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ABSTRACT: In this report, we compare the expressive powers of classes of
logic programs that are obtained by constraining the number n of atoms in
the bodies of rules. This gives rise to the classes of binary programs (n ≤ 2),
unary programs (n ≤ 1) and atomic programs (n = 0). The comparison
is based on the existence/nonexistence of polynomial, faithful, and modular
(PFM) translation functions between the classes. As a result, we obtain a
strict ordering on the classes of logic programs under consideration under
the least model semantics. Binary programs are shown to be as expressive as
unconstrained programs but strictly more expressive than unary programs. In
addition, unary programs are strictly more expressive than atomic programs.
This setting remains valid even if we consider normal logic programs, in
which negative literals may appear in the bodies of rules, under the stable
model semantics. We also take propositional satisfiability into consideration
and establish that atomic programs are strictly more expressive than sets of
clauses under classical semantics. Finally, we study polynomial, faithful, but
non-modular alternatives to PFM translation functions that do not exist. We
obtain a breakthrough in this respect by showing that an arbitrary normal
logic program P can be reduced to set of clauses using a faithful translation
function in time proportional to ||P || × log2 |Hb(P )|. As an implication of
this result, the classes of logic programs under consideration become equally
expressive if measured in terms of polynomial and faithful translation func-
tions.

KEYWORDS: Modularity, Translation function, Expressive power
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1 INTRODUCTION

In logic programming [44], a simple rule-based language is used for knowl-
edge representation in a declarative way so that queries can be answered
using a procedure based on the resolution principle [39]. Clark [7] proposed
soon a form of negation, namely negation as failure to prove, to enhance
the knowledge representation capabilities of logic programs. This is how the
class of general or normal logic programs was first established, but it turned
out difficult to incorporate the negation as failure principle into resolution
procedures (c.f. SLDNF-resolution in [32]) in a satisfactory way. For exam-
ple, the order in which rules are considered by the resolution procedure may
affect answers that are given to the queries. Such a feature makes logic pro-
gramming with negation as failure less declarative and dependent on the
implementation of the resolution procedure.

Fortunately, Gelfond and Lifschitz came up with a solution to this prob-
lem: stable model semantics [16] for normal logic programs. In this ap-
proach, negative literals in rules are interpreted simultaneously which re-
stores the declarative nature of programming with rules. Moreover, the em-
phasis is more on computing stable models (or answer sets [17]) for a given
logic program rather than using a resolution procedure for query answering.
This is because a problem at hand is typically formulated as a logic program
so that stable models correspond to the solutions of the problem. Due to
recent interest in this approach, answer set programming is nowadays consid-
ered as a self-standing constraint programming paradigm [35, 36].

The success of stable models and answer set programming is much due
to efficient implementations, such as SMODELS [41] and DLV [11], which
were developed during the last decade. This work involved development of
search algorithms for computing stable models. The basic technique is to use
a branch and bound algorithm [42] and the well-founded model [45] as an
approximation to bound search space. However, even tighter approximations
can be devised given assumptions on stable models to be computed. Such
principles have been incorporated to the search algorithm behind SMODELS

[41], for instance. One such principle tries to apply rules contrapositively: if
the head h of a rule h ← a1, . . . , an is known/assumed to be false in a stable
model M being computed, then one of the atoms a1, . . . , an in the body
must also be false in M . In particular, this principle becomes effective when
n = 1 or when all atoms among a1, . . . , an except ai are known/assumed to
be true in M . Then a1, or respectively ai in the latter case, must be false
in M , and in this way, our knowledge/assumptions on the stable model M

being computed (i.e. the approximation) is refined a bit by the truth value
assigned to a1 or ai in general. These observations suggest that the use of this
principle could be accelerated if the number of atoms in the bodies of rules
were reduced somehow. Consequently, we are faced with a fundamental
question if such a reduction is possible and feasible in the first place.

To address and answer this question, this report concentrates on analyzing
the expressive powers of logic program classes that are obtained by restrict-
ing the number n of atoms in the bodies of rules. The analysis builds on
three syntactic subclasses, namely binary programs (n ≤ 2), unary programs
(n ≤ 1) and atomic programs (n = 0). The central idea is to develop and
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apply a method that is similar to the one used by the author [22, 26] for
classifying non-monotonic logics by their expressive power. A basic step in
such analysis is to check the existence of a polynomial, faithful and modu-
lar (PFM) translation function between two classes. If we are able to prove
that such a translation function does not exist between certain classes, then
the syntactic constraints imposed on the classes are significant and affect ex-
pressive power. In particular, if there is no PFM translation function that
reduces the number of body atoms, then the reduction is likely to be infea-
sible in practice as it cannot be done in a systematic (modular) way. In fact,
the results established in this report indicate that the number of body atoms
can be reduced down to two, but going below that is impossible in a faith-
ful and modular way. In other words, arbitrary programs can be translated
into binary ones in this way, but binary/unary programs cannot be translated
into unary/atomic ones. In order to understand these intranslatability results
better, we will also address non-modular alternatives in those cases where
modular translations turn out to be impossible.

On the other hand, many problems that have been solved using answer
set programming methodology have also formulations as classical satisfiabil-
ity problems. However, such formulations tend to be more difficult and less
concise. For example, formulating an AI planning problem is much easier
as a normal logic program [8] than as a set of clauses [28]. This suggests
that there is a real difference in expressive power that could be formally es-
tablished using the methods devised in this report. For this reason, we take
propositional satisfiability (i.e., sets of clauses under classical models) into
consideration in order to compare it with the classes of logic programs dis-
tinguished in this report. It turns out that propositional satisfiability forms a
class that is strictly less expressive than the classes of normal logic programs
addressed in this report.

The rest of this report is organized as follows. In Section 2, we review
the syntax and semantics of the formalisms addressed in this report: nor-
mal logic programs under stable model semantics and sets of clauses under
classical semantics. Moreover, we distinguish syntactic subclasses of normal
logic programs which are taken into consideration. To prepare forthcom-
ing expressiveness analysis, we distinguish three fundamental properties of
translation functions in Section 3: polynomiality, faithfulness and modular-
ity. Consequently, a method for comparing the expressive powers of classes
of logic programs is established. The actual expressiveness analysis takes
place in Section 4. The classes of logic programs are ordered on the basis
of their expressive powers which gives rise to an expressive power hierarchy
for the classes under consideration. These comparisons involve intranslata-
bility results that count on the modularity property. However, this leaves us
the possibility of obtaining faithful, polynomial, but non-modular translation
functions. Such alternatives are pursued in Section 6. A particular objective
in this respect is to translate faithfully arbitrary logic programs into sets of
clauses in polynomial time. As a preparatory step in this respect, we present
an alternative characterization of stable models in Section 5. Finally, we per-
form comparisons with related work in Section 7 and the report ends with
conclusions in Section 8.
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2 PRELIMINARIES

In this section, we review the basic terminology and definitions of logic pro-
grams as well as propositional satisfiability. The syntax of normal logic pro-
grams is explained in Section 2.1 while Section 2.2 concentrates on their
semantics. In Section 2.3 we introduce syntactic restrictions that play the
key role in forthcoming expressiveness analysis. The last subsection, namely
Subsection 2.4, reviews the details of sets of propositional clauses as well as
their classical model-theoretic semantics.

2.1 Normal Logic Programs

A normal (logic) program P is a set of expressions or rules of the form

(2.1) a← b1, . . . , bn,∼c1, . . . ,∼cm

where a is an atom, and {b1, . . . , bn} and {c1, . . . , cm} form sets of atoms. In
this paper, we restrict ourselves to the purely propositional case and consider
only programs that consist of propositional atoms1. The symbol ∼ denotes
default negation or negation as failure to prove [7] which differs in an impor-
tant way from classical negation denoted by ¬. We define default literals in
the standard way using ∼ as negation. The informal intuition behind a rule
(2.1) within a normal program is that the atom a can be inferred using the
rule given that the atoms b1, . . . , bn can be inferred using some other rules
but none of the atoms c1, . . . , cm can be inferred using any other rules. The
exact model-theoretic semantics of rules will be given in the next subsection.

Given a rule r of the form (2.1), the atom a forms the head of r whereas
the positive literals b1, . . . , bn and the negative literals∼c1, . . . ,∼cm together
form the body of r. Despite of the notation used in (2.1), we interpret the
body as a set of literals, which implies that the order of the literals is not
relevant. To enable easy reference to the atoms/literals in the body, we
adopt the following notations: head(r) = a, body(r) = {b1, . . . , bn} ∪
{∼c1, . . . ,∼cm}, body+(r) = {b1, . . . , bn}, and body−(r) = {c1, . . . , cm}.
We generalize these notations for any normal program P in the obvious
way, e.g. head(P ) = {head(r) | r ∈ P}, and body(P ), body+(P ), and
body−(P ) are analogously defined. The positive part r+ of a rule r is de-
fined as head(r)← body+(r).

For now, the Herbrand base Hb(P ) of a normal logic program P is de-
fined as the set of atoms that appear in the rules of P , although a slightly
more general definition will be introduced in Section 3.1. In the sequel, the
class of normal programs is denoted by P . To ease the forthcoming semanti-
cal definitions, we distinguish positive (normal) programs which are normal
programs P whose every rule r ∈ P satisfy body−(r) = ∅. Consequently,
the class of positive programs P+ forms a proper subclass of P .

1Programs with variables, constants and function symbols are covered implicitly through
Herbrand instantiation. However, the forthcoming expressiveness analysis is based on finite
programs and Herbrand instances, which means that function symbols are not fully covered.
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2.2 Stable Model Semantics

Normal programs can be given a standard model-theoretic semantics. An
interpretation I ⊆ Hb(P ) of a normal program P determines which atoms a

of Hb(P ) are true (a ∈ I) and which atoms are false (a ∈ Hb(P )− I). The
satisfaction relation |= is given in Definition 2.1 below. In particular, note
that negative default literals that may appear in the bodies of rules are given
a classical interpretation at this point: I |= ∼a ⇐⇒ I 6|= a. Moreover, the
interpretation of rules is similar to that of classical implications.

Definition 2.1 Let I ⊆ Hb(P ) be an interpretation of normal program P .

1. For an atom a ∈ Hb(P ), I |= a ⇐⇒ a ∈ I .

2. For a negative literal ∼a based on a ∈ Hb(P ), I |= ∼a ⇐⇒ a 6∈ I .

3. For a set of default literals L, I |= L ⇐⇒ ∀l ∈ L : I |= l.

4. For a rule r, I |= r ⇐⇒ I |= body(r) implies I |= head(r).

5. Finally, I is a (classical) model of P (I |= P ) ⇐⇒ ∀r ∈ P : I |= r.

Although the preceding definition gives the classical semantics for arbi-
trary normal programs P , the ultimate semantics assigned to normal pro-
grams will be different as minimal models are distinguished.

Definition 2.2 A model M |= P is a minimal model of P if and only if there
is no model M ′ |= P such that M ′ ⊂M .

In particular, every positive program P is guaranteed to possess a unique
minimal model of which equals to the intersection of all models of P [32].
We let LM(P ) stand for this particular model, i.e. the least model of P .
The least model semantics is inherently monotonic: if P ⊆ P ′ holds for
two positive programs, then LM(P ) ⊆ LM(P ′). Moreover, the least model
LM(P ) can be constructed iteratively as follows (see [32] for a complete
treatment). Define an operator TP on sets of atoms A ⊆ Hb(P ) by setting
TP (A) = {head(r) | r ∈ P and body+(r) ⊆ A}. The iteration sequence of
the operator TP is defined inductively:

TP ↑ 0 = ∅,
TP ↑ i = TP (TP ↑ i− 1) for i > 0, and
TP ↑ ω =

⋃

i<ω TP ↑ i.

It follows that LM(P ) = TP ↑ ω = lfp(TP ). This result matches with our
intuition on rules: LM(P ) contains only necessarily true atoms of Hb(P )
that can be inferred by using the rules of P recursively. Note that this fixed
point is reached with a finite number of iterations if P is finite. In the sequel,
we use the construction above to define the level number lev(a) for each
atom a ∈ LM(P ), i.e. the least natural number i such that a ∈ TP ↑ i.

Gelfond and Lifschitz [16] propose a way to apply the least model seman-
tics to an arbitrary normal program P . Given an interpretation M ⊆ Hb(P ),
i.e. a model candidate, their idea is to reduce P to a positive program

(2.2) P M = {r+ | r ∈ P and M ∩ body−(r) = ∅}.

4 2 PRELIMINARIES



In this way, the negative default literals appearing in the bodies of the rules of
P are simultaneously interpreted with respect to M . Since the reduct P M is
a positive program, it has a natural semantics determined by the least model
LM(P M). Equating this model with the model candidate M used to reduce
P leads to the following notion of stability.

Definition 2.3 ([16]) An interpretation M ⊆ Hb(P ) of a normal logic pro-
gram P is a stable model of P ⇐⇒ M = LM(P M).

Every stable model of P is also a classical model of P in the sense of Defi-
nition 2.1, but not necessarily vice versa. In general, a normal logic program
need not have a unique stable model (see P1 in Example 2.4 below) nor a
stable models at all (see P2 in Example 2.4). In contrast to the least mod-
els of positive programs, stable models may change in a non-monotonic way
which implies that conclusions may be retracted under stable model seman-
tics. This is demonstrated below using programs Q1 and Q2 in Example 2.4.
Normal logic programs are well-suited for a variety of knowledge represen-
tation and reasoning tasks. The reader is referred e.g. to [35, 36] for further
examples on using normal logic programs in practice.

Example 2.4 Consider the following normal programs.

1. Program P1 = {a← ∼b; b← ∼a}2 has stable models {a} and {b}.

2. Program P2 = {a← ∼a} has no stable models.

3. Programs Q1 = {a← ∼b} and Q2 = P1 ∪ {b←} have unique stable
models M1 = {a} and M2 = {b}, respectively, but M1 6⊆M2.

2.3 Syntactic Restrictions

As discussed in the introduction, one of the goals of this paper is to exam-
ine the possibilities of translating away positive body literals from rules under
stable model semantics. To prepare forthcoming analysis, let us distinguish
normal/positive programs that are obtained by restricting the number of pos-
itive body literals, i.e. |body+(r)|, allowed in a rule r.

Definition 2.5 A rule r of a normal program is called atomic, unary or bi-
nary, if |body+(r)| = 0, |body+(r)| ≤ 1, or |body+(r)| ≤ 2, respectively.

Moreover, we say that a rule r is strictly unary if |body+(r)| = 1, i.e. it
is unary and not atomic. Strictly binary rules are defined analogously, i.e.
|body+(r)| = 2. We extend these conditions to cover logic programs in the
obvious way: a logic program P satisfies any of these conditions given that
every rule of P satisfies the condition. For instance, an atomic normal pro-
gram P contains only rules of the form a ← ∼c1, . . . ,∼cm. The conditions
set in Definition 2.5 imply that atomic programs are unary ones and unary
programs are binary ones. Consequently, the respective classes of normal
programs (denoted by A, U , and B, respectively) are ordered by inclusion as

2We use semicolons “;” to separate rules in logic programs.
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follows: A ⊂ U ⊂ B ⊂ P . In the last class, there are also non-binary normal
programs that have at least one rule r with |body+(r)| > 2.

The same syntactic restrictions can be applied within the class of positive
programs P+ distinguished in Section 2.2. For instance, any unary positive
program consists of rules of the very simple forms a ← and b ← c. Let
us introduce superscripted symbols A+, U+, B+ to denote the respective
subclasses of P+, which are ordered analogously A+ ⊂ U+ ⊂ B+ ⊂ P+.
Moreover, for each class C among A, U , B, and P , it holds that C+ ⊂ C.
Let us also note that the conditions of Definition 2.5 have been carefully
designed to be compatible with Gelfond-Lifschitz reduction. If P is a normal
program belonging to C and M ⊆ Hb(P ), then P M is a member of the
respective class C+. Finally, we emphasize that the semantics of the logic
programs in the classes introduced so far is determined by the stable/least
model semantics.

2.4 Sets of Clauses

We define classical literals in the standard way using classical negation ¬ as
the connective. A clause C is a finite set of classical literals

(2.3) {a1, . . . , an,¬b1, . . . ,¬bm}

representing a disjunction of its constituents. A set of clauses S represents
a conjunction of the clauses C contained in S. We let Hb(S) denote the
Herbrand base of a set of clauses S so that interpretations I for S can be
defined as subsets of Hb(S) in analogy to Section 2.2. To enable comparisons
with respect to Definition 2.1, we give below the classical model-theoretic
semantics of sets of clauses.

Definition 2.6 Let I ⊆ Hb(S) be an interpretation of a set of clauses S.

1. For an atom a ∈ Hb(S), I |= a ⇐⇒ a ∈ I .

2. For a negative literal ¬a based on a ∈ Hb(S), I |= ¬a ⇐⇒ I 6|= a.

3. For a clause C ∈ S, I |= C ⇐⇒ ∃l ∈ C : I |= l.

4. Finally, I is a model of S (denoted by I |= S) ⇐⇒ ∀C ∈ S : I |= C.

Similarly to logic programs, a set of clauses S gives rise to a set of models,
but the essential difference is that all classical models are taken into account.
A set of clauses S is satisfiable if it has at least one model, and unsatisfiable
otherwise. Let us yet point out that sets of clauses correspond to classical
propositional theories in the conjunctive normal form (CNF).
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3 TRANSLATION FUNCTIONS

The author has analyzed the expressive powers of non-monotonic logics in
a systematic fashion [22, 26, 23] which extends previous work by Imielin-
ski [20] and Gottlob [19]. The comparison is based on the existence/non-
existence of polynomial, faithful and modular (PFM) translation functions
between non-monotonic logics under consideration. As a result of several
pairwise comparisons of non-monotonic logics, the expressive power hierar-
chy (EPH) of non-monotonic logics [26] was gradually established.

In this report, we propose an analogous framework to compare the ex-
pressive powers of classes C of logic programs. However, the framework will
be somewhat different from the one used by the author in [24], as the na-
ture of logic programs has to be taken into account. We proceed as follows.
As preliminary issues, we distinguish general properties of logic programs in
Section 3.1 and propose a notion of equivalence, namely visible equivalence,
in Section 3.2. This is to prepare the introduction of PFM translation func-
tions between classes of logic programs in Section 3.3. Section 3 ends with a
presentation of the resulting classification method in Section 3.4.

