Y+1) :-

move_square(X, Y ; X+1, Y ; X+1, Y+1),
not square(X+1, Y).

l_turn(X,Y, X+1, Y, X+1, Y-1) :-
move_square(X, Y ; X+1, Y ; X+1, Y-1),
not square(X, Y-1).

l_turn(X, Y, X, Y+1, X+1, Y+1) :-
move_square(X, Y ; X, Y+1 ; X+1, Y+1),
not square(X+1, Y).

l_turn(X, Y, X, Y+1, X+1, Y) :-
move_square(X, Y ; X, Y+1 ; X+1, Y),
not square(X+1, Y+1).

:- { target_square(X_1, Y_1),
target_square(X_2, Y_2),
target_square(X_3, Y_3) } 2,

l_turn(X_1, Y_1, X_2, Y_2, X_3, Y_3),
time(I),
has_box(X_1, Y_1,I),
has_box(X_2, Y_2,I),
has_box(X_3, Y_3,I).

% Don’t form a 4-box square:
:- move_square(X, Y),

move_square(X+1,Y),
move_square(X+1, Y+1),
move_square(X, Y+1),
time(I),
not target_square(X, Y),
not target_square(X+1,Y),
not target_square(X+1, Y+1),
not target_square(X, Y+1),
has_box(X, Y, I),
has_box(X+1, Y, I),
has_box(X+1, Y+1, I),
has_box(X, Y+1, I).

% In the end, all target squares must have boxes:
compute { has_box(X, Y, n +1)

: target_square(X, Y) }.

114 A SOURCE CODE FOR EXAMPLE PROGRAMS

hide .
show reachable(X, Y, I).
show push(X, Y, Dir, I).
show move_to(X, Y, I).
show has_box(X, Y, I).
show at(X, Y, I).

A.4 Finite Automata Constructor

#option -dn -Wall

const n = 4. % number of NFA states
const min_d = 7. % minimum number of DFA states
const max_d = 9. % maximum number of DFA states
const min_f = 2. % minimum number of accepting

% DFA states
const max_f = 3. % maximum number of accepting

% DFA states
const min_E = 6. % minimum number of edges in NFA
const max_E = 20. % maximum number of edges in NFA
const min_e = 2. % minimum number of empty edges

% in NFA
const max_e = 3. % maximum number of empty edges

% in NFA
const min_s = 3. % The minimum number of

% transitions per symbol
const min_a = 2. % minimum number of states

% having conflicting transitions
const max_a = 4. % maximum number of states

% having conflicting transit-
% ions

nd_state(1..n).
symbol(a ; b).
nd_symbol(X) :- symbol(X).
nd_symbol(_e_).

% NFA generation
{ nd_transition(Q_1, S, Q_2) } :-

nd_state(Q_1 ; Q_2),
nd_symbol(S).

{ nd_final(Q) : nd_state(Q) }.

ok_E :- min_E { nd_transition(Q_1, S, Q_2)
: nd_state(Q_1 ; Q_2)
: nd_symbol(S) } max_E.

A SOURCE CODE FOR EXAMPLE PROGRAMS 115

ok_e :- min_e { nd_transition(Q_1, _e_, Q_2)
: nd_state(Q_1 ;Q_2) } max_e.

ok_a :- min_a { has_two(Q) : nd_state(Q)} max_a.

has_two(Q_1) :-
2 { nd_transition(Q_1, S, Q_2)

: nd_state(Q_2) },
nd_symbol(S),
nd_state(Q_1).

% If only empty transitions leave from a state,
% there has to be at least two of them.

:- { nd_transition(Q_1, _e_, Q_2)
: nd_state(Q_2) } 1,

{ nd_transition(Q_1, S, Q_3) : nd_state(Q_3)
: symbol(S) } 0,

nd_state(Q_1).

:- 1 { not ok_e, not ok_E, not ok_a }.

nd_reachable(1).
nd_reachable(Q_2) :-

nd_reachable(Q_1),
nd_transition(Q_1, S, Q_2),
nd_state(Q_1; Q_2),
Q_1 != Q_2,
nd_symbol(S).

:- nd_state(Q), not nd_reachable(Q).

nd_accepts(Q) :- nd_final(Q), nd_state(Q).
nd_accepts(Q_1) :-

nd_accepts(Q_2),
nd_transition(Q_1, S, Q_2),
nd_state(Q_1; Q_2),
Q_1 != Q_2,
nd_symbol(S).

:- nd_state(Q), not nd_accepts(Q).

:- { nd_transition(Q_1, S, Q_2)
: nd_state(Q_1; Q_2) } min_s - 1,

symbol(S).

:- nd_transition(Q, _e_, Q), nd_state(Q).

% Determinisation
in(4,15). in(4,12). in(3,7).
In(3,15). in(3,12). in(2,7).

