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ABSTRACT: To solve a problem in answer set programming (ASP), one
constructs a logic program so that its answer sets correspond to the solutions
of the problem and computes the answer sets of the program using a special
purpose search engine. The encodings are not unique, i.e. several versions
of a program can be used e.g. in optimizing the execution time or space.
Since the solutions to the problem correspond to answer sets of the program,
it is necessary to ensure that the different encodings yield the same output.
In ASP this means that one has to check whether given two logic programs
have the same answer sets, i.e., whether they are semantically equivalent.
We consider in this work the class of disjunctive logic programs, that form a
proper generalization of normal logic programs.

The equivalence of logic programs P and Q can naturally be verified using
an explicit cross-check of all the answer sets of both programs. Our aim is,
however, to develop a systematic method for testing the equivalence so that
a naive cross-check of answer sets is not needed. The idea is to translate logic
programs P and Q into a single logic program that has an answer set if and
only if P has an answer set that is not an answer set of Q. Thus answer sets of
the translation (if found), act as a counter-examples for the equivalence of P
and Q. The counter-examples for equivalence divide naturally in two types.
Thus the search for counter-examples can be performed separately for both
types using a two-phased translation.

We have implemented the translation functions. Experiments with the
implementation show that in several cases the translation-based approach
is superior to the naive cross-checking approach, especially, if the programs
to be tested have several answer sets and are likely to be nonequivalent. If
the number of answer sets is low, then the naive cross-checking approach is
likely to be faster. Furthermore, in general it is faster to use the two-phased
translation.

KEYWORDS: disjunctive logic programs, equivalence testing, stable model
semantics, answer set programming, non-monotonic reasoning, computa-
tional complexity
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GNT solver for disjunctive logic programs
DLV solver for disjunctive logic programs
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LPARSE front-end of SMODELS

LPEQ translator for testing the equivalence of weight
constraint logic programs

DLPEQ translator for testing the equivalence of disjunctive
logic programs
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1 INTRODUCTION

To solve a problem in answer set programming (ASP) [28, 29], one needs to
construct a logic program so that its answer sets correspond to the solutions
of the problem at hand. Answer sets of the program are then computed
using a special purpose search engine. Answer set programming paradigm
was formally identified as a self-standing programming paradigm in the late
1990s. It has since been the subject of increasing attention. As efficient
search engines such as DLV [6], SMODELS [37], and GNT [18, 19], have
been developed, ASP applications have emerged in growing numbers. Areas
in which ASP has been recently used include for example planning [21, 29],
product configuration [38], computer aided verification [13], wire routing in
VLSI design [7] and logical cryptanalysis [14].

The answer set programming paradigm has its roots in traditional logic
programming (i.e. in languages such as Prolog for example). Both paradigms
are rule-based and declarative. The basic syntax of rules in ASP is similar to
that of traditional logic programming but function symbols are not allowed.
In ASP the semantics, i.e. how a logic program is actually interpreted, is to-
tally different from traditional logic programming. In ASP the programs are
interpreted as sets of constraints for answer sets to be computed whereas in
traditional logic programming the rules are used to model recursive defini-
tions.

A normal or general logic program [25], in which the negation as fail-
ure [2] is used, is the standard form of logic programs in ASP. There are
a number of generalizations to this standard syntax: classical negation [10],
disjunction in the heads of rules [11, 35], default negation in the heads of dis-
junctive rules [15], nested rules [23], and weight rules [37]. The semantics
for the more general classes of logic programs is defined using the respective
generalizations of the stable model semantics [9], which is the standard se-
mantics in ASP. As discussed in [10], the above mentioned answer sets are
consistent sets of classical literals that are stable in the same sense as stable
models [9]. In this work, we concentrate on disjunctive logic programs. Dis-
junctive logic programs cover the generalizations of normal logic programs
mentioned above — either as a proper generalization or through translations
[10, 15, 16, 33, 8]. Thus a wide variety of logic programs is implicitly under
consideration in this work.

Due to the declarative nature of ASP, it is an appealing approach to solv-
ing a variety of problems. There are, however, some difficulties regarding the
development of programs using the ASP paradigm. Encodings for a partic-
ular problem are by no means unique. Thus, despite the declarative nature
of ASP, the development of programs resembles that of programs in conven-
tional programming; the programmer often develops several versions of the
program used to solve the problem at hand, e.g., when optimizing the execu-
tion time and space. Since the solutions to the problem correspond to answer
sets of the program, it is necessary to ensure that the different encodings yield
the same output. In ASP this means that one needs to check whether two
given logic programs P and Q have the same answer sets, i.e., P and Q are
semantically equivalent. This corresponds to the weaker notion of equiva-
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lence addressed by Lifschitz, Pearce and Valverde [22]. Lifschitz, Pearce and
Valverde also present a stronger notion of equivalence called strong equiva-
lence: P and Q are strongly equivalent if P and Q yield same answer sets
in every possible context in which they can be placed, that is, P and Q are
equivalent as parts of any other programs. We concentrate on the weaker
notion of equivalence in this work.

The equivalence of two given logic programs can naturally be tested using
an explicit cross-check of all answer sets of both programs. If the programs to
be tested have many answer sets, a naive approach easily becomes infeasible
and thus a different approach might be more efficient. Our aim is to develop
a systematic method for testing the equivalence so that an explicit cross-check
of answer sets is not needed. We assume that such a systematic method is
likely to be faster than the naive cross-checking approach.

Lin [24] and Turner [40] have independently shown that testing the strong
equivalence of disjunctive logic programs is coNP-complete. Turner [40]
also shows that testing the weak equivalence is ΠP

2 -hard. We show that the
problem is indeed ΠP

2 -complete. The problem of finding stable models for a
disjunctive logic program is also ΠP

2 -complete [5]. Thus the computational
complexity of equivalence testing is the same as the complexity of finding sta-
ble models. Therefore it is possible to construct a polynomial-time transfor-
mation reducing equivalence testing to the problem of finding stable models
for a disjunctive logic program.

Our aim is to develop a polynomial transformation from two disjunctive
programs P and Q to a single program TR(P, Q) in such a way that the
program TR(P, Q) has an answer set if and only if P and Q are not equiv-
alent. Answer sets of the translation (if found) can then be seen to repre-
sent counter-examples to the assumed equivalence of P and Q. However, a
polynomial-time reduction preserves only the yes/no answers of the decision
problem. The reduction itself can be arbitrary as long as it is computable in
polynomial time. Therefore the usefulness of such a transformation is not
automatically clear. We believe that a systematic translation can be formed
in such a manner that the answer sets of the translation can be used to extract
the actual counter-examples for the equivalence of P and Q.

As a matter of fact, a systematic method for testing the equivalence of
logic programs has been developed [20], but only in the case of weight con-
straint programs [37] supported by the SMODELS system. The idea in this
approach is similar to the above mentioned translation-based one: P and Q
are translated into a single logic program EQT(P, Q) that has an answer set
if and only if P has an answer set that is not an answer set of Q. Thus the
equivalence of P and Q can be established by showing that EQT(P, Q) and
EQT(Q, P ) have no answer sets. Using the translation one can make use of
the existing SMODELS system for the search of counter-examples. Thus there
is no need for a special purpose search engine for equivalence testing in this
approach. Only a translator, such as LPEQ [17], needs to be implemented.

To summarize, our aim in this work is to generalize the translation-based
method to the disjunctive case so that dedicated search engines such as GNT
[18] or DLV [6] can be used for actual computations. We believe that as in
[20], a systematic translation will be more efficient than the naive cross-check
of answer sets of the programs.

2 1. INTRODUCTION



The rest of this work is organized as follows.

• Chapter 2. First, we introduce the syntax of disjunctive logic programs.
We continue our discussion with the stable model semantics and end
this chapter by pointing out some useful properties of stable models.

• Chapter 3. We discuss the formal definitions of equivalence relations
for disjunctive logic programs distinguishing two types of counter-ex-
amples. We also study the computational complexity of the equiva-
lence testing problem in the disjunctive case, giving a proof of its ΠP

2 -
completeness.

• Chapter 4. We present two translation-based techniques for testing the
equivalence of disjunctive programs. One consists of a one-shot trans-
lation that aims to capture both types of counter-examples at once.
The other technique employs two translations which capture the two
types of counter-examples separately. We also address the correctness
of the translations establishing that there is a very tight one-to-one cor-
respondence between counter-examples and the stable models of the
translations.

• Chapter 5. We report results from our experiments with a prototype
implementation, a translator called DLPEQ, based on the two transla-
tions described in Chapter 4. The design of DLPEQ is compatible with
GNT and DLV so that equivalence testing is enabled in practice. The
experiments compare the performance of the two translations with a
naive approach involving an explicit cross-check of the stable models
of both programs.

• Chapter 6. We present our conclusions and future work.
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2 DISJUNCTIVE LOGIC PROGRAMS

In this chapter we define disjunctive logic programs in the propositional
case1. First, we introduce the syntax of disjunctive logic programs in Sec-
tion 2.1. In Section 2.2 we restrict to positive programs and consider formal
semantics in that restricted case. In Section 2.3 we consider the whole class
of disjunctive logic programs introducing the stable model semantics. We
end this chapter with useful properties of stable models in Section 2.4.

2.1 SYNTAX

We use the symbol “∼” to denote default negation or negation as failure to
prove [2] to distinguish it from classical negation “¬”. Default negation dif-
fers from the classical one, as in ‘negation as failure’ we conclude ∼a, if we
cannot prove that a is true. The following example will illustrate this differ-
ence.

Example 2.1. Consider a proposition a ∨ b claiming that a or b is true. We
cannot prove that a is true (since a∨ b can be true even if a is not true). Thus
we conclude ∼a which can be interpreted as “there is no reason to assume
that a is true”. On the other hand, we cannot conclude ¬a, since we cannot
prove that a is not true, i.e. a is false. �

A default literal is an atom a or its default negation ∼a. We define the set
of negative literals as ∼A = {∼a | a ∈ A} for any set of atoms A.

Definition 2.2. A rule in disjunctive logic programming is an expression of
the form

a1 | . . . | an ← b1, . . . , bm,∼c1, . . . ,∼ck, (2.1)

where a1, . . . , an, b1, . . . , bm, c1, . . . , ck are atoms and n, m and k are non-
negative integers.

A rule consists of two parts: the head a1 | . . . | an and the rest of the rule
called the body. The atoms in the head are interpreted disjunctively, i.e. |
denotes disjunction and the literals in the body are interpreted conjunctively.
Intuitively, a rule of the form (2.1) is used as an inference rule, i.e. any of the
head atoms can be inferred given that all the literals in the body can be
inferred. The order of literals in a rule is not significant. Thus we can use
a shorthand A ← B,∼C for a rule, where A, B and C are sets (|A| = n,
|B| = m and |C| = k). If the head of a rule is empty, the rule is called
an integrity constraint. Intuitively, all the literals in the body of an integrity
constraint cannot be inferred. If all the literals in the body of an integrity
constraint could be inferred, we should conclude that there exists an atom in
the head (which is empty) that can be inferred, which is a contradiction.

A disjunctive logic program (DLP) P is a set of rules of the form (2.1).
The Herbrand base of P , Hb(P ), is the set of all atoms appearing in P . If

1Disjunctive programs with variables can be covered using Herbrand instantiation thus
transforming the program into a grounded, variable-free, one.
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n = 1 for each rule in P , then P is a disjunction-free or normal program. If
k = 0 for each rule in P , then P is a positive logic program.

Example 2.3. Let us consider the following disjunctive logic program P .

a | b | c.
⊥ ← a,∼b.
e← b,∼c, d.
a← e, d.
a | d← ∼b

Let us introduce some notational conventions used in this work. The
rules are separated with full stops and the symbol “←” is dropped if the body
of the rule is empty (e.g. the first rule in this example). The second rule is
an example of an integrity constraint. The empty head is denoted with the
symbol “⊥” (an atom that is always unsatisfied). �

2.2 FORMAL SEMANTICS

In the previous section we defined the syntax of disjunctive logic programs
and discussed the intuition behind the semantics. In this and the following
section we present a model-theoretic semantics corresponding to this intu-
ition. The aim is to formally define when a particular atom is inferable and
when not, given a set of rules. We begin our discussion with the concept of
classical model defined through the classical satisfaction relation and then
consider the concept of logical consequences of a program.

Given a disjunctive logic program P , an interpretation I is a subset of
Hb(P ). An interpretation defines which atoms in Hb(P ) are true (a ∈ I)
and which are false (a 6∈ I). The satisfaction relation I |= r is defined for
default literals and rules as follows.

Definition 2.4. Given a disjunctive logic program P and an interpretation
I ⊆ Hb(P ),

• an atom a is satisfied in I (I |= a) if and only if a ∈ I ,

• a negative literal ∼a is satisfied in I (I |= ∼a) if and only if I 6|= a
(a 6∈ I),

• a set of literals L is satisfied in I (I |= L) if and only if I |= l for each
literal l ∈ L,

• a disjunctive set of literals
∨

L is satisfied in I (I |=
∨

L) if and only if
there exists a literal l ∈ L such that I |= l,

• a rule A ← B,∼C is satisfied in I if and only if I |= B ∪ ∼C implies
I |=

∨

A.

Definition 2.5. An interpretation I is a (classical) model of program P
(denoted by I |= P ) if and only if I |= r for each rule r ∈ P .

Let us consider Definition 2.4 in the case L = ∅. Given an arbitrary
interpretation I , it holds that I |= ∅ and I 6|=

∨

∅. Since the body of a rule is

2. DISJUNCTIVE LOGIC PROGRAMS 5



interpreted conjunctively, a rule with empty body is satisfied if and only if its
head is satisfied. The head of a rule is interpreted disjunctively. An integrity
constraint is thus satisfied if and only if its body is not satisfied. Since we use
⊥ to denote an empty head, we have I 6|= ⊥ for all interpretations I .

Classical models do not correspond to our intuitive interpretation of rules
as inference rules, since a rule is satisfied in an interpretation I even if only
its head it satisfied. Thus we cannot use semantics based on classical models
as such.

For now, let us restrict our considerations to positive normal logic pro-
grams consisting of rules of the form

a← b1, . . . , bm,

where a and b1, . . . , bm are atoms and m ≥ 0 is an integer. We define the
logical consequences of a program P in the standard way.

Definition 2.6. An atom a ∈ Hb(P ) is a logical consequence of a logic
program P (P |= a) if and only if a ∈M for each interpretation M ⊆ Hb(P )
such that M |= P . The set of logical consequences of P is Cn(P ) = {a ∈
Hb(P ) | P |= a}.

Thus an atom belongs to the set of logical consequences of a program if and
only it is necessary to include it into each model of the program.

Example 2.7. Consider a positive normal program P = {a ← b}. The
classical models of P are {a, b}, {a} and ∅. The logical consequences of P
are the atoms belonging to every model of P . Since ∅ ⊂ {a} ⊂ {a, b}, the
set of logical consequences of P is empty, i.e. Cn(P ) = ∅. Thus we can use
the classical models of the program to find its logical consequences. Next
consider the intuitive definition of inference rules discussed in Section 2.1.
If all the literals in the body of the only rule in program P can be inferred,
i.e. if b can be inferred, then we conclude that the head atom a is inferable.
The program P itself gives us no means of inferring either a or b. Since we
cannot infer b, we also conclude that a is not inferable. Thus in the case of
program P the set of logical consequences, which is empty, corresponds to
the set of atoms which we intuitively consider inferable. �

Considering Example 2.7 the set of logical consequences of a positive
normal program contains exactly the atoms that are inferable in our intuitive
semantics discussed in Section 2.1.

Since the set of logical consequences of a program is a subset of all the
models of the program, we define the concept of minimal model. A minimal
model is a model for which there exists no proper subset that is also a model.
Thus a minimal model of a program can be seen as a model that maximizes
the falsity of atoms.

Definition 2.8. A model M ⊆ Hb(P ) of a logic program P is minimal if
and only if there exists no M ′ ⊂ M such that M ′ is a model of P .

We denote the set of minimal models of a program P by MM(P ). For
any positive normal logic program P , it holds that |MM(P )| = 1, i.e. P has
a unique minimal model.

6 2. DISJUNCTIVE LOGIC PROGRAMS



Theorem 2.9. For a positive normal logic program P the intersection of all
models, I =

⋂

{M ⊆ Hb(P ) | M |= P}, is a model of P . Model I is the
unique minimal model, i.e. the least model of P .

Proof of Theorem 2.9. Assume that I 6|= P . Thus there exists a rule a ←
b1, . . . , bm ∈ P such that {b1, . . . , bm} ⊆ I and a 6∈ I . Consider any M ⊆
Hb(P ) such that M |= P . Since {b1, . . . , bm} ⊆ I and I is the intersection
of all the models of P , it holds that {b1, . . . , bm} ⊆M . Since {b1, . . . , bm} ⊆
M and M |= P , it must hold that a ∈ M . Thus a ∈ I =

⋂

{M ⊆ Hb(P ) |
M |= P}, which is a contradiction. Thus I |= P .

Assume that there exists I ′ ⊂ I such that I ′ |= P . Since I =
⋂

{M ⊆
Hb(P ) |M |= P}, it holds that I ⊆ I ′, which is a contradiction. Thus I is a
minimal model of P .

Assume that P has two minimal models I1 and I2, I1 6= I2. Their inter-
section I1 ∩ I2 is also a model of P . Assume the opposite, I1 ∩ I2 6|= P . Thus
there exist a rule a ← b1, . . . , bm ∈ P such that {b1, . . . , bm} ⊆ I1 ∩ I2 (⇒
{b1, . . . , bm} ⊆ I1 and {b1, . . . , bm} ⊆ I2) and a 6∈ I1 ∩ I2 (⇒ either a 6∈ I1

or a 6∈ I2). This is contradictory to I1 |= P and I2 |= P . Thus I1 ∩ I2 |= P .
Furthermore, I1∩ I2 = I1 and I1∩ I2 = I2 since I1 and I2 are both minimal.
Thus I1 = I2, which is a contradiction. Since the minimal model of P is
unique, it must be the intersection of all the models of P . �

Let us denote the least model of a program P by LM(P ) =
⋂

{M ⊆
Hb(P ) | M |= P}. If P is a positive normal program, the logical conse-
quences of P are exactly the atoms belonging to the least model of P , i.e.
Cn(P ) = LM(P ). Thus for positive normal programs our intuition of se-
mantics corresponds to the minimal model semantics [25].

Now let us extend our consideration to positive disjunctive programs. In
the case of positive normal programs we concluded that the logical conse-
quences of a program are exactly the atoms belonging to the unique least
model. With disjunctions in the heads of the rules the situation becomes
more complicated, since a positive disjunctive logic program does not nec-
essarily have a model or a unique least model. A positive disjunctive logic
program can have no minimal models, a unique minimal model or several
minimal models. However, if integrity constraints are not allowed, a positive
disjunctive logic program has at least one model and thus, a minimal model.

Example 2.10. Consider the following three positive logic programs: P1 =
{a. ⊥ ← a}, P2 = {a | a} and P3 = {a | b}. Program P1 has no models nor
minimal models. Program P2 has a unique model {a}, which is the minimal
model of P2. Program P3 has three models: {a}, {b} and {a, b}, of which
{a} and {b} are minimal. �

Since minimal models are not unique the set of atoms inferable from a
positive disjunctive logic program is not necessarily unique. However, if we
give up the uniqueness assumption, the minimal model semantics can also
be applied to positive disjunctive programs.