3.1 General Assumptions about Logic Programs

At this level of abstraction, logic programs P are understood syntactically as
sets of expressions built of propositional atoms. This is to cover also other
formalisms in addition to normal logic programs introduced in Section 2.1.
There we defined the Herbrand base Hb(P ) as the set of atoms that effec-
tively appear in P . Basically, we would like to apply the same principle at
this level abstraction, but sometimes there is a need to extend Hb(P ) by cer-
tain atoms that do not appear in P . This kind of a setting may arise e.g.
when a particular logic program P is being optimized. Suppose that an atom
a ∈ Hb(P ) is recognized useless in the program P and all of its occurrences
(and possibly the rules involved) are removed from P . Thus a 6∈ Hb(P ′)
holds for the resulting program P ′. Let us mention P = {a← a} and P ′ = ∅
as concrete examples of such programs, whose least models coincide. The
fact that a is forgotten in this way impedes the comparison of the two pro-
grams in a sense (as to be defined in Section 3.2), since the Herbrand bases
become different according to our definition.

Before presenting our solution to this problem, let us discuss a further as-
pect of Herbrand bases, namely the visibility of atoms. When logic programs
are developed to solve a problem at hand, it is typical that only a certain
portion of atoms that appear in programs are relevant for representing the so-
lutions of the problem. In this setting, programs may contain auxiliary atoms
that are only locally relevant and do not appear in other programs formulated
for the problem. Consequently, the models/interpretations assigned to two
programs may differ already on the basis of auxiliary atoms. A way to handle
this situation is to hide local information in analogy to conventional program-
ming languages. Rather than introducing a hiding mechanism for atoms, we
concentrate on specifying visible atoms, as decided by the programmer. To
solve the problems covered by the discussion above, we proceed as follows.
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Definition 3.1 Formally, a logic program is a triple 〈P, A, V 〉 where

1. P is a set of expressions (rules) built of atoms;

2. A is a set of additional atoms; and

3. V specifies which atoms appearing in P and A are considered visible.

By a slight abuse of notation we use P to refer to the program despite the
additional structure assigned by Definition 3.1. The sets A and V are often
left implicit to be referred by the notations Hba(P ) and Hbv(P ), respectively.
From now on, we use Hb(P ) to denote the set of atoms that appears in P

and A above. As a derived notion, we define the hidden part of Hb(P ) as
Hbh(P ) = Hb(P ) − Hbv(P ). To ease the treatment of programs in the
sequel, we make some default assumptions regarding the set of atoms Hb(P )
and Hbv(P ). Unless otherwise stated, we assume that

• Hb(P ) is minimal, i.e. Hba(P ) = ∅ and Hb(P ) contains only the
atoms that actually appear in P ; and

• Hbv(P ) is maximal, i.e. all atoms of Hb(P ) are visible.

Example 3.2 Given P = {a← ∼b}, the default interpretation is that the
set Hb(P ) = {a, b}, Hbv(P ) = Hb(P ) = {a, b}, and Hbh(P ) = ∅. But if we
want to make an exception, we have to add explicitly that Hb(P ) = {a, b, c}
and Hbv(P ) = {a, c}, for example. By these declarations, the hidden part
Hbh(P ) is implicitly assigned to {b}. More formally, this would mean speci-
fying a logic program 〈P, {c}, {a, c}〉 conforming to Definition 3.1.

The unique stable model of P is M = {a}, as there are no rules for b.
This suggests a simplification Q = {a←} of P . To keep track of b, we may
define Hba(Q) = {b} so that Hb(Q) = Hbv(Q) = {a, b} holds by default.

It is important to understand any extensions to Herbrand bases so that
they contribute to the length of the program, too. This would not be the
case if some (even infinite) set of atoms were declared as Hb(P ) separately,
not as a part of the program. If admitted by the syntax, we take unions and
intersections of of logic programs component by component.

Definition 3.3 The union and intersection of logic programs 〈P1, A1, V1〉
and 〈P2, A2, V2〉 are

〈P1 ∪ P2, A1 ∪ A2, V1 ∪ V2〉 and 〈P1 ∩ P2, A1 ∩ A2, V1 ∩ V2〉,

respectively.

As a consequences of Definition 3.3, we have Hb(P ∪ Q) = Hb(P ) ∪
Hb(Q), Hbv(P ∪ Q) = Hbv(P ) ∪ Hbv(Q), and Hbh(P ∪Q) = (Hbh(P )−
Hbv(Q))∪(Hbh(Q)−Hbv(P )) for any programs P and Q. The hidden parts
of Herbrand bases may shrink in this way when logic programs are joined
together.

Generally speaking, the set Hbv(P ) can be understood as a program in-
terface of P and it gives the basis for comparing the program P with other
programs of interest. The atoms in Hbh(P ) are to be hidden in any such com-
parisons. Having now settled our concerns regarding the Herbrand bases of
programs, we make some general assumptions on classes of logic programs.
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Definition 3.4 Any class C of logic programs must satisfy the following.

A1. Every P ∈ C is finite.

A2. C is closed under unions, i.e. ∀P ∈ C: ∀Q ∈ C: P ∪Q ∈ C.

A3. C is closed under intersections, i.e. ∀P ∈ C: ∀Q ∈ C: P ∩Q ∈ C.

A4. There is a semantic operator SemC for the class C which maps a pro-
gram P ∈ C to a subset of 2Hb(P ) determining the semantics of P .

These assumptions will be needed when the requirements for translation
functions are formulated in Section 3.3. The first assumption reflects the fact
that we take logic programs as potential inputs to translator programs. Hence
we must be able to encode any program under consideration as a finite string
of symbols. The following two assumptions ensure that logic programs within
a class can be combined in arbitrary ways. For instance, the class of normal
logic programs with an odd number of rules is not in accordance with A2
nor A3. By the fourth assumption, the semantics of each program P in a
class C is determined by a set of total 3 interpretations SemC(P ). Given an
interpretation I ∈ SemC(P ), each atom a ∈ Hb(P ) is assigned either to true
or false in analogy to Definitions 2.1 and 2.6. Hence we assume two-valued
semantics for the classes of logic programs in this report.

Note that the finite fragments of the classes of logic programs C introduced
in Section 2.3 satisfy assumptions A1–A4. In the sequel, we identify these
classes as their finite fragments. For instance, the union of two finite binary
normal programs is also a finite binary normal program. In particular, the
semantics assigned by the respective semantic operator is

(3.1) SemC(P ) = SM(P ) = {M ⊆ Hb(P ) |M = LM(P M)}.

Note that P M = P holds for any positive program P and M ⊆ Hb(P ), which
implies that LM(P ) is the unique stable model of P . Hence the stable model
semantics and the least model semantics coincide for positive programs.

Assumptions A1–A4 on classes of logic programs are so loose that it is
also possible to view the class of finite sets of clauses SC as a class of logic
programs. As explained in Section 2.4, the semantical operator for SC is
based solely on classical models:

(3.2) SemSC(S) = CM(S) = {M ⊆ Hb(S) |M |= S}.

3.2 Visible Equivalence

Having defined the semantics of logic programs on an abstract level, the next
issue is to define the conditions on which two representatives P and Q of a
given class of logic programs C can be considered to be equivalent. It is natu-
ral that the answer to this question goes back to semantics. A straightforward
notion of equivalence is obtained by equating SemC(P ) and SemC(Q). This
corresponds to the basic notion of equivalence proposed for normal programs

3It is quite possible to generalize A4 to cover partial models like the well-wounded model
[45], but such models are not addressed in this report.
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under stable model semantics, but stronger notions have also been proposed.
For instance, Lifschitz et al. [29] consider P and Q strongly equivalent given
that SemC(P ∪R) = SemC(Q ∪R) for all other programs R. Consequently,
the strong equivalence of P and Q implies that P and Q can be freely used
to substitute each other. Although such a notion seems attractive at the first
glance, a drawback is that it is all too restrictive — allowing only very straight-
forward semantics-preserving modifications to rules of programs.

Another problem with both approaches is that the models in SemC(P )
and SemC(Q) have to be identical subsets of Hb(P ) and Hb(Q), respec-
tively. Therefore, we propose a notion of equivalence which tries to take the
interfaces of logic programs properly into account. The idea is that atoms in
Hb(P )− Hbv(P ) and Hb(Q)− Hbv(Q) are considered as local to P and Q

and negligible as far as the equivalence of the programs is concerned.

Definition 3.5 Logic programs P ∈ C and Q ∈ C ′ are visibly equivalent,
denoted by P ≡v Q, if and only if Hbv(P ) = Hbv(Q) and there is a bijection
f : SemC(P )→ SemC′(Q) such that for every M ∈ SemC(P ),

(3.3) M ∩ Hbv(P ) = f(M) ∩ Hbv(Q).

Note that this notion of equivalence can be applied both within a single
class of logic programs, and between different classes, which may be syntac-
tically and/or semantically different. This is a very important aspect, as we
intend to study the interrelationships of such classes of programs.

Example 3.6 Consider a normal logic program

P = {a← ∼b; b← ∼a; c← a; c← ∼a}

with Hbv(P ) = {a, c} and the stable models M1 = {a, c} and M2 = {b, c}.
Thus Hbh(P ) = {b} is hidden when we compare P with a set of clauses

S = {{a, d}, {¬a,¬d}, {a, c}, {¬a, c}}

possessing exactly two classical models N1 = {a, c} and N2 = {d, c}, as
Hb(S) = {a, c, d}. We can hide d by setting Hbv(S) = {a, c}. Then P ≡v S

holds, as Hbv(P ) = Hbv(S) and there is a bijection from f : SM(P ) →
CM(S) that (i) maps M1 to N1 so that M1∩Hbv(P ) = {a, c} = N1∩Hbv(Q),
and (ii) maps M2 to N2 so that M2 ∩ Hbv(P ) = {c} = N2 ∩ Hbv(Q).

There are also reasonable alternatives to ≡v.

Definition 3.7 Logic programs P ∈ C and Q ∈ C ′ are weakly visibly equiv-
alent, denoted by P ≡w Q, if and only if Hbv(P ) = Hbv(Q) and

(3.4) {M ∩ Hbv(P ) |M ∈ SemC(P )} =

{N ∩ Hbv(Q) | N ∈ SemC′(Q)}.

Proposition 3.8 The relations ≡v and ≡w are equivalence relations among
all programs.
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PROOF. The reflexivity of ≡v follows essentially by the identity mapping
i : SemC(P ) → SemC(P ) for any P from any C. The symmetry of ≡v

is also easily obtained. Given P ≡v Q for any programs P and Q from
any classes C and C ′, respectively, the existence of an inverse for a bijection
f : SemC(P )→ SemC′(Q) is guaranteed. For the transitivity of≡v, let f1 and
f2 be the bijections involved in the assumed relations P ≡v Q and Q ≡v R,
respectively, for P ∈ C1, Q ∈ C2, and R ∈ C3. It is clear that f1 ◦ f2 is
also a bijection, and we have for all M ∈ SemC1(P ) that M ∩ Hbv(P ) =
f1(M) ∩Hbv(Q) = f2(f1(M)) ∩Hbv(R) = (f1 ◦ f2)(M) ∩Hbv(R). More-
over, Hbv(P ) = Hbv(Q) and Hbv(Q) = Hbv(R) imply Hbv(P ) = Hbv(R).
Hence P ≡v R is the case.

For ≡w, the proof is immediate, since P ≡w Q is obtained as an intersec-
tion of two equality/equivalence relations: the one determined by Hbv(P ) =
Hbv(Q) and the other determined by (3.4). 2

It is worthwhile to do some comparisons. By setting Hbv(P ) = Hb(P )
and Hbv(Q) = Hb(Q), the weak relation ≡w becomes very close to the no-
tion of weak equivalence discussed in the beginning of this section, if inter-
preted with respect to the class of normal programs under the stable model
semantics. The only difference is the implied additional requirement that
Hb(P ) = Hb(Q) if ≡w is to hold. By the approach taken in Section 3.1 this
requirement becomes of little account: Herbrand bases are always extendible
to meet Hb(P ) = Hb(Q). Actually, we can state the same about ≡v using
a generalized notion of weak equivalence: P ≡ Q is defined to hold for
P ∈ C and Q ∈ C ′ ⇐⇒ SemC(P ) = SemC′(Q). It is clear that ≡ is also an
equivalence relation among all programs.

Proposition 3.9 If Hbv(P ) = Hb(P ) equals to Hbv(Q) = Hb(Q), then
P ≡ Q ⇐⇒ P ≡w Q ⇐⇒ P ≡v Q.

PROOF. Assume that Hbv(P ) = Hb(P ) equals to Hbv(Q) = Hb(Q) for
some P ∈ C and Q ∈ C ′. For the first equivalence, it is sufficient to note
that (3.4) reduces to SemC(P ) = SemC′(Q) given that Hbv(P ) = Hb(P )
and Hbv(Q) = Hb(Q). In addition, Hbv(P ) = Hbv(Q) holds by our as-
sumptions. To establish P ≡ Q ⇐⇒ P ≡v Q, we note that if SemC(P )
and SemC′(Q) consist of identical subsets of Hb(P ) = Hb(Q), the identity
mapping i serves as the bijection involved in Definition 3.5. On the other
hand, the existence of such a bijection implies SemC(P ) = SemC′(Q) by our
assumptions. 2

Example 3.10 Recall the normal logic program P and the set of clauses S

from Example 3.6. Now P ≡w S holds, as {M ∩ Hbv(P ) |M ∈ SM(P )} =
{{a, c}, {c}} equals to {N ∩ Hbv(S) | N ⊆ Hb(S) and N |= S}.

The setting demonstrated by Examples 3.6 and 3.10 is an instance of a
more general relationship between ≡v and ≡w.

Proposition 3.11 For any logic programs P and Q, P ≡v Q =⇒ P ≡w Q.

PROOF. Suppose P ≡v Q and P 6≡w Q. The former implies Hbv(P ) =
Hbv(Q) and the existence of a bijection f : SemC(P )→ SemC′(Q) such that
(3.3) is met by every M ∈ SemC(P ). On the other hand P 6≡w Q implies
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that there is M ∈ SemC(P ) such that M ∩ Hbv(P ) 6= N ∩ Hbv(Q) for all
N ∈ SemC′(Q); or the roles of P and Q can be interchanged. But this is a
contradiction, as M ∩ Hbv(P ) = f(M) ∩ Hbv(Q) and f(M) ∈ SemC′(Q).

2

However, the converse does not hold in general, as to be shown below.
The distinction between the two relations becomes soon crucial when we
formulate the criteria for a semantics-preserving translation function in Sec-
tion 3.3.

Example 3.12 Let us modify the normal program P from Example 3.6 by
setting Hbv(P ) = {c}. Then {M ∩ Hbv(P ) | M ∈ SM(P )} contains only
{c} although SM(P ) = {{a, c}, {b, c}}. Given a set of clauses S ′ = {c} with
Hbv(S

′) = Hb(S ′) = {c} we have CM(S ′) = {{c}}. Then P ≡w S ′ holds,
but P 6≡v S ′, because a bijection between SM(P ) and CM(S ′) is impossible.

3.3 Requirements for Translation Functions

We are now ready to formulate our criteria for a translation function Tr : C →
C ′ that transforms logic programs P of one class C into logic programs Tr(P )
of another class C ′. In many cases of interest, the latter class is a subclass
or a superclass of C, but it makes also sense to perform translations between
classes that are incomparable in this respect (such as P and SC introduced
so far). It is assumed below that both the source class C and the target class
C ′ satisfy assumptions A1–A4 made in Definition 3.4.

Definition 3.13 A translation function Tr : C → C ′ is polynomial if and
only if for all programs P ∈ C, the time required to compute the translation
Tr(P ) ∈ C ′ is polynomial in ||P ||.

Here ||P || stands for the length of the program P in the number of sym-
bols in a string representation of P . Note that the length of the translation
||Tr(P )|| is also polynomial in ||P || if Tr is polynomial. Thus the polynomi-
ality requirement serves as a rough upper bound how much time and space
may be used to compute a translation. In many cases, this bound is by no
means tight, and even linear time translation functions can be devised for
particular classes of logic programs. Many times this is also highly desirable
to allow efficient transformation of knowledge from one representation to
another.

Definition 3.14 A translation function Tr : C → C ′ is faithful if and only if
for all P ∈ C, P ≡v Tr(P ).

Here we emphasize that P ≡v Tr(P ) implies Hbv(P ) = Hbv(Tr(P )) by
the definition of ≡v. Thus a faithful translation function Tr may introduce
new atoms, which have to remain invisible, or forget old invisible atoms.
Moreover, if we insist on polynomiality, then the number of new atoms gets
bounded, too. The possibility of introducing new atoms is a crucial option for
translation functions to be presented in this report. This is because new atoms
serve as shorthands for more complex logical expressions that save space and
enable translation functions between certain classes. The existence of a bi-
jection f between SemC(P ) and SemC′(Tr(P )) ensures that the semantics
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of P is captured by Tr(P ) to a reasonable degree: there is a one-to-one cor-
respondence of models and the models coincide up to Hbv(P ). Thus both
brave and cautious conclusions with respect to the models/interpretations in
SemC(P ) is preserved within the language determined by Hbv(P ). More-
over, it is often desirable in answer set programming that the models in
SemC(P ) correspond to the solutions of the problem being solved, and a bi-
jective relationship is required in order to preserve the number of solutions.
This is an important aspect of translation functions that is often neglected
in literature. To understand the need for a tight relationship, consider a
variant of Definition 3.14 obtained by changing ≡v to ≡w. Let us say that
Tr : C → C ′ is weakly faithful if and only if P ≡w Tr(P ) for all P ∈ C. For
this relation, it is enough to fulfill

(3.5) {M ∩ Hbv(P ) |M ∈ SemC(P )} =

{N ∩ Hbv(Tr(P )) | N ∈ SemC′(Tr(P ))}.

When (3.5) holds, it is possible to capture models of P in a sense using
Tr(P ), but e.g. counting the models in SemC(P ) may become infeasible in
terms of Tr, as one model M ∈ SemC(P ) may have exponentially many
corresponding models N ∈ SemC′(Tr(P )) such that M ∩ Hbv(P ) = N ∩
Hbv(Tr(P )) = N ∩ Hbv(P ). As a corollary of Proposition 3.11, we know
that a translation function Tr that is faithful in the sense of Definition 3.14
is also weakly faithful. However, the converse does not hold in general for
the reasons just explained. The third requirement for translation functions,
namely modularity, is based on the following notion of program modules.

