
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 83

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 83

Espoo 2003 HUT-TCS-A83

ON TRANSLATING LINEAR TEMPORAL LOGIC INTO

ALTERNATING AND NONDETERMINISTIC AUTOMATA

Heikki Tauriainen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 83

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 83

Espoo 2003 HUT-TCS-A83

ON TRANSLATING LINEAR TEMPORAL LOGIC INTO

ALTERNATING AND NONDETERMINISTIC AUTOMATA

Heikki Tauriainen

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Heikki Tauriainen

ISBN 951-22-6868-X

ISSN 1457-7615

Multiprint Oy

Helsinki 2003

ABSTRACT: Automata theory provides valuable tools for designing and im-
plementing decision procedures for temporal logics and their applications
to automatic verification of systems against their logical specifications. Im-
plementing these decision procedures by analyzing automata built from the
systems and their specifications with translation procedures is nevertheless
very challenging in practice due to the tendency of the automata to grow eas-
ily unmanageably large as the size of the systems or (especially) the logical
specifications increases.

This thesis develops the theory of translating future-time propositional
linear temporal logic (LTL) into nondeterministic automata via linear al-
ternating automata. Unlike nondeterministic automata, linear alternating
automata are expressively equivalent to LTL and allow a conceptually sim-
ple translation of LTL specifications into automata using a set of rules for
building automata incrementally from smaller components. The proposed
unified generalized definition for both alternating and nondeterministic au-
tomata facilitates combining the rules with new minimization heuristics for
alternating automata, based on the general theory of using language contain-
ment tests and structural analysis of automata for removing transitions. The
generalized definition supports translation of linear alternating automata into
nondeterministic automata within the best known limit for the worst case in-
crease in the number of states of the resulting automata. The translation
construction also reveals a simple syntactic subclass of LTL for which the
exponential increase in the number of states can always be avoided. Addi-
tionally, the emptiness of generalized nondeterministic automata is shown
to be decidable without degeneralization by using a new variant of the well-
known nested depth-first search algorithm.

KEYWORDS: linear temporal logic, alternating automata, automata mini-
mization, nested depth-first search

CONTENTS

1 Introduction 1

2 Definitions and Basic Results 7
2.1 Mathematical Concepts and Notation 7

2.1.1 Sequences . 7
2.1.2 ω-Regular Expressions 8

2.2 Propositional Linear Temporal Logic 9
2.2.1 Syntax . 9
2.2.2 Semantics . 10
2.2.3 Positive Normal Form 12

2.3 Alternating Automata . 12
2.3.1 Basic Properties . 13
2.3.2 Nondeterministic Automata 25
2.3.3 Linear Alternating Automata 25

3 Basic Automaton Translation 29
3.1 Representing Transition Guards 30
3.2 Translation Rules . 30
3.3 Size of the Automaton AqI

ϕ 36
3.4 Correctness of the Translation 37
3.5 Reverse Translation . 43

4 Improving the Translation 49
4.1 Elementary Simplification Techniques 49

4.1.1 Subformulas with Commutative Main Connectives . 49
4.1.2 Transition Guard Simplification 49
4.1.3 Translation Example 50

4.2 Language Containment Checking between Linear Alternat-
ing Automata . 51

4.3 Heuristics for Translation Rules 55
4.3.1 Rule Preprocessing Using Language Containment . . 56
4.3.2 Modified Translation Rules: The ∧ Connective 57
4.3.3 Modified Translation Rules: Binary Temporal Con-

nectives . 66
4.3.4 Discussion . 71

4.4 Removing Redundant Transitions 76
4.4.1 Redundant Transitions and Language Containment . 78
4.4.2 Special Cases . 80

4.5 Summary . 91

5 Nondeterminization of Linear Alternating Automata 93
5.1 Special Cases for a Syntactic Subset of LTL 93
5.2 Memoryless Runs . 97
5.3 General Translation . 101

iv CONTENTS

6 Emptiness Checking of Nondeterministic Automata 111
6.1 Emptiness Checking Algorithm 112
6.2 Correctness of the Algorithm 115

7 Conclusions, Criticisms and Open Questions 121

Bibliography 125

CONTENTS v

1 INTRODUCTION

Automata on infinite objects link the theory of reasoning about the correct-
ness of finite-state systems to the design of concrete decision procedures for
checking the satisfiability of formal logical specifications and for the auto-
matic verification of systems against these specifications [11, 45, 56] (a task
commonly known as model checking). The logical specifications define con-
straints on the computations of the system, which are seen as infinite trees or
sequences of finite sets of truth-valued assertions that record the internal state
of the system at discrete consecutive instants of time. Whether the system sat-
isfies its specification can then be decided by checking whether none of the
computations of the system is accepted by a finite automaton that encodes
all “incorrect” computations as a result of having been generated from the
logical specification using a translation procedure. The connection between
automata and logic arises from the classic interpretation of automata as gen-
erators of languages that consist of sequences (words) or trees satisfying given
properties: this connection has led to the introduction of a wide variety of
automata designed for capturing the expressive power of many linear- and
branching-time logics (e.g., [18, 40, 42, 50, 74, 75, 76]).

In practice, the extreme sensitivity of system descriptions to rapid combi-
natorial explosion (the state space explosion problem—see, for example, the
survey by Valmari [71]) presents difficult challenges for the efficient auto-
matic analysis of systems. This same problem plagues also the translation of
specifications into automata, and its severity depends on the expressiveness of
the chosen specification logic: the combinatorial explosion can range from
polynomial to nonelementary complexity in the original size of the specifica-
tion for logics that are nevertheless known to be decidable (see, for example,
Thomas [70]). The struggle against the combinatorial explosion thus presents
a need for practically efficient translation procedures between logics and au-
tomata.

This work focuses on automata translation procedures for specifications
given as formulas of classic future-time propositional linear temporal logic
(LTL), which supports reasoning about the properties of (nonbranching)
computation paths in a system using invariants, future-time assertions, and
qualitative causality and fairness constraints on the occurrence of states in
the computations [26, 54, 55]. Procedures for translating LTL into automata
have been studied extensively in the literature. All of these constructions
translate LTL either into nondeterministic (see, for example, Thomas [69])
or alternating [6, 9, 49, 52] finite automata on infinite words. Whether an
infinite input word is accepted by an automaton is then determined, e.g., by
a set of designated states that the automaton should visit infinitely often when
processing the word (a condition commonly known as Büchi acceptance).

Alternation generalizes nondeterminism (existential choice for the “next”
state of the automaton) by combining it with universal choice to allow the
automata to move to possibly several states at once. As opposed to construc-
tions for translating LTL directly into nondeterministic automata [14, 15, 30,
31, 32, 43, 59, 60, 62, 68, 75, 78], the size of which may be exponential
in the length of the LTL specifications, the opportunity to mix existential

1. INTRODUCTION 1

PSfrag replacements

temporal
logic

alternating
automata

nondeterministic
automata

emptiness
checking

(simplification)(simplification)(simplification)

Fig. 1.1: The verification procedure for LTL as a series of translations

and universal choice in automata leads to translation constructions, the re-
sults of which are only linear in the size of the specifications [24, 28, 29,
37, 48, 58, 72]. This seemingly obvious advantage of using alternating au-
tomata in place of nondeterministic automata to avoid combinatorial explo-
sion comes with a cost, however, since the extra succinctness in representa-
tion prevents working with alternating automata using the same algorithmic
techniques that apply to nondeterministic automata. This difficulty is tradi-
tionally overcome by replacing alternation with nondeterminism using one
of the nondeterminization constructions proposed in the literature for alter-
nating automata [18, 24, 28, 37, 49, 51, 58]. Even though the exponential
worst-case combinatorial cost of these constructions seemingly voids any ad-
vantages of the effort of translating LTL into alternating automata in the first
place, alternating automata have nevertheless been argued to provide useful
additional insight into the translation procedure [73]. Namely, direct trans-
lation of LTL into nondeterministic automata misses a two-way correspon-
dence between the expressiveness of LTL and automata: while nondeter-
ministic automata are in general strictly more expressive than LTL [77], LTL
has been shown [47, 58] to be expressively equivalent to a simple subclass of
alternating automata known as very weak [37, 58] or linear [47] alternating
automata. This correspondence between logic and automata may then allow
special simplification and nondeterminization constructions that can be used
to improve the overall translation with optimizations that are less obvious (or
even impossible in general) for the strictly more expressive nondeterminis-
tic automata. Of course, the succinctness of alternating automata also hints
at the (admittedly very ambitious) possibility of avoiding the explicit use of
nondeterministic automata by discovery of techniques for the efficient direct
manipulation and analysis of alternating automata.

Automata-theoretic verification of linear temporal logic specifications can
be seen as a series of translations as shown in Fig. 1.1. The last step cor-
responds to checking the set of computations of a given system that violate
a given temporal logic specification (obtained by combining the nondeter-
ministic automaton with the system) for emptiness. The same technique ap-
plies to testing the satisfiability of the logical specification itself. To counter
combinatorial explosion, many improvements have been proposed in the
literature for the minimization of intermediate results. Common optimiza-
tions include rewriting rules for LTL specifications (e.g., [21, 62, 68]), min-
imization techniques for alternating [25, 28, 58] and nondeterministic au-
tomata [20, 21, 22, 34, 62, 68], as well as special on-the-fly translation and
model checking algorithms [13, 14] that allow interleaving all phases of the
translation together by constructing the automaton from the specification on
demand during emptiness checking.

2 1. INTRODUCTION

In practice, the implementation of the verification procedure involves
many decisions, such as choosing definitions to be used for the underlying
automata. To maximize the efficiency of the implementation, the chosen
definitions should facilitate expressing the automata succinctly (say, using
as few states as possible) while still allowing efficient manipulation of the
automata. Actually, even simple changes in the definitions are known to af-
fect the opportunities for minimizing the number of states in the automata:
examples include the choice between single or multiple initial states, and
variations in the interpretation of acceptance, which can be specified also in
terms of a designated set of transitions instead of a set of states [14, 28, 32, 68].
Although this simple change in the notion of acceptance does not add to the
expressiveness of the automata, the state- and transition-based interpretations
are nevertheless asymmetric when the size of the representation is consid-
ered. Namely, even though state-based acceptance can easily be reduced
to transition-based acceptance without increasing the size of the automata
(visiting a state infinitely often implies taking a transition leaving the state
infinitely often), the converse reduction may require adding new states to
the automata in the general case (see, for example, Giannakopoulou and
Lerda [32]). It can thus be said that transition-based acceptance general-
izes state-based acceptance. A similar asymmetry concerns the placement of
labels (i.e., the symbols that the automaton reads from its input) in the au-
tomata; again, placing the labels on transitions instead of states leads to more
succinct definitions for automata.

Acceptance in automata can be generalized also in other ways. For ex-
ample, in most constructions for translating LTL into nondeterministic au-
tomata, the set of accepting states is replaced with a family of state sets, all
of which should be visited infinitely often to make the automaton accept its
input. This notion of generalized Büchi acceptance [31] was introduced
mainly as a conceptual aid for describing translation procedures. Similar to
the asymmetry between state- and transition-based acceptance, however, au-
tomata with multiple sets of accepting states are more succinct than automata
with a single set of accepting states [66], despite the expressive equivalence
of the automata (established by replacing generalized acceptance with non-
generalized acceptance by “unfolding” the automata [10, 13, 19, 28, 31, 32]).
Although still more succinct representations for automata can be obtained
through further generalizations of acceptance with no change in the expres-
siveness of the automata (see, for example, Thomas [70]), they have not been
widely used in the context of translating LTL into automata.

Because of the above reasons, automata with families of sets of “accepting”
transitions have been proposed as a basis for an efficient implementation of
the LTL verification procedure [14, 28, 32, 68]. To take the best possible
advantage of these automata, each verification step should clearly be imple-
mented with algorithms that are able to work directly with this definition to
avoid spending additional effort on converting between expressively equiva-
lent formalisms. Surprisingly, few translation constructions (with the excep-
tion of the one proposed by Couvreur [14]) strive to achieve this goal fully
in practice: most other translations rely on additional conversions between
formalisms to finally obtain automata with a classic Büchi acceptance con-
dition specified using a set of states. This work presents a unified approach

1. INTRODUCTION 3

to LTL translation via alternating automata with accepting transitions and
generalized acceptance.

Related Work

The connection between logics and automata on infinite objects was first
used in the 1960s by Büchi [7] and Rabin [57] to prove decidability results
for monadic second-order logics with successor functions (see, for example,
Thomas [69], for a survey of the classic results). In the 1980s, these automata
were used for obtaining decision procedures for many modal and temporal
logics of programs. Streett [64] applied automata to the decision problem
of extended propositional dynamic logic; Vardi, Wolper and Sistla [76, 80]
used automata-theoretic techniques for deciding extended linear-time tem-
poral logics; and Emerson and Sistla [19] proposed an automata-theoretic
decision procedure for the full branching-time temporal logic CTL*. As a
special case of their own construction [76, 80], Vardi and Wolper proposed
also an explicit decision and model checking procedure for LTL [75]. In
1995, Gerth, Peled, Vardi and Wolper [31] presented an on-the-fly tableau
construction for translating future-time LTL into nondeterministic automata
with generalized acceptance. Unlike previous constructions, which usually
defined automata as tableaux of the worst-case exponential size, the construc-
tion of Gerth et al. was an explicit procedure for building only the actually
relevant part of an automaton. This advantage of the construction made
it a popular source of many related translation procedures, from direct im-
provements to the explicit tableau construction [15, 32, 60, 62, 68, 78] to
translations that support a symbolic representation of the automata [14, 59].
Actually, many symbolic tableau methods used as an alternative source of
decision and model checking procedures for LTL [8, 12, 38, 39, 45] can be
seen as another line of automata translation procedures via a straightforward
interpretation of the tableaux as nondeterministic automata. These proce-
dures, similar to the early automata constructions [19, 75], do not focus on
issues such as the minimization of automata, however.

The notion of using automata with accepting transitions for LTL transla-
tion was proposed by Couvreur [14] and later advocated also by Gastin and
Oddoux [28], Thirioux [68], and Giannakopoulou and Lerda [32].

Muller, Saoudi and Schupp [50] demonstrated the connection between
special classes of alternating automata and temporal logics by giving a transla-
tion from a branching-time version of the extended temporal logic of
Wolper [77] to weak alternating automata [51]. Explicit constructions for
LTL were later presented by Vardi [72] and Isli [37]; Rohde [58] worked with
linear temporal logics on transfinite sequences. Miyano and Hayashi [49]
gave the first nondeterminization construction for alternating automata on
infinite words; related constructions for more general tree automata were
later given by Muller, Saoudi and Schupp [51], and Emerson and Jutla [18],
and for automata on transfinite words by Rohde [58]. Optimizations to the
nondeterminization of word automata have been further studied by Isli [37],
Gastin and Oddoux [28] and Fritz [24]. In particular, by combining nonde-
terminization with multiple sets of accepting transitions in the nondetermin-
istic automata, Gastin and Oddoux were able to obtain an implementation
that was very competitive against implementations based on direct translation

4 1. INTRODUCTION

of LTL into nondeterministic automata [28].

Translating LTL into automata has also raised interest in general tech-
niques for the minimization of automata. In addition to minimization tech-
niques that exploit special structural properties of automata (e.g., [21, 28, 58,
62, 68]), minimization constructions based on various simulation relations
have also been proposed for both nondeterministic [20, 21, 22, 34, 62] and
alternating automata [24, 25].

Although most translations—including the one presented in this work—
from LTL into automata concentrate only on future time, constructions for
LTL with past time connectives and temporal logics with two-way automata
operators have also been presented for both nondeterministic [59, 75] and al-
ternating automata [29, 40, 48]. Extensions to more expressive logics include
constructions for the propositional µ-calculus [18], and automata translation
procedures for temporal logics on infinite traces instead of words [1, 27].
On the other hand, special constructions targeted towards efficient automata
translation of the safety fragment of LTL have also been proposed [30, 43].

Contributions and Organization of This Work

This work presents a unified approach to translating future-time LTL into au-
tomata and checking the emptiness of the automata, using transition-based
generalized acceptance for the automata throughout all constructions. In-
stead of moving from LTL directly to nondeterministic automata [14], how-
ever, the construction proceeds via translation of LTL first into an expres-
sively equivalent restricted subclass of alternating automata called linear or
very weak alternating automata [37, 47, 58]. The special properties of these
automata are reviewed together with the definitions of linear temporal logic
and generalized alternating automata in Ch. 2. Throughout the work, all
constructions used in the transformation of automata are given direct low-
level correctness proofs using a basic toolset of simple results on the behavior
of generalized alternating automata. Also this toolset is laid out in Ch. 2.

Similar to classic constructions for building nondeterministic finite word
automata from regular expressions, the procedure for translating linear tem-
poral logic into linear alternating automata (Ch. 3) has an intuitive descrip-
tion as a sequence of steps of joining automata incrementally into more com-
plex automata using simple translation rules that capture the semantics of the
underlying logic. The basic construction is closely related to the one given
by Gastin and Oddoux [28] and satisfies the best known upper bounds for
the size of automata corresponding to LTL formulas [14, 28]. However, the
generalized definition for linear alternating automata, despite its expressive
equivalence with LTL (Ch. 3), gives rise to new heuristics for the simpli-
fication of automata during the incremental translation procedure. These
heuristics, discussed in Ch. 4, include new translation rules for syntactic spe-
cial cases, as well as local structural automata minimization techniques, the
implementation of which benefits also from the restricted structure of the
automata. In general, opportunities for simplification are implied by special
cases of language containment relationships between alternating automata.

The translation construction reveals a syntactic subclass of LTL that sup-
ports translation into nondeterministic automata without exponential combi-
natorial blow-up (Ch. 5). Nondeterminization of generalized linear alternat-

1. INTRODUCTION 5

ing automata with accepting transitions is shown to be (still) possible in the
general case with an exponential increase in the number of states in the au-
tomata; in the general case, however, the construction also requires increas-
ing the number of generalized acceptance conditions. Finally, the empti-
ness of nondeterministic automata with generalized acceptance is shown
in Ch. 6 to be decidable directly using a generalized version of the clas-
sic nested depth-first search emptiness checking algorithm by Courcoubetis,
Vardi, Wolper and Yannakakis [13], an efficient on-the-fly emptiness check-
ing algorithm for classic Büchi automata.

6 1. INTRODUCTION

2 DEFINITIONS AND BASIC RESULTS

2.1 MATHEMATICAL CONCEPTS AND NOTATION

We assume basic knowledge on sets, ordered tuples, relations and functions
(mappings), and the principle of mathematical induction. We shall work

with the set of natural numbers N
def
= {0, 1, 2, . . .} extended with an element

ω /∈ N (the first infinite ordinal). We assume the elements of N to be ordered
into their traditional linear order by the (irreflexive and transitive) relation
<⊆ N × N with its usual semantics. For the applications in this work, we
extend the relation < to

(
N∪{ω}

)
×

(
N∪{ω}

)
by considering ω an element

that satisfies ω ≮ ω and n < ω for all n ∈ N. Likewise, we extend the

traditional addition operation + in N to the set N∪ {ω} by defining ω+n
def
=

n + ω
def
= ω + ω

def
= ω. For convenience, comparison between elements of

N∪{ω} is often denoted also by the operators =, ≤, ≥ and> with their usual
semantics.

If X is a countable set, we denote by |X| the cardinality of X , also called
the size of X . Two countable sets X and Y are isomorphic if and only if
(iff) they have the same cardinality (equivalently, iff there exists a bijective
mapping f : X → Y). A set is (countably) infinite iff it is isomorphic to the

set of natural numbers N. If X is countably infinite, we define |X|
def
= ω. If

|X| < ω, we define the powerset of X as the set that contains all subsets of
X and denote it by 2X .

If X is a subset of another set Y , we call the set Y \ X the complement
of X with respect to Y . When the set Y is clear from the context, we denote
the complement of X by the shorthand notation X .

2.1.1 Sequences

Let X be a nonempty set. A sequence (called occasionally also a word in
further discussion) x over X is a mapping x : I → X , from an index set
I = {n ∈ N | n < m for some 0 ≤ m ≤ ω} to X . For all i ∈ I , x(i) is
called the ith element of x. We may also describe x by “listing its elements”

as x = (xi)0≤i<|x| = (x0, x1, x2, . . .), where xi
def
= x(i). We call |x|

def
= |I|

the length of the sequence. For all n ∈ N ∪ {ω}, we denote the class of all
sequences over X of length n by Xn. The unique sequence in X0 is called
the empty sequence over X and is denoted by εX . Each element of X can
be treated as a sequence by applying the obvious isomorphism between X

and X1. The set X∗ def
=

⋃
0≤i<ωX

i is the set of all finite sequences over X ;
Xω denotes the set of all (countably) infinite sequences.

Sequences can be used to define other sequences. Let x : I → X be a
sequence over X , let i ∈ I , and let i ≤ j ≤ |I|. The sequence x′ : I ′ → X ,

where I ′
def
= {n ∈ N | i ≤ n + i < j} and x′(k)

def
= x(k + i) for all

k ∈ I ′, is called a subsequence (alternatively, a subword) of x and denoted
by

(
x(k)

)
i≤k<j

. If i = 0, then x′ is a prefix of x; if j = |I|, then x′ is called a

suffix. In this case we usually refer to
(
x(k)

)
i≤k<j

using the simpler notation

xi. Clearly, the suffix xi is infinite iff x is infinite.

2. DEFINITIONS AND BASIC RESULTS 7

If x1 : I1 → X1 and x2 : I2 → X2 are two sequences with |x1| < ω, the
concatenation of x1 and x2 (denoted x1x2) is the sequence x :

{
n ∈ N n <

|I1| + |I2|
}
→ X1 ∪X2 defined by

x(i)
def
=

{
x1(i) if 0 ≤ i < |I1|
x2(i− |I1|) if |I1| ≤ i < |I1| + |I2|

Because concatenation is an associative operation, i.e., (xy)z = x(yz) for all
sequences x, y and z (|x| < ω, |y| < ω), we usually write concatenations of
sequences without parentheses.

2.1.2 ω-Regular Expressions

Let X be a nonempty set. We shall often describe subsets of Xω by means
of ω-regular expressions over X . The set of ω-regular expressions over X is
the smallest set of finite sequences built from the elements of X , parentheses
“(” and “)” and the symbols ∪, ∗ and ω such that the set is closed under finite
application of the following syntactic rules (formally defined using concate-
nation of sequences; in the definition of the rules, we also make use of an
auxiliary set of regular expressions over X):

• Each element of X is a regular expression.

• If α and β are regular expressions, then (α∪β), (αβ) and α∗ are regular
expressions.

• If α is a regular expression and β is an ω-regular expression, then αω

and (αβ) are ω-regular expressions.

• If α and β are ω-regular expressions, then (α ∪ β) is an ω-regular ex-
pression.

Each ω-regular expression α defines a set of words over X . We denote the set
of words defined by the ω-regular expression α by L(α) and call this set the
language of α. Formally, L(α) is defined for regular and ω-regular expres-
sions as follows:

• L(α)
def
=

{
x : {0} → X x(0) = α

}
for all α ∈ X (i.e., the singleton

set containing the unique sequence of length 1 with α ∈ X as its first
element);

• L
(
(α ∪ β)

)
def
= L(α) ∪ L(β), where α and β are either both regular or

both ω-regular expressions (the sequences that belong to either or both
of L(α) and L(β));

• L
(
(αβ)

)
def
=

{
xy x ∈ L(α), y ∈ L(β)

}
for any regular expression α

and any regular or ω-regular expression β (the sequences formed by
concatenating a sequence from L(β) to a sequence in L(α));

• L(α∗)
def
= {εX} ∪

⋃
1≤i<ω

{
x1x2 . . . xi x1, x2, . . . , xi ∈ L(α)

}
for any

regular expression α (the set of sequences obtained by finite concate-
nations of zero or more sequences in L(α))

8 2. DEFINITIONS AND BASIC RESULTS

• L(αω)
def
=

{
x1x2x3 . . . xi ∈ L(α) \ {εX} for all 1 ≤ i < ω

}
for any

regular expression α (the set of infinite sequences obtained by concate-
nating nonempty sequences in the language of α).

Whenever the language of an ω-regular expression α is a singleton set, it is
conventional to identify the ω-regular expression with the unique word in its
language. In such cases we shall simply speak of the word α instead of “the
unique word in the language of α”. In addition, we simplify the notation
by omitting parentheses from the expressions whenever possible by fixing the
precedence of ∪, ∗, ω and concatenation such that ∗ and ω have precedence
over concatenation, which has precedence over ∪.

Example 2.1.1 The ω-regular expression aω denotes the infinite word that
consists of the symbol a, aω ∪ b∗cω represents all infinite words consisting of
either the symbol a or a finite sequence of b’s followed by an infinite sequence
of c’s, and the ω-regular expression

(
a∪b∪c)∗

(
ab∗

)ω
represents the language

of infinite words built from the letters a, b and c such that each word in the
language contains infinitely many a’s but only finitely many c’s. �

2.2 PROPOSITIONAL LINEAR TEMPORAL LOGIC

As shown in the example at the end of the previous section, ω-regular expres-
sions provide a means for specifying simple properties of infinite sequences.
However, the basic operations for building ω-regular expressions from sim-
pler expressions are not always very convenient for defining languages in
practice: for example, given two ω-regular expressions α and β, it is not
obvious how (or whether) these expressions could be used to form another
ω-regular expression corresponding to the language L(α) ∩ L(β), or an ω-
regular expression that represents all words that do not belong to L(α). Even
though these languages are in fact expressible using ω-regular expressions [7],
reasoning about the properties of computation paths of finite-state systems is
often more convenient using logical operations for transforming simple ex-
pressions into more complex expressions. In this chapter we review the syntax
and semantics of classic future-time propositional linear temporal logic [26,
54, 55]; despite the difference in the basic operations for manipulating ex-
pressions in the logic, the languages definable using LTL actually form a
strict subset of the languages definable using ω-regular expressions (see, for
example, Thomas [69]).

2.2.1 Syntax

Let AP be a finite set of atomic propositions. The set LTL(AP) of propo-
sitional future-time linear temporal logic formulas over the atomic propo-
sitions AP is the smallest set of finite sequences built from elements of
AP , parentheses “(” and “)”, the symbol >, propositional connectives (or
operators) ¬, ∨, and temporal connectives (operators) X and Us such that
LTL(AP) includes {>} ∪ AP as a subset and is closed under the finite ap-
plication of the syntactic rule

If ϕ, ψ ∈ LTL(AP), then ¬ϕ, (ϕ ∨ ψ), Xϕ, (ϕUs ψ) ∈ LTL(AP).

2. DEFINITIONS AND BASIC RESULTS 9

A subformula of a formula ϕ ∈ LTL(AP) is a subsequence of ϕ that be-
longs to LTL(AP). The collection of all subformulas of ϕ is denoted by
Sub(ϕ). Identical subsequences of ϕ are identified as the same subformula;
thus, |Sub(ϕ)| equals the number of syntactically distinct subformulas in ϕ.

The formula ϕ ∈ LTL(AP) is called a literal iff ϕ = p or ϕ = ¬p
for some atomic proposition p ∈ AP ; literals and the symbol > are called
atomic subformulas of ϕ. If ϕ is not a literal (i.e., ϕ = ◦ϕ1 for ◦ ∈ {¬,X},
or ϕ = (ϕ1 ◦ ϕ2), where ◦ ∈ {∨,Us}, and ϕ1, ϕ2 ∈ LTL(AP)), ϕ is called
a compound formula, where ◦ is the main connective of ϕ, and ϕ1 and ϕ2

are the top-level subformulas of ϕ. The arity of a compound formula and
its main connective is the number of top-level subformulas in the formula;
formulas (connectives) of arity 1 and 2 are called unary and binary formulas
(connectives), respectively.

A formula ϕ ∈ LTL(AP) that does not contain any temporal connectives
is called a propositional (or Boolean) formula, otherwise it is a temporal
formula; the set of all propositional formulas over the atomic propositions
AP is denoted by PL(AP). The formula ϕ is called a pure temporal formula
iff ϕ = Xϕ1 or ϕ = (ϕ1 Us ϕ2) for some ϕ1, ϕ2 ∈ LTL(AP). We denote
by Temp(ϕ) the maximal subset of Sub(ϕ) consisting of only pure temporal
formulas.

2.2.2 Semantics

Basic operators

Linear temporal logic formulas are interpreted over infinite sequences of sets
of atomic propositions chosen from AP , i.e., elements of the powerset 2AP of
AP . The classic semantics of linear temporal logic is defined using a binary
relation |= between infinite sequences w ∈ (2AP)ω of subsets of AP and
formulas of the logic inductively as follows:

• w |= >.

• If p ∈ AP , then w |= p iff p ∈ w(0).

• w |= ¬ϕ iff w |= ϕ does not hold (denoted also by w 6|= ϕ).

• w |= (ϕ ∨ ψ) iff w |= ϕ or w |= ψ.

• w |= Xϕ iff w1 |= ϕ. [Next time]

• w |= (ϕUs ψ) iff there exists an index 0 ≤ i < ω such that wi |= ψ
holds and wj |= ϕ holds for all 0 ≤ j < i. [Strong Until]

We say thatw ∈ (2AP)ω satisfies (alternatively, is a model of) the formula ϕ ∈

LTL(AP) iff w |= ϕ holds. The set L(ϕ)
def
=

{
w ∈ (2AP)ω w |= ϕ

}
of all

models ofϕ is called the language ofϕ. The formula ϕ is satisfiable if L(ϕ) 6=
∅ and unsatisfiable otherwise. The formula ϕ is valid iff ¬ϕ is unsatisfiable.
For all formulas ϕ1, ϕ2 ∈ LTL(AP), it is clear from the definition of the

semantics that L
(
(ϕ1∨ϕ2)

)
= L(ϕ1)∪L(ϕ2), and the complement L(ϕ1)

def
=

(2AP)ω \ L(ϕ1) of the language of ϕ with respect to (2AP)ω equals L(¬ϕ1).
For a pair of formulas ϕ, ψ ∈ LTL(AP), we write ϕ ≡ ψ to denote that

10 2. DEFINITIONS AND BASIC RESULTS

L(ϕ) = L(ψ). If ψ is a subformula of ϕ and ψ′ is another LTL formula such
that ψ ≡ ψ′, then any single occurrence of ψ in ϕ can be substituted with ψ ′

without changing the language of ϕ.
If ϕ ∈ PL(AP), we project the satisfiability relation from infinite se-

quences in (2AP)ω to subsets of AP and use the traditional notation σ |= ϕ
(σ ⊆ AP) for propositional satisfiability. (Formally, using the above def-
inition, σ |= ϕ is equivalent to the statement that w |= ϕ holds for all
w ∈ (2AP)ω with w(0) = σ.)

Derived operators
The set of linear temporal logic formulas is often extended by introducing de-
rived constants or connectives expressible in terms of the basic constants and
connectives > (“true”), ¬ (negation), ∨ (disjunction), X (Next Time) and
Us (Strong Until). The derived connectives allow more flexible expression
of LTL properties without altering the semantics of the logic. Standard ex-
tensions include the Boolean constant ⊥ (“false”), the propositional connec-
tives ∧ (conjunction), → (implication), ↔ (equivalence) and ⊕ (exclusive
disjunction) as well as temporal connectives such as

• F: w |= Fϕ iff w |= (>Us ϕ). [Finally]

• G: w |= Gϕ iff w |= ¬F¬ϕ. [Globally]

• Uw: w |= (ϕUw ψ) iff w |=
(
Gϕ ∨ (ϕUs ψ)

)
. [Weak Until]

• Rw: w |= (ϕRw ψ) iff w |= ¬(¬ϕUs ¬ψ), [Weak Release]
equivalently, iff w |=

(
ψ Uw (ϕ ∧ ψ)

)
.

• Rs: w |= (ϕRs ψ) iff w |= ¬(¬ϕUw ¬ψ), [Strong Release]
equivalently, iff w |=

(
ψ Us (ϕ ∧ ψ)

)
.

The sets of propositional and temporal formulas are extended in the obvious
way. We shall also use the common shorthand notation

∨
ϕ∈Φ ϕ and

∧
ϕ∈Φ ϕ

to denote an (arbitrarily parenthesized) LTL formula formed by joining the
elements of a given set of formulas Φ ⊆ LTL(AP) (in any order) with either
the ∨ or the ∧ connective, respectively. (The parenthesization and the order
of the formulas do not matter due to the associativity and commutativity of

these connectives.) It is customary to define
∨
ϕ∈∅ ϕ

def

≡ ⊥ and
∧
ϕ∈∅ ϕ

def

≡ >.
In this work, we assume all LTL formulas to be written using atomic

propositions, Boolean constants > and ⊥, and the (extended) set of con-
nectives {¬,∨∧,X,Us,Uw Rs, Rw}. All other connectives are assumed to be
substituted with their definitions. The subscripts of the U and R connectives
will sometimes be omitted if the strength of the connective is not relevant.
A formula having one of these connectives as its main connective is called a
(strong or weak) temporal eventuality.

The models of the temporal eventualities are infinite sequences over 2AP

that may or must have an infinite suffix satisfying a designated top-level sub-
formula (or both top-level subformulas) of the eventuality. The strong tem-
poral eventualities (Us and Rs) require the existence of such a suffix uncon-
ditionally; their weak variants relax this requirement by permitting models in
which another top-level subformula holds throughout the entire sequence.

2. DEFINITIONS AND BASIC RESULTS 11

(In our notation, Us and Rw correspond to the traditional Until and Release
connectives commonly used in the literature.)

2.2.3 Positive Normal Form

Using the operator set fixed above, any formula ϕ ∈ LTL(AP) can be written
as an equivalent LTL formula ϕ′ (ϕ ≡ ϕ′) in which all negations precede
atomic propositions. The positive normal form of a formula ϕ can be found
by applying the following well-known identities

¬> ≡ ⊥
¬¬ϕ ≡ ϕ

¬(ϕ ∨ ψ) ≡ (¬ϕ ∧ ¬ψ)
¬Xϕ ≡ X¬ϕ

¬(ϕUs ψ) ≡ (¬ϕRw ¬ψ)
¬(ϕUw ψ) ≡ (¬ϕRs ¬ψ)

¬⊥ ≡ >

¬(ϕ ∧ ψ) ≡ (¬ϕ ∨ ¬ψ)

¬(ϕRw ψ) ≡ (¬ϕUs ¬ψ)
¬(ϕRs ψ) ≡ (¬ϕUw ¬ψ)

such that each subformula of ϕ matching the left-hand side formula of some
identity is replaced with the right-hand side formula until none of the subfor-
mulas of the resulting formula ϕ′ matches the left-hand side of any identity.
Since each identity replaces a negated subformula with a pure temporal for-
mula iff the subformula itself is a pure temporal subformula, the number of
pure temporal subformulas cannot increase in the conversion. (It is possible,
however, that |Temp(ϕ′)| < |Temp(ϕ)|, for example, if ϕ = (X¬p ∧ ¬Xp).)
In this work, all LTL formulas are assumed to be in positive normal form
unless otherwise noted.

Let ϕ ∈ LTL(AP) be an LTL formula in positive normal form. The
size of ϕ (denoted |ϕ|) is defined as the total number of atomic and com-
pound subformulas in ϕ, where all identical subformulas of ϕ contribute
to the result (that is, we do not identify syntactically identical subformulas
here). Formally, we define the size of ϕ inductively as

|ϕ|
def
=





1 if ϕ ∈ {>,⊥, p,¬p}, p ∈ AP

1 + |ϕ1| if ϕ = Xϕ1

1 + |ϕ1| + |ϕ2| if ϕ = (ϕ1 ◦ ϕ2), ◦ ∈ {∨,∧,Us,Uw,Rs,Rw}

where ϕ1, ϕ2 ∈ LTL(AP).

2.3 ALTERNATING AUTOMATA

The possibility of mixing nondeterministic (existential) behavior with uni-
versal behavior (corresponding, in a sense, to parallelism) in finite automata
working on finite words was first investigated by Chandra, Kozen and Stock-
meyer [9], who defined the notion of alternating automata, and Brzozowski
and Leiss [6], who introduced an equivalent concept of Boolean automata.
Alternation was later studied within the context of infinite inputs by Miyano
and Hayashi [49], and Muller and Schupp [52], who considered alternating
automata on infinite words and trees, respectively. Unlike a nondetermin-
istic automaton that always chooses a single “next state” at each step when

12 2. DEFINITIONS AND BASIC RESULTS

working on its input, an alternating automaton can choose several of these
“next states” at once, spawning independent copies of itself that work inde-
pendently on the remaining input. Whether the automaton accepts its input
is then determined by a condition that specifies which of the spawned copies
should accept or reject the remainder of the input.

In the case of finite inputs, alternation allows for a representation of au-
tomata that does not add to the expressiveness of plain nondeterministic au-
tomata, but is in the best case only logarithmic in the size of the smallest pos-
sible corresponding nondeterministic representation [6, 9, 44]. Conversely,
every alternating automaton on finite words can be translated into an equiv-
alent nondeterministic automaton with a worst-case exponential blow-up in
the number of states; an analogous result holds for commonly used classes
of automata on infinite inputs [49]. Together with the wide expressiveness of
automata in general, the succinctness of alternating automata provides the
main motivation for the study of using them in the automatic verification of
systems against their specifications. In this section, we review the basic defi-
nitions and properties of alternating automata on infinite words and some of
the subclasses of the automata.

2.3.1 Basic Properties

The combination of existential and universal choice between states of al-
ternating automata can be captured by encoding the transitions of the au-
tomata as arbitrary Boolean functions on the states of the automata [6, 9];
however, it is common to restrict the use of negation when working with au-
tomata on infinite inputs [52, 72]. While the Boolean representation is con-
venient for proving several fundamental properties of alternating automata,
such as a complementation construction based on syntactic manipulation of
the Boolean functions [52], the notion of nondeterministic choice between
individual transitions of the automata is not explicit in the Boolean represen-
tation. Such a notion is nevertheless useful, for example, for representing
the automata graphically using common drawing techniques borrowed from
nondeterministic automata. As we shall see later in Ch. 4, an explicit rep-
resentation for the transitions is also convenient for the simplification of the
automata. For these reasons, we adopt a definition similar to the one used
previously by Gastin and Oddoux [28]; in this definition, the explicit repre-
sentation of the individual transitions leaving the same state is equivalent to
the disjunctive normal form1 of a corresponding Boolean encoding that does
not include any negations.

Formally, an alternating automaton is a tuple A = 〈Σ, Q,∆, qI ,F〉 where
Σ is a finite set called the alphabet, Q is the finite set of states, qI ∈ Q is the
initial state, ∆ ⊆ Q × 2Σ × 2F × 2Q is the transition relation and F is the
finite set of acceptance conditions.

The components of each transition t = 〈q,Γ, F, Q′〉 ∈ ∆ (q ∈ Q, Γ ⊆
Σ, F ⊆ F , Q′ ⊆ Q) are called the start state, the guard, the acceptance
conditions and the target states of t, respectively. A transition is an initial
transition of A iff its start state is qI , and it is a self-loop iff it includes its start

1That is, a formula of the form
∨

0≤i≤n ϕi, where ϕi ≡
∧

1≤j≤mi
ψi,j , and every ψi,j is

an atomic formula (n,mi ∈ N).

2. DEFINITIONS AND BASIC RESULTS 13

PSfrag replacements

{a}

{b, c}
{a}

{a, c}

{c}

{b}

{a, d}{b}

{b, d}

{d}
q1

q2

q3

q4

q5

PSfrag replacements

{a}
{b, c}
{a}

{a, c}

{c}

{b}

{a, d}

{b}

{b, d}

{d}
q1
q2
q3

q4

q5

(a) (b)

Fig. 2.1: (a) Graphical representation of the alternating automaton A
def
=〈

{a, b, c, d}, {q1, q2, q3, q4, q5},
{〈
q1, {a}, ∅, {q2, q4}

〉
,
〈
q1, {d}, ∅, ∅

〉
,
〈
q2, {b}, ∅, {q1}

〉
,〈

q2, {b, c}, ∅, {q3}
〉
,

〈
q3, {a}, ∅, {q2}

〉
,

〈
q4, {a, d}, {f1}, {q4}

〉
,

〈
q4, {b}, {f1}, {q4, q5}

〉
,〈

q4, {c}, ∅, {q4}
〉
,
〈
q5, {a, c}, {f2}, {q5}

〉
,
〈
q5, {b, d}, ∅, {q5}

〉}
, q1, {f1, f2}

〉
;

(b) The subautomaton Aq4 =
〈
{a, b, c, d}, {q4 , q5},

{〈
q4, {a, d}, {f1}, {q4}

〉
,
〈
q4,

{b}, {f1}, {q4, q5}
〉
,

〈
q4, {c}, ∅, {q4}

〉
,

〈
q5, {a, c}, {f2}, {q5}

〉
,

〈
q5, {b, d}, ∅, {q5}

〉}
, q4,

{f1, f2}
〉

state in its target states.
The size |A| of the automaton A = 〈Σ, Q,∆, qI ,F〉 is defined to be equal

to the number of states in the automaton.

Example 2.3.1 We illustrate our conventions for drawing alternating au-
tomata in Fig. 2.1. The states of the automata are denoted by circles (with
the initial state of the automaton marked by a small arrowhead), and the
transitions of the automata are represented by sets of arrows between the cir-
cles. We occasionally omit the labels of the states if they are not relevant in
the context. For each transition 〈q,Γ, F, Q′〉 ∈ ∆ with |Q′| = n for some
0 ≤ n < ω, we draw max{1, n} arrows from the state q to each state in Q′

(thus, if Q′ = ∅, we draw a single arrow that is not connected with any other
state). Arrows associated with the same transition are drawn in the same line
style; since each transition has a unique start state, the same line styles can be
reused in each state of the automaton without ambiguity. Acceptance con-
ditions in F are represented by small shaded circles on the transition arrows,
where each different shade corresponds to a different acceptance condition.
For simplifying the figures, we usually place the transition guards near only
one of the arrows associated with a particular transition. We nevertheless re-
peat the acceptance conditions associated with the transition on each of these
arrows. �

Successors, Paths, Descendants and Subautomata
Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton, and let q ∈ Q. If
there exists a transition 〈q,Γ, F, Q′〉 ∈ ∆ for some Γ ⊆ Σ, F ⊆ F and
Q′ ⊆ Q, then each state q′ ∈ Q′ is called a successor of q. A path in A is a
sequence x = (qi)0≤i<n+1 ∈ Qn+1, where 0 ≤ n ≤ ω and qi+1 is a successor
of qi for all 0 ≤ i < n. If n = 0, the path is trivial ; if n < ω, the path is a finite
path from q0 to qn; otherwise the path is infinite. The length of the path is the
length of the sequence x, i.e., the number of states in the sequence. The path
visits the state q ∈ Q iff qi = q holds for some 0 ≤ i < n+1. A path is simple
iff qi 6= qj holds for all 0 ≤ i, j < n+ 1, i 6= j, and it is a loop (alternatively,

14 2. DEFINITIONS AND BASIC RESULTS

a cycle) iff 1 ≤ n < ω, qn = q0 and qi 6= qj for all 0 ≤ i, j ≤ n − 1, i 6= j.
We reuse the terminology introduced for the transitions of A and call a loop
of length 2 a self-loop. (A self-loop transition always defines a path that is a
self-loop, but the converse does not hold in the general case.) A state q ′ ∈ Q
is a descendant of q ∈ Q iff there exists a finite nontrivial path from q to q ′ in
the automaton; in this case we also say that q′ is reachable from q in A.

Example 2.3.2 In Fig. 2.1 (a), the successors of q1 are the states q2 and q4; the

descendants of q1 include also the states q3 and q5, because x1
def
= (q1, q2, q3)

and x2
def
= (q1, q4, q5, q5) are finite nontrivial paths (of lengths 3 and 4) from q1

to q3 and q5, respectively. Because x1 does not visit any of the states q1, q2 or q3
twice, x1 is simple; this does not hold, however, for the path x2 that includes

a self-loop (q5, q5) from q5 to itself. The path x3
def
= (q2, q3, q2, q3, q2, q3, . . .) is

an infinite path that begins with a cycle (q2, q3, q2) that is not a self-loop. �

Let q ∈ Q be a state in the automaton A. The subautomaton of A with
initial state q (denoted Aq) is the alternating automaton obtained from A
by changing its initial state to q, removing all states that are different from
q but that are not descendants of q from the resulting automaton and re-
stricting the transition relation ∆ to the remaining set of states. The sub-
automaton shares its set of acceptance conditions with the original automa-
ton. We also say that Aq is rooted at the state q ∈ Q. Formally, Aq =

〈Σ, Qq,∆q, qqI ,F
q〉, where Qq def

= {q} ∪ {q′ ∈ Q | q′ is a descendant of q},

∆q def
=

{
〈q′,Γ, F, Q′〉 ∈ ∆ q′ ∈ Qq, Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Qq

}
, qqI

def
= q,

and F q def
= F . It is easy to see that if Aq is a subautomaton of A and q′ ∈ Qq,

then (Aq)q
′
= Aq′ , i.e., each subautomaton of Aq is also a subautomaton of

A.

Example 2.3.3 Figure 2.1 (b) shows the subautomaton Aq4 obtained from
the automaton A depicted in Fig. 2.1 (a). �

Runs
A run of an alternating automaton A = 〈Σ, Q,∆, qI ,F〉 on an infinite word
w ∈ Σω is a directed labelled acyclic graph G = 〈V,E, L〉. Here, V is the
set of nodes (assumed to be partitioned into disjoint finite levels Vi ⊆ V such
that V =

⋃
0≤i<ω Vi and Vi∩Vj = ∅ for all i 6= j), E ⊆

⋃
0≤i<ω(Vi×2Vi+1) is

the set of (hyper)edges, and L : (V ∪E) → (Q∪∆) is the labelling function.
For convenience, given a set X ⊆ V ∪ E, we use the shorthand notation
L(X) to represent the set of labels {L(x) | x ∈ X}. In addition, V , E and L
must satisfy the following conditions:

• V0 = {v0}, L(v0) = qI ;

• if v ∈ Vi for some 0 ≤ i < ω, then v has the unique outgoing edge
e = 〈v, V ′〉 ∈ E for some V ′ ⊆ Vi+1, and there exists a transition
t = 〈q,Γ, F, Q′〉 ∈ ∆ such that q = L(v), w(i) ∈ Γ, Q′ = L(V ′), and
L(e) = t; we say in this case that the edge labelling is consistent ;

• if v′ ∈ Vi for some 1 ≤ i < ω, then there exists a node v ∈ Vi−1 and an
edge e = 〈v, V ′〉 ∈ E such that v′ ∈ V ′.

2. DEFINITIONS AND BASIC RESULTS 15

PSfrag replacements

q1q1

q1

q1

q2q2q2

q2 q2

q3

q3

q4

q4q4q4

q4

q4 q4q4q4

q4q4q4q4q4q4 q5q5 q5q5q5

q5q5q5q5q5q5q5q5q5

aaaaa bbb ccc dd

{a}

{a}

{a}
{a}

{a} {b}{b}

{b} {b}

{b}{b}

{c}

{c}

{c}

{c}

{d}

{a,c}

{a,c}{a,c}{a,c}{a,c} {a,c}

{a,d}{a,d}

{a,d}{a,d}{a,d}

{a,d}
{a,d}

{b,c}

{b,c}

{b,d}

{b,d}

{b,d}

{b,d}

{b,d}{b,d}

{b,d}

Fig. 2.2: First few levels of a run of the alternating automaton in Fig. 2.1 (a) formed
by reading the input acabacababdcd

Two edges e1 = 〈v1, V
′〉 ∈ E and e2 = 〈v2, V

′′〉 ∈ E are consecutive iff
v2 ∈ V ′. Similar to alternating automata, we call v2 a successor of v1 in this
case; descendants of a node and paths in a run are defined analogously.

Example 2.3.4 Figure 2.2 illustrates the construction of the first few levels of
(one possible) run for the alternating automaton in Fig. 2.1 (a) on the input
acabacababdcd . Again, we represent nodes of the run with circles and edges
with (sets) of arrows between the nodes; we first draw the node corresponding
to the level V0 of the run (the leftmost node in the figure) and label this node
with the initial state q1 of the automaton. On the first input symbol a, the
automaton spawns two copies of itself that then process the next symbol of
the input, starting from the states q2 and q4, respectively. We represent this
by drawing arrows from the node labelled with the state q1 to two new nodes
labelled with these states in the figure to form level V1 of the run. Nodes
belonging to the same level are always drawn horizontally aligned (with their
labels shown beside the nodes themselves). The following levels of the run
of the automaton are defined in a similar manner such that the labels of
the successors of each node always coincide with the target states of some
transition that starts from the state labelling the node itself and includes the
next input symbol (shown at the top of the figure) in its guard.