Example 2.11. Consider the following positive logic program P .

a | b.
c← a.
c← b.
d← a, b
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Intuitively, based on the first rule in P , we can conclude that either a or b
is inferable from P , since if neither of them is inferred, then P is not satisfied.
Combined with the second and the third rule, we infer c. Finally by the last
rule, we should intuitively assume that d is inferable if both a and b can be
inferred. However, all the other rules in P are satisfied even if only one of
the atoms a and b is inferred. Therefore d is not inferable from P . Thus
intuitively we consider the sets {a, c} and {b, c} as the sets of atoms inferable
from P .

Now, let us consider the minimal models of P . Program P has five models
{a, c}, {b, c}, {a, c, d}, {b, c, d} and {a, b, c, d}. It has two minimal models,
{a, c} and {b, c}. Hence the minimal models are exactly what we intuitively
consider as the sets of atoms inferable from the disjunctive program. �

2.3 STABLE MODEL SEMANTICS

Now we have a suitable semantics for positive disjunctive logic programs.
Using positive programs we can express positive information. However, it
is essential in knowledge representation to be able to provide negative in-
formation, also. Thus we will now discuss how to extend the semantics to
the whole class of disjunctive programs, including the programs containing
negation not considered yet. The problem is, how to interpret minimality of
models when there are negations in the bodies of rules.

Example 2.12. Consider program P = {a ← ∼b}. Intuitively we should
conclude that a can be inferred only if b is not inferable (i.e. ∼b can be
inferred). The program P has three classical models: {a}, {b} and {a, b}.
Two of these, M1 = {a} and M2 = {b}, are minimal. The model M2 is not
compatible with our intuition of inference rules. This shows that minimality
is not enough to guarantee the intuitive semantics discussed in Section 2.1
in the case of programs containing negation. For a model to be minimal we
have to require that an atom is true in the model only if there exists an explicit
reason for it to be true. The only rule in P gives us no reason to assume that
b is true. Therefore we assume that it has to be false and reject the model
M2. The model M1, however, satisfies the intuitive semantics we considered
in Section 2.1. �

The solution to the problems with programs containing negation is the
stable model semantics [9]. The key idea is to pre-evaluate the negations
in the program with respect to a given model candidate and then find the
minimal models for the pre-evaluated program. The pre-evaluation preserves
satisfiability; if M is a model of program P , then M is also a model for the
program that is obtained from P by pre-evaluating it with respect to M (see
Theorem 2.19). A model candidate is accepted as a stable model if it is a
minimal model of the pre-evaluated positive program.

The semantics for normal logic programs in terms of stable models was
proposed by Gelfond and Lifschitz [9] and was later generalized for disjunc-
tive logic programs independently by Przymusinski [36] and Gelfond and
Lifschitz [11].

To obtain stable models for a disjunctive program P , we need first to de-
fine the Gelfond-Lifschitz reduct of P with respect to a model candidate M .
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Definition 2.13. Given a disjunctive logic program P and an interpretation
M ⊆ Hb(P ), the Gelfond-Lifschitz reduct PM is obtained by following two
steps.

1. Delete each rule from P that has a negative default literal∼a in its body
such that a ∈M .

2. Delete all negative default literals in the bodies of the remaining rules.

Thus PM = {A← B | A← B,∼C ∈ P and M ∩ C = ∅}.

Example 2.14. Recall the program P in Example 2.3. Given an interpre-
tation M1 = {b}, we obtain the Gelfond-Lifschitz reduct PM1

presented in
Figure 2.1(a). Similarly, for interpretations M2 = {c, d} and M3 = {b, c},
we obtain the reducts PM2

and PM3
as presented in Figures 2.1(b) and (c),

respectively. �

a | b | c.
e← b, d.
a← e, d

(a)

a | b | c.
⊥ ← a.
a← e, d.
a | d

(b)

a | b | c.
a← e, d

(c)

Figure 2.1: The Gelfond-Lifschitz reducts (a) PM1
, (b) PM2

and (c) PM3
from

Example 2.14, where M1 = {b}, M2 = {c, d} and M3 = {b, c}.

By Definition 2.13 the reduct PM is positive. We define the stable models
of P using the minimal models of the reduct PM .

Definition 2.15. An interpretation M ⊆ Hb(P ) is a stable model of P if
and only if M is a minimal model of PM .

Thus M ⊆ Hb(P ) is a stable model of program P if and only if M ∈
MM(PM). We denote the set of stable models of P by SM(P ). If P is a posi-
tive program, then SM(P ) = MM(P ), since P = PM for any M ⊆ Hb(P ).
Thus stable model semantics coincides with minimal model semantics in the
case of positive programs.

For a normal logic program P (a special case of disjunctive programs),
the reduct PM is a positive normal program. Thus by Theorem 2.9 PM has
a unique least model LM(PM). Furthermore, M ∈ SM(P ) if and only if
M = LM(PM) [9].

Example 2.16. The program P presented in Example 2.3 has two sta-
ble models: M1 = {b} and M2 = {c, d}. The reduct PM1

is presented
in Figure 2.1(a) and has three minimal models: {a}, {b} and {c}. Thus
M1 ∈ MM(PM1

) and M1 ∈ SM(P ). The reduct PM2
presented in Figure

2.1(b) has two minimal models: {b, d} and {c, d}. Thus M2 ∈ MM(PM2
)

and M2 ∈ SM(P ). On the other hand M3 = {b, c} is not a stable
model of P . The reduct PM3

presented in Figure 2.1(c) has three minimal
models: MM(PM3

) = {{a}, {b}, {c}}. Now M3 6∈ MM(PM3
) and thus

M3 6∈ SM(P ). �
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There are two conditions which a stable model M of a program P needs
to satisfy. First, M must be a model of PM . The second condition to satisfy is
the minimality of M , thus there cannot exist M ′ ⊂ M such that M ′ |= PM .
Thus, when M 6∈ SM(P ) for a particular interpretation M ⊆ Hb(P ), there
are two possibilities. Either

• M 6|= PM , or

• M |= PM and there exists M ′ ⊂ M such that M ′ |= PM .

Example 2.17. Let us consider program P presented in Example 2.3.
The interpretation M3 = {b, c} in Example 2.14 satisfies the first condi-
tion: M3 |= PM3

. However, it does not satisfy the second. Consider e.g.
{b} ∈MM(PM3

). Now {b} ⊂ M3 and {b} |= PM3
. Thus M3 6∈MM(PM).

An example of an interpretation that does not satisfy the first condition is
M4 = {d}. The rule a | b | c ∈ PM4

is not satisfied in M4. Thus M4 6|= PM4

and furthermore M4 is not a stable model of P . �

2.4 PROPERTIES OF STABLE MODELS

In this section we introduce properties of stable models that will be useful
later on.

Gelfond and Lifschitz [11] show that an extended logic program (a logic
program containing classical negation as well as negation as failure) cannot
have two stable models of which one is a proper subset of the other. This
anti-chain property holds for disjunctive logic programs as well.

Theorem 2.18. The stable models of a disjunctive logic program P form
an anti-chain; for any M1, M2 ∈ SM(P ), M1 6= M2 it holds M1 6⊆ M2 and
M2 6⊆M1.

Proof of Theorem 2.18. Assume that the anti-chain property does not hold,
i.e. there exists a disjunctive program P that has two stable models M1, M2 ∈
SM(P ) such that M1 ⊂ M2. Now PM2

⊆ PM1
, since

PM2
= {A← B | A← B,∼C ∈ P and M2 ∩ C = ∅}
= {A← B | A← B,∼C ∈ P and (M1 ∪ (M2 \M1)) ∩ C = ∅}
= {A← B | A← B,∼C ∈ P and (M1 ∩ C) ∪ ((M2 \M1) ∩ C) = ∅}
= {A← B | A← B,∼C ∈ P and M1 ∩ C = ∅}
∩{A← B | A← B,∼C ∈ P and (M2 \M1) ∩C = ∅}

= PM1
∩ {A← B | A← B,∼C ∈ P and (M2 \M1) ∩ C = ∅}.

Since M1 is a stable model of P , it holds that M1 |= PM1
. Since PM2

⊆
PM1

, it also holds that M1 |= PM2
. Finally, since M1 ⊂ M2, we have a

contradiction with M2 ∈MM(PM2
). �

Janhunen et al. [19] show that for a partial stable model M of P it holds
that M |= P if and only if M |= PM . This property also holds for (total)
stable models of disjunctive programs. Thus the Gelfond-Lifschitz reduct is
compatible with the satisfaction relation.

Theorem 2.19. M |= P if and only if M |= PM .
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Proof of Theorem 2.19.
(⇒) Assume that M |= P and M 6|= PM . Thus there exists a rule A ←
B ∈ PM that is not satisfied in M , i.e. M |= B and M 6|=

∨

A. Since
PM = {A ← B | A ← B,∼C ∈ P and M ∩ C = ∅}, there exists a rule
A ← B,∼C ∈ P such that M |= ∼C. Thus M 6|= A ← B,∼C which is
contradictory to M |= P .

(⇐) Assume that M |= PM and M 6|= P . There exist a rule A ←
B,∼C ∈ P that is not satisfied in M , i.e. M |= B ∪ ∼C and M 6|=

∨

A.
Since M |= ∼C, we have M ∩ C = ∅. Since M |= B and M 6|=

∨

A,
the reduct PM contains the rule A ← B that is not satisfied in M . This is
contradictory to M |= PM . �

Next we define the concept of a supported model [1]. Any atom that is true
in a supported model M of P has to be supported by a rule in P . As stable
models are always supported (see Theorem 2.21 below), the characterization
of supported models will be useful later on in justifying the reasons for each
atom belonging to a stable model.

Definition 2.20. A model M ⊆ Hb(P ) of P (M |= P ) is a supported model
of P if and only if for each a ∈ M there exists a rule A ← B,∼C ∈ P such
that a ∈ A, M |= B ∪ ∼C, and M 6|=

∨

(A \ {a}).

We will denote the set of supported models of P by SuppM(P ). A stable
model is always supported.

Theorem 2.21. If M is a stable model of P , then M is a supported model of
P , i.e. SM(P ) ⊆ SuppM(P ).

Proof of Theorem 2.21. Assume that there exists M ⊆ Hb(P ) such that
M ∈ SM(P ) and M 6∈ SuppM(P ). Since M 6∈ SuppM(P ), there exists
a ∈M such that for each rule A← B,∼C ∈ P : (i) a 6∈ A, (ii) M 6|= B∪∼C
or (iii) M |=

∨

(A \ {a}). Let us define M ′ = M \ {a} and show that
M ′ |= PM .

(i) Consider rules of the form A ← B,∼C ∈ P for which a 6∈ A holds.
Each rule of the form A← B ∈ PM , corresponding to a rule for which
a 6∈ A holds, is satisfied in M ′, since a 6∈ A and M |= PM .

(ii) Consider rules of the form A ← B,∼C ∈ P for which it holds that
M 6|= B ∪ ∼C. Thus M 6|= B or M 6|= ∼C. If M |= ∼C, then
A ← B ∈ PM . Thus for each rule A ← B ∈ PM , corresponding to a
rule for which it holds that M 6|= B ∪∼C, it holds that M 6|= B. Since
M ′ ⊂ M , it also holds that M ′ 6|= B. Thus each rule A ← B ∈ PM

considered in this item is satisfied in M ′ regardless of the satisfiability
of A.

(iii) Consider a rule of the form A ← B,∼C ∈ P for which M |=
∨

(A \
{a}) holds. If M ′ 6|=

∨

A and M ′ |= B, then A ← B ∈ PM is not
satisfied in M ′. Since M |=

∨

(A \ {a}), it holds that M ′ |=
∨

A.
Thus each rule A← B ∈ PM considered in this item is satisfied in M ′

regardless of the satisfiability of B.

2. DISJUNCTIVE LOGIC PROGRAMS 11



By (i), (ii) and (iii) we can conclude M ′ |= PM for M ′ ⊂ M , which is in
contradiction with M ∈MM(PM). Thus SM(P ) ⊆ SuppM(P ). �

A supported model is not necessarily a stable model as its definition lacks
the minimality criterion essential to stable models.

Example 2.22. Consider the program P = {a ← a}. Program P has
one stable model, i.e. SM(P ) = {∅}, and two supported models, i.e.
SuppM(P ) = {∅, {a}}. The atom a supports itself and therefore {a} is
a supported model of P . The model {a} is not a stable model since it is
excluded by the minimality condition as ∅ ⊂ {a}. Thus SuppM(P ) 6⊆
SM(P ). �
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3 EQUIVALENCE OF DISJUNCTIVE LOGIC PROGRAMS

In this chapter we formalize the concept of equivalence for disjunctive logic
programs. We introduce notions of equivalence in terms of stable models in
Section 3.1. We review basic concepts of computational time-complexity in
Section 3.2 and discuss the computational complexity of testing the equiva-
lence of disjunctive logic programs in Section 3.3.

3.1 NOTIONS OF EQUIVALENCE

Lifschitz, Pearce and Valverde [22] recently introduced two notions of equiv-
alence for nested logic programs, namely weak and strong equivalence. Dis-
junctive logic programs are a special case of nested programs. Thus we can
define these notions of equivalence in the disjunctive case, too.

The first notion of equivalence follows naturally from the stable model
semantics.

Definition 3.1. Disjunctive logic programs P and Q are (weakly) equivalent
if and only if P and Q have exactly the same stable models, i.e. SM(P ) =
SM(Q) . This is denoted by P ≡ Q.

We generally use the term equivalence synonymously with weak equiva-
lence.

Example 3.2. Consider the programs P = {a | b}, Q = {a← ∼b. b← ∼a}
and R = {a | a}. P and Q have the same stable models, i.e. SM(P ) =
{{a}, {b}} = SM(Q), but SM(R) = {{a}}. Thus P ≡ Q and P 6≡ R. �

The second notion, strong equivalence, is defined in terms of the weak
equivalence.

Definition 3.3. Disjunctive logic programs P and Q are strongly equivalent
if and only if P ∪ R ≡ Q ∪ R for all disjunctive logic programs R. This is
denoted by P ≡s Q.

The logic program R in the definition of strong equivalence can be seen
as an arbitrary context for P and Q. Thus P and Q are strongly equivalent
if and only if they have exactly the same stable models in every context in
which they can be placed. Clearly, P ≡s Q implies P ≡ Q (by the empty
context R = ∅), but not vice versa.

Example 3.4. Consider programs P = {a ← ∼c} and Q = {a ← ∼b}.
P and Q have the same stable models, i.e. SM(P ) = {{a}} = SM(Q).
Thus P ≡ Q. However, if we choose program R = {b ← ∼a} as the
context in which P and Q are placed, we notice that P and Q are not strongly
equivalent, since SM(P ∪ R) = {{a}} 6= {{a}, {b}} = SM(Q ∪ R). Thus
P 6≡s Q. �

In this work we concentrate on the notion of weak equivalence in the case
of disjunctive logic programs.

A naive approach to testing the equivalence of logic programs would in-
volve computing the stable models of one program and checking that they
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are also stable models of the other program and vice versa. In the worst
case (i.e. when the programs are equivalent) one would have to generate and
check all the stable models of both programs. If the programs have many
stable models, the naive approach quickly becomes infeasible. Therefore a
different approach might be useful.

Clearly testing for the equivalence of programs P and Q involves two di-
rections, i.e. one needs to check that all stable models of P are stable models
of Q and all stable models of Q are stable models of P . Let us consider only
one direction for now. A counter-example for the equivalence of programs
P and Q (in one direction) is an interpretation M such that M is a stable
model of P but not of Q. Similarly to the discussion in Section 2.3, there
are two reasons for M not to be a stable model of Q: either M is not even a
model of QM (thus M 6|= Q by Theorem 2.19), or M |= QM but M is not
a minimal model of QM . We will distinguish two types of counter-examples,
namely counter-examples of type T1 and T2, and present them as pairs.

Definition 3.5. For any disjunctive logic programs P and Q and interpreta-
tions M, M ′ ⊆ Hb(P ),

• 〈M, M〉 is a counter-example of type T1 if and only if M ∈ SM(P )
and M 6|= QM , and

• 〈M, M ′〉 is a counter-example of type T2 if and only if M ∈ SM(P ),
M |= QM , M ′ ⊂M , and M ′ |= QM .

We denote the set of counter-examples of the above-mentioned types T1
and T2 by CE(P, Q). Thus P ≡ Q if and only if CE(P, Q) = ∅ and
CE(Q, P ) = ∅.

The above mentioned counter-examples can also be used to show that
programs are not strongly equivalent by forming an SE-model [40]. That is,
in case of a type T1 counter-example, the pair 〈M, M〉 is an SE-model of P
but not of Q and in case of type T2, 〈M ′, M〉 is an SE-model of Q but not of
P . Thus CE(P, Q) 6= ∅ implies P 6≡s Q.

It is also worth noticing that in case of a counter-example 〈M, M ′〉 of
type T2, the interpretation M ′ is not necessarily a minimal model of QM .
The number of counter-examples of type T2 can be reduced by insisting on
minimality of M ′, but then translations (to be presented in Chapter 4) need
then to be revised accordingly.

3.2 COMPUTATIONAL COMPLEXITY

Let us discuss the time-complexity classes and consider languages L ⊆ Σ∗

over an alphabet Σ. The discussion and the definitions in this section are
mainly based on [32]. We assume that the reader is familiar with the con-
cepts of a deterministic and a nondeterministic Turing machine as models of
computation.

Definition 3.6. A deterministic Turing machine M decides a language L if
for any string x ∈ Σ∗, if x ∈ L, then M halts at the “yes” state on input x and
if x 6∈ L, then M halts at the “no” state on input x.
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We say that a computation of a Turing machine M is accepting, if M halts
at the “yes” state and rejecting, if M halts at the “no” state.

Definition 3.7. A nondeterministic Turing machine M decides a language
L if for any string x ∈ Σ∗, x ∈ L, if and only if there exists an accepting
computation of M on input x.

The asymmetry between accepting and rejecting in Definition 3.7 is worth
noticing. Just one accepting nondeterministic computation is enough for x
to be accepted, the other computations may result in rejection. The string x
is rejected if every nondeterministic computation is rejecting, implying that
there exists no accepting computation.

Definition 3.8. Let L ⊆ Σ∗ be a language. The complement of L, denoted
by L, is the set of strings x ∈ Σ∗ such that x 6∈ L, i.e. L = Σ∗ \ L.

The time-complexity class P contains the languages that are decidable
in polynomial time using a deterministic Turing-machine. The class NP

contains the languages that are decidable in polynomial time using a non-
deterministic Turing-machine. The class coNP contains the languages the
complements of which belong to NP, i.e. if language L ∈ NP, then its
complement L ∈ coNP.

Next, we consider oracle Turing machines that extend the computational
power of an ordinary Turing machine beyond the classes P, NP and coNP.

Definition 3.9. A C-oracle can decide every problem in the class C in a unit
time. A C-oracle Turing machine is a Turing machine that uses C-oracle
calls.