Definition 3.15 Any two logic programs P ∈ C and Q ∈ C satisfy module
conditions if and only if

M1. P ∩Q = ∅,

M2. Hba(P ) ∩ Hba(Q) = ∅,

M3. Hbh(P ) ∩ Hb(Q) = ∅, and

M4. Hb(P ) ∩ Hbh(Q) = ∅.

Intuitively, the first two module conditions make P and Q disjoint pro-
grams in the sense of Definition 3.1. Thus P ∪Q, as given in Definition 3.3,
can be understood as a disjoint union of P and Q. The last two requirements
make sure that P and Q can only share visible atoms.

Definition 3.16 A translation function Tr : C → C ′ is modular if and only
if for all P ∈ C and Q ∈ C satisfying the module conditions M1–M4,

(3.6) Tr(P ∪Q) = Tr(P ) ∪ Tr(Q),

and the translations Tr(P ) and Tr(Q) satisfy module conditions M1–M4.

The aim of the modularity condition is to enforce the locality of Tr with re-
spect to subprograms P and Q, which satisfy the module conditions M3 and
M4 and can thus be viewed as program modules that interact through visible
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atoms only. The conditions M1 and M2 imply that such modules cannot
share rules nor atoms extending the Herbrand base. By (3.6), the modules P

and Q have to be separately translatable and the translation Tr(P ∪Q) is ob-
tained as the union of the translations of the modules. In addition, a modular
translation function is supposed to preserve module conditions M1–M4, i.e.
the respective translations Tr(P ) and Tr(Q) are supposed to remain disjoint
and share only visible atoms. Note that a program P with Hbv(P ) = Hb(P )
and Hbh(P ) = ∅ can be arbitrarily partitioned into modules P1 and P2 such
that Hbv(Pi) = Hb(Pi) for i ∈ {1, 2} and Hbv(P ) = Hbv(P1) ∪ Hbv(P2) =
Hb(P1) ∪ Hb(P2) = Hb(P ). This observation implies that such a program
P can be translated rule by rule using a modular translation function. The
modularity condition becomes less restrictive when programs share rules or
involve hidden atoms and (3.6) need not be applicable.

Proposition 3.17 If Tr1 : C1 → C2 and Tr2 : C2 → C3 are two polynomial,
faithful, or modular translation functions, then their composition Tr1 ◦ Tr2 :
C1 → C3 is also polynomial, faithful, or modular, respectively.

PROOF. Suppose that both Tr1 and Tr2 are polynomial. Then there is a
polynomial p1 : N → N and a Turing machine M1 such that M1 computes
Tr1(P ) in at most p1(||P ||) steps for any P ∈ C1. An analogous statement
holds for a polynomial p2, a machine M2, Tr2, and C2.

It follows that (Tr1 ◦ Tr2)(P ) = Tr2(Tr1(P )) is computed by M1M2 in
at most p1(||P ||) + p2(||Tr1(P )||) steps. Note that ||Tr1(P )|| ≤ p1(||P ||)
holds by the properties of Turing machines. Moreover, p2 is dominated by
a monotonically increasing polynomial p : N → N.4 Thus p2(||Tr1(P )||) ≤
p(||Tr1(P )||) ≤ p(p1(||P ||)) holds, the number of steps taken by M1M2 is
bounded by p3(||P ||) = p1(||P ||)+p(p1(||P ||)), and Tr1 ◦Tr2 is polynomial.

Let us then assume that Tr1 and Tr2 are faithful, i.e. it holds for any P ∈ C1
that P ≡v Tr1(P ) and Tr1(P ) ≡v Tr2(Tr1(P )). Then the transitivity of
≡v (recall Proposition 3.11) implies P ≡v Tr2(Tr1(P )), i.e. P ≡v (Tr1 ◦
Tr2)(P ).

Then consider the case that Tr1 and Tr2 are modular and let P and Q be
any programs from C1 such that the module conditions M1–M4 are satisfied.
Using the modularity of Tr1, we obtain Tr1(P ∪Q) = Tr1(P ) ∪Tr1(Q) and
the translations Tr1(P ) and Tr2(Q) satisfy the module conditions M1–M4.
Then we may appeal to the modularity of Tr2, to establish Tr2(Tr1(P∪Q)) =
Tr2(Tr1(P ) ∪ Tr1(Q)) = Tr2(Tr1(P )) ∪ Tr2(Tr1(Q)) and the translations
Tr2(Tr1(P )) and Tr2(Tr1(Q)) satisfy the module conditions M1–M4. It fol-
lows that (Tr1 ◦ Tr2)(P ∪ Q) = (Tr1 ◦ Tr2)(P ) ∪ (Tr1 ◦ Tr2)(Q) and the
translations (Tr1 ◦Tr2)(P ) and (Tr1 ◦Tr2)(Q) satisfy the module conditions
M1–M4 — indicating that the composition Tr1 ◦ Tr2 is modular. 2

3.4 Classification Method

The criteria collected in Definitions 3.13–3.16 lead to a method for compar-
ing classes of logic programs on the basis of their expressive power. We say

4E.g., given any polynomial p2(x) = anx
n+. . .+a0x

0, the polynomial p(x) = |an|xn+
. . . + |a0|x0 is monotonically increasing and p2(x) ≤ p(x) holds for all x ∈ N.

14 3 TRANSLATION FUNCTIONS



Relation Definition Explanation

C <PFM C
′ C ≤PFM C

′ and C ′ 6≤PFM C C is strictly less expressive than C ′

C =PFM C
′ C ≤PFM C

′ and C ′ ≤PFM C C and C ′ are equally expressive

C 6=PFM C
′ C 6≤PFM C

′ and C ′ 6≤PFM C C and C ′ are incomparable

Table 1: Relations used by the Classification Method

that a translation function Tr : C → C ′ is PFM if and only if it is polynomial,
faithful, and modular simultaneously. If there exists such a translation func-
tion Tr, we write C ≤PFM C

′ to denote that the class C ′ is at least as expressive
as the class C. This is simply because the essentials of any program P ∈ C can
be captured using the translation Tr(P ) ∈ C ′. In certain cases, we are able
to construct a counter-example which shows that a PFM translation function
is impossible, denoted by C 6≤PFM C

′. The base relations ≤PFM and 6≤PFM

among classes of logic programs form the cornerstones of the classification
method – giving rise to relations given in Table 1.

It is sometimes convenient to introduce variants of the relations ≤PFM

and 6≤PFM which are obtained by dropping some of the three requirements
and the corresponding letter(s) in the notation. For instance, if we establish
C 6≤FM C

′ for certain classes C and C ′ of logic programs, then C 6≤PFM C
′ fol-

lows immediately. Also, non-modular translation functions will be addressed
in this report and the resulting relationships involve ≤PF rather than ≤PFM.
In certain cases, it is easy to establish relationships regarding ≤PFM. By the
following, we address a frequently appearing case where the syntax is gener-
alized while the semantics is kept compatible with the original one.

Proposition 3.18 If C and C ′ are two classes of logic programs such that C ⊆
C ′ and SemC(P ) = SemC′(P ) for all P ∈ C, then C ≤PFM C

′.

PROOF. Let TrID be the identity translation function for which TrID(P ) =
P for every P ∈ C. It is clear that TrID is polynomial. For the faithful-
ness of TrID, we note that Hbv(Tr(P )) = Hbv(P ) and the identity map-
ping i : SemC(P ) → SemC′(P ) is the bijection insisted by faithfulness, as
SemC(P ) = SemC′(P ). To see the modularity of TrID, let P ∈ C and Q ∈ C
such that module conditions M1–M4 from Definition 3.15 are satisfied. Now
TrID(P ∪Q) = P ∪Q = TrID(P )∪TrID(Q). The translations TrID(P ) = P

and TrID(Q) = Q satisfy M1 and M2, as P and Q do by assumption. More-
over, TrID does not affect the visibility of atoms so that TrID(P ) = P and
TrID(Q) = Q meet the conditions M3 and M4, too. 2

In many cases, we manage to construct faithful translation functions that
only add new hidden atoms to programs being translated. The following
theorem shows how such translation functions are proved faithful in general.

Theorem 3.19 Let Tr : C → C ′ be a translation function with the following
properties for every P ∈ C:

1. Hb(P ) ⊆ Hb(Tr(P )) and Hbv(Tr(P )) = Hbv(P );
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2. there is an extension function Ext : SemC(P ) → SemC′(Tr(P )) such
that ∀M ∈ SemC(P ) : M = Ext(M) ∩ Hb(P ); and

3. if N ∈ SemC′(Tr(P )), then M = N ∩ Hb(P ) ∈ SemC(P ) such that
N = Ext(M).

Then Tr is faithful.

PROOF. Let P any program from the class C. By the second assumption
on Tr, there is a function Ext that maps a model M ∈ SemC(P ) to another
N = Ext(M) in SemC′(Tr(P )). It is established in the sequel that Ext is a
bijection that meets the requirements set up in Definition 3.5.

Let us assume that Ext is not injective, i.e. there are two models M1 and
M2 in SemC(P ) such that M1 6= M2 and Ext(M1) = Ext(M2). Thus
also Ext(M1) ∩ Hb(P ) = Ext(M2) ∩ Hb(P ) holds and M1 = M2 by the
properties of Ext, a contradiction. Hence Ext is necessarily injective. By
the third requirement on Tr, we have a projection function Proj that maps
N ∈ SemC′(Tr(P )) to M = N ∩ Hb(P ) ∈ SemC(P ). Let us assume that
Proj is not injective. Then there are two models N1 6= N2 in SemC′(Tr(P ))
such that Proj(N1) = Proj(N2), i.e. N1 ∩ Hb(P ) = M = N2 ∩ Hb(P )
where M belongs to SemC(P ). But then we obtain N1 = Ext(M) = N2 by
the third requirement on Tr, a contradiction. Thus Proj is injective as well.

In fact, the requirements on Tr imply that Proj(Ext(M)) = M for any
M ∈ SemP(P ). Thus Ext and Proj are inverses of each other as well
as bijective. In addition, we have Hbv(Tr(P )) = Hbv(P ) by the first re-
quirement on Tr. Let M be any model from SemC(P ). Recall that M =
Ext(M) ∩Hb(P ) holds by the second requirement on Tr. Since Hbv(P ) =
Hbv(Tr(P )) ⊆ Hb(P ), we obtain M ∩ Hbv(P ) = Ext(M) ∩ Hbv(Tr(P )).
Since the choice of M was arbitrary, we may conclude P ≡v Tr(P ). 2
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4 EXPRESSIVE POWER ANALYSIS

In this section, we compare the expressive powers of the classes of logic pro-
grams introduced in Section 2.3 using the classification method presented
in Section 3.4. Due to the nature of the syntactic constraints imposed in
Section 2.3, the key problem is to see whether there are ways to reduce the
number of positive body literals in the bodies of rules. The results of this
section will indicate that this is possible to some extent, but not in general,
i.e. there is no faithful and modular way of removing all positive body literals
from rules. As a preparation for the expressive power analysis, we distinguish
certain properties program modules in Section 4.1. The actual analysis takes
place in two phases. At first, we address the class of positive programs P+ and
the respective subclasses in Section 4.2. After that the class normal programs
P is subjected to similar analysis in Section 4.3. However, the extended
syntax of normal logic programs and the stable model semantics in its full
generality makes the analysis more intricate and involved. Finally, we take
classical propositional logic into consideration in Section 4.4 and relate sets
of clauses under classical models with the other classes.

4.1 Some Properties of Programs Modules

We prepare the forthcoming expressive power analysis by presenting two use-
ful properties of program modules under the least/stable model semantics.
The first property is related with a positive program P ∪Q consisting of two
subprograms P and Q so that the module conditions M1–M4 from Defini-
tion 3.15 are satisfied. Here the aim is to provide sufficient conditions for
removing either one of the modules by evaluating its effect on the joint least
model LM(P ∪Q) and by replacing it with a compensating atomic program.
Formally, we propose a reduction that yields a set of atomic rules.

Definition 4.1 Given a positive normal program P ∈ P+ and an interpreta-
tion I , the visible net reduction of P is P v

I = {a← | a ∈ Hbv(P ) ∩ I} so
that Hbv(P

v
I ) = Hb(P v

I ) = Hbv(P ) which makes all atoms of P v
I visible.

The reduced program P v
I overestimates P in a sense, since a←may be in-

cluded in P v
I even if there is no rule r ∈ P such that head(r) = a. However,

the reduct P v
I can be formed externally without knowing exactly which rules

constitute the program P being reduced. In addition, we assumed that the
interpretation I in Definition 4.1 may contain atoms outside Hb(P ). This
setting is easily realized when P is placed as a program module in the con-
text of another program Q. If I is a model for P ∪ Q, then the set of atoms
encoded as atomic rules in P v

I can be understood as the maximum contribu-
tion of the rules of P for the atoms that true in I . In the sequel, we will apply
the visible net reduction w.r.t. least models in the following way.

Lemma 4.2 Let P and Q be two positive programs satisfying the module
conditions M1–M4 and M = LM(P ∪ Q) ⊆ Hb(P ) ∪ Hb(Q). Then
LM(P v

M ∪ Q) = M ∩ (Hbv(P ) ∪ Hb(Q)) holds for the visible net reduct
P v

M .
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PROOF. Let us define N = M ∩ (Hbv(P ) ∪ Hb(Q)) and assume that N 6|=
P v

M ∪Q. This leads to two possibilities: N 6|= P v
M or N 6|= Q.

(i) If N 6|= P v
M , then we know by Definition 4.1 that there is a rule a ←

in P v
M such that a ∈ Hbv(P ), a ∈ M , and N 6|= a←. The last implies

a 6∈ N and a 6∈ M by the definition of N , a contradiction.

(ii) If N 6|= Q, there is a rule r ∈ Q such that N 6|= r, i.e. head(r) 6∈ N and
body+(r) ⊆ N . It follows by the definition of N that head(r) 6∈ M

and body+(r) ⊆ M , as head(r) ∈ Hb(Q) and body+(r) ⊆ Hb(Q).
But then we have M 6|= r. A contradiction, as M |= Q.

Thus N |= P v
M ∪Q holds and it follows that LM(P v

M ∪Q) ⊆ N .
To establish the converse inclusion, we define Mi = TP∪Q ↑ i and Ni =

Mi ∩ (Hbv(P ) ∪ Hb(Q)) for all i ≥ 0 and prove Ni ⊆ LM(P v
M ∪ Q) by

induction on i. The base case is trivial, as Ni = Mi = ∅ by definition. Let us
then assume that a ∈ Ni, i.e. a ∈Mi and a ∈ Hbv(P ) ∪ Hb(Q). Then there
is a rule r ∈ P∪Q such that head(r) = a and body+(r) ⊆ Mi−1. If a ∈ Ni−1

holds, too, then a ∈ LM(P v
M ∪Q) by the inductive hypothesis directly. Thus

a 6∈ Ni−1 is assumed in the sequel. Two cases have to be considered; recall
that P ∩Q = ∅ by the module condition M1.

(a) If r ∈ Q, we know that head(r) ∈ Hb(Q) and body+(r) ⊆ Hb(Q).
Thus body+(r) ⊆ Ni−1 which is included in LM(P v

M ∪ Q) by the
inductive hypothesis. Consequently, we know that head(r) = a ∈
LM(P v

M ∪Q).

(b) If r ∈ P , it holds that head(r) ∈ Hbv(P ) and body+(r) ⊆ Hb(P ), as
head(r) = a ∈ Hbv(P ). Thus the rule head(r) ←∈ P v

M . It follows
that head(r) = a is contained in LM(P v

M ∪Q).

Thus a ∈ LM(P v
M ∪ Q) holds unconditionally and we have established that

Ni ⊆ LM(P v
M ∪Q) for all i ≥ 0. It follows that N ⊆ LM(P v

M ∪Q). 2

The second property lets us to combine stable models of program modules
under certain circumstances to form a stable model for a larger program.

Lemma 4.3 Let P and Q be two normal programs satisfying the module
conditions. If M ∈ SM(P ), N ∈ SM(Q), and M ∩ Hbv(P ) ∩ Hbv(Q) =
N ∩ Hbv(P ) ∩ Hbv(Q), then M ∪ N ∈ SM(P ∪ Q) and (P ∪ Q)N∪M =
P N ∪QM .

PROOF. Let M ∈ SM(P ) and N ∈ SM(Q) such that M ∩ Hbv(P ) ∩
Hbv(Q) = N ∩Hbv(P ) ∩Hbv(Q). Let us prove (P ∪Q)M∪N = P M ∪QN .

Consider any rule r ∈ P and any a ∈ body−(r). If a ∈ N ⊆ Hb(Q),
it follows that a ∈ Hbv(P ) ∩ Hbv(Q), since P and Q satisfy the module
conditions. Thus also a ∈ M by our assumptions on N and M . Thus
body−(r) ∩ N 6= ∅ implies body−(r) ∩ M 6= ∅. It follows that r+ ∈
P M∪N ⇐⇒ body−(r) ∩ (M ∪ N) = ∅ ⇐⇒ body−(r) ∩ M = ∅ and
body−(r) ∩ N = ∅ ⇐⇒ body−(r) ∩M = ∅ ⇐⇒ r+ ∈ P M . Thus we
have established that P M∪N = P M and QM∪N = QN is obtained by symme-
try. All that remains to be noted is that (P ∪Q)M∪N = P M∪N ∪QM∪N holds
directly by definition.
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A direct consequence is that M ∪N = LM(P M)∪ LM(QN ) is contained
in LM(P M ∪ QN) = LM((P ∪ Q)M∪N ). To establish the inclusion in the
other direction, let us assume that M ∪N 6|= P M ∪QN . Two cases arise.

(i) If M∪N 6|= P M holds, there is a rule r ∈ P such that body−(r)∩M =
∅, body+(r) ⊆ M ∪ N , and head(r) 6∈ M ∪ N . Now any atom a ∈
body+(r) ⊆ Hb(P ) that is contained in N ⊆ Hb(Q) is also contained
in M ⊆ Hb(P ). This is because any such atom must be a member of
Hbv(P ) ∩ Hbv(Q) and the models M and N are assumed to coincide
on these atoms. It follows that body+(r) ⊆ M and head(r) 6∈ M . But
this means that M 6|= P M is the case, a contradiction.