The number of nodes in a level of the run corresponds to the number of
currently active copies of the automaton; as seen from the figure, the number
of active copies (of which several may be in the same state of the automaton)
can change while the automaton processes its input (caused by the automa-
ton spawning new copies of itself, by a copy taking a transition with an empty
set of target states, or even by several copies “merging together”).

The arrows leaving each node constitute the unique (hyper)edge starting
from the node. Formally, each of these edges is labelled with a transition of
the automaton. We mark only the guards and the acceptance conditions of
these transitions in the figure; the exact label of each edge in the run can
nevertheless be determined uniquely from this information together with the
labels of the nodes. �

Acceptance Modes and the Language of an Automaton
Let G = 〈V,E, L〉 be a run of an alternating automaton A = 〈Σ, Q,∆,
qI ,F〉 on an infinite word w ∈ Σω. We define the set E(G) of acceptance

16 2. DEFINITIONS AND BASIC RESULTS

sequences of G as the set of all infinite sequences of consecutive edges of E
beginning with the unique edge 〈v0, V1〉 ∈ E; formally,

E(G)
def
=

{
(ei)0≤i<ω ∀0 ≤ i < ω : ei ∈ E ∩ (Vi×2Vi+1),

ei and ei+1 consecutive
}
.

For a nonempty E(G) and a sequence r = (ei)0≤i<ω ∈ E(G), we further
define

inf(r)
def
=

{
f ∈ F ∀i ≥ 0 : ∃j > i : L(ej) = 〈qj,Γj, Fj, Q

′
j〉 ∈ ∆, f ∈ Fj

}

and

fin(r)
def
=

{
f ∈ F ∃i ≥ 0 : ∀j > i : L(ej) = 〈qj,Γj, Fj, Q

′
j〉 ∈ ∆, f ∈ Fj

}
.

The sets inf(r) and fin(r) are called the infinity set and the final set of r,
respectively; inf(r) collects the acceptance conditions occurring in the label
of infinitely many edges in the sequence, and fin(r) is the maximal set of
conditions that are missing from the labels of only finitely many edges in
the sequence. It is easy to see that if fin(r) 6= ∅, then inf(r) 6= ∅, and
furthermore, if inf(r) 6= ∅, then, for all f ∈ inf(r), there exists a transition
tf ∈ ∆ including f in its acceptance conditions such that L(ei) = tf holds
for infinitely many i, because ∆ is finite.

We say that the run G is

• inf-accepting iff inf(r) = F for all r ∈ E(G) (this is analogous to clas-
sic Büchi acceptance generalized to multiple acceptance conditions);

• fin-accepting iff fin(r) = ∅ for all r ∈ E(G).

(If all paths through G are finite, E(G) = ∅, and thus both conditions hold
trivially.)

We say that A inf-accepts (fin-accepts) w ∈ Σω iff A has an inf-accepting
(fin-accepting) run on w. We call the set of infinite words accepted by A
in a fixed acceptance mode the language of A and denote it by Linf(A)
or Lfin(A), where the acceptance mode is given in the subscript. The au-
tomaton A inf- or fin-recognizes a language L ⊆ Σω iff L = Linf(A) or
L = Lfin(A), respectively. The automaton is inf- (fin-)empty iff it inf-
(fin-)recognizes the empty language. We call two automata equivalent iff
they recognize the same language (the acceptance modes of the automata
will usually be clear from the context).

Example 2.3.5 Consider again the fragment of a run of the automaton of
Example 2.3.1 on the input acabacababdcd as shown in Fig. 2.2. This run
fragment ends in a level having two nodes labelled with the states q4 and
q5, respectively. We investigate inf- and fin-acceptance in several runs of the
automaton obtained via simple infinite extensions of the input.

Concatenating the word aω to the input allows us to extend the graph in
Fig. 2.2 into a run ending in, for example, an infinite number of identical lev-
els shown in Fig. 2.3 (a). It is easy to see that this run contains a finite number
of acceptance sequences, all of which end in an infinite suffix of identically

2. DEFINITIONS AND BASIC RESULTS 17

���
�

PSfrag replacements

q4q4q4

q5q5q5

aa
b
c
d

{b}
{c}

{a,c}{a,c}

{a,d}{a,d}

{b,d}

���
�

PSfrag replacements

q4q4q4

q5q5q5

a b

c
d

{b}
{c}

{a,c}

{a,d}

{b,d}

PSfrag replacements

q4q4q4

q5q5q5

a
b

c d

{b} {c}

{a,c}

{a,d}

{b,d}

(a) (b) (c)

Fig. 2.3: Possible extensions of the graph in Fig. 2.2 into a run of the alternating
automaton shown in Fig. 2.1. (a) Extension on the input aω ; (b) Extension on the
input (ab)ω ; (c) Extension on the input (cd)ω

labelled edges (labelled either with the transition
〈
q4, {a, d}, {f1}, {q4}

〉
or

the transition
〈
q5, {a, c}, {f2}, {q5}

〉
). Because neither of these transitions

includes both f1 and f2 in their respective sets of acceptance conditions, it
follows that f1 and f2 cannot both occur infinitely often in the labels of edges
in all acceptance sequences, and thus the run is not inf-accepting. On the
other hand, none of the acceptance sequences satisfies the fin-acceptance
condition, either, because both transitions include either f1 or f2 in their
acceptance conditions.

Figure 2.3 (b) shows another extension for the graph in Fig. 2.2 obtained
by concatenating the word (ab)ω with the original input. The run will now
contain infinitely many acceptance sequences: when choosing a sequence of
consecutive edges, we have, in effect, infinitely many opportunities to decide
whether to continue a sequence currently ending with an edge correspond-
ing to a “branching” self-loop starting from the state q4 with an edge labelled
with a self-loop starting from q4 or q5. Nevertheless, it is easy to see that all ac-
ceptance sequences again end in an infinite suffix of edges labelled with self-
loops starting from a fixed state of the automaton. More precisely, the edge la-
bels will eventually alternate between the transitions

〈
q4, {a, d}, {f1}, {q4}

〉

and
〈
q4, {b}, {f1}, {q4, q5}

〉
, or the transitions

〈
q5, {a, c}, {f2}, {q5}

〉
and〈

q5, {b, d}, ∅, {q5}
〉

in every acceptance sequence. Similar to above, no ac-
ceptance sequence satisfies the inf-acceptance condition. However, all se-
quences ending in a suffix labelled with self-loops starting from q5 will now
satisfy the fin-acceptance condition, because these sequences include in-
finitely many edges labelled with a transition having an empty set of ac-
ceptance conditions. The run is nevertheless not fin-accepting, because the
acceptance condition f1 (the small black circle) will eventually repeat in-
definitely in the edge labels of any acceptance sequence ending in edges
corresponding to self-loops that start from the state q4.

Finally, extending the graph in Fig. 2.2 into a run by reading the input
(cd)ω can be done as shown in Fig. 2.3 (c). As above, the run is not inf-
accepting; however, in this case all acceptance sequences contain infinitely
many edges labelled with transitions having no acceptance conditions as seen
in the figure. Therefore, we see that the automaton fin-accepts the word
acabacababdcd(cd)ω. �

18 2. DEFINITIONS AND BASIC RESULTS

Interreducibility of Acceptance Modes

We note that fin-acceptance can always be reduced to the more commonly
used (generalized) Büchi acceptance—inf-acceptance in our terminology—
and vice versa: it is easy to check that an alternating automaton A = 〈Σ, Q,
∆, qI ,F〉 fin- (inf)-accepts the language L ⊆ Σω iff the automaton obtained
from A by complementing the acceptance conditions of each transition of A
with respect to F inf- (fin)-accepts the same language. (That is, Lfin(A) =
Linf(A

′) for the automaton A′ = 〈Σ, Q,∆′, qI ,F〉 having the transition re-

lation ∆′ def
=

{
〈q,Γ,F \ F,Q′〉 〈q,Γ, F, Q′〉 ∈ ∆

}
; as a matter of fact, if

|F| = 1, then fin-acceptance coincides with a condition commonly known
as co-Büchi acceptance.)

As we shall see in Ch. 3, fin-acceptance provides a convenient way to
identify certain “bad” transitions that the automaton is not allowed to take
indefinitely along any path of a fin-accepting run when working on an input
w ∈ Σω belonging to the language of the automaton. This resembles the re-
quirements that arise in dealing with models of strong temporal eventualities
of LTL: recall that an infinite word over 2AP violates a strong temporal even-
tuality if some designated LTL property remains unsatisfied in all suffixes of
the word.

Because the different acceptance modes are reducible to each other as de-
scribed above, each theorem on alternating automata working in one accep-
tance mode corresponds to a theorem on automata working in the opposite
acceptance mode. We shall prove most of our results for only one acceptance
mode and shall not deal with the opposite mode explicitly.

Properties of Runs

In this section we list several elementary results on the runs of alternating
automata. These facts will be used mainly as tools in the proofs of subse-
quent results. We begin by establishing an obvious correspondence between
reachability in a run of an alternating automaton and reachability in the au-
tomaton itself; compare this result with Fig. 2.1 (a) and Fig. 2.2.

Proposition 2.3.6 Let G = 〈V,E, L〉 be a run of an alternating automaton
A = 〈Σ, Q,∆, qI ,F〉 on an infinite word w ∈ Σω. Let v ∈ Vi be a node in
G at some level 0 ≤ i < ω. Then, if v′ ∈ V is a descendant of v in G, then
L(v′) is a descendant of L(v) in A.

Proof: Clearly, each descendant of v in G is an element of Vi+j for some
1 ≤ j < ω. If v′ ∈ Vi+1 is a successor of v, then the unique edge starting
from v includes v′ in its target nodes, and because G is a run, the consistency
of the edge labelling implies that L(v′) is a successor (hence, a descendant)
of L(v) in A. Assume that the result holds for all descendants v ′ ∈ Vi+j of
v for some 1 ≤ j < ω, and let v′′ ∈ Vi+j+1 be a descendant of v. Thus G
contains a finite nontrivial path from v to v′′, and there exists a descendant
v′ ∈ Vi+j of v and an edge e = 〈v′, V ′〉 ∈ E such that v′′ ∈ V ′ (E contains
edges only between consecutive levels of G). Because the edge labelling is
consistent, L(v′′) is a successor of L(v′) in A, and thus L(v′′) is a descendant
of L(v) by the induction hypothesis. �

2. DEFINITIONS AND BASIC RESULTS 19

PSfrag replacements

qIqIqIqIqIqIqI qI

qI

qIqI

qIqI

qI

q1

q2

q3

self -loo
p

self -loo
p

self -loo
p

n
o
n

-self -loo
p

self -loop

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

se
lf

-lo
o
p

Fig. 2.4: Every run of an alternating automaton contains a sequence of consecutive
edges labelled with initial self-loops of the automaton such that the sequence is ei-
ther infinite, or it is followed by an edge labelled with an initial transition that is not
a self-loop

Consider the construction of a run for an alternating automaton A.
Clearly, the only way to extend a finite (possibly empty) sequence of consec-
utive edges labelled with initial self-loops of the automaton with a new edge
is to label the new edge with another initial transition of the automaton to en-
sure the consistency of the labelling. Therefore, every run of the automaton
contains either a finite sequence of edges labelled with initial transitions of
the automaton such that all edges except the last one correspond to self-loops
of the automaton, or an infinite sequence of edges, all of which are labelled
with initial self-loops of the automaton (see Fig. 2.4). Because we shall often
rely on the existence of such a sequence in a run of an alternating automaton,
we state this simple fact formally here for further reference.

Proposition 2.3.7 Let G = 〈V,E, L〉 be a run of an alternating automaton
A = 〈Σ, Q,∆, qI ,F〉. There exists an index 0 ≤ i ≤ ω and a sequence of
consecutive edges (ej)0≤j<i+1, ej ∈ E ∩ (Vj × 2Vj+1), such that L(ej) is an
initial self-loop of A for all 0 ≤ j < i, and either i = ω, or L(ei) is an initial
transition of A that is not a self-loop.

Proof: Because G is a run, L(v0) = qI , and v0 has the unique outgoing edge
e = 〈v0, V1〉 ∈ E ∩ (V0 × 2V1) such that L(e) is an initial transition of A. If
qI /∈ L(V1), then L(e) is not a self-loop, and thus i = 0 can be chosen as the
index referred to in the proposition.

Assume that there exists a sequence of consecutive edges (ej)0≤j≤k, ej ∈
E ∩ (Vj × 2Vj+1), for some 0 ≤ k < ω such that L(ej) is an initial self-loop
of A for all 0 ≤ j ≤ k. Let ek = 〈v, V ′〉 for some v ∈ Vk and V ′ ⊆ Vk+1.
Because L(ek) is an initial self-loop of A, there exists a node v′ ∈ V ′ such
that L(v′) = qI . Because G is a run, v′ has the unique outgoing edge ek+1 =
〈v′, V ′′〉 ∈ E ∩ (Vk+1 × 2Vk+2) for some V ′′ ⊆ Vk+2, and ek+1 is labelled with
an initial transition of A. Clearly, ek and ek+1 are consecutive. As above,
if qI /∈ L(V ′′), then L(ek+1) is not a self-loop, and (ej)0≤j≤k+1 satisfies the
criteria given in the proposition. Otherwise (ej)0≤j≤k+1 is another sequence
of consecutive edges labelled with initial self-loops of A. By induction, it
follows that we can extract from G a sequence of consecutive edges satisfying
the required criteria. �

The following proposition proves the fact that each run of an alternating
automaton A on an infinite word w ∈ Σω is “built” from the runs of its
subautomata on suffixes of w; compare this result again with Fig. 2.2.

20 2. DEFINITIONS AND BASIC RESULTS

Proposition 2.3.8 Let G = 〈V,E, L〉 be a run of an alternating automaton
A = 〈Σ, Q,∆, qI ,F〉 on an infinite word w ∈ Σω. Let v ∈ Vi be a node in
G at some level 0 ≤ i < ω. Define the graph Gv = 〈V v, Ev, Lv〉, where

• V v def
= {v} ∪ {v′ ∈ V | v′ is a descendant of v in G},

• Ev def
=

{
〈v′, V ′〉 ∈ E {v′} ∪ V ′ ⊆ V v

}
, and

• Lv : (V v ∪Ev) → (Q∪∆) is defined by the rule Lv(x)
def
= L(x) for all

x ∈ V v ∪ Ev.

Let L(v) = q. Then Gv is a run of the subautomaton Aq = 〈Σ, Qq,∆q,
q,F q〉 on the suffix wi of w.

Proof: We check that Gv satisfies the properties required of a run of the
subautomaton Aq on wi. It is clear that V v consists of finite disjoint levels

V v
j

def
= V v ∩ Vi+j (0 ≤ j < ω) such that Ev ⊆

⋃
0≤j<ω(V

v
j × 2V

v
j+1). By the

definitions of Gv and Aq, V v
0 = {v}, and Lv(v) = L(v) = q is the initial

state of Aq.
Let v′ ∈ V v

j ⊆ Vi+j for some 0 ≤ j < ω. By the definition of Gv,
v′ = v, or v′ is a descendant of v in G. Because G is a run of A, there exists
a unique edge e = 〈v′, V ′〉 ∈ E (V ′ ⊆ Vi+j+1) labelled with a transition
t =

〈
L(v′),Γ, F, L(V ′)

〉
∈ ∆ for some Γ ⊆ Σ and F ⊆ F such that w(i +

j) ∈ Γ. It follows that for all v′′ ∈ V ′, v′′ is a descendant of v in G, and (by
Proposition 2.3.6) L(v′′) is a descendant of q in A. Therefore V ′ ⊆ V v and
L(V ′) ⊆ Qq hold by the definitions of Gv and Aq, which further implies that
e ∈ Ev (and remains unique in Ev) and t ∈ ∆q. Additionally, F ⊆ F ′ = F
holds by the definition of Aq. Since Lv(x) = L(x) holds for all x ∈ V v ∪Ev ,
t =

〈
L(v′),Γ, F, L(V ′)

〉
=

〈
Lv(v′),Γ, F, Lv(V ′)

〉
and Lv(e) = L(e) = t,

and thus the edge labelling is consistent.
Finally, if v′ ∈ V v \ {v}, then, by the definition of Gv, v′ is a descendant

of v in G. Thus, v′ is either a successor of v or a successor of a node that is
itself a descendant of v in G (and thus belongs to V v). In either case, there
exists an edge e = 〈v′′, V ′′〉 ∈ E for some v′′ ∈ V v and V ′′ ⊆ V such that
v′ ∈ V ′′. Because v′′ ∈ V v, all nodes in V ′′ are descendants of v in G, and
thus V ′′ ⊆ V v and e ∈ Ev.

It follows thatGv is a run of Aq on
(
(w(i+j)

)
0≤j<ω

=
(
(w(j)

)
i≤j<ω

= wi.
�

By focusing only on accepting runs of alternating automata, Proposition
2.3.8 leads to the result that any inf- or fin-accepting run of an alternating au-
tomaton consists of inf- or fin-accepting runs of its subautomata, respectively.

Proposition 2.3.9 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton,
and let G = 〈V,E, L〉 be an inf- (fin-)accepting run of A on w ∈ Σω. Then,
for all 0 ≤ i < ω and v ∈ Vi, the run Gv obtained from G using the con-
struction in Proposition 2.3.8 is an inf- (fin-)accepting run of AL(v) on wi.
More generally, if G = 〈V,E, L〉 is an inf- (fin)-accepting run of A on w,
then AL(v) inf- (fin)-accepts wi for all 0 ≤ i < ω and v ∈ Vi.

2. DEFINITIONS AND BASIC RESULTS 21

Proof: By Proposition 2.3.8, Gv is a run of the subautomaton AL(v) on wi. If
there exists an infinite path through Gv starting from the node v, then this
path is a suffix of some infinite path throughG that begins from the node v0 ∈
V0 and visits the node v. (This follows directly from the definition of a run
and the fact that Gv is a subgraph of G.) It follows that also each acceptance
sequence rv = (evj)0≤j<ω ∈ E(Gv) of Gv is a suffix of some acceptance
sequence r = (ej)0≤j<ω ∈ E(G) of G (with evj = ei+j for all 0 ≤ j <
ω). Because G is an accepting run of A, r satisfies the inf- (fin-)acceptance
condition. Thus, either inf(r) = F (inf-acceptance), or fin(r) = ∅ (fin-
acceptance). Since rv is an infinite suffix of r, r contains only finitely many
edges not contained in rv, and thus either inf(rv) = inf(r) = F = FL(v), or
fin(rv) = fin(r) = ∅. It follows that Gv is an inf- (fin-)accepting run of AL(v)

on wi. �

Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton, let w ∈ Σω, and
let G = 〈V,E, L〉 be a directed labelled acyclic graph, where, similar to a
run of A, V consists of finite disjoint levels Vi (0 ≤ i < ω), E ⊆

⋃
0≤i<ω(Vi×

2Vi+1), and L : (V ∪ E) → (Q ∪ ∆). We call G a partial run of A on w iff

• V0 = {v0}, L(v0) = qI ;

• if v ∈ Vi for some 0 ≤ i < ω, then either

– E ∩
{
〈v, V ′〉 V ′ ⊆ V

}
= ∅, that is, v has no outgoing edges, or

– v has the unique outgoing edge e = 〈v, V ′〉 ∈ E for some V ′ ⊆
Vi+1, and there exists a transition t = 〈q,Γ, F, Q′〉 ∈ ∆ such that
q = L(v), w(i) ∈ Γ, Q′ = L(V ′) and L(e) = t;

• if v′ ∈ Vi for some 1 ≤ i < ω, then there exists a node v ∈ Vi−1 and an
edge e = 〈v, V ′〉 ∈ E such that v′ ∈ V ′.

Thus, the definition of a partial run is identical to the definition of a run ex-
cept for the relaxed second condition: a partial run may contain nodes with
no outgoing edges. The concept of acceptance sequences extends to partial
runs in an obvious way: a partial run G is called a partial inf- or fin-accepting
run iff each infinite sequence of consecutive edges through G (beginning
with the unique edge leaving the node v0) satisfies the corresponding accep-
tance condition.

A partial inf- (fin-)accepting run of A on w can be extended into a com-
plete inf- (fin-)accepting run of A on w provided that it is possible to “attach”
an inf- (fin-)accepting run of a subautomaton of A on a suffix of w to each
node of the partial run with no outgoing edges. This fact is formalized in the
following proposition; see also Fig. 2.5.

Proposition 2.3.10 Let G = 〈V,E, L〉 be a partial inf- (fin-)accepting run

of an alternating automaton A = 〈Σ, Q,∆, qI ,F〉 on w ∈ Σω. Let V̂i
def
={

v ∈ Vi E ∩ ({v} × 2Vi+1) = ∅
}

denote the set of nodes at level i with no

outgoing edges (0 ≤ i < ω), and assume that AL(v) has an inf- (fin-)accepting

run on wi for all 0 ≤ i < ω and v ∈ V̂i. Then, A inf- (fin-)accepts w.

22 2. DEFINITIONS AND BASIC RESULTS

PSfrag replacements

w(0) w(1) w(2) w(3) w(4) w(5)

q1

q1

q1
q2
q3

q2

q2

q3

q3

PSfrag replacements

w(0) w(1) w(2) w(3) w(4) w(5)

q1

q1

q2

q3

q2

q3

(a) (b)

Fig. 2.5: Extending a partial run of an automaton on an input w into a run of the
automaton using runs of the automaton’s subautomata. (a) A partial run of an au-
tomaton on w together with runs of its subautomata on suffixes of w; (b) The run
(black nodes and edges) obtained by joining the runs of the subautomata with the
partial run of the automaton)

Proof: For all 0 ≤ i < ω and all v ∈ V̂i, let Gv = 〈V v, Ev, Lv〉 (with
V v

0 = {vv0}) denote an inf- (fin-)accepting run of AL(v) on wi. Without loss
of generality, we may assume that V v ∩ V v′ = ∅ holds for any two nodes

v, v′ ∈
⋃

0≤i<ω V̂i, v 6= v′, and V v ∩ V = ∅ for all v ∈
⋃

0≤i<ω V̂i. Define the
graph G′ = 〈V ′, E ′, L′〉, where

• V ′ def
= V ∪

⋃
0≤i<ω

⋃
v∈V̂i

(V v \ {vv0}),

• E ′ def
= E ∪

⋃
0≤i<ω

⋃
v∈V̂i

(
(Ev \ {〈vv0 , V

v
1 〉}) ∪ {〈v, V v

1 〉}
)
, and

•

L′(v)
def
=

{
L(v) if v ∈ V

Lv
′
(v) if v ∈ V v′ \ {vv

′

0 } for some v′ ∈
⋃

0≤i<ω V̂i

L′(e)
def
=





L(e) if e ∈ E

Lv
′
(e) if e ∈ Ev′ \

{
〈vv

′

0 , V
v′

1 〉
}

, v′ ∈
⋃

0≤i<ω V̂i
Lv

′(
〈vv

′

0 , V
v′

1 〉
)

if e = 〈v′, V v′

1 〉 for some v′ ∈
⋃

0≤i<ω V̂i

We claim that G′ is an inf- (fin-)accepting run of A on w. First, V ′ can be

partitioned into finite disjoint levels by defining V ′
i

def
= Vi∪

⋃
0≤j<i

⋃
v∈V̂j

V v
i−j;

then also E ′ ⊆
⋃ω

i=0(V
′
i × 2V

′
i+1) holds.

Let v ∈ V ′. If v ∈ V , and v has an outgoing edge in V , then the fact that
G is a partial run (together with the definition ofG′) guarantees the existence
of a unique edge e ∈ E ⊆ E ′ such that this edge is labelled consistently with
a transition of A.

Otherwise, if v ∈ V has no outgoing edges, then v ∈ V̂i for some 0 ≤
i < ω. Because Gv is a run of AL(v) on wi, there exists a unique edge ev =
〈vv0 , V

v
1 〉 ∈ Ev labelled (in Gv) with a transition t =

〈
Lv(vv0),Γ, F, L

v(V v
1)

〉

∈ ∆ for some Γ ⊆ Σ and F ⊆ F such that wi(0) = w(i) ∈ Γ. Thus,
by the definition of G′, V v

1 ⊆ V ′ (because vv0 /∈ V v
1), and E ′ contains

the unique edge e = 〈v, V v
1 〉. Furthermore, because L′(v) = L(v) =

Lv(vv0) and L′(v′) = Lv(v′) for all v′ ∈ V v
1 , t =

〈
Lv(vv0),Γ, F, L

v(V v
1)

〉
=

2. DEFINITIONS AND BASIC RESULTS 23

〈
L′(v),Γ, F, L′(V v

1)
〉
, and because L′(e) = Lv

(
〈vv0 , V

v
1 〉

)
= Lv(ev) = t, the

labelling of e is consistent in G′.

Finally, if v ∈ V v′ \ {vv
′

0 } for some 0 ≤ i < ω and v′ ∈ V̂i, then, because

Gv′ is a run of AL(v′) on wi, there exists a unique edge ev = 〈v, Ṽ v〉 ∈ Ev

labelled (in Gv) with a transition t =
〈
Lv(v),Γ, F, Lv(Ṽ v)

〉
∈ ∆ for some

Γ ⊆ Σ and F ⊆ F such that wi(0) = w(i) ∈ Γ. Because vv
′

0 /∈ Ṽ v and

v 6= vv
′

0 , Ṽ v ⊆ V ′ and ev ∈ E ′ hold by the definition of G′, and ev is

still unique in G′. Since L′(v′) = Lv(v′) holds for all v′ ∈ {v} ∪ Ṽ v, it

follows that t =
〈
Lv(v),Γ, F, Lv(Ṽ v)

〉
=

〈
L′(v),Γ, F, Lv(Ṽ v)

〉
, and since

L′(ev) = Lv(ev) = t, the labelling L′ is consistent.
Let v′ ∈ V ′\V0. If v′ ∈ V , then, becauseG is a partial run, v′ is a successor

of some node v ∈ V ⊆ V ′ in G, and because E ⊆ E ′, the same still holds
in G′. If v′ ∈ V v \ {vv0} for some v ∈

⋃
0≤i<ω V̂i, then v′ ∈ V v

j for some
1 ≤ j < ω by the definition of G′. If j > 1, then v′ is a successor of some
node v′′ ∈ V v

j−1 ⊆ V ′ in Gv, and because
⋃

1≤i<ω(V
v
i × 2V

v
i+1) ⊆ E ′, the

same holds also in G′. Otherwise, v′ is a successor of a node v′′ ∈
⋃

0≤i<ω V̂i
by the definition of G′, and the third condition of a run is satisfied also in this
case. It follows that G′ is a run of A on w.

Let r ∈ E(G′) be an acceptance sequence of G′. If r is contained in G,
then r satisfies the inf- (fin-)acceptance condition by assumption. Otherwise
the sequence consists of finitely many (possibly none) consecutive edges in

G followed by an edge of the form e = 〈v, V v
1 〉 for some v ∈

⋃
0≤i<ω V̂i

and V v
1 ⊆ V v, which is then followed by an infinite sequence of consecutive

edges through Gv forming an infinite suffix of some acceptance sequence rv

of Gv. Since the number of edges in r preceding this suffix is finite, it follows
that inf(r) = inf(rv) and fin(r) = fin(rv), and since either inf(rv) = F or
fin(rv) = ∅ (depending on the acceptance mode), it follows that r satisfies
the same acceptance condition. We conclude that G′ is an accepting run of
A on w. �

Our last result in this section shows that the language inf- or fin-accepted
by an alternating automaton depends only on the subautomaton rooted at the
initial state of the automaton. In other words, given an alternating automa-
ton, we can always remove all its non-initial states that are not reachable from
its initial state (and the transitions having such states as their start state or in
their target states) without changing the language of the automaton.

Proposition 2.3.11 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton.
Then, for all w ∈ Σω, A inf- (fin)-accepts w iff AqI inf- (fin-)accepts w.

Proof: By the definition of AqI , the set of states (transitions) of AqI forms a
subset of the states (transitions) of A, and because A and AqI share the same
set of acceptance conditions, every inf- (fin-)accepting run of AqI on some
w ∈ Σω is also an inf- (fin-)accepting run of A on w.

Conversely, if G = 〈V,E, L〉 (with V0 = {v0}) is an inf- (fin-)accepting
run of A on w ∈ Σω, then, because each node v ∈ V is either v0 or a
descendant of v0 in G, L(v) is either qI or a descendant of qI in A by Propo-
sition 2.3.6. This implies also that no edge e ∈ E can be labelled with a
transition that has a state that is not reachable from qI as its start state or in

24 2. DEFINITIONS AND BASIC RESULTS

its target states. But then, by the definition of AqI , all labels of the nodes and
edges in G are (consistently labelled) states and transitions of AqI , and thus
G is an inf- (fin-)accepting run of AqI on w. �

Example 2.3.12 Consider again the alternating automaton depicted in
Fig. 2.1 (a) (page 14). If we choose q4 instead of q1 as the initial state of
this automaton, then, by Proposition 2.3.11, we know that the language of
the automaton is completely determined by the subautomaton Aq4 shown in
Fig. 2.1 (b), and thus the modified automaton and Aq4 (obtained from it by
removing the states q1, q2 and q3) accept the same language. �

2.3.2 Nondeterministic Automata

We say that the alternating automaton A = 〈Σ, Q,∆, qI ,F〉 is nondeter-
ministic if |Q′| = 1 holds for all transitions 〈q,Γ, F, Q′〉 ∈ ∆. Therefore,
if G = 〈V,E, L〉 is a run of a nondeterministic automaton, each level of G
consists of identically labelled nodes.

2.3.3 Linear Alternating Automata

In this work we concentrate on a restricted set of alternating automata known
as the class of linear or very weak alternating automata. These automata are
known to be closely related to linear temporal logic in that every language
definable as the set of models of an LTL formula is also a language recog-
nized by some linear alternating automaton and vice versa [47, 58]. Since
automata in general possess intuitively appealing “operational” characteris-
tics, translating linear temporal logic into finite automata provides a first step
towards effective procedures, for example, for checking the satisfiability of
LTL formulas. By concentrating on a subclass of automata that is equally
expressive to LTL, the characteristic properties of these automata may allow
us to make the checking procedure more efficient.

Linear alternating automata have previously appeared in the works of
Isli [37] and Rohde [58], both of whom referred to them as very weak al-
ternating automata (a subclass of weak alternating automata introduced by
Muller, Saoudi and Schupp [51]), and Löding and Thomas [47], who called
these automata linear alternating automata. We shall use the terminology of
Löding and Thomas in further discussion. Because our basic definitions of
automata and acceptance generalize traditional definitions by allowing the
automata to have multiple acceptance conditions associated with their tran-
sitions, we shall rephrase several basic results on linear alternating automata
in this and the following chapter using the generalized definitions to provide
explicit details of various automata constructions. These details are needed,
for example, for transforming the formal constructions into an actual imple-
mentation.

Formally, a linear alternating automaton A = 〈Σ, Q,∆, qI ,F〉 is an alter-
nating automaton for which there exists a mapping ρ : Q → N such that for
all transitions 〈q,Γ, F, Q′〉 ∈ ∆ for some q ∈ Q, Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q,
ρ(q′) < ρ(q) holds for all q′ ∈ Q′ \ {q}.

The existence of the function ρ corresponds to the following character-
istic structural property of linear alternating automata. (This result also es-

2. DEFINITIONS AND BASIC RESULTS 25

tablishes the equivalence of our definition with more traditional definitions
obtained as a special case of weak alternating automata [51].)

Proposition 2.3.13 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton.
Then, A is a linear alternating automaton iff all cycles in A are self-loops.

Proof: (“⇒”) Assume that A is a linear alternating automaton. Let ρ : Q →
N be a mapping satisfying the above criterion. Let x = (qi)0≤i≤n (1 ≤ n < ω)
be a cycle in A. Assume that the cycle is not a self-loop, i.e., n > 1. Since
qi+1 is a successor of qi for all 0 ≤ i < n and all states {q0, . . . , qn−1} are
distinct (and qn−1 6= qn = q0), it follows that

ρ(q0) > ρ(q1) > · · · > ρ(qn−1) > ρ(qn) = ρ(q0),

which is clearly a contradiction. Therefore n = 1, and x is a self-loop.
(“⇐”) Assume that all cycles in the automaton A are self-loops. Let Q0 ⊆

Q denote the set of states such that for all q ∈ Q0, q either has no successors,
or the only successor of q is q itself. We claim that for all q ∈ Q, either
q ∈ Q0, or q has a descendant q′ ∈ Q0. If this were not the case, there would
exist a state q ∈ Q\Q0 with no descendants inQ0. Therefore, the automaton
would contain an infinite path (qi)0≤i<ω with q0 = q and qi 6= qi+1 for all
0 ≤ i < ω. Since Q is finite, there would now exist two indices 0 ≤ n < ω
and n + 1 < m < ω such that qn+1 6= qn and qm = qn. However, the
automaton would then contain a cycle (qi)n≤i≤m that is not a self-loop, which
is a contradiction.

The above result shows that the mapping ρ : Q→ N,

ρ(q)
def
= max

{
|x| x is a simple path from q to a state q′ ∈ Q0

}

is well-defined on Q.
To show that this function satisfies the criterion required of a mapping as-

sociated with a linear alternating automaton, assume that q ∈ Q and
〈q,Γ, F, Q′〉 ∈ ∆ for some Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q. Assume also
that there exists a state q′ ∈ Q′ \ {q} with ρ(q′) ≥ ρ(q). Then there exists
a simple path of length ρ(q′) from q′ to a state q′′ ∈ Q0 in the automaton.
However, because q′ is a successor of q, there exists a simple path of length
ρ(q′) + 1 from q to q′′. But then ρ(q) cannot be the maximal length of a sim-
ple path from q to a state in Q0, which is a contradiction. Thus, ρ(q′) < ρ(q).

�

Example 2.3.14 Figure 2.6 shows a linear alternating automaton without
transition labels. The structure defined by the states and transitions of a linear
alternating automaton can be considered to have been built from a directed
acyclic graph by adding to it edges including their own start state in their
target states. �

Because all loops of linear alternating automata visit a single state of the
automaton, every infinite path through a run of a linear alternating automa-
ton will converge to a fixed state of the automaton after visiting some finite
number of other states of the automaton.

26 2. DEFINITIONS AND BASIC RESULTS

PSfrag replacements

q1

q2 q3 q4

q5 q6

q7 q8

Fig. 2.6: A linear alternating automaton

Proposition 2.3.15 Let G = 〈V,E, L〉 be a run of a linear alternating au-
tomaton A = 〈Σ, Q,∆, qI ,F〉. For each acceptance sequence (ei)0≤i<ω =(
〈vi, V

′
i 〉

)
0≤i<ω

∈ E(G), there exists an index 0 ≤ j < ω and a state q ∈ Q

such that for all j ≤ k < ω, L(vk) = q, and L(ek) is a self-loop transition of
A with start state q.

Proof: Let ρ : Q → N be a mapping satisfying the condition given in the
definition of a linear alternating automaton. By the definition of a run, L(ei)
is a transition of A having start state L(vi) and including L(vi+1) in its target
states for all i. It follows that

(
ρ
(
L(vi)

))
0≤i<ω

is a nonincreasing infinite

sequence of nonnegative integers, and thus there exists an index 0 ≤ j < ω
such that ρ

(
L(vk)

)
= ρ

(
L(vj)

)
for all j ≤ k < ω. But then also L(vk) =

L(vj) holds for all j ≤ k < ω, since L(vi+1) is a successor of L(vi) in A for
all 0 ≤ i < ω, and ρ(q′) is strictly less than ρ

(
L(vj)

)
for all successors q′ of

L(vj) other than L(vj) itself. Thus q = L(vj), and because L(vk+1) = q is
included in L(ek)’s target states for all j ≤ k < ω, it follows that L(ek) is a
self-loop of A with start state q for all j ≤ k < ω. �

A state q ∈ Q of a linear alternating automaton A = 〈Σ, Q,∆, qI ,F〉
is a transient state iff all self-loops from this state to itself share a common
acceptance condition, formally, if there exists an f ∈ F such that f ∈ F
holds for all 〈q,Γ, F, Q′〉 ∈ ∆ with q ∈ Q′. (This holds trivially if the state
has no self-loops.)

A corollary of Proposition 2.3.15 is that every infinite path of a fin-accept-
ing run of a linear alternating automaton will converge to a nontransient state
of the automaton.

Corollary 2.3.16 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automa-
ton, and let G = 〈V,E, L〉 be a run of A on w ∈ Σω. If G is a fin-accepting
run of A, then each acceptance sequence r = (ei)0≤i<ω =

(
〈vi, V

′
i 〉

)
0≤i<ω

∈

E(G) converges to a nontransient state of A.

Proof: By Proposition 2.3.15, there exists a state q ∈ Q and an index 0 ≤ j <
ω such that for all j ≤ k < ω, L(vk) = q, and L(ek) is a self-loop of A with
start state q. Because G is fin-accepting, fin(r) = ∅, and thus, for all f ∈ F
and j ≤ k < ω, there exists a k < k′ < ω such that the self-loop L(ek′) ∈ ∆

2. DEFINITIONS AND BASIC RESULTS 27

does not include f in its acceptance conditions. Because the same holds for
all acceptance conditions in F , it follows that q is a nontransient state of A.

�

Another corollary of Proposition 2.3.15 is that no acceptance condition
associated with a non-self-loop transition of a linear alternating automaton
affects the language recognized by the automaton. Thus, we can always re-
move all acceptance conditions from the non-self-loops of the automaton.

Corollary 2.3.17 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automa-
ton. Define the alternating automaton A′ = 〈Σ, Q,∆′, qI ,F〉, where ∆′ is
obtained from ∆ by making the set of acceptance conditions of all non-self-

loops of ∆ empty (i.e., ∆′ def
=

{
〈q,Γ, F, Q′〉 ∈ ∆ q ∈ Q, Γ ⊆ Σ, F ⊆ F ,

Q′ ⊆ Q, q ∈ Q′
}
∪

{
〈q,Γ, ∅, Q′〉 〈q,Γ, F, Q′〉 ∈ ∆ for some q ∈ Q, Γ ⊆ Σ,

F ⊆ F , Q′ ⊆ Q \ {q}
}

). Then, for all w ∈ Σω, A′ inf- (fin-)accepts w iff A
inf- (fin-)accepts w.

Proof: Let r = (ei)0≤i<ω ∈ E(G) be an acceptance sequence through a
run G of either of the automata. By Proposition 2.3.15, there exists an index
0 ≤ j < ω such that L(ei) is a self-loop of both automata for all j ≤ i <
ω, and thus r contains only finitely many non-self-loops. Therefore, none
of these transitions can contribute to the acceptance conditions occurring
infinitely often in the labels of the edges of r, i.e., inf(r) = inf

(
(ei)j≤i<ω

)

and fin(r) = fin
(
(ei)j≤i<ω

)
. The result now follows since the definitions of

A′ and A differ only in the acceptance conditions associated with non-self-
loop transitions. �

Example 2.3.18 Consider again the linear alternating automaton in Fig. 2.6.
By Corollary 2.3.17, we can remove all acceptance conditions from the non-
self-loop transitions of the automaton. This simplification results in the au-
tomaton shown in Fig. 2.7. Because both the original and the simplified
automaton have no self-loops starting from the states q3 or q4, these states are
trivially transient. Also the states q2 and q6 are transient, because all self-loops
starting from these states share a common acceptance condition. Thus, by
Corollary 2.3.16, every acceptance sequence in a fin-accepting run of either
automaton has to converge to one of the states q1, q5, q7 or q8. �

28 2. DEFINITIONS AND BASIC RESULTS

PSfrag replacements

q1

q2 q3 q4

q5 q6

q7 q8

Fig. 2.7: The linear alternating automaton of Fig. 2.6 after removing acceptance
conditions from its non-self-loop transitions

3 BASIC AUTOMATON TRANSLATION

The languages definable by linear temporal logic formulas are known to be
recognizable by nondeterministic automata on infinite words [75, 76], i.e.,
every linear temporal logic formula can be translated into a corresponding
nondeterministic automaton that accepts its models. This connection be-
tween LTL and automata theory has stimulated active research towards find-
ing an efficient procedure for translating LTL into automata [14, 15, 24, 28,
29, 30, 31, 32, 37, 43, 59, 60, 62, 68, 75, 78], along with techniques for min-
imization of the automata [20, 21, 22, 25, 34, 62].

A direct translation of an LTL formula ϕ into a nondeterministic automa-
ton may result in an automaton, the size of which is exponential in the
number of subformulas in the formula ϕ [19, 75, 76]. However, the addi-
tion of universal choice to the automata allows translations into alternating
automata with only a linear number of states in the size of the input for-
mula [24, 28, 37, 48, 58, 72]. While all of these translations are very similar
(basically, a linear translation corresponds to a rewriting procedure for LTL
formulas), they use slightly different strategies for dealing with negations in
the input formulas. Common approaches include working directly with the
closure of the input formula [37, 72] (which essentially consists of the subfor-
mulas of the formula and their negations), rewriting the formula in positive
normal form before translation [24, 28, 48], or using a complementation
procedure for alternating automata [58].

In this chapter we describe a translation from linear temporal logic to lin-
ear alternating automata working in fin-acceptance mode. Borrowing ideas
from known translation procedures [28, 58], we give a set of rules for translat-
ing the positive normal form of a formula ϕ ∈ LTL(AP) into an equivalent
linear alternating automaton Aϕ over the fixed alphabet 2AP in a bottom-
up manner by joining automata built recursively for subformulas of ϕ into
increasingly complex automata. Although formally only a matter of prefer-
ence, using fin-acceptance instead of inf-acceptance (a direct generalization
of the idea of using co-Büchi acceptance as suggested by Gastin and Odd-
oux [28]) gives a simple explanation for the introduction of new acceptance

3. BASIC AUTOMATON TRANSLATION 29

conditions during the translation. We show that the worst-case size of the re-
sulting automaton meets the best upper bound known for similar translations
presented in the literature and show the correctness of the translation.

3.1 REPRESENTING TRANSITION GUARDS

We first review the notation that is customarily used [21, 28] to simplify the
representation of transition guards of automata over the fixed alphabet 2AP .
With this alphabet, the transition guards will be elements of the set 22AP

,
i.e., families of sets of atomic propositions. Since there is a simple corre-
spondence between these families and Boolean formulas, it is convenient
to express the guards with these formulas. More specifically, for any fam-
ily Γ = {σ1, σ2, . . . , σn} ∈ 22AP

(0 ≤ n < ω), where σ ⊆ AP for all
1 ≤ i ≤ n, there exists a characteristic Boolean formula ψ, for example,

ψ
def

≡
∨n

i=1

(
(
∧
p∈σi

p) ∧ (
∧
p∈AP\σi

¬p)
)
, such that, given σ ⊆ AP , σ |= ψ iff

σ ∈ Γ; conversely, each Boolean formula θ is characteristic for the family of

its models Γθ
def
= {σ ⊆ AP | σ |= θ} ∈ 22AP

. Therefore, when considering
the runs of an alternating automaton, the requirement that σ ∈ Γ holds for
some σ ⊆ AP and some guard Γ ∈ 22AP

of some transition is equivalent
to the condition that σ |= θ holds for a characteristic Boolean formula θ of
Γ. This notation will be used in further discussion whenever dealing with
automata having the fixed alphabet 2AP .

3.2 TRANSLATION RULES

Let ϕ be an LTL formula in positive normal form. We construct from ϕ an
alternating automaton Aϕ by applying the following rules recursively to the
subformulas of ϕ. See Fig. 3.1 for illustration on the application of each rule.

Atomic Formulas
Let ϕ ∈ {>,⊥} or ϕ ∈ {p,¬p} for some atomic proposition p ∈ AP . The

automaton for ϕ is defined as Aϕ = 〈Σ, Q,∆, qI ,F〉, where Q
def
= {qI},

∆
def
=

{
〈qI , ϕ, ∅, ∅〉

}
, and F

def
= ∅.

Next Time
Let ϕ = Xϕ1. Given the definition of the automaton Aϕ1 = 〈Σ, Q1,∆1,
qI1,F1〉 for the subformula ϕ1, the automaton Aϕ = 〈Σ, Q,∆, qI ,F〉 for ϕ
has the components

• Q
def
= Q1 ∪ {qI} (where qI is a state not included in Q1);

• F
def
= F1; and

• ∆
def
= ∆1 ∪

{
〈qI,>, ∅, {qI1}〉

}
.

Binary Connectives
Let ϕ = (ϕ1 ◦ ϕ2) for some binary connective ◦ ∈ {∨,∧,Us,Uw,Rs,Rw}.
Let Aϕ1 = 〈Σ, Q1,∆1, qI1,F1〉 and Aϕ2 = 〈Σ, Q2,∆2, qI2,F2〉 be already

30 3. BASIC AUTOMATON TRANSLATION

PSfrag replacements

θ1

A1

θ2

θ3

A2

qI

qI1

qI2

ϕ

(a)

PSfrag replacements

θ1

A1

θ2

θ3

A2

qI

qI1 qI2

(b)

PSfrag replacements

θ1

A1

θ2

θ3

A2 qI

qI1

qI2

>

X

(c)

PSfrag replacements

θ1

θ1

A1
θ2

θ2

θ3

A2

qI

qI1 qI2

θ3

∨

(d)

PSfrag replacements

θ1

A1

θ2

θ3

A2

qI

qI1 qI2

(θ1∧θ3)

(θ1∧θ2)

∧

(e)

PSfrag replacements

θ1

θ1

A1
θ2

θ2

θ3

A2

qI

qI1 qI2

θ3

Us

(f)

PSfrag replacements

θ1

θ1

A1
θ2

θ2

θ3

A2

qI

qI1 qI2

θ3

Uw

(g)

PSfrag replacements

θ1

A1

θ2

θ2

θ3

A2

qI

qI1 qI2

(θ1∧θ2)

(θ1∧θ3)

θ3

Rs

(h)

PSfrag replacements

θ1

A1

θ2

θ2

θ3

A2

qI

qI1 qI2

(θ1∧θ2)

(θ1∧θ3)

θ3

Rw

(i)

Fig. 3.1: Automata built using translation rules. (a) Automaton built from an atomic
formula ϕ; (b) Two component automata A1 and A2; (c) Automaton built from
A1 with the Next Time rule; (d)–(i) Automata built from A1 and A2 using the
translation rules given for the ∨, ∧, Us, Uw, Rs and Rw connectives, respectively

3. BASIC AUTOMATON TRANSLATION 31

defined for the top-level subformulas ϕ1 and ϕ2 of ϕ, respectively, such that
Aq
ϕ1

= Aq
ϕ2

holds for all q ∈ Q1 ∩Q2 (i.e., if the two automata share a state,
then the automata also share all states and transitions reachable from this
state). The automaton Aϕ = 〈Σ, Q,∆, qI ,F〉 for the formula ϕ is built by
defining

• Q
def
= Q1 ∪Q2 ∪ {qI}, where qI is a new state not included in Q1 ∪Q2;

• F
def
= F1 ∪ F2 ∪ F◦; and

• ∆
def
= ∆1 ∪ ∆2 ∪ ∆◦,

where the definitions of F◦ and ∆◦ for each binary connective are given in
Table 3.1.

Simple Observations

Correspondence Between Subformulas of ϕ and States of Aϕ The con-
struction of an automaton Aϕ for the given LTL formula ϕ is guided by the
structure of ϕ, which completely determines the set of rules that need be
applied for translating the formula into an automaton. Even though the par-
ticular application order of the rules may remain partially unspecified (i.e.,
automata for any pair of subformulas of ϕ that do not share any subformulas
can be constructed in either order), automata built for two identical sub-
formulas of ϕ are nevertheless easily seen to be isomorphic. It is therefore
possible to reuse the structure of the automata constructed during the trans-
lation by directing the transitions added in the application of a translation
rule to previously added states whenever possible. It follows that the number
of rule applications required equals the number of (syntactically) different
subformulas of ϕ. This immediately proves the eventual termination of the
formula translation due to the finiteness of Sub(ϕ), and, because each step
of the translation adds exactly one new state to the result, there is a bijective
correspondence between Sub(ϕ) and the state set of the final automaton.