Now, we can define new time-complexity classes using oracle Turing ma-
chines. The class PC contains the languages that are decidable in polyno-
mial time using a deterministic C-oracle Turing machine. The class NPC

contains the languages that are decidable in polynomial time using a non-
deterministic C-oracle Turing-machine and the class coNPC contains the
languages the complements of which belong to NPC

The classes P, NP and coNP form the first level of the polynomial hier-
archy [39] that is defined as follows.

Definition 3.10. The polynomial hierarchy is the following sequence of
time-complexity classes:

• ∆P

0 = ΣP

0 = ΠP

0 = P,

• ∆P

k+1 = PΣP

k for k ≥ 0,

• ΣP

k+1 = NPΣP

k for k ≥ 0, and

• ΠP

k+1 = coNPΣP

k for k ≥ 0.

In particular, ΣP

1 = NP, ΠP

1 = coNP, ΣP

2 = NPNP and ΠP

2 = coNPNP.

The class PΣP

k contains the languages that are decidable in polynomial
time using a deterministic Turing-machine that uses ΣP

k -oracle calls. A ΣP

k -
oracle can decide every problem in the class ΣP

k in a unit time. The class

NPΣP

k contains the languages that are decidable in polynomial time us-

ing a nondeterministic ΣP

k -oracle Turing machine while coNPΣP

k contains
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the languages the complements of which belong to NPΣP

k . Thus the class
NPNP contains the languages that are decidable in polynomial time using a
nondeterministic NP-oracle Turing-machine.

To be able to compare the computational complexity of different prob-
lems, i.e. to define when a problem is as hard as another, we need the con-
cept of a reduction from one language to another.

Definition 3.11. A language L1 ⊆ Σ∗ is reducible to language L2 ⊆ Σ∗, if
there exists a function R : Σ∗ → Σ∗ that is computable by a deterministic
Turing machine in polynomial time with the following property: for all in-
puts x it holds that x ∈ L1 if and only if R(x) ∈ L2. Let us denote this by
L1 ≤m L2. Function R is a (polynomial-time many-one) reduction from L1

to L2.

Since reducibility is transitive (that is, if L1 ≤m L2 and L2 ≤m L3, then
L1 ≤m L3), the languages can be ordered with respect to their difficulty.

Definition 3.12. A language L is hard for a complexity class C (C-hard)
if every language L′ ∈ C is reducible to L, i.e. L′ ≤m L. A language L is
C-complete if it is C-hard and L ∈ C.

To solve a decision problem using a Turing machine one needs to decide
how to represent instances of the problem as strings over some alphabet Σ.
An algorithm for the decision problem is a Turing machine that decides the
language corresponding to the “yes”-instances of the problem.

3.3 COMPLEXITY OF EQUIVALENCE TESTING

Now we are ready to discuss the computational complexity of equivalence
testing in the disjunctive case. We introduce first the languages SM, NotMin,
IMPR, IMPL and EQV corresponding to decision problems of our interest.

Definition 3.13. For any finite disjunctive logic programs P and Q, and an
interpretation M ⊆ Hb(P ),

• P ∈ SM ⇐⇒ there exists an interpretation M ⊆ Hb(P ) such that
M ∈ SM(P ),

• (P, M) ∈ NotMin ⇐⇒ there exists M ′ ⊂M such that M ′ |= P ,

• (P, Q) ∈ IMPR ⇐⇒ SM(P ) ⊆ SM(Q),

• (P, Q) ∈ IMPL⇐⇒ (Q, P ) ∈ IMPR, and

• (P, Q) ∈ EQV ⇐⇒ SM(P ) = SM(Q) ⇐⇒ P ≡ Q.

Let us discuss how the languages in Definition 3.13 are located in the
polynomial hierarchy. The language SM for disjunctive logic programs is ΣP

2 -
complete [5]. Its complement, SM, is thus ΠP

2 -complete. When restricted to
normal logic programs, SM is only NP-complete [27] and consequently SM
is coNP-complete.

Theorem 3.14. Language NotMin is in NP.
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Proof of Theorem 3.14. We consider the language

NotMin = {(P, M) | there exists M ′ ⊂M such that M ′ |= P}.

Let us show that NotMin ∈ NP, i.e. there exists a nondeterministic Turing-
machine deciding the language NotMin. Instead of presenting the actual
Turing machine we present an abstract algorithm for deciding NotMin that
could be used to construct the actual Turing machine. The algorithm is
presented in Figure 3.1.

TestNotMinimal(P, M)
1 Select M ′ ⊂M
2 if M ′ |= P
3 then return “yes”
4 else return “no”
5 fi

Figure 3.1: The algorithm for deciding NotMin.

Let us discuss the algorithm. First, since we are using a nondeterminis-
tic computation, we can choose an interpretation M ′ in polynomial time.
Also, the test on line 2 can be done in polynomial time (one has to check
whether each rule in P is satisfied in M ′). Now, TestNotMinimal(P, M)
has a accepting computation on (P, M) ⇐⇒ (P, M) ∈ NotMin. Thus
we can construct a nondeterministic Turing machine deciding NotMin and
therefore NotMin ∈ NP. �

By Theorem 3.14, an NP-oracle can be used to decide if there exists a
model M ′ of P such that M ′ ⊂M for a given interpretation M ⊆ Hb(P ).

Next, we consider the computational complexity of testing the equiva-
lence of disjunctive logic programs. Lin [24] and Turner [40] have inde-
pendently shown that testing the strong equivalence of disjunctive logic pro-
grams is coNP-complete. The strong equivalence can be characterized as
equivalence in Heyting’s logic of here-and-there (HT) [22]. As shown by
Pearce, Tompits and Woltran [34], satisfiability in here-and-there is reducible
to propositional satisfiability (SAT). This implies that existing SAT solvers can
be used for testing the strong equivalence of logic programs. Recently, Lin
[24] reduced strong equivalence directly to propositional entailment without
using HT as an intermediate logic.

Turner [40] also shows that testing the weak equivalence is ΠP

2 -hard by
reducing SM to EQV. We show that testing the weak equivalence of dis-
junctive logic programs is indeed ΠP

2 -complete and use a similar method as
Turner in the hardness part of the proof.

Theorem 3.15. IMPR is ΠP

2 -complete.

Proof of Theorem 3.15. To show that IMPR is ΠP

2 -complete we need to
show that (i) IMPR ∈ ΠP

2 and (ii) a ΠP

2 -complete language (such as SM)
can be reduced in polynomial time to IMPR, i.e. IMPR is ΠP

2 -hard.

(i) Let us consider the complement of IMPR,

IMPR = {(P, Q) | SM(P ) 6⊆ SM(Q)}.
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Thus (P, Q) ∈ IMPR ⇐⇒ there exists M ∈ SM(P ) such that
M 6∈ SM(Q). Let us show that IMPR ∈ ΣP

2 , i.e. there exists a non-
deterministic NP-oracle Turing-machine, that decides the language
IMPR. The abstract algorithm for deciding IMPR is presented in Fig-
ure 3.2.

Let us discuss the algorithm. Using nondeterminism, we can choose
an interpretation M . Checking whether M |= P on line 2 can be
performed in polynomial time checking whether each rule in P is sat-
isfied in M ). If P |= M , then M |= PM by Theorem 2.19. The
reduct PM can be constructed in polynomial time. Since M |= PM ,
we use an NP-oracle to check whether M ∈ MM(PM) on line 5. If
M ∈ MM(PM), then M ∈ SM(P ). The test on line 8 can be per-
formed in polynomial time. If M 6|= Q, the pair 〈M, M〉 is a counter-
example of type T1. Otherwise, M |= QM by Theorem 2.19, and
we use an NP-oracle (line 11) to test whether M ∈ MM(QM). If
M 6∈MM(QM), there exists a counter-example of type T2.

Thus TestNotInIMPR(P, Q) has an accepting computation on (P, Q)
⇐⇒ (P, Q) ∈ IMPR. Therefore IMPR ∈ ΣP

2 and furthermore
IMPR ∈ ΠP

2 .

(ii) Consider an arbitrary disjunctive logic program R. Now R ∈ SM ⇐⇒
R 6∈ SM ⇐⇒ SM(R) = ∅. Let {⊥} be a program having no
stable models, i.e. SM({⊥}) = ∅. Thus SM(R) ⊆ SM({⊥}) ⇐⇒
(R, {⊥}) ∈ IMPR. Therefore R ∈ SM ⇐⇒ (R, {⊥}) ∈ IMPR, and
the reduction is polynomial.

(i) and (ii) imply that IMPR is ΠP

2 -complete. �

TestNotInIMPR(P, Q)
1 Select M
2 if M 6|= P
3 then return “no”
4 fi
5 if TestNotMinimal(PM , M) = “yes”
6 then return “no”
7 fi
8 if M 6|= Q
9 then return “yes”

10 else
11 if TestNotMinimal(QM , M) = “yes”
12 then return “yes”
13 else return “no”
14 fi
15 fi

Figure 3.2: The algorithm for deciding IMPR.

Theorem 3.16. IMPL is ΠP

2 -complete.
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Proof of Theorem 3.16. IMPL and IMPR can be reduced to each other, i.e.

IMPL =m IMPR.

The proof divides into two parts: (i) IMPL ≤m IMPR and (ii) IMPR ≤m

IMPL. Let A = {(P, Q) | P and Q are disjunctive logic programs}.

(i) Let R1 : A → A such that R1((P, Q)) = (Q, P ). By Definition 3.13,
(P, Q) ∈ IMPL ⇐⇒ (Q, P ) = R1((P, Q)) ∈ IMPR. Thus R1 is a
reduction from IMPL to IMPR, and IMPL ≤m IMPR.

(ii) Let R2 : A → A such that R2((P, Q)) = (Q, P ). By Definition 3.13,
(P, Q) ∈ IMPR ⇐⇒ (Q, P ) = R2((P, Q)) ∈ IMPL. Thus R2 is a
reduction from IMPR to IMPL, and IMPR ≤m IMPL.

Since ΠP

2 is closed under reductions (since coNP is closed under reduc-
tions) and IMPR is ΠP

2 -complete, it holds that IMPL is ΠP

2 -complete. �

Theorem 3.17. EQV is ΠP

2 -complete.

Proof of Theorem 3.17. To show that EQV is ΠP

2 -complete we need to show
that (i) EQV ∈ ΠP

2 and (ii) a ΠP

2 -complete language (SM) can be reduced
in polynomial time to EQV, i.e. EQV is ΠP

2 -hard.

(i) Let P and Q be arbitrary disjunctive logic programs. Now (P, Q) ∈
EQV ⇐⇒ SM(P ) = SM(Q) ⇐⇒ SM(P ) ⊆ SM(Q) and
SM(Q) ⊆ SM(P ) ⇐⇒ (P, Q) ∈ IMPR and (P, Q) ∈ IMPL. Thus
EQV = IMPR ∩ IMPL. Since IMPR ∈ ΠP

2 , IMPL ∈ ΠP

2 and ΠP

2 is
closed under intersection (since coNP is closed under intersection),
we have EQV ∈ ΠP

2 .

(ii) Let R be an arbitrary disjunctive logic program. Now R ∈ SM ⇐⇒
R 6∈ SM ⇐⇒ SM(R) = ∅. Let {⊥} be a program having no stable
models, i.e. SM({⊥}) = ∅. Thus SM(R) = ∅ ⇐⇒ SM(R) =
SM({⊥}) ⇐⇒ (R, {⊥}) ∈ EQV. Therefore R ∈ SM ⇐⇒
(R, {⊥}) ∈ EQV, and the reduction is polynomial.

Thus (i) and (ii) imply that EQV is ΠP

2 -complete. �

Theorem 3.17 implies that testing the weak equivalence of disjunctive
logic programs is as hard as deciding whether a disjunctive logic program
has stable models or not. Thus there is no complexity theoretical obstacle
for developing a polynomial transformation for testing the equivalence of dis-
junctive logic programs as introduced in [20] for weight constraint programs.
However, a polynomial many-to-one reduction preserves only the yes/no an-
swers of the decision problem. The reduction itself can be arbitrary as long as
it is computable in polynomial time using a deterministic Turing machine.
The question remains whether it is possible or not to find a useful systematic
method to obtain the transformation similar to the one in [20].

Furthermore, one might think that since deciding ≡s for finite proposi-
tional disjunctive programs is only coNP-complete [34, 24] and P ≡s Q
implies P ≡ Q, there is no need to consider the computationally harder task
of deciding P ≡ Q. However, the question whether P ≡ Q holds remains
open whenever P 6≡s Q turns out to be the case. This implies that verifying
P ≡ Q remains as a problem of its own, which cannot be fully compensated
by verifying P ≡s Q.
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4 TRANSLATIONS FOR EQUIVALENCE TESTING

In this chapter we present a translation-based method for testing the equiv-
alence of disjunctive logic programs. The idea is to transform disjunctive
programs P and Q into a program, the stable models of which can be used to
determine the equivalence. We present two alternative translations — one-
phased TR(P, Q) in Section 4.1 and two-phased [TR1(P, Q), TR2(P, Q)]
in Section 4.2. The translation TR(P, Q) captures both types of counter-
examples for the equivalence if such exist. The second translation is em-
ployed in two phases. First, translation TR1(P, Q) is used to capture counter-
examples of type T1. If there are no counter-examples of type T1, then trans-
lation TR2(P, Q) is used to capture counter-examples of type T2.

4.1 ONE-PHASED TRANSLATION

The idea behind the translation presented in this section is to transform two
disjunctive logic programs P and Q into one logic program TR(P, Q) that
has a stable model if and only if P has a stable model that is not a stable
model of Q. There are two possible reasons for M not being a stable model
of Q corresponding to counter-examples of type T1 and T2: either M is
not even a model of QM (T1), or M is a model of QM but not a minimal
model of QM (T2). The rules of the translation are used to capture these
two possibilities. A further objective is that we should be able to construct
counter-examples for the equivalence using the stable models of the transla-
tion TR(P, Q). Thus it should be easy to extract a stable model of P that is
not a stable model of Q from a stable model of the translation TR(P, Q).

We assume that Hb(P ) = Hb(Q). This is not a significant restriction,
since any logic program can be extended with rules of the form a← a with-
out affecting the stable models of the program, i.e. {a ← a} ≡s ∅. In the
translations to be presented we will also need several new atoms not appear-
ing in P or Q. We introduce for each atom a ∈ Hb(P ) new atoms a• and a◦.
We define A• = {a• | a ∈ A} and A◦ = {a◦ | a ∈ A} for any set of atoms A.

The Herbrand base of TR(P, Q) is to contain new atoms diff , unsat,
unsat• and ok, all the atoms in Hb(P ), and in addition two renamed copies
of each atom in Hb(P ). Thus

Hb(TR(P, Q)) = {diff , unsat, unsat•, ok} ∪ Hb(P ) ∪ Hb(P )• ∪ Hb(P )◦.

Let us discuss the intended meaning of the new atoms introduced in the
translation TR(P, Q) before discussing the details of the translation. Given
M ∈ SM(P ), the atoms in Hb(P )• ∪ Hb(P )◦ are used in selecting a sub-
model M ′ of M such that M ′ ⊂M . The intended meaning of the new atoms
are as follows.

unsat – indicates that M 6|= QM .

a• – atom a ∈M is true in the sub-model M ′ searched for QM

a◦ – atom a ∈M is false in the sub-model M ′ ⊆M .

20 4. TRANSLATIONS FOR EQUIVALENCE TESTING



unsat• – indicates that M ′ 6|= QM .

diff – indicates that M ′ ⊆ Hb(P ) is a proper subset of M ⊆ Hb(P ),
i.e. M ′ 6= M .

ok – indicates that a counter-example for the equivalence is found.

Now we are ready to introduce the actual translation.

Definition 4.1. Let P and Q be disjunctive logic programs such that
Hb(P ) = Hb(Q). Let diff, unsat, unsat• and ok be atoms appearing in
neither P nor Q. The translation TR(P, Q) contains the following rules:

1. all the rules of P without modifications,

2. a rule unsat← B,∼(A ∪ C) for each rule A← B,∼C ∈ Q,

3. rules a• ← a,∼a◦,∼unsat and a◦ ← a,∼a•,∼unsat for each atom
a ∈ Hb(P ),

4. a rule unsat• ← B•,∼(A• ∪ C),∼unsat for each rule A← B,∼C ∈
Q,

5. a rule diff ← a,∼a•,∼unsat for each atom a ∈ Hb(P ), and

6. rules ok ← unsat, ok ← diff ,∼unsat,∼unsat• and ⊥ ← ∼ok.

Let us discuss the meaning of each part of the translation in detail. The
items below correspond respectively to the items in Definition 4.1. For an
interpretation N of the translation TR(P, Q) we define M = N ∩ Hb(P ).

1. Capture a stable model M of P .

2. Check whether M |= QM . If there exists a rule in QM that is not
satisfied in M , unsat is implied.

3. If M |= QM and unsat is not implied, the renamed atoms are used in
order to select an interpretation M ′ such that M ′ ⊆ M . These rules
force that if a ∈ M , then either a is true in the sub-model candidate
M ′ (a• ∈ N ) or not (a◦ ∈ N ). As seen in Example 3.2, this selection
can also be expressed equivalently using a rule a• | a◦ ← a,∼unsat
for each a ∈ Hb(P ). We decided, however, to keep the number of
disjunctions as low as possible.

4. Check whether (M ′)• |= (QM)• ⇐⇒ M ′ |= QM , where (M ′)• =
N ∩ Hb(P )•. If there exists a rule in QM that is not satisfied in M ′,
unsat• is implied.

5. Check that M ′ is a proper subset of M . If M ′ ⊂ M , then diff is
implied.

6. Summarize the reasons for M not being a stable model of Q. Either

• T1: M 6|= QM , and therefore unsat ∈ N , or

• T2: M |= QM and M 6∈ MM(QM). Thus unsat 6∈ N (since
M |= QM ), unsat• 6∈ N (since M ′ |= QM ), and diff ∈ N (since
M ′ ⊂M ).
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A stable model for the translation exists if and only if such a reason
exists. The integrity constraint ensures that every stable model of the
translation contains the atom ok.

A counter-example can easily be extracted from a stable model N of trans-
lation TR(P, Q). If unsat ∈ N , we know that M = N ∩ Hb(P ) ∈ SM(P )
and M 6|= QM . Thus 〈M, M〉 is a counter-example of type T1. On the
other hand, if unsat 6∈ N , we find the counter-example similarly: M =
N ∩ Hb(P ) ∈ SM(P ), M |= QM and M 6∈ MM(QM ). Furthermore,
M ′ = {a | a• ∈ N ∩ Hb(P )•} ⊂ M and M ′ |= QM . Thus 〈M, M ′〉 is a
counter-example of type T2.

a | b.
unsat← ∼a,∼b.
a• ← a,∼a◦,∼unsat.
a◦ ← a,∼a•,∼unsat.
b• ← b,∼b◦,∼unsat.
b◦ ← b,∼b•,∼unsat.
unsat• ← ∼a•,∼b,∼unsat.
diff ← a,∼a•,∼unsat.
diff ← b,∼b•,∼unsat.
ok ← unsat.
ok ← diff ,∼unsat,∼unsat•.
⊥ ← ∼ok

(a)

a | b.
a• ← a.
a◦ ← a.
b◦ ← b.
diff ← a.
diff ← b.
ok ← unsat.
ok ← diff

(b)

Figure 4.1: (a) The translation TR(P, Q) from Example 4.2 and (b) the
reduct TR(P, Q)N for interpretation N = {b, b◦, diff , ok}.