(ii) If M ∪N 6|= QN holds, we obtain a contradiction by symmetry.

Therefore M ∪N |= P M ∪QN is the case which implies LM(P M ∪QN ) ⊆
M ∪N . Thus M ∪N = LM(P M ∪QN ) = LM((P ∪Q)M∪N). 2

4.2 Positive Programs

In Section 2.3, we identified three subclasses of P+ which are obtained
by restricting the syntax of the rules whereas the semantics of logic pro-
grams in these classes remains unchanged. Thus we obtain the relation-
ships A+ ≤PFM U

+ ≤PFM B
+ ≤PFM P

+ directly by Proposition 3.18,
but it remains open whether these relationships are strict or not. We be-
gin with a study of the relationship B+ ≤PFM P

+. In fact, any non-binary
rule a ← b1, . . . , bn where n > 2 can be rewritten to reduce the number
of atoms that appear in the body of the rule. One technique is to introduce
n− 1 new atoms a1, . . . , an−1, which remain local to this particular rule, and
the following binary rules:

(4.1)
a← b1, a1;
a1 ← b2, a2; . . . ; an−2 ← bn−1, an−1;
an−1 ← bn.

It should be intuitively clear that the head a of the original rule can be in-
ferred using these binary rules whenever the body atoms b1, . . . , bn are all
inferable. As a result, any non-binary program P gets translated into a binary
one TrBIN(P ) so that the corresponding translation function is PFM.

Theorem 4.4 P+ ≤PFM B
+.

PROOF. A special case of the proof of Theorem 4.16. 2

Corollary 4.5 B+ =PFM P
+.

Let us then address the strictness of the relationship U+ ≤PFM B
+. It

turns out in the sequel that there is no PFM translation function from B+ to
U+. To establish this, we need a subsidiary result on unary programs P : if
an atom a is included in LM(P ), then P contains at least one atomic rule
which causes the atom a to be inferable by the strictly unary rules of P , i.e. to
be included in LM(P ). Note that LM(P ) = ∅ for any strictly unary program
P .
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Lemma 4.6 Let P = P1 ∪ P0 be a unary positive program where P1 con-
tains the strictly unary rules of P and P0 contains the atomic rules of P . If
a ∈ LM(P ), then P0 contains an atomic rule b ← such that a ∈ LM(P1 ∪
{b←}).

PROOF. We use complete induction on the level number lev(a) > 0 to
prove the claim for any atom a ∈ LM(P1 ∪ P0) = LM(P ).

For the base case, assume that lev(a) = 1 which implies that a ∈ TP1∪P0
↑

1 = TP1∪P0
(∅). Thus a ← must appear in P0. It is also clear that a ∈

TP1∪{a←} ↑ 1 = TP1∪{a←}(∅) so that a ∈ LM(P1 ∪ {a←}).
Then consider the case that lev(a) = i > 1. Then a ∈ TP1∪P0

↑ i and
there is a unary rule a ← b ∈ P1 such that b ∈ TP1∪P0

↑ i− 1. Since
b ∈ LM(P1 ∪ P0) and 0 < lev(b) < lev(a) = i, it follows by the inductive
hypothesis that there is an atomic rule c ← in P0 such that b ∈ LM(P1 ∪
{c←}). This implies a ∈ LM(P1 ∪{c←}), because the rule a← b belongs
to P1. 2

We are now ready to establish that unary programs are strictly less expres-
sive than binary ones. The proof below demonstrates how it is impossible to
express the conjunctive condition (b and c) in the body of a rule a ← b, c

using unary rules. In fact, if we attempt to capture this condition in terms of
unary rules, the condition turns into a disjunctive one: already b or c alone
is sufficient to infer a — assuming that a does not follow from our transla-
tion directly. It is also worth pointing out that our counter-example does not
depend on the polynomiality requirement. Thus the intranslatability result
embodied in Theorem 4.7 covers arbitrarily large translations!

Theorem 4.7 B+ 6≤FM U
+.

PROOF. Let us assume that there is a faithful and modular translation func-
tion TrUN from B+ to U+. Then consider a strictly binary program B =
{a← b, c}, atomic (as well as unary) programs A1 = {b←} and A2 =
{c←}, and the translation TrUN(B ∪A1 ∪A2). Note that B, A1, and A2 sat-
isfy the module conditions as any combination, since Hbv(B) = Hb(B) =
{a, b, c}, Hbv(A1) = Hb(A1) = {b}, and Hbv(A2) = Hb(A2) = {c}.
Consequently, the modularity of TrUN implies that TrUN(B ∪ A1 ∪ A2) =
TrUN(B) ∪ TrUN(A1) ∪ TrUN(A2) where the modules TrUN(B), TrUN(A1),
and TrUN(A2) are unary.

Since Hbv(B ∪ A1 ∪ A2) = {a, b, c} and M = LM(B ∪ A1 ∪ A2) =
{a, b, c}, the faithfulness of TrUN implies Hbv(TrUN(B∪A1∪A2)) = {a, b, c}
and {a, b, c} ⊆ N = LM(TrUN(B∪A1∪A2)) = LM(TrUN(B)∪TrUN(A1)∪
TrUN(A2)). Similarly, we note that Hbv(TrUN(B)) = Hbv(B) = {a, b, c},
Hbv(TrUN(A1)) = Hbv(A1) = {b}, and Hbv(TrUN(A2)) = Hbv(A2) =
{c}. Then we may apply Lemma 4.2 to obtain (TrUN(A1) ∪ TrUN(A2))

v
N =

{b←; c←} and

(4.2) N ′ = LM(TrUN(B) ∪ {b←; c←})

= N ∩ (Hb(TrUN(B)) ∪ Hbv(TrUN(A1)) ∪ Hbv(TrUN(A2)))

= N ∩ Hb(TrUN(B)).

Let us then partition the translation TrUN(B) into a set of atomic rules
TrUN(B)0 and a set of strictly unary rules TrUN(B)1. Since a ∈ N ′, we
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may use Lemma 4.6 to establish that TrUN(B)0 ∪ {b←; c←} contains an
atomic rule d ← such that a ∈ LM(TrUN(B)1 ∪ {d←}). There are three
possibilities: either d = b, d = b, or d ← belongs to TrUN(B)0. Each of
these three cases implies a ∈ LM(TrUN(B)∪{b←}) or a ∈ LM(TrUN(B)∪
{c←}).

On the other hand, the programs A1 and A2 give rise to M1 = LM(A1) =
{b} and M2 = LM(A2) = {c}. Then the corresponding models N1 =
LM(TrUN(A1)) and N2 = LM(TrUN(A2)) satisfy b ∈ N1 and c ∈ N2, re-
spectively, as TrUN is faithful. It follows by the monotonicity of the operator
LM(·) that a ∈ LM(TrUN(B)∪TrUN(A1)) or a ∈ LM(TrUN(B)∪TrUN(A2)).
Thus a ∈ LM(TrUN(B ∪A1)) holds or a ∈ LM(TrUN(B ∪A2)) holds by the
modularity of TrUN. But then a ∈ LM(B ∪A1) or a ∈ LM(B∪A2), because
TrUN is faithful. A contradiction, since LM(B∪A1) = LM(B∪A2) = ∅. 2

Corollary 4.8 B+ 6≤PFM U
+, U+ <PFM B

+, and U+ <PFM P
+.

An intranslatability result is obtained in the last case as well.

Lemma 4.9 For positive atomic programs P , LM(P ) = {head(r) | r ∈ P}.

Theorem 4.10 U+ 6≤FM A
+.

PROOF. Let us suppose that there is a faithful and modular translation func-
tion TrAT from U+ to A+. Let us then study a strictly unary program U =
{a← b}, an atomic program A = {b←}, and the translation TrAT(U ∪ A).
Since Hbv(U) = Hb(U) = {a, b} and Hbv(A) = Hb(A) = {b}, the mod-
ule conditions are trivially satisfied by U and A. Then the modularity of
TrAT implies TrAT(U ∪ A) = TrAT(U) ∪ TrAT(A) where both TrAT(U) and
TrAT(A) are atomic programs. Let us then appeal to the faithfulness of TrAT:
a ∈ LM(U ∪ A) and a 6∈ LM(A) imply a ∈ LM(TrAT(U) ∪ TrAT(A)) and
a 6∈ LM(TrAT(A)), respectively. It follows by Lemma 4.9 that the rule a ←
must appear in TrAT(U), since both TrAT(U) and TrAT(A) are atomic.

On the other hand, we have LM(U) = ∅ which implies a 6∈ LM(U). It
follows by the faithfulness of TrAT that a 6∈ LM(TrAT(U)), a contradiction.

2

Corollary 4.11 The class A+ relates to other classes as follows:

U+ 6≤PFM A
+, A+ <PFM U

+, A+ <PFM B
+, and A+ <PFM P

+.

Theorems 4.4, 4.7 and 4.10 establish a strict ordering among the classes of
logic programs A+, U+, B+ and P+ that can be summarized by a hierarchy:

(4.3) A+ <PFM U
+ <PFM B

+ =PFM P
+.

The relationships in this hierarchy indicate that the number of positive body
literals can be limited to two without an effective loss of expressive power.
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4.3 Normal Programs

The analysis of normal programs resembles that of positive programs. By the
mutual inclusions of the classes and Proposition 3.18, we obtain analogous
relationships A ≤PFM U ≤PFM B ≤PFM P . From now on, our plan is to
generalize Theorems 4.4, 4.7 and 4.10 to the case of normal logic programs.
Realizing such a plan boils down to establishing that negative body literals do
not compensate positive body literals in a way that would make a difference
with respect to the case of positive programs. As the first step of the plan, we
generalize the translation function TrBIN for normal programs. A single rule
r given in (2.1) is translated into the following set of rules TrBIN(r):

(4.4)
a← b1, a1,∼c1, . . . ,∼cm;
a1 ← b2, a2; . . . ; an−2 ← bn−1, an−1;
an−1 ← bn

where a1, . . . , an−1 are new atoms that are supposed to remain local to r. The
reader might find it tempting to copy negative body literals ∼c1, . . . ,∼cm to
every rule in (4.4), but a quadratic translation would result.

Definition 4.12 For every P ∈ P , define TrBIN(P ) =

(4.5) {r | r ∈ P and |body+(r)| ≤ 2}∪
⋃

{TrBIN(r) | r ∈ P and |body+(r)| > 2}.

Moreover, let Hba(TrBIN(P )) = Hba(P ) and Hbv(TrBIN(P )) = Hbv(P ).

To ease correctness considerations, we define for each non-binary rule r ∈
P , the translation TrBIN(r) in (4.4), and an interpretation I ⊆ Hb(P ), the
set of implied body atoms IBA(r, I) which contains ai from (4.4) whenever
0 < i < n and bi+1 ∈ I, . . . , bn ∈ I . For binary rules r ∈ P , IBA(r, I) =
∅. Then we may define IBA(P, I) =

⋃

{IBA(r, I) | r ∈ P} for a normal
program P and an interpretation I ⊆ Hb(P ). Note that the Herbrand base
Hb(TrBIN(P )) is obtained as Hb(P ) ∪ IBA(P, Hb(P )).

Lemma 4.13 Let P be a normal program and Q the translation TrBIN(P ).

1. If M1 ⊆M2 ⊆ Hb(P ) and M1 |= P M2 , then N1 |= TrBIN(P )N2 where
N1 = M1 ∪ IBA(P, M1) and N2 = M2 ∪ IBA(P, M2).

2. If N1 ⊆ N2 ⊆ Hb(TrBIN(P )) and N1 |= TrBIN(P )N2 , then M1 ⊆ M2

and M1 |= P M2 hold for M1 = N1 ∩ Hb(P ) and M2 = N2 ∩ Hb(P ).

PROOF. (1) Suppose that M1 ⊆ M2 ⊆ Hb(P ) and M1 |= P M2 . Define N1

and N2 as above. Then assume that N1 6|= TrBIN(P )N2 . Two cases arise.

(a) There is a rule r ∈ P such that |body+(r)| ≤ 2, r is included in
TrBIN(P ), N2 ∩ body−(r) = ∅, and N1 6|= r+. Since r contains only
atoms from Hb(P ), it follows that M2 ∩ body−(r) = ∅ and M1 6|= r+.
Thus M1 6|= P M2 , contradicting our assumptions.
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(b) There is a rule r ∈ P such that |body+(r)| > 2, TrBIN(r) from
(4.4) is included in TrBIN(P ), and some rule of TrBIN(r)N2 is not
satisfied in N1. Basically, there are three different kind of rules in
TrBIN(r) giving rise to the respective cases. (i) Suppose that the rule
involved is a ← b1, a1,∼c1, . . . ,∼cm from TrBIN(r). It follows that
N2 ∩ {c1, . . . , cm} = ∅, b1 ∈ N1, a1 ∈ N1, and a 6∈ N1. All atoms of
these except a1 is included in Hb(P ). Consequently, we have M2 ∩
{c1, . . . , cm} = ∅, b1 ∈ M1, and a 6∈ M1. On the other hand, the
definition of N1 and the fact that a1 ∈ N1 imply that b2 ∈ M1, . . . ,
bn ∈ M1. Thus {b1, . . . , bn} ⊆ M1 which implies that M1 6|= r+.
Since M2 ∩{c1, . . . , cm} = ∅, r+ belongs to P M2 , a contradiction with
M1 |= P M2 . (ii) The unsatisfied rule is ai−1 ← bi, ai where 1 < i < n.
Note that this rule is included unconditionally in TrBIN(P )N2 . It fol-
lows that bi ∈ N1, ai ∈ N1, but ai−1 6∈ N1. Using the definition of N1

again, ai ∈ N1 implies {bi+1, . . . , bn} ⊆ M1, and ai−1 6∈ N1 implies
{bi, . . . , bn} 6⊆ M1. Thus bi 6∈ M1 must be the case. It follows by
the definition of N1 that bi 6∈ N1, a contradiction. (iii) As a special
case, the rule in question is an−1 ← bn. It follows that bn ∈ N1 but
an−1 6∈ N1, a contradiction with the definition of N1.

To conclude, N1 6|= TrBIN(P )N2 implies a contradiction. Hence the claim.
(2) Let N1 ⊆ N2 ⊆ Hb(TrBIN(P )) and N1 |= TrBIN(P )N2 . Define M1

and M2 as above so that M1 ⊆ M2. Let us assume that M1 6|= P M2 . Then
there is a rule r ∈ P such that M2 ∩body−(r) = ∅ and M1 6|= r+. Two cases
arise for our further consideration.

(a) If |body+(r)| ≤ 2, then r is included in TrBIN(P ) as such and the
definitions of M1 and M2 as the respective projections of N1 and N2

w.r.t. Hb(P ) imply N2 ∩ body−(r) = ∅ and N1 6|= r+. Thus N1 6|=
TrBIN(P )N2 , a contradiction with our assumptions.

(b) If |body+(r)| > 2, then TrBIN(r) from (4.4) is included in TrBIN(P )
instead of r. Since M1 6|= r+, we know that {b1, . . . , bn} ⊆ M1 and
a 6∈ M1. We prove by decreasing induction on i ≤ n − 1 that ai is
included in N1. In the base case i = n − 1, we obtain an−1 ∈ N1,
since an−1 ← bn ∈ TrBIN(P )N2 is satisfied in N1 and bn ∈ N1 holds
by the definition of M1 as bn ∈ M . Induction step follows, i.e. let i <

n−1. Note that the rule ai ← bi+1, ai+1 is unconditionally included in
TrBIN(P )N2 . Since bi+1 ∈ M1 we obtain bi+1 ∈ N1 by the definition
of M1. Moreover, ai+1 ∈ N1 follows by the inductive hypothesis. Then
we obtain ai ∈ N1, as ai ← bi+1, ai+1 is satisfied by N1. To conclude,
we have established that IBA(r, M1) ⊆ N1 and a1 ∈ N1 in particular.

Then recall that M2 ∩ body−(r) = ∅, i.e. M2 ∩ {c1, . . . , cm} = ∅.
It follows by the definition of M2 that a ← b1, a1 is a member of
TrBIN(P )N2 . Since b1 ∈ N1, a1 ∈ N1, and a ← b1, a1 is necessar-
ily satisfied by N1, we obtain a ∈ N1. Thus a ∈M1 by the definition of
M1, a contradiction.

Thus M1 6|= P M2 leads to a contradiction. Hence M1 |= P M2 is the case. 2
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Proposition 4.14 Let P be a normal logic program. If M is a stable model
of P , then N = M ∪ IBA(P, M) is a stable model of TrBIN(P ) such that
M = N ∩ Hb(P ).

PROOF. Let M be a stable model of P , i.e. M = LM(P M). Since M |=
P M , we obtain by the first item of Lemma 4.13 that N |= TrBIN(P )N holds
for N = M ∪ IBA(P, M). Since IBA(P, M) ⊆ IBA(P, Hb(P )) consists
of new atoms not appearing in Hb(P ), it is clear that M = N ∩ Hb(P ).
Let us then suppose that N is not the least model of TrBIN(P )N , i.e. there is
N ′ ⊂ N such that N ′ |= TrBIN(P )N . Consider any a ∈ N − N ′. Two cases
arise depending on the membership of a in Hb(P ).

• If a ∈ Hb(P ), then we obtain by the second item in Lemma 4.13 that
M ′ = N ′ ∩ Hb(P ) ⊂ M is a model of P M . But this contradicts the
stability of M ! Thus N ′ ∩Hb(P ) = N ∩Hb(P ) is necessarily the case.

• If a ∈ Hb(TrBIN(P )) − Hb(P ), then a is one of the new atoms ai in-
volved in (4.4) and ai ∈ IBA(P, M), as ai ∈ N . It follows by the defini-
tion of IBA(P, M) that bi+1 ∈ M, . . . , bn ∈ M . Since N ′ ∩ Hb(P ) =
N∩Hb(P ), as established above, we obtain bi+1 ∈ N ′, . . . , bn ∈ N ′ by
the definition of N . Since N ′ |= TrBIN(P )N and the positive rules of
(4.4) are unconditionally included in TrBIN(P )N , it follows inductively
that an−1 ∈ N ′, an−2 ∈ N ′, . . ., ai ∈ N ′. Thus a ∈ N ′, a contradiction.