Interpretation of the Translation Rules The correspondence between
Sub(ϕ) and the states of the automaton Aϕ gives a simple interpretation of
each translation rule. Intuitively, the translation rules describe how to join
the automata built for the top-level subformulas of a given LTL formula ϕ
into an automaton that encodes in its structure “instructions” on how to run
its components to recognize the language L(ϕ) (the proof that this is indeed
the case follows in Sect. 3.4). Thus, for example, the translation rule for con-
structing an automaton A(ϕ1∧ϕ2) for the language L

(
(ϕ1 ∧ ϕ2)

)
interprets to

first building the automata Aϕ1 and Aϕ2 for the languages L(ϕ1) and L(ϕ2)
and then creating an automaton that effectively runs Aϕ1 and Aϕ2 in parallel
on any given input. The translation rule makes the first admissible transition
in any run of A(ϕ1∧ϕ2) mimic a pair of initial transitions taken synchronously
by each of the component automata. As a result, the initial transition in any
run of A(ϕ1∧ϕ2) corresponds to spawning both Aϕ1 and Aϕ2 on the same in-
put. Since this initial transition already synchronizes by itself with the first
symbol of the input, the target states of the transition need be adjusted so that
the state of the automaton after the transition matches the collective state

32 3. BASIC AUTOMATON TRANSLATION

Table 3.1: Definitions of F◦ and ∆◦ for the binary connectives (θ1, θ2 conjunctions
of atomic formulas over AP , F1 ⊆ F1, F2 ⊆ F2, Q′

1 ⊆ Q1, Q′
2 ⊆ Q2, and f is

a new acceptance condition not yet used in the application of another translation
rule)

◦ F◦ ∆◦

{
〈qI , θ1, ∅, Q

′
1〉 〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∨ ∅
∪

{〈
qI , θ2, ∅, Q

′
2

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∧ ∅

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}

{〈
qI , θ1, {f}, Q

′
1 ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

Us {f}
∪

{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

{〈
qI , θ1, ∅, Q

′
1 ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

Uw ∅
∪

{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

{〈
qI , θ2, {f}, Q

′
2 ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

Rs {f}
∪

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}

{〈
qI , θ2, ∅, Q

′
2 ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

Rw ∅
∪

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}

3. BASIC AUTOMATON TRANSLATION 33

reached by Aϕ1 and Aϕ2 after a synchronous pair of initial transitions. This is
the reason for not including the initial states of the component automata in
the target states of the initial transitions of A(ϕ1∧ϕ2) unless the transitions are
self-loops, which are thus unrolled in the application of the translation rule.

A corresponding adjustment of target states needs to be applied to the ini-
tial transitions of an automaton constructed for any other connective, except
for the Next Time operator X; namely, the purpose of the Next Time trans-
lation rule is to modify an automaton built for an LTL formula ϕ into an
automaton that effectively postpones the checking of ϕ by one initial step.

For the binary temporal connectives Us and Uw, the definition of ∆◦ in
the translation rules is a direct automata-based encoding of the well-known
LTL identity

(ϕ1 Uϕ2) ≡
(
ϕ2 ∨

(
ϕ1 ∧ X(ϕ1 Uϕ2)

))

where U is an Until connective of the same strength on both sides of the iden-
tity. Thus, for example, to construct an automaton for the formula (ϕ1 Us ϕ2),
first build automata for the top-level subformulas and then join them into an
automaton that verifies that either ϕ2 holds for the infinite suffix of the in-
put beginning at the current input position, or that ϕ1 holds for this suffix
and (ϕ1 Us ϕ2) still holds for the infinite suffix beginning at the next input
position. In the latter case, the automaton spawns two independent copies of
itself, one of which checks whether the infinite suffix beginning at the current
input position belongs to L(ϕ1), while the other proceeds to check whether
(ϕ1 Us ϕ2) still holds from the next input position onward.

The rules for the Release connectives can be derived from the rules intro-
duced for the ∧ and Until connectives via the identities

(ϕ1 Rs ϕ2) ≡
(
ϕ2 Us (ϕ1 ∧ ϕ2)

)
and (ϕ1 Rw ϕ2) ≡

(
ϕ2 Uw (ϕ1 ∧ ϕ2)

)
.

Formally, the combination of the rules introduced for the ∧ and the Until
connectives results in an automaton with a state that is unreachable from
the initial state of the automaton, namely, the initial state of the automaton
constructed for the formula (ϕ1 ∧ ϕ2). However, this state can be discarded
by Proposition 2.3.11 without any change in the language of the automaton.
This simplification then gives the rules shown in Table 3.1.

Linearity Building an automaton for a compound formula ϕ from one or
two component automata constructed for the top-level subformula(s) of ϕ is
done by taking a new initial state for the automaton and then adding transi-
tions from this state to itself and the states of the component automata as in-
structed by the translation rules. Since none of the rules manipulate the tran-
sition relation of any component automaton, this implies—by induction—
that every state q of the automaton Aϕ = 〈Σ, Q,∆, qI ,F〉 constructed for an
LTL formula ϕ will always remain unreachable from all of its descendants
except possibly q itself. Thus, all loops in the transition structure of the final
automaton will be self-loops, which arise in the application of the transla-
tion rules to subformulas of ϕ with a binary temporal main connective. By
these observations and Proposition 2.3.13, it follows that the automaton con-
structed by the translation rules is a linear alternating automaton.

34 3. BASIC AUTOMATON TRANSLATION

Structure of Transition Guards The guard of the only transition in an au-
tomaton built for any atomic formula is simply the formula itself, encoding
the subsets of AP that satisfy it: for >, all subsets of AP ; for ⊥, no subsets of
AP ; for literals, all subsets of AP that (do not) include the (negated) proposi-
tion forming the literal. The guards of the initial transitions of any compound
automaton are either > (the Next Time operator), or they are built from the
guards of the initial transitions of the component automata. By the transla-
tion rules, each new transition either inherits its guard directly from another
transition, or the guard is built as the conjunction of two previously defined
guards. By induction, it follows that all guards in the final automaton will be
finite conjunctions of one or more atomic formulas, corresponding to finite
intersections of one or more subsets of AP by the semantics of ∧. This very
restricted form allows for efficient checking of propositional implications be-
tween the guards, which is needed when simplifying the automaton. This
will be discussed in the next chapter.

Acceptance Conditions New acceptance conditions are introduced to the
constructed automaton whenever applying one of the translation rules to a
subformula having either of the strong binary temporal operators (Us or Rs)
as its main connective. Thus, the number of acceptance conditions in the
final automaton equals the number of syntactically distinct strong eventuality
subformulas of the given formula. Intuitively, since the conditions are inter-
preted as fin-acceptance conditions, they will prevent the automaton from
remaining in a state corresponding to an unsatisfied strong temporal eventu-
ality indefinitely along any path through a fin-accepting run of the automa-
ton. Therefore, the acceptance of an input requires the eventual satisfaction
of each strong temporal eventuality along the input as required by the seman-
tics of the strong temporal operators. This intuition will be made formal in
the correctness proof of Sect. 3.4.

As seen from the translation rules, the transitions added to the automaton
at each step never inherit any acceptance conditions from previously defined
transitions. Since each translation rule adds at most one acceptance condi-
tion to the automaton, it follows that the set of acceptance conditions of each
transition of the final automaton will be either an empty or a singleton set.
Since all transitions with a nonempty set of acceptance conditions are self-
loops of the automaton, the final automaton is easily seen to be constructed
simplified in the sense of Corollary 2.3.17. Additionally, it is easy to see from
the translation rules that all transitions of the final automaton having a partic-
ular acceptance condition in their set of acceptance conditions always have
the same start state.1

1Actually, this fact can be used (together with Proposition 2.3.15) to show that it is not
necessary to associate a unique acceptance condition with each strong temporal eventual-
ity, i.e., all eventualities could share the same acceptance condition as in the translation of
Gastin and Oddoux [28]. We shall not do this here, however, since the correctness of some
of the simplification heuristics to be presented in the next chapter relies on the strict corre-
spondence between the acceptance conditions and the different temporal eventualities.

3. BASIC AUTOMATON TRANSLATION 35

3.3 SIZE OF THE AUTOMATON AqI
ϕ

As noted above, the automaton translation for an LTL formula ϕ requires
|Sub(ϕ)| applications of a translation rule. Since each rule application adds
one new state to the result, the translation ends with an automaton having
exactly |Sub(ϕ)| states, which also gives a simple upper bound for the size of
an automaton corresponding to the formula ϕ.

By Proposition 2.3.11, the language of an alternating automaton does not
depend on those non-initial states of the automaton that are not reachable
from the initial state of the automaton. However, this fact is not taken into
account in the above upper bound given for the size of an automaton Aϕ

built for a given LTL formula, since the bound is only indirectly obtained
from the number of steps required for the translation. By Proposition 2.3.11,
a tighter bound can be given by considering the size of the subautomaton AqI

ϕ

obtained from Aϕ by restricting Aϕ to the set of states including qI and the
states actually reachable from qI . For this purpose, we examine the transla-
tion rules to find the exact conditions under which a state introduced during
the translation will still be reachable from the initial state of the final automa-
ton.

Each translation rule for building a compound automaton either adds a
transition to an initial state of a component automaton (the Next Time rule),
or it uses the initial transitions of the component automata as a basis for the
transitions leaving the initial state of the compound automaton (rules for the
binary connectives). It is clear from the translation rules that all target states
of each initial transition of a component automaton will be included as tar-
get states of some transition of the compound automaton. Additionally, since
none of the rules ever changes—or even refers to—the non-initial transitions
of any component automaton, it follows that a state reachable from the ini-
tial state of a component automaton will remain reachable from the initial
state of any automaton obtained from it by any number of translation rules.
By examining the translation rules, we find that the initial state qI of some
component automaton will still be reachable from the initial state of the final
automaton at least if it satisfies one of the following conditions:

• qI is the initial state of the final automaton built for the LTL formula
ϕ. Clearly, because qI is the last state to be added into the automaton,
the final automaton is never used as a component automaton in any
translation rule.

• qI has a self-loop transition to itself, which occurs (by the definition
of the translation rules) iff qI is the initial state of an automaton corre-
sponding to a binary pure temporal subformula (i.e., a subformula with
either Us, Uw, Rs or Rw as its main connective).

• qI is the initial state of an automaton corresponding to a subformula ϕ1,
and Xϕ1 ∈ Sub(ϕ). (Since Xϕ1 ∈ Sub(ϕ), the Next Time rule will
eventually have to be applied to the automaton Aϕ1 ; the application of
the rule then results in an automaton with an initial transition to qI .)

We show that the three above conditions actually describe the exact set of
states reachable from the initial state of the final automaton. Assume that qI

36 3. BASIC AUTOMATON TRANSLATION

is the initial state of an automaton (corresponding to a formula ϕ1 ∈ Sub(ϕ))
such that qI satisfies none of the above conditions. Then, ϕ has at least
one subformula with ϕ1 as a top-level subformula. Because Xϕ1 /∈ Sub(ϕ),
all such subformulas are binary subformulas of ϕ. Let ϕ′ be any of these
formulas. When a translation rule is applied to construct the automaton Aϕ′ ,
the state qI will not be connected to the initial state of Aϕ′ , because qI has
no self-loop transitions. Because Xϕ1 /∈ Sub(ϕ), it follows that qI cannot be
connected to the initial state of another automaton constructed later in the
procedure, and thus qI will remain unreachable from the initial state of the
final automaton. We have thus proved the following result:

Proposition 3.3.1 Let Aϕ be the alternating automaton built for the LTL
formula ϕ using the translation rules. Then,

|AqI
ϕ | =

{ϕ}
∪

{
(ϕ1 ◦ ϕ2) ∈ Sub(ϕ) ◦ ∈ {Us,Uw,Rs,Rw}

}

∪
{
ϕ1 ∈ Sub(ϕ) Xϕ1 ∈ Sub(ϕ)

}

This result leads to the following upper bound for the size of an alternat-
ing automaton constructed from any LTL formula (that is not necessarily
in positive normal form). The upper bound is essentially the same as the
one implicitly given by Gastin and Oddoux in their paper [28], and it is also
closely related to a known upper bound for translating LTL directly into non-
deterministic automata [14].

Corollary 3.3.2 Let ϕ ∈ LTL(AP) be any LTL formula built from the ele-
ments of AP , the Boolean constants > and ⊥, and the connectives {¬,∨,∧,
X,Us,Uw,Rs,Rw}. The language of the formula ϕ can be recognized by an
alternating automaton with at most 1 + |Temp(ϕ)| states. (If ϕ is a binary
pure temporal formula, the upper bound reduces to |Temp(ϕ)|.)

Proof: As noted in Sect. 2.2.3, the positive normal form ϕ′ of ϕ has at most as
many pure temporal subformulas as ϕ, i.e., |Temp(ϕ′)| ≤ |Temp(ϕ)|. By ap-
plying the translation to ϕ′, the result follows directly from Proposition 3.3.1
by observing that

{
(ϕ1 ◦ ϕ2) ∈ Sub(ϕ′) ◦ ∈ {Us,Uw,Rs,Rw}

}

∪
{
ϕ1 ∈ Sub(ϕ′) Xϕ1 ∈ Sub(ϕ′)

} ≤ |Temp(ϕ′)|.

�

3.4 CORRECTNESS OF THE TRANSLATION

In this section we show the correctness of the translation. We start by proving
two lemmas needed in the correctness proof. The first of these establishes
a basic correspondence between a single step of operation of an alternating
automaton and inf- (fin-)acceptance: the automaton accepts its input only
if its first transition spawns copies of the automaton, all of which accept the

3. BASIC AUTOMATON TRANSLATION 37

remainder of the input following the symbol consumed by taking the tran-
sition. Actually, this result has also a converse: the automaton can always
be made to accept its input if it has such an initial transition synchronizable
with the first symbol of the input.

Lemma 3.4.1 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton, and
let w ∈ Σω. Then, A inf- (fin-)accepts w iff there exists a transition
〈qI ,Γ, F, Q

′〉 ∈ ∆ for some Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q such that w(0) ∈ Γ
and for all q ∈ Q′, the subautomaton Aq inf- (fin-)accepts w1.

Proof: (“⇒”) Assume that A inf- (fin-)accepts w. Then A has an inf-
(fin-)accepting run G = 〈V,E, L〉 on w. Thus there exists a state v0 ∈ V0

labelled with the initial state of A and an edge e = 〈v0, V1〉 ∈ E labelled
with a transition t = 〈qI ,Γ, F, Q

′〉 ∈ ∆ for some Γ ⊆ Σ and F ⊆ F such
that w(0) ∈ Γ and Q′ = L(V1). By Proposition 2.3.8, we can extract from
G a run of the subautomaton Aq on w1 for all q ∈ Q′, and because G is
inf- (fin-)accepting, each of these runs is also inf- (fin-)accepting by Proposi-
tion 2.3.9.

(“⇐”) Assume that there exists a transition t = 〈qI,Γ, F, Q
′〉 ∈ ∆ for

some Γ ⊆ Σ, F ⊆ F and Q′ = {q1, . . . , qn} ⊆ Q (0 ≤ n < ω) such that
w(0) ∈ Γ, and the subautomaton Aqi has an inf- (fin-)accepting run on w1

for all 1 ≤ i ≤ n. Define the graph G = 〈V,E, L〉, where

• V
def
= {vI , v1, . . . , vn}, where vI 6= vi for all 1 ≤ i ≤ n (and vi 6= vj for

all 1 ≤ i, j ≤ n, i 6= j),

• E
def
=

{
〈vI , {v1, . . . , vn}〉

}
, and

• L(vI)
def
= qI , L(vi)

def
= qi for 1 ≤ i ≤ n, and L

(
〈vI , {v1, . . . , vn}〉

)
def
= t.

It is easy to see from the definitions that G is a partial run of A on w:
obviously, V consists of finite disjoint levels V0 = {vI}, V1 = {v1, . . . , vn},
Vi = ∅ for all 2 ≤ i < ω, the labelling of the only edge in G is consistent,
and each node v ∈ V \ {vI} is a successor of vI . Since there exist no infinite
sequences of consecutive edges through G, G is trivially inf- (fin-)accepting.
Because L(v) ∈ {q1, . . . , qn} holds for all nodes v ∈ V with no outgoing
edges (i.e., for all v ∈ V1) and Aqi has an inf- (fin-)accepting run on w1 for
all 1 ≤ i ≤ n by the assumption, we can apply Proposition 2.3.10 to extend
G into an inf- (fin-)accepting run of A on w. �

The following lemma characterizes fin-acceptance in a linear alternating
automaton built using the translation rules for an LTL formula having Us or
Uw as its main connective and establishes a direct correspondence between
the semantics of LTL and the behavior of these automata.

Lemma 3.4.2 Let ϕ = (ϕ1 ◦ ϕ2) ∈ LTL(AP) (◦ ∈ {Us,Uw}), and let A =
〈2AP , Q,∆, qI ,F〉, A1 = 〈2AP , Q1,∆1, qI1,F1〉 and A2 = 〈2AP , Q2,∆2,
qI2,F2〉 be the linear alternating automata constructed using the translation

38 3. BASIC AUTOMATON TRANSLATION

rules for ϕ, ϕ1 and ϕ2, respectively. Then, for all w ∈ (2AP)ω,

A fin-accepts w iff there exists an index 0 ≤ i < ω such that A2

fin-accept(s) wi, and for all 0 ≤ j < i, A1 fin-
accepts wj

or
◦ = Uw and A1 fin-accepts wi for all 0 ≤ i < ω.

Proof: (“⇒”) Assume that A fin-accepts w ∈ (2AP)ω. Then, A has a fin-
accepting run G = 〈V,E, L〉 on w. By Proposition 2.3.7, there exists an
index 0 ≤ i ≤ ω and a sequence of consecutive edges (ej)0≤j<i+1, ej =
〈vj, V

′
j 〉 ∈ E ∩ (Vj × 2Vj+1), such that L(ej) is an initial self-loop of A for all

0 ≤ j < i, and if i < ω, then L(ei) is an initial transition of A that is not a
self-loop.

Because L(ej) is an initial self-loop of A for all 0 ≤ j < i, it follows from
the translation rules that for each such self-loop there exists a corresponding
initial transition of A1 for all 0 ≤ j < i. Furthermore, if i < ω (L(ei) is not
a self-loop), the transition L(ei) corresponds to some initial transition of A2.
Let 0 ≤ j < i + 1, and let L(ej) = L

(
〈vj, V

′
j 〉

)
= t = 〈qI , θ, F,Q

′〉 ∈ ∆ for
some θ ∈ PL(AP), F ⊆ F and Q′ ⊆ Q. Because G is a run, w(j) |= θ and
Q′ = L(V ′

j). We consider the above two cases separately.

• If t is a self-loop of A, there exists a transition 〈qI1, θ, F1, Q
′
1〉 ∈ ∆1 for

some F1 ⊆ F1 and Q′
1 ⊆ Q1 such that Q′ = Q′

1 ∪ {qI}.

Because G is a fin-accepting run of A, each subautomaton AL(v′) has a
fin-accepting run on wj+1 = (wj)1 for all v′ ∈ V ′

j by Proposition 2.3.9,

and because Q′
1 ⊆ Q′ = L(V ′

j), it follows that Aq′ = Aq′

1 has a fin-
accepting run on wj+1 for all q′ ∈ Q′

1. Moreover, because w(j) =
(wj)(0) |= θ, Lemma 3.4.1 shows that A1 has a fin-accepting run on
wj.

• If t is not a self-loop of A, then t corresponds to an initial transition
〈qI2, θ, F2, Q

′〉 ∈ ∆2 for some F2 ⊆ F2, and thus Q′ ⊆ Q2. Similar to

the self-loop case, the subautomaton AL(v′), which equals A
L(v′)
2 , fin-

accepts wj+1 for all v′ ∈ V ′
j by Proposition 2.3.9. Because Q′ = L(V ′

j)
and w(j) |= θ, Lemma 3.4.1 shows that A2 fin-accept(s) wj.

Thus, because L(ej) is a self-loop of A for all 0 ≤ j < i, it follows that
A1 fin-accepts wj for all 0 ≤ j < i, and furthermore, if i < ω, then A2

fin-accepts wi by the above discussion. It remains to show that the case i = ω
is impossible if ◦ = Us. For if this were the case, then r = (ej)0≤j<i would be
an infinite sequence of consecutive edges of G labelled with initial self-loops
of A, and thus r would be an acceptance sequence through G. However,
because all initial self-loops of A share a common acceptance condition if
◦ = Us, fin(r) would be nonempty, which would contradict the assumption
that G is a fin-accepting run of A on w. Therefore, if ◦ = Us, then i < ω,
and the result follows.

(“⇐”) Assume that there either exists an index 0 ≤ i < ω such that A2

fin-accept(s) wi and for all 0 ≤ j < i, A1 fin-accepts wj, or that ◦ = Uw, and

3. BASIC AUTOMATON TRANSLATION 39

PSfrag replacements

w(0) w(1) w(2) w(3) w(4) w(5)

w(6)

v0

v0,1

v0,2

v1

v1,1

v2

v2,1

v3

v3,1

v3,2

v4 v5 v5,1

v5,2

(a)

PSfrag replacements

w(0) w(1) w(2) w(3) w(4) w(5)

w(6)

qI

q0,1

q0,2

qI

q1,1

qI

q2,1

qI

q3,1

q3,2

qI qI q5,1

q5,2

θ0

θ1 θ2 θ3 θ4 θ5

(b)

Fig. 3.2: Construction of a partial run in Lemma 3.4.2 (◦ = Us, i = 5). (a) Node
and edge structure; (b) Labelling of nodes and edges

A1 fin-accepts wi for all 0 ≤ i < ω. That is, assume that there exists an index
0 ≤ i ≤ ω such that A1 fin-accepts wj for all 0 ≤ j < i, and if i < ω, then
A2 fin-accept(s) wi.

By Lemma 3.4.1, A1 has an initial transition t1,j = 〈qI1, θ1,j , F1,j, Q1,j〉 ∈
∆1 for some θ1,j ∈ PL(AP), F1,j ⊆ F1 and Q1,j ⊆ Q1 for all 0 ≤ j < i

such that w(j) |= θ1,j , and Aq′

1 fin-accepts wj+1 for all q′ ∈ Q1,j. Addi-
tionally, if i < ω, an analogous result holds for an initial transition t2,i =
〈qI2, θ2,i, F2,i, Q2,i〉 ∈ ∆2 of A2.

By the definition of A, there now exists a transition tj = 〈qI , θj, Fj, Qj〉 ∈
∆, where θj = θ1,j , Fj = {f} for some new acceptance condition f (◦ = Us)
or Fj = ∅ (◦ = Uw), and Qj = Q1,j ∪ {qI} for all 0 ≤ j < i. Furthermore,
if i < ω, then there exists also a transition ti = 〈qI , θi, ∅, Qi〉 ∈ ∆, where
θi = θ2,i and Qi = Q2,i. It is easy to see that w(j) |= θj and Aq′ fin-accepts
wj+1 for all q′ ∈ Qj \ {qI} and 0 ≤ j < i+ 1.

Because Qj is finite, we write Qj \ {qI} = {qj,1, qj,2, . . . , qj,nj
} ⊆ Q for

all 0 ≤ j < i + 1 (0 ≤ nj < ω, qj,k 6= qj,l for all 1 ≤ k, l ≤ nj , k 6= l).
Define the graph G = 〈V,E, L〉, where

• V0
def
= {v0}, Vj+1

def
= {vj+1, vj,1, . . . , vj,nj

} for all 0 ≤ j < i, and if

i < ω, let Vi+1
def
= {vi,1, . . . , vi,ni

} and Vj
def
= ∅ for all i + 1 < j < ω;

• E
def
=

⋃
0≤j<i+1

{
〈vj, Vj+1〉

}
;

• For all 0 ≤ j < i+1, let L(vj)
def
= qI , L(vj,k)

def
= qj,k for all 1 ≤ k ≤ nj ,

and L
(
〈vj, Vj+1〉

)
def
= tj .

Figure 3.2 shows a possible structure for G with ◦ = Us and i = 5.
With these definitions, G is a partial run of A on w:

• V0 = {v0}, L(v0) = qI , and V is partitioned into finite disjoint levels
(with edges only between successive levels) by construction.

• Let v ∈ Vj for some 0 ≤ j < ω. Then v either has no outgoing
edges, or v = vj . By the definition of E, vj has the unique outgoing
edge e = 〈vj, Vj+1〉 ∈ E. Because L(e) = tj = 〈qI , θj, Fj, Qj〉 =〈
L(vj), θj, Fj, L(Vj+1)

〉
and w(j) |= θj , the edge labelling is consis-

tent.

• Let v ∈ Vj for some 1 ≤ j < ω. Then v is clearly a successor of the
node vj−1 ∈ Vj−1, and the third condition of a partial run is satisfied.

40 3. BASIC AUTOMATON TRANSLATION

It follows that G is a partial run of A on w. If i < ω, then the edge set
E is finite. Therefore E(G) = ∅, and G is trivially fin-accepting. Otherwise
G contains a unique infinite sequence of consecutive edges, all of which are
labelled with initial self-loops of A. Because i = ω can hold only if ◦ = Uw,
the set of acceptance conditions of each initial self-loop of A is empty. It
follows that the edge sequence satisfies the fin-acceptance condition also in
this case, and thus G is a partial fin-accepting run of A on w.

Let v ∈ Vj be a node at level j of G for some 0 ≤ j < ω with no outgoing
edges in G. Then j ≥ 1, and v = vj−1,k for some 1 ≤ k ≤ nj−1. Because

L(vj−1,k) ∈ Qj−1\{qI} and Aq′ (= Aq′

1 or Aq′

2) has a fin-accepting run on wj

for all q′ ∈ Qj−1 \{qI}, it follows that G can be extended into a fin-accepting
run of A on w by Proposition 2.3.10, and thus A fin-accepts w. �

Using the above lemmas, we can give a simple inductive proof of the
correctness of the translation.

Theorem 3.4.3 Let ϕ be an LTL formula, and let Aϕ be the automaton
constructed from ϕ using the translation rules. Then, for all w ∈ (2AP)ω, Aϕ

fin-accepts w iff w |= ϕ.

Proof: We proceed by induction on the size of the formula ϕ. If |ϕ| = 1,
it follows directly from the definition of Aϕ and Lemma 3.4.1 that A has a
fin-accepting run on w iff w(0) |= ϕ, which is equivalent to w |= ϕ, because
ϕ is a Boolean formula in this case.

Assume that the result holds for all LTL formulas of size less than or equal
to some fixed 1 ≤ k < ω, and let ϕ be a compound LTL formula of size
|ϕ| = k+1. We split the proof in separate cases based on the main connective
of ϕ:

ϕ = Xϕ1:
Aϕ fin-accepts w

iff there exists a transition 〈qI , θ, F,Q
′〉 ∈ ∆ such that w(0) |= θ

and for all q ∈ Q′, Aq
ϕ fin-accepts w1 (Lemma 3.4.1)

iff w(0) |= > and Aϕ1 fin-accepts w1 (definition of Aϕ)

iff w(0) |= > and w1 |= ϕ1 (induction hypothesis)

iff w |= Xϕ1 (semantics of LTL)

ϕ = (ϕ1 ∨ ϕ2):
Aϕ fin-accepts w

iff there exists a transition 〈qI , θ, F,Q
′〉 ∈ ∆ such that w(0) |= θ

and for all q ∈ Q′, Aq
ϕ fin-accepts w1 (Lemma 3.4.1)

iff there exists a transition 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1 such that

w(0) |= θ1 and for all q ∈ Q′
1, Aq

ϕ (= Aq
ϕ1

) fin-accepts w1

or
there exists a transition 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2 such that

w(0) |= θ2 and for all q ∈ Q′
2, Aq

ϕ (= Aq
ϕ2

) fin-accepts w1

(definition of Aϕ)

3. BASIC AUTOMATON TRANSLATION 41

iff Aϕ1 fin-accepts w or Aϕ2 fin-accepts w (Lemma 3.4.1)

iff w |= ϕ1 or w |= ϕ2 (induction hypothesis)

iff w |= (ϕ1 ∨ ϕ2) (semantics of LTL)

ϕ = (ϕ1 ∧ ϕ2):
Aϕ fin-accepts w

iff there exists a transition 〈qI , θ, F,Q
′〉 ∈ ∆ such that w(0) |= θ

and for all q ∈ Q′, Aq
ϕ fin-accepts w1 (Lemma 3.4.1)

iff there exist transitions 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1 and 〈qI2, θ2,

F2, Q
′
2〉 ∈ ∆2 such that w(0) |= (θ1 ∧ θ2) and for all

q ∈ Q′
1 ∪Q

′
2, Aq

ϕ fin-accepts w1 (definition of Aϕ)

iff there exists a transition 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1 such that

w(0) |= θ1 and for all q ∈ Q′
1, Aq

ϕ (= Aq
ϕ1

) fin-accepts w1

and
there exists a transition 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2 such that

w(0) |= θ2 and for all q ∈ Q′
2, Aq

ϕ (= Aq
ϕ2

) fin-accepts w1

iff Aϕ1 fin-accepts w and Aϕ2 fin-accepts w (Lemma 3.4.1)

iff w |= ϕ1 and w |= ϕ2 (induction hypothesis)

iff w |= (ϕ1 ∧ ϕ2) (semantics of LTL)

ϕ = (ϕ1 Us ϕ2) or ϕ = (ϕ1 Uw ϕ2):
Aϕ fin-accepts w

iff there exists an index 0 ≤ i < ω such that Aϕ2 fin-accepts wi

and for all 0 ≤ j < i, Aϕ1 fin-accepts wj

or
ϕ = (ϕ1 Uw ϕ2) and for all 0 ≤ i < ω, Aϕ1 fin-accepts wi

(Lemma 3.4.2)

iff there exists an index 0 ≤ i < ω such that wi |= ϕ2 and for all
0 ≤ j < i, wj |= ϕ1

or
ϕ = (ϕ1 Uw ϕ2) and for all 0 ≤ i < ω, wi |= ϕ1

(induction hypothesis)

iff w |= ϕ (semantics of LTL)

ϕ = (ϕ1 Rs ϕ2) or ϕ = (ϕ1 Rw ϕ2):
Aϕ fin-accepts w

iff A(ϕ2◦(ϕ1∧ϕ2)) fin-accepts w, where ◦ is an Until connective of
the same strength as the main connective of ϕ

(definition of Aϕ)

iff there exists an index 0 ≤ i < ω such that A(ϕ1∧ϕ2) fin-accepts
wi and for all 0 ≤ j < i, Aϕ2 fin-accepts wj

or
◦ = Uw and Aϕ2 fin-accepts wi for all 0 ≤ i < ω

(Lemma 3.4.2)

42 3. BASIC AUTOMATON TRANSLATION

iff there exists an index 0 ≤ i < ω such that wi |= (ϕ1 ∧ ϕ2)
and for all 0 ≤ j < i, wj |= ϕ2

or
◦ = Uw and wi |= ϕ2 for all 0 ≤ i < ω

(case “∧” and the induction hypothesis)

iff w |=
(
ϕ2 ◦ (ϕ1 ∧ ϕ2)

)
(semantics of LTL)

iff w |= ϕ (semantics of LTL)

The result holds by induction for all formulas ϕ ∈ LTL(AP). �

3.5 REVERSE TRANSLATION

In this section we verify the result that for any linear alternating automaton
A over an alphabet Σ with 2n elements for some n ∈ N (i.e., a set that is
isomorphic to a powerset of some finite set S with n elements), there exists
an LTL formula ϕ over the atomic propositions S such that for all w ∈ Σω,
A fin-accepts w iff w |= ϕ. This justifies the use of the term “linear” for
our automata and shows that our linear alternating automata with multiple
acceptance conditions on transitions are equally expressive to the variants
previously presented in the literature. Proofs for this same result (based on
slightly different basic definitions and varying interpretation of acceptance
conditions) have previously been presented by Rohde [58], and Löding and
Thomas [47]; in this section, we give a direct proof of this result for automata
having multiple acceptance conditions on transitions instead of states.

As shown by Rohde [58], this result can be generalized to linear alternat-
ing automata over an arbitrary (finite) nonempty alphabet Σ in the sense that
for any linear alternating automaton A with alphabet Σ, there exists a finite
set S, a one-to-one mapping α : Σ → 2S and an LTL formula ϕ ∈ LTL(S)
such that for all w ∈ Σω, A fin-accepts w iff

(
α(w(i))

)
0≤i<ω

|= ϕ. The

existence of α is easily proved by taking S to be any finite set with at least
dlog2 |Σ|e elements. The claim then follows by applying the basic result to
the linear alternating automaton (over the alphabet 2S) obtained from A by
replacing each element of each transition guard of A with its image under α.

We begin with a result that characterizes (in LTL) the behavior of a lin-
ear alternating automaton A = 〈2S, Q,∆, qI ,F〉 looping through a state
q ∈ Q along a path of a fin-accepting run on some input w ∈ (2S)ω. By
interpreting this path as the stepwise behavior of a single copy of the automa-
ton, we see that the copy either stays in the state q for a finite number of
steps, exits the state, and never enters it again (because all loops in the au-
tomaton are self-loops), or it remains in the state indefinitely by taking only
self-loop transitions. In this case, the acceptance sequence determined by
these self-loops must not violate the fin-acceptance condition, because the
run is fin-accepting. Hence, for all acceptance conditions f ∈ F , the copy
of the automaton needs to take infinitely many self-loops that do not include
f in their acceptance conditions.

To formalize this intuition, we first introduce some notation. Assume
that q is the start state of the ith consecutive edge (labelled with a transition
t = 〈q,Γ, F, Q′〉 ∈ ∆) in a path through the fin-accepting run of A. Because

3. BASIC AUTOMATON TRANSLATION 43

q is the initial state of some subautomaton of A, it follows by Lemma 3.4.1
that the guard Γ includes the input symbol w(i) ∈ 2S (i.e., w(i) |= θ holds
for the characteristic Boolean formula of Γ), and all subautomata rooted at
the states in Q′ fin-accept wi+1. Suppose that the language accepted by each
subautomaton rooted at a target state q′ ∈ Q′ \ {q} of t coincides with the
language of some LTL formula ϕq′ , i.e., wi+1 |= ϕq′ . We thus find that

wi |= µ(θ, Q′)
def

≡
(
θ ∧ X(

∧

q′∈Q′\{q}

ϕq′)
)
.

Using µ, the implications of A taking either a self-loop, a non-self-loop, or a
self-loop not including f in its acceptance conditions can now be written as
the LTL formulas

ψself-loop
def

≡
∨

〈q,θ,F,Q′〉∈∆,

q∈Q′

µ(θ, Q′), ψnon-self-loop
def

≡
∨

〈q,θ,F,Q′〉∈∆,

q/∈Q′

µ(θ, Q′) and

ψavoid(f)
def

≡
∨

〈q,θ,F,Q′〉∈∆,

q∈Q′, f /∈F

µ(θ, Q′).

With these definitions, we can now give an LTL characterization of the
above description of the looping behavior of A. Assuming the existence of
LTL formulas corresponding to the successors of the state q of the alternat-
ing automaton A (excluding q itself), we can apply the following lemma to
find an LTL formula, the language of which coincides with the language
fin-accepted by the subautomaton Aq.

Lemma 3.5.1 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automaton
over the alphabet Σ = 2S for some finite set S, and let q ∈ Q. Assume
that for all successors q′ of q in A, excluding q itself, there exists an LTL
formula ϕq′ such that for all w ∈ Σω, the subautomaton (Aq)q

′
fin-accepts w

iff w |= ϕq′ . Then, for all w ∈ Σω, Aq fin-accepts w iff w satisfies the formula

ϕq
def

≡
(
(ψself-loop Us ψnon-self-loop) ∨ G

(
ψself-loop ∧

∧

f∈F

Fψavoid(f)
))

.

Proof: (“⇒”) Let G = 〈V,E, L〉 be a fin-accepting run of Aq on some w ∈
Σω. By Proposition 2.3.7, there exists an index 0 ≤ i ≤ ω and a sequence
(ej)0≤j<i+1, ej = 〈vj, V

′
j 〉 ∈ E ∩ (Vj × 2Vj+1), of consecutive edges such that

L(ej) is an initial self-loop of Aq for all 0 ≤ j < i, and if i < ω, then L(ei)
is an initial transition of Aq that is not a self-loop. It is clear that L(vj) = q
holds for all 0 ≤ j < i+ 1.

Let 0 ≤ j < i + 1. Because G is a run, ej = 〈vj, V
′
j 〉 is labelled with

a transition 〈q, θj, Fj, Q
′
j〉 ∈ ∆ such that w(j) |= θj and Q′

j = L(V ′
j). Be-

cause θj is a Boolean formula, it follows that wj |= θj , and because G is
fin-accepting, (Aq)q

′
fin-accepts wj+1 for all q′ ∈ Q′

j by Proposition 2.3.9. By
assumption, this implies that wj+1 |= ϕq′ for all q′ ∈ Q′

j \ {q}. Therefore

wj |=
(
θj ∧ X(

∧
q′∈Q′

j\{q}
ϕq′)

)
, i.e., wj |= µ(θj, Q

′
j) holds by the semantics

of LTL.

44 3. BASIC AUTOMATON TRANSLATION

Because L(ej) is an initial self-loop of Aq for all 0 ≤ j < i, it follows
from the definition of ψself-loop that wj |= ψself-loop for all 0 ≤ j < i. If i < ω,
then, because L(ei) is an initial transition of Aq that is not a self-loop, also
wi |= ψnon-self-loop holds. But then w |= (ψself-loop Us ψnon-self-loop) holds by the
semantics of LTL, which implies that w |= ϕq.

If i = ω, then (ej)0≤j<i = r is an acceptance sequence, all edges of which
are labelled with initial self-loops of Aq. As seen above, wj |= µ(θj, Q

′
j)

and wj |= ψself-loop hold for all 0 ≤ j < ω. Fix 0 ≤ j < ω, and let f ∈
F . Because G is fin-accepting, fin(r) = ∅, and thus there exists an index
j < k < ω such that L(ek) does not include f in its acceptance conditions.
Because wk |= µ(θk, Q

′
k) and L(ek) is an initial self-loop of Aq, it follows that

wk |= ψavoid(f). But then, because k > j, wj |= Fψavoid(f), and because f is
arbitrary and wj |= ψself-loop, it follows that wj |=

(
ψself-loop ∧

∧
f∈F Fψavoid(f)

)
.

Since j is arbitrary, we conclude that w |= ϕq holds also in this case.

(“⇐”) Assume that w |= ϕq. Then w satisfies at least one of the for-
mulas (ψself-loop Us ψnon-self-loop) and G

(
ψself-loop ∧

∧
f∈F Fψavoid(f)

)
, and there

necessarily exists a minimal index 0 ≤ i ≤ ω such that wj |= ψself-loop holds
for all 0 ≤ j < i, and if i < ω, then wi |= ψnon-self-loop. From the defi-

nition of ψself-loop it follows that the set of initial self-loop transitions Tj
def
={

〈q, θ, F,Q′〉 ∈ ∆ q ∈ Q′, wj |= µ(θ, Q′)
}

is nonempty for all 0 ≤ j < i.

Our goal is to choose self-loops tj
def
= 〈q, θj, Fj, Qj〉 ∈ Tj for all 0 ≤ j < i

(and if i < ω, an additional non-self-loop transition ti
def
= 〈q, θi, Fi, Qi〉 ∈ ∆

such thatwi |= µ(θi, Qi); ti exists becausewi |= ψnon-self-loop holds in this case)
such that we can construct a partial fin-accepting run of Aq on w by forming
a (possibly infinite) sequence of consecutive edges labelled with these tran-
sitions. For this purpose, we also fix an arbitrary total order ≺ on the set of
acceptance conditions F ; because F is finite, every nonempty subset of F
then contains a minimal element under ≺.

Let t0 ∈ T0 be any element of T0. Assume that the transitions tj =
〈q, θj, Fj, Qj〉 have already been defined for all 0 ≤ j < k for some 1 ≤

k < i. Let αk
def
= min

(
{k − 1} ∪

{
0 ≤ l < k

⋂
l≤j≤k−1 Fj 6= ∅

})
be the

minimal index strictly less than k such that all transitions tαk
, tαk+1, . . . , tk−1

share a common acceptance condition in F if such a condition exists (and

let αk = k − 1 otherwise). Let F̃k
def
=

⋂
αk≤j≤k−1 Fj be the set of all ac-

ceptance conditions shared by these transitions, and define f̃k
def
= min≺ F̃k

for every nonempty F̃k. Now, let tk
def
= 〈q, θk, Fk, Qk〉 be any transition

t = 〈q, θ, F,Q′〉 ∈ Tk such that f̃k /∈ F if F̃k 6= ∅ and such a transition
exists in Tk; otherwise let tk be any transition in the set Tk.

Without loss of generality, we may write Qj \ {q} as a set of distinct states
Qj = {qj,1, qj,2, . . . , qj,nj

} for some 0 ≤ nj < ω and all 0 ≤ j < i+ 1.
Define the graph G = 〈V,E, L〉, where

• V0
def
= {v0}, Vj+1

def
= {vj+1, vj,1, . . . , vj,nj

} for all 0 ≤ j < i, and if

i < ω, let Vi+1
def
= {vi,1, . . . , vi,ni

} and Vj
def
= ∅ for all i + 1 < j < ω;

• E
def
=

⋃
0≤j<i+1

{
〈vj, Vj+1〉

}
;

• For all 0 ≤ j < i+ 1, let L(vj)
def
= q, L(vj,k)

def
= qj,k for all 1 ≤ k ≤ nj ,

3. BASIC AUTOMATON TRANSLATION 45

and L
(
〈vj, Vj+1〉

)
def
= tj .

(The definition of G is completely analogous to Lemma 3.4.2; see also
Fig. 3.2.)

With these definitions, G is a partial run of Aq on w:

• V0 = {v0}, L(v0) = q, V is partitioned into finite disjoint levels, and E
consists of edges between successive levels of G.

• Let v ∈ Vj for some 0 ≤ j < ω. Then v either has no outgoing edges,
or v = vj and j < i + 1. In the latter case, L(v) = q, and v has the
unique outgoing edge e = 〈vj, Vj+1〉 ∈ E. Since wj |= µ(θj, Qj),
i.e., wj |=

(
θj ∧ X(

∧
q′∈Qj\{q}

ϕq′)
)
, w(j) |= θj , and because L(e) =

tj = 〈q, θj, Fj, Qj〉 =
〈
L(vj), θj, Fj, L(Vj+1)

〉
, the edge labelling is

consistent.

• Since the target node set of the only edge starting from a node at level
0 ≤ j < i + 1 covers all nodes in Vj+1, it is clear that each node in Vj
for some 1 ≤ j < ω is a successor of some node at level j − 1.

If i < ω (i.e., if w |= (ψself-loop Us ψnon-self-loop)), then the edge set E is finite.
This implies that E(G) = ∅, and thus G is trivially a partial fin-accepting run
of Aq on w. Otherwise E(G) contains a unique sequence r = (ej)0≤j<ω of
consecutive edges of E, where ej = 〈vj, Vj+1〉 for all 0 ≤ j < ω.

Assume that r does not satisfy the fin-acceptance condition. Therefore,
there exists a minimal index 0 ≤ k < ω such that all transitions L(ej) =
tj = 〈q, θj, Fj, Qj〉 share a nonempty set of acceptance conditions in F for
all k ≤ j < ω. Let fmin be the minimal acceptance condition (under ≺)
among these conditions. Because k is minimal, there exists another index

k ≤ k′ < ω such that fmin is the minimal element of F̃j for all k′ < j < ω.
Because i = ω, w 6|= (ψself-loop Us ψnon-self-loop). Therefore it is necessarily

the case that w |= G
(
ψself-loop ∧

∧
f∈F Fψavoid(f)

)
. Thus there exists an index

k′ < l < ω such that wl |= ψavoid(fmin) ≡
∨

〈q,θ,F,Q′〉∈∆

q∈Q′, fmin /∈F

µ(θ, Q′). It now

follows that Tl has a nonempty subset T of transitions, none of which includes
fmin in its acceptance conditions. Because fmin is the minimal element of

F̃l, it follows that tl will be chosen from the set T . But then fmin cannot
be one of the acceptance conditions shared by all transitions tj for all k ≤
j < ω, which is a contradiction. It follows that r satisfies the fin-acceptance
condition, and G is a partial fin-accepting run of Aq on w.

Finally, let v ∈ Vj for some 0 ≤ j < ω be a node with no outgoing edges
in G. Then v 6= v0, and thus it is one of the nodes vj−1,k for some 1 ≤ k ≤
nj−1 such that L(v) = qj−1,k ∈ Qj−1 \ {q}. Because wj−1 |= µ(θj−1, Qj−1),
that is, wj−1 |=

(
θj−1 ∧ X(

∧
q′∈Qj−1\{q}

ϕq′)
)
, it follows that wj |= ϕq′ for

all q′ ∈ Qj−1 \ {q}. In particular, (Aq)qj−1,k now has a fin-accepting run
on wj by assumption. Since v is an arbitrary node with no outgoing edges,
it follows that G can be extended to a full fin-accepting run of Aq on w by
Proposition 2.3.10, and thus Aq fin-accepts w. �

We can now establish the main result of this section by a straightfor-
ward inductive proof on the structure of linear alternating automata, using
Lemma 3.5.1 as a tool for proving the induction step.

46 3. BASIC AUTOMATON TRANSLATION

Theorem 3.5.2 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automaton
over the alphabet Σ = 2S for some finite set S. Then, there exists an LTL
formula ϕ over the atomic propositions S such that for all w ∈ Σω, A fin-
accepts w iff w |= ϕ.

Proof: Because A is a linear alternating automaton, there exists a function
ρ : Q → N such that for all transitions 〈q,Γ, F, Q′〉 ∈ ∆, ρ(q′) < ρ(q) holds
for all q′ ∈ Q′ \ {q}. In particular, as seen in the proof of Proposition 2.3.13,
ρ(q) can be defined as

ρ(q)
def
= max

{
|x| x is a simple path from q to a state q′ ∈ Q0

}

where Q0
def
=

{
q ∈ Q for all 〈q,Γ, F, Q′〉 ∈ ∆, Q′ = ∅ or Q′ = {q}

}
. We

proceed by induction on ρ(q). If ρ(q) = 0, then the result follows imme-
diately for the subautomaton Aq by Lemma 3.5.1, since q has no successors
different from itself (and thus the assumption needed in Lemma 3.5.1 holds
trivially). Assume that the result holds for all subautomata Aq, where q ∈ Q
satisfies ρ(q) ≤ i for some 0 ≤ i < ω. Let q′ ∈ Q be a state for which
ρ(q′) = i + 1. Then, ρ(q) ≤ i for all successors of q ′ excluding q′ itself, and
the result follows again for the subautomaton Aq′ by Lemma 3.5.1 and the
induction hypothesis. By induction, we conclude that the result holds also
for the subautomaton AqI , because ρ(qI) is finite, and therefore also for the
automaton A, because Lfin(A) = Lfin(A

qI) (Proposition 2.3.11). �

In principle, the proof of Theorem 3.5.2 gives an inductive procedure for
finding an LTL formula that corresponds to a given linear alternating au-
tomaton by repeatedly using the formula given in Lemma 3.5.1 as a pattern
for defining LTL formulas corresponding to states with increasing values of ρ.
However, it is easy to see that the size of the formulas obtained from repeated
applications of the translation pattern grows very rapidly as the value of ρ
increases. We can give a rough indirect estimate on the maximal blow-up
caused by this simple pattern by translating the formula obtained from the
reverse translation back into an automaton and then using Corollary 3.3.2 to
find an upper bound for its size. Ideally, because each of these transforma-
tions preserves the language of the automaton or the formula to which the
transformation is applied, the size of the resulting automaton should not ex-
ceed the size of the original automaton. However, this is not the case with
the reverse translation presented above.

Proposition 3.5.3 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automa-
ton over the alphabet Σ = 2S for some finite set S, and let ϕ be the LTL
formula obtained through a systematic application of the translation pat-
tern given in Lemma 3.5.1 to A as described in Theorem 3.5.2. Then, the
automaton A′ obtained again from ϕ by the basic translation has at most
1 + |∆| + |Q|

(
|F| + 2

)
states.

Proof: By Theorem 3.5.2, the reverse translation pattern needs to be applied
once to each state of A. Since the size of A′ depends on the number of dis-
tinct pure temporal subformulas of ϕ, we estimate the number of pure tem-
poral subformulas generated in a single application of the reverse translation

3. BASIC AUTOMATON TRANSLATION 47

pattern; |Temp(ϕ)| will then not exceed the total number of pure temporal
formulas generated over all applications of the pattern.