Example 4.2. Let us consider the programs P = {a | b} and Q = {a ←
∼b}. Program P has two stable models, SM(P ) = {{a}, {b}}, while pro-
gram Q has one, SM(Q) = {{a}}. The translation TR(P, Q) is presented
in Figure 4.1(a). Let us consider a model candidate N = {b, b◦, diff , ok}.
The reduct TR(P, Q)N is presented in Figure 4.1(b). We have

MM(TR(P, Q)N) = {{a, a•, a◦, diff , ok}, {b, b◦, diff , ok}}.

Thus N ∈ SM(TR(P, Q)). Since the translation has a stable model, we can
conclude, that P 6≡ Q, and M = N ∩Hb(P ) = {b} can be used to construct
a counter-example for the equivalence. Now M ∈ SM(P ), M |= QM and
M 6∈MM(QM) = {∅}. We have M ′ = {a | a• ∈ N ∩ Hb(P )•} = ∅ ⊂ M
and M ′ |= QM , since QM = ∅. Since unsat 6∈ N , the pair 〈M, M ′〉 is
a counter-example of type T2. As both stable models of P are models of Q,
there exists no counter-example of type T1. This can also be verified from the
translation, since the first two rules in TR(P, Q) ensure that unsat cannot
belong to a stable model of TR(P, Q). �
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4.1.1 Correctness of the Translation TR(P, Q)

In this section we establish the correctness of the translation TR(P, Q), show-
ing that TR(P, Q) has a stable model if and only if P has a stable model that
is not a stable model of Q. As a matter a fact we can prove an even stronger re-
sult as there is a tight one-to-one correspondence between the sets CE(P, Q)
and SM(TR(P, Q)). To show this correspondence, we first define mappings
from 2Hb(P ) × 2Hb(Q) to 2Hb(TR(P,Q)) and vice versa.

Definition 4.3. Given two disjunctive logic programs P and Q such that
Hb(P ) = Hb(Q) the function

EXTP,Q : 2Hb(P ) × 2Hb(Q) → 2Hb(TR(P,Q))

is defined as follows:

EXTP,Q(M, M ′)

=

{

M ∪ {unsat, ok}, if M = M ′,
M ∪ {diff , ok} ∪ {a• | a ∈M ′} ∪ {a◦ | a ∈M \M ′}, otherwise.

Definition 4.4. Given the translation TR(P, Q) of disjunctive logic pro-
grams P and Q, the function

PROJP,Q : 2Hb(TR(P,Q)) → 2Hb(P ) × 2Hb(Q)

is defined as follows:

PROJP,Q(N) =

{

〈N ∩ Hb(P ), N ∩ Hb(P )〉, if unsat ∈ N,
〈N ∩ Hb(P ), {a ∈ Hb(P ) | a• ∈ N}〉, otherwise.

The form of the reduct TR(P, Q)N for a given interpretation N is as fol-
lows.

Lemma 4.5. Given an interpretation N for TR(P, Q) from Definition 4.1,
let us define M1 = N ∩ Hb(P ), M2 = {a ∈ Hb(P ) | a• ∈ N} and R =
{a ∈ Hb(P ) | a◦ ∈ N}. Thus M2

• = N ∩ Hb(P )• and R◦ = N ∩ Hb(P )◦.
The reduct TR(P, Q)N contains the following rules:

1. all the rules of PM1
,

2. a rule unsat← B ⇐⇒ there exists a rule A← B,∼C ∈ Q such that
M1 6|=

∨

A and M1 |= ∼C,

3. the following ⇐⇒ unsat 6∈ N :

(a) a rule a• ← a ⇐⇒ there exists a ∈ Hb(P ) such that a 6∈ R,

(b) a rule a◦ ← a ⇐⇒ there exists a ∈ Hb(P ) such that a 6∈M2,

(c) a rule unsat• ← B• ⇐⇒ there exists a rule A ← B,∼C ∈ Q
such that M2 6|=

∨

A and M1 |= ∼C,

(d) a rule diff ← a ⇐⇒ there exists a ∈ Hb(P ) such that a 6∈M2,
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4. the rule ok ← unsat,

5. the rule ok ← diff ⇐⇒ unsat 6∈ N and unsat• 6∈ N , and

6. the rule ⊥ ⇐⇒ ok 6∈ N .

Proof of Lemma 4.5. We examine the rules in each item of Lemma 4.5
separately, and use Definitions 4.1 and 2.13.

1. A← B ∈ TR(P, Q)N

⇐⇒ A← B,∼C ∈ TR(P, Q) and C ∩N = ∅
⇐⇒ A← B,∼C ∈ P and C ∩M1 = ∅
⇐⇒ A← B ∈ PM1

.

2. unsat← B ∈ TR(P, Q)N

⇐⇒ unsat← B,∼(A ∪ C) ∈ TR(P, Q) and (A ∪ C) ∩N = ∅
⇐⇒ unsat← B,∼(A ∪ C) ∈ TR(P, Q) and (A ∪ C) ∩M1 = ∅
⇐⇒ unsat← B,∼(A ∪ C) ∈ TR(P, Q), M1 6|=

∨

A and M1 |= ∼C
⇐⇒ A← B,∼C ∈ Q, M1 6|=

∨

A and M1 |= ∼C.

3. If unsat 6∈ N and a ∈ Hb(P ):

(a) a• ← a ∈ TR(P, Q)N

⇐⇒ a• ← a,∼a◦,∼unsat ∈ TR(P, Q) and a◦ 6∈ N
⇐⇒ a• ← a,∼a◦,∼unsat ∈ TR(P, Q) and a◦ 6∈ R◦

⇐⇒ a• ← a,∼a◦,∼unsat ∈ TR(P, Q) and a 6∈ R.

(b) a◦ ← a ∈ TR(P, Q)N

⇐⇒ a◦ ← a,∼a•,∼unsat ∈ TR(P, Q) and a• 6∈ N
⇐⇒ a◦ ← a,∼a•,∼unsat ∈ TR(P, Q) and a• 6∈M2

•

⇐⇒ a◦ ← a,∼a•,∼unsat ∈ TR(P, Q) and a 6∈M2.

(c) unsat• ← B• ∈ TR(P, Q)N

⇐⇒ unsat• ← B•,∼(A• ∪ C),∼unsat ∈ TR(P, Q) such
that (A• ∪ C) ∩N = ∅

⇐⇒ unsat• ← B•,∼(A• ∪ C),∼unsat ∈ TR(P, Q) such
that A• ∩M2

• = ∅ and C ∩M1 = ∅
⇐⇒ A← B,∼C ∈ Q, M2 6|=

∨

A and M1 |= ∼C.

(d) diff ← a ∈ TR(P, Q)N

⇐⇒ diff ← a,∼a•,∼unsat ∈ TR(P, Q) and a• 6∈ N
⇐⇒ diff ← a,∼a•,∼unsat ∈ TR(P, Q) and a• 6∈M2

•

⇐⇒ diff ← a,∼a•,∼unsat ∈ TR(P, Q) and a 6∈M2.

4. ok ← unsat ∈ TR(P, Q)N ⇐⇒ ok ← unsat ∈ TR(P, Q).

5. ok ← diff ∈ TR(P, Q)N

⇐⇒ ok ← diff,∼unsat,∼unsat• ∈ TR(P, Q), unsat 6∈ N and
unsat• 6∈ N .

6. ⊥ ∈ TR(P, Q)N ⇐⇒ ⊥← ∼ok ∈ TR(P, Q) and ok 6∈ N . �

The extension N of a counter-example for the equivalence of programs P
and Q is a model of the reduct TR(P, Q)N .
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Lemma 4.6. If the pair 〈M, M ′〉 ∈ CE(P, Q), then N |= TR(P, Q)N for
N = EXTP,Q(M, M ′).

Proof of Lemma 4.6. Assume 〈M, M ′〉 ∈ CE(P, Q). First, it is worth notic-
ing that by Definition 4.3 and since M ′ ⊆ M , if a• ∈ N for an atom
a ∈ Hb(P ), then a◦ 6∈ N and vice versa. The pairs in CE(P, Q) divide
in two cases corresponding to counter-examples of types (i) T1 and (ii) T2.

(i) Assume 〈M, M ′〉 ∈ CE(P, Q) is of type T1. Then M = M ′, M ∈
SM(P ) and M 6|= QM . Then by Definition 4.3, it holds N = M ∪
{unsat, ok}. Thus, by Lemma 4.5, we have

TR(P,Q)N = PM

∪{unsat← B | A← B,∼C ∈ Q and M |= ∼(A ∪C)}

∪{ok ← unsat}.

Now, since M ∈ SM(P ), M |= PM and furthermore N |= PM as
M = N∩Hb(P ). Since unsat ∈ N , each rule of the form unsat← B
is satisfied regardless of the satisfiability of B. Furthermore, the rule
ok ← unsat is satisfied in N . Thus N |= TR(P, Q)N .

(ii) Assume 〈M, M ′〉 ∈ CE(P, Q) is of type T2. Thus M ∈ SM(P ),
M |= QM , M ′ ⊂M and M ′ |= QM . Then by Definition 4.3,

N = M ∪ {diff , ok} ∪ {a• | a ∈M ′} ∪ {a◦ | a ∈M \M ′}.

Let us show that each rule in the reduct TR(P, Q)N is satisfied, the
items below corresponding to the items in Lemma 4.5, where M1 =
M , M2 = M ′ and R = M \M ′.

1. Since M ∈ SM(P ), M |= PM , and thus N |= PM .

2. By Lemma 4.5 a rule unsat ← B ∈ TR(P, Q)N , if there exists
a rule A ← B,∼C ∈ Q such that M 6|=

∨

A and M |= ∼C.
Since M |= QM , M |= Q by Theorem 2.19. Thus for each rule
A ← B,∼C ∈ Q, if M 6|=

∨

A and M |= ∼C, then M 6|= B. If
M 6|= B, then, since M = N ∩Hb(P ) and B ⊆ Hb(P ), N 6|= B.
Thus each rule of the form unsat← B ∈ TR(P, Q)N is satisfied
in N .

3a. By Lemma 4.5 a rule a• ← a ∈ TR(P, Q)N (a ∈ Hb(P )), if
a 6∈ M \M ′. If a 6∈ N , the rule is satisfied in N regardless of the
satisfiability of a•. If a ∈ N , then a• ∈ N (since, if a 6∈ M \M ′,
then a◦ 6∈ N ). Thus the rule a• ← a ∈ TR(P, Q)N is satisfied in
N .

3b. By Lemma 4.5 a rule a◦ ← a ∈ TR(P, Q)N (a ∈ Hb(P )), if
a 6∈ M ′. If a 6∈ N , the rule is satisfied in N regardless of the
satisfiability of a◦. If a ∈ N , then a◦ ∈ N (since, if a 6∈ M ′, then
a• 6∈ N ). Thus the rule a◦ ← a ∈ TR(P, Q)N is satisfied in N .

3c. By Lemma 4.5 a rule unsat• ← B• ∈ TR(P, Q)N , if there exists
a rule A ← B,∼C ∈ Q such that M ′ 6|=

∨

A and M |= ∼C.
Since M ′ |= QM , it holds for each rule A• ← B• ∈ (QM)• that if
(M ′)• 6|=

∨

A•, then (M ′)• 6|= B•. If (M ′)• 6|= B•, then N 6|= B•,
since (M ′)• ⊆ N . Thus each rule of the form unsat• ← B• ∈
TR(P, Q)N is satisfied in N .
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3d. By Lemma 4.5 a rule diff ← a ∈ TR(P, Q)N , if there exists
a ∈ Hb(P ) such that a 6∈ M ′. Since diff ∈ N , the rule diff ←
a ∈ TR(P, Q)N is satisfied in N regardless of the satisfiability of
a.

4, 5, 6. Since ok ∈ N , these are satisfied.

Next we extend the result of the previous lemma and show that the exten-
sion N = EXTP,Q(M, M ′) is a stable model of the translation TR(P, Q).

Theorem 4.7. For any two disjunctive logic programs P and Q satisfying
Hb(P ) = Hb(Q), if 〈M, M ′〉 ∈ CE(P, Q), then N = EXTP,Q(M, M ′) ∈
SM(TR(P, Q)) such that PROJP,Q(N) = 〈M, M ′〉.

Proof of Theorem 4.7. Suppose that 〈M, M ′〉 ∈ CE(P, Q). It follows by
Lemma 4.6 that N |= TR(P, Q)N . To show that N ∈ SM(TR(P, Q)) we
need to show that N ∈ MM(TR(P, Q)N). The pairs 〈M, M ′〉 ∈ CE(P, Q)
divide into two cases corresponding to counter-examples of types (i) T1 and
(ii) T2.

(i) Assume that 〈M, M ′〉 is a counter-example of type T1. Thus M =
M ′, and furthermore M ∈ SM(P ) and M 6|= QM (and M 6|= Q by
Theorem 2.19). By Definition 4.3, N = M ∪ {unsat, ok}. Assume
that N 6∈ MM(TR(P, Q)N), i.e. there exists N ′ ⊂ N such that N ′ |=
TR(P, Q)N . Thus N \N ′ 6= ∅.

• Assume that there exists a ∈ Hb(P ) such that a ∈ N and a 6∈ N ′.
Since N ′ |= TR(P, Q)N and PM ⊆ TR(P, Q)N , N ′ |= PM .
Furthermore, M ′ = N ′ ∩ Hb(P ) |= PM . By Theorem 2.18,
this is contradictory to M ∈ MM(PM) since M ′ ⊂ M . Thus
N ∩ Hb(P ) = N ′ ∩ Hb(P ).

• Assume that unsat 6∈ N ′. Since M 6|= Q, there exists a rule
A ← B,∼C ∈ Q that is not satisfied in M , i.e. M 6|=

∨

A
and M |= B ∪ ∼C. Thus B ⊆ M ⊂ N . Since unsat ←
B ∈ TR(P, Q)N by Lemma 4.5 if M 6|=

∨

A and M |= ∼C,
to satisfy this rule in N ′, B 6⊆ N ′. This is in contradiction with
N ∩ Hb(P ) = N ′ ∩ Hb(P ). Thus we must have unsat ∈ N ′.

• Assume that ok 6∈ N ′. Since unsat ∈ N ′, the rule ok ← unsat ∈
TR(P, Q)N is not satisfied in N ′. This is contradictory and thus
ok ∈ N ′.

Thus N ∈MM(TR(P, Q)N), i.e. N ∈ SM(TR(P, Q)).

(ii) Assume 〈M, M ′〉 ∈ CE(P, Q) is of type T2. Thus M ∈ SM(P ),
M |= QM , M ′ ⊂M and M ′ |= QM . Then by Definition 4.3,

N = M ∪ {diff , ok} ∪ {a• | a ∈M ′} ∪ {a◦ | a ∈M \M ′}.

Let us assume that N 6∈ MM(TR(P, Q)N), i.e. there exists N ′ ⊂ N
such that N ′ |= TR(P, Q)N . Thus N \N ′ 6= ∅.
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• Assume that there exists a ∈ Hb(P ) such that a ∈ N and a 6∈ N ′.
Since N ′ |= TR(P, Q)N and by Lemma 4.5 PM ⊆ TR(P, Q)N ,
N ′ |= PM . Furthermore, M ′′ = N ′∩Hb(P ) |= PM . By Theorem
2.18, this is in contradiction with M ∈ MM(PM) since M ′′ ⊂
M . Thus N ∩ Hb(P ) = N ′ ∩ Hb(P ).

• Assume that there exists a ∈ Hb(P ) such that a• ∈ N and a• 6∈
N ′. Since a• ∈ N , by definition of N it holds that a◦ 6∈ N
(⇒ a 6∈ M \ M ′) and a ∈ N . Thus, since unsat 6∈ N and
a 6∈ M \M ′, by Lemma 4.5 there is a rule a• ← a ∈ TR(P, Q)N .
Since N∩Hb(P ) = N ′∩Hb(P ), it holds that a ∈ N ′. Thus N ′ 6|=
TR(P, Q)N , which is a contradiction. Therefore N ∩ Hb(P )• =
N ′ ∩ Hb(P )•.

• Assume that there exists a ∈ Hb(P ) such that a◦ ∈ N and a◦ 6∈
N ′. By the definition of N , it holds that a ∈ N and a• 6∈ N (⇒
a 6∈ M ′). Since a 6∈M ′ and unsat 6∈ N , by Lemma 4.5 there is a
rule a◦ ← a ∈ TR(P, Q)N . Since N∩Hb(P ) = N ′∩Hb(P ), a ∈
N ′. Thus N ′ 6|= TR(P, Q)N , which is a contradiction. Therefore
N ∩ Hb(P )◦ = N ′ ∩ Hb(P )◦.

• Assume that diff 6∈ N ′. Since M ′ ⊂ M , there exists a ∈ Hb(P ),
such that a ∈ M and a 6∈ M ′. Thus a ∈ N . Furthermore,
a ∈ N ′. Since unsat 6∈ N and a 6∈ M ′, by Lemma 4.5 there is
a rule diff ← a ∈ TR(P, Q)N . Since diff 6∈ N ′ and a ∈ N ′,
this rule is not satisfied in N ′, which is a contradiction. Thus
diff ∈ N ′.

• Assume that ok 6∈ N ′. Since unsat 6∈ N and unsat• 6∈ N ,
by Lemma 4.5 there is a rule ok ← diff ∈ TR(P, Q)N . Since
diff ∈ N ′ and ok 6∈ N ′ this rule is not satisfied in N ′, which is a
contradiction. Thus ok ∈ N ′.

Thus N = N ′, which a contradiction. Therefore it holds that N ∈
MM(TR(P, Q)N), i.e. N ∈ SM(TR(P, Q)).

Finally we need to show that PROJP,Q(N) = 〈M, M ′〉. Assume first that
M = M ′. Then N = M ∪ {unsat, ok} and by Definition 4.4,

PROJP,Q(N) = 〈N ∩ Hb(P ), N ∩ Hb(P )〉 = 〈M, M〉 = 〈M, M ′〉.

On the other hand, if M 6= M ′, then

N = M ∪ {diff , ok} ∪ {a• | a ∈M ′} ∪ {a◦ | a ∈M \M ′}.

By Definition 4.4,

PROJP,Q(N) = 〈N ∩ Hb(P ), {a ∈ Hb(P ) | a• ∈ N}〉 = 〈M, M ′〉. �

Before discussing the use of the function PROJP,Q, let us consider the
following lemma.

Lemma 4.8. For any disjunctive logic programs P and Q satisfying Hb(P ) =
Hb(Q), if N ∈ SM(TR(P, Q)), then M ∈ SM(P ), where M = N∩Hb(P ).
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Proof of Lemma 4.8. Assume that N ∈ SM(TR(P, Q)). First, let us
show that M |= PM . Since N |= TR(P, Q)N and by Lemma 4.5 PM ⊆
TR(P, Q)N , N |= PM . Thus M = N ∩ Hb(P ) |= PM .