Hence there is no a in the difference N − N ′. Then N ′ = N must hold —
contradicting our previous assumption. This implies N = LM(TrBIN(P )N),
i.e. N is a stable model of TrBIN(P ). 2

Proposition 4.15 Let P be a normal logic program. If N is a stable model
of TrBIN(P ), then M = N ∩ Hb(P ) is a stable model of P such that N =
M ∪ IBA(P, M).

PROOF. Let N be a stable model of TrBIN(P ), i.e. N = LM(TrBIN(P )N).
Since N |= TrBIN(P )N , we obtain by the second item in Lemma 4.13 that
M |= P M holds for M = N ∩ Hb(P ). Let A be the set of atoms N ∩
(Hb(TrBIN(P )) − Hb(P )) so that N = M ∪ A. It is proved next that A =
IBA(P, M). We do this by by showing for each non-binary rule r ∈ P and
the corresponding translation TrBIN(r) in (4.4) that ai ∈ A if and only if
ai ∈ IBA(P, M). We use decreasing induction on i ≤ n− 1 as follows.

In the base case i = n − 1. Now an−1 ∈ A ⇐⇒ an−1 ∈ N by the
definition of A ⇐⇒ an−1 ∈ LM(TrBIN(P )N), as N is stable, ⇐⇒ bn ∈
LM(TrBIN(P )N), as the rule an−1 ← bn is included in TrBIN(P )N , ⇐⇒
bn ∈ M by the definition of M ⇐⇒ an−1 ∈ IBA(r, M). Induction step
follows: 0 < i < n− 1. It follows that ai ∈ A ⇐⇒ ai ∈ N by the definition
of A ⇐⇒ ai ∈ LM(TrBIN(P )N), as N is stable, ⇐⇒ bi+1 and ai+1 belong
to N = LM(TrBIN(P )N), as TrBIN(P )N contains the rule ai ← bi+1, ai+1,
⇐⇒ bi+1 ∈ M and ai+1 ∈ A by the definitions of M and A ⇐⇒ bi+1 ∈M

and ai+1 ∈ IBA(r, M) by the inductive hypothesis ⇐⇒ ai ∈ IBA(r, M).
Thus we have established that N = M ∪ IBA(P, M). Then suppose that

M is not the least model of P M , i.e. there is M ′ ⊂M such that M ′ |= P M . It
follows by the first item in Lemma 4.13 that N ′ |= TrBIN(P )N holds for N ′ =
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M ′ ∪ IBA(P, M ′). Since M ′ ⊂ M , we obtain IBA(P, M ′) ⊆ IBA(P, M)
and N ′ ⊂ N , which contradicts the stability of N . Thus M = LM(P M) is
necessarily the case and M is a stable model of P . 2

Theorem 4.16 P ≤PFM B.

PROOF. Let us begin with the faithfulness of TrBIN. It is clear by Defi-
nition 4.12 that Hb(P ) ⊆ Hb(TrBIN(P )) and Hbv(TrBIN(P )) = Hbv(P ).
By Proposition 4.14 there is an extension function ExtBIN : SM(P ) →
SM(TrBIN(P )) that maps M ∈ SM(P ) into N = ExtBIN(M) = M ∪
IBA(P, M) included in SM(TrBIN(P )) such that M = N ∩ Hb(P ). In ad-
dition to this, we know by Proposition 4.15 that if N ∈ SM(TrBIN(P )), then
M = N ∩ Hb(P ) ∈ SM(P ) and N = ExtBIN(M). Thus TrBIN is faithful by
Theorem 3.19.

To establish modularity of TrBIN, let P and Q be two normal programs
such that the module conditions M1–M4 from Definition 3.15 are satisfied.
It is obvious by Definition 4.12 that TrBIN(P ∪Q) = TrBIN(P ) ∪ TrBIN(Q).
Let us then address the module conditions. (M1) Suppose that TrBIN(P )
and TrBIN(Q) share a rule r. Two cases arise.

1. Suppose that r ∈ P . Then |body+(r)| ≤ 2 holds by the definition
of TrBIN(P ). Moreover, it follows that r 6∈ Q, as P ∩ Q = ∅ by the
module conditions. It follows that r 6∈ TrBIN(Q), a contradiction.

2. Suppose that r ∈ TrBIN(r′) for some non-binary rule r′ ∈ P . It follows
by the module conditions that r′ 6∈ Q. This means that no rule from
TrBIN(r′) is included in TrBIN(Q), since these rules are uniquely deter-
mined by new atoms a1, . . . , an−1 which depend on r′, a contradiction.

It follows that TrBIN(P ) ∩ TrBIN(Q) = ∅. (M2) Because P and Q satisfy the
second module condition, we know that Hba(P ) ∩ Hba(Q) = ∅. By Defini-
tion 4.12, these sets are preserved by TrBIN, i.e. Hba(TrBIN(P )) = Hba(P )
and Hba(TrBIN(Q)) = Hba(Q). Thus Hba(TrBIN(P ))∩Hba(TrBIN(Q)) = ∅.
(M3) Let us then assume that Hbh(TrBIN(P )) and Hb(TrBIN(Q)) share some
atom a. Again, two cases arise.

1. Assume that a ∈ Hbh(P ). Since P and Q satisfy module conditions,
we know that a 6∈ Hb(Q). Since a ∈ Hb(TrBIN(Q)), the atom a must
be one of the new atoms a1, . . . , an−1 associated with a non-binary rule
r ∈ Q with |body+(r)| = n. A contradiction by Definition 4.12, as
a ∈ Hbh(P ) and P is also subject to translation as a module of P ∪Q.

2. Suppose that a ∈ Hbh(TrBIN(P )) − Hbh(P ). Then a must be one
of the new atoms a1, . . . , an−1 associated with a non-binary rule r ∈ P

with |body+(r)| = n. If a ∈ Hb(Q), then a is not new, a contradiction.
If a ∈ Hb(TrBIN(Q)) − Hb(Q), then a must be one of the new atoms
associated with a non-binary rule r′ ∈ Q with |body+(r′)| > 2. Such
atoms are different by Definition 4.12, a contradiction.

Thus Hbh(TrBIN(P ))∩Hb(TrBIN(Q)) = ∅. (M4) The last module condition
follows by symmetry with respect to the preceding one.
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By definition 4.12 and the modularity of TrBIN, the translation TrBIN(P )
of a normal program P ∈ P can be computed on a rule-by-rule basis. More-
over, the translation can be done in time linear to ||P ||, because (i) binary
rules can be passed on unmodified and (ii) any non-binary rule (2.1) con-
sisting of 2n + 3m + 2 symbols is replaced by n rules (4.4) consisting of
(6+3m)+(n−2)×6+4 = 6n+3m−2 symbols, (iii) the atoms in Hba(P )
remain intact. 2

Corollary 4.17 B =PFM P .

The main intranslatability result of this work follows: it is established that
binary rules are not expressible in terms of unary rules even if we allow arbi-
trary number of negative literals in the bodies of rules.

Theorem 4.18 B 6≤FM U .

PROOF. Let us assume that there is a faithful and modular translation func-
tion TrUN from binary normal logic programs to unary ones. This translation
function is to be applied to a strictly binary normal logic program

B = {a← b, c; b← c, a; c← a, b}

in conjunction with atomic programs A1 = {a←}, A2 = {b←}, and A3 =
{c←}. For these programs, Hbv(B) = Hb(B) = {a, b, c}, Hbv(A1) =
Hb(A1) = {a}, Hbv(A2) = Hb(A2) = {b}, and Hbv(A3) = Hb(A3) = {c}.
As there are no invisible atoms and the rules of the four programs are all
distinct, the module conditions from Definition 3.15 are trivially satisfied.

Note that the rules of B essentially express that if any two of the atoms a, b,
and c are inferable, the third one should be, too. Thus each of the programs
B ∪ A1 ∪ A2, B ∪ A2 ∪ A3, and B ∪ A3 ∪ A1 has a unique stable model
M = {a, b, c}. Since TrUN is faithful and modular, there are respective
unique stable models

(4.6)







N1 = LM(TrUN(B)N1 ∪ TrUN(A1)
N1 ∪ TrUN(A2)

N1)
N2 = LM(TrUN(B)N2 ∪ TrUN(A2)

N2 ∪ TrUN(A3)
N2)

N3 = LM(TrUN(B)N3 ∪ TrUN(A3)
N3 ∪ TrUN(A1)

N3)

of the translations TrUN(B ∪ A1 ∪ A2), TrUN(B ∪ A2 ∪ A3), and TrUN(B ∪
A3 ∪ A1). These three stable models have to be assumed different, as the
modules constituting the respective translations may involve invisible atoms
and each of them is based on a different combination of modules.

Let us then turn our attention to the first equation in (4.6) and the “miss-
ing module” TrUN(A3). Note that A3 has a unique stable model M3 = {c}.
Let N ′3 = LM(TrUN(A3)

N ′
3) be the corresponding unique stable model of

TrUN(A3), as implied by the faithfulness of TrUN. Note that TrUN(B ∪
A1 ∪ A2) and TrUN(A3) satisfy the module conditions, as B ∪ A1 ∪ A2

and A3 do and TrUN is modular. In addition, Hbv(TrUN(B ∪ A1 ∪ A2)) ∩
Hbv(TrUN(A3)) = {c} and both N1 and N ′3 contain c so that we may ap-
ply Lemma 4.3 to conclude that N1 ∪ N ′3 is a stable model of TrUN(B ∪
A1 ∪A2)∪TrUN(A3) which equals to TrUN(B ∪A1 ∪A2 ∪A3) by the mod-
ularity of TrUN. Moreover, the reduct of the translation w.r.t. N1 ∪ N ′3 is
TrUN(B ∪ A1 ∪ A2)

N1 ∪ TrUN(A3)
N ′

3 .
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We let N ′1 stand for the unique stable model of TrUN(A1) which is guar-
anteed to exist by symmetry and which corresponds to the unique stable
model M1 = {a} of A1. Similarly, let N ′2 be the unique stable model cor-
responding to M2 = {b}. Then we may conclude that also N2 ∪ N ′1 and
N3 ∪ N ′2 are stable models of TrUN(B ∪ A1 ∪ A2 ∪ A3) by using the last
two equations of 4.6 concerning N2 and N3 in a symmetric fashion. On
the other hand, M is the unique stable model of B ∪ A1 ∪ A2 ∪ A3, too.
But then TrUN(B ∪ A1 ∪ A2 ∪ A3) must have a unique stable model —
implying that N1 ∪ N ′3 = N2 ∪ N ′1 = N3 ∪ N ′2. Thus we may distinguish
N = N1 ∩ Hb(TrUN(B)) = N2 ∩ Hb(TrUN(B)) = N3 ∩ Hb(TrUN(B)), and
rewrite the preceding set of equalities as

(4.7)







N ∪N ′1 ∪N ′2 = LM(TrUN(B)N ∪ TrUN(A1)
N ′

1 ∪ TrUN(A2)
N ′

2)
N ∪N ′2 ∪N ′3 = LM(TrUN(B)N ∪ TrUN(A2)

N ′
2 ∪ TrUN(A3)

N ′
3)

N ∪N ′3 ∪N ′1 = LM(TrUN(B)N ∪ TrUN(A3)
N ′

3 ∪ TrUN(A1)
N ′

1)

which still correspond to the unique stable models of TrUN(B ∪ A1 ∪ A2),
TrUN(B ∪ A2 ∪ A3), and TrUN(B ∪ A3 ∪ A1), respectively.

We proceed by reducing the first equation in (4.6) using Lemma 4.2. Note
that TrUN(A1)∪TrUN(A2) = TrUN(A1 ∪A2) by the modularity of TrUN and
Hbv(TrUN(A1 ∪ A2)) = {a, b} ⊆ Hb(TrUN(B)). Thus we obtain N =
LM(TrUN(B)N ∪ {a←; b←}) by Lemma 4.2. Recall that N contains c in
addition to a and b. Let TrUN(B)N

0 and TrUN(B)N
1 denote the disjoint sets

of atomic and strictly unary rules of TrUN(B)N , respectively. It follows by
Lemma 4.6 that there is an atomic rule d ← in TrUN(B)N

0 ∪ {a←; b←}
such that c ∈ LM(TrUN(B)N

1 ∪ {d←}). As LM(·) is a monotonic operator,
we obtain two cases: c ∈ LM(TrUN(B)N ∪ {a←}) or c ∈ LM(TrUN(B)N ∪
{b←}).

In the first case, we obtain c ∈ LM(TrUN(B)N ∪ TrUN(A1)
N ′

1) by the
monotonicity of the operator LM(·) again. Recall that Hbv(TrUN(A3)) =
Hbv(A3) = {c} by the definition of TrUN. As a result of applying Lemma
4.2 to the third equation in (4.7), TrUN(A3)

N ′

3 is reduced to {c←}, so that
N ∪ N ′1 = LM(TrUN(B)N ∪ TrUN(A1)

N ′
1 ∪ {c←}). Since c belongs to

LM(TrUN(B)N ∪TrUN(A1)
N ′

1) this simplifies to N ∪N ′1 = LM(TrUN(B)N ∪
TrUN(A1)

N ′
1). Because N ⊆ Hb(TrUN(B)), N ′1 ⊆ Hb(TrUN(A1)), and N

and N ′1 coincide on the atoms in Hbv(TrUN(B))∩Hbv(TrUN(A1)) = {a}, we
get TrUN(B)N = TrUN(B)N∪N ′

1 and TrUN(A1)
N ′

1 = TrUN(A1)
N∪N ′

1 . Then
the modularity of TrUN implies N ∪ N ′1 = LM(TrUN(B ∪ A1)

N∪N ′
1). Thus

TrUN(B ∪ A1) possesses a stable model N ∪N ′1 containing {a, b, c}. A con-
tradiction, since B ∪ A1 has a unique stable model {a}.

In the second case, we can analogously construct a stable model N ∪
N ′2 for TrUN(B ∪ A2) using the second equation in (4.7). Again, this is a
contradiction, as {a, b, c} ⊆ N ∪ N ′2 and {b} is the unique stable model of
B ∪ A2. 2

Corollary 4.19 B 6≤PFM U , U <PFM B, and U <PFM P .

It remains to explore the strictness of the relationship A ≤PFM U . At this
point, it is worth demonstrating a particular translation technique [40, Proof
of Theorem 3.10], which suitably exploits new atoms and negative literals
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and thus serves as a potential candidate for a faithful and modular translation
function from U toA.

Example 4.20 Consider normal logic programs P1 = {a← b} and P2 =
{b← c} and a translation of P1 ∪ P2 into an atomic normal logic program

TrAT(P1 ∪ P2) = TrAT(P1) ∪ TrAT(P2)

= {a← ∼b; b← ∼b} ∪ {b← ∼c; c← ∼c}

where the intuitive reading of the new atoms b and c is that b and c are
false, respectively. The translation tries to capture the rules of P using a kind
of double negation. In particular, the rules b ← ∼b and c ← ∼c can be
understood to encode the standard closed world assumption [38]: b and c

are false by default. The programs P1 ∪ P2 and TrAT(P1 ∪ P2) behave as
follows.

Stable models Stable models

A of P1 ∪ P2 ∪ A of TrAT(P1 ∪ P2 ∪ A)

∅ ∅ {b, c}

{a←} {a} {a, b, c}

{b←} {a, b} {a, b, c}

{c←} {a, b, c} {a, b, c}

By the preceding analysis, the translation TrAT(P1 ∪ P2) seems to capture
the essentials of P1 ∪ P2 in a modular and faithful manner. However, severe
problems arise with programs containing an inferential loop that lets one to
infer a from a, for instance. The simplest possible example of this kind is
P = {a← a} having a minimal model LM(P ) = ∅. Unfortunately, the
translation TrAT(P ) = {a← ∼a; a← ∼a} has two stable models {a} and
{a}. The former model is what we would expect on the basis of our example,
but the latter is a spurious stable model — dashing our hopes for TrAT being
faithful and modular in general. It is proved in the following theorem that
the problems with TrAT cannot be settled.

Theorem 4.21 U 6≤FM A.

PROOF. Suppose there is a faithful and modular translation function TrAT

from U to A. In the sequel, we analyze two unary normal programs U1 =
{a← b} and U2 = {b← a}, their combinations with atomic normal pro-
grams A1 = {b←} and A2 = {a←}, and their translations under TrAT. To
check the module conditions, we note that Hbv(U1) = Hb(U1) = {a, b} =
Hb(U2) = Hbv(U1), Hbv(A1) = Hb(A1) = {b}, and Hbv(A2) = Hb(A2) =
{a}. Because there are no hidden atoms and the rules of the four programs
are distinct, the module conditions are trivially satisfied by U1 and A1, by U2

and A2, by U1 ∪ A1 and U2 ∪ A2, and by U1 ∪ U2 and A1 ∪ A2.
The program U1 ∪ A1 has a unique stable model M1 = LM(U1 ∪ A1) =

{a, b}. The translation TrAT(U1 ∪ A1) = TrAT(U1) ∪ TrAT(A1) and the
modularity of TrAT implies Hbv(TrAT(U1 ∪ A1)) = Hbv(U1 ∪ A1) = {a, b}.
Since TrAT is also faithful, the translation TrAT(U1 ∪A1) has a unique stable
model N1 = LM(TrAT(U1∪A1)

N1) = LM(TrAT(U1)
N1 ∪TrAT(A1)

N1) such
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that {a, b} ⊆ N1. Then it holds by symmetry that M2 = LM(U2 ∪ A2) =
{a, b} is the unique stable model of U2∪A2 and N2 = LM(TrAT(U2∪A2)

N2)
is the unique stable model of the translation TrAT(U2 ∪ A2) = TrAT(U2) ∪
TrAT(A2), for which Hbv(TrAT(U2 ∪ A2)) = Hbv(U2 ∪ A2) = {a, b} holds,
so that {a, b} ⊆ N2.

Recall that TrAT(U1 ∪ A1) = TrAT(U1) ∪ TrAT(A1) is an atomic pro-
gram and a ∈ LM(TrAT(U1)

N1 ∪ TrAT(A1)
N1). It follows by Lemma 4.9

that a ← must belong to the reduct. Since a 6∈ Hbv(TrAT(A1)) and a ∈
Hbv(TrAT(U1)) by the faithfulness of TrAT, and the translations TrAT(U1)
and TrAT(A1) satisfy module conditions by the modularity of TrAT, we have
a 6∈ Hb(TrAT(A1)). Thus a← cannot belong to TrAT(A1)

N1 . So it must be-
long to TrAT(U1)

N1 . It follows by symmetry that b← belongs to TrAT(U2)
N2 .