In the application of the reverse translation pattern to a state q ∈ Q,
each occurrence of µ(θ, Q′) for some θ ∈ PL(S) and Q′ ⊆ Q will con-
tribute a Next Time subformula to the result. From the definitions of ψself-loop,
ψnon-self-loop and ψavoid it is easy to see that µ is always quantified over the tran-
sitions leaving the state q. We call the number of these transitions the out-
degree of q and denote it by deg(q). The quantification over the acceptance
sets f ∈ F contributes at most |F| distinct pure temporal F subformulas to
the result. Furthermore, it is easy to see that the pattern also includes one
G and one Us formula as its subformulas. Thus, a single application of the
pattern will give rise to at most deg(q) + |F| + 2 distinct pure temporal sub-
formulas2. Quantifying over all states of the automaton, we find that ϕ will
contain at most
∑

q∈Q

(
deg(q) + |F|+ 2

)
=

∑

q∈Q

deg(q) +
∑

q∈Q

(
|F|+ 2

)
= |∆|+ |Q|

(
|F|+ 2

)

distinct pure temporal subformulas. The result now follows directly by Corol-
lary 3.3.2. �

In addition to the linear dependency (in the number of acceptance condi-
tions of the original automaton) on the size of the original automaton, the
upper bound depends also explicitly on the number of transitions in the
original automaton (which may be exponential in the size of the automa-
ton). These dependencies clearly arise from the applications of the reverse
translation pattern of Lemma 3.5.1, since the same dependencies already
concern the number of temporal subformulas in the formula obtained using
reverse translation. Because only a linear increase in the size of an alternat-
ing automaton may already result in an exponential worst-case increase in
the size of a corresponding nondeterministic automaton (see Ch. 5), Propo-
sition 3.5.3 provides evidence against the practicability of using the simple
pattern in Lemma 3.5.1 as the sole basis for an efficient reverse translation
procedure. Any practical implementation of such a procedure is therefore
likely to be forced to tackle the problem of minimizing the blow-up in the
size of intermediate results, for example, by using specially designed formulas
for the reverse translation in different cases, or by applying aggressive simpli-
fication to each formula built in each reverse translation step.

2This number will not change when rewriting the F and G operators in terms of the more
primitive operators before translating the formula back into an automaton.

48 3. BASIC AUTOMATON TRANSLATION

4 IMPROVING THE TRANSLATION

In this chapter we explore methods for improving the basic translation pre-
sented in the previous chapter to generate smaller linear alternating au-
tomata. Minimization of automata built from LTL formulas has previously
been studied both in the context of nondeterministic automata (e.g., [21, 22,
34, 62]) and alternating automata [25, 28, 58]; some of the proposed opti-
mizations, such as formula-based simplifications [21, 62], apply independent
of the type of the target automata. We shall extend the basic formula trans-
lation with some of these common optimizations and examine their special
cases applicable to our linear alternating automata with acceptance condi-
tions on transitions instead of states. We shall also investigate translation rule
heuristics that allow simplification of the transition structure of the generated
automata.

4.1 ELEMENTARY SIMPLIFICATION TECHNIQUES

4.1.1 Subformulas with Commutative Main Connectives

A well-known obvious heuristic for reducing the number of steps required
for the automaton translation of a given formula ϕ is to order the top-level
subformulas of each subformula of ϕ with a commutative binary main con-
nective (∨ or ∧ in our set of basic operators) systematically (e.g., into some
lexicographic order), for example, as an explicit preprocessing step before the
translation. Even though this fixing of the order of subformulas has no effect
on the worst-case size of the resulting automaton (by Corollary 3.3.2, this size
does not depend on the subformulas of ϕ with a Boolean main connective),
it may nevertheless help in reducing the number of translation steps, which
depends on the number of syntactically distinct subformulas in ϕ. This way,
we can easily avoid repeating potentially expensive automaton minimization
operations (such as those presented later in this chapter) on isomorphic au-
tomata.

4.1.2 Transition Guard Simplification

As noted in Section 3.2, all transition guards of the automaton constructed
using the translation rules are finite conjunctions of one or more atomic for-
mulas (also known as terms in the literature [21]). Due to the associativity of
the ∧ operator, each guard formula θ can be written without parentheses as
θ = µ1 ∧ µ2 ∧ · · · ∧ µn, where each µi is an atomic formula for 1 ≤ i ≤ n
(1 ≤ n < ω). The formula can then be simplified using the commutativity
of ∧ and the classic identities of propositional logic:

(θ ∧ θ) ≡ θ (θ ∧ ⊥) ≡ (⊥ ∧ θ) ≡ ⊥
(θ ∧ >) ≡ (> ∧ θ) ≡ θ (θ ∧ ¬θ) ≡ (¬θ ∧ θ) ≡ ⊥

It is easy to see that any guard formula can thus be written in a form in which
it is either equal to one of the Boolean constants, or it is a conjunction of
literals formed from distinct atomic propositions.

4. IMPROVING THE TRANSLATION 49

Because L(⊥) = ∅, no edge in a run of an alternating automaton on
words over the alphabet 2AP can be labelled with a transition having ⊥ as
its guard formula (i.e., there is no σ ∈ 2AP ∩ ∅ that could be used to label
an edge of the run with such a transition consistently). Since the language
inf- or fin-recognized by an alternating automaton depends only on the runs
of the automaton, all transitions having an unsatisfiable guard can thus be
removed from the automaton without changing its language.

A standard interpretation of the transition guards as Boolean functions
over the atomic propositions allows the use of binary decision diagrams
(BDDs) [5] for their representation [14, 43, 68]. Another simple alternative
for manipulating guards in the above very restricted form θ = µ1∧µ2∧· · ·∧µn
(used, for example, by Gastin and Oddoux in their implementation [28])
is to represent each guard formula as a pair of sets of atomic propositions
〈P1, P2〉 ∈ 2AP ×2AP , where P1 (P2) collects all atomic propositions p ∈ AP

for which µi = p (µi = ¬p) for some 1 ≤ i ≤ n; in this notation, the Boolean
constant > corresponds to the pair 〈∅, ∅〉. This representation allows straight-
forward implicit application of the above propositional identities when build-
ing new guards from previously defined ones during the translation. It is also
easy to check for propositional implications between two transition guards (a
prerequisite for many automaton minimization operations presented in this
chapter and in the literature) without using the full power of BDDs. More
precisely, if 〈P1, P2〉 and 〈P ′

1, P
′
2〉 are the pairs of sets of atomic propositions

corresponding to two guard formulas θ and θ′, respectively, then (θ ∧ θ′) is
represented by the pair 〈P1 ∪ P

′
1, P2 ∪ P

′
2〉, θ is unsatisfiable iff P1 ∩ P2 6= ∅,

and the propositional implication θ → θ′ is valid iff P ′
1 ⊆ P1 and P ′

2 ⊆ P2.

4.1.3 Translation Example

We illustrate the basic translation and transition guard simplification with an
example by translating the formula

((
GFp1 ∧ GFp2) ∨

(
p3 Rw (p4 Rs p5)

))

into a linear alternating automaton. Because we do not have explicit transla-
tion rules for the F and G connectives, we first rewrite the subformulas with
F or G as their main connective in terms of the basic connectives via the LTL
identities

Fϕ ≡ (>Us ϕ) and Gϕ ≡ (⊥Rw ϕ).

This results in the formula
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]
;

because this formula is in positive normal form, we can now start applying the
translation rules. We first build automata shown in Fig. 4.1 (a) for the atomic

subformulas of the formula ϕ
def

≡
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
. We

then define automata for the subformulas (>Us p1) and (>Us p2) by apply-
ing the translation rule given for the Us connective first to A> and Ap1, and
then to A> and Ap2 ; see Fig. 4.1 (b). Because both of these subformulas

50 4. IMPROVING THE TRANSLATION

are strong temporal eventualities, we associate a unique acceptance condi-
tion with each compound automaton. (In Figs. 4.1, 4.2 and 4.3, we omit
the states not reachable from the initial states of the constructed automata,
since they can always be removed by Proposition 2.3.11 without changing
the language of the automaton.)

We then apply the Rw translation rule to the automata A⊥ and A(>Us p1),
and then to A⊥ and A(>Us p2), to obtain the automata shown in Fig. 4.1 (c).
Because Rw is a weak temporal eventuality, no new acceptance conditions
are added to the automata.

Both automata in Fig. 4.1 (c) have transitions including ⊥ as one of the
conjuncts in their guards. All of these guards thus reduce to the unsatisfiable
formula ⊥, and the transitions can be removed from the automata as shown
in Fig. 4.1 (d).

We next merge the automata built for the top-level subformulas of ϕ into
the automaton shown in Fig. 4.1 (e) for the formula ϕ itself by using the
∧ translation rule. Because of the intermediate simplification step (d), this
automaton has four initial transitions; without the simplification, applying
the ∧ translation rule directly to the automata shown in Fig. 4.1 (c) would
have resulted in an automaton with sixteen initial transitions. We can again
simplify the guards of some transitions in this automaton to obtain the au-
tomaton shown in Fig. 4.1 (f).

The translation of the subformula ψ
def

≡
(
p3 Rw (p4 Rs p5)

)
proceeds sim-

ilarly. We start from the automata built for the atomic subformulas (see
Fig. 4.2 (a)) and apply the Rs translation rule to Ap4 and Ap5 to obtain an
automaton for the formula (p4 Rs p5) (Fig. 4.2 (b)). Again, because (p4 Rs p5)
is a strong temporal eventuality, we add a new acceptance condition to the
automaton. We then apply the Rw rule to Ap3 and A(p4 Rs p5) to construct an
automaton for the formula ψ (Fig. 4.2 (c)).

We finally apply the ∨ translation rule to Aϕ and Aψ to build the automa-
ton shown in Fig. 4.3 for the formula

[((
⊥Rw (>Us p1)

)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]
.

4.2 LANGUAGE CONTAINMENT CHECKING BETWEEN LINEAR ALTERNAT-
ING AUTOMATA

Before we discuss further simplification techniques for linear alternating au-
tomata, we review the problem of checking for language containment be-
tween linear alternating automata. Language containment provides a uni-
fied and powerful, yet conceptually simple, way to express conditions for the
minimization of automata. We shall see such conditions applied to automata
obtained during the formula translation throughout the rest of this chapter.

Clearly, for all alternating automata A1 and A2 having a common alpha-
bet Σ, all words of the language Lfin(A1) belong to the language Lfin(A2) iff
no word in Lfin(A1) belongs to the complement of Lfin(A2) with respect to

Σω, i.e., Lfin(A1) ⊆ Lfin(A2) holds iff Lfin(A1) ∩ Lfin(A2) = ∅. This classic
reformulation equates language containment with language emptiness and

4. IMPROVING THE TRANSLATION 51

PSfrag replacements
p1

PSfrag replacements
p2

PSfrag replacements

>
PSfrag replacements

⊥

(a)

PSfrag replacements

>p1

PSfrag replacements

> p2

(b)

PSfrag replacements >

(⊥ ∧ >) (⊥ ∧ p1)

>p1

p1

PSfrag replacements >

(⊥ ∧>)(⊥ ∧ p2)

> p2

p2

(c)

PSfrag replacements
>

>p1

p1

PSfrag replacements
>

> p2

p2

(d)

PSfrag replacements

> >

(> ∧ p2) (p1 ∧ >)

>p1

p1

p2

(p1 ∧ p2)

p2

(> ∧>)

>

(e)

PSfrag replacements

> >

p2 p1

>p1

p1

p2

(p1 ∧ p2)

p2
>

>

(f)

Fig. 4.1: Building an automaton for the LTL formula ϕ
def

≡
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
. (a) Automata for the atomic subformulas of ϕ; (b) Au-

tomata for the formulas (>Us p1) and (>Us p2); (c) Automata for the formulas(
⊥Rw (>Us p1)

)
and

(
⊥Rw (>Us p2)

)
; (d) The automata obtained from (c) by

removing transitions with unsatisfiable guards; (e) Automaton for the formula ϕ;
(f) The automaton obtained from (e) by transition guard simplification

52 4. IMPROVING THE TRANSLATION

PSfrag replacements
p3

PSfrag replacements
p4

PSfrag replacements
p5

PSfrag replacements

p5
(p4 ∧ p5)

PSfrag replacements

p5 (p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5(p4 ∧ p5)

(p4 ∧ p5)

(a) (b) (c)

Fig. 4.2: Building an automaton for the formula ψ
def

≡
(
p3 Rw (p4 Rs p5)

)
. (a) Au-

tomata for the atomic subformulas of ψ; (b) Automaton for the formula (p4 Rs p5);
(c) Automaton for the formula ψ

PSfrag replacements

> >

p2

p1

>p1

p1

p2

(p1 ∧ p2)

p2
>

>
(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5

(p4 ∧ p5)

(p4 ∧ p5)

(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

p5

Fig. 4.3: Automaton for the LTL formula
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]

4. IMPROVING THE TRANSLATION 53

forms a first step towards handling language containment computationally.
In particular, due to the interchangeability of linear alternating automata
having the alphabet 2S for some finite set S with formulas of the temporal
logic LTL(S), we can always represent both languages in the intersection as
linear alternating automata: if ϕ1, ϕ2 ∈ LTL(S) are two LTL formulas cor-
responding to the linear alternating automata A1 and A2, respectively, it is
easy to see by Theorems 3.4.3 and 3.5.2 and the semantics of LTL that

Lfin(A1) ∩ Lfin(A2)

= Lfin(A1) ∩ L(ϕ2)
= Lfin(A1) ∩

(
(2S)ω \ L(ϕ2)

)

= Lfin(A1) ∩ L(¬ϕ2)
= Lfin(A1) ∩ Lfin(A2) for an automaton A2 built for the LTL formula ¬ϕ2.

Language containment between A1 and A2 thus reduces to the emptiness
of the intersection of languages of the automaton A1 and an automaton A2

that can be built by using the formula translation procedure.
The ability to apply the basic translation for building the automata for the

emptiness check requires knowledge on the formulas ϕ1 and ¬ϕ2. Because
the language containment checks to be discussed often involve automata
built during the translation of a formula ϕ into an automaton (i.e., automata
built for the subformulas of ϕ), the bijective correspondence between these
automata and the subformulas of ϕ ensures in many cases that the formulas
ϕ1 and ¬ϕ2 are indeed known (or can be determined easily) before each
language containment test. In this case we may also have the automata for
the formulas ϕ1 or ¬ϕ2 already available; even if this is not the case, the
automata can always be found by applying the basic translation to the positive
normal forms of the formulas. (Because |Temp(ϕ)| = |Temp(¬ϕ)| holds
for all LTL formulas ϕ, the automaton obtained this way for the language
L(¬ϕ2) has at most 1 + |Temp(ϕ2)| states by Corollary 3.3.2; thus, the size
of this automaton does not exceed the size of the automaton A2 built from
the formula ϕ2.)

Nevertheless, plain formula translation is not by itself sufficient for han-
dling language containment tests if we do not have the LTL formulas corre-
sponding to the automata A1 or A2 available; in particular, in the case that
ϕ2 is in fact unknown, the above steps are not by themselves sufficient for

finding an automaton for the language Lfin(A2). In such a case, we may first
have to apply, for example, the reverse translation to the automaton A2 to
find an LTL formula to be negated and translated back into an automaton

for the language Lfin(A2). Alternatively, we could try to build the automa-
ton A2 from A2 by dualization [52] to find an automaton for this language
directly, instead of making use of the two-way connection between LTL and
linear alternating automata. However, direct complementation by dualiza-
tion, for example, using the constructions of Vardi and Kupferman [41], or
the related construction of Löding [46], is not possible using our definition of
automata because of the generalized definition of acceptance and transition
guards. In the following discussion, we shall therefore use the method based
on reverse translation as a general complementation procedure for linear al-
ternating automata. We shall nevertheless focus mostly on special cases that
can be handled without such a procedure. Even though giving up the ability

54 4. IMPROVING THE TRANSLATION

to complement arbitrary linear alternating automata (i.e., the ability to per-
form arbitrary language containment tests) will reduce the opportunities for
the simplification of automata, we shall nevertheless obtain a collection of
methods, all of which can be implemented by applying the basic translation
procedure to formulas that are already known in the context.

Finally, we remark that language containment checking between linear
alternating automata by reducing the problem to emptiness checking is likely
to be feasible in practice only in simple cases, due to computational complex-
ity issues. As a matter of fact, constructing the automata required for the lan-
guage intersection emptiness test may already require exponential space (and
hence at least exponential time) when using the chosen explicit representa-
tion for the transitions of alternating automata, even when assuming that ex-
plicit complementation of automata is not needed. For example, automata
built from Boolean formulas

∧
1≤i≤n

ϕi (where ϕi ≡
∨

1≤j≤mi
ψi,j for atomic

formulas ψi,j , and n,mi ∈ N) in conjunctive normal form may have an expo-
nential number of transitions in the size of the formula in the worst case. In
fact, the language intersection emptiness problem for linear alternating au-
tomata is PSPACE-hard in general and can thus be expected to be PSPACE-
complete at best: PSPACE-hardness can be shown via a reduction from the
problem of LTL satisfiability, known to be PSPACE-complete [61] even for
many restrictions of the logic [16]. More precisely, a formula ϕ ∈ LTL(AP)
is satisfiable iff Lfin(Aϕ) ∩ Lfin(A) 6= ∅, where Aϕ is an automaton built for
the formula ϕ using a standard Boolean encoding (necessary for keeping the
representation polynomial in the size of the formula) for the transition rela-
tion, and A is an automaton that fin-accepts the universal language (2AP)ω.
Whether the problem of checking the emptiness of the language intersection
is actually in PSPACE for generalized linear alternating automata is not en-
tirely obvious without more detailed analysis; one possible way to establish
this would be to try to find a polynomial-space reduction from the general-
ized definition to, for example, the definition of Vardi [73], for which the
problem is known to be in PSPACE.

By the above observations, language containment checking should be ap-
plied with care in practice, using heuristics to estimate its feasibility in in-
dividual problem instances and limit the tests, for example, only to special
cases of the theoretical constructions that follow in this chapter. We never-
theless state our results in terms of general language containment to allow
for more flexibility in illustrating the intuition behind various simplification
techniques.

4.3 HEURISTICS FOR TRANSLATION RULES

In this section we investigate methods for improving the basic formula trans-
lation by refining the translation rules defined in Sect. 3.2. We first review
the conceptually simple idea of using language containment tests between
component automata as “preprocessing steps” for the translation rules. A
language containment relationship between two component automata may
allow us to replace one of them with a simpler automaton before actually ap-
plying a translation rule. We shall also refine the translation rules themselves:

4. IMPROVING THE TRANSLATION 55

Table 4.1: LTL equivalences under various language containment relationships

Relationship between languages

L(ϕ1) ⊆ L(ϕ2) L(ϕ1) ⊆ L(ϕ2) L(ϕ1) ⊆ L(ϕ2) L(ϕ2) ⊆ L(ϕ1)

(ϕ1 ∨ ϕ2) ϕ2 > ϕ1

(ϕ1 ∧ ϕ2) ϕ1 ⊥ ϕ2

(ϕ1 Us ϕ2) ϕ2 (>Us ϕ2) (ϕ2 Rs ϕ1)
†

(ϕ1 Uw ϕ2) ϕ2 > (ϕ2 Rw ϕ1)
†

F
or

m
u

la

(ϕ1 Rs ϕ2) (ϕ2 Us ϕ1)
† ⊥ ϕ2

(ϕ1 Rw ϕ2) (ϕ2 Uw ϕ1)
† (⊥Rw ϕ2) ϕ2

† See also Sect. 4.3.3.

instead of building a compound automaton from one or two component au-
tomata always in the same way, taking the properties of the component au-
tomata into account may in some cases allow the construction of compound
automata with a simpler transition structure than the one determined by the
basic rules.

4.3.1 Rule Preprocessing Using Language Containment

A language containment relationship between automata built for the top-
level subformulas of a binary LTL formula (equivalently, between the sub-
formulas themselves) may allow simplification of the compound automa-
ton built from these automata. For example, if the language of an LTL
formula ϕ1 ∈ LTL(AP) is included in the language of another LTL for-
mula ϕ2 ∈ LTL(AP) (i.e., if L(ϕ1) ⊆ L(ϕ2)), then L

(
(ϕ1 ∧ ϕ2)

)
=

L(ϕ1) ∩ L(ϕ2) = L(ϕ1). Therefore we can reuse the automaton already
built for ϕ1 to obtain an automaton for (ϕ1 ∧ ϕ2) directly, instead of apply-
ing the translation rule given for the ∧ connective. Reusing the automaton
built for ϕ1 will thus likely result in a smaller automaton for the compound
formula than the one that would be obtained by using the translation rule:
for example, there is no need to add a new initial state to the result.

Table 4.1 contains the formula simplification rules resulting from a num-
ber of possible assumptions about the relationship between the languages
of two LTL formulas. Each cell of the table gives an LTL formula that is
equivalent to the formula labelling the row of the cell under the language
containment relationship given as the label of the cell’s column; if the cell is
empty, the assumption does not lead to direct simplification of the formula.
The correctness of each rule can be verified directly using the semantics of
LTL. Because the LTL formulas referred to in the conditions for language
containment are subformulas of the compound formulas found as row labels
in the table, the complement of the language of each of these subformulas
(required in the language containment test) can be recognized by an automa-
ton built directly for the positive normal form of the negated subformula.

By the correspondence between LTL formulas and linear alternating au-
tomata, an automaton built for a formula in a (nonempty) cell of Table 4.1
can always be substituted for the compound automaton built for the formula
labelling the row of the cell. The formula substitution is clearly preferable
whenever either one of the original formula’s subformulas can be discarded
in the substitution. However, under some assumptions on language contain-

56 4. IMPROVING THE TRANSLATION

ment, the replacement formula for an Until (Release) formula is a Release
(Until) formula of the corresponding strength with only the subformulas re-
versed. We shall investigate these cases further in Sect. 4.3.3 where we use
the same language containment assumptions to refine the translation rules
for these connectives. The identities in Table 4.1 can nevertheless be used
for reducing the effective number of distinct subformulas to which the trans-
lation needs to be applied when translating a formula ϕ into an automa-
ton. For example, by treating all subformulas of the form (ϕ1 Rs ϕ2), where
L(ϕ1) ⊆ L(ϕ2), systematically as formulas of the form (ϕ2 Us ϕ1), we may
obviously be able to reuse an automaton built from (ϕ2 Us ϕ1) to find an au-
tomaton for (ϕ1 Rs ϕ2). This effectively allows a reduction in |Temp(ϕ)| and
therefore also in the worst-case size of an automaton for ϕ (Corollary 3.3.2).
Furthermore, the basic translation rules suggest that it may be preferable to
replace Release formulas with Until formulas and not vice versa, since the
worst-case number of initial transitions in a compound automaton created
by a Release rule is proportional to the product instead of the sum of the
numbers of the initial transitions in the component automata.

The simplification rules in Table 4.1 reduce to well-known easy-to-check
special cases when one of the subformulas involved in the language contain-
ment test is a Boolean constant, due to the fact that

∅ = L(⊥) = L(>) ⊆ L(ϕ) ⊆ L(>) = L(⊥) = (2AP)ω

holds for all LTL formulas ϕ ∈ LTL(AP). These special cases, together with
the identities X> ≡ > and X⊥ ≡ ⊥ for the Next Time connective, can be
checked syntactically from the formulas and can therefore be used even if
checking for full language containment is considered too expensive. Check-
ing for syntactic special cases that imply language containment is a standard
technique used in most actual implementations (e.g., [21, 62, 68]), usually as
a preprocessing step; clearly, performing the translation incrementally sup-
ports combining the formula rewriting step easily also with the translation
itself.

In addition to checking for language containment relationships before ap-
plying a translation rule, language containment checks can also be used im-
mediately after applying the rule to test whether the language accepted by
the newly defined automaton for a compound formula ϕ is empty (L(ϕ) ⊆
L(⊥)), equal to (2AP)ω (L(>) ⊆ L(ϕ)), or equal to the language of an-
other LTL formula ϕ′ corresponding to some previously built automaton
(L(ϕ) ⊆ L(ϕ′) and L(ϕ′) ⊆ L(ϕ)). Obviously, such relationships may again
allow reducing the compound automaton into a simpler one by improving
the opportunities for Boolean constant propagation at the cost of an increase
in the number of language containment tests.

4.3.2 Modified Translation Rules: The ∧ Connective

By the definition of the translation rule given for the ∧ connective, if either
of the component automata to which the rule is applied during translation
has an initial self-loop transition, the rule “unrolls” this self-loop by adding to
the constructed automaton an initial transition that includes the initial state
of the component automaton in its target states (cf. Fig. 3.1, page 31). This

4. IMPROVING THE TRANSLATION 57

PSfrag replacements

(p1 ∧ p2)

p1 p2

PSfrag replacements

(p1 ∧ p2)

(a) (b)

Fig. 4.4: Two automata for the LTL formula (Gp1 ∧ Gp2). (a) Automaton built for
the formula using the translation rules (where transitions with unsatisfiable guards
have been removed); (b) Minimal automaton for the formula

implies that the initial state of the component automaton will still remain in
the final automaton at the end of translation. Thus, for example, using the
translation rules for defining an automaton for the LTL formula

(Gp1 ∧ Gp2) ≡
(
(⊥Rs p1) ∧ (⊥Rs p2)

)
∈ LTL

(
{p1, p2}

)

results, even after removing transitions with unsatisfiable guards as described
in Sect. 4.1.2, in a three-state automaton that contains the initial states of the
automata built for the formulas (⊥Rs p1) and (⊥Rs p2); see Fig. 4.4 (a) for
illustration. This is obviously not the minimal result, since the language of
(Gp1∧Gp2) is clearly fin-recognized also by the single-state automaton shown
in Fig. 4.4 (b). In this section, we refine the translation rule given for the ∧
connective to improve the translation in simple cases analogous to the above
example.

Consider two linear alternating automata A1 and A2, both of which fin-
accept a word w. Assume that the automata have fin-accepting runs on w
that include a nonempty sequence of edges corresponding to self-loops of
the respective automata, possibly followed by an edge that is not labelled
with a self-loop (cf. Proposition 2.3.7). If A1 and A2 are used as component
automata in an application of the translation rule given for the ∧ connective,
then the automaton A built by the rule simulates the synchronous behavior
of A1 and A2 on the same input (see the discussion in Sect. 3.2). Infor-
mally, when A takes its first transition in a fin-accepting run, it reads the
first symbol of the input and spawns a copy of each component automaton,
which then work in parallel on the rest of the input. Therefore, the run of A
separates into two (not necessarily disjoint) “branches” corresponding to the
fin-accepting runs of the component automata. Since both of these branches
begin with sequences of initial self-loops of A1 and A2, the run of A could
be simplified by merging the initial self-loop parts of these branches together,
and thus, in effect, postpone the branch separation beyond the first transi-
tion step as shown in Fig. 4.5. Furthermore, if either A1 or A2 stops looping
through its initial state after the branch separation, A will not have to spawn
both of these component automata, but only their subautomata. If A can
in a similar way avoid spawning A1 or A2 for all pairs of fin-accepting runs
of the component automata on all inputs, it follows that A does not need
any initial transitions to one or both of the initial states of these automata.
Unlike in the basic construction, the initial state of at least one component
automaton now remains a possible candidate for eventual removal from the

58 4. IMPROVING THE TRANSLATION

PSfrag replacements

qI

q1

q2

q3

q4

q5

qI1qI1qI1 qI1

qI2qI2qI2qI2

=⇒

PSfrag replacements

qIqIqIqIqI

q1

q2

q3
q4

q5

q4

qI1 qI1qI1qI1

qI2qI2qI2qI2

Fig. 4.5: Merging the initial parts of two branches (runs of subautomata with initial
states qI1 and qI2) in a run of an automaton having initial state qI

automaton obtained at the end of the formula translation, provided that no
other translation rule creates transitions to this state, either.

The above strategy of merging the initial parts of two branches in a run
of a compound automaton A can be made implicit in the translation by
modifying the translation rule for the ∧ connective. Similar to the basic
construction, we first collect all pairs of initial transitions of the component
automata and use the basic construction for all transition pairs, either ele-
ment of which is not a self-loop. However, each pair of self-loops is now
tested whether it could be merged into an initial self-loop of A that simulates
the pair of transitions. Since A should still be allowed to take a transition
iff the component automata can take a pair of synchronous transitions, it is
again natural to form the guard of the self-loop as the logical conjunction
of the guards of the individual transitions. The target states of each initial
transition of A would normally be formed as the union of the target states
of the synchronizing transitions; however, since the intention is to obtain a
self-loop that prevents the run of A from separating into two branches, we
replace the initial states of the component automata in this set with the ini-
tial state of A. To define the acceptance conditions of the new self-loop, it
would seem reasonable to try a similar strategy by taking the union of the
acceptance conditions of the pair of synchronizing transitions to prevent A
from possibly fin-recognizing more inputs than its component automata. In-
deed, this proves to be sufficient if the component automata do not share
any common acceptance conditions. However, as illustrated by the follow-
ing example, this simple strategy may lead to incorrect results if the sets of
acceptance conditions of the component automata are not disjoint.

Example 4.3.1 Figure 4.6 shows two alternating automata having the al-
phabet 2{p1,p2}, together with a linear alternating automaton (with transition
guards simplified as described in Sect. 4.1) obtained by the above informal
construction for merging the initial self-loops of the two automata into ini-
tial self-loops of the third automaton. It is easy to see that both automata in
Fig. 4.6 (a) fin-accept the word

(
{p1}{p2}

)ω
, but this word does not belong

to the language of the automaton (b): on this input, this automaton can only
take transitions, all of which include the same acceptance condition. �

The problem in the previous example arises because the component au-
tomata share a common acceptance condition that is included in the accep-
tance conditions of only one of two self-loops merged together. By adding
a requirement that permits the merging of two self-loops only if they share
a common subset of the acceptance conditions shared by both automata,
we can prove the main result of this section. (In the above discussion, we

4. IMPROVING THE TRANSLATION 59

PSfrag replacements

p1 p2

PSfrag replacements

p1 p2

PSfrag replacements

p1 p2

(p1 ∧ p2) (p1 ∧ p2)

(a) (b)

Fig. 4.6: Self-loop pairs of automata that share common acceptance conditions can-
not always be merged into single self-loops by forming their acceptance conditions
as the union of the acceptance conditions associated with the merged transitions.
(a) Two automata sharing a common acceptance condition; (b) Automaton obtained
from the two automata by merging pairs of their initial transitions with their accep-
tance conditions

required that both transitions to be merged are initial self-loops of the com-
ponent automata. We actually prove a slightly more general result: the tran-
sitions can be merged if the initial states of the component automata are
included in the union of their target state sets.)

Proposition 4.3.2 Let A1 = 〈2AP , Q1,∆1, qI1,F1〉 and A2 = 〈2AP , Q2,∆2,
qI2,F2〉 be two linear alternating automata (qI1 6= qI2) such that Aq

1 = Aq
2

holds for all q ∈ Q1∩Q2. Assume also that A1 and A2 have been simplified in
the sense of Corollary 2.3.17, that is, the set of acceptance conditions of each
non-self-loop transition of A1 or A2 is empty. Define the linear alternating

automaton A = 〈2AP , Q,∆, qI ,F〉, where Q
def
= Q1 ∪Q2 ∪ {qI} (qI /∈ Q1 ∪

Q2),

∆
def
= ∆1 ∪ ∆2 ∪





〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2,

{qI1, qI2} 6⊆ Q′
1 ∪Q

′
2 or[

qI1 ∈ Q′
1, qI2 ∈ Q′

2,

F1 ∩ F1 ∩ F2 6= F2 ∩ F1 ∩ F2

]





∪





〈
qI , (θ1 ∧ θ2), F1 ∪ F2,

(Q′
1 ∪Q

′
2 ∪ {qI}) \ {qI1, qI2}

〉

〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2,

{qI1, qI2} ⊆ Q′
1 ∪Q

′
2, and

if qI1 ∈ Q′
1, qI2 ∈ Q′

2,
then F1 ∩ F1 ∩ F2

= F2 ∩ F1 ∩ F2





and F
def
= F1∪F2. Then, for all w ∈ (2AP)ω, w ∈ Lfin(A) iff w ∈ Lfin(A1)∩

Lfin(A2).

Proof: (“⇒”) Let w ∈ Lfin(A). Then A has a fin-accepting run G =
〈V,E, L〉 on w. By Proposition 2.3.7, there exists an index 0 ≤ i ≤ ω and a
sequence of consecutive edges (ej)0≤j<i+1, ej ∈ E ∩ (Vj × 2Vj+1), such that
L(ej) is an initial self-loop of A for all 0 ≤ j < i, and if i < ω, then L(ei) is
an initial transition of A that is not a self-loop.

Let L(ej) = tj = 〈qI , θj, Fj, Q
′
j〉 for all 0 ≤ j < i + 1. Let 0 ≤ j < i+ 1.

From the definition of A it follows that tj corresponds to a pair of transitions
tj,1 = 〈qI1, θj,1, Fj,1, Q

′
j,1〉 ∈ ∆1 and tj,2 = 〈qI2, θj,2, Fj,2, Q

′
j,2〉 ∈ ∆2 for

some θj,1, θj,2 ∈ PL(AP), Fj,1 ⊆ F1, Fj,2 ⊆ F2, Q′
j,1 ⊆ Q1 and Q′

j,2 ⊆ Q2

such that θj = (θj,1 ∧ θj,2). If j < i, then L(ej) is an initial self-loop of A,
in which case Fj = Fj,1 ∪ Fj,2 and Q′

j =
(
Q′
j,1 ∪ Q′

j,2 ∪ {qI}
)
\ {qI1, qI2}

60 4. IMPROVING THE TRANSLATION

(where {qI1, qI2} ⊆ Q′
j,1 ∪ Q′

j,2). Otherwise, if i < ω, then Fi = ∅ and
Q′
i = Q′

i,1 ∪Q
′
i,2.

For all 0 ≤ j < i and k ∈ {1, 2}, writeQ′
j,k\{qI1, qI2} = {qj,k,1, qj,k,2, . . . ,

qj,k,nj,k
} for some 0 ≤ nj,k < ω. If i < ω, write Q′

i,k = {qi,k,1, qi,k,2, . . . ,
qi,k,ni,k

} for some 0 ≤ ni,k < ω (k ∈ {1, 2}).
We build a partial fin-accepting run G′ = 〈V ′, E ′, L′〉 of A1 on w. We

define the levels of G′ inductively: let V ′
0

def
= {v0,1} and L′(v0,1)

def
= qI1, and

assume that V ′
j and L′(v) have already been defined for some 0 ≤ j < i + 1

and for all v ∈ V ′
j , respectively. For all v ∈ V ′

j , let S(v)
def
= ∅ if L′(v) /∈

{qI1, qI2}. Otherwise, if L′(v) = qIk for some k ∈ {1, 2}, let

S(v)
def
= {vj,k,1, . . . , vj,k,nj,k

} ∪

{{
vj+1,l l ∈ {1, 2}, qIl ∈ Q′

j,k

}
if j < i

∅ if i < ω, j = i.

Let V ′
j+1

def
=

⋃
v∈V ′

j
S(v), and define the labelling for the nodes at level j + 1

by setting

L′(vj,k,l)
def
= qj,k,l and L′(vj+1,k)

def
= qIk

for all (relevant) combinations of k ∈ {1, 2} and 1 ≤ l ≤ nj,k. If i < ω,

let V ′
j

def
= ∅ for all i + 1 < j < ω. To complete the definition of G′, let

E ′ def
=

{
〈vj,k, S(vj,k)〉 vj,k ∈ V ′

j for some 0 ≤ j < i+1 and k ∈ {1, 2}
}

, and

for all e =
〈
vj,k, S(vj,k)

〉
∈ E ′, let L′(e)

def
= tj,k.

We check thatG′ is a partial run of A1 onw. First, we see that V0 = {v0,1},
L′(v0,1) = qI1, V ′ is partitioned into finite disjoint levels, and all edges of E ′

are between successive levels of G′.
Let v ∈ V ′

j for some 0 ≤ j < ω. Then v = vj−1,k,l for some k ∈ {1, 2} and
1 ≤ l ≤ nj−1,k, or v = vj,k for some k ∈ {1, 2}. In the former case, v has no
outgoing edges and satisfies the requirements of a partial run of A1 trivially.
Otherwise v = vj,k has the unique outgoing edge

〈
v, S(v)

〉
∈ E ′ labelled

with the transition tj,k = 〈qIk, θj,k, Fj,k, Q
′
j,k〉 ∈ ∆k. Because the edge ej ∈

Vj × 2Vj+1 ⊆ E is labelled in G with the transition tj = 〈qI , θj, Fj, Q
′
j〉 ∈ ∆,

w(j) |= θj (G is a run of A). Because θj = (θj,1 ∧ θj,2), it follows that
w(j) |= θj,k. Moreover, L′(vj,k) = qIk, and it is straightforward to check from
the definitions that also L′

(
S(v)

)
= Q′

j,k holds. Thus the edge labelling of
G′ is consistent.

If v′ ∈ V ′
j for some 1 ≤ j < ω, then, by the inductive definition of the

levels of G′, there exists a node v ∈ V ′
j−1 such that L′(v) ∈ {qI1, qI2} and

v′ ∈ S(v). Because j − 1 < i + 1, L′(v) ∈ {qI1, qI2} implies that v = vj−1,k

for some k ∈ {1, 2}. Because
〈
vj−1,k, S(vj−1,k)

〉
∈ E ′, it follows that v′ is a

successor of the node v at level j − 1. This shows that G′ is a partial run of
A1 on w.

If V ′
j = ∅ for some 0 ≤ j < ω (which always holds if i < ω), then E ′

is finite. In this case E(G′) = ∅, and G′ is a partial fin-accepting run of A
on w. Otherwise i = ω, and G′ contains an infinite sequence of consecu-
tive edges r = (e′j)0≤j<ω, where e′j ∈ E ′ ∩ (V ′

j × 2V
′
j+1) for all 0 ≤ j < ω.

By the definition of E ′, e′j =
〈
vj,k, S(vj,k)

〉
for some k ∈ {1, 2}, and thus

L′(e′j) ∈ {tj,1, tj,2}. Suppose that fin(r) 6= ∅. Then there exists an accep-
tance condition f ∈ F1 ∪ F2 and an index 0 ≤ l < ω such that for all
l ≤ j < ω, L′(e′j) includes f in its acceptance conditions. Because i = ω,

4. IMPROVING THE TRANSLATION 61

each edge ej in the run G is labelled with a self-loop of A for all 0 ≤ j < ω,
and thus L(ej) always includes the acceptance conditions of both tj,1 and tj,2
in its acceptance conditions. But then also fin

(
(ej)0≤j<ω

)
6= ∅, which con-

tradicts the assumption that G is a fin-accepting run of A. Therefore fin(r) is
necessarily empty, and G′ is a partial fin-accepting run of A1 on w.

Let v ∈ V ′
j for some 0 ≤ j < ω be a node with no outgoing edges in G′.

Then v is one of the nodes vj−1,k,l for some k ∈ {1, 2} and 1 ≤ l ≤ nj−1,k,

and L′(v) ∈ Q′′ def
= {qj−1,k,1, . . . , qj−1,k,nj−1,k

} ⊆ Q1 (because G′ is a run
of A1, all nodes in G′ are labelled with descendants of L(v0,1) = qI1 by
Proposition 2.3.6). In the original run G, ej−1 ∈ Vj−1 × 2Vj , and L(ej−1) =
〈qI , θj−1, Fj−1, Q

′
j−1〉, whereQ′′ ⊆ Q′

j−1. Because G is a fin-accepting run of
A on w, Aq fin-accepts wj for all q ∈ Q′

j−1, and because Q′′ ⊆ Q1, Aq = Aq
1

for all q ∈ Q′′. Thus especially AL′(v)
1 has a fin-accepting run on wj, and

because this result holds for all v ∈ V ′, we conclude that G′ can be extended
into a full fin-accepting run of A1 on w by Proposition 2.3.10.

By repeating the above construction of G′ for the automaton A2 (i.e., by

starting the inductive definition of the levels of V ′ from the set V ′
0

def
= {v0,2}

with L′(v0,2)
def
= qI2), we obtain a fin-accepting run of A2 on w. Thus w ∈

Lfin(A1) and w ∈ Lfin(A2), and the result follows.

(“⇐”) Let w ∈ Lfin(A1) ∩ Lfin(A2), and let G1 = 〈V 1, E1, L1〉 and
G2 = 〈V 2, E2, L2〉 be fin-accepting runs of A1 and A2 on w, respectively.
(Without loss of generality, we may assume that V 1 ∩ V 2 = E1 ∩ E2 = ∅.)
By Proposition 2.3.7, there exist two indices 0 ≤ i1 ≤ ω and 0 ≤ i2 ≤ ω
such that for all k ∈ {1, 2}, Gk contains a sequence of consecutive edges

(ej,k)0≤j<ik+1, ej,k ∈ Ek ∩ (V k
j × 2V

k
j+1), such that for all 0 ≤ j < ik,

Lk(ej,k) ∈ ∆k is an initial self-loop of Ak, and if ik < ω, then Lk(eik,k) ∈ ∆k

is an initial transition of Ak that is not a self-loop.
Our intention is to use the sequences (ej,1)0≤j<i1+1 and (ej,2)0≤j<i2+1 to

construct a partial fin-accepting run for the compound automaton A built
from A1 and A2. This partial run will again consist of a sequence of edges
labelled with initial self-loops of A, possibly followed by an edge labelled
with an initial transition that is not a self-loop of A. For this purpose, we
need the following result.

Claim. There exists an index 0 ≤ i ≤ ω and, for each k ∈
{1, 2}, a sequence (tj,k)0≤j<i+1 of initial transitions of Ak (where tj,k =
〈qIk, θj,k, Fj,k, Q

′
j,k〉 ∈ ∆k for all 0 ≤ j < i+ 1 and k ∈ {1, 2}) such that

w(j) |= (θj,1 ∧ θj,2) for all 0 ≤ j < i + 1, {qI1, qI2} ⊆ Q′
j,1 ∪Q

′
j,2 for all

0 ≤ j < i, and one of the following conditions holds:

(a) i < ω, and {qI1, qI2} 6⊆ Q′
i,1 ∪Q

′
i,2,

(b) i = ω, and there exists an index 0 ≤ i′ < ω such that tj,k is an
initial self-loop of Ak for all i′ ≤ j < ω and k ∈ {1, 2}; or

(c) i = ω, tj,k is an initial self-loop of Ak for some k ∈ {1, 2} for
all 0 ≤ j < ω, and tj,3−k is an initial transition of A3−k for all
0 ≤ j < ω such that tj,3−k is not a self-loop of A3−k for infinitely
many j.

62 4. IMPROVING THE TRANSLATION

Proof: If i1 = i2 < ω, then, by the choice of i1 and i2, qIk is not in-
cluded in the target states of Lk(eik ,k) for k ∈ {1, 2}. Assume neverthe-
less that qI1 and qI2 are both included in the union of the target states
of these transitions. Therefore it must be case that qI1 is a target state
of L2(ei2,2) ∈ ∆2, and qI2 is a target state of L1(ei1,1) ∈ ∆1, and thus
{qI1, qI2} ⊆ Q1 ∩ Q2. Because Aq

1 = Aq
2 holds for all q ∈ Q1 ∩ Q2,

it now follows that both A1 and A2 contain a cycle that is not a self-
loop. However, this contradicts the linearity of A1 and A2. Therefore
either qI1 or qI2 must be missing from the union of the target states of

L1(ei1,1) and L2(ei2,2). We can now choose i
def
= i1 = i2 and define

tj,k
def
= Lk(ej,k) = 〈qIk, θj,k, Fj,k, Q

′
j,k〉 for all 0 ≤ j ≤ i and k ∈ {1, 2}.

Because G1 and G2 are runs of A1 and A2 on w, it is easy to see that
w(j) |= (θj,1 ∧ θj,2) holds for all 0 ≤ j ≤ i. Thus the transition se-
quences (tj,1)0≤j≤i and (tj,2)0≤j≤i satisfy the claim such that condition
(a) holds.

If i1 = i2 = ω, then Lk(ej,k) is an initial self-loop of Ak for all k ∈

{1, 2} and 0 ≤ j < ω. By defining tj,k
def
= Lk(ej,k) for all 0 ≤ j < ω and

k ∈ {1, 2}, we see that {qI1, qI2} ⊆ Q′
j,1 ∪ Q

′
j,2 and w(j) |= (θj,1 ∧ θj,2)

hold for all 0 ≤ j < ω. Thus the claim (case (b)) is now satisfied with

i
def
= ω and i′

def
= 0.

If i1 6= i2, then ik < ik̄ for some k ∈ {1, 2}, where k̄
def
= 3 − k, and

ik < ω. Similar to above, we can define tj,k
def
= Lk(ej,k) for all 0 ≤ j ≤ ik

and k ∈ {1, 2}; then {qI1, qI2} ⊆ Q′
j,1 ∪ Q′

j,2 holds for all 0 ≤ j < ik,
and w(j) |= (θj,1 ∧ θj,2) holds for all 0 ≤ j ≤ ik.

By the choice of ik, qIk /∈ Q′
ik ,k

. If qIk /∈ Q′
ik ,k̄

also holds, then it is easy

to see that the transition sequence defined above satisfies the conditions

(case (a)) in the claim with i
def
= ik.

Otherwise, if qIk ∈ Q′
ik ,k̄

, then {qI1, qI2} ⊆ Q′
ik,1

∪ Q′
ik,2

, because

Lk̄(eik,k̄) is a self-loop of Ak̄ by the choice of ik̄ and the fact that ik < ik̄.

It follows that eik,k̄ has a target node (at level ik + 1 in Gk̄) labelled
with qIk, and thus qIk ∈ Q1 ∩ Q2. By Proposition 2.3.9, this implies
that AqIk

k̄
(= AqIk

k) fin-accepts wik+1, and thus we can extract from Gk̄

a fin-accepting run of Ak on wik+1. From Proposition 2.3.7 it now fol-
lows that there exists an index ik + 1 ≤ i′k < ω such that the origi-
nal edge sequence (ej,k)0≤j≤ik can be extended with another edge se-

quence (ej,k)ik+1≤j<i′k+1, ej,k ∈ E k̄ ∩ (V k̄
j × 2V

k̄
j+1), such that for all

ik + 1 ≤ j < i′k, Lk̄(ej,k) ∈ ∆k is an initial self-loop of Ak, and if i′k < ω,
then Lk̄(ei′k ,k) ∈ ∆k is an initial non-self-loop transition of Ak.

If i′k is still strictly less than ik̄, we can apply the above construction
repeatedly to extend the edge sequence (ej,k)0≤j<i′k+1 with segments of

consecutive edges in Gk̄ (corresponding to path fragments of separate
runs of Ak embedded in Gk̄) labelled (in Gk̄) with initial transitions of
Ak until we either find a (finite) index 0 ≤ i′′ < ik̄ such that either
qI1 or qI2 is missing from the union of the target states of Lk̄(ei′′,1) and
Lk̄(ei′′,2), or the repeated extension of (ej,k)0≤j<ik+1 results in an edge
sequence (ej,k)0≤j<i′′+1 for some 0 ≤ i′′ ≤ ω such that ik̄ ≤ i′′. We
can now continue the definition of the transition sequences by letting

4. IMPROVING THE TRANSLATION 63

tj,k̄
def
= Lk̄(ej,k̄) and tj,k

def
= Lk̄(ej,k) for all ik + 1 ≤ j < min{i′′, ik̄} + 1;

by the construction, {qI1, qI2} ⊆ Q′
j,1 ∪ Q

′
j,2 then holds for all 0 ≤ j <

min{i′′, ik̄}, andw(j) |= (θj,1∧θj,2) holds for all 0 ≤ j < min{i′′, ik̄}+1.
If i′′ < ik̄ or i′′ = ik̄ < ω, then {qI1, qI2} 6⊆ Q′

i′′,1 ∪ Q′
i′′,2, and case

(a) of the claim is satisfied with i
def
= i′′. This case of the claim also holds

(with i
def
= ik̄) if ik̄ < i′′: clearly, qIk̄ /∈ Q′

ik̄,k̄
holds by the choice of

ik̄, and qIk̄ /∈ Q′
ik̄,k

must hold also, because A3−k is a linear alternating

automaton. (Because qIk ∈ Q′
ik,k̄

, it is a target state of an initial transition

of A3−k, and thus no initial transition of Ak can have qIk̄ as its target
state, since otherwise A3−k would contain a loop that is not a self-loop.)