It also holds that M ∈ MM(PM). Let us assume the opposite, i.e. there
exists M ′ ⊂ M such that M ′ |= PM . We define N ′ = M ′ ∪ (N \M). Thus
N ′ ⊂ N and N ′ \Hb(P ) = N \Hb(P ). Let us show that N ′ |= TR(P, Q)N .

If we assume that N ′ 6|= TR(P, Q)N , there exists a rule in TR(P, Q)N

that is not satisfied. Using Lemma 4.5, we can examine each part of the
translation separately (items corresponding to the items in Lemma 4.5).

1. If a rule A ← B ∈ PM is not satisfied in N ′, then N ′ 6|= PM . Thus
M ′ 6|= PM , which is contradictory to M ′ |= PM .

2. If unsat ← B ∈ TR(P, Q)N is not satisfied in N ′, then B ⊆ N ′ and
unsat 6∈ N ′. By the definition of N ′, if unsat 6∈ N ′, then unsat 6∈ N .
Since N ′ ⊂ N , also B ⊆ N and unsat ← B ∈ TR(P, Q)N is not
satisfied in N . This is in contradiction with N |= TR(P, Q)N .

3a. If a• ← a ∈ TR(P, Q)N is not satisfied in N ′, then a ∈ N ′ ⊂ N and
a• 6∈ N ′. If a• 6∈ N ′, then a• 6∈ N . Thus a• ← a ∈ TR(P, Q)N is not
satisfied in N , which is a contradiction.

3b. If a◦ ← a ∈ TR(P, Q)N is not satisfied in N ′, then a ∈ N ′ ⊂ N and
a◦ 6∈ N ′. If a◦ 6∈ N ′, then a◦ 6∈ N . Thus a◦ ← a ∈ TR(P, Q)N is not
satisfied in N , which is a contradiction.

3c. If unsat• ← B ∈ TR(P, Q)N is not satisfied in N ′, then B ⊆ N ′ ⊂ N
and unsat• 6∈ N ′. If unsat• 6∈ N ′, then unsat• 6∈ N . Thus unsat ←
B ∈ TR(P, Q)N is not satisfied in N , which is a contradiction.

3d. If diff ← a ∈ TR(P, Q)N is not satisfied in N ′, then a ∈ N ′ ⊂ N and
diff 6∈ N ′. If diff 6∈ N ′, then diff 6∈ N . Thus diff ← a ∈ TR(P, Q)N

is not satisfied in N , which is a contradiction.

4, 5, 6. Since N ′ \Hb(P ) = N \Hb(P ), if any of these rules is not satisfied in
N ′, then it is not satisfied in N , which is a contradiction.

Thus the assumption N ′ 6|= TR(P, Q)N leads to contradiction. Therefore
N ′ |= TR(P, Q)N . Since N ′ ⊂ N , this is in contradiction with N ∈
MM(TR(P, Q)N). Thus M ∈MM(PM), i.e. M ∈ SM(P ). �

For a stable model N of the translation TR(P, Q), it holds that PROJP,Q(N)
is a counter-example for the equivalence of programs P and Q.

Theorem 4.9. For any disjunctive logic programs P and Q satisfying
Hb(P ) = Hb(Q), if N ∈ SM(TR(P, Q)), then 〈M, M ′〉 = PROJP,Q(N) ∈
CE(P, Q) such that N = EXTP,Q(M, M ′).

Proof of Theorem 4.9. Assume that N ∈ SM(TR(P, Q)). The integrity
constraint ⊥ ← ∼ok ∈ TR(P, Q) forces that ok has to be true in each
model of TR(P, Q), thus it holds that ok ∈ N .
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Let 〈M, M ′〉 = PROJP,Q(N). Then M = N ∩ Hb(P ) and by Lemma
4.8, M ∈ SM(P ). Thus, to show that 〈M, M ′〉 ∈ CE(P, Q), we need to
show that M 6∈ SM(Q).

Our proof divides into two parts, either (i) unsat ∈ N (corresponding to a
counter-example of type T1) or (ii) unsat 6∈ N (corresponding to a counter-
example of type T2).

(i) Assume that unsat ∈ N . Thus PROJP,Q(N) = 〈M, M ′〉 = 〈M, M〉.
Since N ∈ SM(TR(P, Q)), N ∈ SuppM(TR(P, Q)) by Theorem
2.21. Thus, since unsat ∈ N , there exists a rule unsat ← B,∼(A ∪
C) ∈ TR(P, Q) such that N |= B∪∼(A∪C). Since M = N∩Hb(P ),
A ⊆ Hb(P ), B ⊆ Hb(P ) and C ⊆ Hb(P ), there exists a rule A ←
B,∼C ∈ Q such that M 6|=

∨

A, M |= ∼C and M |= B. It follows
that M 6|= Q and furthermore M 6|= QM by Theorem 2.19. Thus
〈M, M〉 ∈ CE(P, Q).

(ii) Assume unsat 6∈ N and thus PROJP,Q(N) = 〈M, M ′〉, where M ′ =
{a ∈ Hb(P ) | a• ∈ N}. Assume that M 6|= QM . Thus there exists
a rule A ← B ∈ QM that is not satisfied in M , i.e. M 6|=

∨

A and
M |= B. If A ← B ∈ QM , then there exists a rule A ← B,∼C ∈ Q,
such that M |= ∼C. Thus by Lemma 4.5 there exists a rule unsat ←
B ∈ TR(P, Q)N that is not satisfied in N , which is a contradiction.
Thus M |= QM .

Since N ∈ SM(TR(P, Q)), N ∈ SuppM(TR(P, Q)) by Theorem
2.21. Thus, since ok ∈ N , there exists a rule that has the atom ok
in its head and its body is satisfied in N . The translation TR(P, Q)
has two rules containing ok in their heads: ok ← unsat and ok ←
diff ,∼unsat,∼unsat•. Since unsat 6∈ N , it must be that N |=
{diff,∼unsat,∼unsat•}. Thus unsat• 6∈ N and diff ∈ N .

Let us show that (a) M ′ |= QM and (b) M ′ ⊂M .

(a) Assume that M ′ 6|= QM . Thus there exists a rule A ← B ∈ QM

such that M ′ 6|=
∨

A and M ′ |= B. If A ← B ∈ QM , then
there exists a rule A ← B,∼C ∈ Q such that M |= ∼C. Thus,
since M ′ 6|=

∨

A and M |= ∼C, by Lemma 4.5 there exists a rule
unsat• ← B• ∈ TR(P, Q)N . Since unsat• 6∈ N , it must hold
that N 6|= B•, and furthermore M ′ 6|= B. This is in contradiction
with M ′ |= B. Therefore M ′ |= QM .

(b) We need to show that if a ∈ M ′, then a ∈ M . Let us assume
the opposite, i.e. there exists a ∈ Hb(P ) such that a ∈ M ′ and
a 6∈ M , i.e. a• ∈ N and a 6∈ N . Since a• ∈ N , the body of
the rule a• ← a,∼a◦ ∈ TR(P, Q) has to be satisfied in N . Thus
a◦ 6∈ N and a ∈ N , which is a contradiction. Thus M ′ ⊆M .

Finally, let us show that M ′ 6= M . As shown earlier, diff ∈ N .
Thus, by Theorem 2.21, there exists a rule diff ← a,∼a• ∈
TR(P, Q) such that N |= {a,∼a•}. Hence, there exists a ∈
Hb(P ) such that a• 6∈ N and a ∈ N and furthermore a ∈M and
a 6∈ M ′.

Since M ′ ⊆M and M ′ 6= M , it holds that M ′ ⊂M .
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Now M |= QM , M ′ |= QM , and M ′ ⊂ M . Therefore 〈M, M ′〉 ∈
CE(P, Q).

Let N ′ = EXTP,Q(M, M ′). We need to show that N = N ′. Let us first
show that N ′ ⊆ N . This divides in two cases.

(i) If unsat ∈ N , then M = M ′ = N ∩ Hb(P ). Since M = M ′, N ′ =
EXTP,Q(M, M) = M ∪ {unsat, ok} = N ∩ Hb(P ) ∪ {unsat, ok}.
Since it must hold that ok ∈ N for each stable model of N , N ′ ⊆ N .

(ii) If unsat 6∈ N then, by Theorem 2.21 and since it must hold that ok ∈
N for each stable model of N , there must be a rule supporting ok. This
implies that either unsat ∈ N or diff ∈ N . Thus, since unsat 6∈ N , it
holds that diff ∈ N . Now,

N ′ = EXTP,Q(M,M ′)

= EXTP,Q(N ∩Hb(P ), {a ∈ Hb(P ) | a• ∈ N})

= (N ∩Hb(P )) ∪ {diff, ok} ∪ (N ∩Hb(P )•) ∪ (N ∩Hb(P )◦).

Thus it holds that N ′ ⊆ N .

Assume that N ′ ⊂ N . By Theorem 4.7 it holds that N ′ = EXTP,Q(M, M ′) ∈
SM(TR(P, Q)) since 〈M, M ′〉 ∈ CE(P, Q). By Theorem 2.18 this is con-
tradictory to the assumption N ∈ SM(TR(P, Q)). Thus N = N ′. �

As a consequence of Theorems 4.7 and 4.9 the functions EXTP,Q and
PROJP,Q are bijections when restricted between the sets SM(TR(P, Q))
and CE(P, Q). This implies that the counter-examples in CE(P, Q) and the
stable models of the translation TR(P, Q) are in one-to-one correspondence.

Corollary 4.10. CE(P, Q) = ∅ if and only if SM(TR(P, Q)) = ∅.

Furthermore, the relationship in Corollary 4.10 implies the correctness of
our method for testing the equivalence of disjunctive logic programs, since
P ≡ Q if and only if CE(P, Q) = ∅ and CE(Q, P ) = ∅.

Corollary 4.11. Let P and Q be any disjunctive logic programs such
that Hb(P ) = Hb(Q). P ≡ Q if and only if SM(TR(P, Q)) = ∅ and
SM(TR(Q, P )) = ∅.

4.1.2 Computational Complexity Revisited

As discussed in Section 3.2, testing the equivalence of disjunctive programs is
ΠP

2 -complete. Let us discuss further how to show that testing the equivalence
of disjunctive logic programs is in ΠP

2 using the translation TR(P, Q).
In the following we use the notation introduced in Definition 3.13 for

languages corresponding to decision problems of our interest. In Section 3.2
we showed that IMPR is in ΣP

2 (and thus IMPR ∈ ΠP

2 ) by giving an abstract
algorithm showing how to construct a nondeterministic NP-oracle Turing-
machine accepting IMPR. The translation TR(P, Q) gives us now means of
systematically reducing the problem of equivalence testing of two disjunctive
programs into SM, which is a problem known to be in ΠP

2 . Thus using the
translation as a polynomial-time reduction it is straightforward to show that
IMPR is in ΠP

2 .
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Theorem 4.12. IMPR is in ΠP

2 .

Proof of Theorem 4.12. Let us take two arbitrary disjunctive logic programs
P and Q. It holds that (P, Q) ∈ IMPR ⇐⇒ SM(P ) ⊆ SM(Q). By
Corollary 4.10 this is equivalent to TR(P, Q) 6∈ SM ⇐⇒ TR(P, Q) ∈ SM.
Since SM ∈ ΠP

2 and the reduction from IMPR to SM can be performed in
polynomial time using the translation TR(P, Q), we have IMPR ∈ ΠP

2 . �

Similarly, using the translation TR(Q, P ), it can easily be shown that
IMPL ∈ ΠP

2 , and, furthermore, that EQV ∈ ΠP

2 .

4.2 TWO-PHASED TRANSLATION

In the previous section we presented a translation for testing the equivalence
of disjunctive logic programs. Finding a counter-example for the equivalence
clearly divides in two separate cases (types T1 and T2) and therefore testing
can be performed in two phases. The idea is as follows. In the first phase, we
use a translation TR1(P, Q) to test whether all the stable models of P are also
models of QM . If there exists a stable model of P that is not a model of QM ,
then TR1(P, Q) has a stable model and we have found a counter-example of
type T1. Otherwise, we will continue to the second phase, where the second
translation TR2(P, Q) is used to check whether every stable model M of P
is a minimal model of QM . These two translations can be obtained rather
easily by simplifying the previously defined translation TR(P, Q).

The two-phased approach can be motivated by computational arguments.
Counter-examples of type T1 can be found (if there exist any) using a rather
straightforward and compact translation, whereas finding a counter-example
of type T2 is more complicated. Thus counter-examples of type T2 should
be of interest only if counter-examples of type T1 do not exist. In this way,
the search space is divided (conditionally) into two parts. The translation
for the search of the type T2 counter-examples can be simplified in such an
arrangement, since it is known that every stable model M of P is necessarily
a model of QM .

We use the same notation and new atoms in the definitions of this section
as in Definition 4.1 and also assume Hb(P ) = Hb(Q) similarly as in Section
4.1. We define first the translation TR1(P, Q) for the first phase. The Her-
brand base of TR1(P, Q) contains all the atoms in Hb(P ) and the new atom
unsat, that is

Hb(TR1(P, Q)) = Hb(P ) ∪ {unsat}.

Definition 4.13. Let P and Q be disjunctive logic programs such that
Hb(P ) = Hb(Q). Let unsat be a new atom appearing in neither P nor
Q. The translation TR1(P, Q) contains the following rules:

1. all the rules of P without modifications,

2. a rule unsat← B,∼(A ∪ C) for each rule A← B,∼C ∈ Q, and

3. ⊥ ← ∼unsat.

The idea behind the translation is as follows. The rules in the first item in
Definition 4.13 capture a stable model M of P such that M = N ∩ Hb(P ),
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where N ∈ SM(TR1(P, Q)). The rules in the second item check whether
M |= Q (and thus whether M |= QM by Theorem 2.19). Thus, if there exists
a rule in Q that is not satisfied in M , unsat is implied. The integrity con-
straint in the last item ensures that every stable model of the translation con-
tains unsat, and therefore a counter-example for the equivalence is found.

We can easily construct a counter-example of type T1 for equivalence
from a stable model of the translation TR1(P, Q). If N ∈ SM(TR1(P, Q)),
then M ∈ SM(P ) and M 6|= Q, where M = N ∩ Hb(P ). Thus M 6|= QM

by Theorem 2.19, and 〈M, M〉 is a counter-example of type T1.

Example 4.14. Let us consider programs P = {a | b} and Q = {b ← a}.
Program P has two stable models, SM(P ) = {{a}, {b}}, while program Q
has one, SM(Q) = {∅}. The translation TR1(P, Q) is the following:

TR1(P, Q) = {a | b. unsat← ∼b, a. ⊥ ← ∼unsat}.

Let us consider a model candidate N = {a, unsat}. The reduct is

TR1(P, Q)N = {a | b. unsat← a}.

Its minimal models are MM(TR1(P, Q)N) = {{a, unsat}, {b}}. Thus N ∈
SM(TR1(P, Q)). Since the translation has a stable model, we can conclude
that P 6≡ Q. Since M = N ∩ Hb(P ) ∈ SM(P ) and M 6|= QM , the pair
〈M, M〉 is a counter-example of type T1. �

Next, we define the translation TR2(P, Q) for the second phase. As men-
tioned earlier, the use of this translation is needed only if TR1(P, Q) has no
stable models.

Definition 4.15. Let P and Q be disjunctive logic programs such that
Hb(P ) = Hb(Q) and SM(TR1(P, Q)) = ∅. Let diff and unsat• be new
atoms appearing in neither P nor Q. The translation TR2(P, Q) contains
the following rules:

1. all the rules of P without modifications,

2. rules a• ← a,∼a◦, and a◦ ← a,∼a• for each atom a ∈ Hb(P ),

3. a rule unsat• ← B•,∼(A• ∪ C) for each rule A← B,∼C ∈ Q,

4. a rule diff ← a,∼a• for each atom a ∈ Hb(P ) and

5. rules ⊥ ← ∼diff and ⊥ ← unsat•.

The Herbrand base of TR2(P, Q) is the same as Hb(TR(P, Q)), apart
from the atom ok not appearing in TR2(P, Q). Thus we have

Hb(TR2(P, Q)) = {diff, unsat•} ∪ Hb(P ) ∪ Hb(P )• ∪ Hb(P )◦.

The idea behind the translation is as follows. The rules in the first item
in Definition 4.15 capture a stable model M of P such that M = N ∩
Hb(P ), where N ∈ SM(TR2(P, Q)). Since SM(TR1(P, Q)) = ∅ there is
no need to check that M |= QM as in Definition 4.1. Thus we can define the
translation TR2 more compactly. As in Definition 4.1, the renamed atoms
are used in selecting an interpretation M ′ for QM such that M ′ ⊆ M . The
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rules in the second item force that given a ∈ M , either a is true in the sub-
model candidate (a• ∈ N ) or not (a◦ ∈ N ). The rules in the third item check
whether (M ′)• |= (QM)•, where (M ′)• = N ∩ Hb(P )•. Thus, if there exists
a rule in QM that is not satisfied in M ′, then unsat• is implied. The rules
in the fourth item check that M ′ is a proper subset of M , i.e. diff is implied
if M ′ ⊂ M . Finally, the integrity constraints in the fifth item are used in
ensuring that every stable model of TR2(P, Q) contains diff but does not
contain unsat•.

We can easily construct a counter-example of type T2 for equivalence
from a stable model of the translation TR2(P, Q). Since SM(TR1(P, Q)) =
∅, there exists no counter-example of type T1, i.e., if M ∈ SM(P ), then
M |= QM . Thus, if N ∈ SM(TR2(P, Q)), then M ∈ SM(P ), M |= QM

and M 6∈ MM(QM), where M = N ∩ Hb(P ). Moreover, M ′ = {a | a• ∈
N ∩ Hb(P )•} ⊂ M and M ′ |= QM . Thus 〈M, M ′〉 is a counter-example of
type T2.

Example 4.16. Recall the two logic programs P and Q from Example 4.2,
P = {a | b} and Q = {a ← ∼b}. Program P has two stable models,
SM(P ) = {{a}, {b}}, while program Q has one, SM(Q) = {{a}}. The
translation TR1(P, Q) is the following,

TR1(P, Q) = {a | b. unsat← ∼a,∼b. ⊥ ← ∼unsat}.

The translation TR1(P, Q) has no stable models. Thus {a} |= Q and {b} |=
Q. The translation TR2(P, Q) is presented in Figure 4.2(a). Consider a
model candidate N = {b, b◦, diff}. The reduct TR2(P, Q)N is presented in
Figure 4.2(b). We have

MM(TR2(P, Q)N) = {{a, a•, a◦, diff}, {b, b◦, diff}}.

Thus N ∈ SM(TR2(P, Q)). Since the translation has a stable model, we
can conclude that P 6≡ Q. The interpretation M = N ∩ Hb(P ) = {b}
is a stable model of P but not a stable model of Q. Thus M ∈ SM(P )
and M 6∈ MM(QM) = {∅}. Moreover, it holds that M ′ = {a | a• ∈
N ∩ Hb(P )•} = ∅ ⊂ M and M ′ |= QM since QM = ∅. Thus the counter-
example 〈M, M ′〉 is of type T2. �

We denote the use of the two-phased translation on programs P and Q by
[TR1(P, Q), TR2(P, Q)], meaning thereby that the translation TR1(P, Q) is
used for the first phase and the translation TR2(P, Q) is used for the second
phase if there is a need for the second phase, i.e. no counter-example of type
T1 is found.