Because U1 ∪ A1 and U2 ∪ A2 satisfy the module conditions, and N1 and
N2 coincide up to the atoms in Hbv(TrAT(U1∪A2))∩Hbv(TrAT(U2∪A2)) =
{a, b}, we know by Lemma 4.3 that N1 ∪N2 is a stable model of TrAT(U1 ∪
A1) ∪ TrAT(U2 ∪ A2) which equals to TrAT(U1) ∪ TrAT(A1) ∪ TrAT(U2) ∪
TrAT(A2) = TrAT(U1 ∪ U2) ∪ TrAT(A1 ∪ A2) by the modularity of TrAT.
Moreover, the reduct (TrAT(U1 ∪ A1) ∪ TrAT(U2 ∪ A2))

N1∪N2 is the union
of TrAT(U1 ∪ A1)

N1 and TrAT(U2 ∪ A2)
N2 , i.e. TrAT(U1)

N1 ∪ TrAT(U2)
N2 ∪

TrAT(A1)
N1 ∪ TrAT(A2)

N2 .
Since Hbv(TrAT(A1)) = {b} and Hbv(TrAT(A2)) = {a} are contained in

Hb(TrAT(U1∪U2)), Lemma 4.2 implies that N = (N1∪N2)∩Hb(TrAT(U1∪
U2)) equals to LM(TrAT(U1)

N1∪TrAT(U2)
N2∪{a←; b←}). Since a← be-

longs to TrAT(U1)
N1 and b← to TrAT(U2)

N2 , we can establish that N equals
to LM(TrAT(U1)

N1 ∪ TrAT(U2)
N2). Moreover, the equality TrAT(U1)

N1 ∪
TrAT(U2)

N2 = TrAT(U1∪U2)
N follows by the definition of N and the fact that

N1 and N2 coincide on the atoms in Hbv(TrAT(U1)) = Hbv(TrAT(U2)) =
{a, b}. Thus N = LM(TrAT(U1 ∪U2)

N) is a stable model of TrAT(U1 ∪U2).
Since Hbv(U1∪U2) = Hb(U1∪U2) = {a, b} and Hbv(TrAT(U1∪U2)) =

Hbv(U1 ∪ U2) by the faithfulness of TrAT, and N ∩ Hbv(TrAT(U1 ∪ U2)) =
{a, b}, the faithfulness of TrAT implies that U1 ∪ U2 has a stable model M =
{a, b}. A contradiction, as ∅ is the unique stable model of U1 ∪ U2. 2

Corollary 4.22 U 6≤PFM A, A <PFM U , A <PFM B, and A <PFM P .

In order to make our view complete, let us yet address the relationship
between positive programs and normal programs. Recall that by Proposition
3.18, C+ ≤PFM C holds for any of the classes C under consideration.

Theorem 4.23 For any C ∈ {A,U ,B,P}, C 6≤F C
+.

PROOF. Let us assume that there is a faithful translation function Tr from
C to C+. Consider a logic program P = {a← ∼a} which serves as a repre-
sentative of the class C. Let Q be the translation Tr(P ) in C+. Now P has
no stable models, but the translation Q has a unique stable model LM(Q),
which contradicts the faithfulness of Tr. 2

Corollary 4.24 For any C ∈ {A,U ,B,P}, C 6≤PFM C
+ and C+ <PFM C.

The resulting hierarchy of classes of logic programs is illustrated in Figure
1.
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A <PFM U <PFM B =PFM P
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M
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P

F
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<
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A+ <PFM U+ <PFM B+ =PFM P+

Figure 1: Expressive Power Hierarchy based on polynomial, faithful and
modular (PFM) translation functions

4.4 Comparison with Propositional Logic

It is worthwhile to relate our framework with propositional logic. It is as-
sumed that a propositional theory S is given as a set of clauses of the form
(2.3).5 The fundamental satisfiability problem (SAT) is about checking if a
given set of clauses S has a model in the sense of Definition 2.6. However,
in this report, we are interested in all models of S rather than checking the
existence of a model. This is because it is assumed that the models corre-
spond to the solutions of the problem formalized as a set of clauses S. It is
possible to capture the models of a set of clauses S with the stable models of
a translation of S into a normal program. In fact, we can do this using only
atomic rules. The basic idea is as follows. The rules a← ∼a and a← ∼a are
needed to select the truth value of each atom a ∈ Hb(S). Here a 6∈ Hb(S)
is a new atom meaning that a is false (c.f. Example 4.20). Given these rules,
we obtain all model candidates for S as the stable models of the rules. Yet
we have to ensure that all clauses of the form (2.3) are satisfied — this is
accomplished by introducing a new atom f 6∈ Hb(S) and an atomic rule

(4.8) f ← ∼f,∼a1, . . . ,∼an,∼b1, . . . ,∼bm

for each clause (2.3) in S. These kinds of rules exclude model candidates
in which some of the clauses is false. If the full syntax of normal programs
is assumed, then it would be more intuitive to use a rule of the form f ←
b1, . . . , bm,∼f,∼a1, . . . ,∼an which is not atomic, but “double negation” is
needed in order to make the rule atomic. Yet another technique is given in
[36]: a new atom c is introduced for each clause (2.3) which is translated into

c← a1; . . . ; c← an; c← b1; . . . ; c← bm.

Then (4.8) can be replaced by f ← ∼f,∼c. However, to meet the module
conditions from Definition 3.15, we have to localize the choice of truth val-
ues. For this reason we translate a clause c of the form (2.3) into a set of

5Any propositional theory can be transformed into clausal form and the transformation
is polynomial if new atoms can be introduced. Without new atoms it is difficult to transform
formulas such as (a1 ∧ ¬a1) ∨ · · · ∨ (an ∧ ¬an) into clausal form.
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rules

(4.9)
TrLP(c) = {fc ← ∼fc,∼a1, . . . ,∼an,∼bc

1, . . . ,∼bc
m} ∪

{ai ← ∼ac
i ; ac

i ← ∼ai | 0 < i ≤ n} ∪
{bi ← ∼bc

i ; bc
i ← ∼bi | 0 < i ≤ n}

where fc, ac
1, . . . , a

c
n, and bc

1, . . . , b
c
m are new atoms that are unique to c. This

implies that the choice of the truth value of an atom a is shared by the rules
in which the atom appears. However, these choices are synchronized, as a is
shared among the rules, and this is how a is assigned a unique truth value.

Definition 4.25 A set of clauses S is translated into

TrLP(S) =
⋃

{TrLP(c) | c ∈ S} ∪ {a← ∼a; a← ∼a | a ∈ Hba(S)}

with Hba(TrLP(S)) = ∅ and Hb(TrLP(S)) =

Hb(S) ∪ {fc | c ∈ S} ∪ {ac | c ∈ S and a appears in c} ∪ {a | a ∈ Hba(S)}.

The visible part Hbv(TrLP(S)) = Hbv(S).

A particular feature of the translation TrLP(S) is that all atoms of Hb(S)
actually appear in the rules of TrLP(S) and thus Hba(TrLP(S)) can be left
empty. The rules associated with the atoms in Hba(S) are necessary in or-
der to capture the classical models of S properly, since Hb(S) may contain
atoms that do not appear in the clauses of S; and according to Definition
2.6 classical models of S are subsets of Hb(S). Given a set of clauses S, an
interpretation I ⊆ Hb(S), and a clause c ∈ S, we define the set of comple-
mentary atoms CA(c, M) which is to contain ac whenever a appears in c and
a 6∈ M . For the set S as whole, we let

(4.10) CA(S, M) =
⋃

{CA(c, M) | c ∈ S} ∪ {a | a ∈ Hba(S)−M}

which takes also the additional atoms from Hba(S) properly into account.
We are now ready to address the correctness of the translation function TrLP.

Proposition 4.26 Let S be a set of clauses. If M ⊆ Hb(S) is a classical
model of S, then N = M ∪ CA(S, M) is a stable model of TrLP(S) such
that N ∩ Hb(S) = M .

PROOF. Let M be a (classical) model of S and define N as above. The
reduct TrLP(S)N contains (i) a← for each a ∈ M , (ii) ac ← for each occur-
rence of an atom a ∈ Hb(S) −M in a clause c ∈ S, and (iii) a ← for each
a ∈ Hba(S)−M . In particular, the rule fc ← is not included for any clause
c ∈ S, because N ∩ {fc, a1, . . . , an, bc

1, . . . , b
c
m} = ∅ would imply that (2.3)

is not satisfied in M . Thus N = LM(TrLP(S)N) by Lemma 4.9 and N is a
stable model of TrLP(S). Since CA(S, M) contains only atoms that are new
relative to Hb(S), we have M = N ∩ Hb(S) by the definition of N . 2

Proposition 4.27 Let S be a set of clauses. If N ⊆ Hb(TrLP(S)) is a stable
model of TrLP(S), then M = N ∩ Hb(S) |= S and N = M ∪ CA(S, M).
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PROOF. Let N ⊆ Hb(TrLP(S)) be a stable model of TrLP(S) and define
M as above. Let us first assume that fc ∈ N for some c ∈ S. It follows by
Lemma 4.9 that fc ← must belong to TrLP(S)N . By the first rule in (4.9)
this means that fc 6∈ N , a contradiction. Then consider any ac such that
a ∈ Hb(S) appears in c ∈ S. Now ac ∈ N ⇐⇒ ac ← belongs to TrLP(S)N

by Lemma 4.9 ⇐⇒ a 6∈ N by (4.9) ⇐⇒ a 6∈ M ⇐⇒ ac ∈ CA(S, M).
Finally, let a be any atom from Hba(S). Now a ∈ N ⇐⇒ a ← belongs
to TrLP(S)N by Lemma 4.9 ⇐⇒ a 6∈ N by the rule a ← ∼a included in
TrLP(S) ⇐⇒ a 6∈ M ⇐⇒ a ∈ CA(S, M). Recalling Hb(TrLP(S)) from
Definition 4.25, we conclude that N = M ∪ CA(S, M) holds.

Suppose that M 6|= S, i.e. there is a clause c ∈ S of the form (2.3) not
satisfied in M . It follows that M ∩ {a1, . . . , an} = ∅ and {b1, . . . , bm} ⊆
M . The same relations hold w.r.t. N by the definition of M . Thus the
rules bc

1 ←, . . . , bc
m ← are not included in the reduct TrLP(S)N so that

N ∩ {a1, . . . , an, b
c
1, . . . , b

c
m} = ∅ by Lemma 4.9. As shown above, we know

that fc 6∈ N . Then the rule fc ← belongs to TrLP(S)N so that fc ∈ N ,
contradiction. Hence M is a model of S. 2

Theorem 4.28 SC ≤PFM A.

PROOF. The translation function TrLP transforms a clause (2.3) consisting
of 2n + 3m + 2 symbols into a set of rules (4.9) with at most 3n + 3m + 5 +
n× (5+5)+m× (5+5) = 13n+13m+5 symbols. The translation of each
atom a ∈ Hba(S) consists of 10 symbols. Moreover, definition 4.25 suggests
that TrLP(S) can be produced on a clause-by-clause basis in a linear number
of steps. Thus we conclude that TrLP is linear as well as polynomial.

To establish modularity, let S and T be two sets of clauses such that
the module conditions M1–M4 from Definition 3.15 are satisfied. Defi-
nition 4.25 implies that TrLP(S ∪ T ) equals to the union of TrLP(S) and
TrLP(T ). The module condition M1 is satisfied by the translations TrLP(S)
and TrLP(T ), as S ∩ T = ∅ by M1, Hba(S) ∩ Hba(T ) = ∅ by M2, and
the introduction of new atoms guarantee that the sets of rules (4.9) and
{a← ∼a; a← ∼a | a ∈ Hba(S)} that constitute TrLP(S) remain distinct
from those of TrLP(T ). The module condition M2 is trivially satisfied, since
Hba(TrLP(S)) = Hba(TrLP(T )) = ∅ by definition. In addition, M3 and M4
remain valid, as TrLP adds new atoms that remain local to the translations of
S and T .

It remains to show TrLP faithful. First, Definition 4.25 implies for any
set of clauses that Hb(S) ⊆ Hb(TrLP(S)) and Hbv(TrLP(S)) = Hbv(S).
In Proposition 4.26, we show that ExtLP : CM(S) → SM(TrLP(S)) is an
extension function which maps M ∈ CM(S) to N = ExtLP(M) = M ∪
CA(S, M) included in SM(TrLP(S)) such that M = N ∩Hb(S). Moreover,
we know by Proposition 4.27 that if N ∈ SM(TrLP(S)), then M = N ∩
Hb(P ) ∈ CM(S) and N = ExtLP(M). The rest follows by Theorem 3.19.

2

On the other hand, it is impossible to translate an atomic normal pro-
gram P into a set of clauses in a faithful and modular way. This result has
been established by Niemelä [36, Proposition 4.3] for normal programs in
general, but different notions of faithfulness and modularity are employed in
Niemelä’s proof.
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Theorem 4.29 A 6≤FM SC .

PROOF. Let us assume that there exists a faithful and modular translation
function Tr : A → SC. Then consider atomic normal logic programs
P1 = {a← ∼a} and P2 = {a←} with Hbv(P1) = Hb(P1) = Hbv(P2) =
Hb(P2) = {a}. It is clear that P1 and P2 satisfy the module conditions
from Definition 3.15. The program P1 has no stable models while P2 has
a unique stable model M = {a}. Since Tr is faithful, the translation Tr(P1)
must be propositionally inconsistent. By the modularity of Tr, the translation
Tr(P1 ∪ P2) = Tr(P1) ∪ Tr(P2) which is also propositionally inconsistent,
i.e. has no models. But this contradicts the faithfulness of Tr, since M is also
the unique stable model of P1 ∪ P2. Hence there is no such Tr. 2

Corollary 4.30 A 6≤PFM SC, SC <PFM A, SC <PFM U , SC <PFM B, and
SC <PFM P .

Theorem 4.31 SC 6≤F C
+ holds for any C ∈ {A,U ,B,P}.

PROOF. The set of clauses S = {{a,¬a}} has two classical models M1 = ∅
and M2 = {a} which cannot be faithfully captured by a positive program
P = Tr(S) possessing a unique stable model LM(P ). 2

Theorem 4.32 C+ 6≤FM SC holds for all classes C ∈ {A,U ,B,P}.

PROOF. We begin with the class U by assuming the existence of a faith-
ful and modular translation function TrCL from U+ to SC. To establish a
counter-example, we use positive unary programs P1 = {a←} and P2 =
{a← a} which satisfy the module conditions, as Hbv(Pi) = Hb(Pi) = {a}
for i ∈ {1, 2}. Now P1 and P2 have unique stable models LM(P1) = {a}
and LM(P2) = ∅, respectively. It follows by the faithfulness of TrCL that the
unique classical models of TrCL(P1) and TrCL(P2) are N1 and N2 such that
M1 = N1 ∩ {a} and M2 = N2 ∩ {a}. It follows that TrCL(P1) |= a and
TrCL(P2) |= ¬a. On the other hand, we know by the modularity of TrCL that
TrCL(P1∪P2) = TrCL(P1)∪TrCL(P2). It follows that TrCL(P1∪P2) |= a∧¬a,
i.e. TrCL(P1∪P2) has no models. However, the program P1∪P2 has a unique
stable model LM(P1 ∪ P2) = {a} which contradicts the faithfulness of TrCL.

The programs P1 and P2 above are also representatives of the classes B+

and P+. In this way, the proof above covers classes C ∈ {B,P}, too. The fate
of A needs reconsideration as P2 6∈ A

+. In fact, we may substitute P2 = ∅
with Hba(P2) = {a} for P2 above to obtain a proof of A+ 6≤FM SC. 2

By the preceding results, we may make precise the position of SC in the
expressive power hierarchy illustrated in Figure 1. That is, SC is strictly less
expressive than any of the classesA, U , B, and P , but incomparable with the
respective classes of positive programs.

Corollary 4.33 C+ 6=PFM SC holds for all classes C ∈ {A,U ,B,P}.
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5 YET ANOTHER CHARACTERIZATION OF STABILITY

In Section 6, we will study non-modular alternatives to translation functions
that were shown not to exist in Section 4. As a preparation for one particu-
lar translation function, we will address an alternative semantics for normal
programs, namely the one based on supported models [2]. It turns out in the
sequel that we are able to characterize stable models as supported models
possessing a level numbering # which extends the notion of level numbers,
first introduced for positive programs in Section 2.2, to the case of normal
programs.

Definition 5.1 A classical model M of a normal program P is a supported
model of P if and only if for every atom a ∈ M there is a rule r ∈ P such
that head(r) = a and M |= body(r).

Inspired by this notion, we define the set of supporting rules SR(P, I) =
{r ∈ P | I |= body(r)} ⊆ P for any normal program P and an interpre-
tation I ⊆ Hb(P ). Thus the intuition behind this set is that each rule
r ∈ SR(P, I) provides a support for head(r).

Definition 5.2 Let M be a supported model of a normal program P . A
function # from M ∪ SR(P, M) to N is a level numbering w.r.t. M iff

(5.1) ∀a ∈M : #a = min{#r | r ∈ SR(P, M) and a = head(r)}

and

(5.2) ∀r ∈ SR(P, M) :

#r =

{

max{#b | b ∈ body+(r)}+ 1, if body+(r) 6= ∅.
1, otherwise.

It is important to realize that a level numbering need not exist for every
supported model. This is demonstrated by the following example.

Example 5.3 Consider a logic program P consisting of two rules r1 = a← b

and r2 = b ← a. There are two supported models of P : M1 = ∅ and
M2 = {a, b}. The first model has a trivial level numbering with an empty
domain, since M1 ∪ SR(P, M1) = ∅. For the second, the domain M2 ∪
SR(P, M2) = M2 ∪ P . The requirements in Definition 5.2 lead to four
equations: #a = #r1, #r1 = #b + 1, #b = #r2, and #r2 = #a + 1. From
these, we obtain #a = #a+2. Hence there is no level numbering w.r.t. M2.

Proposition 5.4 Let M be a supported model of P . If there is a level num-
bering w.r.t. M , then the level numbering is unique.

PROOF. Suppose that #1 and #2 are two level numberings w.r.t. M . It is
proved by induction on #1(x) > 0 for x ∈ M ∪ SR(P, M) that #1(x) =
#2(x).