In the remaining case, i′′ = ik̄ = ω. By choosing i
def
= ω, case (b) or

(c) of the claim is necessarily satisfied. �

Let (tj,1)0≤j<i+1 =
(
〈qI1, θj,1, Fj,1, Q

′
j,1〉

)
0≤j<i+1

∈∆i+1
1 and (tj,2)0≤j<i+1

=
(
〈qI2, θj,2, Fj,2, Q

′
j,2〉

)
0≤j<i+1

∈ ∆i+1
2 for some 0 ≤ i < ω be two se-

quences of initial transitions of A1 and A2, respectively, such that the above

claim is satisfied. Let ı̂
def
= min

(
{i} ∪ {0 ≤ j < i | qI1 ∈ Q′

j,1, qI2 ∈

Q′
j,2, Fj,1 ∩ F1 ∩ F2 6= Fj,2 ∩ F1 ∩ F2}

)
. For all 0 ≤ j < ı̂, write Q′

j,k \
{qI1, qI2} = {qj,k,1, . . . , qj,k,nj,k

} for some 0 ≤ nj,k < ω, and if ı̂ < ω,
write Q′

ı̂,k = {qı̂,k,1, . . . , qı̂,k,nı̂,k
} for some 0 ≤ nı̂,k < ω. Define the graph

G = 〈V,E, L〉, where

• V0
def
= {v0},

Vj+1
def
= {vj,1,1, . . . , vj,1,nj,1

}∪{vj,2,1, . . . , vj,2,nj,2
}∪

{
{vj+1} if j < ı̂
∅ otherwise

for all 0 ≤ j < ı̂+ 1, and if ı̂ < ω, let Vj
def
= ∅ for all ı̂+ 1 < j < ω;

• E
def
=

⋃
0≤j<ı̂+1

{
〈vj, Vj+1〉

}
; and

• for all 0 ≤ j < ı̂ + 1, let L(vj)
def
= qI and L(vj,k,l)

def
= qj,k,l for all

k ∈ {1, 2} and 1 ≤ l ≤ nj,k. Furthermore, let L
(
〈vj, Vj+1〉

)
def
=〈

qI , (θj,1 ∧ θj,2), Fj,1 ∪Fj,2, (Q
′
j,1 ∪Q

′
j,2 ∪{qI}) \ {qI1, qI2}

〉
for all 0 ≤

j < ı̂, and if ı̂ < ω, let L
(
〈vı̂, Vı̂+1〉

)
def
= 〈qI , (θı̂,1 ∧ θı̂,2), ∅, Q

′
ı̂,1 ∪Q

′
ı̂,2〉.

We check that G is a partial run of A on w. By the definition of G, V0 =
{v0}, L(v0) = qI , V consists of finite disjoint levels, and E is a collection of
edges between consecutive levels of G.

Let v ∈ Vj for some 0 ≤ j < ω. Then v either has no outgoing edges,
or v = vj , L(v) = qI , and v has the unique outgoing edge 〈vj, Vj+1〉 ∈ E.
By definition of the edge sequences, w(j) |= (θj,1 ∧ θj,2). Because tj,k is
an initial transition of Ak for all k ∈ {1, 2}, it follows from the definition
of A that ∆ contains a transition t =

〈
qI , (θj,1 ∧ θj,2), F, Q

′
〉
, where either

F = Fj,1 ∪ Fj,2 and Q′ = (Q′
j,1 ∪ Q′

j,2 ∪ {qI}) \ {qI1, qI2}, or F = ∅ and
Q′ = Q′

j,1 ∪ Q′
j,2 (by the choice of ı̂, the latter case occurs iff ı̂ < ω and

j = ı̂). From the definitions it now follows that L
(
〈vj, Vj+1〉

)
= t. Likewise,

it is straightforward to check that L(Vj+1) = Q′, and thus the edge labelling
is consistent.

By the definition of G, each node vj ∈ V for some 1 ≤ j < ω is a
successor of the node vj−1 ∈ V .

64 4. IMPROVING THE TRANSLATION

We show thatG is a partial fin-accepting run of A onw. This holds trivially
if ı̂ < ω, in particular, if the edge sequences (tj,k)0≤j<i+1 satisfy condition (a)
of the above claim. Otherwise i = ı̂ = ω, and E(G) contains the unique
acceptance sequence r =

(
〈vj, Vj+1〉

)
0≤j<ω

. Assume that fin(r) 6= ∅. Then

there exists an index 0 ≤ l < ω and an acceptance condition f ∈ F shared
by every transition L

(
〈vj, Vj+1〉

)
=

〈
qI , (θj,1∧ θj,2), Fj,1∪Fj,2, (Q

′
j,1∪Q

′
j,2 ∪

{qI}) \ {qI1, qI2}
〉

for all l ≤ j < ω.

We claim that there now exists a k ∈ {1, 2} and an index l ≤ l̂ < ω such
that (tj,k)l̂≤j<ω is an infinite sequence of labels of consecutive edges (i.e., an

edge sequence r′) embedded inG1 orG2 in which f ∈ Fj,k actually holds for

all l̂ ≤ j < ω. Because fin(r′) 6= ∅, this then implies that one of the runs G1

or G2 cannot be fin-accepting, which contradicts our original assumptions.
Therefore it must be the case that fin(r) = ∅, and G is a partial fin-accepting
run of A on w.

In case (b), there exists an index 0 ≤ i′ < ω such that tj,k is an initial
self-loop of Ak for all i′ ≤ j < ω and k ∈ {1, 2}. Because the edges of r
are self-loops of A for all 0 ≤ j < ω, it follows from the definition of A that

Fj,1 ∩ F1 ∩ F2 = Fj,2 ∩ F1 ∩ F2 holds for all l̂
def
= max{l, i′} ≤ j < ω.

The above claim is now easily seen to hold if f ∈ Fj,1 ∩ Fj,2 holds for

all l̂ ≤ j < ω. Otherwise there exists an index l̂ ≤ l′ < ω such that f ∈
Fl′,k \Fl′,3−k for some k ∈ {1, 2}. But then f /∈ F1∩F2, and thus f ∈ Fj,3−k
cannot hold for any 0 ≤ j < ω. Therefore it must be the case that f ∈ Fj,k
holds for all l̂ ≤ j < ω.

In case (c), the transition sequence (tj,k)0≤j<ω is an infinite sequence of
initial self-loops of Ak for some k ∈ {1, 2}, and there exist infinitely many in-
dices 0 ≤ j < ω such that tj,3−k is an initial non-self-loop transition of A3−k.
Because both A1 and A2 are simplified in the sense of Corollary 2.3.17,
Fj,3−k = ∅ for each such j, and thus the fact that f ∈ Fj,1 ∪ Fj,2 holds for all
l ≤ j < ω implies that f ∈ Fj,k ⊆ Fk. Suppose that there exists an index
l ≤ l′ < ω such that f /∈ Fl′,k. Then f ∈ Fl′,3−k ⊆ F3−k, which implies that
f ∈ F1 ∩ F2, and thus (again, due to the automaton simplification) tl′,3−k is
an initial self-loop of A3−k. But then the fact that F1∩F1∩F2 = F2∩F1∩F2

holds by the definition of A implies that f ∈ Fl′,k, a contradiction. Therefore

f ∈ Fj,k holds for all l̂
def
= l ≤ j < ω, and the claim follows.

Finally, if v ∈ Vj is a node with no outgoing edges in G, then 1 ≤ j < ω,
vj−1,k,l for some k ∈ {1, 2} and 1 ≤ l ≤ nj−1,k, and v is labelled with a node
in Q′

j−1,k. Because Aq
k has a fin-accepting run on wj for all q ∈ Q′

j−1,k (the
transition tj−1,k always labels an edge starting from a node at level j − 1 in
one of the fin-accepting runs G1 and G2), it follows that G can be extended
into a full fin-accepting run of A on w (Proposition 2.3.10), and therefore
w ∈ Lfin(A). �

By using the above result in the proof of Theorem 3.4.3, it follows that the
formula translation remains correct if the set of translation rules is extended
with the one given in the proposition. The effects of this translation rule on
the translation will be discussed in Sect. 4.3.4.

4. IMPROVING THE TRANSLATION 65

4.3.3 Modified Translation Rules: Binary Temporal Connectives

In this section we introduce new translation rules for the Until connectives
and use them to derive new rules also for the Release connectives. Simi-
lar to the previous section, the new rules apply to the basic translation of
an Until formula (ϕ1 Uϕ2) only in certain special cases, more specifically,
under the language containment relationship L(ϕ2) ⊆ L(ϕ1) (which can
be checked for using the basic translation as described in Sect. 4.2). Even
though the new rules for the Until connectives depend on language contain-
ment relationships, we still obtain improved translation rules independent of
any language containment relationships for the Release connectives.

The basic translation rule for an Until type formula (ϕ1 Uϕ2) creates a
new initial state for the constructed automaton and then transforms the initial
transitions of the automaton built for the subformula ϕ1 into initial self-loops
of the compound automaton. Clearly, all initial self-loops of this component
automaton are unrolled in the application of the rule, and thus the initial
state q of the component automaton will remain reachable from the initial
state of any automaton built from the compound automaton in subsequent
translation steps. However, if L(ϕ2) ⊆ L(ϕ1), it proves possible to defer
the introduction of a self-loop having q in its target states in the compound
automaton by a slight modification to the way in which the initial self-loops
of this automaton are defined. This increases the opportunities for removing
q later from the final automaton.

The following proposition gives a formal definition for the new translation
rules and shows, analogous to Lemma 3.4.2, that the acceptance behavior
of a linear alternating automaton built using one of these rules still corre-
sponds to the semantics of the Until connectives under the given assumption
on language containment. As usual, we replace language containment be-
tween LTL formulas with language containment between linear alternating
automata.

Proposition 4.3.3 Let A1 = 〈2AP , Q1,∆1, qI1,F1〉 and A2 = 〈2AP , Q2,∆2,
qI2,F2〉 be two linear alternating automata such that Aq

1 = Aq
2 holds for

all q ∈ Q1 ∩ Q2, and assume that Lfin(A2) ⊆ Lfin(A1). Define the linear
alternating automaton A = 〈2AP , Q,∆, qI ,F〉 obtained from A1 and A2 by

setting Q
def
= Q1 ∪Q2 ∪ {qI} (where qI /∈ Q1 ∪Q2), ∆

def
= ∆1 ∪∆2 ∪ ∆′, and

F
def
= F1 ∪ F2 ∪ F ′, where either

F ′ def
= {f}, ∆′ def

=
{
〈qI , θ, {f}, (Q

′ \ {qI1}) ∪ {qI}〉 〈qI1, θ, F,Q
′〉 ∈ ∆1

}

∪
{
〈qI , θ, ∅, Q

′〉 〈qI2, θ, F,Q
′〉 ∈ ∆2

}

(f /∈ F1 ∪ F2), or

F ′ def
= ∅, ∆′ def

=
{
〈qI , θ, F, (Q

′ \ {qI1}) ∪ {qI}〉 〈qI1, θ, F,Q
′〉 ∈ ∆1

}

∪
{
〈qI , θ, ∅, Q

′〉 〈qI2, θ, F,Q
′〉 ∈ ∆2

}
.

Then, for all w ∈ (2AP)ω, A fin-accepts w iff there exists an index 0 ≤ i < ω
such that A2 fin-accepts wi and A1 fin-accepts wj for all 0 ≤ j < i, or F ′ = ∅
and A1 fin-accepts wi for all 0 ≤ i < ω.

66 4. IMPROVING THE TRANSLATION

Proof: (“⇒”) Let w ∈ Lfin(A). Thus A has a fin-accepting run G =
〈V,E, L〉 on w, and there exists (Proposition 2.3.7) an index 0 ≤ i ≤ ω
and a sequence of consecutive edges (ej)0≤j<i+1, ej ∈ E∩ (Vj×2Vj+1), such
that L(ej) is an initial self-loop of A for all 0 ≤ j < i, and if i < ω, then
L(ei) is an initial transition of A that is not a self-loop.

We first show that if A1 fin-accepts wj for some 1 ≤ j < i + 1, then
A1 fin-accepts wk for all 0 ≤ k ≤ j. Assume that A1 fin-accepts wj for
some 1 ≤ j < i + 1. Because j − 1 < i, L(ej−1) = 〈qI , θ, F,Q

′〉 ∈ ∆
is an initial self-loop of A, and because G is a run, w(j − 1) |= θ, and Q′

is the union of the labels of the target nodes of ej−1 in G. The fact that
G is fin-accepting now implies that Aq′ fin-accepts wj for all q′ ∈ Q′ by
Proposition 2.3.9. Because L(ej−1) is an initial self-loop of A, there exists a
transition 〈qI1, θ, F

′, Q′′〉 ∈ ∆1 for some F ′ ⊆ F1 and Q′′ ⊆ Q1 such that

Q′ =
(
Q′′ \ {qI1}

)
∪ {qI} by the definition of A. It follows that Aq′ (= Aq′

1)
fin-accepts wj for all q′ ∈ Q′′ \ {qI1}.

If qI1 /∈ Q′′, then Aq′

1 fin-accepts wj for all q′ ∈ Q′′. Otherwise Q′′ =(
Q′ \ {qI}

)
∪ {qI1}, and Aq′ (= Aq′

1) fin-accepts wj for all q′ ∈ Q′ \ {qI}. By
the induction hypothesis, it follows that also AqI1

1 necessarily fin-accepts wj,

and thus Aq′

1 fin-accepts wj for all q′ ∈ Q′′ also in this case.
Because w(j − 1) |= θ, we can now apply Lemma 3.4.1 to conclude that

A1 fin-accepts wj−1. By induction, it follows that A1 fin-accepts wk for all
0 ≤ k ≤ j.

If i < ω, then L(ei) = 〈qI , θ, F,Q
′〉 is not an initial self-loop of A. By

the definition of A, L(ei) corresponds to a transition 〈qI2, θ, F
′, Q′〉 ∈ ∆2

for some F ′ ⊆ F2. Again, because G is a fin-accepting run of A and

w(i) |= θ, Aq′ (= Aq′

2) fin-accepts wi+1 for all q′ ∈ Q′ (Proposition 2.3.9),
and by Lemma 3.4.1, it follows that A2 fin-accepts wi. Because Lfin(A2) ⊆
Lfin(A1), we conclude that also A1 fin-accepts wi. By the above inductive
argument, A1 fin-accepts wj for all 0 ≤ j ≤ i, and the result follows.

On the other hand, if i = ω, then L(ej) is an initial self-loop of A for
all 0 ≤ j < ω. Then necessarily F ′ = ∅, since otherwise fin

(
(ej)0≤j<ω

)
6=

∅, which would contradict the assumption that G is fin-accepting. Because
each initial self-loop of A corresponds to an initial transition of A1 by the
definition of A, then the result follows immediately if infinitely many of these
transitions are not initial self-loops of A1 by the above inductive argument (if
L(ej) corresponds to a transition of A1 that is not a self-loop of A1, then j
can be used as the base case for the induction).

Otherwise there exists an index 0 ≤ j < ω such that the transition L(ej+k)
(which is an initial self-loop of A) corresponds to an initial self-loop of A1

for all 0 ≤ k < ω. Let ej = 〈v̂0, V
′〉 for some v̂0 ∈ Vj and V ′ ⊆ Vj+1,

and let L(ej+k) = 〈qI , θ
′
k, F

′
k, Q

′
k〉, where w(j + k) |= θ′k and Q′

k \ {qI} =
{qk,1, qk,2, . . . , qk,nk

} (0 ≤ nk < ω) for each 0 ≤ k < ω.
Define the graph G′ = 〈V ′, E ′, L′〉, where

• V ′
0

def
= {v̂0}, V ′

k+1
def
= {v̂k+1, vk,1, . . . , vk,nk

} for all 0 ≤ k < ω,

• E ′ def
=

⋃
0≤k<ω

{
〈v̂k, V

′
k+1〉

}
,

• L′(v̂k)
def
= qI1, L′(vk,l)

def
= qk,l for all 0 ≤ k < ω and 1 ≤ l ≤ nk, and

4. IMPROVING THE TRANSLATION 67

L′
(
〈v̂k, V

′
k+1〉

)
def
=

〈
qI1, θ

′
k, F

′
k, (Q

′
k \ {qI}) ∪ {qI1}

〉
for all 0 ≤ k < ω.

G′ is a partial run of A1 on wj:

• V ′
0 = {v̂0}, L′(v̂0) = qI1, and V ′ is partitioned into disjoint finite levels

(with edges only between successive levels).

• Let v ∈ V ′
k for some 0 ≤ k < ω. Then v either has no outgoing edges

and satisfies the second condition of a partial run trivially, or v = v̂k. In
this case v has the unique outgoing edge e = 〈v, V ′

k+1〉 ∈ E ′. Because
L(ej+k) = 〈qI , θ

′
k, F

′
k, Q

′
k〉 is a self-loop of A that corresponds to an

initial self-loop of A1 and F ′ = ∅, it follows from the definition of
A that ∆1 contains the transition

〈
qI1, θ

′
k, F

′
k, (Q

′
k \ {qI}) ∪ {qI1}

〉
=

L′(e) =
〈
L′(v), θ′k, F

′
k, L(V ′

k+1)
〉
. Furthermore, because G is a run of

A, w(j + k) = wj(k) |= θ′k, and thus the edge labelling is consistent.

• By the definition of E ′, each node v ∈ V ′
k for some 1 ≤ k < ω is a

successor of a node at level k − 1 of G′, and thus G′ satisfies also the
third condition of a partial run of A1 on wj.

Clearly, E(G′) contains the unique acceptance sequence r = (e′k)0≤k<ω =(
〈v̂k, V

′
k+1〉

)
0≤k<ω

. Because the transition L′(e′k) inherits its acceptance con-

ditions from the transition L(ej+k) for all 0 ≤ k < ω, it follows that fin(r) =
fin

(
(e′k)0≤k<ω

)
= fin

(
(ej+k)0≤k<ω

)
= ∅, because G is a fin-accepting run of

A on w. Thus G′ is a partial fin-accepting run of A1 on wj.
If v ∈ V ′

k for some 0 ≤ k < ω has no outgoing edges, then necessarily v =
vk−1,l for some 1 ≤ k < ω and 1 ≤ l ≤ nk−1, and L′(v) = qk−1,l ∈ Q′

k−1 \
{qI} ⊆ Q1. Because G is a fin-accepting run of A on w and ej+k−1 ∈ E
and L(ej+k−1) = 〈qI , θ

′
k−1, F

′
k−1, Q

′
k−1〉, it follows that w(j + k− 1) |= θ′k−1,

and Aq′ fin-accepts wj+k = (wj)k for all q′ ∈ Q′
k−1. Thus especially AL′(v)

(= A
L′(v)
1) fin-accepts wj, and because v is arbitrary, G′ can be extended into

a fin-accepting run of A1 on wj by Proposition 2.3.10.
Since each level of the fin-accepting run G′ includes a node labelled with

qI1, it follows by Proposition 2.3.9 that A1 fin-accepts (wj)k = wj+k for all
0 ≤ k < ω. By the inductive argument given in the beginning of the proof,
A1 fin-accepts wk also for all 0 ≤ k ≤ j, and thus A1 fin-accepts wk for all
0 ≤ k < ω.

(“⇐”) This result follows from an obvious modification of the proof of the
corresponding direction in Lemma 3.4.2. �

The above result can be used directly in the proof of Theorem 3.4.3 to
show that the automaton translation remains correct by replacing the original
translation rules for the Us and the Uw connectives (Table 3.1, page 33) with
the ones shown in the upper half of Table 4.2. See also Figs. 4.7 (b) and (c).

The rules for the Rs and Rw connectives can again be obtained by com-
bining the (original) ∧ rule with the new rules for the corresponding Until
connectives. In particular, due to the identities

(ϕ1 Rs ϕ2) ≡
(
(ϕ2 Us (ϕ1 ∧ ϕ2)

)
and (ϕ1 Rw ϕ2) ≡

(
(ϕ2 Uw (ϕ1 ∧ ϕ2)

)

and the fact that L
(
(ϕ1 ∧ ϕ2)

)
= L(ϕ1) ∩ L(ϕ2) ⊆ L(ϕ2) always holds

for any two LTL formulas ϕ1, ϕ2 ∈ LTL(AP), it follows that the language

68 4. IMPROVING THE TRANSLATION

Table 4.2: Refined translation rules for the binary temporal connectives

◦ F◦ ∆◦

{〈
qI , θ1, {f}, (Q

′
1 \ {qI1}) ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∪
{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}
if Lfin(A2) ⊆ Lfin(A1)

Us {f} {〈
qI , θ1, {f}, Q

′
1 ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∪
{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}
otherwise

{〈
qI , θ1, F1, (Q

′
1 \ {qI1}) ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∪
{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}
if Lfin(A2) ⊆ Lfin(A1)

Uw ∅ {〈
qI , θ1, ∅, Q

′
1 ∪ {qI}

〉
〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}

∪
{
〈qI , θ2, ∅, Q

′
2〉 〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}
otherwise

{〈
qI , θ2, {f}, (Q

′
2 \ {qI2}) ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∪
{
〈qI , θ1, ∅, Q

′
1〉 〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}
if Lfin(A1) ⊆ Lfin(A2)

Rs {f} {〈
qI , θ2, {f}, (Q

′
2 \ {qI2}) ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∪

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}
otherw.

{〈
qI , θ2, F2, (Q

′
2 \ {qI2}) ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∪
{
〈qI , θ1, ∅, Q

′
1〉 〈qI1, θ1, F1, Q

′
1〉 ∈ ∆1

}
if Lfin(A1) ⊆ Lfin(A2)

Rw ∅ {〈
qI , θ2, F2, (Q

′
2 \ {qI2}) ∪ {qI}

〉
〈qI2, θ2, F2, Q

′
2〉 ∈ ∆2

}

∪

{〈
qI , (θ1 ∧ θ2), ∅, Q

′
1 ∪Q

′
2

〉 〈qI1, θ1, F1, Q
′
1〉 ∈ ∆1,

〈qI2, θ2, F2, Q
′
2〉 ∈ ∆2

}
otherw.

4. IMPROVING THE TRANSLATION 69

PSfrag replacements

θ1

A1

θ2

θ3

A2

qI

qI1 qI2

(a)

PSfrag replacements

θ1A1
θ2

θ2

θ3

A2

qI

qI1

qI2qI1

θ1

θ3

Uw
Lfin(A2)⊆Lfin(A1)

(b)

PSfrag replacements

θ1

θ1

A1
θ2

θ2

θ3

A2

qI

qI1 qI2

θ3

Uw
Lfin(A2) 6⊆Lfin(A1)

(c)

PSfrag replacements

θ1

A1

θ2

θ3

A2

qI

qI1

qI2

qI2

θ2

θ3

θ1

θ3

Rw
Lfin(A1)⊆Lfin(A2)

(d)

PSfrag replacements

θ1

A1

θ2

θ2

θ3

A2

qI

qI1 qI2

(θ1∧θ2)

(θ1∧θ3)

θ3

Rw
Lfin(A1) 6⊆Lfin(A2)

(e)

Fig. 4.7: Automata built using the modified translation rules for the weak binary
temporal connectives. (a) Two component automata A1 and A2; (b) Automa-
ton built from A1 and A2 with the Uw translation rule under the assumption
Lfin(A2) ⊆ Lfin(A1); (c) Automaton built from the component automata using the
Uw rule without the language containment assumption; (d) Automaton built from
A1 and A2 with the Rw translation rule under the assumption Lfin(A1) ⊆ Lfin(A2);
(e) Automaton built from the component automata using the Rw rule without the as-
sumption. The initial transitions of the automata built for the corresponding strong
connectives have the same target states as the initial transitions of the above au-
tomata; however, all the initial self-loops of the automata for the strong connectives
share an acceptance condition that is not included in either of the component au-
tomata

70 4. IMPROVING THE TRANSLATION

containment assumption in Proposition 4.3.3 holds trivially between the top-
level subformulas of the Until formulas corresponding to the Release formu-
las. This makes it possible to apply the new Until rules in the derivation of
the Release rules, and thus the original translation rules for the Release con-
nectives can be replaced with ones that allow a slightly simplified transition
structure for the compound automaton.

Finally, the identities of Table 4.1 allow a further improvement in the
translation of Release formulas of the form (ϕ1 Rϕ2), this time under the
language containment relationship L(ϕ1) ⊆ L(ϕ2). Because (ϕ1 Rs ϕ2) ≡
(ϕ2 Us ϕ1) and (ϕ1 Rw ϕ2) ≡ (ϕ2 Uw ϕ1) hold in this case and L(ϕ1) ⊆
L(ϕ2) implies the language containment assumption in Proposition 4.3.3
for the Until formulas, the translation of the Release formulas reduces to the
translation of Until formulas using the improved translation rules. (As noted
in Sect. 4.3.1, we may not need to apply a rule explicitly if we are able to
reuse an automaton built for an Until formula.) Using the Until translation
in this case removes the need to collect all pairs of initial transitions of the
component automata corresponding to the subformulas ϕ1 and ϕ2, which
reduces the worst-case number of initial transitions in the compound au-
tomaton. The new rules for the Release connectives are shown in the lower
half of Table 4.2; see also Figs. 4.7 (d) and (e) for illustration.

We end this section with an example that provides some justification for
the necessity of the language containment assumption in the application of
the new rules to formulas with Us or Uw as their main connective.

Example 4.3.4 Figure 4.8 shows two automata built for the LTL formula

(
(Gp1) Us p2

)
≡

(
(⊥Rw p1) Us p2

)
∈ LTL

(
{p1, p2}

)
,

where the automaton (b) is obtained using the original translation rules (with
the usual transition guard simplification and restriction of the automaton
to states reachable from its initial state), while the automaton (c) is (erro-
neously) obtained with the new rules by ignoring the requirement concern-
ing the relationship between the languages of the automata built for the sub-
formulas (⊥Rw p1) and p2; clearly, Lfin(Ap2) (= L(p2)) ⊆ Lfin(A(⊥Rw p1))
(= L(Gp1)) does not hold in this case. It is easy to see that the automaton (c)
fin-accepts the word {p1}{p2}

ω, which is, however, not a model of the LTL
formula

(
(Gp1) Us p2

)
. �

4.3.4 Discussion

In this section we illustrate and discuss some effects of substituting the modi-
fied translation rules for the original rules given in Sect. 3.2 in the translation
procedure.

Translation Example Revisited

We first illustrate the application of the refined translation rules by repeat-
ing the translation for the formula from which we built a linear alternating
automaton in Sect. 4.1.3 using the basic rules.

4. IMPROVING THE TRANSLATION 71

PSfrag replacements
p1

PSfrag replacements
p2

PSfrag replacements

p1

PSfrag replacements

p1

p1

p2

PSfrag replacements p1p2

(a) (b) (c)

Fig. 4.8: The improved Until translation rules cannot always be substituted for the
original ones. (a) Automata Ap1 , Ap2 and A(⊥Rw p1) built for the formulas p1, p2,
and (⊥Rw p1), respectively; (b) Automaton built for the formula

(
(⊥Rw p1)Us p2

)

from A(⊥Rw p1) and Ap2 with the original translation rules; (c) Automaton built from
the same automata with the improved translation rules, ignoring the requirement on
the language containment relationship between the languages fin-accepted by these
automata

Example 4.3.5 Consider again the LTL formula
((

GFp1 ∧ GFp2) ∨
(
p3 Rw (p4 Rs p5)

))

≡
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]

≡ (ϕ ∨ ψ);

similar to the example in Sect. 4.1.3, we translate the formula into an au-
tomaton by dealing with its top-level subformulas ϕ and ψ separately.

Because we do not have new translation rules for atomic formulas, we
obtain the same automata as in Sect. 4.1.3 for the atomic formulas of ϕ (re-
peated in Fig. 4.9 (a)). Because Lfin(Ap1) ⊆ Lfin(A>) and Lfin(Ap2) ⊆
Lfin(A>) obviously hold, we can apply the new rule for the Us connective
to build the automata for the formulas (>Us p1) and (>Us p2) as shown in
Fig. 4.9 (b). (Actually, because A> has no initial self-loops, we obtain in this
case the same compound automata as previously.)

Because Lfin(⊥) = ∅, the language fin-accepted by A⊥ is trivially a sub-
set of the language fin-recognized by any automaton. Therefore, by using
the appropriate Rw rule that makes use of this language containment as-
sumption, we obtain the automata shown in Fig. 4.9 (c) for the subformu-
las

(
⊥Rw (>Us p1)

)
and

(
⊥Rw (>Us p2)

)
. We again remove the transitions

with unsatisfiable guards from these automata (Fig. 4.9 (d)). Because these
automata do not share common acceptance conditions, Proposition 4.3.2
allows us to build an automaton for the formula ϕ by merging all pairs of
initial self-loops of these automata. This step results in the single-state au-
tomaton shown in Fig. 4.9 (e). Figure 4.9 (f) shows the same automaton after
transition guard simplification. Using the refined translation rules, we are
thus able to replace the five-state automaton in Fig. 4.1 (f) (page 52) with an
automaton consisting of only a single state.

We then repeat the translation for the formula ψ. As before, we start from
the automata for the atomic formulas (Fig. 4.10 (a)). Because Lfin(Ap4) 6⊆
Lfin(Ap5), we apply the general refined Rs rule to define an automaton for
the formula (p4 Rs p5) (Fig. 4.10 (b)). The weak version of the same rule
needs to be applied to build an automaton for the formula

(
p3 Rw (p4 Rs p5)

)

72 4. IMPROVING THE TRANSLATION

PSfrag replacements
p1

PSfrag replacements
p2

PSfrag replacements

>
PSfrag replacements

⊥

(a)

PSfrag replacements

>p1

PSfrag replacements

> p2

(b)

PSfrag replacements

>p1

⊥

PSfrag replacements
p2>

⊥

(c)
PSfrag replacements

>p1
⊥

PSfrag replacements

p2>
⊥

(d)PSfrag replacements

(> ∧>) (> ∧ p2)

(p1 ∧ p2) (p1 ∧ >)

(e)

PSfrag replacements

> p2

(p1 ∧ p2) p1

(f)

Fig. 4.9: Building an automaton for the LTL formula ϕ
def

≡
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
using the refined translation rules. (a) Automata for the atomic

subformulas of ϕ; (b) Automata for the formulas (>Us p1) and (>Us p2); (c) Au-
tomata for the formulas

(
⊥Rw (>Us p1)

)
and

(
⊥Rw (>Us p2)

)
; (d) The automata

obtained from (c) by removing transitions with unsatisfiable guards; (e) Automaton
for the formula ϕ; (f) The automaton obtained from (e) by transition guard simplifi-
cation

4. IMPROVING THE TRANSLATION 73

PSfrag replacements
p3

PSfrag replacements
p4

PSfrag replacements
p5

PSfrag replacements

p5(p4 ∧ p5)

PSfrag replacements

p5 (p4 ∧ p5)

(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)(p4 ∧ p5)

(a) (b) (c)

Fig. 4.10: Building an automaton for the formula ψ
def

≡
(
p3 Rw (p4 Rs p5)

)
using the

refined translation rules. (a) Automata for the atomic subformulas of ψ; (b) Automa-
ton for the formula (p4 Rs p5); (c) Automaton for the formula ψ

PSfrag replacements

>
>

p2

p2

(p1 ∧ p2)

(p1 ∧ p2) p1

p1

p5

p5

(p4 ∧ p5)

(p4 ∧ p5)

(p3 ∧ p5)
(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

(
p3 ∧ (p4 ∧ p5)

)

p5
(p4 ∧ p5)

Fig. 4.11: Automaton constructed for the LTL formula
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]
using the refined translation rules

(Fig. 4.10 (c)). In comparison to the automaton obtained in Sect. 4.1.3
(Fig. 4.2 (c), page 53), the refined translation rules allow us to reduce the
number of target states in one transition of the automaton.

Finally, we build an automaton for the formula
[((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
∨

(
p3 Rw (p4 Rs p5)

)]

by applying the ∨ rule as shown in Fig. 4.11. This automaton has three
states less than the automaton we previously obtained for the same formula in
Sect. 4.1.3 (cf. Fig. 4.3, page 53). Additionally, no transition of the automaton
built using the refined rules has more than one target state, which is not the
case for the automaton obtained using the basic translation rules. We shall
investigate such automata more closely in Sect. 5.1. �

Similarities and Differences between the Modified and the Original Rules
The modified translation rules behave very much like the original rules given
in Sect. 3.2. For example, each new translation rule adds a new initial state
to the automaton (preserving the correspondence between states in the au-
tomaton and subformulas of a given formula ϕ), and because none of the new
rules changes the transition structure of the component automata to which
the rule is applied, the compound automata will again be linear alternat-
ing automata. Also all transition guards will remain conjunctions of atomic

74 4. IMPROVING THE TRANSLATION

formulas.

The first difference between the original and the modified rules con-
cerns the handling of acceptance conditions. Recall from the discussion
in Sect. 3.2 that every transition that has a nonempty set of acceptance con-
ditions in an automaton built using the original rules always starts from a
state corresponding to a strong temporal eventuality. Furthermore, all self-
loops starting from such a state share the same acceptance condition that is
nevertheless unique in the sense that it is never included in the acceptance
conditions of any transition starting from another state in the automaton.
The modified rules, however, change this behavior: although the rules for
the strong temporal eventualities still introduce new acceptance conditions
as before, the rules for the weak temporal connectives and the ∧ connective
may cause an initial transition of a compound automaton to inherit its accep-
tance conditions from a transition starting from one of its own target states.
Intuitively, the acceptance conditions may thus propagate “upward” in an au-
tomaton during its incremental construction via chains of states correspond-
ing to nested weak eventualities or conjunctions in the given LTL formula,
where each chain starts from a state corresponding to a strong temporal even-
tuality subformula. Therefore, an automaton built using the modified rules
may contain self-loops that are associated with the same acceptance condi-
tion in spite of their different start states; additionally, as illustrated by the
previous example, applications of the modified ∧ rule may create states with
self-loops associated with multiple acceptance conditions.

Clearly, changing the translation rules also forces us to reconsider the up-
per bound obtained in Sect. 3.3 for the size of a linear alternating automaton
corresponding to a given LTL formula ϕ. Recall that the contribution of any
automaton built for some subformula ψ ∈ Sub(ϕ) to the size of the automa-
ton for ϕ depends on the number of states reachable from the initial state of
the automaton for ψ; obviously, this fact still holds when using the modified
translation rules.

In the worst case, the original translation rules for the binary temporal
connectives create compound automata in which both initial states of the
component automata are reachable from the initial state of the compound
automaton. (This requires that both component automata have initial self-
loops.) Additionally, provided that neither component automaton is a trivial
automaton with no initial transitions, the initial state of the compound au-
tomaton will always be reachable from itself. It is easy to see that this consid-
eration applies also to the modified translation rules (for example, the rules
for the Until connectives with a negative language containment assumption
are identical to the original rules; other rules may only allow a reduction in
the number of target states of some initial transitions of the compound au-
tomaton). Therefore, the number of states reachable from the initial state
built for a binary pure temporal formula using the new rules will never ex-
ceed the corresponding number of states in an automaton built for the same
formula using the original rules, and thus the size limit of Corollary 3.3.2
is still valid if only the new rules for the binary temporal connectives are
considered.

Unfortunately, the reasoning used in Sect. 3.3 does not apply to the mod-
ified translation rule for the ∧ connective. Due to the possible introduction

4. IMPROVING THE TRANSLATION 75

of initial self-loops to the compound automaton when applying this rule, the
initial state of the compound automaton may become reachable from itself
in the automaton; obviously, this can never occur when using the original
translation rules. Because of these initial self-loops, the initial state of the
compound automaton will thus remain reachable also from any automaton
obtained from this automaton using further translation rules. This fact clearly
breaks the upper bound given in Corollary 3.3.2 for the size of the final au-
tomaton for a given LTL formula ϕ; a straightforward correction to this result
necessitates taking also all formulas of the form (ϕ1 ∧ ϕ2) ∈ Sub(ϕ) into
account. This version of the result is, however, less optimal than the orig-
inal one. As a matter of fact, it is easy to find examples where the original
translation rule performs better than the new rule.

Example 4.3.6 Consider translating the formula
(
(Fp1 ∧ Fp2) ∨ p3

)
≡

((
(>Us p1) ∧ (>Us p2)

)
∨ p3

)
∈ LTL

(
{p1, p2, p3}

)

into an automaton using both the original and the modified translation rules.
Applying the original ∧ rule to the automata built for the formulas (>Us p1)
and (>Us p2) (and then simplifying the guards of transitions) results in the
automaton shown in Fig. 4.12 (a). On the other hand, using the modified
translation rule to build an automaton for the same formula will cause the
self-loops starting from the initial states of the component automata to be
merged into an initial self-loop of the compound automaton (Fig. 4.12 (b)).

Applying the ∨ rule to the automaton built using the original rules re-
sults in an automaton, where the initial state of the automaton shown in
Fig. 4.12 (a) is not reachable from the initial state of the compound automa-
ton (Fig. 4.12 (c)). However, applying the same rule to the automaton in
Fig. 4.12 (b) will force the initial self-loop of this automaton to be “unrolled”
by the rule. It follows that no states can be removed from the resulting au-
tomaton, and thus the result is suboptimal in comparison to the automaton
in Fig. 4.12 (c). �

From the above example, we see that the assumption that two branches of
any accepting run of a compound automaton built using the original ∧ rule
can always be merged such that the run does not have to visit the initial state
of one of the component automata is obviously very optimistic and should
therefore be used only sparingly. Because the modified translation rule for
the ∧ connective nevertheless has also clear advantages over the original rule
in some cases (cf. Example 4.3.5), a heuristic decision is needed on when
the rule should be applied. For example, a very simple strategy that prevents
the behavior shown in Example 4.3.6 is to always first use the new rule for
translation and then revert back to using the original rule if the constructed
compound automaton has initial transitions (with nonempty guards) to the
initial states of its component automata.

4.4 REMOVING REDUNDANT TRANSITIONS

The simplification heuristics obtained by modifying the original translation
rules are essentially based on replacing transitions of linear alternating au-

76 4. IMPROVING THE TRANSLATION

PSfrag replacements

>>

>

p1

p1

p2

p2

(p1 ∧ p2)

p3

PSfrag replacements

>>

>

p1

p1

p2

p2

(p1 ∧ p2)
p3

(a) (b)

PSfrag replacements

>

>>
p1

p1

p2

p2

(p1 ∧ p2) p3

PSfrag replacements

>

>>

>

p1

p1

p1

p2

p2

p2

(p1 ∧ p2)

(p1 ∧ p2)

p3

(c) (d)

Fig. 4.12: Greedy application of the refined translation rule for the ∧ connective
may lead to an increase in the size of the generated automata. (a)–(b) Automata
built for the formula (Fp1 ∧ Fp2) using the original (a) and refined rules (b), respec-
tively; (c)–(d) Automata built for the formula

(
(Fp1 ∧ Fp2) ∨ p3

)
by applying the ∨

translation rule to the automata (a) and (b), respectively

tomata with transitions having fewer target states, in a way that preserves the
language of the automaton. However, these heuristics can guarantee a re-
duction in the actual number of transitions or states in the automaton only
in a few special cases. In this section, we shall concentrate on the more spe-
cific problem of finding redundant transitions that can be removed from a
linear alternating automaton without changing its language. Formally, given
an automaton A = 〈Σ, Q,∆, qI ,F〉, a transition t ∈ ∆ is redundant iff
Lfin(A) = Lfin(A

′) holds for the automaton A′ =
〈
Σ, Q,∆ \ {t}, qI ,F

〉

obtained from A by removing the transition t from ∆. (Clearly, if A is a
linear alternating automaton, then so is A′, because the number of loops in
A cannot increase in the modification. Therefore all simplification heuris-
tics specific to linear alternating automata remain applicable to A′ and any
automaton obtained from it by removing more transitions.)

The incremental strategy of building increasingly complex automata from
simpler automata (as used in the formula translation) can easily be com-
bined with on-the-fly transition redundancy analysis. Because no automaton
A built from some subformula ψ of an LTL formula ϕ using some transla-
tion rule will have its structure altered by any translation rule that uses A
as a component, the language of A remains fixed regardless of the way the
translation of ϕ proceeds after A has been constructed. This implies that A
can be checked for redundant transitions immediately when its definition is
complete. In particular, removing all redundant initial transitions of A as
soon as possible may reduce the effort needed for building a compound au-

4. IMPROVING THE TRANSLATION 77

tomaton in which A occurs as a component, as well as any automaton built
incrementally from these component automata. Similar on-the-fly transition
redundancy analysis is conceptually more difficult to combine with direct
tableau-based translations from LTL to nondeterministic automata, which
in their basic form necessitate the full construction of an automaton for ϕ
before full-scale state or transition redundancy analysis is possible. The re-
quirement for access to a full automaton for ϕ is implicit also in the design of
many automaton minimization techniques based on the use of various simu-
lation relations (e.g., [20, 21, 22, 25, 34, 62]).

In this section, we shall mainly concentrate on the redundancy analysis
of initial transitions of linear alternating automata due to the above positive
effect this may have on the translation if applied as soon as possible to each
automaton built during the translation. Although this specific choice of focus
is obviously not the most general strategy for transition simplification, it has,
besides special cases that are easier to check than the general problem, advan-
tages that also ease the implementation of the overall translation procedure.
For example, restricting the redundancy analysis to the transitions leaving
the initial state of the automaton will trivially preserve the correspondence
between subformulas of the formula under translation with subautomata of
the automaton. Therefore the automata for these subformulas remain di-
rectly accessible in case they are needed again during the translation if some
of these subformulas occur multiple times in the formula. Another conse-
quence of the restriction is that no transition of the final automaton will be
checked twice for redundancy during the translation.

We note, however, that the chosen local strategy of removing transitions
incrementally during the translation is in the general case suboptimal in
comparison to a global transition redundancy analysis applied to the final
automaton. The translation procedure is not “modular” in the sense that
the nonredundant transitions of an automaton would always remain so in
all automata built from it incrementally. For example, the automaton built
for the formula

(
Fp1 ∨ X(Gp1 ∨ p2)

)
∈ LTL

(
{p1, p2}

)
with the basic trans-

lation rules has redundant (non-initial) transitions even though none of the
subautomata rooted at its non-initial states contain any redundant transitions
(see Fig. 4.13). Of course, this phenomenon is hardly surprising because of
the obvious analogy between incremental transition redundancy analysis and
the problem of simplifying a compound LTL formula built from one or two
arbitrary subformulas and a connective.

4.4.1 Redundant Transitions and Language Containment

It is clear from the definition of transition redundancy that each redundancy
test is equivalent to two language containment checks between alternating
automata. That is, if A and A′ are two alternating automata, where A′ is
obtained from A by removing a transition from it as described above, then
the removed transition is redundant iff

Lfin(A) ⊆ Lfin(A
′) and Lfin(A

′) ⊆ Lfin(A)

hold for the automata. It is easy to see from the definition of A′ that the
second condition actually holds trivially, since all fin-accepting runs of A′

78 4. IMPROVING THE TRANSLATION

PSfrag replacements

q1

q2 q3

q4

>
>>

p1

p1p1

p1

p2

Fig. 4.13: A linear alternating automaton A built for the formula
(
Fp1∨X(Gp1∨p2)

)

using the original translation rules and then simplifying the guards of transitions.
The transition from q3 and q4 is redundant in A even though it is not redundant in
Aq3

are always also fin-accepting runs of A. Therefore, it is sufficient to check
only for the first condition between the automata to determine whether a
given transition is redundant. By the classic reformulation of language con-

tainment, this involves finding an automaton for the language Lfin(A′). In
previous discussion, we have been able to build such an automaton by ex-
ploiting the fact that both automata involved in the test have been built for
subformulas of the formula to be translated into an automaton. However, the
above language containment problem differs from all previous cases in that
the automaton A′ is now obtained directly from another automaton instead
of a known LTL formula via formula translation. Even if the automaton A
did correspond to a known LTL formula, removing a transition from it may
break this correspondence, and checking whether this is the case is merely a
restatement of the language containment problem.

Because A′ is still a linear alternating automaton, we can find its corre-
sponding LTL formula ψ, for example, via the reverse translation discussed
in Sect. 3.5. In principle, we may then build an automaton for the comple-

mented language Lfin(A′) as before by applying the basic translation to the
positive normal form of ¬ψ. Unfortunately, as noted in the discussion at the
end of Sect. 3.5, a reverse translation based on the systematic application of
a simple pattern, such as the one given in Lemma 3.5.1, may result in an
LTL formula that cannot be translated succinctly back into an alternating
automaton using the basic translation procedure, and the same holds for the
negation of the formula. It is nevertheless not always necessary to apply the
reverse translation to the whole automaton A′: because A and A′ are linear
alternating automata that differ only in the transitions leaving the start state
q of the transition that was removed from A, A and A′ share all subautomata
that do not include the state q. If the automaton A was built from an LTL for-
mula ϕ using the basic translation, we can therefore substitute some formulas
in a reverse translation pattern directly with subformulas of ϕ corresponding
to these subautomata. It is thus sufficient to apply the reverse translation to
the state q in addition to all states of which q is a descendant in A′. When
restricting the redundancy analysis to the initial transitions of A, this implies
that the formula ψ can be found from A′ with a single reverse translation step

4. IMPROVING THE TRANSLATION 79

applied to the initial state of the automaton.

Even though we may be able to reuse some subformulas of ϕ when build-
ing the LTL formula ψ from the automaton A′, we are not always able to
reuse automata built for these subformulas when translating the positive nor-
mal form of ¬ψ into an automaton. This is partly caused by the fact that the
formula ψ needs to be negated before the translation, which effectively ne-
cessitates building automata for negated subformulas of ϕ. Although this re-
quirement is in fact common to all language containment checks presented,
the reverse translation used in the present case is nevertheless likely to intro-
duce formulas that are not subformulas of ϕ nor the positive normal form of
¬ϕ. Because the formula ψ also depends on the particular transition chosen
for the redundancy analysis, it becomes difficult to estimate beforehand the
worst-case number of formula translation subproblems that may arise during
the construction and simplification of a linear alternating automaton built
from the formula ϕ. In the next section, we examine special cases of tran-
sition redundancy analysis in which the reverse translation can actually be
avoided by dividing the language containment test Lfin(A) ⊆ Lfin(A

′) into
several subproblems. These special cases allow limited transition redundancy
analysis while keeping the formula translation subproblems within the set of
subformulas of ϕ and (the positive normal forms of) their negations.

As noted in Sect. 4.2, we could alternatively find an automaton for the
complement of the language of A′ by applying to A′ a direct dualization
construction designed to support the generalized definition for the automata.
However, with our explicit definition for alternating automata, all means of
finding a linear alternating automaton accepting the complement of a lan-
guage recognized by another automaton are bound to cause an exponential
blow-up in the number of transitions in some cases (for example, when com-
plementing automata corresponding to LTL formulas, the negations of which
are in conjunctive normal form as mentioned in Sect. 4.2).

4.4.2 Special Cases

In this section, we present special cases that allow the detection of redundant
transitions in linear alternating automata without solving directly the lan-
guage containment problem presented in Sect. 4.4.1. These tests combine
local structural analysis of the automata with language containment checks
that can again be handled by applying the basic translation only to subfor-
mulas of a given LTL formula or their negations. Thus, we can in these
special cases avoid the reverse translation or dualization of linear alternat-
ing automata; however, we may sometimes have to trade the single language
containment test of the previous section for possibly several tests that reduce
to checking the emptiness of the intersection of more than two languages.

Rephrasing the language containment test of the previous section as a
condition on runs of the automaton, we find that a transition is redundant iff
each accepting run of A including an edge labelled with the transition im-
plies the existence of another accepting run (on the same input) in which A
avoids taking this transition. This intuition forms the basic strategy of proving
the main results of this section by modifying accepting runs of A including a
given transition into accepting runs that do not contain this transition.

80 4. IMPROVING THE TRANSLATION

By the above characterization, a transition is obviously redundant if it
never occurs in any accepting run of the automaton. We have already used
this fact previously in Sect. 4.1.2 for removing transitions with an empty
guard (characterized by an unsatisfiable Boolean formula in PL(AP) in au-
tomata over the alphabet 2AP) from an automaton. Additionally, every au-
tomaton will naturally avoid taking any transition, the occurrence of which
in a run of the automaton would lead to a subgraph of the run that cannot
be a part of any accepting run of the automaton. For example, this occurs
if it is impossible to exhibit fin-accepting runs of all subautomata rooted at
the target states of a transition regardless of the remaining input. In terms of
languages, this implies that the intersection of the languages accepted by the
subautomata is empty.

Proposition 4.4.1 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton.
Let t = 〈q,Γ, F, Q′〉 ∈ ∆ for some q ∈ Q, Γ ⊆ Σ, F ⊆ F and Q′ ⊆ Q such
that

⋂
q′∈Q′Lfin(A

q′) = ∅. Then, no fin-accepting run of A on any w ∈ Σω

contains an edge labelled with the transition t, and thus t is redundant.