116 A SOURCE CODE FOR EXAMPLE PROGRAMS

in(2,15). in(4,11). in(1,7).
in(1,15). in(2,11). in(3,6).
in(4,14). in(1,11). in(2,6).
in(3,14). in(4,10). in(3,5).
in(2,14). in(2,10). in(1,5).
in(4,13). in(4,9). in(3,4).
in(3,13). in(1,9). in(2,3).
in(1,13). in(4,8). in(1,3).
in(2,2). in(1,1).
d_state(0 .. 15).

closure(Q, Q) :- nd_state(Q).
closure(Q_1, Q_2) :-

nd_state(Q_1 ; Q_2),
Q_1 != Q_2,
nd_transition(Q_1, _e_, Q_2).

closure(Q_1, Q_3) :-
nd_transition(Q_2, _e_, Q_3),
closure(Q_1, Q_2), Q_1 != Q_2,
Q_2 != Q_3, Q_1 != Q_3,
nd_state(Q_1 ; Q_2 ; Q_3).

impossible(Q) :-
d_state(Q),
in(N_1, Q),
closure(N_1, N_2),
not in(N_2, Q),
nd_state(N_2), N_2 != N_1.

d_initial(Q) :-
d_state(Q),
in(1, Q),
not impossible(Q),
not not_initial(Q).

not_initial(Q) :-
in(N, Q),
not closure(1, N).

d_transition(Q_1, S, Q_2) :-
d_reachable(Q_1),
not impossible(Q_2),
not wrong(Q_1, S, Q_2),
d_state(Q_1; Q_2),
symbol(S).

wrong(Q_1, S, Q_2) :-
in(N_1, Q_1),

A SOURCE CODE FOR EXAMPLE PROGRAMS 117

not in(N_2, Q_2),
d_state(Q_2),
nd_state(N_2),
nd_transition(N_1, S, N_2),
symbol(S).

wrong(Q_1, S, Q_2) :-
in(N, Q_2),
not has_transition(Q_1, S, N),
d_state(Q_1), symbol(S).

has_transition(Q_1, S, N_2) :-
in(N_1, Q_1),
nd_transition(N_1, S, N_2),
nd_state(N_2),
symbol(S).

has_transition(Q_1, S, N_2) :-
has_transition(Q_1, S, N_1),
closure(N_1, N_2),
d_state(Q_1), symbol(S), nd_state(N_1; N_2).

d_reachable(Q) :- d_initial(Q), d_state(Q).
d_reachable(Q_2) :-

d_transition(Q_1, S, Q_2),
d_reachable(Q_1),
d_state(Q_1 ; Q_2), Q_1 != Q_2,
symbol(S).

d_final(Q) :-
d_reachable(Q),
in(N, Q),
nd_final(N).

ok_d :- min_d { d_reachable(Q) : d_state(Q) } max_d.
ok_f :- min_f { d_final(Q) : d_state(Q) } max_f.

:- 1 { not ok_d, not ok_f }.

compute 0 { }.

118 A SOURCE CODE FOR EXAMPLE PROGRAMS

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE
RESEARCH REPORTS

HUT-TCS-A73 Toni Jussila

Bounded Model Checking for Verifying Concurrent Programs. August 2002.

HUT-TCS-A74 Sam Sandqvist
Aspects of Modelling and Simulation of Genetic Algorithms: A Formal Approach.
September 2002.

HUT-TCS-A75 Tommi Junttila

New Canonical Representative Marking Algorithms for Place/Transition-Nets. October 2002.

HUT-TCS-A76 Timo Latvala

On Model Checking Safety Properties. December 2002.

HUT-TCS-A77 Satu Virtanen

Properties of Nonuniform Random Graph Models. May 2003.

HUT-TCS-A78 Petteri Kaski

A Census of Steiner Triple Systems and Some Related Combinatorial Objects. June 2003.

HUT-TCS-A79 Heikki Tauriainen

Nested Emptiness Search for Generalized Büchi Automata. July 2003.

HUT-TCS-A80 Tommi Junttila
On the Symmetry Reduction Method for Petri Nets and Similar Formalisms.
September 2003.

HUT-TCS-A81 Marko Mäkelä
Efficient Computer-Aided Verification of Parallel and Distributed Software Systems.
November 2003.

HUT-TCS-A82 Tomi Janhunen
Translatability and Intranslatability Results for Certain Classes of Logic Programs.
November 2003.

HUT-TCS-A83 Heikki Tauriainen
On Translating Linear Temporal Logic into Alternating and Nondeterministic Automata.
December 2003.

HUT-TCS-A84 Johan Wallén

On the Differential and Linear Properties of Addition. December 2003.

HUT-TCS-A85 Emilia Oikarinen

Testing the Equivalence of Disjunctive Logic Programs. December 2003.

HUT-TCS-A86 Tommi Syrjänen

Logic Programming with Cardinality Constraints. December 2003.

ISBN 951-22-6896-5

ISSN 1457-7615