4.2.1 Correctness of the Two-Phased Translation

We establish the correctness of the translation [TR1(P, Q), TR2(P, Q)]. Sim-
ilarly to the case of the one-shot translation TR(P, Q), there is a tight cor-
respondence between counter-examples for the equivalence and the stable
models of the two-phased translation. In this case, we partition the set of
counter-examples CE(P, Q) into CE1(P, Q) ∪ CE2(P, Q) using the type of
counter-examples as a criterion, i.e. for any 〈M, M ′〉 ∈ CE(P, Q), the pair
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a | b.
a• ← a,∼a◦.
a◦ ← a,∼a•.
b• ← b,∼b◦.
b◦ ← b,∼b•.
unsat• ← ∼a•,∼b.
diff ← a,∼a•.
diff ← b,∼b•.
⊥ ← ∼diff .
⊥ ← unsat•

(a)

a | b.
a• ← a.
a◦ ← a.
b◦ ← b.
diff ← a.
diff ← b.
⊥ ← unsat•

(b)

Figure 4.2: (a) The translation TR2(P, Q) from Example 4.16 and (b) the
reduct TR2(P, Q)N for N = {b, b◦, diff}.

〈M, M ′〉 ∈ CE1(P, Q) if M = M ′, and 〈M, M ′〉 ∈ CE2(P, Q) otherwise.
We revise the mappings EXTP,Q and PROJP,Q by dropping the atom “ok”
that does not appear in [TR1(P, Q), TR2(P, Q)]. The correctness of the two-
phased translation is established phase-wise.

Since the translations TR1(P, Q) and TR2(P, Q) are based on the single
translation TR(P, Q), the correctness proofs for the two-phased translation
are very similar to the proofs of correctness of TR(P, Q). We consider first
the translation TR1. The form of the reduct TR1(P, Q)N for a given inter-
pretation N is as follows.

Lemma 4.17. Given an interpretation N for TR1(P, Q), let us define M =
N ∩ Hb(P ). The reduct TR1(P, Q)N contains the following rules:

1. all the rules of PM ,

2. a rule unsat ← B if and only if there exists a rule A ← B,∼C ∈ Q
such that M 6|=

∨

A and M |= ∼C, and

3. the rule ⊥ if and only if unsat 6∈ N .

Lemma 4.17 is proven similarly to Lemma 4.5.
The following lemma states that if there exists 〈M, M〉 ∈ CE1(P, Q), then

N = EXTP,Q(M, M) is a stable model of the translation TR1(P, Q).

Theorem 4.18. For any disjunctive logic programs P and Q satisfying
Hb(P ) = Hb(Q), if 〈M, M〉 ∈ CE1(P, Q), then N = EXTP,Q(M, M) ∈
SM(TR1(P, Q)) such that PROJP,Q(N) = 〈M, M〉.

Proof of Theorem 4.18. Assume that 〈M, M〉 ∈ CE1(P, Q). Thus M ∈
SM(P ) and M 6|= QM . Let us first show that N = EXTP,Q(M, M) = M ∪
{unsat} |= TR1(P, Q)N . Since M ∈ SM(P ), M |= PM and furthermore
N |= PM as M = N ∩ Hb(P ). Since unsat ∈ N , each rule of the form
unsat ← B ∈ TR1(P, Q)N is satisfied regardless of the satisfiability of B.
Thus N |= TR1(P, Q)N .

Let us show that N ∈MM(TR1(P, Q)N). Assume the opposite, i.e. there
exists N ′ ⊂ N such that N ′ |= TR1(P, Q)N . Thus N \N ′ 6= ∅.
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• Assume that there exists a ∈ Hb(P ) such that a ∈ N and a 6∈ N ′.
Since N ′ |= TR1(P, Q)N and PM ⊆ TR1(P, Q)N by Lemma 4.17, we
have N ′ |= PM . Furthermore, M ′ = N ′ ∩Hb(P ) |= PM . By Theorem
2.18, this is contradictory to M ∈ MM(PM) since M ′ ⊂ M . Thus
N ∩ Hb(P ) = N ′ ∩ Hb(P ).

• Assume that unsat 6∈ N ′. Since M 6|= QM , M 6|= Q by Theorem
2.19. Thus there exists a rule A ← B,∼C ∈ Q that is not satisfied
in M , i.e. M |= ∼C, M |= B and M 6|=

∨

A. Since B ⊆ M and
M = N∩Hb(P ), it holds that B ⊆ N . Since by Lemma 4.17 unsat←
B ∈ TR1(P, Q)N , if M 6|=

∨

A and M |= ∼C, to satisfy this rule in
N ′, B 6⊆ N ′ must hold. This is in contradiction with N ∩ Hb(P ) =
N ′ ∩ Hb(P ).

Thus N ∈MM(TR1(P, Q)N), i.e. N ∈ SM(TR1(P, Q)).
Finally, it holds that PROJP,Q(N) = 〈M, M〉, since unsat ∈ N and

M = N ∩ Hb(P ). �

On the other hand, if N ∈ SM(TR1(P, Q)), then PROJP,Q(N) is a
counter-example of type T1.

Theorem 4.19. For any disjunctive logic programs P and Q satisfying
Hb(P ) = Hb(Q), if N ∈ SM(TR1(P, Q)), then 〈M, M〉 = PROJP,Q(N) ∈
CE1(P, Q) such that N = EXTP,Q(M, M).

Proof of Theorem 4.19. Assume that N ∈ SM(TR1(P, Q)). By Definition
4.4 PROJP,Q(N) = 〈M, M〉, where M = N ∩Hb(P ). First, let us show that
M |= PM . Lemma 4.17 gives us the form of the reduct TR1(P, Q)N . Since
N |= TR1(P, Q)N and PM ⊆ TR1(P, Q)N by Lemma 4.17, N |= PM . Thus
M = N ∩ Hb(P ) |= PM .

It also holds that M ∈ MM(PM). Let us assume the opposite, i.e. there
exists M ′ ⊂ M such that M ′ |= PM . Let us define N ′ = M ′ ∪ (N \M).
Thus N ′ ⊂ N and N ′ \ Hb(P ) = N \ Hb(P ). Now, it holds that N ′ |=
TR1(P, Q)N .

If we assume N ′ 6|= TR1(P, Q)N , there exists a rule in TR1(P, Q)N that is
not satisfied in N ′.

• If a rule A ← B ∈ PM is not satisfied in N ′, then N ′ 6|= PM . Thus
M ′ = N ′ ∩ Hb(P ) 6|= PM , which is a contradiction.

• If unsat ← B ∈ TR1(P, Q)N is not satisfied in N ′, then B ⊆ N ′ and
unsat 6∈ N ′. By the definition of N ′, if unsat 6∈ N ′, then unsat 6∈ N .
If unsat 6∈ N , then by Lemma 4.17 ⊥ ∈ TR1(P, Q)N and N 6|=
TR1(P, Q)N , which is a contradiction.

Thus the assumption N ′ 6|= TR1(P, Q)N leads to a contradiction and there-
fore N ′ |= TR1(P, Q)N . Since N ′ ⊂ N , this is in contradiction with
N ∈ MM(TR1(P, Q)N) by Theorem 2.18. Thus M ∈ MM(PM), i.e.
M ∈ SM(P ).

We need to show that M 6|= QM . The integrity constraint ⊥ ← ∼unsat
forces unsat ∈ N for each N ∈ SM(TR1(P, Q)). Furthermore, since N ∈
SM(TR1(P, Q)), by Theorem 2.21 we have N ∈ SuppM(TR1(P, Q)).
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Thus, there exists a rule unsat ← B,∼(A ∪ C) ∈ TR1(P, Q) such that
N |= B and N |= ∼(A ∪ C). Thus, since M = N ∩ Hb(P ), there exists
a rule A ← B,∼C ∈ Q such that M 6|=

∨

A, M |= ∼C and M |= B.
This implies that M 6|= Q. Furthermore, M 6|= QM by Theorem 2.19. Since
M ∈ SM(P ) and M 6|= QM , it holds that 〈M, M〉 ∈ CE1(P, Q).

Finally, let N ′ = EXTP,Q(M, M). We need to show that N = N ′. By
Definition 4.3, N ′ = EXTP,Q(M, M) = M ∪ {unsat} = (N ∩ Hb(P )) ∪
{unsat}. Thus N ′ ⊆ N . Since Hb(TR1(P, Q)) = Hb(P ) ∪ {unsat}, and
unsat ∈ N , it holds that N ′ = N . �

As a consequence of Theorems 4.18 and 4.19, the counter-examples of
type T1 and the stable models of the translation TR1(P, Q) are in one-to-one
correspondence.

Corollary 4.20. CE1(P, Q) = ∅ if and only if SM(TR1(P, Q)) = ∅.

Next, we consider the second phase of the two-phased translation. The
form of the reduct TR2(P, Q)N for a given interpretation N is as follows.

Lemma 4.21. Given an interpretation N for TR2(P, Q), let us define M1 =
N ∩Hb(P ), M2 = {a ∈ Hb(Q) | a• ∈ N} and R = {a ∈ Hb(Q) | a◦ ∈ N}.
Thus M2

• = N ∩ Hb(Q)• and R◦ = N ∩ Hb(Q)◦. The reduct TR2(P, Q)N

contains the following rules:

1. all the rules of PM1
,

2. a rule a• ← a if and only if there exists a ∈ Hb(P ) such that a 6∈ R,
and

a rule a◦ ← a if and only if there exists a ∈ Hb(P ) such that a 6∈M2,

3. a rule unsat• ← B• if and only if there exists a rule A ← B,∼C ∈ Q
such that M2 6|=

∨

A and M1 |= ∼C,

4. a rule diff ← a if and only if there exists a ∈ Hb(P ) such that a 6∈ M2,
and

5. the rule ⊥ if and only if diff 6∈ N and the rule ⊥ ← unsat•.

Lemma 4.21 is proven similarly to Lemma 4.5.
If there is no counter-example of type T1, then, if there exists a counter-

example 〈M, M ′〉 ∈ CE2(P, Q), we have that N = EXTP,Q(M, M ′) is a
stable model of TR2(P, Q).

Theorem 4.22. For any disjunctive logic programs P and Q satisfying
Hb(P ) = Hb(Q) and SM(TR1(P, Q)) = ∅, if 〈M, M ′〉 ∈ CE2(P, Q),
then N = EXTP,Q(M, M ′) ∈ SM(TR2(P, Q)) such that PROJP,Q(N) =
〈M, M ′〉.

Proof of Theorem 4.22. Since SM(TR1(P, Q)) = ∅, we have CE1(P, Q) =
∅ by Corollary 4.20. Furthermore, for each M ∈ SM(P ) it holds that M |=
QM . Assume 〈M, M ′〉 ∈ CE2(P, Q), i.e. M ′ ⊂M and M ′ |= QM . We have

N = EXTP,Q(M, M ′) = M ∪ {a• | a ∈M ′} ∪ {a◦ | a ∈M \M ′} ∪ {diff}.

Let us show that each rule in the reduct TR2(P, Q)N is satisfied in N
(items corresponding to the items in Lemma 4.21 such that M1 = M , M2 =
M ′ and R = M \M ′).
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1. M |= PM and thus N |= PM .

2. By Lemma 4.21 a rule a• ← a ∈ TR2(P, Q)N (a ∈ Hb(P )), if a 6∈
M \M ′. If a 6∈ N , the rule is satisfied in N regardless of the satisfiability
of a•. If a ∈ N , then a• ∈ N (since a 6∈M \M ′, it holds that a◦ 6∈ N ).
Thus the rule a• ← a ∈ TR2(P, Q)N is satisfied in N .

By Lemma 4.21 a rule a◦ ← a ∈ TR2(P, Q)N (a ∈ Hb(P )), if a 6∈M ′.
If a 6∈ N , the rule is satisfied in N regardless of the satisfiability of a◦.
If a ∈ N , then a◦ ∈ N (since a 6∈ M ′, it holds that a• 6∈ N ). Thus the
rule a◦ ← a ∈ TR2(P, Q)N is satisfied in N .

3. By Lemma 4.21 a rule unsat• ← B• ∈ TR2(P, Q)N , if there exists a
rule A ← B,∼C ∈ Q such that M ′ 6|=

∨

A and M |= ∼C. Assume
that a rule unsat• ← B• ∈ TR2(P, Q)N is not satisfied in N . Then
N |= B• which implies that (M ′)• |= B• and furthermore M ′ |=
B. Thus a rule A ← B ∈ QM is not satisfied in M ′, which is in
contradiction with M ′ |= QM . Thus each rule of the form unsat• ←
B• ∈ TR2(P, Q)N is satisfied in N .

4. Since diff ∈ N , each rule of the form diff ← a ∈ TR2(P, Q)N is
satisfied regardless of the satisfiability of a ∈ Hb(P ).

5. Since diff ∈ N and unsat• 6∈ N , these rules are satisfied.

Thus N |= TR2(P, Q)N .
Next we show that N ∈ MM(TR2(P, Q)N). Assume the opposite, i.e.

there exists N ′ ⊂ N such that N ′ |= TR2(P, Q)N . Thus N \N ′ 6= ∅.

• Assume that there exists a ∈ Hb(P ) such that a ∈ N and a 6∈ N ′.
Since N ′ |= TR2(P, Q)N and by Lemma 4.21 PM ⊆ TR2(P, Q)N ,
N ′ |= PM . Furthermore, M ′′ = N ′ ∩ Hb(P ) |= PM . since M ′′ ⊂ M ,
this is in contradiction with M ∈ MM(PM) by Theorem 2.18. Thus
N ∩ Hb(P ) = N ′ ∩ Hb(P ).

• Assume that there exists a ∈ Hb(P ) such that a• ∈ N and a• 6∈ N ′.
Since a• ∈ N , a◦ 6∈ N (⇒ a 6∈ M \ M ′) and a ∈ N . Since a 6∈
M \M ′, by Lemma 4.21 there is a rule a• ← a ∈ TR2(P, Q)N . Since
N ∩ Hb(P ) = N ′ ∩ Hb(P ), a ∈ N ′. Thus N ′ 6|= TR2(P, Q)N , which
is a contradiction. Therefore N ∩ Hb(P )• = N ′ ∩ Hb(P )•.

• Assume that there exists a ∈ Hb(P ) such that a◦ ∈ N and a◦ 6∈ N ′.
By the definition of N , a ∈ N and a• 6∈ N (⇒ a 6∈ M ′). Since
a 6∈ M ′, by Lemma 4.21 there is a rule a◦ ← a ∈ TR2(P, Q)N . Since
N ∩ Hb(P ) = N ′ ∩ Hb(P ), a ∈ N ′. Thus N ′ 6|= TR2(P, Q)N , which
is a contradiction. Therefore N ∩ Hb(P )◦ = N ′ ∩ Hb(P )◦.

• Assume that diff 6∈ N ′. Since M ′ ⊂ M , there exists a ∈ Hb(P ) such
that a ∈ M and a 6∈ M ′. Thus a ∈ N (⇒ a ∈ N ′) and a• 6∈ N (⇒
a 6∈ M ′). Since a 6∈ M ′, by Lemma 4.21 there is a rule diff ← a ∈
TR2(P, Q)N . Since diff 6∈ N ′, this rule is not satisfied in N ′, which is
a contradiction. Thus diff ∈ N ′.
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Thus N = N ′ and so N ∈MM(TR2(P, Q)N), i.e. N ∈ SM(TR2(P, Q)).
Finally, PROJP,Q(N) = 〈M, M ′〉, since M = N ∩ Hb(P ) and M ′ =

{a ∈ Hb(P ) | a• ∈ N}. �

If there exists no counter-examples of type T1, then a stable model N of
the translation TR2(P, Q) corresponds to a counter-example of type T2, i.e.
it holds that PROJP,Q(N) ∈ CE2(P, Q).

Theorem 4.23. For any disjunctive logic programs P and Q satisfying
Hb(P ) = Hb(Q) and SM(TR1(P, Q)) = ∅, if N ∈ SM(TR2(P, Q)), then
〈M, M ′〉 = PROJP,Q(N) ∈ CE2(P, Q) such that N = EXTP,Q(M, M ′).

Proof of Theorem 4.23. Let N ∈ SM(TR2(P, Q)). First, we will show
that M |= PM . Since N |= TR2(P, Q)N and by Lemma 4.21 PM ⊆
TR2(P, Q)N , N |= PM . Thus M = N ∩ Hb(P ) |= PM .

It also holds that M is a minimal model of PM . Let us assume the opposite,
i.e. there exists M ′ ⊂M such that M ′ |= PM . Let N ′ = M ′∪(N \M). Thus
N ′ ⊂ N and N ′ \ Hb(P ) = N \ Hb(P ), and we have N ′ |= TR2(P, Q)N .

If we assume the opposite, i.e. N ′ 6|= TR2(P, Q)N , there exists a rule in
TR2(P, Q)N that is not satisfied in N ′. Following items correspond to the
items in Lemma 4.21 respectively.

1. If a rule A ← B ∈ PM is not satisfied in N ′, then N ′ 6|= PM . Thus
M ′ 6|= PM , which is a contradiction.

2. If a• ← a ∈ TR2(P, Q)N is not satisfied in N ′, then a ∈ N ′ ⊂ N and
a• 6∈ N ′ (⇒ a• 6∈ N ). Thus a• ← a ∈ TR2(P, Q)N is not satisfied in
N , which is a contradiction.

If a◦ ← a ∈ TR2(P, Q)N is not satisfied in N ′, then a ∈ N ′ ⊂ N and
a◦ 6∈ N ′ (⇒ a◦ 6∈ N ). Thus a◦ ← a ∈ TR2(P, Q)N is not satisfied in
N , which is a contradiction.

3. If unsat• ← B• ∈ TR2(P, Q)N is not satisfied in N ′, then B• ⊆
N ′ ⊂ N and unsat• 6∈ N ′ (⇒ unsat• 6∈ N ). Thus unsat• ← B• ∈
TR2(P, Q)N is not satisfied in N , which is a contradiction.

4. If diff ← a ∈ TR2(P, Q)N is not satisfied in N ′, then a ∈ N ′ ⊂ N and
diff 6∈ N ′ (⇒ diff 6∈ N ). Thus diff ← a ∈ TR2(P, Q)N is not satisfied
in N , which is a contradiction.

5. Since N ′ \ Hb(P ) = N \ Hb(P ), if these rules are not satisfied in N ′,
then they are not satisfied in N , which is a contradiction.

Thus the assumption N ′ 6|= TR2(P, Q)N leads to a contradiction. There-
fore N ′ |= TR2(P, Q)N . Since N ′ ⊂ N , this is in contradiction with
N ∈MM(TR2(P, Q)N). Thus M ∈MM(PM), i.e. M ∈ SM(P ).