Proof: Let G = 〈V,E, L〉 be a fin-accepting run of A on some w ∈ Σω, and
let e ∈ E ∩ (Vi × 2Vi+1) for some 0 ≤ i < ω such that L(e) = t. Because
G is a run, the target states of this edge are labelled with the target states
of t. Therefore, by Proposition 2.3.9, Aq′ fin-accepts wi+1 for all q′ ∈ Q′,
that is, wi+1 ∈

⋂
q′∈Q′ Lfin(A

q′). But then
⋂
q′∈Q′ Lfin(A

q′) 6= ∅, which is a
contradiction, and thus e cannot be labelled with the transition t. �

Clearly, all redundant transitions of linear alternating automata do not
necessarily fall into the above category, and the automaton may well have
accepting runs containing edges labelled with a redundant transition. In
the following, we shall investigate conditions under which these runs can be
modified into accepting runs in which the automaton avoids taking a given
transition. At the formal level, we shall often make use of the following re-
sult that describes an obvious way to extract a partial run avoiding a given
transition from any run of the automaton by truncating each individual path
of the run at the first occurrence of an edge labelled with the transition. If
we can then show that the partial run can always be extended back into an
accepting run (on the same input) that still avoids the transition, it follows
that the transition is redundant.

Lemma 4.4.2 Let G = 〈V,E, L〉 be a fin-accepting run of the alternating
automaton A = 〈Σ, Q,∆, qI ,F〉 on some w ∈ Σω, and let t ∈ ∆ be a
transition of A with start state q ∈ Q. The graph G′ = 〈V ′, E ′, L′〉, where

• V ′
0

def
= {v0}, V ′

i+1
def
=

⋃
v∈V ′

i

{
V ′′ ⊆ Vi+1 〈v, V ′′〉 ∈ E, L(〈v, V ′′〉) 6= t

}

for all 0 ≤ i < ω,

• E ′ def
=

{
〈v, V ′′〉 ∈ E {v} ∪ V ′′ ⊆ V ′, L(〈v, V ′′〉) 6= t

}
, and

• L′(x)
def
= L(x) for all x ∈ V ′ ∪ E ′,

is a partial fin-accepting run of A on w such that none of the edges of E ′ is
labelled with the transition t, and each node of G′ with no outgoing edges is
labelled with q.

4. IMPROVING THE TRANSLATION 81

Proof: It is obvious that V ′ ⊆ V (with V ′
i ⊆ Vi for all 0 ≤ i < ω) andE ′ ⊆ E.

This immediately shows that G′ can be partitioned into finite disjoint levels
with edges between successive levels of G′. Furthermore, L′(v0) = L(v0) =
qI , because G is a run of A.

Let v ∈ V ′. Because G is a run and V ′ ⊆ V , v has a unique outgoing edge
e ∈ E in G whose labelling is consistent with the requirements of a run of A.
Because E ′ ⊆ E, v now has either no outgoing edges in G′ (if e /∈ E ′), or v
keeps its unique outgoing edge also in G′; by the definition of E ′, this edge is
always labelled with a transition different from t. Because L′(x) = L(x) for
all x ∈ V ′ ∪ E ′, the labelling of e is still consistent in G′.

Let v′ ∈ V ′
i for some 1 ≤ i < ω. From the definition of V ′ it follows that

there exists a node v ∈ V ′
i−1 and an edge e = 〈v, V ′′〉 ∈ E, v′ ∈ V ′′, such

that L(e) 6= t. Therefore e ∈ E ′, and G′ is a partial run of A on w.
Clearly, because each acceptance sequence r′ ∈ E(G′) is also an accep-

tance sequence of G and L′(e) = L(e) for all e ∈ E ′, fin(r′) = ∅ holds both
in G and G′, and thus G′ is a partial fin-accepting run of A.

Finally, if v ∈ V ′ has no outgoing edges, then the unique edge starting
from v in G is necessarily labelled with the transition t, and because the
labelling of G is consistent, v is labelled with the start state of t in G, i.e.,
L(v) = q = L′(v). �

Transition Simulation

Obviously, an accepting run of a linear alternating automaton can be mod-
ified to avoid a given transition, for example, if the automaton has another
transition that can be substituted systematically for each occurrence of the
given transition in the run. Clearly, such a substitution can be made only
if both transitions have the same start state, and if the automaton could in
fact have taken either of the transitions at each occurrence of the given tran-
sition in the run. A strict transition substitution by a simple relabelling of
edges in the run obviously requires that the transitions also share their target
states. Clearly, a less restrictive strategy for transition substitution is to con-
firm only that the choice between the transitions does not affect the ability of
the subautomata rooted at the target states of the respective transitions to ac-
cept the remainder of the input. This intuition leads to the traditional notion
of checking for simulations between transitions.

Formally, a transition t1 = 〈q1,Γ1, F1, Q
′
1〉 ∈ ∆ simulates another transi-

tion t2 = 〈q2,Γ2, F2, Q
′
2〉 ∈ ∆ in an alternating automaton A = 〈Σ, Q,∆,

qI ,F〉 iff q1 = q2, Γ2 ⊆ Γ1, and
⋂
q′∈Q′

2
Lfin(A

q′) ⊆
⋂
q′∈Q′

1
Lfin(A

q′). (We

call t2 the simulated transition and t1 the simulating transition.) By the above
observations, the existence of a transition that simulates another (different)
transition suggests that the other transition may possibly be removed from the
automaton. However, this can be done only if the simulation relationship be-
tween the transitions does not depend on the simulated transition, i.e., only if⋂
q′∈Q′

1
Lfin(A

q′) still includes
⋂
q′∈Q′

2
Lfin(A

q′) after the simulated transition

is removed from the automaton. Clearly, this language containment rela-
tionship may cease to hold if the simulated transition starts from a state that
is reachable from some q′ ∈ Q′

1 in the original automaton. In the class of lin-
ear alternating automata, however, the language containment relationship is
easily seen to be preserved if the simulating transition is not a self-loop.

82 4. IMPROVING THE TRANSLATION

Proposition 4.4.3 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automa-
ton that contains a transition t1 = 〈q,Γ1, F1, Q

′
1〉 ∈ ∆ and a non-self-

loop transition t2 = 〈q,Γ2, F2, Q
′
2〉 ∈ ∆, t1 6= t2, q /∈ Q′

2, such that
Γ1 ⊆ Γ2, and

⋂
q′∈Q′

1
Lfin(A

q′) ⊆
⋂
q′∈Q′

2
Lfin(A

q′). Define the automaton

A′ def
=

〈
Σ, Q,∆ \ {t1}, qI ,F

〉
obtained from A by removing the transition t1

from ∆. Then, Lfin

(
(A′)q

)
= Lfin(A

q).

Proof: As noted in Sect. 4.4.1, Lfin

(
(A′)q

)
⊆ Lfin

(
Aq) holds trivially. For

the other direction, let w ∈ Lfin(A
q). By Lemma 4.4.2, we can extract from

a fin-accepting run of Aq on w a partial fin-accepting run G′ = 〈V ′, E ′, L′〉
that contains no edges labelled with the transition t1. This obviously makes
G′ also a partial fin-accepting run of (A′)q on w.

Let v ∈ V ′
i for some 0 ≤ i < ω be a node with no outgoing edges

in G′; by the definition of G′, the unique outgoing edge of v in G is la-
belled with the transition t1. Because G is fin-accepting, w(i) ∈ Γ1, and the
union of the labels of the successors of v in G is equal to Q′

1, which implies
(Proposition 2.3.9) that (Aq)q

′
(= Aq′) fin-accepts wi+1 for all q′ ∈ Q′

1, i.e.,
wi+1 ∈

⋂
q′∈Q′

1
Lfin(A

q′).

From the assumptions it now follows that w(i) ∈ Γ2 (because Γ1 ⊆ Γ2)
and wi+1 ∈

⋂
q′∈Q′

2
Lfin(A

q′), and therefore Aq′ (= (Aq)q
′
) fin-accepts wi+1

also for all q′ ∈ Q′
2. By Lemma 3.4.1, this implies that Aq has a fin-accepting

run on wi, where the initial edge of this run is labelled with the transition t2,
and the target nodes of this edge are labelled with the states of Q′

2. But then,
because Aq is a linear alternating automaton and q /∈ Q′

2, it follows that no
other edge in this run can be labelled with the transition t1, either, and thus
the run is a fin-accepting run of (A′)q on wi.

Because the above result holds for all nodes of G′ with no outgoing edges,
G′ can be extended into a fin-accepting run of (A′)q on w by Proposi-
tion 2.3.10, and thus w ∈ Lfin

(
(A′)q

)
and Lfin(A

q) ⊆ Lfin

(
(A′)q

)
. �

If the simulating transition is a self-loop, it includes its own start state
in its target states. Because also the simulated transition is rooted at this
state, the simulation relationship between the transitions may thus depend
on the simulated transition, and thus removing the simulated transition from
the automaton may change the language of the subautomaton rooted at the
common start state of the transitions. However, we may still not need to resort
to, for example, reverse translation based transition redundancy analysis if
also the simulated transition is a self-loop.

Consider an acceptance sequence in a fin-accepting run of the automa-
ton. If the start state of the simulated self-loop is a transient state of the
automaton, then this self-loop can occur only finitely many times in the se-
quence (cf. Corollary 2.3.16). Because also the simulating transition is a self-
loop, it cannot contribute to the acceptance conditions occurring infinitely
many times in the transitions along this sequence, either. The requirements
of transition simulation now guarantee that the language of the subautoma-
ton rooted at the transient state is preserved when the simulated self-loop is
removed.

In case the start state of the simulated self-loop is not a transient state in
the automaton, simulation is not by itself sufficient to allow the self-loop to

4. IMPROVING THE TRANSLATION 83

be removed from the automaton if some acceptance sequence in a run of the
automaton converges to this nontransient state. Because simulation does not
depend on the acceptance conditions of the transitions, it may occur that the
nontransient start state of the simulated self-loop becomes transient in the
modification of the automaton. This may then change the language of the
automaton, for example, if the new transient state has no other successors
than itself. Obviously, this problem will not emerge if the simulated self-loop
includes all acceptance conditions of the simulating self-loop in its accep-
tance conditions. This requirement can even be generalized slightly: the
simulated self-loop can safely be removed if there exists a set of simulating
self-loops that share their common acceptance conditions with the simulated
self-loop. (In linear alternating automata, the acceptance conditions of these
self-loops can affect fin-acceptance only in acceptance sequences converging
to the common start state of the transitions. Therefore, for example, in an
acceptance sequence with an infinite suffix in which the automaton simply
repeats the simulated transition, each occurrence of this transition can be re-
placed with a permutation of the simulating self-loops. By the choice of these
self-loops, none of the acceptance conditions not associated with the simu-
lated self-loop will then occur in all transitions in this self-loop permutation.)

The above informal discussion can be summarized as the following result.

Proposition 4.4.4 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automa-
ton that contains a self-loop t = 〈q,Γ, F, Q′〉 ∈ ∆ for some q ∈ Q,Γ ⊆ Σ,
F ⊆ F and Q′ ⊆ Q (q ∈ Q′), together with a nonempty finite set of self-

loops ∆̃ = {t1, . . . , t|∆̃|} ⊆ ∆ \ {t} such that for all ti = 〈q, Γ̃i, F̃i, Q̃
′
i〉 ∈ ∆̃

(1 ≤ i ≤ |∆̃|), Γ ⊆ Γ̃i, and
⋂
q′∈Q′ Lfin(A

q′) ⊆
⋂
q′∈Q̃′

i
Lfin(A

q′). Define the

automaton A′ def
=

〈
Σ, Q,∆ \ {t}, qI ,F

〉
obtained from A by removing the

transition t from ∆. Then, Lfin

(
(A′)q

)
= Lfin(A

q) if q is a transient state of

A, or if
⋂

1≤i≤|∆̃| F̃i ⊆ F .

Proof: As noted in Sect. 4.4.1, Lfin

(
(A′)q

)
⊆ Lfin

(
Aq) holds trivially. We

thus check the other direction. Let w ∈ Lfin(A
q), and let G = 〈V,E, L〉 be a

fin-accepting run of Aq on w. We again use Lemma 4.4.2 to extract from G′

a partial fin-accepting run G′ of (A′)q on w and show that G′ can always be
extended into a fin-accepting run of (A′)q onw under either of the conditions
given in the proposition. Let thus v ∈ V ′

i be a node with no outgoing edges
in G′ for some 0 ≤ i < ω; by Lemma 4.4.2, L′(v) = L(v) = q. We construct

a fin-accepting run of
(
(A′)q

)L′(v)
=

(
(A′)q

)q
= (A′)q on wi; because the

same construction applies to all nodes of G′ with no outgoing edges, the
result then follows by applying Proposition 2.3.10.

Because L(v) = q, v is the initial node of a fin-accepting run of Aq on
wi embedded in G (Proposition 2.3.9). By Proposition 2.3.7, there exists an
index 0 ≤ j ≤ ω such that this run contains a sequence of consecutive edges
(ek)0≤k<j+1, ek ∈ E ∩ (Vi+k × 2Vi+k+1), where L(ek) = 〈q,Γk, Fk, Q

′
k〉 ∈ ∆

is an initial self-loop of Aq for all 0 ≤ k < j, and if j < ω, then L(ej) =
〈q,Γj, Fj, Q

′
j〉 ∈ ∆ is an initial transition of Aq that is not a self-loop. We

shall modify this edge sequence into a partial fin-accepting run of (A′)q onwi

by replacing all edges labelled with the self-loop t in this sequence systemat-

ically with edges labelled with self-loops in ∆̃. A simple strategy for choosing

84 4. IMPROVING THE TRANSLATION

the labels of the replacement edges is to cycle through the transitions of ∆̃ re-
peatedly such that the edges of (ek)0≤k<j+1 labelled with t are successively re-
placed with edges labelled with the transitions t1, t2, . . ., t|∆̃|, followed again

by another round through elements of ∆̃ if necessary. Formally, if L(ek) = t
for some 0 ≤ k < j + 1, then ek will be replaced with an edge labelled with

tλ(k), where the function λ :
{
l ∈ N 0 ≤ l < j + 1

}
→ {1, 2, . . . , |∆̃|} is

defined by the rule λ(k)
def
= 1 +

(
{0 ≤ l < k | L(el) = t} mod |∆̃|

)
. This

labelling strategy guarantees a “fair” distribution for the new labels such that
if t occurs infinitely many times as the label of some edge in the original se-

quence, then also each t′ ∈ ∆̃ will occur infinitely often as the label of some
edge in the modified edge sequence.

To ensure that the labelling can be made consistent with a partial fin-
accepting run of (A′)q, the number of successors of the edge replacing ek in
the original sequence must be chosen to match the number of distinct ele-
ments in the target state set of tλ(k). For this purpose, we first writeQ′

k\{q} =

{qk,1, . . . , qk,nk
} for some 0 ≤ nk < ω, and Q̃′

l \ {q} = {q̃l,1, . . . , q̃l,|Q̃′
l|−1} for

all 0 ≤ k < j + 1 and 1 ≤ l ≤ |∆̃|, respectively. We then let

mk
def
=

{
nk if L(ek) 6= t

|Q̃′
λ(k)| − 1 otherwise

for all 0 ≤ k < j + 1 and use the constants mk to define the graph Ĝ
def
=

〈V̂ , Ê, L̂〉, where

• V̂0
def
= {v̂0}, V̂k+1

def
= {vk,1, . . . , vk,mk

} ∪

{
{v̂k} if k < j
∅ otherwise

for all 0 ≤

k < j + 1, and if j < ω, then V̂k
def
= ∅ for all j + 1 < k < ω;

• Ê
def
=

⋃
0≤k<j+1

{
〈v̂k, V̂k+1〉

}
; and

• for all 0 ≤ k < j + 1, L̂(v̂k)
def
= q, L̂(vk,l)

def
=

{
qk,l if L(ek) 6= t
q̃λ(k),l otherwise

for

all 1 ≤ l ≤ mk, and L
(
〈v̂k, V̂k+1〉

)
def
=

{
L(ek) if L(ek) 6= t
tλ(k) otherwise

.

Ĝ is a partial run of (A′)q on wi:

• V̂0 = {v̂0}, L̂(v̂0) = q, and Ĝ is partitioned into finite disjoint levels

with edges between successive levels of Ĝ.

• Let v′ ∈ V̂k for some 0 ≤ k < j + 1. Then v′ either has no outgoing

edges, or v′ = v̂k, L̂(v′) = q, and v′ has the unique outgoing edge e =

〈v′, V̂k+1〉 ∈ Ê for which either L̂(e) = L(ek) = 〈q,Γk, Fk, Q
′
k〉 ∈ ∆′,

or L̂(e) = tλ(k) = 〈q, Γ̃λ(k), F̃λ(k), Q̃
′
λ(k)〉 ∈ ∆′.

If L(e) = L(ek), then, because ek ∈ Vi+k×2Vi+k+1 is an edge in the fin-
accepting runG, it follows thatw(i+k) = (wi)(k) ∈ Γk. Furthermore,

the definition of L̂ guarantees that L̂(V̂k+1) = Q′
k.

Otherwise, if L(e) 6= L(ek), then L(ek) = t, Γk = Γ, and (wi)(k) ∈ Γ.

Because Γ ⊆ Γ̃l holds for all 1 ≤ l ≤ |∆̃|, it follows that (wi)(k) ∈

4. IMPROVING THE TRANSLATION 85

Γ̃λ(k). It is again easy to check that L̂(V̂k+1) = Q̃′
λ(k). Thus the edge

labelling L̂ is consistent.

• By the definition of Ê, each node v′ ∈ V̂k for some 1 ≤ k < ω is

obviously a successor of the node v̂k ∈ V̂k−1 in Ĝ.

If j < ω, then Ê contains only finitely many edges, and thus Ĝ is trivially a
partial fin-accepting run of (A′)q on wi. By the choice of j, this occurs when-
ever q is a transient state of A: otherwise the sequence of edges (ek)0≤k<j+1

labelled with initial self-loops of Aq would violate the fin-acceptance con-
dition, which is impossible, because the sequence was extracted from a fin-
accepting run of Aq on wi.

If j = ω, then the run Ĝ contains the unique acceptance sequence

(êk)0≤k<ω =
(
〈v̂k, V̂k+1〉

)
0≤k<ω

. If L(ek) = t holds for only finitely many

0 ≤ k < ω in the original sequence, then there exists an index 0 ≤ l < ω

such that L̂(êk) = L(ek) holds for all l ≤ k < ω by the definition of Ĝ. In this
case fin

(
(êk)0≤k<ω

)
= fin

(
(êk)l≤k<ω

)
= fin

(
(ek)l≤k<ω

)
= fin

(
(ek)0≤k<ω

)
=

∅, and thus Ĝ is a partial fin-accepting run of (A′)q on wi.
Otherwise (ek)0≤k<ω contains infinitely many edges labelled with the tran-

sition t. Let τ(x)
def
= {t′ ∈ ∆ | x(k) = t′ for infinitely many 0 ≤ k < ω} be

the set of transitions occurring infinitely many times in an infinite sequence

of transitions x ∈ ∆ω. Using this definition, we write T
def
= τ

(
(L(ek))0≤k<ω

)

and T̂
def
= τ

(
(L̂(êk))0≤k<ω

)
as the sets of transitions occurring infinitely many

times as labels of edges in (ek)0≤k<ω and (êk)0≤k<ω, respectively.

Because t ∈ T , it now follows from the definition of Ĝ that ∆̃ ⊆ T̂ . We
show that for all acceptance conditions f ∈ F , T̂ now contains a transition
that does not include f in its acceptance conditions. Because (êk)0≤k<ω then
contains infinitely many edges labelled with this transition, it follows that
f /∈ fin

(
(êk)0≤k<ω

)
. By quantifying over all acceptance conditions in F , we

can then conclude that fin
(
(êk)0≤k<ω

)
= ∅, and Ĝ is a partial fin-accepting

run of (A′)q on wi.
If f ∈ F (i.e., if t includes f in its acceptance conditions), then, because

t ∈ T and fin
(
(ek)0≤k<ω

)
= ∅, T necessarily contains a transition t′ ∈ ∆\{t}

that does not include f in its acceptance conditions. Therefore L(ek) = t′ 6=

t for infinitely many 0 ≤ k < ω, which implies that L̂(êk) = L(ek) = t′ also

holds for infinitely many k by the definition of Ĝ. It follows that t′ ∈ T̂ and
f /∈ fin

(
(êk)0≤k<ω

)
.

Let f ∈ F \F . If f ∈ fin((êk)0≤k<ω

)
, then there exists an index 0 ≤ l < ω

such that for all l ≤ k < ω, L̂(êk) ∈ T̂ , and f is included in the acceptance

conditions of L̂(êk). In particular, because ∆̃ ⊆ T̂ , f is included in the

acceptance conditions of each transition t′ ∈ ∆̃, i.e., f ∈
⋂

1≤m≤|∆̃| F̃m.

But then, because
⋂

1≤m≤|∆̃| F̃m ⊆ F , f ∈ F , which is a contradiction, and

therefore T̂ necessarily contains a transition not including f in its acceptance

conditions. We conclude that Ĝ is a partial fin-accepting run of (A′)q on wi.

We finally extend Ĝ into a fin-accepting run of (A′)q on wi. Let v′ ∈ V̂k
for some 0 ≤ k < ω be a node with no outgoing edges in Ĝ. Then k ≥ 1, v′

is one of the nodes vk−1,l for some 1 ≤ l ≤ mk−1, and L̂(v′) 6= q. Because

86 4. IMPROVING THE TRANSLATION

the fin-accepting run G contains the edge ek−1 ∈ Vi+k−1 × 2Vi+k , the target
states of which are labelled with (exactly) the states in Q′

k−1, it follows that
(Aq)q

′
(= Aq′) fin-accepts wi+k = (wi)k for all q′ ∈ Q′

k−1, i.e., (wi)k ∈⋂
q′∈Q′

k−1
Lfin(A

q′).

We show that (wi)k ∈ Lfin(A
L̂(v′)). This is clear if L(ek−1) 6= t, be-

cause then L̂(v′) = qk−1,l ∈ Q′
k−1 holds by the definition of Ĝ. Other-

wise Q′
k−1 = Q′, and thus (wi)k ∈

⋂
q′∈Q′ Lfin(A

q′). The assumption that⋂
q′∈Q′ Lfin(A

q′) ⊆
⋂
q′∈Q̃′

m
Lfin(A

q′) holds for all 1 ≤ m ≤ |∆̃| now implies

that (wi)k ∈ Lfin(A
q′) for all q′ ∈

⋃
1≤m≤|∆̃| Q̃

′
m. The result then follows

from the definition of Ĝ, since L̂(v′) = q̃λ(k−1),l ∈
⋃

1≤m≤|∆̃| Q̃
′
m holds in

this case.
Because L̂(v′) 6= q is a successor of q and A is a linear alternating au-

tomaton, AL̂(v′) = (Aq)L̂(v′) =
(
(A′)q)L̂(v′), and it follows that

(
(A′)q

)L̂(v′)

fin-accepts (wi)k. By repeating the same argument for all nodes of Ĝ with no

outgoing edges, we can extend Ĝ into a fin-accepting run of (A′)q on wi by
Proposition 2.3.10.

Returning to the partial run G′, we can now repeat the above construction
for all 0 ≤ i < ω to find fin-accepting runs of (A′)q on wi for all v ∈ V ′

i

having no outgoing edges. By Proposition 2.3.10, this implies that G′ can be
extended into a fin-accepting run of (A′)q on w, and thus w ∈ Lfin

(
(A′)q

)
,

and Lfin(A
q) ⊆ Lfin

(
(A′)q

)
. �

To illustrate the application of Propositions 4.4.3 and 4.4.4, we again con-
sider the example previously discussed in Sect. 4.3.4.

Example 4.4.5 As shown in Sect. 4.3.4, it is possible to build a single-state

automaton for the LTL formula ϕ
def

≡
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))

using the refined translation rules given in Sect. 4.3.3 (Fig. 4.14 (a)). Let q de-
note the single state of this automaton. The transition relation of the automa-
ton consists of the self-loops t1 =

〈
q,>, {f1, f2}, {q}

〉
, t2 =

〈
q, p1, {f2}, {q}

〉
,

t3 =
〈
q, p2, {f1}, {q}

〉
and t4 =

〈
q, (p1∧p2), ∅, {q}

〉
(where f1 and f2 corre-

spond to the acceptance conditions denoted in Fig. 4.14 by • and ◦, respec-
tively).

It is easy to see that the guard of t4 implies the guards of the transitions t2
and t3. Furthermore, because the empty intersection of the acceptance con-
ditions of t2 and t3 is trivially a subset of the acceptance conditions of t4, the

preconditions of Proposition 4.4.4 are satisfied with t = t4 and ∆̃ = {t2, t3}
(because all transitions have the same target state, the language containment
relationships hold trivially). Thus the transition t4 can be removed from the
automaton as shown in Fig. 4.14 (b).

Joining the automaton in Fig. 4.14 (b) with the automaton shown in

Fig. 4.14 (c) (built for the formula ψ
def

≡
(
p3 Rw (p4 Rs p5)

)
in Sect. 4.3.4) us-

ing the rule given for the ∨ connective now results in the automaton shown
in Fig. 4.14 (d) for the formula (ϕ∨ψ). We can now apply Proposition 4.4.3
several times to remove some of the initial transitions of this automaton; for
example, because p2 → > is a valid propositional implication, the >-labelled
initial non-self-loop of the automaton simulates the p2-labelled initial transi-

4. IMPROVING THE TRANSLATION 87

PSfrag replacements

> p2

(p1 ∧ p2) p1

PSfrag replacements

> p2

p1

PSfrag replacements

p5 (p4 ∧ p5)

(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

p5(p4 ∧ p5)(p4 ∧ p5)

(a) (b) (c)

PSfrag replacements

>

>
p2

p2

p1

p1

p5

p5

(p4 ∧ p5)

(p4 ∧ p5)

(p3 ∧ p5)
(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

(
p3 ∧ (p4 ∧ p5)

)

p5(p4 ∧ p5)

(d)

PSfrag replacements
>

> p2

p1

p5

p5

(p4 ∧ p5)

(p3 ∧ p5)
(p3 ∧ p5)

(
p3 ∧ (p4 ∧ p5)

)

(
p3 ∧ (p4 ∧ p5)

)

p5(p4 ∧ p5)

(e)

Fig. 4.14: Using Propositions 4.4.3 and 4.4.4 to improve formula translation. (a) Au-

tomaton built for the formula ϕ
def

≡
((

⊥Rw (>Us p1)
)
∧

(
⊥Rw (>Us p2)

))
in

Sect. 4.3.4; (b) Automaton obtained from (a) by the application of Proposition 4.4.4;

(c) Automaton built for the formula ψ
def

≡
(
p3 Rw (p4 Rs p5)

)
in Sect. 4.3.4; (d) Au-

tomaton built from (b) and (c) for the formula (ϕ ∨ ψ); (e) Automaton obtained
from (d) by repeated application of Proposition 4.4.3

88 4. IMPROVING THE TRANSLATION

tion, and thus the latter transition can be removed from the automaton by
Proposition 4.4.3 (again, the language containment relationship holds triv-
ially). It can be checked that Propositions 4.4.3 and 4.4.4 do not allow re-
moving more transitions from this automaton. �

In the above example, the language containment relationships required
for applying Propositions 4.4.3 and 4.4.4 were easy to establish. In the gen-
eral case, both propositions specify a condition on language containment
between two languages obtained by intersecting sets of languages. We shall
show in the next section how these conditions can be rewritten as multi-
ple simple language containment problems, all of which can be checked
during formula translation without a need to apply reverse translation or
dualization to the automata. Nevertheless, it is easy to see that the above
results do not capture all opportunities for detecting redundant transitions
in linear alternating automata. For example, the results do not cover the
simulation of non-self-loop transitions with self-loops, which could be ap-
plied, for example, to simplify the automaton built for the LTL formula(
G(p1 ∧ p2) Rw p1

)
∈ LTL

(
{p1, p2}

)
using the basic rules. (The initial state

of this automaton is the start state of two transitions, one of which is a self-
loop that simulates the other non-self-loop transition. However, neither of
the above propositions applies in this case.)

Checking for Containment Between Intersections of Languages
We end Sect. 4.4 with a discussion on solving the language containment
problems occurring in the conditions of Propositions 4.4.3 and 4.4.4. In
these propositions, the single language containment problem discussed in
Sect. 4.4.1 is traded for the more complex condition

⋂

q∈Q1

Lfin(A
q) ⊆

⋂

q∈Q2

Lfin(A
q)

for some subsets Q1, Q2 ⊆ Q of states of a linear alternating automaton
A = 〈Σ, Q,∆, qI ,F〉. This condition corresponds to several instances of
the basic problem of checking the emptiness of the intersection of languages
recognized by a set of automata; the reformulation is based on basic facts on
families of sets. We repeat these facts below for reference.

Lemma 4.4.6 Let X1 and X2 be two families of sets. Then,

⋂

X∈X1

X ⊆
⋂

X∈X2

X iff
⋂

X∈X1

X ⊆
⋂

X∈X2\X1

X .

Proof: (“⇒”) Assume that
⋂
X∈X1

X ⊆
⋂
X∈X2

X , and let x ∈
⋂
X∈X1

X .
Then x ∈

⋂
X∈X2

X , i.e., x ∈ X for all X ∈ X2. Then obviously x ∈ X also
for allX ∈ X2\X1, and thus x ∈

⋂
X∈X1\X2

X and
⋂
X∈X1

X ⊆
⋂
X∈X2\X1

X .

(“⇐”) Let
⋂
X∈X1

X ⊆
⋂
X∈X2\X1

X , and let x ∈
⋂
X∈X1

X . Then x ∈ X

for all X ∈ X1, and x ∈
⋂
X∈X2\X1

X , i.e., x ∈ X for all X ∈ X2 \ X1. But

then x ∈ X for all X ∈ X1 ∪ (X2 \ X1) = X1 ∪ X2. Thus especially x ∈ X
for all X ∈ X2, and it follows that x ∈

⋂
X∈X2

X and
⋂
X∈X1

X ⊆
⋂
X∈X2

X .
�

4. IMPROVING THE TRANSLATION 89

Lemma 4.4.6 allows us to discard the sets common to both families from
the intersection on the right hand side of the set inclusion equation. Using
this result, the set inclusion problem can be written in a form that leads to an
alternative formulation for the language containment problem.

Lemma 4.4.7 Let X1 and X2 be two families of subsets of a set S. Then,

⋂

X∈X1

X ⊆
⋂

X∈X2

X iff X2 ∩
⋂

X∈X1

X = ∅ for all X2 ∈ X2 \ X1

(where X
def
= S \X for all X ⊆ S).

Proof:
⋂
X∈X1

X ⊆
⋂
X∈X2

X
iff

⋂
X∈X1

X ⊆
⋂
X∈X2\X1

X (Lemma 4.4.6)

iff
(⋂

X∈X1
X

)
∩

(⋂
X∈X2\X1

X
)

= ∅

iff
(⋂

X∈X1
X

)
∩

(⋃
X∈X2\X1

X
)

= ∅

iff
⋃
X2∈X2\X1

(
X2 ∩

⋂
X1∈X1

X1

)
= ∅

iff X2 ∩
⋂
X1∈X1

X1 = ∅ for all X2 ∈ X2 \ X1.

�

In the language containment problem, the families of languages (sets) to
be intersected are determined by quantifications over the state sets Q1 and
Q2. By switching the notation, we can rewrite Lemma 4.4.7 to establish the
following immediate corollary:

Corollary 4.4.8 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton, and
let Q1, Q2 ⊆ Q be two subsets of states of A. Then,

⋂

q∈Q1

Lfin(A
q) ⊆

⋂

q∈Q2

Lfin(A
q) iff Lfin(Aq2) ∩

⋂

q1∈Q1

Lfin(A
q1) = ∅

for all q2 ∈ Q2 \Q1.

A further corollary of the above result is the well-known special case (used,
for example, by Gastin and Oddoux in their translation procedure [28])
where the language containment is directly implied by a set inclusion be-
tween Q1 and Q2; if Q2 ⊆ Q1, then the right-hand side condition of Corol-
lary 4.4.8 holds trivially.

Corollary 4.4.9 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton, and
let Q1, Q2 ⊆ Q be two subsets of states of A. Then,

⋂

q∈Q1

Lfin(A
q) ⊆

⋂

q∈Q2

Lfin(A
q) if Q2 ⊆ Q1.

(Intuitively, this result is easy to justify: if Q1 ⊇ Q2, w ∈
⋂
q∈Q1

Lfin(A
q)

belongs to all languages Lfin(A
q) (q ∈ Q2) in addition to all languages deter-

mined by the states in Q1 \Q2, and thus it is “more difficult” for w to belong
to the language w ∈

⋂
q∈Q1

Lfin(A
q).)

90 4. IMPROVING THE TRANSLATION

Corollary 4.4.8 reduces the language containment problems in Proposi-
tions 4.4.3 and 4.4.4 into multiple questions on language emptiness, where
each emptiness check involves one complemented language. When apply-
ing these results to the simplification of a linear alternating automaton A
built from an LTL formula, the fact that the language emptiness checks refer
to languages (or their complements) accepted by subautomata of A implies
that each language in the emptiness check can be represented by an au-
tomaton built for a (possibly negated) subformula of the LTL formula. By
postponing the transition redundancy tests after A has been defined using
a translation rule, it is easy to see that automata for the noncomplemented
languages are guaranteed to be already available for the emptiness check due
to the way in which A has been built from its subautomata. This holds also if
the emptiness check involves the automaton A itself (i.e., if qI ∈ Q1 holds for
A’s initial state qI in Corollary 4.4.8), because the language of A is preserved
even if a redundant transition is later removed from it. Thus each emptiness
check requires solving at most one “new” formula translation subproblem
to find an automaton for the complemented language. By restricting transi-
tion redundancy analysis to cases detectable using Propositions 4.4.1, 4.4.3
and 4.4.4, all language emptiness checks that arise during the translation of
an LTL formula into an automaton can be solved with at most 2 · |Sub(ϕ′)|
formula translation subproblems. This is the same number of subproblems
that may arise in the worst case when applying the simplification heuristics
presented in Sect. 4.3.

4.5 SUMMARY

The results presented in this chapter suggest repeating the following high-
level steps for translating an LTL formula ϕ into a linear alternating automa-
ton. The translation starts from rewriting ϕ in positive normal form ϕ′ and
building trivial automata for all Boolean constants and atomic subformulas
of ϕ′.

1. Choose a formula ψ ∈ Sub(ϕ′) that has not yet been translated into an
automaton such that automata for all top-level subformulas of ψ have
already been constructed.

2. Check whether any of the identities discussed in Sect. 4.3.1 apply to ψ;
if ψ reduces to a formula for which an automaton already exists, reuse
that automaton for ψ and return to step 1.

3. Choose a translation rule according to the main connective of ψ and
the relationship between the top-level subformulas of ψ (Table 3.1,
Proposition 4.3.2, Table 4.2) and apply it to the automata built for the
top-level subformula(s) of ψ to obtain an automaton Aψ.

4. Check Aψ for redundant transitions (Sect. 4.1, Sect. 4.4.1, Propositions
4.4.1, 4.4.3 and 4.4.4).

5. Repeat from step 1 until Aϕ′ has been constructed.

4. IMPROVING THE TRANSLATION 91

In principle, the procedure can easily be improved with additional min-
imization steps, for example, to reduce Aψ into a trivial automaton corre-
sponding to one of the Boolean constants if it accepts the empty or the uni-
versal language. Furthermore, instead of only removing redundant transi-
tions from the automaton, it is also possible to use language containment
tests to replace states systematically with their language-equivalent represen-
tatives in each remaining transition as suggested by Rohde [58], or to reduce
the number of target states in the transitions.

92 4. IMPROVING THE TRANSLATION

5 NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

In this chapter we review constructions for translating linear alternating au-
tomata into nondeterministic automata. Since nondeterministic automata
are known to be equally expressive to alternating automata on both finite
and infinite inputs [6, 9, 49], reducing the emptiness checking problem of
alternating automata to the corresponding problem on nondeterministic au-
tomata allows the use of efficient graph algorithms for emptiness checking.

Due to the succinctness of alternating automata, the size of a nondeter-
ministic automaton corresponding to an alternating automaton may be expo-
nential in the size of the alternating automaton. Consequently, the size of
a nondeterministic automaton that recognizes the language of a given LTL
formula may be exponential in the size of the formula. This worst-case blow-
up does nevertheless not realize for simple syntactically restricted subclasses
of LTL, such as for LTL formulas that allow a linear-size translation to alter-
nating automata trivially identifiable with nondeterministic automata. We
start our discussion from these special cases in Sect. 5.1; we then review a
classic result on the canonicalization of runs of linear alternating automata
in Sect. 5.2, to be used in Sect. 5.3, where we shall finally describe a general
translation from linear alternating automata to nondeterministic automata,
building on the previous ideas of Gastin and Oddoux [28].

5.1 SPECIAL CASES FOR A SYNTACTIC SUBSET OF LTL

By definition, all transitions of nondeterministic automata have exactly one
target state. On the other hand, this number of target states is not restricted
in alternating automata, and even empty target state sets are allowed. It is
nevertheless easy to modify an alternating automaton into an equivalent non-
deterministic one in case the alternating automaton has no transitions with
two or more target states: to make the automaton nondeterministic, we can
simply replace all transitions having an empty target state set with a transition
to a special “sink” state added to the automaton.

Lemma 5.1.1 Let A = 〈Σ, Q,∆, qI ,F〉 be an alternating automaton such
that |Q′| ≤ 1 holds for all transitions 〈q,Γ, F, Q′〉 ∈ ∆. Let q̂ be a state
not included in Q. Then, the automaton A′ =

〈
Σ, Q ∪ {q̂},∆′, qI ,F

〉
,

where ∆′ def
=

{
〈q,Γ, F, Q′〉 ∈ ∆ Q′ 6= ∅

}
∪

{
〈q,Γ, F, {q̂}〉 〈q,Γ, F, ∅〉 ∈

∆
}
∪

{
〈q̂,Σ, ∅, {q̂}〉

}
is a nondeterministic automaton such that Lfin(A) =

Lfin(A
′).

Proof: Because |Q′| ≤ 1 for all 〈q,Γ, F, Q′〉 ∈ ∆, it is easy to see from the
definition of A′ that |Q′| = 1 for all 〈q,Γ, F, Q′〉 ∈ ∆′, and thus A′ is a
nondeterministic automaton. We show that A fin-accepts a word w ∈ Σω iff
A′ fin-accepts it.

(“⇒”) Let G = 〈V,E, L〉 be a fin-accepting run of A on some w ∈ Σω.

Define the graph G′ = 〈V ′, E ′, L′〉, where V ′ def
= V ,E ′ def

=
{
〈v, V ′〉 ∈ E V ′ 6=

∅
}

, and L′(x)
def
= L(x) for all x ∈ V ′ ∪ E ′. Because G is a run and V ′ ⊆ V

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 93

and E ′ ⊆ E, it follows from the definition that V ′ is trivially partitioned
into disjoint finite levels such that E ′ contains edges only between successive
levels of G′. For the same reason, each node of V ′ has at most one outgoing
edge, and the labelling of such an edge is always consistent. Furthermore,
because each node v′ ∈ V \ {v0} is a successor of another node v ∈ V , there
exists an edge e ∈ E including v′ in its target nodes, and because E ′ contains
all edges of E with a nonempty set of target nodes, it follows that v ′ is a
successor of v also in G′. Finally, because all acceptance sequences of G′ are
obviously acceptance sequences of the fin-accepting run G, the sequences
satisfy the fin-acceptance condition, and it follows that G′ is a partial fin-
accepting run of A′ on w.

Let v ∈ V ′
i be a node with no outgoing edges for some 0 ≤ i < ω.

In G, this node has the unique outgoing edge e ∈ E with an empty set of
target nodes such that L(e) =

〈
L(v),Γ, F, ∅

〉
∈ ∆ for some Γ ⊆ Σ and

F ⊆ F , where w(i) ∈ Γ. By the definition of A′, (A′)L
′(v) = (A′)L(v)

now has an initial transition
〈
L′(v),Γ, F, {q̂}

〉
∈ ∆′. Furthermore, because

obviously Lfin

(
(A′)q̂

)
= Σω, it follows that (A′)q̂ fin-accepts wi+1, and there-

fore (A′)L
′(v) fin-accepts wi by Lemma 3.4.1. Since this same result holds

for all nodes of V ′ with no outgoing edges, we can apply Proposition 2.3.10
to extend the partial run G′ into a fin-accepting run of A′ on w, and thus
w ∈ Lfin(A

′).

(“⇐”) LetG′ = 〈V ′, E ′, L′〉 be a fin-accepting run of A′ on some w ∈ Σω.
In this case we can define a partial fin-accepting run G = 〈V,E, L〉 of A on
w as follows:

• V0
def
= V ′

0 , Vi+1
def
=

{
v ∈ V ′

i+1 L′(v) 6= q̂
}

for all 0 ≤ i < ω,

• E
def
=

{
e ∈ E ′ L′(e) = 〈q,Γ, F, Q′〉 ∈ ∆′, q̂ /∈ {q} ∪Q′

}
, and

• L(x)
def
= L′(x) for all x ∈ V ∪ E.

Similar to above, because V ⊆ V ′ and E ⊆ E ′, V can be partitioned into
finite disjoint levels, the edges of G lie between successive levels of V , and
since E ⊆ E ′, each node of v has at most one outgoing edge, and if such an
edge exists, its labelling is consistent.

If there exists a node v′ ∈ V \ V0 that is not a successor of another node
in V , then, because G′ is a run, there exists a node v ∈ V ′ and an edge
e′ = 〈v, V ′〉 ∈ E ′ including v′ in its target nodes V ′. Because e′ /∈ E,
however, it follows that L′(e′) necessarily includes q̂ either as its start state or
as one of its target states. By the definition of ∆′, q̂ is actually the only target
state of L′(e′), which implies that all nodes of V ′ are labelled with q̂ in G′.
Thus especially L′(v′) = q̂, which however contradicts the fact that v ′ ∈ V .
Therefore v′ is necessarily a successor of another node in V .

Because the acceptance sequences of G form a subset of the acceptance
sequences of G′, all of which satisfy the fin-acceptance condition, it follows
that G is a partial fin-accepting run of A on w.

If v ∈ Vi is a node in G with no outgoing edges for some 0 ≤ i < ω,
then L(v) = L′(v) 6= q̂, and there exists an edge e ∈ E ′ labelled with a
transition

〈
L′(v),Γ, F, {q̂}

〉
∈ ∆′ for some Γ ⊆ Σ and F ⊆ F such that

w(i) ∈ Γ. Because L′(v) = L(v), it follows from the definition of A′ that

94 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

〈
L(v),Γ, F, ∅

〉
∈ ∆ is an initial transition of AL(v). Because the target state

set of this transition is empty, Lemma 3.4.1 applies trivially to show that AL(v)

fin-accepts wi. Because v is arbitrary, it follows by Proposition 2.3.10 that G
can be extended into a fin-accepting run of A on w, and therefore w ∈
Lfin(A). �

Lemma 5.1.1 gives a way to modify an alternating automaton with no
transitions having two or more target states into a nondeterministic automa-
ton that fin-recognizes its language. This leads to the obvious question on
whether the result could be combined with the translation of LTL formulas
into linear alternating automata to facilitate direct translation of LTL into
nondeterministic automata. In other words, we may ask whether there are
any LTL formulas that can be translated into linear alternating automata
without introducing transitions having two or more target states during the
translation. It is easy to see that all propositional formulas have this prop-
erty: all transitions of automata built using only the basic translation rules
(Sect. 3.2) for the atomic formulas and the ∨ and ∧ connectives always have
an empty set of target states.

We can easily extend this propositional fragment of LTL to a syntactic
subclass of temporal formulas that allow a translation into linear alternating
automata having no transitions with two or more target states. For this pur-
pose, we first examine the basic translation rules presented in Sect. 3.2 to
find conditions under which the linear alternating automata built according
to the rules have this property.

Lemma 5.1.2 Let A1 and A2 be two linear alternating automata with no
transitions having two or more distinct target states, and let A3 be an alter-
nating automaton, all transitions of which have an empty set of target states.
Then, all automata built from

(a) A1 with the translation rule for the X operator,

(b) A1 and A2 (or A2 and A1) with the translation rule for the ∨ operator,

(c) A1 and A3 (or A3 and A1) with the translation rule for the ∧ operator,

(d) A3 and A1 with one of the U translation rules (where the initial tran-
sitions of A3 determine the initial self-loops of the compound automa-
ton), and

(e) A1 and A3 with one of the R translation rules (where the initial tran-
sitions of A3 determine the initial self-loops of the compound automa-
ton)

are linear alternating automata with no transitions having two or more dis-
tinct target states.

Proof: (a) Applying the X translation rule to the automaton A1 adds one
transition to this automaton. Because the only target state of this transition
is the initial state of A1, the result follows from the assumption that A1 is a
linear alternating automaton, all transitions of which have at most one target
state.

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 95

(b) The translation rule for the ∨ operator creates transitions, each of
which shares its target states with some initial transition of A1 or A2. The
result now holds again by the assumption that A1 and A2 are linear alternat-
ing automata with no transitions having two or more distinct target states.

(c) By the assumption, the target state set of each transition of A3 is empty.
Thus, because all transitions of A1 have at most one target state, taking the
union of the target state sets of any pair of transitions of A1 and A3 will result
in a set consisting of at most one state. The result now follows from the
properties of A1 and A3 and the fact that the target state sets of all transitions
created by the ∧ translation rule are formed in this way.

(d) Each transition created by one of the translation rules for the U con-
nectives either shares its target states with some initial transition of A1, or its
target states are formed by adding the initial state of the constructed automa-
ton to the target state set of some initial transition of A3; this set is obviously
empty for all initial transitions of A3. Because no transition of A1 has two or
more distinct target states, there can be no such transitions in the compound
automaton, either.

(e) The translation rules for the R connectives form the target states of
each new transition either by augmenting the (empty) target state set of one
of the initial transitions of A3 with the initial state of the constructed automa-
ton, or by collecting the target states of a pair of A1’s and A3’s initial transi-
tions. It is easy to see from the properties of A1 and A3 that no transition of
the compound automaton will have two or more target states. �

We can now use Lemma 5.1.2 to isolate a simple syntactic fragment of
LTL that can be translated into linear alternating automata having no transi-
tions with two or more target states.

Proposition 5.1.3 Let Φ ⊆ LTL(AP) be the smallest set of LTL formulas
that includes PL(AP) as a subset and is closed under the syntactic rule

If ϕ1, ϕ2 ∈ Φ and ψ ∈ PL(AP), then
Xϕ1, (ϕ1 ∨ ϕ2), (ϕ1 ∧ ψ), (ψ ∧ ϕ1), (ψ Uϕ1), (ϕ1 Rψ) ∈ Φ.

Let ϕ ∈ Φ. The linear alternating automaton built from ϕ using the transla-
tion rules presented in Sect. 3.2 has no transitions with two or more distinct
target states.

Proof: It is clear from the basic translation rules that the result holds for
all ϕ ∈ Φ with |ϕ| = 1, i.e., the atomic formulas over AP . Assume that the
result holds for all formulas in Φ of size less than or equal to some 1 ≤ k < ω,
and let ϕ ∈ Φ be a formula of size k + 1. Due to the minimality of Φ, ϕ is
a compound formula of one of the above forms, and therefore ϕ has one or
two top-level subformulas in Φ of size at most k. By the induction hypothesis,
these subformulas can be translated into linear alternating automata with
no transitions having two or more target states. The result now follows by
induction, where the induction step can be proved for each type of the above
compound formulas by Lemma 5.1.2.

For example, if ϕ = (ψ Uϕ1) for some ψ ∈ PL(AP) and ϕ1 ∈ Φ, then
we can build linear alternating automata having the desired property for the

96 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

formulas ψ and ϕ1 by the induction hypothesis. More precisely, because
ψ is a propositional formula, we can translate ψ into a linear alternating
automaton, all transitions of which have an empty set of target states. By
Lemma 5.1.2 (d), it now follows that the compound automaton built from
these automata using one of the translation rules for the U connectives has
no transitions with two or more target states. �

By combining Proposition 5.1.3 and Theorem 3.4.3 with Lemma 5.1.1,
we obtain an effective translation procedure from the subset Φ ⊆ LTL(AP)
into nondeterministic automata. By restricting the automata built from for-
mulas in this set using the procedure to the states actually reachable from
their initial states, we find that the size of each nondeterministic automaton
depends linearly on the number of temporal subformulas in its corresponding
formula.

Corollary 5.1.4 Let Φ ⊆ LTL(AP) be defined as in Proposition 5.1.3, and
let ϕ ∈ Φ. The language L(ϕ) can be fin-recognized by a nondeterministic
automaton with at most 2 + |Temp(ϕ)| states.