Base case: #1(x) = 1. If x = a for an atom a ∈ M , then #1(a) = 1
⇐⇒ there is a rule r ∈ SR(P, M) such that head(r) = a and body+(r) = ∅
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⇐⇒ #2(a) = 1. Similarly, if x = r for for a rule r ∈ SR(P, M), then
#1(r) = 1 ⇐⇒ body+(r) = ∅ ⇐⇒ #2(r) = 1.

Induction step: #1(x) = n > 1. If x = r for a rule r ∈ SR(P, M),
then #1(r) = max{#1(b) | b ∈ body+(r)} + 1. Note that body+(r) 6= ∅,
as #1(r) > 1. Then consider any b ∈ body+(r). Since #1(b) < n we
obtain #2(b) = #1(b) by the inductive hypothesis. Thus #2(r) = #1(r)
holds, too. If x = a for an atom a ∈ M , then #1(a) = #1(r) for some rule
r ∈ SR(P, M) such that head(r) = a yielding the minimum value for #1(r).
By the preceding analysis, we know that #2(r) = #1(r) for this particular
rule so that #2(a) ≤ #1(a). Then suppose that #2(a) < #1(a), i.e. there is
a rule r′ ∈ SR(P, M) such that head(r′) = a and #2(r

′) < #2(r). By the
inductive hypothesis, #1(r

′) = #2(r
′) which implies that #1(r

′) < #1(a), a
contradiction. Hence #2(a) = #1(a) is necessarily the case. 2

The question is how one can determine level numberings in practice. In
fact, the scheme introduced in Section 2.2 can be extended to cover rules as
well.

Definition 5.5 Let P be a positive program and M = LM(P ). Let us define
level numbers lev(a) for atoms a ∈ M as in Section 2.2. Given any rule
r ∈ P such that body+(r) = body(r) ⊆M , define the level number

(5.3) lev(r) =

{

max{lev(b) | b ∈ body+(r)}+ 1, if body+(r) 6= ∅.
1, otherwise.

Assigning level numbers in this way is compatible with Definition 5.2.

Lemma 5.6 Let P be a positive program, M = LM(P ), and a ∈M .

1. For every r ∈ SR(P, M) such that head(r) = a, lev(r) ≥ lev(a).

2. There is r ∈ SR(P, M) such that head(r) = a and lev(r) = lev(a).

PROOF. Recall that lev(a) is the least number n > 0 such that a ∈ TP ↑ n

but a 6∈ TP ↑ n− 1. Since a ∈ TP ↑ n, there is a rule r ∈ P such that
head(r) = a and body+(r) ⊆ TP ↑ n− 1 which is contained in M =
lfp(TP ). It follows that r ∈ SR(P, M) and lev(b) < n for any b ∈ body+(r).
Thus lev(r) ≤ n holds by the definition of lev(r) in (5.3). To conclude,
there is a rule r ∈ SR(P, M) such that head(r) = a and lev(r) ≤ lev(a).

1. Let r′ ∈ SR(P, M) be any rule such that head(r′) = a. Then suppose
that 0 < lev(r′) < n. Two cases arise on the basis of (5.3). (i) If
body+(r′) = body(r′) = ∅, then lev(r′) = 1 and a ∈ TP ↑ 1. On
the other hand lev(r′) < n implies a 6∈ TP ↑ 1, a contradiction.
(ii) If body+(r′) = body(r′) 6= ∅, we have body+(r′) ⊆ M , as r′ ∈
SR(P, M), and lev(b) < lev(r′) for each b ∈ body+(r′). It follows that
body+(r′) ⊆ TP ↑ m where m is the maximum value among {lev(b) |
b ∈ body+(r′)}. Thus a ∈ TP ↑ lev(r′). But this is a contradiction, as
lev(r′) ≤ n− 1 and a 6∈ TP ↑ n− 1. To conclude, lev(r′) ≥ lev(a).

2. By the first item, we have lev(r) = lev(a) for the rule r above. 2

The characterization of stable models is then established as follows.
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Proposition 5.7 [33, Corollary 1] Any stable model M ⊆ Hb(P ) of a nor-
mal logic program P is also a supported model of P .

Theorem 5.8 Let P be a normal program.

1. If M is a stable model of P , then M is a supported model of P and
there exists a unique level numbering # : M ∪ SR(P, M) → N w.r.t.
M defined as follows. (i) For a ∈ M , let #a = lev(a). (ii) For r ∈
SR(P, M), let #r = lev(r+).

2. If M is a supported model of P and there is a level numbering # w.r.t.
M , then # is unique and M is a stable model of P .

PROOF. (Item 1). Let M be a stable model of P . Then M is also a supported
model of P by Proposition 5.7. Recall that each r ∈ SR(P, M) satisfies M |=
body(r) which implies that r+ ∈ P M , body+(r) ⊆ M , and head(r) ∈ M ,
as M is also a classical model of P . Let us now prove that the level numbers
meet the requirements of Definition 5.2.

Consider any a ∈ M . It should be established that #a is the mini-
mum among {#r | r ∈ SR(P, M) and head(r) = a}. It is clear that this
set is non-empty, as M is a supported model of P . Then consider any
r ∈ SR(P, M) such that head(r) = a. Now #r is defined as lev(r+)
given in (5.3). Since r ∈ SR(P, M), we obtain r+ ∈ SR(P M , M). Thus
#r = lev(r+) ≥ lev(a) by the first claim of Lemma 5.6. By the sec-
ond claim, there is a rule r′ ∈ SR(P M , M) such that head(r′) = a and
lev(r′) = lev(a). Then there is a rule r′′ ∈ SR(P, M) such that r′ =
(r′′)+, head(r′′) = a and #r′′ = lev(r′′) = lev(a). Thus #a = lev(a)
is the minimum in question. Then consider any r ∈ SR(P, M). There
are two possibilities. If body+(r) = ∅, we obtain body+(r+) = ∅ so that
#r = lev(r+) = 1 by (5.3). This is in perfect harmony with Definition
5.2. On the other hand, if body+(r) 6= ∅, #r = lev(r+) is defined as
max{lev(b) | b ∈ body+(r+)} + 1. Since body+(r+) = body+(r) and
#b = lev(b) for each b ∈ body+(r) by definition, #r = lev(r+) coincides
with max{#b | b ∈ body+(r)}+ 1 as insisted by Definition 5.2.

We may conclude that # is a level numbering w.r.t. M . Since M is a
supported model of P , the uniqueness of # follows by Proposition 5.4.

(Item 2). Let M be a supported model of P and # a level numbering w.r.t.
M . The uniqueness of # follows by Proposition 5.4. It follows that M |= P

and M |= P M . Thus it is immediately clear that LM(P M) is contained in
M . It remains to prove that M ⊆ LM(P M). We use complete induction on
#a > 1 to show that a ∈M implies a ∈ LM(P M).

Base case: #a = 1. Suppose that a ∈ M . Since #a = 1, the only
possibility is that there is a rule r ∈ SR(P, M) such that head(r) = a and
body+(r) = ∅. It follows that a← belongs to P M so that a ∈ LM(P M).

Induction step: #a = n > 1. Suppose that a ∈ M . Since #a > 1,
there is a rule r ∈ SR(P, M) such that head(r) = a, body+(r) 6= ∅, and
#a = #r. Then consider any b ∈ body+(r). Since #r = max{#b′ |
b′ ∈ body+(r)} + 1, we obtain #b < n. Moreover r ∈ SR(P, M) implies
that b ∈ M . Thus b ∈ LM(P M) by the inductive hypothesis and we have
established that body+(r) ⊆ LM(P M). On the other hand, r ∈ SR(P, M)
implies that r+ = a← body+(r) ∈ P M . It follows that a ∈ LM(P M). 2
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6 NON-MODULAR TRANSLATION FUNCTIONS

In Section 4, we showed that faithful and modular translations cannot be es-
tablished between certain classes of logic programs. However, this does not
exclude the possibility that a polynomial and faithful, but non-modular trans-
lation function could be devised for the classes involved. Such alternatives
are taken into consideration in this section. We proceed as follows. Section
6.1 covers the case of positive programs in which non-modular alternatives
are very easy to obtain. A non-modular and faithful translation function from
normal programs to atomic normal programs is developed in Section 6.2.
This is a far more complicated objective, as normal programs may possess
multiple stable models. Finally, in analogy to Section 4, we end this section
by comparing logic programs with sets of clauses in Section 6.3.

6.1 Positive Programs Revisited

Theorems 4.7 and 4.10, which were established in Section 4.2, state that
B+ 6≤FM U

+ and U+ 6≤FM A
+, respectively. Despite these relationships,

it is straightforward to obtain a non-modular translation in case of positive
programs. Basically, this boils down to the fact that the least model LM(P )
can be be computed in polynomial time for any P ∈ P+. Then it is possible
to reduce any P ∈ P+ to an atomic program in the following way.

Definition 6.1 For any positive program P ∈ P+, define

TrLM(P ) = {a← | a ∈ LM(P )}.

Moreover, let Hba(TrLM(P )) = Hb(P ) − LM(P ) so that Hb(TrLM(P )) =
Hb(P ). The visible part Hbv(TrLM(P )) = Hbv(P ).

Theorem 6.2 P+ ≤PF A
+.

PROOF. It is clear that TrLM is faithful, since Hbv(TrLM(P )) = Hbv(P ) by
definition and both P and TrLM(P ) have the unique stable model LM(P ) =
LM(TrAT(P )) by Lemma 4.9. The translation function TrLM is polynomial,
as LM(P ) can be computed in polynomial time. If the iterative construction
from Section 2.2 is used as a basis, a quadratic algorithm is obtained, but
there is also a linear time algorithm available [9]. 2

As a consequence, the relations ≤PFM and ≤FM give rise to diverse clas-
sifications for the classes of positive logic programs. In fact, the hierarchy
obtained with ≤PFM is more refined than the one obtained with ≤FM. Thus
≤PFM seems to provide a more accurate measure of expressiveness.

Corollary 6.3 A+ =PF U
+ =PF B

+ =PF P
+.

Example 6.4 The translation function TrLM introduced in Definition 6.1 is
indeed non-modular. For instance, the programs U = {a← b} and A =
{b←} from the proof of Theorem 4.10 are translated as follows: TrLM(U ∪
A) = {a←; b←}, but TrLM(U) = ∅ with Hba(TrLM(U)) = {a, b} and
TrLM(A) = {b←}. Thus TrLM(U ∪ A) 6= TrLM(U) ∪ TrLM(A). 2
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Generally speaking, the translation TrNM(P ) obtained by a non-modular
translation function TrNM is often heavily dependent on particular instances
of P so that already slight changes to P may alter TrNM(P ) completely. Con-
sequently, a shortcoming of non-modular translations is that they do not nec-
essarily support updates. This is also clear on the basis of the translation
function TrLM introduced in Theorem 6.2. E.g., in Example 6.4, the effect of
removing A from TrLM(U∪A) = {a←; b←} is thorough, as TrLM(U) = ∅.

6.2 Translating Normal Programs into Atomic Ones

As shown in Section 6.1, it is easy to obtain a non-modular and faithful trans-
lation function for removing positive body literals in the case of positive
programs. The setting becomes far more complicated when normal logic
programs are taken into consideration, since a normal program may possess
several stable models and it is not clear how to apply TrLM from Definition
6.1. Nevertheless, we intend to develop a polynomial and faithful translation
function TrAT so that an arbitrary normal program P gets translated into an
atomic program TrAT(P ). It is clear by the results presented in Section 4.3
that TrAT must be non-modular if faithfulness is to be expected. Our idea
is to apply the characterization of stable models developed in Section 5 so
that each stable model M of a normal program P is eventually captured as
a supported model M of P possessing a level numbering w.r.t. M . To recall
the basic concepts from Section 5 we give an example of a level numbering.

Example 6.5 Let P = {r1, r2, r3} be a (positive) normal program consisting
of the rules r1 = a ←; r2 = a ← b; and r3 = b ← a so that Hbv(P ) =
Hb(P ) = {a, b}. The unique stable model M = LM(P ) = {a, b} is sup-
ported by SR(P, M) = P . The unique level numbering # w.r.t. M is deter-
mined by #r1 = 1, #a = 1, #r3 = 2, #b = 2, and #r2 = 3. 2

However, there is no explicit way of representing a level numbering within
a normal program and we have to encode such a numbering using proposi-
tional atoms. Then a natural solution is to use a binary representation for
the individual numbers determined by a level numbering #. Unfortunately,
every atom in Hb(P ) may be assigned a different level number in the worst
case. This setting is actually demonstrated in Example 6.5. Thus the level
numbers of atoms may vary from 1 to |Hb(P )|. Hence the highest possible
level number of a rule r ∈ P is |Hb(P )| + 1, as for r2 in our example. Al-
though level numbers are positive numbers by definition, we leave room for
0 which is to act as the least binary value. Thus, given a normal program P ,
we have to be prepared for binary numbers consisting of at most

(6.1) ∇P = dlog2(|Hb(P )|+ 2)e

bits. In case of Example 6.5, we have ∇P = 2 which is enough to represent
all the values in the range of the level numbering # in question. In general,
we can establish the following bounds for level numbers in terms of∇P .

Proposition 6.6 If M is a supported model of a normal program P and # :
M ∪ SR(P, M) → N a level numbering w.r.t. M , then 0 < #a < 2∇P − 1
for every a ∈M and 0 < #r < 2∇P for every r ∈ SR(P, M).
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PROOF. Let us consider the lower bounds first. The level number #r ∈ N

assigned to a rule r ∈ SR(P, M) is necessarily greater than zero, because #r

is defined either (i) as a maximum among a set of natural numbers increased
by one or (ii) as 1. Thus the level number #a assigned to any atom a ∈ M

greater than 0, as #a is defined as a minimum of a set of natural numbers
that are greater than 0. To show the upper bounds for level numbers, we use
complete induction on natural numbers n ≥ 1 in order to establish that

1. if #a = n for some a ∈M , then #a < 2∇P −1 and there is a sequence
of atoms a1, . . . an from M such that #ai = i for all i ∈ {1, . . . , n} and
an = a; and

2. if #r = n for some r ∈ SR(P, M), then #r < 2∇P .

In the base case, #a = 1 for an atom a ∈ M or #r = 1 for a rule
r ∈ SR(P, M). In both cases, Hb(P ) contains at least one atom, so that
∇P ≥ 2. Thus #a < 3 ≤ 2∇P − 1 and #r < 4 ≤ 2∇P . Moreover, if #a = 1
for some atom a ∈ M , then the sequence involved in the first item contains
a alone.

Induction step follows. The second claim is proved first. Suppose that
#r = n > 1 holds for some rule r ∈ SR(P, M). Then body+(r) 6= ∅ holds
necessarily by Definition 5.2 and #r equals to max{#b | b ∈ body+(r)} +
1. Thus #b < n holds for each b ∈ body+(r) so that we can conclude
max{#b | b ∈ body+(r)} < 2∇P −1 by the inductive hypothesis. Therefore
#r < 2∇P .

Then suppose that #a = n for some a ∈ M . By Definition 5.2, there
is a rule r ∈ SR(P, M) such that head(r) = a and #r = n > 1, too.
The definition of #r implies the existence of an atom b ∈ body+(r) such
that #b = n − 1. It follows by the inductive hypothesis that there is a se-
quence of atoms a1, . . . , an−1 from M such that an−1 = b and #ai = i

for all i ∈ {1, . . . , n− 1}. By adding a in the end of this sequence, we
obtain a sequence a1, . . . , an of atoms from M such that #ai = i for all
i ∈ {1, . . . , n} and an = a. If n is to be maximal, then a1, . . . , an must enu-
merate Hb(P ) as whole, i.e. #a = n = |Hb(P )|. Then recall the definition
of∇P . As a ∈ Hb(P ), we have |Hb(P )| ≥ 1 so that 1 ≤ log2(|Hb(P )|+1) <

log2(|Hb(P ) + 2|) ≤ dlog2(|Hb(P )|+ 2)e. The respective powers of 2 yield
|Hb(P )| + 1 < |Hb(P ) + 2| ≤ 2∇P which implies |Hb(P )| < 2∇P − 1. It
follows that #a = |Hb(P )| < 2∇P − 1 as desired. 2

The logarithmic factor embodied in ∇P forms an important design crite-
rion for us, since would like to keep the length of the translation ||TrAT(P )||
as well as the translation time proportional to ||P || × ∇P rather than ||P || ×
|Hb(P )|. Hence we strive for a sub-quadratic translation function from P
to A. To get an idea of the potential behind such an objective, we have
∇P = 14 for programs P with |Hb(P )| = 10000, for instance.

Representing Binary Counters

We have to fix some notation in order to deal with binary representations of
natural numbers. Given the number of bits b and a natural number 0 ≤ n <

2b, we write n[i . . . j], where 0 < i ≤ j ≤ b, for the binary representation of
n from the ith bit to the j th bit in the decreasing order of significance. Thus
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n[1 . . . b] gives a complete binary representation for n. Moreover, as a special
case of this notation, we may refer to the ith bit by writing n[i] = n[i . . . i].

Technically speaking, the idea is to encode the level number #a for a
particular atom a ∈ Hb(P ) using a vector a1, . . . , aj of new atoms where
j = ∇P . Such a vector can be understood as a representation of a binary
counter of j bits; the first and the last atoms corresponding to the most signif-
icant and the least significant bits, respectively. The idea is to equate bits 0
and 1 with the truth values false and true assigned to atoms, since atoms may
take only two values under the stable model semantics. Because the forth-
coming translation is supposed to be an atomic normal program, positive
body literals are forbidden and we have to introduce the vector a1, . . . , aj of
complementary atoms so that we can condition rules on both values of bits.
This is exactly the technique that was demonstrated in Example 4.20. In the
current setting, the idea is that the ith bit of the binary counter associated
with the atom a takes the value 0 (resp. 1) if and only if ai (resp. ai) cannot
be inferred, i.e. the negative literal ∼ai (resp. ∼ai) is satisfied in rule bodies.
In the sequel, we may introduce a binary counter of the kind above for any
atom a by subscripting it with an index i in the range 0 < i ≤ j. Such a
representation involves a set of new atoms Hbctr

j (a) defined below.

Definition 6.7 Given a number of bits j and an atom a, let

(6.2) Hbctr
j (a) = {ai, ai | 0 < i ≤ j}.