We need to show that M 6∈ MM(QM). Since SM(TR1(P, Q)) = ∅
by Theorem 4.19, it holds that M |= QM . The integrity constraint ⊥ ←
unsat• ∈ TR2(P, Q) forces that unsat• cannot be true in any model of
TR2(P, Q) and the integrity constraint ⊥ ← ∼diff ∈ TR2(P, Q) forces that
diff is true in each model of TR2(P, Q).

We show that (i) M ′ |= QM , (ii) M ′ ⊆M and (iii) M 6= M ′.
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(i) Let us assume the opposite, M ′ 6|= QM , i.e. there exists a rule A← B ∈
QM that is not satisfied in M ′. Thus M ′ 6|=

∨

A and M ′ |= B. The
rule A ← B ∈ QM , if A ← B,∼C ∈ Q and M |= ∼C. Since M ′ 6|=
∨

A and M |= ∼C there exists a rule unsat• ← B• ∈ TR2(P, Q)N

by Lemma 4.21. The rule unsat• ← B• is not satisfied in N , since
(M ′)• |= B• (⇒ N |= B•) and unsat• 6∈ N . This is in contradiction
with N ∈ SM(TR2(P, Q)). Therefore M ′ |= QM .

(ii) We need to show that if a ∈ M ′, then a ∈ M . Let us assume the
opposite, i.e. there exists a ∈ Hb(P ) such that a ∈ M ′ (⇒ a• ∈ N )
and a 6∈M (⇒ a 6∈ N ).

Since a• ∈ N and the rule a• ← a,∼a◦ is the only rule in TR2(P, Q)
containing the atom a• in its head, the body of the rule a• ← a,∼a◦ ∈
TR2(P, Q) must be satisfied in N by Theorem 2.21. Thus a◦ 6∈ N
and a ∈ N , which is in contradiction with the assumption a 6∈ N .
Therefore M ′ ⊆M .

(iii) Since N ∈ SM(TR2(P, Q)), N ∈ SuppM(TR2(P, Q)) by Theo-
rem 2.21. Thus, since diff ∈ N , there exists a rule diff ← a,∼a• ∈
TR2(P, Q) such that N |= {a,∼a•}. Thus there exists a ∈ Hb(P )
such that a• 6∈ N and a ∈ N . Furthermore, a ∈ M and a 6∈ M ′.
Thus, M ′ 6= M .

Now, M |= QM , M ′ |= QM , and M ′ ⊂ M . Therefore M 6∈MM(QM) and
〈M, M ′〉 ∈ CE2(P, Q).

Finally, we need to show that N = N ′, where N ′ = EXTP,Q(M, M ′).
Since N ∈ SM(TR2(P, Q)) it holds that unsat• 6∈ N and diff ∈ N . We
have

N ′ = EXTP,Q(M, M ′)

= EXTP,Q(N ∩ Hb(P ), {a ∈ Hb(P ) | a• ∈ N})

= (N ∩ Hb(P )) ∪ {diff} ∪ (N ∩ Hb(P )•) ∪ (N ∩ Hb(P )◦).

Thus it holds that N ′ ⊆ N . Let us assume that N ′ ⊂ N . By Theorem 4.22
it holds that N ′ = EXTP,Q(M, M ′) ∈ SM(TR2(P, Q)), since 〈M, M ′〉 ∈
CE2(P, Q). By Theorem 2.18 this is contradictory to the assumption N ∈
SM(TR2(P, Q)) and thus N = N ′. �

As a consequence of Theorems 4.22 and 4.23 counter-examples of type
T2 and the stable models of the translation TR2(P, Q) are in one-to-one
correspondence.

Corollary 4.24. Assume SM(TR1(P, Q)) = ∅. Then CE2(P, Q) = ∅ if and
only if SM(TR2(P, Q)) = ∅.

Now, using Corollaries 4.20 and 4.24 we can test the equivalence of dis-
junctive logic programs P and Q using the two translations TR1(P, Q) and
TR2(P, Q). For convenience, we define the stable models of the two-phased
translation [TR1(P, Q), TR2(P, Q)] as a slight notational generalization.
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Definition 4.25. Let P and Q be disjunctive logic programs such that
Hb(P ) = Hb(Q). We define the stable models of the two-phased transla-
tion [TR1(P, Q), TR2(P, Q)] as follows.

SM([TR1(P,Q),TR2(P,Q)]) =

{

SM(TR1(P,Q)), if SM(TR1(P,Q)) 6= ∅,
SM(TR2(P,Q)), otherwise.

Corollary 4.26. P ≡ Q if and only if SM([TR1(P, Q), TR2(P, Q)]) = ∅
and SM([TR1(Q, P ), TR2(Q, P )]) = ∅, where P and Q are any disjunctive
logic programs such that Hb(P ) = Hb(Q).

40 4. TRANSLATIONS FOR EQUIVALENCE TESTING



5 EXPERIMENTS

In this chapter we present experiments which compare the performance of
the implementation of the two translations presented in Chapter 4 with a
fictitious naive approach of cross-checking the stable models. First, in Sec-
tion 5.1, we present the current implementation of translations TR and
[TR1, TR2]. The naive approach is presented in Section 5.2. The test ar-
rangements are discussed in Section 5.3 and the results of the experiments
are reported in Sections 5.4 and 5.5.

5.1 IMPLEMENTATION

Translation functions TR(P, Q) and [TR1(P, Q), TR2(P, Q)], as presented
in Chapter 4, have been implemented in C under Linux. The translator
called DLPEQ [30] takes two disjunctive logic programs P and Q as its input
and produces by default the translation TR(P, Q) as its output. The input
files are assumed to be in the internal format of SMODELS/GNT produced
by the front-end LPARSE. The implementation DLPEQ supports programs
containing disjunctive rules and, in addition, compute statements. Compute
statements can be used to define additional constraints for stable models of
the program. Rules with variables can also be used, although the front-end
LPARSE performs an instantiation for the rules.

The GNT system [19] is an experimental implementation of the stable
model semantics for disjunctive logic programs. The implementation is
based on an architecture consisting of two interacting SMODELS solvers [37]
for non-disjunctive programs. One of them is responsible for generating the
possible model candidates while the other checks for minimality, as required
from disjunctive stable models.

Let us consider a detailed example of how to use the programs LPARSE,
GNT and DLPEQ to compute stable models and test the equivalence of dis-
junctive logic programs.

Example 5.1. The rules are presented in the following syntax

�����������	��
���
���������������
�����������������������������������
! 

and (possible) compute statements as

�"�$#&%�'&��(*)��+���,�&���-�+���.�/���-�+���.�0��12 

Assume that file 3 �&%�'&�4 65�% contains a disjunctive program ���7�8 For dis-
junctive logic programs the front-end LPARSE is invoked using command
line option 
�
$9�5�% . LPARSE produces the logic program in the internal for-
mat of GNT.

: 5$%��<;�=�(>
&
$9�5$% 3 ��%&'&�4 65$%
*�?�@�.ABA
A
�C�
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If the file 3 ��%�'&�4 �= # contains a disjunctive logic program in the internal for-
mat of GNT, all its stable models can be computed as follows.

: #+��; ( 3 ��%&'&�4 = # ���<�&�>A
� � =���(<;�=�(��8� �
� ������5<(
	���9�( 5��,�
� � =���(<;�=�(��8� �
� ������5<(
	���9�( 5��-�
� ��5&=�(
� '�#&��(<; ��
 3 = # 3 � 3 #0� 5 ����5�5&= �,�� '�; ��� 3 ���8� A2 A�A&A

If A is replaced by a positive integer n, then up to n stable models are com-
puted.

Now, assume that the files 3 ��%�'&� �  = # and 3 ��%&'&���2 = # contain logic pro-
grams P = {a | b} and Q = {a ← ∼b} in the internal format of GNT,
respectively. We produce the translation TR(P, Q) using DLPEQ and com-
pute one stable model using GNT as follows.

: 9�5$%�(�� 3 �&%�'&� �  �= # 3 ��%�' ���2 = # ���<�&� �
� � =���(<;�=�(��8� �
� ������5<(
	���9�( 5��-�.�����
� ;"'�(
� '�#&��(<; ��
 3 = # 3 � 3 #0� 5 ����5�5&= � �� '�; ��� 3 ���8� A2 A�A&A

Thus the translation TR(P, Q) has a stable model and we have P 6≡ Q. �

Translations TR1(P, Q) and TR2(P, Q) can be produced using the com-
mand line option 
 %�� � � ��� . The translation can be printed in a textual form
using option 
�� . Notice that the new atoms unsat, unsat•, diff and ok are
presented in the form � � in the textual presentation, where � is an integer.
The renamed atoms a• and a◦ are presented as ��� and ��� , respectively.

DLPEQ is designed to be used with the solver GNT. The current imple-
mentation also enables the use of another state of the art solver, namely DLV

[6].

Example 5.2. Programs 3 ��%�'&���  = # and 3 ��%�'&���! = # are translated using
DLPEQ with the option 
�
�9�5�� and DLV is used to compute one stable model.

: 9�5$%�(��?
�
�9�5�� 3 ��%�' � �  = # 3 �&%�'&���2 �= # � 9�5���
"= 3 5<(��&� 
 �! +� 
�
)��4�-� ��� �,� ��" � � � �$A&1
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Notice that the presentation of the new atoms is different from the normal
verbose mode of DLPEQ. The new atoms unsat, unsat•, diff and ok are
presented in the form � � � ( � is an integer) in the DLV presentation, and the
renamed atoms a• and a◦ as � � and � ��� , respectively. �

To summarize the different features, the usage of DLPEQ is presented in
Figure 5.1.

'+=<� � (2� 905$%�(�� � �$% � 3 �$�+=�� � 
 3 5<(���� � 
 3 5<(����

�$% � 3 �$�+=��
�����;?
&
���( 5$% 
�
�% ; 3 �&���0( 5$%B#0(�=�=<� � (

�
 ��(<;0= 3 ��� 
&
 % ; 3 �&� ��(<;0= 3 �$� 3 ��
���;�#0��� 3 �$�
 %�� � � ���>��;�
�
 %�����=�( � � � � � 
�
 ���0� 
 %	�0��=�(<9*�&;����+="5<�<� 3 �$� �%�����=�( �@��;*�

 � 
�
 ��(<;<���&=<( # ��9 (�
���'"#����*;�(��<9 ���+5<(�


�
$905���
&
 ��(";<���&=�( #+��9 (��,9�5���=��<�&�����

Figure 5.1: Usage of DLPEQ.

It is important to note that DLPEQ checks that the visible Herbrand bases
of the disjunctive logic programs being compared are exactly the same. A
visible atom has a name in the symbol table of the program. However, when
integrity constraints are used, the front-end LPARSE may produce some in-
visible atoms that are not taken into account in this comparison. To support
programs produced by LPARSE, such atoms keep their roles in the respective
programs.

5.2 THE NAIVE APPROACH

To assess the feasibility of DLPEQ in practice we ran tests to compare running
times of the DLPEQ (one-shot translation) and the DLPEQ-2 (two-phased
translation) approach with those of a naive approach. The NAIVE approach
involves computing all stable models of one program and checking that they
also are stable models of the other program, and vice versa. This idea is for-
malized in the procedure TestNaive presented in Figure 5.2. We can present
the NAIVE approach to equivalence testing as follows.

Definition 5.3. Given two disjunctive logic programs P and Q, to estab-
lish the equivalence of the programs one needs to run TestNaive(P, Q) and
TestNaive(Q, P ). If both return “Success”, P and Q are equivalent, other-
wise they are not.

The NAIVE approach is implemented as a shell script. Testing that the sta-
ble models of P are also stable models of Q is realized in practice by adding
a compute statement of the form ‘compute {a1, . . . , an,∼b1, . . . ,∼bm}’ to Q,
where a1, . . . , an ∈ M and b1, . . . , bm ∈ Hb(P ) \M . In this way, the model
candidate M for Q is already fixed when stable models of Q are searched
and thus only the minimality condition essential to stable models needs to
be checked.
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TestNaive(P, Q)
1 for each M ∈ SM(P )
2 do
3 if M 6∈ SM(Q)
4 then return Failure
5 fi
6 done
7 return Success

Figure 5.2: The algorithm for the NAIVE approach in equivalence testing.

The NAIVE approach is naive in the sense that there is no internal mech-
anism to guide the search for counter-examples for the equivalence. We be-
lieve the situation to be different when the translation-based approaches are
used. With the NAIVE approach one has to check all the stable models of
both programs in the worst case, which can become very time-consuming.
Thus, we assume that the translation-based approaches are to perform better
than the NAIVE approach if the programs to be compared have many sta-
ble models. However, if the programs to be tested have very few or no stable
models it is likely that the NAIVE approach is faster than the translation-based
approaches.

5.3 TEST ARRANGEMENTS

The NAIVE approach for testing the equivalence of disjunctive programs P
and Q is formalized in Definition 5.3 and the approach always involves two
directions. Similarly, in the DLPEQ and DLPEQ-2 approaches, to verify the
equivalence one checks the stable models of the translations TR(P, Q) and
[TR1(P, Q), TR2(P, Q)] in both directions.

There is, however, still room for optimization in all the approaches. If one
finds a counter-example in one direction, then P 6≡ Q holds and there is no
need to test the other direction, except if one wishes to perform a thorough
analysis. We decided not to use this optimization, since running times turned
out to scale differently depending on the chosen direction. Thus the running
times reported always involve sum of the running times of both directions.

With all the three approaches, the GNT system is responsible for compu-
tation of the stable models. In the DLPEQ approach, the total running time
(in one direction) is the running time needed for GNT for trying to compute
one stable model of the translation TR produced by DLPEQ. In the DLPEQ-
2 approach, the total running time (in one direction) is the time needed for
GNT for trying to compute one stable model of the translation TR1 pro-
duced by DLPEQ plus the time needed for GNT for trying to compute one
stable model of the translation TR2 produced by DLPEQ, if there exists no
stable models for TR1. In both approaches the actual translation times are
not taken into account, as they are negligible.

In the NAIVE approach, we try to exclude possible overhead due to imple-
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menting the NAIVE approach as a shell script. Thus the total running time
(in one direction) consists only of the running time for finding the necessary
(but not necessarily all) stable models of P plus the individual running times
for testing that the stable models found are also stable models of Q.

All the tests were run under the Debian GNU/Linux 2.4.18 operating
system on a 450MHz Intel Pentium III computer with 256MB of memory.
For the translation-based approaches the reported times are the duration of
the search for stable models output by GNT. For the naive approach we
measured the "user" time output by the � '+=�; � � 3 � � � 3 #0( command in UNIX.

5.4 DISJUNCTIVE RANDOM 3-SAT

We use the ΣP

2 -complete problem of finding a minimal model of a SAT

instance containing specified atoms [5] as our first test problem. A SAT

instance in conjunctive normal form (CNF) is a conjunction of clauses
C1 ∧ C2 ∧ · · · ∧ Cc. A clause is a disjunction of literals l1 ∨ l2 ∨ · · · ∨ ln.
Literals are atoms a or their negations ¬a. In a SAT instance there are
v = |{a | a is an atom}| atoms (also called variables) and c clauses. A 3-
SAT instance consists of clauses of length three, i.e. all the clauses consist of
three literals. A random 3-SAT instance is a 3-SAT instance in which each
clause consists of three different literals selected uniformly at random.

We form a disjunctive logic program representing a SAT instance as fol-
lows. Each clause a1∨· · ·∨an∨¬b1 ∨· · ·∨¬bm of the instance is translated
into a rule a1| . . . |an ← b1, . . . ,bm. A rule ⊥ ← ∼ci is included for each
specified atom ci. The resulting disjunctive logic program has a stable model
if and only if there exists a minimal model for the set of clauses containing
all the specified atoms ci. We generate disjunctive logic programs that each
solve an instance of the random 3-SAT problem and add to each program ex-
tra rules for random atoms ci, for i = 1, . . . , b2v/100c, where v is the number
of atoms in the instance.

First we keep the clauses-to-variables ratio c/v constant at 3.5. The dis-
junctive logic programs generated from such instances typically have several
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Figure 5.3: Equivalence testing of a disjunctive random 3-SAT instance with
constant ratio c/v = 3.5 (3-SAT) and its modified version (Drop-1), percent-
age of nonequivalent pairs and average number of stable models the pro-
grams possess.
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Figure 5.4: Equivalence testing of a disjunctive random 3-SAT instance with
constant ratio c/v = 3.5 (3-SAT) and its modified version (Drop-1), running
times.

stable models (see Figure 5.3). To simulate a sloppy programmer making
mistakes, we drop one random rule from each program. We test the equiv-
alence of the modified (Drop-1) and the original program to see if making
a mistake affects the stable models of the program. Thus the tested pairs of
disjunctive logic programs include both equivalent and nonequivalent cases.
We vary the number of variables v from 50 to 100 with steps of 5. For each
number of variables we repeat the test 100 times generating each time a new
random instance. For the problem sizes used, the percentage of nonequiva-
lent cases varies between 60 and 90 (see Figure 5.3). The number of stable
models of both the original and the modified program grows exponentially
as the problem size grows, with the exception v = 100 where the number
of stable models drops. At that point a rule for a second specified atom is
included to the programs. This reduces the number of stable models.

The maximum, average and minimum running times of the approaches
are plotted in Figure 5.4. The DLPEQ approach turns out to be faster than
the NAIVE one. The difference in running times increases as instances grow
in size. Furthermore, the DLPEQ-2 approach outperforms the DLPEQ ap-
proach. Thus, it seems that a translation-based approach really is useful in
practice, if the programs to be tested are likely to be nonequivalent and have
several stable models. Also, it is worth noticing that the NAIVE approach has
outliers (i.e. instances that are exceptionally hard to solve and thus very time-
consuming) almost a factor of ten larger than both of the translation-based
approaches. On the other hand, the minimum running times of the NAIVE

approach are smaller than those of the translation-based approaches.

In the following experiment, we use the same test setting, but keep the
clauses-to-variables ratio c/v constant at 3.7. The disjunctive logic programs
generated from such instances typically have less stable models as in the pre-
vious experiment. The instances are still typically satisfiable. The number
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Figure 5.5: Running times for equivalence testing of a disjunctive random 3-
SAT instance with constant ratio c/v = 3.7 (3-SAT) and its modified version
(Drop-1).

of nonequivalent cases is also less than in the previous experiment. For the
problem sizes used, the percentage of nonequivalent pairs varies between 35
and 70. It seems that if the programs have less stable models, the dropped
rule is less likely to affect the stable models of the program and thus the mod-
ified and the original program are more likely equivalent. The maximum,
average and minimum running times of all the approaches are plotted in
Figure 5.5. The DLPEQ approach is generally slightly faster than the NAIVE

one. The DLPEQ-2 approach still outperforms the DLPEQ approach.
In our last experiment with disjunctive 3-SAT, we generate the programs

as in the previous experiments, but keep the number of variables constant
at v = 100, and vary the ratio c/v from 3.25 to 4.50 with steps of 0.25. For
each value of the ratio c/v, we repeat the test 100 times, generating each
time a new random instance. The motivation is to see how the translation-
based approaches perform compared to the NAIVE one as the tested programs
change from ones having many stable models to programs having no stable
models.