Proof: Let ϕ ∈ Φ, let A be a linear alternating automaton built from ϕ using
the basic translation rules, and let qI be the initial state of A. By Proposi-
tion 5.1.3, A has no transitions with two or more target states, and thus the
subautomaton AqI has this same property. We can now apply Lemma 5.1.1
to modify AqI into an equivalent nondeterministic automaton by adding one
new state to AqI . The result then follows because |AqI | ≤ 1 + |Temp(ϕ)|
(Proposition 3.3.1) and because A and AqI fin-accept the same language
(Proposition 2.3.11). �

The above results were obtained by examining the original translation
rules presented in Sect. 3.2. Obviously, we could further enlarge the set
Φ of formulas, for example, by considering also the special cases that permit
the use of the improved translation rules presented in Sects. 4.3.2 and 4.3.3.
Actually, our running formula translation example illustrates another special
case of a formula that can be translated into a linear alternating automaton
with no transitions having two or more target states (see Sect. 4.3.4). As a
matter of fact, a simple generalization of the example shows that also all for-
mulas of the form

∧n

i=1 GFψi ≡
∧n

i=1

(
⊥Rw (>Us ψi)

)
for some 1 ≤ n < ω

(where ψi ∈ PL(AP) for all 1 ≤ i ≤ n) support translation into such lin-
ear alternating automata. However, because of the language containment
requirements in the refined translation rules, all special cases of formulas
that support similar translation cannot be captured in a general way purely
syntactically.

5.2 MEMORYLESS RUNS

In this section, we review a technical result that will allow us to restrict the
search for an accepting run for a linear alternating automaton to a subset
of runs of the automaton to determine its emptiness. This result leads to a
simple general transformation from linear alternating automata to nondeter-
ministic automata.

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 97

Apart from the requirement that each level of a run of an alternating au-
tomaton must be finite, the general definition of runs of alternating automata
does not force any global upper bound for the total number of nodes at a level
of the run graph. This flexibility in the definition has helped us to prove sev-
eral properties of runs: for example, we can always extend a partial accepting
run of an alternating automaton into an accepting run by simply “attaching”
accepting runs of the automaton’s subautomata to each node of the run with
no outgoing edges, without any requirements on the structure of the runs of
the subautomata (Proposition 2.3.10). However, this flexibility is actually not
necessary for capturing acceptance as defined in Sect. 2.3.1.

We shall show that a linear alternating automaton A accepts a word w ∈
Σω iff it has an accepting run, each level of which consists of at most |A|
nodes labelled with different states of A. Intuitively, this means that the au-
tomaton A can accept all words in its language without ever spawning more
than one copy of a particular subautomaton at each step when working on its
input. Of course, which subautomata to spawn at a particular step may still
depend nondeterministically on the combinations of transitions that the ac-
tive copies of A can take in that step, and not all choices for the subautomata
always give rise to an accepting run for the automaton. Nevertheless, the
automaton always has at least one “correct” way to choose the subautomata
to spawn at each step whenever the input given for the automaton belongs to
the language of the automaton; conversely, such a way exists only if the input
belongs to this language.

Formally, we call a run G = 〈V,E, L〉 of an alternating automaton A
memoryless iff |Vi| ≤ |A| and L(v) 6= L(v′) hold for all 0 ≤ i < ω
and v, v′ ∈ Vi, v 6= v′. The terminology reflects the intuition that we do
not keep track of the transitions (or transition sequences) that cause a par-
ticular subautomaton to be spawned at some step in a run of the automa-
ton. In other words, the behavior of each subautomaton rooted at a given
state of the automaton depends only on the level of the run in which it
is spawned, not on the automaton’s previous actions that caused the sub-
automaton to be spawned. In the literature, graphs (or trees) represent-
ing this kind of behavior of various types of alternating automata have also
been called history-free or uniform strategies by Emerson and Jutla [18] and
Muller and Schupp [51, 53], respectively, or in the context of linear alternat-
ing automata, uniform runs by Rohde [58]. We use the same terminology as
Kupferman and Vardi [41].

We now give a formal proof of the above result for our class of linear
alternating automata. Actually, Emerson and Jutla [18] have shown the result
to hold more generally for all alternating automata (with a parity acceptance
condition) on infinite trees.

Proposition 5.2.1 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automa-
ton simplified in the sense of Corollary 2.3.17. For all w ∈ Σω, A fin-accepts
w iff A has a memoryless fin-accepting run on w.

Proof: (“⇒”) Let G = 〈V,E, L〉 be a fin-accepting run of A on w. We use
G to find a memoryless fin-accepting run G′ = 〈V ′, E ′, L′〉 of A on w by
choosing, for each level of G, a set of transitions labelling a subset of edges
starting from the level and then forming the following level ofG′ by choosing

98 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

a representative node for each distinct state of A labelling a target node of
one of these edges. These representatives then guide the selection of another
set of transitions.

Clearly, forming each level of G′ from nodes labelled with distinct states
of A already ensures that each level of G′ will consist of at most |A| nodes,
none of which shares its label with another node in the same level. However,
the requirement that G′ should be a fin-accepting run of A forces additional
constraints on the choice of transitions described above. Namely, we have to
ensure that no infinite collection of successive levels of G′ defined using sets
of transitions includes a (fragment of an) acceptance sequence that violates
the fin-acceptance condition. More precisely, because A is assumed to be
simplified in the sense of Corollary 2.3.17, these levels must not include an
infinite sequence of consecutive edges labelled with self-loops of A sharing
an acceptance condition in F .

We now give the formal inductive definition of G′. Let V ′
0

def
= {v′0}, and

let L′(v′0)
def
= qI . To express the above requirement concerning acceptance

conditions, we assume the existence of a total order ≺ on the finite set of
acceptance conditions F . For each level 0 ≤ i < ω of G′, we shall then

define a function F̃i : Q → 2F ; intuitively, an acceptance condition f ∈ F

will belong to F̃i(q) only if the preceding levels of G′ include a nontrivial
path labelled with self-loops of A having q as their start state and including f
in their acceptance conditions. Since the first level V ′

0 ofG′ has no preceding

levels, we let F̃ (q)
def
= ∅ for all q ∈ Q. It is clear that each nonempty F̃i(q)

contains a ≺-minimal element.
Let Ti : Q → 2∆ (for each level 0 ≤ i < ω of G) be a function collecting

all transitions of A occurring as labels of an edge starting from some ith-level
node of G labelled with q; formally,

Ti(q)
def
=

{
〈q,Γ, F, Q′〉 ∈ ∆ ∃e ∈ E ∩ (Vi × 2Vi+1) : L(e) = 〈q,Γ, F, Q′〉

}
.

Assume that the labels of the nodes in the ith level of G′ form a subset of
the node labels in the corresponding level of G, i.e., L′(V ′

i) ⊆ L(Vi); this
clearly holds for the level V ′

0 of G′. Because G is a run of A, this implies that
Ti(q) 6= ∅ for all q ∈ L′(V ′

i). We now choose for each such q a transition

ti,q = 〈q,Γi,q, Fi,q, Qi,q〉 ∈ Ti(q) such that min≺ F̃i(q) /∈ Fi,q if F̃i(q) 6= ∅
and such a transition exists in Ti(q); otherwise we let ti,q be any transition in
Ti(q). Thus, if the preceding levels of G′ include a path corresponding to a
sequence of self-loops sharing a common acceptance condition, we always
try to extend this sequence with a transition that shares fewer acceptance
conditions with the transitions in the sequence if possible. We then col-

lect all target states of the transitions ti,q into a set Qi+1
def
=

⋃
q∈L′(V ′

i)Qi,q =

{qi,1, . . . , qi,ni
} (where 0 ≤ ni < ω, and qi,j 6= qi,k for all 1 ≤ j, k ≤ ni,

j 6= k) and define the (i+ 1)th level of G′ by taking a representative node for
each state q′ ∈ Qi+1, i.e.,

V ′
i+1

def
= {vi,1, . . . , vi,ni

} and L′(vi,j)
def
= qi,j for all 1 ≤ j ≤ ni.

Because the labelling L is consistent inG, it follows immediately thatQi+1 =
L′(V ′

i+1) ⊆ L(Vi+1), and thus we can repeat the same inductive construction

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 99

at level i+ 1 of G′ after first defining the function F̃i+1 (needed for choosing
the transitions ti+1,q′ for all q′ ∈ Qi+1). For all q ∈ L′(V ′

i+1), we let

F̃i+1(q)
def
=

{
Fi,q if F̃i(q) = ∅ and q ∈ Qi,q

Fi,q ∩ F̃i(q) otherwise

and F̃i+1(q)
def
= ∅ otherwise. In the first case, because q ∈ Qi,q, the transition

ti,q is a self-loop of A starting from the state q. Because F̃i(q) = ∅, however,
the preceding levels of G′ do not contain a nontrivial path of self-loops (start-
ing from the state q) sharing a common acceptance condition. Therefore,
ti,q is the first transition in such a sequence of self-loops through q, and thus

we collect all acceptance conditions of ti,q into F̃i+1(q).

If F̃i(q) 6= ∅, then the preceding levels of G′ contain a nontrivial path of
self-loops sharing a common acceptance condition. The second case of the

definition now guarantees that this condition will still be included in F̃i+1(q)

iff also ti,q is such a self-loop. Therefore, F̃i+1(q) still has the intended mean-
ing in the (i+1)th level of G′. This completes the inductive definition of the

functions F̃i.
Finally, we let

E ′ def
=

⋃

0≤i<ω

{
〈v, V ′′〉 ∈ V ′

i × 2V
′
i+1 L′(V ′′) = Qi,L′(v)

}

and if e = 〈v, V ′′〉 ∈ E ′, then L′(e)
def
= ti,L′(v).

We check that G′ is a memoryless run of A on w. It follows directly from
the definitions of V ′, E ′ and L′ that V ′

0 consists of a single node labelled with
the initial state of A, V ′ is partitioned into finite disjoint levels that contain
at most |A| nodes, the nodes at each level of G′ have different labels, and the
edges of E ′ lie between successive levels of G′.

Let v ∈ V ′
i for some 0 ≤ i < ω, and let L′(v) = q. It is clear from the

above construction that G contains at least one ith-level node labelled with
the state q, and because all nodes ofG have a unique outgoing edge, it follows
that Ti(q) 6= ∅. Therefore the transition ti,q = 〈q,Γi,q, Fi,q, Qi,q〉 ∈ Ti(q)
labelling one of these edges e ∈ E in G is well-defined. By the definition of
G′, Qi,q ⊆ L′(V ′

i+1), and thus there exists an edge e′ = 〈v, V ′′〉 ∈ E ′ ∩ (V ′
i ×

2V
′
i+1). This edge is unique in E ′, because all nodes in the (i+1)th level ofG′

are labelled with distinct states of A. Because L′(e′) = ti,q = L(e), it follows
that the edge labelling L′ is consistent.

If v′ ∈ V ′
i for some 1 ≤ i < ω, then there exists a transition ti−1,q =〈

q,Γi−1,q, Fi−1,q, Qi−1,q〉 ∈ Ti−1(q) such that L′(v′) ∈ Qi−1,q. Therefore,
there exists a node v ∈ V ′

i−1 and an edge e = 〈v, V ′′〉 ∈ E ′ such that L′(v) =
q and L′(V ′′) = Qi−1,q. Because no two nodes in V ′

i have the same label, it
follows that v′ ∈ V ′′, and thus v′ is a successor of v in G′. Therefore, G′ is a
run of A on w.

Assume that G′ is not a fin-accepting run of A. Therefore G′ contains
an acceptance sequence (ei)0≤i<ω ∈ E(G′) that does not satisfy the fin-
acceptance condition. There now exists a minimal index 0 ≤ j < ω and
a maximal nonempty subset F ⊆ F such that for all j ≤ i < ω, the tran-
sition L′(ei) includes all elements of F in its set of acceptance conditions.

100 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

Therefore, L′(ei) = ti,q = 〈q,Γi,q, Fi,q, Qi,q〉 is a self-loop of A starting from
some fixed state q ∈ Q for all j ≤ i < ω, because the set of acceptance
conditions associated with every non-self-loop transition of A is empty (A is
simplified in the sense of Corollary 2.3.17).

If F̃i(q) 6= ∅ for all j ≤ i < ω, then, by the definition of the functions

F̃i, there necessarily exists an acceptance condition f ∈
⋂
j≤i<ω F̃i(q), and

thus f ∈
⋂
j−1≤i<ω Fi,q. However, this contradicts the minimality of j. Thus

there exists an index j ≤ k < ω such that F̃k(q) = ∅.

Because F̃k(q) = ∅ and tk,q is a self-loop of A, F̃k+1(q) = Fk,q. Thus

F ⊆ F̃k+1(q), because F ⊆ Fk,q holds by assumption. Then, F ⊆ F̃k+i(q)

holds for all 1 ≤ i < ω, because F ⊆ F̃k+i(q) for some 1 ≤ i < ω implies

that F̃k+i+1(q) = Fk+i,q ∩ F̃k+i(q) ⊇ F (F ⊆ Fk+i,q holds by assumption).

Furthermore, because the sizes of the sets F̃i(q) (k ≤ i < ω) form a non-
increasing sequence of positive integers, it follows that there exists an index

k ≤ l < ω such that F̃l(q) = F̃l+i(q) for all 0 ≤ i < ω. Thus there exists an

acceptance condition f ∈ F such that f = min≺ F̃i(q) for all l ≤ i < ω.
Let l ≤ i < ω, and let v ∈ Vi be a node in G labelled with q (such a node

always exists, because L′(V ′
i) ⊆ L(Vi), and V ′

i always contains the start node

of the edge ei, labelled with q by assumption). Because f = min≺ F̃i(q) ∈
Fi,q, it now follows that f belongs to the acceptance conditions of the transi-
tion labelling the edge starting from v in G, since otherwise we could have
defined ti,q to be this transition (and thus f /∈ Fi,q). Because only self-loops
of A can have a nonempty set of acceptance conditions, this transition is
a self-loop, and thus v has a successor in G also labelled with q, because
the labelling L is consistent. By induction on i, it now follows that G con-
tains an acceptance sequence having an infinite suffix of edges labelled with
self-loops of A sharing the acceptance condition f , which contradicts the
assumption that G is a fin-accepting run of A on w. Therefore, no accep-
tance sequence of G′ can violate the fin-acceptance condition, and G′ is a
memoryless fin-accepting run of A on w as argued.

(“⇐”) This result follows immediately from the fact that all memoryless
runs of A on w are runs of A on w. Thus, if a memoryless run of A on w is
fin-accepting, then A fin-accepts w. �

5.3 GENERAL TRANSLATION

As shown by Miyano and Hayashi [49], any alternating automaton with n
states (working on infinite words in inf-acceptance mode using a single ac-
ceptance condition associated with the states of the automaton) can be trans-
formed into an equivalent nondeterministic automaton with at most 4n states
and a single acceptance condition. The construction of Isli [37], which can
actually be seen as a slight rearrangement of Miyano and Hayashi’s construc-
tion, allows the upper bound to be reduced to (2

3
)m3n states, where m is

the number of states associated with the single acceptance condition of the
automaton. Muller, Saoudi and Schupp presented a n4n construction for
weak alternating automata on infinite trees [51]. Linear automata on words
were further studied by Rohde [58], who gave a construction for automata

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 101

Fig. 5.1: Collapsing the levels of a run of an alternating automaton into a non-
branching sequence of nodes

on transfinite words, and Gastin and Oddoux [28], who gave a 2n upper
bound for the translation of linear alternating automata (still, with a single
acceptance condition associated with the states of the automaton) into non-
deterministic automata with at most m generalized acceptance conditions
on transitions. In this section we generalize their result to linear alternating
automata, where we already allow the alternating automata to have multiple
acceptance conditions on their transitions. While the corresponding nonde-
terministic automaton will still have at most 2n states, associating the accep-
tance conditions with the transitions of the alternating automaton will force
the nondeterministic automaton to have a total of nm acceptance conditions
in the worst case (where m denotes the number of generalized acceptance
conditions in the alternating automaton).

Nondeterminization Construction

Consider a memoryless run of a linear alternating automaton. Because each
level of this run comprises a (possibly empty) set of nodes labelled with dis-
tinct states of the automaton, the labels of the nodes in the level form a finite
subset of states of the automaton. Intuitively, we can identify this run with a
run of another automaton on the same input by collapsing each individual
level of the run into a single node and the edges between each pair of consec-
utive levels into a single edge between the nodes corresponding to the levels
as shown in Fig. 5.1. We thus obtain a nonbranching node sequence, which
we then identify with a run of another automaton by imposing a labelling (de-
fined below) on the nodes and edges in this sequence. Because each node in
this run has only one successor, each transition labelling an edge in the run
cannot have two or more distinct target states in order for the labelling to be
consistent. Therefore, because each run of the linear alternating automaton
can be identified with a similar nonbranching node sequence, it follows that
the underlying automaton can actually be made nondeterministic. Formally,
we build the states of this automaton from subsets of states of the linear alter-
nating automaton, and the transitions of the nondeterministic automaton are
obtained by “synchronizing” sets of transitions starting from a given subset of
states.

Another way to view the construction is to compare it to the basic sub-
set construction used for determinizing nondeterministic automata on finite
inputs. In our case, however, the subsets consist of the current states of the
active copies of the alternating automaton (operating in parallel on the in-
put), instead of representing the set of possible current states for a single
copy of the automaton. This difference is reflected also in the definition of

102 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

the transition relation, which is formed by merging several transitions taken
synchronously by the active copies of the alternating automaton into a single
transition.

Theorem 5.3.1 Let A = 〈Σ, Q,∆, qI ,F〉 be a linear alternating automaton
simplified in the sense of Corollary 2.3.17. Define the automaton A′ =

〈
Σ,

2Q,∆′, {qI}, Q × F
〉
, where the transition relation ∆′ satisfies, for all Q′ =

{q1, . . . , qn} ∈ 2Q for some 0 ≤ n < ω, Γ ⊆ Σ, F ⊆ Q× F and Q ⊆ 2Q,

〈
Q′,Γ, F,Q

〉
∈ ∆′ iff there exist transitions 〈qi,Γi, Fi, Q′

i〉 ∈ ∆ (1 ≤ i ≤
n) such that Γ =

⋂
1≤i≤n Γi, F =

⋃
1≤i≤n

(
{qi} ×

Fi
)
, and Q =

{ ⋃
1≤i≤nQ

′
i}.

Then, A′ is a nondeterministic automaton for which Lfin(A
′) = Lfin(A).

Proof: It is clear from the definition that the target states of each transition
of A′ always form a singleton set (containing a subset of Q), and thus A′ is
nondeterministic. We show that A and A′ fin-accept the same language.

(“⇒”) Let G = 〈V,E, L〉 be a fin-accepting run of A on w ∈ Σω. By
Proposition 5.2.1, we may assume that G is memoryless. Define the graph

G′ = 〈V ′, E ′, L′〉, where V ′ def
=

⋃
0≤i<ω{v

′
i} (with V ′

i

def
= {v′i} for all 0 ≤ i <

ω), E ′ def
=

⋃
0≤i<ω

{
〈v′i, V

′
i+1〉

}
, and L′(v′i)

def
= L(Vi) for all 0 ≤ i < ω. Let

0 ≤ i < ω; to define the label of the edge starting from the node v ′i, we
first denote Vi = {vi,1, . . . , vi,ni

} for some 0 ≤ ni < ω (vi,j 6= vi,k for all
1 ≤ j, k ≤ n, j 6= k). We then collect the transitions Ti ⊆ ∆ labelling the
edges starting from nodes at level i of G:

Ti
def
=

⋃

1≤j≤ni

{
L
(
〈vi,j, V

′′〉
)

〈vi,j, V
′′〉 ∈ E

}
=

⋃

1≤j≤ni

{
〈qi,j,Γi,j, Fi,j, Q

′
i,j〉}.

The label of the edge 〈v′i, V
′
i+1〉 (0 ≤ i < ω) is then given by L′

(
〈v′i, V

′
i+1〉

)
def
=〈

L′(v′i),
⋂

1≤j≤ni
Γi,j,

⋃
1≤j≤ni

(
{qi,j} × Fi,j

)
,
{⋃

1≤j≤ni
Q′
i,j

}〉
.

We check that G′ is a run of A′ on w. First, we see that V ′
0 = {v′0}

and L′(v′0) = L(V0) = L
(
{v0}

)
= {qI} (the initial state of A′), and G′ is

partitioned into finite disjoint levels with edges between consecutive levels.
Let v′i ∈ V for some 0 ≤ i < ω. By the definition of G′, v′i has the unique

outgoing edge 〈v′i, V
′
i+1〉 ∈ E ′. Because G is memoryless, it follows that

L(vi,j) 6= L(vi,k) for all 1 ≤ j, k ≤ ni, j 6= k, and thus Ti consists of ni transi-
tions with distinct start states. From the definition of A′ it now follows that ∆′

contains the transition t =
〈⋃

1≤j≤nj
{qi,j},

⋂
1≤j≤ni

Γi,j,
⋃

1≤j≤ni

(
{qi,j} ×

Fi,j
)
,
{⋃

1≤j≤ni
Q′
i,j

}〉
. Because Ti consists of the labels of the edges leav-

ing the nodes at level i of G,
⋃

1≤j≤nj
{qi,j} = L(Vi) = L′(v′i); furthermore,

the fact that G is a run implies that w(i) ∈ Γi,j for all 1 ≤ j ≤ ni, and⋃
1≤j≤ni

Q′
i,j = L(Vi+1). Therefore w(i) ∈

⋂
1≤j≤ni

Γi,j and
{ ⋃

1≤j≤ni
Q′
i,j

}

=
{
L(Vi+1)

}
=

{
L′(v′i+1)

}
= L′(V ′

i+1), and it follows that t is equal to the
label of the edge 〈v′i, V

′
i+1〉, and the labelling L′ is consistent.

Finally, it is easy to see from the definition of E ′ that every node v′ ∈ V ′
i

(1 ≤ i < ω) is a successor of another node in V ′
i−1, and therefore G′ is a run

of A′ on w.

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 103

Assume that G′ is not a fin-accepting run of A′. Then there exists a
0 ≤ j < ω and an acceptance condition 〈q, f〉 ∈ Q × F such that the
transition L′

(
〈v′i, V

′
i+1〉

)
includes 〈q, f〉 in its acceptance conditions for all

j ≤ i < ω. By the definition of L′, this implies that for all j ≤ i < ω,
Ti contains a transition ti ∈ ∆ with start state q such that ti includes f in
its acceptance conditions. Because A is simplified in the sense of Corol-
lary 2.3.17, all transitions ti are self-loops of A. Therefore, because each ti
labels an edge starting from a node vi ∈ Vi with L(vi) = q, vi has also a suc-
cessor in Vi+1 labelled with the state q, because the labelling L is consistent.
Because G is a memoryless run of A, no two nodes of Vi+1 have the same
label, and therefore vi has vi+1 as its successor. But then, by induction, G
contains an acceptance sequence ending in an infinite suffix of edges corre-
sponding to transitions, all of which include f in their acceptance conditions.
This contradicts the assumption that G is a fin-accepting run of A. Therefore
G′ is necessarily a fin-accepting run of A′ on w, and Lfin(A) ⊆ Lfin(A

′).

(“⇐”) Let G′ = 〈V ′, E ′, L′〉 be a fin-accepting run of A′ on w ∈ Σω.
Without loss of generality, we may assume that G′ is memoryless; because
A′ is nondeterministic, each level V ′

i of G′ consists of a single node v′i for all
0 ≤ i < ω. Let L′(v′i) = {qi,1, . . . , qi,ni

} ∈ 2Q for some 0 ≤ ni < ω (where
qi,j 6= qi,k for all 1 ≤ j, k ≤ ni, j 6= k) for all 0 ≤ i < ω.

We define a run G = 〈V,E, L〉 of A on w. For all 0 ≤ i < ω, let Vi consist

of ni new nodes vi,1, . . . , vi,ni
, and let L(vi,j)

def
= qi,j for all 1 ≤ j ≤ ni.

Clearly, no two nodes in Vi have the same label, and L(Vi) = L′(v′i) holds
for all 0 ≤ i < ω.

Because G′ is a memoryless run of a nondeterministic automaton, the
node v′i ∈ V ′ has the unique outgoing edge

〈
v′i, {v

′
i+1}

〉
∈ E ′ labelled with a

transition
〈
L′(v′i),Γi, Fi, {L

′(v′i+1)}
〉
∈ ∆′ for some Γi ⊆ Σ and Fi ⊆ Q×F

for all 0 ≤ i < ω. By the definition of A′, there now exist transitions ti,j =
〈qi,j,Γi,j, Fi,j, Q

′
i,j〉 ∈ ∆ for all 1 ≤ j ≤ ni such that Γi =

⋂
1≤j≤ni

Γi,j,

Fi =
⋃

1≤j≤ni

(
{qi,j} × Fi,j

)
and {L′(v′i+1)} =

{ ⋃
1≤j≤ni

Q′
i,j

}
.

Let v ∈ Vi for some 0 ≤ i < ω; thus L(v) = qi,j ∈ L′(v′i) for some

1 ≤ j ≤ ni. We now define ei,j
def
= 〈v, V ′′〉 ∈ Vi × 2Vi+1 by choosing V ′′ to

be the unique subset of Vi+1 for which L(V ′′) = Q′
i,j (such a subset exists,

because Q′
i,j ⊆ L′(v′i+1) = L(Vi+1), and it is unique, because all nodes in

Vi+1 have different labels). We then define E
def
=

⋃
0≤i<ω{ei,1, . . . , ei,ni

} and

L(ei,j)
def
= ti,j for all 0 ≤ i < ω and 1 ≤ j ≤ ni.

We check that G is a run of A on w. Clearly, because L′(v′0) = {qI} =
L(V0), it follows that V0 consists of a single node labelled with qI . Because
the nodes of G′ are labelled with finite subsets of Q, it follows that Vi is finite
for all 0 ≤ i < ω, and the levels of G are disjoint by the definition. By the
definition of E, there are edges only between consecutive levels of G.

Let v ∈ Vi for some 0 ≤ i < ω. Then v = vi,j for some 1 ≤ j ≤ ni,
and v has the unique outgoing edge ei,j = 〈v, V ′′〉 ∈ E labelled with the
transition ti,j = 〈qi,j,Γi,j, Fi,j, Q

′
i,j〉 ∈ ∆. Clearly, L(v) = qi,j , and from the

definition of ei,j we see that L(V ′′) = Q′
i,j. Furthermore, because G′ is a run,

w(i) ∈ Γi =
⋂

1≤k≤ni
Γi,k. Thus especially w(i) ∈ Γi,j, and the labelling L

is consistent.
Let v ∈ Vi for some 1 ≤ i < ω. Then L(v) = q ∈ L′(v′i). Because

104 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

G′ is a memoryless run of a nondeterministic automaton, v′i is a successor of
the node v′i−1 ∈ V ′. Because the edge between these nodes is labelled with
a transition of A′ and because L′(v′i) 6= ∅, it follows from the definition of
A′ that L′(v′i−1) 6= ∅, and there exists a transition ti−1,j ∈ ∆ starting from
a state qi−1,j ∈ L′(v′i−1) that includes q in its target states. By the definition
of G, Vi−1 now contains a node vi−1,j with L(vi−1,j) = qi−1,j, and the edge
starting from this node is labelled with the transition ti−1,j . Thus vi−1,j has a
successor labelled with the state q. This successor is now necessarily the node
v, because v is the unique node in Vi labelled with the state q. It follows that
G is a run of A on w.

Assume that G is not fin-accepting. Then there exists an index 0 ≤ j < ω
and an acceptance condition f ∈ F such that E(G) contains an acceptance
sequence (ei)0≤i<ω, where the transition L(ei) includes f in its acceptance
conditions for all j ≤ i < ω. By Proposition 2.3.15, we may choose j such
that the transitions L(ei) have the same start state q ∈ Q for all j ≤ i < ω.
Because ei ∈ E for all j ≤ i < ω, then L(ei) = ti,k = 〈q,Γi,k, Fi,k, Q

′
i,k〉 for

some 1 ≤ k ≤ ni. But then, because f ∈ Fi,k, it follows that 〈q, f〉 ∈ Fi for
all j ≤ i < ω. Thus the transition L′

(
〈v′i, {v

′
i+1}〉

)
includes the pair 〈q, f〉 in

its acceptance conditions for all j ≤ i < ω, which contradicts the assumption
that G′ is fin-accepting. Therefore G is a fin-accepting run of A on w, and
Lfin(A

′) ⊆ Lfin(A). �

Number of Acceptance Conditions: A Worst Case Example

Translating a linear alternating automaton into an equivalent nondetermin-
istic automaton using the construction in Theorem 5.3.1 results in a blow-up
in the number of acceptance conditions that is linear in the number of states
of the automaton. An obvious question is whether this blow-up is actually
necessary. In the general case, the blow-up proves to be unavoidable if we
wish to use the same construction for defining the states and transitions of the
nondeterministic automaton. We illustrate this fact with a simple example.

Example 5.3.2 Let A be the linear alternating automaton shown in
Fig. 5.2 (a). Figure 5.2 (b) shows the transition structure of the nondeter-
ministic automaton obtained from A using the construction given in The-
orem 5.3.1 and then removing all states not reachable from the initial state
of the resulting automaton. Instead of defining the acceptance conditions
of this automaton as specified in the construction (in which case the nonde-
terministic automaton would have two distinct acceptance conditions), we
check whether it is possible to make the automaton fin-accept A’s language
with only one acceptance condition.

Clearly, if the transition t1 has no acceptance conditions, then the non-
deterministic automaton fin-accepts the word aω, which does not, however,
belong to Lfin(A). On the other hand, leaving the transition t2 with an empty
set of acceptance conditions would lead to the acceptance of the word abω,
which is not fin-accepted by A, either. Therefore we need to associate both
t1 and t2 with an acceptance condition. However, if we give the same con-
dition for both transitions, the nondeterministic automaton will no longer
fin-accept the word (ab)ω ∈ Lfin(A). It follows that we need at least two
acceptance conditions to make the languages accepted by the two automata

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 105

PSfrag replacements

{a}

{a}

{b}

{b}
q1

q2

PSfrag replacements

{a}

{a} {b}

{b}
{q1}

{q1,
q2}

t1 t2

(a) (b)

Fig. 5.2: (a) The linear alternating automaton A =
〈
{a, b}, {q1, q2},

{〈
q1, {a},

{f}, {q1, q2}
〉
,
〈
q1, {b}, ∅, {q1}

〉
,
〈
q2, {a}, ∅, {q2}

〉
,
〈
q2, {b}, {f}, {q2}

〉}
, q1, {f}

〉
;

(b) Transition structure of the nondeterministic automaton obtained from A by ap-
plying the construction in Theorem 5.3.1

equivalent without modifying the structure of the nondeterministic automa-
ton. By Theorem 5.3.1, two acceptance conditions are also sufficient in this
case. �

It is easy to see from the definition of the translation in Theorem 5.3.1 that
the nondeterministic automaton will include a transition associated with an
acceptance condition 〈q, f〉 ∈ Q×F iff f is included in the acceptance con-
ditions of some transition that starts from the state q in the linear alternating
automaton. Because the acceptance conditions not associated with any tran-
sition do not affect fin-acceptance (clearly, no such condition can cause any
acceptance sequence to violate the fin-acceptance condition in a run of the
automaton), we can remove these conditions from the automaton. The up-
per bound for the number of acceptance conditions in the nondeterministic
automaton can thus be improved to

∑

f∈F

{
q ∈ Q f ∈ F for some 〈q,Γ, F, Q′〉 ∈ ∆

}
≤ |Q| × |F|.

Size of a Nondeterministic Automaton Corresponding to an LTL Formula
Theorem 5.3.1 leads to the following corollary regarding the complexity of
translation of linear temporal logic formulas into nondeterministic automata.
This result is essentially equivalent to the one given by Couvreur [14] and
Gastin and Oddoux [28] with the exception of an additive constant (that
arises as a consequence of restricting to automata with only a single initial
state).

Corollary 5.3.3 Let ϕ ∈ LTL(AP) be any LTL formula built from the ele-
ments of AP , the Boolean constants > and ⊥, and the connectives {¬,∨,∧,
X,Us,Uw,Rs,Rw}. The language of the formula ϕ can be recognized by a
nondeterministic automaton with at most 1 + 2|Temp(ϕ)| states. (If ϕ is a bi-
nary pure temporal formula, the upper bound reduces to 2|Temp(ϕ)|.)

Proof: Let ϕ be an LTL formula in the given form. By Corollary 3.3.2, we
can apply the basic translation rules to find a linear alternating automaton
A having at most 1 + |Temp(ϕ)| states (|Temp(ϕ)| states if ϕ is a binary
pure temporal formula) such that Lfin(A) = L(ϕ). By the construction in
Theorem 5.3.1, there exists a nondeterministic automaton A′ that fin-accepts
the same language. Because this automaton consists of 2|A| states, the result

106 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

now follows immediately ifϕ is a binary pure temporal formula; otherwise the
construction in Theorem 5.3.1 yields a nondeterministic automaton with at
most 21+|Temp(ϕ)| states. In this case, however, because ϕ is not a binary pure
temporal formula, we see from the basic translation rules that the automaton
A has no self-loop transitions starting from its initial state qI ; furthermore,
because A is a linear alternating automaton, no other transition of A can
have qI as its target state, either. By the construction of A′, this allows us
to remove from A′ all states that contain the state qI except for the initial
state {qI} of A′, since none of these states are reachable from {qI} in A′.
Therefore, the upper bound for the size of the automaton reduces to 1 +
2|Temp(ϕ)| states, and the result follows. �

Languages Accepted by Subautomata of the Nondeterministic Automaton

We end this section with another corollary of Theorem 5.3.1 that extends the
result into subautomata of the nondeterministic automaton obtained from a
linear alternating automaton A using the construction. Each of these sub-
automata accepts precisely the intersection of the languages accepted by the
collection of A’s subautomata, whose initial states comprise the initial state
of the nondeterministic subautomaton.

Corollary 5.3.4 Let A= 〈Σ, Q,∆, qI,F〉 be a linear alternating automaton,
and let A′ =

〈
Σ, 2Q,∆′, {qI}, Q × F

〉
be the nondeterministic automaton

obtained from A by applying the construction in Theorem 5.3.1. Let Q′ ⊆
Q. Then,

⋂
q∈Q′ Lfin(A

q) = Lfin

(
(A′)Q

′)
.

Proof: Let Q′ = {q1, . . . , qn} for some 0 ≤ n < ω. We first modify A
into another linear alternating automaton A+ = 〈Σ, Q+,∆+, q̂,F〉, where

Q+ def
= Q ∪ {q̂} for some new state q̂ not included in Q, and

∆+ def
= ∆ ∪

{
〈q̂,Γ, ∅, Q′′〉 there exist transitions 〈qi,Γi, Fi, Q

′
i〉 ∈ ∆ (1 ≤

i ≤ n) such that Γ =
⋂

1≤i≤n Γi and Q′′ =⋃
1≤i≤nQ

′
i

}
.

Clearly, ∆+ contains no transitions including q̂ in their target states, and
(A+)q = Aq holds for all q ∈ Q.

By Theorem 5.3.1, there now exists a nondeterministic automaton A′′ =〈
Σ, 2Q

+
,∆′′, {q̂}, Q+×F

〉
(where ∆′′ is defined as described in the theorem)

such that Lfin(A
′′) = Lfin(A

+). It is easy to see that no target state of a
transition of A′′ corresponds to a subset of Q+ that contains the state q̂, and
thus each target state of a transition of A′′ is a subset of Q. Furthermore,
(A′′)Q

′′
= (A′)Q

′′
holds for all Q′′ ⊆ Q.

Now,
w ∈

⋂
q∈Q′ Lfin(A

q)

iff w ∈ Lfin(A
q) for all q ∈ Q′ (definition of set intersection)

iff Aq fin-accepts w for all q ∈ Q′ = {q1, . . . , qn} (def. of acceptance)

iff for all 1 ≤ i ≤ n, there exists a transition 〈qi,Γi, Fi, Q
′
i〉 ∈ ∆ such

that w(0) ∈ Γi and (Aqi)q
′

(= Aq′) fin-accepts w1 for all q′ ∈ Q′
i

(Lemma 3.4.1)

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 107

iff there exists a transition
〈
q̂,

⋂
1≤i≤n Γi, ∅,

⋃
1≤i≤nQ

′
i

〉
∈ ∆+ such that

w(0) ∈
⋂

1≤i≤n Γi, and Aq′ (= (A+)q
′
) fin-accepts w1 for all q′ ∈⋃

1≤i≤nQ
′
i (definition of A+)

iff A+ fin-accepts w (Lemma 3.4.1)

iff w ∈ Lfin(A
+) (definition of acceptance)

iff w ∈ Lfin(A
′′) (Theorem 5.3.1)

iff A′′ fin-accepts w (definition of acceptance)

iff there exists a transition
〈
{q̂},Γ, {q̂} × F, {Q′′}

〉
∈ ∆′′ for some Γ ⊆

Σ, F ⊆ F and Q′′ ⊆ Q such that w(0) ∈ Γ, and (A′′)Q
′′

fin-accepts
w1 (definition of A′′ and Lemma 3.4.1)

iff there exists a transition 〈q̂,Γ, F, Q′′〉 ∈ ∆+ such that w(0) ∈ Γ, and
(A′′)Q

′′
fin-accepts w1 (definition of A′′)

iff there exist transitions 〈qi,Γ
′
i, F

′
i , Q

′′
i 〉 ∈ ∆ (1 ≤ i ≤ n) such that

w(0) ∈ Γ =
⋂

1≤i≤n Γ′
i andQ′′ =

⋃
1≤i≤nQ

′′
i , and (A′′)Q

′′
fin-accepts

w1 (definition of A+)

iff there exists a transition
〈
Q′,Γ,

⋃
1≤i≤n({qi} × F ′

i), {Q
′′}

〉
∈ ∆′ such

that w(0) ∈ Γ, and (A′′)Q
′′

fin-accepts w1 (definition of A′)

iff there exists a transition
〈
Q′,Γ,

⋃
1≤i≤n({qi} × F ′

i), {Q
′′}

〉
∈ ∆′ such

that w(0) ∈ Γ, and (A′)Q
′′

fin-accepts w1 ((A′′)Q
′′

= (A′)Q
′′
)

iff (A′)Q
′
fin-accepts w (Lemma 3.4.1)

iff w ∈ Lfin

(
(A′)Q

′)
. (definition of acceptance)

�

Corollary 5.3.4 can be used to reduce the problem of checking the empti-
ness of the intersection of languages accepted by subautomata of a given lin-
ear alternating automaton A to checking the emptiness of a subautomaton
of the nondeterministic automaton obtained from A using the construction
presented in Theorem 5.3.1. This provides us with a method for handling
language emptiness checks such as those that arose during our investigation
of methods for transition redundancy analysis in Sect. 4.4.

Improvements to the Nondeterminization Construction

In practice, the standard way to construct a nondeterministic automaton
equivalent to a linear alternating automaton (or the intersection of its sub-
automata as discussed above) is to build only the part of the automaton, the
state set of which includes the initial state of the automaton and is closed
under the automaton’s transition relation ∆′. Although not discussed here
in detail, this phase should be combined with additional optimizations for
on-the-fly removal of transitions from the nondeterministic automaton dur-
ing the construction, for example, by applying the techniques presented by
Gastin and Oddoux [28]. (For example, Corollary 4.4.9 allows simple spe-
cial cases of Propositions 4.4.3 and 4.4.4 that can easily be seen to apply
also to nondeterministic automata; likewise, also the transition guard simpli-
fication rules given in Sect. 4.1 apply directly to nondeterministic automata.)
Fritz [24] has investigated similar techniques based on the application of sim-

108 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

ulation relations to improve the nondeterminization construction of Miyano
and Hayashi [49]. However, his techniques are not directly applicable to our
construction, because they are based on simulation relations on alternating
automata that are not allowed to have multiple acceptance conditions.

When working with linear alternating automata obtained from LTL for-
mulas, where each state of the automaton corresponds to a known LTL for-
mula, it may in some cases be possible to use the formula information for
pruning states from a nondeterministic automaton during its construction.
Due to the above correspondence and Corollary 5.3.4, each subautomaton
of the nondeterministic automaton accepts the language corresponding to
a conjunction of LTL formulas. Therefore, because every subautomaton
that recognizes the empty language can always be removed from an alter-
nating automaton without changing its language, it follows that we do not
need to consider those states of the nondeterministic automaton that cor-
respond to unsatisfiable conjunctions of LTL formulas. Borrowing tech-
niques from direct translations of LTL formulas into nondeterministic au-
tomata [15, 31, 32], we can, for example, use simple syntactic checks to
detect some of these unsatisfiable conjunctions to prune states from the
nondeterministic automaton. More precisely, given a finite set of formulas
Φ ⊆ LTL(AP) (corresponding to a set of states of the linear alternating au-
tomaton), the formula

∧
ϕ∈Φ ϕ is easily seen to be unsatisfiable if one of the

following conditions hold1:

• ⊥ ∈ Φ;

• {ψ,¬ψ} ⊆ Φ for some ψ ∈ LTL(AP);

•
{
(ψ1 ◦ ψ2),¬ψ1,¬ψ2

}
⊆ Φ for some ◦ ∈ {∨,Us,Uw} and some

ψ1, ψ2 ∈ LTL(AP);

•
{
(ψ1 ∧ ψ2),¬ψ1

}
⊆ Φ for some ψ1, ψ2 ∈ LTL(AP); or

•
{
(ψ1◦ψ2),¬ψ2} ⊆ Φ for some ◦∈{∧,Rs,Rw} and ψ1, ψ2∈LTL(AP).

We can try to improve heuristically the efficiency of the above tests by ap-
plying them to a set of formulas syntactically implied by the formulas in Φ
instead of the set Φ itself; intuitively, explicating these syntactic implications
increases the possibility of detecting the unsatisfiability of the conjunction
using the above tests. Formally, we define the set SI(Φ) of formulas syn-
tactically implied by the elements of Φ as the smallest set of formulas that
contains Φ as a subset and is closed under the following rules:

• If
{
(ψ1 ◦ ψ2),¬ψi

}
⊆ SI(Φ) for some ◦ ∈ {∨,Us,Uw}, ψ1, ψ2 ∈

LTL(AP) and i ∈ {1, 2}, then ψ3−i ∈ SI(Φ).

• If (ψ1∧ψ2) ∈ SI(Φ) for some ψ1, ψ2 ∈ LTL(AP), then ψ1, ψ2 ∈ SI(Φ).

• If (ψ1 ◦ ψ2) ∈ SI(Φ) for some ◦ ∈ {Rs,Rw}, then ψ2 ∈ SI(Φ).

1We identify negated LTL formulas here with their positive normal forms.

5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA 109

It is straightforward to check using the semantics of LTL that for all finite sets
of formulas Φ ⊆ LTL(AP),

∧
ϕ∈Φ ϕ ≡

∧
ϕ∈SI(Φ) ϕ. Therefore, if a state of

the nondeterministic automaton corresponds to a set of formulas Φ, we can
prune the state from the automaton if the formula

∧
ϕ∈SI(Φ) ϕ is unsatisfiable.

As a matter of fact, the sets of formulas syntactically implied by the con-
junctions of formulas corresponding to the states of the nondeterministic au-
tomaton induce an equivalence relation between the states of the nondeter-
ministic automaton, which suggests the possibility of using the relation for
minimizing the nondeterministic automaton by quotienting (the minimiza-
tion technique used with simulation relations in general [21, 22, 25]). How-
ever, it is a well-known fact that mere language equivalence between two
subautomata of a nondeterministic automaton is not sufficient to guarantee
that the automaton obtained by quotienting still accepts the same language
(an example can be found, e.g., in the article by Somenzi and Bloem [62]).
Therefore, the selection of representative states requires information also on
the reachability between states in the nondeterministic automaton [62].

Finally, when implementing the language emptiness checks that arise dur-
ing transition redundancy analysis (Sect. 4.4) via translation of alternating
automata to nondeterministic automata, we are not usually interested in the
actual nondeterministic automaton that accepts the intersection of the lan-
guages of one or more linear alternating automata, but only in the emptiness
of the automaton. Furthermore, because all of our minimization techniques
allow simplification only if the answer to the language emptiness question
is positive, we always obtain a sound approximation of the emptiness check-
ing result by assuming the automaton to be nonempty. This fact can be
used to devise heuristics for dynamically allowing or disallowing some of the
(potentially very costly) emptiness checks during minimization of alternating
automata. For example, we could set a limit for the maximum size for any
nondeterministic automaton to be used in an emptiness check and use this
limit to abort the nondeterminization of alternating automata (with a nega-
tive answer to the emptiness question) if the automaton grows too large.

By caching the results of the emptiness checks for different combina-
tions of alternating automata (encoded as a subset Q of states of an un-
derlying alternating automaton A that contains all of the automata as its
subautomata), we may be able to avoid the explicit construction of a non-
deterministic automaton in later emptiness checks for other combinations
of the automata. For example, it is easy to see that if

⋂
q∈QLfin(A

q) = ∅,
then

⋂
q∈Q′ Lfin(A

q) = ∅ for all Q′ ⊇ Q; conversely, if Q′ ⊆ Q, then⋂
q∈QLfin(A

q) 6= ∅ implies that
⋂
q∈Q′ Lfin(A

q) 6= ∅.

110 5. NONDETERMINIZATION OF LINEAR ALTERNATING AUTOMATA

6 EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA

Checking the emptiness of nondeterministic automata is easily reducible to
a question on repeated reachability in automata [13, 76]. Therefore, the
emptiness checking problem is solvable, for example, using time-efficient
basic graph algorithms [65] to decide the existence of cycles satisfying certain
acceptance constraints.

However, the practical difficulties to handle large automata, which are
commonly encountered in model checking, have encouraged the study of
algorithms that aim to improve the memory requirements of checking the
emptiness of the automata. An alternative approach to emptiness checking
was presented by Courcoubetis, Vardi, Wolper and Yannakakis [13], who in-
troduced a linear-time on-the-fly emptiness checking algorithm (commonly
known as the nested depth-first search) that is also compatible with common
probabilistic explicit-state model checking techniques [35, 63, 79]. Further
improvements and extensions to this algorithm were presented by several au-
thors, including Godefroid and Holzmann [33], Holzmann, Peled, and Yan-

nakakis [36], Edelkamp, Leue and Lluch-Lafuente [17], Brim, Černá and
Nečesal [4], and Bošnački [2, 3].

Most known variants of the basic nested depth-first search algorithm, how-
ever, share the inability to handle automata with multiple acceptance condi-
tions directly: to apply the nested depth-first search algorithm, the automata
must first be “degeneralized” into an equivalent automaton with a classic
Büchi acceptance condition [10, 13, 19, 28, 32]. Although a simple opera-
tion, the degeneralization may nevertheless increase the size of the automa-
ton by a linear factor that depends on the number of acceptance conditions.
Because this increase cannot be avoided in the general case [66], the trans-
formation may thus decrease the optimal memory savings gained from the
use of a special emptiness checking algorithm. Therefore, the potential ad-
vantages of avoiding degeneralization suggest applications for direct empti-
ness checking algorithms for automata with multiple acceptance conditions.
Other advantages of such algorithms have previously been pointed out in
the context of model checking under fairness assumptions (see, for example,
Francez [23]) by Couvreur [14], who introduced an on-the-fly version of the
algorithm of Tarjan [65] for the emptiness checking of automata with mul-
tiple acceptance conditions, and Bošnački [3], who proposed methods for
combining the nested depth-first search with fairness and symmetry reduc-
tion.

In this section, we describe a variant [66] of the basic nested depth-first
search emptiness checking algorithm. This variant of the algorithm can
work directly on automata with multiple acceptance conditions and removes
the need for degeneralization. Instead of using automata working in fin-
acceptance mode, however, we now switch our focus to automata working
in inf-acceptance mode to allow easy substitution of our algorithm for other
constructions known from the literature. The intuition behind the nested
depth-first search is also easier to explain using this acceptance mode. When
dealing with nondeterministic automata obtained from linear alternating au-
tomata working in fin-acceptance mode, the simple correspondence between

6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA 111

the acceptance modes (see Sect. 2.3.1) allows the mode change to be com-
bined, for example, with the nondeterminization of linear alternating au-
tomata.

6.1 EMPTINESS CHECKING ALGORITHM

Let A = 〈Σ, Q,∆, qI ,F〉 be a nondeterministic automaton. Without loss
of generality, we may assume that ∆ contains no transitions with an empty
guard (as noted in Sect. 4.1.2, these transitions do not affect the language
of the automaton). The nonemptiness of the automaton is easily seen to be
equivalent to the existence of a path from a state to itself that satisfies a con-
straint on the acceptance conditions associated with transitions connecting
each state to its successor in the path [13, 76]. That is, Linf(A) 6= ∅ holds
iff A contains a path from its initial state qI to a state that is reachable from
itself via a nontrivial path in which the transitions connecting each state to
its successor can be chosen such that the union of the transitions’ acceptance
conditions includes all elements of F . We call these paths accepting cycles
in the automaton.

It is easy to see that every cycle of A is accepting if F = ∅, and thus the
nonemptiness of A can in this case be decided simply by checking whether
the initial state of the automaton is included in a path that visits some state
of the automaton twice. To simplify the description of the general empti-
ness checking algorithm, we assume that F is nonempty for the rest of the
discussion.

Outline of the Algorithm

The emptiness checking algorithm is based on the above correspondence
between nonemptiness and the existence of an accepting cycle in the au-
tomaton. The algorithm (shown in pseudocode in Fig. 6.1) tries to find an
accepting cycle in the automaton by traversing it using a depth-first search
that drives another interleaved incremental search in the automaton. The
main depth-first search uses a stack of states (the variable path), together
with a set of states (processed) that stores the states that have already passed
through the search stack. Intuitively, the path stack always contains a path
from the initial state qI to one of its descendants. In some occasions we treat
the path stack as a set of states to check for the presence of elements in the
stack; in practice, this information must be kept in an additional data struc-
ture (such as a hash table) to avoid a linear search through the stack each
time such a check occurs.

The depth-first search processes the states of the automaton in depth-first
search post-order. Before the algorithm backtracks from a state q currently on
top of the depth-first search stack, the algorithm scans the transitions starting
from q (line 11) for transitions with a nonempty set of acceptance conditions
(we explain the role of the conds table below). For each such transition,
the algorithm can start another search from the (unique) target state of the
transition by calling the markConditions subroutine (lines 12–13) that marks
the acceptance conditions of the transition to a set of states reachable from q.
For this purpose, the algorithm uses a table conds that associates each state

112 6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA

Input: A nondeterministic automaton A = 〈Σ, Q,∆, qI ,F〉 with F 6= ∅
and Γ 6= ∅ for all 〈q,Γ, F,Q′〉 ∈ ∆.

Output: A report telling whether the automaton is inf-empty.

Initialize: conds := [q1 7→ ∅, . . . , q|Q| 7→ ∅]; path := ∅; processed := ∅;

1 checkEmptiness(〈Σ, Q,∆, qI ,F〉: Nondeterministic automaton)

2 begin

3 path .push(qI);

4 while (path 6= ∅) do begin

5 q := path .top();

6 while (∃q′ ∈ Q \ (path ∪ processed) : q′ is a successor of q) do

7 begin

8 path .push(q′);

9 q := q′;

10 end;

11 for all
〈
q,Γ, F, {q′}

〉
∈ ∆ do

12 if (F ∪ conds [q] 6⊆ conds [q′]) then

13 markConditions(〈Σ, Q,∆, qI ,F〉, {q′}, F ∪ conds [q]);
14 if (conds [q] = F) then

15 exit “Automaton is not inf-empty”;

16 processed := processed ∪ {q};

17 path .pop();

18 end;

19 exit “Automaton is inf-empty”;

20 end;

21 markConditions(〈Σ,Q,∆, qI ,F〉: Nondeterministic automaton; states ∈ 2Q;

conditions ∈ 2F)

22 repeat

23 remove any state q from states;

24 conds [q] := conds [q] ∪ conditions ;

25 for all
〈
q,Γ, F, {q′}

〉
∈ ∆ do

26 if (q′ ∈ path ∪ processed and conditions 6⊆ conds [q ′]) then

27 states := states ∪ {q′};

28 until (states = ∅);

Fig. 6.1: Algorithm for checking nondeterministic automata for inf-emptiness

6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA 113

of the automaton with a set of acceptance conditions. To avoid redundant
work, the nested search is restricted to states q ′ ∈ Q that have previously been
encountered during the main depth-first search but for which conds[q ′] has
not yet been updated to include all acceptance conditions of some transition
starting from q (lines 12 and 26).

Intuitively, if f ∈ conds[q] holds for an acceptance condition f ∈ F and
a state q ∈ Q, then the state q is the last state on some path, two states of
which can be connected to each other with a transition including f in its
acceptance conditions. This information is taken into account also when-
ever starting a nested search in the automaton (line 13): intuitively, if we
already know that the state q belongs to a path, two states of which can be
connected with a transition including f in its acceptance conditions, then
all states reachable from q must also have this property.

Consider the contents of a set conds[q] immediately before and after the
loop between lines 11 and 13. If f /∈ conds[q] holds for some acceptance
condition f ∈ F before the loop, but f ∈ conds[q] holds after the loop, then
it is easy to see from the operation of the markConditions subroutine that the
automaton contains a cycle from the state q to itself such that it is possible
to connect two states in this cycle with a transition including the acceptance
condition f . Thus, for example, if conds[q] = ∅ holds before the loop, but
conds[q] = F holds after the loop, then q is a common state of a collection
of cycles “covering” each of the acceptance conditions. Thus the cycles can
trivially be merged into an accepting cycle, and the automaton is nonempty,
because q—being on top of the path stack—is obviously reachable from the
initial state of the automaton. By the condition at line 14, the algorithm
reports that the automaton is not inf-empty in this case as expected. The
fact that the exit condition at line 14 is sound even if conds[q] is nonempty
before entering the loop at line 11 will be justified in the correctness proof
presented in the end of this chapter.

Time and Space Complexity

Let A = 〈Σ, Q,∆, qI ,F〉 be a nondeterministic automaton (F 6= ∅, Γ 6= ∅
for all 〈q,Γ, F, Q〉 ∈ ∆) given as input for the algorithm. Because the al-
gorithm implements a depth-first search in the automaton, it is clear that
the loop between lines 11 and 13 is executed once for each state (reachable
from the initial state qI) in the automaton. The loop between lines 6 and
10 can easily be implemented such that it is executed at most once for each
transition in the automaton. If we assume that all set membership checks
take constant time, the algorithm thus needs, using the standard “big-oh”-
notation, O

(
|Q| + c(|F|) · |∆|

)
steps plus the number of steps spent in the

markConditions subroutine to execute, where 1 ≤ c(|F|) < ω is a con-
stant that depends (linearly) on the number of acceptance conditions in the
automaton (required to account for the set inclusion test at line 12). By im-
plementing set inclusion tests with basic bit vector operations, this constant is
essentially equal to 1 if |F| does not exceed the word length of the underlying
implementation architecture.

It is easy to see from the conditions on lines 12 and 26 of the algorithm
that some set in the conds table is extended with a new element each time
line 24 is executed. Therefore, the loop between lines 25 and 27 can be

114 6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA

executed at most |F| times for each state in the automaton, and thus all

calls to the markConditions subroutine require O
(
|F| ·

(
|Q|+ c(|F|) · |∆|

))

steps. This is easily seen to also be the complexity of the running time of the
entire algorithm. Thus, for any fixed number of acceptance conditions, the
algorithm works in linear time in the total number of states and transitions
in the automaton.

The conds table can be implemented using a simple hash table using
|Q| ·

(
s+ |F|

)
bits of storage, where s is the number of bits required for each

key that is used for indexing states in the table. Information about the states
currently on the path stack can be stored into the same hash table using
an additional bit of memory per state. Although we could similarly add one
more bit per state for storing the information about the states in the processed

set, we can easily infer this information also from the presence of the state
in the hash table and the hash table information, provided that the states
are inserted into the table only as they are encountered during the main
depth-first search. Thus, the algorithm needs, in addition to the memory
required for the data structures needed for automaton traversal, a total of
|Q| ·

(
s + |F| + 1

)
bits of memory. This memory limit is slightly lower than

the theoretical worst-case memory consumption of the classic nested depth-
first search algorithm when the degeneralization of the automata (mandatory
for the classic algorithm) is taken into account [66].

Applications

The emptiness checking algorithm in Fig. 6.1 can be used both for check-
ing the emptiness of automata that arise during language containment tests
when simplifying alternating automata, and for the common task of model
checking [13]. See the previous work of the author [66] for some further
discussion and analysis, and a version of the algorithm that is, similar to the
classic algorithm, compatible with common probabilistic model checking
techniques such as bitstate hashing [35] and hash compaction [63, 79]. The
generalized algorithm can also handle model checking under weak fairness
assumptions. We note, however, that probabilistic methods cannot be used
when checking the emptiness of automata for language containment tests,
since the result that an automaton is only probably empty is not sufficient to
guarantee the soundness of the language containment based simplification
techniques discussed in Ch. 4.

6.2 CORRECTNESS OF THE ALGORITHM

In this section we show the correctness of the emptiness checking algorithm.
Throughout the section, we refer to the components of a nondeterministic
automaton A = 〈Σ, Q,∆, qI ,F〉 (with F 6= ∅ and Γ 6= ∅ for all transitions
〈q,Γ, F, Q′〉 ∈ ∆) given as input for the algorithm. For all states q ∈ Q
in the automaton, we denote the (static) contents of the path stack and the
processed set between lines 11 and 15 of the algorithm when q is on top of
the path stack by path(q) and processed(q), respectively; clearly, the section
of code between these lines is executed at most once for each state of the
automaton.

6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA 115

Lemma 6.2.1 Let q ∈ Q be the state on top of the path stack between lines
11 and 15 of the algorithm. Then, q is a descendant of q ′ in A for all q′ ∈
path(q) \ {q}.

Proof: The algorithm uses path as the depth-first search stack; the states in
the stack always form a path to the state currently on top of the stack. �

Lemma 6.2.2 Let q ∈ Q be a state on top of the path stack between lines
11 and 15 of the algorithm, and let f ∈ F be an acceptance condition. If
f ∈ conds[q] holds already before the algorithm enters the loop at line 11,
then the automaton contains a nontrivial path from q to itself in which some
state can be connected to its successor with a transition that includes f in its
acceptance conditions.

Proof: Because q is on top of the path stack, q cannot yet have been inserted
into the set processed . Because conds[q] was initially empty, the fact that
f ∈ conds[q] holds before the loop at line 11 implies that f was inserted
into conds[q] during a previous call to the markConditions subroutine with
another state q′ 6= q on top of the path stack; it is clear from the calling
convention and the operation of the subroutine that q is reachable from q ′ in
the automaton. Furthermore, because the processed set grows monotonically
during the execution of the algorithm, q /∈ processed(q) implies that q /∈
processed(q′), and it follows that q must have been on the path stack when
the markConditions subroutine was called in the state q ′, i.e., q ∈ path(q′).
Therefore q′ is also reachable from q in the automaton by Lemma 6.2.1, and
the automaton contains a path from q to itself such that the path visits the
state q′.

If q′ is the start state of a transition including f in its acceptance condi-
tions, then the result follows immediately if q was reached from q ′ during a
nested search starting from the target state of one of these transitions. Oth-
erwise (i.e., if no transition starting from q′ includes f in its acceptance con-
ditions, or if q was not reached from q′ via any such transition), the fact that
f was nevertheless added to conds[q] while q ′ was on top of the path stack
necessitates that f was already included in conds[q ′] before the algorithm
entered the loop at line 11 with q′ on top of the path stack. Thus q′ satisfies
the assumption given in the lemma.

By repeating the above reasoning in q′, we find a path from q′ to itself
through another state q′′ 6= q′ (and q′′ 6= q) such that f was added to conds[q′]
while q′′ was on top of the path stack. Using the same construction, we can
now find a sequence of states (q, q′, q′′, . . .) in which every two successive
states are reachable from each other in the automaton. Furthermore, be-
cause the states in this sequence are unique states of a finite automaton, the
sequence is necessarily finite, and it ends with a pair of states q̂ and qf that can
be connected to each other with transitions, one of which includes f in its ac-
ceptance conditions. Therefore, the path (q, . . . , q ′, . . . , q̂, . . . , qf , . . . , q̂, . . . ,
q′, . . . , q) from q to itself has this same property. �

The following theorem establishes the soundness of the algorithm.

116 6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA

Theorem 6.2.3 Let A = 〈Σ, Q,∆, qI ,F〉 (F 6= ∅, Γ 6= ∅ for all 〈q,Γ, F, Q′〉
∈ ∆) be a nondeterministic automaton given as input for the algorithm
shown in Fig. 6.1. If the algorithm reports that A is not inf-empty, then
Linf(A) 6= ∅.

Proof: Assume that the algorithm reports that A is not inf-empty. Clearly, this
can occur only if conds[q] = F holds at line 14 of the algorithm for some
state q ∈ Q currently on top of the path stack. Since qI ∈ path(q) is certainly
true, there exists a (possibly trivial) path from qI to q in the automaton by
Lemma 6.2.1.

Let f ∈ F be an acceptance condition. If f ∈ conds[q] holds before
the algorithm enters the loop at line 11 (with q on top of the path stack),
Lemma 6.2.2 proves the existence of a path from q to itself in which some
transition can be chosen to include the acceptance condition f . Otherwise, if
f was not included in conds[q] before the loop, the algorithm had to add f to
conds[q] during a nested search starting from the state q itself. Therefore, q is
the start state of a transition that includes f in its acceptance conditions and
that can be taken along a path from q to itself. By repeating the consideration
for all acceptance conditions, we can find a collection of paths from q to
itself that can be merged into an accepting cycle of the automaton. By the
discussion before the overview of the algorithm, this implies that Linf(A) is
nonempty. �

We now turn to the completeness of the algorithm. We begin by listing
several additional basic properties of the algorithm.

Lemma 6.2.4 Let q ∈ Q be a state in the automaton. If the algorithm
reaches line 11 with q on top of the path stack, then

(a) the algorithm will never start a nested search from any state q ′ ∈
processed(q);

(b) if q′ is a successor of q, then q′ ∈ path(q) ∪ processed(q); and

(c) if there exists a state q′ ∈ path(q)∪ processed(q) that is reachable from
q and has a successor q′′ /∈ path(q) ∪ processed(q), then q′ ∈ path(q).

Proof:

(a) The main depth-first search visits each state of the automaton at most
once. Since q′ ∈ processed(q), the search has already backtracked
from q′, and thus the algorithm cannot restart a nested search from q ′.

(b) Immediate by the loop termination condition at line 6 of the algorithm.

(c) Let q′ and q′′ be states satisfying the requirements in the lemma. The
case q′ = q is impossible by (b). We show that the assumption that
q′ ∈ processed(q) leads to a contradiction, and therefore q ′ must be
included in path(q).

Assume that q′ ∈ processed(q), i.e., that the main search has already
backtracked from q′. This implies that the algorithm has already passed
through line 11 with q′ on top of the path stack. But then, because q ′′ is

6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA 117

a successor of q′, it follows by (b) that q′′ ∈ path(q′)∪processed(q′) held
at this point. Because no states are ever removed from the processed

set, processed(q′) ⊆ processed(q), and therefore q′′ /∈ processed(q′)
necessarily holds by the choice of q′′. Therefore q′′ ∈ path(q′), which
implies (again, by the choice of q′′) that q′′ ∈ path(q′)\path(q). There-
fore q′′ must have been removed from the path stack before the algo-
rithm reached line 11 with q on top of the path stack. However, this
implies that q′′ ∈ processed(q), which is a contradiction. �

The completeness proof is based on an invariant of the nested search pro-
cedure. The invariant is stated using the following notion of direct reachabil-
ity.

Let q ∈ Q be a state on top of the path stack at lines 11–15. We say that
the state q′ ∈ Q is directly reachable (from q) iff there exists a nontrivial path
(q1, q2, . . . , qn) (2 ≤ n < ω) in the automaton such that q1 = q, qn = q′,
qi ∈ processed(q) for all 1 ≤ i ≤ n, and {q2, q3, . . . , qn−1} ∩ path(q) = ∅.
That is, q′ is directly reachable from q if it is reachable from q via a nontrivial
path contained in processed(q) such that the path does not intersect path(q)
between its endpoints.

Lemma 6.2.5 Let q ∈ Q be a state in the automaton, and let f ∈ F
be an acceptance condition included in F ∪ c[q] for some transition t =
〈q,Γ, F, Q′〉 ∈ ∆ starting from q at line 11 of the algorithm with q on top
of the path stack, where c[q] records the contents of conds[q] immediately
before the loop. Then, f ∈ conds[q′] holds for all states q′ directly reachable
from q via the transition t after the loop between lines 11 and 13.

Proof: We proceed by induction on the length of paths starting from the state
q via the transition t in the automaton. The case for t’s unique target state
(which is directly reachable from q by Lemma 6.2.4 (b)) is clear from the
condition at line 12 and the operation of the markConditions subroutine.

Assume that the result holds for all states directly reachable from q via a
shortest path with exactly n (2 ≤ n < ω) states. Let q′ be a state directly
reachable from q via a shortest path (q1, q2, . . . , qn, q

′) (where q1 = q) with
n + 1 states (we always assume that these paths begin with the transition t).
Clearly, qn is directly reachable from q via a path with n states. There are two
cases:

1. The algorithm visits qn during the call to the markConditions subrou-
tine starting from t; clearly, f ∈ conditions holds during this invo-
cation of the subroutine. Because q′ is a successor of qn and directly
reachable from q, the condition at line 26 of the algorithm guarantees
that q′ will be added to the states set if f /∈ conds[q ′]. The termination
condition of the subroutine (line 28) then ensures that the algorithm
will not return from the subroutine until f has been added to conds[q ′].

2. The algorithm does not visit qn during the call to the markConditions

subroutine starting from t. Because f ∈ conds[qn] nevertheless holds
after the loop between lines 11 and 13 (by the induction hypothe-
sis), f must have been added to conds[qn] during a previous call to

118 6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA

the subroutine. Assume that f was not included in conds[q ′] when
this search was started, and assume that this search did not visit the
state q′ (otherwise there is nothing to show). By the latter assump-
tion, this search was started from another state q̂ 6= q on top of the
path stack. Because the search proceeded to qn, qn ∈ path(q̂) ∪
processed(q̂); however, the fact that the search did not visit q ′ neces-
sitates that q′ /∈ path(q̂) ∪ processed(q̂), and thus qn and q̂ cannot be
the same state (otherwise q′ would be one of the successors of q̂, all of
which however belong to path(q̂)∪processed(q̂) by Lemma 6.2.4 (b)).
By Lemma 6.2.4 (c), it follows that qn ∈ path(q̂), and thus the algo-
rithm can proceed to the loop at line 11 with qn on top of the path stack
only after backtracking from q̂. On the other hand, this must neverthe-
less occur before the algorithm enters the loop with the state q on top
of the path stack: because q′ is directly reachable from q via the path
(q1, q2, . . . , qn, q

′) (where q1 = q), it follows that qn ∈ processed(q),
and thus, by Lemma 6.2.4 (a), the algorithm has already backtracked
from qn when it reaches line 11 with q on top of the path stack. Thus,
because f ∈ conds[qn] holds when the algorithm enters the loop at
line 11 with qn on top of the path stack and q′ is a successor of qn, f
will be added to the set conds[q′] during this loop if it is not there al-
ready. Thus f ∈ conds[q′] will hold also after the corresponding loop
when q is on top of the path stack. This completes the induction. �

We can now prove the completeness of the algorithm.

Theorem 6.2.6 Let A = 〈Σ, Q,∆, qI ,F〉 (F 6= ∅, Γ 6= ∅ for all 〈q,Γ, F, Q′〉
∈ ∆) be a nondeterministic automaton given as input for the algorithm
shown in Fig. 6.1. If Linf(A) 6= ∅, then the algorithm reports that A is
not inf-empty.

Proof: Because Linf(A) 6= ∅, A contains an accepting cycle that visits a
descendant of the initial state qI . Thus the automaton contains a maximal
nontrivial strongly connected component (i.e., a maximal subset of states,
all of which are reachable from each other in the automaton via a nontrivial
path) reachable from the initial state qI such that the component contains a
cycle in which each state can be connected to its successor with transitions,
the union of whose acceptance conditions includes all elements of F .

Assume, contrary to the claim, that the algorithm reports that A is empty.
In this case the main depth-first search will visit all states reachable from qI .
Let C ⊆ Q be the first maximal strongly connected component of A entered
in the main depth-first search among all components of A that contain an
accepting cycle, and let q ∈ C be the first state of C pushed on the path

stack. Let f ∈ F be an acceptance condition. Because C contains an ac-
cepting cycle, there exists a state qf ∈ C that is connected to another state
of the component with a transition t ∈ ∆ that includes f in its acceptance
conditions. By the choice of q, the main search will not backtrack from q
until all states in C have been visited; therefore, the algorithm will enter the
loop between lines 11 and 13 with qf on top of the path stack while q is also
still on the stack.

6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA 119

If q is at this point directly reachable from qf via t, then f ∈ conds[q] will
hold after the loop by Lemma 6.2.5; this applies especially in the case qf = q,
since q is certainly directly reachable from itself via t (the target state of t is
in C). Otherwise qf 6= q, and q is not directly reachable from qf via t when
the loop is entered with qf on top of the path stack. Let x be any simple
nontrivial path from qf to q via t. Clearly, any such path is contained in C.
There are two cases:

• x is entirely contained in path(qf) ∪ processed(qf). Because q is not
directly reachable from qf via t, however, it follows from the definition
of direct reachability that x visits a state in path(qf) strictly between its
endpoints.

• x visits a state q′′ that is not contained in path(qf) ∪ processed(qf).
Because the path starts from the state qf that is in path(qf), x contains
a state q′ ∈ path(qf) ∪ processed(qf) of which q′′ is a successor. By
Lemma 6.2.4 (c), it follows that q′ ∈ path(qf). In addition, q′ 6= qf
holds by Lemma 6.2.4 (b), and q′ 6= q, since q is the last state in the
path and thus has no successor. Thus, x visits a state in path(qf) strictly
between its endpoints also in this case.

The above analysis proves the existence of a state q̂ ∈ path(qf) \ {qf , q}
that is directly reachable from qf via t. Because t includes the acceptance
condition f , it follows by Lemma 6.2.5 that f ∈ conds[q̂] will hold after the
loop between lines 11 and 13 when qf is on top of the path stack. Because
q̂ 6= qf and q̂ ∈ path(qf), the algorithm will reach this loop in the state q̂
only after backtracking from qf . On the other hand, by the choice of q, this
will occur before the loop is started in the state q.

When the algorithm enters the loop at line 11 with q̂ on top of the path

stack, there are again two possibilities: either q is directly reachable from
q̂, in which case f ∈ conds[q] will hold after the loop (by Lemma 6.2.5;
f ∈ conds(q̂) holds already before the loop), or there exists a state q̂ ′ ∈(
path(q̂) ∩ C

)
\ {q̂, q} that is directly reachable from q̂, and f ∈ conds[q̂ ′]

holds after the loop.
By repeating the above reasoning if necessary, we are bound to find a state

q̄ from which q is directly reachable when the loop at line 11 is entered with
q̄ on top of the path stack. Therefore, f will be added to conds[q] (at the
latest) when the loop is executed in the state q̄.

Since f is arbitrary, we can conclude that conds[q] = F will hold at line
14 when q is on top of the path stack. Hence, the algorithm reports that
the automaton is not inf-empty, contrary to our assumption. This proves the
completeness of the algorithm. �

120 6. EMPTINESS CHECKING OF NONDETERMINISTIC AUTOMATA

7 CONCLUSIONS, CRITICISMS AND OPEN QUESTIONS

The close connection between linear temporal logic and linear alternating
automata gives rise to conceptually simple translation procedures between
the logic and the automata. In practice, these automata are often expanded
into nondeterministic automata to facilitate the implementation of decision
procedures for the logic and its applications, using, for example, well-known
simple graph algorithms. The worst-case exponential combinatorial cost of
nondeterminization makes the efficiency of the decision procedures very sen-
sitive to the properties of the automata; intuitively, even small changes to the
automata can have significant effects on the size of the results of nondeter-
minization. This motivates the study of methods for optimizing the transla-
tion of LTL into linear alternating automata.

As seen from the results in Ch. 4, the translation benefits from a gener-
alized definition for linear alternating automata that allows improving the
translation, for example, with new translation rules for simplifying the transi-
tion structure of automata built from smaller components by exploiting struc-
tural properties of the components and language containment relationships
between the components. Similar principles apply to removing transitions
from the automata during the incremental construction. In many cases, the
two-way connection between LTL and linear alternating automata allows the
language containment checks to be implemented by reusing the basic trans-
lation procedure; in principle, the connection can also be used to devise a
complementation procedure for linear alternating automata.

Heuristic simplification of the transitions of the automata increases the
possibility of obtaining automata that can easily be modified into nondeter-
ministic automata with only a constant increase in the size of the automata.
Additionally, the translation reveals a syntactic subclass of LTL, the automata
constructed from which provably have this property. In general, linear alter-
nating automata can be translated into nondeterministic automata without
exceeding the best known (2n) worst-case upper bound for their number of
states; however, the generalized definition of automata causes an increase
in the number of generalized acceptance conditions of the nondeterminis-
tic automata. This increase can be countered somewhat by using a direct
emptiness checking algorithm for generalized nondeterministic automata.

Nevertheless, the proposed constructions can also be criticized on some
points:

• It can be argued that translating linear temporal logic into nondeter-
ministic automata using alternating automata as an intermediate for-
malism introduces extra overhead to the translation procedure. More-
over, obtaining a practically competitive implementation of the proce-
dure requires additional support from an optimized nondeterminiza-
tion construction for alternating automata, if further explicit minimiza-
tion of nondeterministic automata is to be avoided. However, due
to some evidence that suggests the high difficulty of the task of im-
plementing efficient translation procedures for LTL correctly in prac-
tice [67], the translation may be more manageable as two separate sub-
tasks.

7. CONCLUSIONS, CRITICISMS AND OPEN QUESTIONS 121

• The proposed procedure for translating LTL into alternating automata
does not support on-demand construction of the automata, even
though it would be very useful when combining the translation with
on-the-fly nondeterminization or emptiness checking techniques [1,
31]. This feature is not unique to the proposed translation, however,
as the need for constructing the full automaton is also implicit, for
example, in the design of many simulation-based minimization tech-
niques for alternating and nondeterministic automata. Nevertheless,
on-the-fly techniques still remain applicable to nondeterminization of
the automata and emptiness checking of the results. Moreover, be-
cause alternating automata are comparable in size to the LTL spec-
ifications, the full construction of the alternating automata does not
as easily suffer from the exponential combinatorial cost that may oc-
cur when translating the specifications directly into nondeterministic
automata.

• Many of the proposed structural optimizations to linear alternating au-
tomata depend on the explicit notion of a transition of an alternating
automaton. Therefore, the optimizations are not applicable to the min-
imization of alternating automata in which the transition relation is
given only implicitly as Boolean expressions. Handling the transitions
explicitly also renders even the basic translation construction without
any optimizations into an algorithm with both exponential space and
time complexity (in the size of the LTL specification) in the worst case.
Algorithms of comparable worst-case complexity are nevertheless com-
mon in all translation procedures that construct automata from LTL
formulas explicitly; the practical effectiveness of all of these construc-
tions relies on the assumption that the specifications given as input for
the algorithms remain small.

• Despite the conceptual simplicity of enhancing the basic translation
construction with language containment based optimizations, carefree
use of the optimizations is bound to limit severely the practical effec-
tiveness of any implementation without heuristics to restrict checking
for optimization opportunities. Whether more sophisticated “global”
approaches to minimization of alternating automata (for example,
techniques based on using simulation relations [24, 25]) actually out-
perform such heavily restricted local optimizations in practice cannot
obviously be evaluated without careful testing. The same holds for
evaluating the relative efficiency of the various optimizations proposed
for the construction. Additionally, the exact theoretical computational
complexity of the language containment problem for the generalized
automata requires further analysis.

The translation and automata minimization constructions presented in
this work leave many open questions on their details. For example, the col-
lection of refined translation rules presented in Sect. 4.3 is likely to be exten-
sible with special cases also for the ∨ connective. Another question concerns
a possible connection between the modified ∧ rule and the nondeterminiza-
tion of linear alternating automata: the reason behind the complex condition

122 7. CONCLUSIONS, CRITICISMS AND OPEN QUESTIONS

on acceptance conditions in the rule (see Example 4.3.1) is very similar to
the reason why nondeterminization via a “subset construction” is impossi-
ble in general without introducing new acceptance conditions (see Exam-
ple 5.3.2). This leaves the obvious question whether the translation rule for
the ∧ connective could be made more general at the cost of introducing
new acceptance conditions in the application of the rule. More generally, a
better understanding of the optimizations proposed to the translation (Ch. 4)
requires careful analysis on their relative completeness, for example, whether
the special cases for transition redundancy analysis (Sect. 4.4.2) are general
enough for detecting all redundant initial self-loops of linear alternating au-
tomata.

Several authors [21, 60] have raised questions on whether the simple idea
of translating logical specifications into as small nondeterministic automata
as possible is actually valid for obtaining optimal reduction in combinatorial
explosion in all practical applications. As a matter of fact, there is some re-
search and experimental evidence [43, 60, 68] to support the view that the
combinatorial explosion may be more effectively reduced in practice by re-
placing nondeterministic choice with deterministic choice in the automata,
even though this change may increase the size of the automata. It is worth
studying whether any of these ideas could be carried over to the construction
of alternating automata from LTL formulas.

As noted already in Sect. 5.3, translating linear alternating automata into
nondeterministic automata should not be done in practice without additional
optimizations to nondeterminization. In comparison to previous construc-
tions for translating linear alternating automata into plain nondeterministic
automata (e.g., [28]), the construction presented in Sect. 5.3 has, for exam-
ple, the awkward feature of breaking the intuitive one-to-one correspondence
between the acceptance conditions of a linear alternating automaton and the
strong temporal eventualities of an LTL formula from which the automaton
was constructed. Although the increase in the number of acceptance con-
ditions cannot be avoided in the general case, an obvious target for further
study is whether the very restricted placement of the conditions in automata
built from LTL formulas (see the discussion in Sect. 4.3.4) can be exploited
to reduce the blow-up for these automata. On the other hand, it would be in-
teresting to explore possible applications for the restricted syntactic subclass
of LTL introduced in Sect. 5.1 and investigate the computational complexity
of its decision and model checking problem, similar to the work of Demri
and Schnoebelen [16].

On a more general note, a deeper examination of nondeterminization
constructions for linear alternating automata could provide additional in-
sight into the relationship between LTL and (in general, strictly more ex-
pressive) nondeterministic automata, with possible applications, for example,
to the emptiness checking of these automata. Also, it should be investigated
whether the nondeterminization construction for linear alternating automata
could be extended into more general automata classes such as weak alternat-
ing automata.

7. CONCLUSIONS, CRITICISMS AND OPEN QUESTIONS 123

ACKNOWLEDGMENTS

This report is a reprint of my Licentiate’s thesis. I am deeply grateful to my
instructor Keijo Heljanko for introducing me to the theoretical concepts and
research problems behind my thesis, for his patience and for the effort he put
on reading and commenting on the numerous drafts of this work. I would
also like to thank my supervisor, Professor Ilkka Niemelä, for the opportunity
to work on my thesis as a member of his research group in the Laboratory
for Theoretical Computer Science at Helsinki University of Technology and
for his invaluable advice and encouragement. I am grateful also to Tommi
Junttila and Timo Latvala for several discussions and ideas. The financial
support of Helsinki Graduate School in Computer Science and Engineer-
ing (HeCSE), Academy of Finland (Projects 47754 and 53695) and Nokia
Foundation is gratefully acknowledged.

124 ACKNOWLEDGMENTS

BIBLIOGRAPHY

[1] B. Bollig and M. Leucker. Deciding LTL over Mazurkiewicz traces.
Data & Knowledge Engineering, 44(2):219–238, 2003.

[2] D. Bošnački. A nested depth first search algorithm for model checking
with symmetry reduction. In Proceedings of the 22nd IFIP WG6.1
International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE 2002), number 2529 in Lecture Notes in
Computer Science, pages 65–80. Springer-Verlag, 2002.

[3] D. Bošnački. A light-weight algorithm for model checking with sym-
metry reduction and weak fairness. In Proceedings of the 10th SPIN

Workshop on Model Checking of Software (SPIN 2003), volume 2648
of Lecture Notes in Computer Science, pages 89–103. Springer-Verlag,
2003.

[4] L. Brim, I. Černá, and M. Nečesal. Randomization helps in LTL
model checking. In Proceedings of the Joint Workshop on Process Alge-
bra and Probabilistic Methods, Performance Modeling and Verification
(PAPM-PROBMIV 2001), volume 2165 of Lecture Notes in Computer
Science, pages 105–119. Springer-Verlag, 2001.

[5] R. E. Bryant. Graph-based algorithms for Boolean function manipula-
tion. IEEE Transactions on Computers, 35(8):677–691, 1986.

[6] J. A. Brzozowski and E. Leiss. On equations for regular languages, finite
automata, and sequential networks. Theoretical Computer Science,
10:19–35, 1980.

[7] J. R. Büchi. On a decision method in restricted second order arithmetic.
In Proceedings of the 1960 International Congress on Logic, Methodol-
ogy and Philosophy of Science, pages 1–11. Stanford University Press,
1962.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142–170, 1992.

[9] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal
of the ACM, 28(1):114–133, 1981.

[10] Y. Choueka. Theories of automata on ω-tapes: A simplified approach.
Journal of Computer and System Sciences, 8:117–141, 1974.

[11] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. In Proceedings of
the Workshop on Logic of Programs, volume 131 of Lecture Notes in
Computer Science, pages 52–71. Springer-Verlag, 1981.

BIBLIOGRAPHY 125

[12] E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at
LTL model checking. Formal Methods in System Design, 10(1):47–
71, 1997.

[13] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1:275–288, 1992.

[14] J.-M. Couvreur. On-the-fly verification of linear temporal logic. In Pro-
ceedings of the FM’99 World Congress on Formal Methods in the De-
velopment of Computing Systems, Volume I, volume 1708 of Lecture
Notes in Computer Science, pages 253–271. Springer-Verlag, 1999.

[15] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata
generation for linear temporal logic. In Proceedings of the 11th In-
ternational Conference on Computer Aided Verification (CAV 1999),
volume 1633 of Lecture Notes in Computer Science, pages 249–260.
Springer-Verlag, 1999.

[16] S. Demri and Ph. Schnoebelen. The complexity of propositional lin-
ear temporal logics in simple cases. Information and Computation,
174(1):84–103, 2002.

[17] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Direct explicit-state
model checking in the validation of communication protocols. Inter-
national Journal on Software Tools for Technology Transfer (STTT),
2003. DOI: 10.1007/s10009-002-0104-3.

[18] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and deter-
minacy. In Proceedings of the 32nd Annual Symposium on Founda-
tions of Computer Science (FOCS 1991), pages 368–377. IEEE Com-
puter Society, 1991.

[19] E. A. Emerson and A. P. Sistla. Deciding full branching time logic.
Information and Control, 61(3):175–201, 1984.

[20] K. Etessami. A hierarchy of polynomial-time computable simulations
for automata. In Proceedings of the 13th International Conference on
Concurrency Theory (CONCUR 2002), volume 2421 of Lecture Notes
in Computer Science, pages 131–144. Springer-Verlag, 2002.

[21] K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In Pro-
ceedings of the 11th International Conference on Concurrency Theory
(CONCUR 2000), volume 1877 of Lecture Notes in Computer Sci-
ence, pages 153–167. Springer-Verlag, 2000.

[22] K. Etessami, Th. Wilke, and R. A. Schuller. Fair simulation relations,
parity games and state space reduction of Büchi automata. In Proceed-
ings of the 28th International Colloquium on Automata, Languages,
and Programming (ICALP 2001), volume 2076 of Lecture Notes in
Computer Science, pages 694–707. Springer-Verlag, 2001.

126 BIBLIOGRAPHY

[23] N. Francez. Fairness. Texts and Monographs in Computer Science.
Springer-Verlag, 1986.

[24] C. Fritz. Constructing Büchi automata from linear temporal logic using
simulation relations for alternating Büchi automata. In Proceedings of
the 8th International Conference on Implementation and Application
of Automata (CIAA 2003), volume 2759 of Lecture Notes in Computer
Science, pages 35–48. Springer-Verlag, 2003.

[25] C. Fritz and Th. Wilke. State space reductions for alternating Büchi
automata: Quotienting by simulation equivalences. In Proceedings of
the 22nd Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS 2002), volume 2556 of Lecture
Notes in Computer Science, pages 157–168. Springer-Verlag, 2002.

[26] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis
of fairness. In Proceedings of the 7th Annual Symposium on Principles
of Programming Languages (POPL 1980), pages 163–173. Association
for Computing Machinery, 1980.

[27] P. Gastin, R. Meyer, and A. Petit. A (non-elementary) decision proce-
dure for LTrL. In Proceedings of the 23rd International Symposium
on Mathematical Foundations of Computer Science (MFCS 1998),
volume 1450 of Lecture Notes in Computer Science, pages 356–365.
Springer-Verlag, 1998.

[28] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV 2001), volume 2102 of Lecture Notes in Computer
Science, pages 53–65. Springer-Verlag, 2001.

[29] P. Gastin and D. Oddoux. LTL with past and two-way weak alternat-
ing automata. In Proceedings of the 28th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2003),
volume 2747 of Lecture Notes in Computer Science, pages 439–448.
Springer-Verlag, 2003.

[30] M. C. W. Geilen. On the construction of monitors for temporal logic
properties. Electronic Notes in Theoretical Computer Science, 55(2),
2001.

[31] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In Proceedings of the
15th IFIP WG6.1 International Symposium on Protocol Specification,
Testing and Verification (PSTV 1995), pages 3–18. Chapman & Hall,
1995.

[32] D. Giannakopoulou and F. Lerda. From states to transitions: Improving
translation of LTL formulae to Büchi automata. In Proceedings of the
22nd IFIP WG6.1 International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE 2002), volume 2529 of
Lecture Notes in Computer Science, pages 308–326. Springer-Verlag,
2002.

BIBLIOGRAPHY 127

[33] P. Godefroid and G. J. Holzmann. On the verification of temporal
properties. In Proceedings of the IFIP TC6/WG6.1 13th International
Symposium on Protocol Specification, Testing, and Verification (PSTV
1993), pages 109–124. North-Holland, 1993.

[34] S. Gurumurthy, F. Somenzi, and R. Bloem. Fair simulation minimiza-
tion. In Proceedings of the 14th International Conference on Com-
puter Aided Verification (CAV 2002), volume 2404 of Lecture Notes in
Computer Science, pages 610–624. Springer-Verlag, 2002.

[35] G. J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[36] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first
search. In Proceedings of the 2nd SPIN Workshop, volume 32 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, 1997.

[37] A. Isli. Mapping an LPTL formula into a Büchi alternating automaton
accepting its models. In Temporal Logic: Proceedings of the ICTL
Workshop, pages 85–90. Research Report MPI-I-94-230, Max-Planck-
Institut für Informatik, 1994.

[38] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision al-
gorithm for full propositional temporal logic. In Proceedings of the
5th International Conference on Computer Aided Verification (CAV
1993), volume 697 of Lecture Notes in Computer Science, pages 97–
109. Springer-Verlag, 1993.

[39] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of lin-
ear temporal logic specifications. In Proceedings of the 25th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP
1998), volume 1443 of Lecture Notes in Computer Science, pages 1–
16. Springer-Verlag, 1998.

[40] O. Kupferman, N. Piterman, and M. Y. Vardi. Extended temporal logic
revisited. In Proceedings of the 12th International Conference on Con-
currency Theory (CONCUR 2001), volume 2154 of Lecture Notes in
Computer Science, pages 519–535. Springer-Verlag, 2001.

[41] O. Kupferman and M. Y. Vardi. Weak alternating automata are not
that weak. ACM Transactions on Computational Logic, 2(3):408–429,
2001.

[42] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching time model checking. Journal of the ACM,
47(2):312–360, 2000.

[43] T. Latvala. Efficient model checking of safety properties. In Proceedings
of the 10th SPIN Workshop on Model Checking of Software (SPIN
2003), volume 2648 of Lecture Notes in Computer Science, pages 74–
88. Springer-Verlag, 2003.

128 BIBLIOGRAPHY

[44] E. Leiss. Succinct representation of regular languages by Boolean au-
tomata. Theoretical Computer Science, 13:323–330, 1981.

[45] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. In Proceedings of the 12th
Annual ACM Symposium on Principles of Programming Languages,
pages 97–107. Association for Computing Machinery, 1985.

[46] C. Löding. Methods for the Transformation of Omega-Automata:
Complexity and Connection to Second Order Logic. Diploma thesis,
Christian-Albrechts-University of Kiel, 1998.

[47] C. Löding and W. Thomas. Alternating automata and logics over infi-
nite words. In Proceedings of the IFIP International Conference on
Theoretical Computer Science – Exploring New Frontiers of Theo-
retical Informatics (IFIP TCS2000), volume 1872 of Lecture Notes in
Computer Science, pages 521–535. Springer-Verlag, 2000.

[48] Z. Manna and H. B. Sipma. Alternating the temporal picture for safety.
In Proceedings of the 27th International Colloquium on Automata,
Languages and Programming (ICALP 2000), volume 1853 of Lecture
Notes in Computer Science, pages 429–450. Springer-Verlag, 2000.

[49] S. Miyano and T. Hayashi. Alternating finite automata on ω-words.
Theoretical Computer Science, 32:321–330, 1984.

[50] D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata
give a simple explanation of why most temporal and dynamic logics
are decidable in exponential time. In Proceedings of the 3rd Annual
Symposium on Logic in Computer Science (LICS 1988), pages 422–
427. IEEE Computer Society, 1988.

[51] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the
weak monadic theory of trees and its complexity. Theoretical Computer
Science, 97:233–244, 1992.

[52] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees.
Theoretical Computer Science, 54:267–276, 1987.

[53] D. E. Muller and P. E. Schupp. Simulating alternating tree automata
by nondeterministic automata: New results and new proofs of the the-
orems of Rabin, McNaughton and Safra. Theoretical Computer Sci-
ence, 141:69–107, 1995.

[54] A. Pnueli. The temporal logic of programs. In Proceedings of the
18th Annual Symposium on Foundations of Computer Science (FOCS
1977), pages 46–57. IEEE Computer Society, 1977.

[55] A. Pnueli. The temporal semantics of concurrent programs. Theoretical
Computer Science, 13:45–60, 1981.

BIBLIOGRAPHY 129

[56] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th International Symposium
on Programming, volume 137 of Lecture Notes in Computer Science,
pages 337–351. Springer-Verlag, 1982.

[57] M. O. Rabin. Decidability of second-order theories and automata on in-
finite trees. Transactions of the American Mathematical Society, 141:1–
35, 1969.

[58] G. S. Rohde. Alternating Automata and the Temporal Logic of Ordi-
nals. PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[59] K. Schneider. Improving automata generation for linear temporal logic
by considering the automaton hierarchy. In Proceedings of the 8th
International Conference on Logic for Programming, Artificial Intel-
ligence and Reasoning (LPAR 2001), number 2250 in Lecture Notes in
Computer Science, pages 39–54. Springer-Verlag, 2001.

[60] R. Sebastiani and S. Tonetta. “More deterministic” vs. “smaller” Büchi
automata for efficient LTL model checking. In Proceedings of the 12th
Advanced Research Working Conference on Correct Hardware Design
and Verification Methods (CHARME 2003), volume 2860 of Lecture
Notes in Computer Science, pages 126–140. Springer-Verlag, 2003.

[61] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733–749, 1985.

[62] F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formu-
lae. In Proceedings of the 12th International Conference on Computer
Aided Verification (CAV 2000), volume 1855 of Lecture Notes in Com-
puter Science, pages 248–263. Springer-Verlag, 2000.

[63] U. Stern and D. Dill. A new scheme for memory-efficient probabilistic
verification. In Proceedings of the IFIP TC6 WG6.1 Joint International
Conference on Formal Description Techniques and Protocol Specifi-
cation, Testing and Verification (FORTE/PSTV 1995), pages 333–348.
Kluwer, 1996.

[64] R. E. Streett. Propositional dynamic logic of looping and converse is
elementarily decidable. Information and Control, 54(1/2):121–141,
1982.

[65] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Jour-
nal on Computing, 1(2):146–160, 1972.

[66] H. Tauriainen. Nested emptiness search for generalized Büchi au-
tomata. Research Report A79, Helsinki University of Technology, Lab-
oratory for Theoretical Computer Science, 2003.

[67] H. Tauriainen and K. Heljanko. Testing LTL formula translation into
Büchi automata. International Journal on Software Tools for Technol-
ogy Transfer (STTT), 4(1):57–70, 2002.

130 BIBLIOGRAPHY

[68] X. Thirioux. Simple and efficient translation from LTL formulas to
Büchi automata. Electronic Notes in Theoretical Computer Science,
66(2), 2002.

[69] W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science: Formal Models and Semantics, volume B, pages
133–191. Elsevier, 1990.

[70] W. Thomas. Languages, automata and logic. In Handbook of Formal
Languages, volume III, pages 389–455. Springer-Verlag, 1997.

[71] A. Valmari. The state explosion problem. In Lectures on Petri Nets
I: Basic Models, volume 1491 of Lecture Notes in Computer Science,
pages 429–528. Springer-Verlag, 1998.

[72] M. Y. Vardi. Nontraditional applications of automata theory. In Pro-
ceedings of the International Conference on Theoretical Aspects of
Computer Software (TACS 1994), volume 789 of Lecture Notes in
Computer Science, pages 575–597, 1994.

[73] M. Y. Vardi. Alternating automata and program verification. In Com-
puter Science Today – Recent Trends and Developments, volume
1000 of Lecture Notes in Computer Science, pages 471–485. Springer-
Verlag, 1995.

[74] M. Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for Concurrency: Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages 238–266. Springer-Verlag,
1996.

[75] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Proceedings of the Symposium on Logic
in Computer Science (LICS 1986), pages 332–344. IEEE Computer
Society, 1986.

[76] M. Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, 1994.

[77] P. Wolper. Temporal logic can be more expressive. Information and
Control, 56(1–2):72–99, 1983.

[78] P. Wolper. Constructing automata from temporal logic formulas: A tu-
torial. In Lectures on Formal Methods and Performance Analysis: First
EEF/Euro Summer School on Trends in Computer Science, Revised
Lectures, number 2090 in Lecture Notes in Computer Science, pages
261–277. Springer-Verlag, 2001.

[79] P. Wolper and D. Leroy. Reliable hashing without collision detec-
tion. In Proceedings of the 5th International Conference on Computer
Aided Verification (CAV 1993), volume 697 of Lecture Notes in Com-
puter Science, pages 59–70. Springer-Verlag, 1993.

BIBLIOGRAPHY 131

[80] P. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite
computation paths. In Proceedings of the 24th Annual Symposium
on Foundations of Computer Science (FOCS 1983), pages 185–194.
IEEE Computer Society, 1983.

132 BIBLIOGRAPHY

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A70 Petteri Kaski

Isomorph-Free Exhaustive Generation of Combinatorial Designs. December 2001.

HUT-TCS-A71 Keijo Heljanko

Combining Symbolic and Partial Order Methods for Model Checking 1-Safe Petri Nets.

February 2002.

HUT-TCS-A72 Tommi Junttila

Symmetry Reduction Algorithms for Data Symmetries. May 2002.

HUT-TCS-A73 Toni Jussila

Bounded Model Checking for Verifying Concurrent Programs. August 2002.

HUT-TCS-A74 Sam Sandqvist

Aspects of Modelling and Simulation of Genetic Algorithms: A Formal Approach.

September 2002.

HUT-TCS-A75 Tommi Junttila

New Canonical Representative Marking Algorithms for Place/Transition-Nets. October 2002.

HUT-TCS-A76 Timo Latvala

On Model Checking Safety Properties. December 2002.

HUT-TCS-A77 Satu Virtanen

Properties of Nonuniform Random Graph Models. May 2003.

HUT-TCS-A78 Petteri Kaski

A Census of Steiner Triple Systems and Some Related Combinatorial Objects. June 2003.

HUT-TCS-A79 Heikki Tauriainen

Nested Emptiness Search for Generalized Büchi Automata. July 2003.

HUT-TCS-A80 Tommi Junttila

On the Symmetry Reduction Method for Petri Nets and Similar Formalisms.

September 2003.

HUT-TCS-A81 Marko Mäkelä

Efficient Computer-Aided Verification of Parallel and Distributed Software Systems.

November 2003.

HUT-TCS-A82 Tomi Janhunen

Translatability and Intranslatability Results for Certain Classes of Logic Programs.

November 2003.

HUT-TCS-A83 Heikki Tauriainen

On Translating Linear Temporal Logic into Alternating and Nondeterministic Automata.

December 2003.

ISBN 951-22-6868-X

ISSN 1457-7615