The maximum, average and minimum running times of the approaches
are plotted in Figure 5.6. With low values of c/v the DLPEQ and DLPEQ-2
approaches are clearly superior to NAIVE, as in the first experiment. As the
ratio increases, the performance of the NAIVE approach gradually improves
and finally outperforms the other two approaches. The ratio c/v ≈ 3.75 is
the turning point where the NAIVE approach reaches the DLPEQ approach
in performance. At that point, the outliers of the NAIVE approach are still
larger than those of the translation-based approaches.

When the ratio c/v is small, the programs to be tested generally have a lot
of stable models (see Figure 5.7). The NAIVE approach has to check every
stable model in the worst case (i.e. when the logic programs are equivalent)
and this takes most of the time the NAIVE approach uses. As the ratio in-
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Figure 5.6: Running times for equivalence testing of a disjunctive random
3-SAT instance with constant number of variables v = 100 (3-SAT) and its
modified version (Drop-1).

creases the programs generally have less and less stable models. Therefore
the NAIVE approach improves in performance, as there is need for only few
testings of stable models, and the time needed to find the few stable models
becomes dominating. The translation-based approaches do not seem to be
as sensitive performance-wise to the number of stable models the programs
have as the NAIVE approach.

The size of the translation TR(P, Q) is larger than the sum of the sizes
of the original programs. The size of the Herbrand base of the translation is
over three times as large as the size of the original Herbrand base. There-
fore one might assume that it would be harder to find stable models for the
translation. However, based on the three experiments presented in this sec-
tion, the translation-based approaches seem to be useful in practice, if the
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Figure 5.7: Equivalence testing of a disjunctive random 3-SAT instance with
constant number of variables, v = 100 (3-SAT) and its modified version
(Drop-1), percentage of nonequivalent pairs and number of stable models
the programs possess.
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programs to be tested are likely to have many stable models. We assume that
this is due to the fact that the translation provides an exact specification for
the counter-example for P ≡ Q. This guides the search GNT performs. This
is not possible in the NAIVE approach in which the stable models of P and Q
are explicitly enumerated. However, if the programs to be tested have few or
no stable models, the NAIVE approach is likely to be faster than the DLPEQ

approach.
Furthermore, in each experiment the translation [TR1(P, Q), TR2(P, Q)]

is more efficient than the approach based on translation TR(P, Q). Thus it
seems like a good idea to compute the two types of counter-examples sepa-
rately. Translation TR1(P, Q) is compact and efficiently guides the search
for counter-examples of type T1. The time needed to test whether the trans-
lation TR1(P, Q) has stable models is significantly smaller than the time
needed to test whether the translation TR2(P, Q) has stable models. The
more involved translation TR2(P, Q) is only used if there is a real need for
it. Since the translation for the second phase is only used when there are no
counter-examples of type T1, the translation TR2 is more compact than the
one-shot translation TR. Thus, it is generally faster to find a stable model
for TR2(P, Q) than for TR(P, Q). Hence, the two-phased translation is as a
whole faster and more efficient than the one-shot translation.

5.5 RANDOM 2-QSAT

Our second test problem is QSAT, i.e. the problem of deciding the satisfiabil-
ity of a quantified SAT formula. A quantified SAT formula is a SAT instance in
which the Boolean variables are either existentially or universally quantified.
A k-QSAT problem is a QSAT problem in which there are k alternating quan-
tifiers applied to disjoint sets of variables. The problem QSAT is PSPACE-
complete, while k-QSAT is ΣP

k -complete [32]. We perform our experiments
using 2-QSAT instances.

A 2-QSAT-CNF instance is an expression of the form

Φ = ∀X∃Y φ,

where X ∩ Y = ∅ and φ is a SAT formula in conjunctive normal form over
the set of variables X ∪ Y . If Φ = ∃X∀Y φ, where φ is in disjunctive normal
form (i.e. it is a disjunction of conjunctions of literals), we say that Φ is a
2-QSAT-DNF instance.

If φ is in conjunctive normal form, then ¬φ is effectively in disjunctive
normal form when the negations are pushed in front of the variables. If φ is
in conjunctive normal form, we denote ¬φ that is transformed to disjunctive
normal form by φ. It holds that

Φ = ∀X∃Y φ is unsatisfiable
⇐⇒ ¬¬Φ = ¬¬(∀X∃Y φ) is unsatisfiable
⇐⇒ ¬¬Φ = ¬(∃X∀Y ¬φ) is unsatisfiable
⇐⇒ ¬Φ = ∃X∀Y ¬φ is valid.

We denote by Φ a 2-QSAT-DNF instance ∃X∀Y φ. Thus, if Φ is a 2-QSAT-
CNF instance, then Φ is unsatisfiable if and only if Φ is valid.

5. EXPERIMENTS 49



We define two transformations from 2-QSAT instances to disjunctive logic
programs. The first transformation is due to Eiter and Gottlob [5] and it is
applied to 2-QSAT-DNF instances.

Definition 5.4. Given a 2-QSAT-DNF instance Φ = ∃X∀Y φ, the transfor-
mation EG(Φ) is a disjunctive logic program containing the following rules
where w is a new atom and x′ is a new atom introduced for each Boolean
variable x in φ.

1. a rule x | x′ for each x ∈ X ,

2. rules y | y′, y ← w and y′ ← w for each y ∈ Y ,

3. a rule w ← X1, X
′

2, Y1, Y
′

2 for each disjunct X1 ∧¬X2 ∧ Y1 ∧¬Y2 in φ,
where X1, X2 ⊆ X and Y1, Y2 ⊆ Y , and

4. a rule w ← ∼w.

There is a correspondence between the validity of the 2-QSAT-DNF in-
stance Φ and the stable models of the transformation EG(Φ) [5].

Theorem 5.5. Φ is a valid 2-QSAT-DNF instance ⇐⇒ SM(EG(Φ)) 6= ∅.

For proof of Theorem 5.5 see [5]. The second transformation is due to
Janhunen1 and is applied to 2-QSAT-CNF instances.

Definition 5.6. Given a 2-QSAT-CNF instance Φ = ∀X∃Y φ, the trans-
formation J(Φ) is a disjunctive logic program containing the following rules
where w is a new atom and a new atom x′ is introduced for each Boolean
variable x in φ.

1. rules x← ∼x′ and x′ ← ∼x for each x ∈ X ,

2. rules y ← w and y′ ← w for each y ∈ Y ,

3. a rule w | Y1 ← Y2,∼X1,∼X ′

2 for each clause X1 ∨ ¬X2 ∨ Y1 ∨ ¬Y2

in φ, where X1, X2 ⊆ X and Y1, Y2 ⊆ Y ,

4. a rule w ← ∼w.

Note that the second rule in the second item in Definition 5.6 is unnec-
essary and attached to the translation only to expand the Herbrand base of
J(Φ) to correspond to the Herbrand base of EG(Φ).

Similarly to the transformation EG(·), there is a correspondence between
the validity of the 2-QSAT-CNF instance Φ and the stable models of the trans-
formation J(Φ).

Proposition 5.7. Φ is a valid 2-QSAT-CNF instance ⇐⇒ SM(J(Φ)) = ∅.

Since Φ is valid if and only if Φ is unsatisfiable, we can use the previ-
ous proposition and Theorem 5.5 to conclude that transformations J(Φ) and
EG(Φ) are equivalent. We will test this proposition experimentally in the
following experiments.

Proposition 5.8. J(Φ) ≡ EG(Φ), where Φ is a 2-QSAT-CNF instance.

1Personal communication, 2003
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Figure 5.8: Running times for equivalence testing of DLPs EG(Φ) and J(Φ),
where Φ is a random 2-QSAT-CNF instance with constant ratio c/v = 3.5.

In all our experiments with 2-QSAT, |X| = |Y | and v = |X| + |Y |. We
generate random 2-QSAT-CNF instances Φ = ∀X∃Y φ according to model
A presented by Gent and Walsh [12], that is, φ is a random 3-SAT instance
such that each clause in φ contains at least two variables that are existentially
quantified. We transform the instances to disjunctive logic programs using
transformations presented in Definitions 5.4 and 5.6.

In the first experiment we keep the clauses-to-variables ratio c/v constant
at 3.5. We vary the number of variables v from 8 to 24 with steps of 2. We
transform the generated instances Φ into disjunctive logic programs EG(Φ)
and J(Φ) and test the equivalence of the programs obtained. For each num-
ber of variables we repeat the test 100 times, generating each time a new
random instance.

The results of this experiment support Proposition 5.8, since all the pairs
tested are equivalent. The number of stable models of the programs grows
exponentially to the number of atoms programs have. The maximum, av-
erage and minimum running times of each approach are plotted in Figure
5.8. The translation-based approaches perform better than the naive one
when v is small. As the program sizes grow, the NAIVE approach reaches the
translation-based approaches in performance and finally outperforms them.
Explanation for this is not entirely clear, but we believe that the results are
somewhat dependent of the particular problem. It is really easy for GNT to
find stable models for the 2-QSAT encodings, and thus the naive approach
performs well even though the number of stable models that the programs
possess is high. On the other hand, the translations for the equivalence test-
ing are fairly large and hard for GNT to solve.

The running times in the translation-based approaches scale remarkably
differently depending on the direction of the translation. It seems that veri-
fying SM(TR(EG(Φ), J(Φ))) = ∅ is easy; most of the total running time is
spend verifying that it holds that SM(TR(J(Φ), EG(Φ))) = ∅ (the same ap-
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Figure 5.9: Number of stable models of DLPs EG(Φ) and J(Φ) possess,
where Φ is a random 2-QSAT-CNF instance with constant number of vari-
ables v = 12.

plies for the two-phased approach). In the NAIVE approach there is no such
phenomenon to be detected. We believe that this is partly due to the fact that
it is somewhat harder for GNT to find stable models for the transformation
J(Φ) than for the transformation EG(Φ). Furthermore, the maximum and
minimum running times behave similarly to the experiments with disjunctive
random 3-SAT.

Next we keep the number of variables v constant at 12 and vary the clauses-
to-variables ratio c/v from 1.0 to 4.5 with steps of 0.5. Similarly to the pre-
vious experiment, we transform the generated instances Φ into disjunctive
logic programs EG(Φ) and J(Φ) and test the equivalence of the programs
obtained. For each number of variables we repeat the test 100 times, gener-
ating each time a new random instance.

When the c/v ratio is small (less than approximately 2) the 2-QSAT-CNF
instances Φ are typically satisfiable [12] and thus programs EG(Φ) and J(Φ)
have no or few stable models. As the ratio increases, the 2-QSAT-CNF in-
stances Φ become unsatisfiable and thus the logic program transformations
have more stable models. The change in the number of stable models is pre-
sented in Figure 5.9. This experiment shows how the different approaches
behave when the programs to be tested are equivalent and when the programs
change from those having no stable models to those having stable models. It
is worth noticing that compared to the similar experiment with disjunctive
3-SAT, the change in the number of stable models is less abrupt.

The maximum, average and minimum running times of each approach
are plotted in Figure 5.10. Since the programs are equivalent, the NAIVE

approach checks every stable model. Thus when the ratio c/v is small and
programs have no stable models, the naive approach is really fast. As the ratio
increases, the translation-based approaches improve in performance. In this
experiment, the NAIVE approach seems to be less sensitive in its performance
than the translation-based ones to the number of stable models the programs
possess.

Finally, we transform a generated random instance Φ to a disjunctive logic
program EG(Φ). We test the equivalence of EG(Φ) and a modified program
obtained by dropping one random rule from EG(Φ) (Drop-1). Thus the
experiment contains both equivalent and nonequivalent program pairs. We
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Figure 5.10: Running times for equivalence testing of DLPs EG(Φ) and
J(Φ), where Φ is a random 2-QSAT-CNF instance with constant number
of variables, v = 12.

keep the clauses-to-variables ratio c/v constant at 3.5 and vary the number of
variables v from 10 to 24 with steps of 2. For each number of variables we
repeat the test 100 times, generating each time a new random instance. The
parameters are selected so that, for the problem sizes used, the percentage of
nonequivalent cases is approximately 50–60. The number of stable models
of both the original and the modified program grows exponentially as the
problem size grows.

The maximum, average and minimum running times of the approaches
are plotted in Figure 5.11. The DLPEQ approach is clearly faster than the
NAIVE one. The difference in running times increases as instances grow
in size. Furthermore, the DLPEQ-2 approach performs slightly better that
the DLPEQ approach. Also, it is worth noticing, that in this experiment the
minimum running times of the NAIVE approach are over a factor of ten larger
than the ones of the translation-based approaches.

Similarly as in the experiment with disjunctive 3-SAT, our experiments
with 2-QSAT suggest that if the programs to be tested have few or no stable
models, the NAIVE approach is likely to be faster than the DLPEQ approach.
The experiments with two equivalent programs also suggest that the NAIVE

approach might be a better choice if the programs to be tested are equivalent
and have many stable models. This is slightly contradictory to our initial as-
sumptions and requires the use of a more thorough set of experiments to see
if the phenomenon is problem-dependent or a more universal one. However,
the translation-based approaches are clearly superior to the NAIVE one when
the test cases involve equivalent and nonequivalent pairs. Furthermore, in
each experiment the DLPEQ-2 approach is faster than the DLPEQ approach.
Combined with the experiments with disjunctive random 3-SAT, we can con-
clude that the two-phased translation is as a whole faster and more efficient
than the one-shot translation.

5. EXPERIMENTS 53



 0.01

 0.1

 1

 10

 100

 8  10  12  14  16  18  20  22  24

tim
e 

(s
)

number of variables

NAIVE    max
DLPEQ   max
DLPEQ2 max
NAIVE     ave
DLPEQ    ave
DLPEQ2  ave
NAIVE     min
DLPEQ    min
DLPEQ2  min

Figure 5.11: Running times for equivalence testing of DLPs EG(Φ) and
Drop-1, where Φ is a random 2-QSAT-CNF instance with constant ratio
c/v = 3.5.

6 CONCLUSIONS

This work discusses the issues concerning the equivalence testing of disjunc-
tive logic programs under stable model semantics. We establish that verify-
ing the equivalence of disjunctive logic programs is ΠP

2 -complete. Thus, as
finding stable models of a disjunctive program is ΠP

2 -complete, there is no
complexity theoretical obstacle for extending the translation-based approach
for testing the equivalence of logic programs in the case of weight constraint
programs [20] to the case of disjunctive programs.

In this work, we present two systematic translations which can be used to
reduce the problem of testing whether two logic programs are equivalent to
the problem of computing stable models for a disjunctive program. One is
a one-shot translation that is used to capture the counter-examples for the
equivalence. Thus, to verify the equivalence, one needs to compute the sta-
ble models of the translation. As counter-examples for the equivalence divide
naturally in two cases (counter-examples of types T1 and T2), the search for
counter-examples can easily be divided in two phases. Computational argu-
ments act as the motivation for the other, two-phased, translation. Counter-
examples of type T1 can be found using a compact translation, whereas the
translation for finding a counter-example of type T2 is more involved. Thus
counter-examples of type T2 should be of interest only if counter-examples
of type T1 do not exist. The first translation is used to find the counter-
examples of type T1 (if such exist) and the second translation is used only if
no counter-examples of type T1 exist. The second translation used to find
counter-examples of type T2 can also be simplified, since it does not have to
capture counter-examples of type T1.

As equivalence testing of disjunctive logic programs can be reduced to
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computing stable models of a disjunctive program, existing search engines
such as DLV and GNT can be used for the search of counter-examples. There
is no need to develop a special purpose system for this task. To enable the
equivalence testing of disjunctive programs in practice we have implemented
a translator program called DLPEQ. It is compatible with GNT, which can
thus be used to compute the stable models of the translation. The current
implementation of DLPEQ also enables the use of DLV for finding the stable
models, since DLPEQ outputs the translation in a syntax suitable for DLV on
demand.

We report experiments with random disjunctive 3-SAT and random 2-
QSAT instances. The length of the translation exceeds the sum of the lengths
of the programs being tested, and the size of the Herbrand base of the trans-
lation is over three times as large as the size of the original Herbrand base.
Therefore one could assume that it would be harder to find stable models for
the translation than for the original programs. The experiments suggest, how-
ever, that the translation-based approach is superior to a naive cross-checking
approach when the programs possess many stable models and are likely to
be nonequivalent. We assume that this is due to the fact that the translation
provides an exact specification for the counter-examples of the equivalence.
This guides the search that GNT performs. This is not possible in the NAIVE

approach in which the stable models of both programs are explicitly enumer-
ated. However, if the programs to be tested have few or no stable models,
the NAIVE approach is likely to be faster than the DLPEQ approach. The
experiments with two equivalent 2-QSAT encodings suggest that the NAIVE

approach might be faster than the translation-based ones if the programs are
equivalent and have a lot of stable models. A further observation is that the
two-phased translation [TR1(P, Q), TR2(P, Q)] is more efficient than the ap-
proach based on a one-shot translation TR(P, Q). Thus it seems like a good
idea to compute the two types of counter-examples in isolation.

Based on our experiments we can conclude that there are several cases
where the translation-based approaches (especially the two-phased transla-
tion) are superior to the naive cross-checking approach. In some cases, how-
ever, the use of the naive approach is advisable.

6.1 FUTURE WORK

Finally, there are some improvements and future research to consider.

• We assume that Hb(P ) = Hb(Q) holds for programs P and Q under
comparison. If Hb(P ) 6= Hb(Q), then one solution is to add useless
rules (for example of the form a← a) to P and Q such that their stable
models are not affected and Hb(P ′) = Hb(Q′) holds for the resulting
programs P ′ and Q′.

• All the experiments presented in this work evaluating the feasibility
of the translation-based approaches involve random instances. The
performance of the translation functions should be examined using a
more thorough set of experiments involving program instances model-
ing real-life problems that lie on the second level of the polynomial hi-
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erarchy. One such real-life example is the problem of verifying whether
different concepts of diagnosis [3, 4, 26], applicable e.g. to digital cir-
cuits, are equivalent.

• Also, in all the experiments presented we use the solver GNT. We de-
cided to use only one solver, since at this stage we wanted to obtain in-
formation how the the performance of the translation-based approach
performs compared to the NAIVE approach. However, is not yet clear
how the choice of a solver affects the performance of the approaches.
Thus a further set of experiments where different solvers are used to
find the stable models would offer more information on the overall ef-
ficiency of the translation-based approach. We believe that the results
would be very similar to the ones obtained in our present experiments
if another solver was used.

• Equivalence testing in even more general classes of logic programs can
be covered through suitable translations. For instance, the equivalence
of nested programs [22] can be covered by implementing the transfor-
mation of nested programs into disjunctive programs [33] and using
the translation presented in this work for the resulting disjunctive pro-
grams.

• Translation-based approach to equivalence testing could also be ex-
tended to cover the notion of strong equivalence. Testing the strong
equivalence of nested (as well as disjunctive) programs is computation-
ally less complex than testing the weak equivalence, which suggests
using an NP solver such as SMODELS for the strong case instead of
GNT or DLV. The current implementation of LPEQ supports strong
equivalence testing of normal logic programs. Thus strong equivalence
testing of disjunctive programs is not yet covered. Also, Lin [24] gives
a transformation that enables the use of SAT solvers for testing strong
equivalence.
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