In order to express the constraints on level numberings, as demanded
by Definition 5.2, we need certain primitive operations on binary counters.
These primitives will be used as subprograms of the forthcoming translation
TrAT(P ) for normal programs P . The first set of subprograms, as listed in
Table 2, concentrates on setting the counters to particular values. The size
of each subprogram is governed by a parameter j which gives the number of
bits used in the binary counters involved. The activation of all subprograms
is controlled by an additional atom c. The idea is that the respective subpro-
grams are activated only when c cannot be inferred, i.e. c is assigned to false
under stable model semantics. In the following, we give brief descriptions of
the first three primitives.

1. The subprogram SELj(a, c) selects a value between 0 and 2j − 1 for
the binary counter a1, . . . , aj associated with an atom a.

2. The program NXTj(a, b, c) binds the values of the binary counters as-
sociated with atoms a and b, respectively, so that the latter is the former
increased by one (modulo 2j). We have chosen∇P big enough so that
counters to be used in the sequel do not wrap in practice.

3. The last subprogram FIXj(a, n, c) assigns a fixed value 0 ≤ n < 2j, in
the binary representation, to the counter associated with the atom a.

In addition to setting the values of counters, we have to be able to compare
them. Table 3 lists our basic primitives in this respect: implementations of
the relations < and = as atomic normal programs. Our explanations follow.
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Primitive Definition

SELj(a, c) = {ai ← ∼ai,∼c; ai ← ∼ai,∼c | 0 < i ≤ j}

NXTj(a, b, c) = {bi ← ∼ai,∼ai+1,∼bi+1,∼c | 0 < i < j} ∪

{bi ← ∼ai,∼ai+1,∼bi+1,∼c | 0 < i < j} ∪

{bi ← ∼ai,∼ai+1,∼c | 0 < i < j} ∪

{bi ← ∼ai,∼ai+1,∼c | 0 < i < j} ∪

{bi ← ∼ai,∼bi+1,∼c | 0 < i < j} ∪

{bi ← ∼ai,∼bi+1,∼c | 0 < i < j} ∪

{bj ← ∼aj,∼c; bj ← ∼aj,∼c}

FIXj(a, n, c) = {ai ← ∼c | 0 < i ≤ j and n[i] = 0} ∪

{ai ← ∼c | 0 < i ≤ j and n[i] = 1}

Table 2: Primitives for selecting the values of binary counters

4. The program LTj(a, b, c) checks if the value of the binary counter as-
sociated with an atom a is strictly lower than the value of the binary
counter associated with another atom b. To keep the program linear
in j, we need a vector of new atoms lt(a, b)1, . . . , lt(a, b)j plus the cor-
responding vector of complementary atoms which we associate with a

and b. The atoms lt(a, b)1 and lt(a, b)1, which refer to the most signifi-
cant bits, capture the result of the comparison. In particular, note that

lt(a, b)1 means intuitively that the counter associated with the atom
a holds a value that is greater than or equal to the one held by the
counter associated with the atom b. This relation will also be needed
when comparing the values of counters.

5. Quite similarly, the program EQj(a, b, c) checks if the counters asso-
ciated with the atoms a and b hold the same value. In this case, only

two new atoms eq(a, b) and eq(a, b), which capture the result of the
comparison, are needed.

Our next goal is to specify the expected outcomes of the primitives listed
in Tables 2 and 3. However, the correctness proofs are postponed until Sec-
tion 9. Whenever the value of a counter of j bits associated with an atom
a is chosen to be 0 ≤ n < 2j , the contribution of the respective program
SELj(a, c) is a set of atoms

(6.3) ATctr
j (a, n) = {ai | 0 < i ≤ j and n[i] = 1} ∪

{ai | 0 < i ≤ j and n[i] = 0}

given that the atom c is not inferable. The reader might ponder the refer-
ence to the value n at this point, as the choice of n is to be made. But when
SELj(a, c) is used as a subprogram, the stability condition from Definition

6 NON-MODULAR TRANSLATION FUNCTIONS 41



Primitive Definition

LTj(a, b, c) = {lt(a, b)i ← ∼ai,∼bi,∼c | 0 < i ≤ j} ∪

{lt(a, b)i ← ∼ai,∼bi,∼lt(a, b)i+1,∼c | 0 < i < j} ∪

{lt(a, b)i ← ∼ai,∼bi,∼lt(a, b)i+1,∼c | 0 < i < j} ∪

{lt(a, b)i ← ∼lt(a, b)i,∼c | 0 < i ≤ j}

EQj(a, b, c) = {eq(a, b)← ∼ai,∼bi,∼c | 0 < i ≤ j} ∪

{eq(a, b)← ∼ai,∼bi,∼c | 0 < i ≤ j} ∪

{eq(a, b)← ∼eq(a, b),∼c}

Table 3: Primitives for comparing the values of binary counters

2.2 implies a fixed point condition on n so that any value of n in the range
from 0 to 2j − 1 is possible. The effect a subprogram NXTj(b, a, c) is sup-
posed to be the same set of atoms (6.3) given that the counter associated with
some other atom b is holding a value m such that n = m + 1 mod 2j.

In analogy to the preceding two subprograms, we have to define the re-
sult of a subprogram LTj(a, b, c) when the atom c is assigned to false. It is
assumed in (6.4) below that the values of the counters associated with the
atoms a and b are n and m in the ranges 0 ≤ n < 2j and 0 ≤ m < 2j,
respectively. Then let

(6.4) ATlt
j (a, n, b, m) =

{lt(a, b)i | 0 < i ≤ j and n[i . . . j] < m[i . . . j]} ∪

{lt(a, b)i | 0 < i ≤ j and n[i . . . j] ≥ m[i . . . j]}.

Note that c is neglected in (6.4), as no atom can be inferred by the rules
of LTj(a, b, c) when c is inferable; i.e. assigned to true in a stable model.
The result of testing the equality of the counters is defined analogously. The
outcome for EQj(a, b, c), when c is not inferable, is the following:

(6.5) ATeq
j (a, n, b, m) = {eq(a, b) | n = m} ∪ {eq(a, b) | n 6= m}.

On the other hand, given an atom a and a set of atoms N — such as a stable
model of a program involving the subprograms under consideration — we
may extract the value of the counter a1, . . . , aj associated with an atom a by

(6.6) valj(a, N) =
∑

{2j−i | 0 < i ≤ j and ai ∈ N}.

It follows that valj(a, N)[i] = 1 ⇐⇒ ai ∈ N holds for each 0 < i ≤ j.
Moreover, we have valj(a, ATctr

j (a, n)) = n for any n for which 0 ≤ n < 2j.

A Non-Modular Translation Function TrAT

In the sequel, we will compose a non-modular translation function TrAT in
four steps corresponding Definitions 6.8–6.11 to be presented. In each defi-
nition, we specify a subtranslation (say TrSUB(P )) of TrAT(P ) as well as the
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set head(TrSUB(P )), which determines the atoms effectively defined by the
subtranslation TrSUB(P ) in question. These sets will be disjoint for the four
subtranslations to be presented. To achieve faithfulness, one of the aims is
to capture each stable model M of a normal logic program P as a stable
model N of TrAT(P ) which is an atomic program. In the subsequent discus-
sion, M and N are supposed to form a pair of stable models in a one-to-one
correspondence, as insisted by faithfulness. The first part of the translation
TrSUPP(P ) aims to capture a supported model M of the program P and to
define the complementary atom a for each atom a ∈ Hb(P ).

Definition 6.8 For a normal program P , define an atomic normal program

(6.7) TrSUPP(P ) = {a← ∼a | a ∈ Hb(P )} ∪

{bt(r)← ∼body+(r),∼body−(r) | r ∈ P} ∪

{bt(r)← ∼bt(r) | r ∈ P} ∪

{head(r)← ∼bt(r) | r ∈ P}.

The set of atoms head(TrSUPP(P )) is

(6.8) head(P ) ∪ {a | a ∈ Hb(P )} ∪ {bt(r), bt(r) | r ∈ P}.

In principle, it would be sufficient to rewrite a rule r ∈ P as

(6.9) head(r)← ∼body+(r),∼body−(r),

but other parts of the overall translation require us to determine when the

body of r is true. This is why new atoms bt(r) and bt(r) are introduced for
each r ∈ P . Note that copying the transformed body of r to other parts of
the translation would imply a quadratic blow-up and we need bt(r) for each
r ∈ P in order to save space. The next part of the translation introduces
counters that are needed to represent a level numbering candidate.

Definition 6.9 For a normal program P , define an atomic normal program

(6.10) TrCTR(P ) =
⋃

a∈Hb(P )

[SEL∇P (ctr(a), a) ∪ NXT∇P (ctr(a), nxt(a), a)] ∪

⋃

r∈P and body+(r)=∅

FIX∇P (ctr(r), 1, bt(r)) ∪

⋃

r∈P and body+(r)6=∅

SEL∇P (ctr(r), bt(r)).

Consequently, the set of atoms

(6.11) head(TrCTR(P )) =
⋃

a∈Hb(P )

[Hbctr
∇P (ctr(a)) ∪ Hbctr

∇P (nxt(a))] ∪

⋃

r∈P and body+(r)=∅

ATctr
∇P (ctr(r), 1) ∪

⋃

r∈P and body+(r) 6=∅

Hbctr
∇P (ctr(r)).
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In this way, two new atoms ctr(a) and nxt(a), which act as names of two
counters, are introduced for each atom a ∈ Hb(P ). The eventual purpose of
these counters is to hold the values #a and #a + 1, respectively, in case that
a belongs to the domain of a level numbering #, i.e. a ∈M ; or equivalently,
a 6∈ N . However, at this point, the primitives included in TrCTR(P ) choose
a value for ctr(a) and define the value of nxt(a) as the successor of the value
of ctr(a) modulo 2∇P . Quite similarly, a new atom ctr(r) and the respective
counter is introduced for each r ∈ P to eventually hold #r when r is in

the domain of #, i.e. r ∈ SR(P, M), or equivalently bt(r) 6∈ N . In case of
an atomic rule r ∈ P with body+(r) = ∅, the counter ctr(r) is assigned a
fixed value 1 and no choice is made. Note that such a special restriction is in
accordance with Definition 5.2.

The translation TrCTR(P ) is sufficient for choosing a candidate level num-
bering for a supported model M of P that is to be captured by the rules in
TrSUPP(P ). We have to introduce constraints in order to ensure that the
candidate is indeed a level numbering, as dictated by Definition 5.2. We
start with the conditions imposed on rules r ∈ P and in particular, when

r ∈ SR(P, M) holds, i.e. M |= body(r). This explains why bt(r) is used as a
controlling atom in the forthcoming translation. As explained above, the case
of atomic rules r ∈ P with body+(r) = ∅ is already covered by TrCTR(P )
which assigns a fixed value — the natural number 1 — to ctr(r). But for
non-atomic rules r ∈ P with body+(r) 6= ∅, the maximization principle
from Definition 5.2 must be expressed e.g. as follows.

Definition 6.10 Let x be a new atom not appearing in Hb(P ). For an non-
atomic rule r ∈ P and a number of bits b, define

(6.12) TrMAX(r, b) =
⋃

a∈body+(r)

TrMAX(r, b, a)

where for any a ∈ body+(r), TrMAX(r, b, a) =

LTb(ctr(r), nxt(a), bt(r)) ∪

EQb(ctr(r), nxt(a), bt(r)) ∪

{x← ∼x,∼bt(r),∼lt(ctr(r), nxt(a))1} ∪

{max(r)← ∼bt(r),∼eq(ctr(r), nxt(a))}.

For a normal program P , define an atomic normal program

(6.13) TrMAX(P ) =
⋃

r∈P and body+(r)6=∅

TrMAX(r,∇P ) ∪

{x← ∼x,∼bt(r),∼max(r) | r ∈ P and body+(r) 6= ∅}.

Consequently, the set of atoms

(6.14) head(TrMAX(P )) = {x} ∪ {max(r) | r ∈ P and body+(r) 6= ∅} ∪
⋃

r∈P and a∈body+(r)

Hbctr
∇P (lt(ctr(r), nxt(a))) ∪

{eq(ctr(r), nxt(a)), eq(ctr(r), nxt(a)) | r ∈ P and a ∈ body+(r)}.
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An informal description follows. The rules in TrMAX(r,∇P, a) are to be
activated for a non-atomic rule r ∈ SR(P, M) and a positive body atom
a ∈ body+(r). As a consequence, the value held by ctr(r) must be greater
than or equal to the value of nxt(a) which is supposed to be the value of ctr(a)
increased by one. In addition to this, the rules for max(r) in TrMAX(r,∇P, a)
and TrMAX(P ) make the value of ctr(r) equal to the value of nxt(a) for some
a ∈ body+(r). Thus the value of ctr(r) must be the maximum among the
values of the counters nxt(a) associated with the positive body atoms a ∈
body+(r). This conforms to the definition of #r given in Definition 5.2.

Let us then turn our attention to atoms a that are assigned to true in a
supported model M of P . By Definition 5.1 such an atom must have a rule
r ∈ SR(P, M) such that head(r) = a. Moreover, the level number #a is
defined as the minimum among the respective rules by Definition 5.2.

Definition 6.11 Let y be a new atom not appearing in Hb(P ). For a rule r

and a number of bits b, define TrMIN(r, b) =

LTb(ctr(r), ctr(head(r)), bt(r)) ∪

EQb(ctr(r), ctr(head(r)), bt(r)) ∪

{y← ∼y,∼bt(r),∼lt(ctr(r), ctr(head(r)))1} ∪

{min(head(r))← ∼bt(r),∼eq(ctr(r), ctr(head(r)))}.

For a normal program P , define an atomic normal program

(6.15) TrMIN(P ) =
⋃

r∈P

TrMIN(r,∇P ) ∪

{y← ∼y,∼a,∼min(a) | a ∈ Hb(P )}.

Then the set of atoms

(6.16) head(TrMIN(P )) = {y} ∪ {min(a) | a ∈ head(P )} ∪
⋃

r∈P

Hbctr
∇P (lt(ctr(r), ctr(head(r)))) ∪

{eq(ctr(r), ctr(head(r))), eq(ctr(r), ctr(head(r))) | r ∈ P}.

Given a ∈ M and a rule r ∈ SR(P, M) such that head(r) = a, the rules
in TrMIN(r,∇P ) make the value of ctr(a) lower than or equal to the value of
ctr(r). Moreover, the rules for min(a) in TrMIN(P ) ensure that the value of
ctr(a) equals to the value of ctr(r) for at least one such rule r. In this way, the
value of ctr(a) becomes necessarily the minimum, which is in harmony with
the definition of #a in Definition 5.2. We are now ready to formulate TrAT

which is based on the four sub-translations presented in Definitions 6.8–6.11.

Definition 6.12 Given a normal program P , define an atomic normal pro-
gram

TrAT(P ) = TrSUPP(P ) ∪ TrCTR(P ) ∪ TrMAX(P ) ∪ TrMIN(P )
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and Hba(TrAT(P )) = ∅, as Hb(P ) ⊆ Hb(TrAT(P )) =

Hb(TrSUPP(P )) ∪ Hb(TrCTR(P )) ∪ Hb(TrMIN(P )) ∪ Hb(TrMAX(P )).

The visible part Hbv(TrAT(P )) is defined as Hbv(P ).

By inspecting the four parts of TrAT(P ) once more, we note that TrAT(P )
can be formed in a very systematic fashion by generating certain rules for
each r ∈ P and a ∈ Hb(P ). However, TrAT is not modular in the sense
defined in Section 3.3. A source of non-modularity is hidden in the number
of bits ∇P involved in TrAT(P ). Given two programs P and Q satisfying
module conditions M1–M4, it is still possible that ∇P < ∇(P ∪ Q) and
∇Q < ∇(P ∪ Q). As a consequence, the counters involved in TrAT(P ) and
TrAT(Q) are based on too few bits, which implies that TrAT(P ) and TrAT(Q)
cannot be joined together in order to form the translation TrAT(P ∪Q).

Example 6.13 Due to the number of rules generated by TrAT, let us consider
a logic program P which contains only one rule r = a← a. To give a better
idea of the rules included in TrAT(P ), a complete listing of the translation is
given in Figure 3 on page 54. Note that atoms are written in a flat notation
to enable computations with SMODELS [41]. Moreover, complementary
atoms (such as a for a) are prefixed with “ ������� ”. Using these principles, e.g.

the atom lt(ctr(r), nxt(a))1 is rewritten as �������
	���������
��
���
����������� . We may
now use SMODELS to compute the only stable model of the translation:

��� ���
�
	 ��� �� ��� ����� �!��"#�%$����&� � �
'(�����)�������
* � ��+ �&(,-�
. ����/�	&�10������
	2,3�������4/��5���������
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In our previous notation, this is a stable model N = {bt(r), a} of TrAT(P )
which corresponds to the only stable model M = ∅ of P . Note that the rest
of the translation (TrCTR(P ), TrMAX(P ), and TrMIN(P )) is inactive given

that bt(r) and a are true. The last line of the output indicates that TrAT(P )
does not have further stable models; nor does P . However, if we drop the last
three lines from the translation given in Figure 3, we obtain four additional
stable models. One of them assigns true atoms that are listed below:
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According to this stable model, say N ′, we have a situation in which a evalu-
ates to true. This implies that the body of r is satisfied, i.e. bt(r) is true. The
counters ctr(a), nxt(a), and ctr(r) hold the values 012 = 1, 102 = 2, and
102 = 2, respectively. Moreover, the value held by ctr(r) is detected to be (i)
greater than or equal to the value held by nxt(a) and (ii) equal to the value
held by nxt(a). Thus ctr(r) holds a maximum value, which is indicated by
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max(r) being true. Finally, the value held by ctr(r) is not lower than that
held by ctr(a). However, the values are not equal, which indicates that the
value held by ctr(a) is not appropriate as a minimum and this is why min(a)
remains false in N ′. This reveals how the last three lines of the complete
translation as given in Figure 3 invalidate N ′ as a stable model of TrAT(P ).

Correctness of the Translation Function TrAT

Let us then address the correctness of the translation function TrAT. In order
to describe the correspondence between stable models, the following def-
initions make explicit how a stable model M of a normal program P can
be extended to a stable model N of the translation TrAT(P ). This is be-
cause TrAT(P ) involves many new atoms, the truth values of which have
to be determined. First of all, we deal with atoms that are essentially de-
fined by the rules of TrSUPP(P ) and define the respective extension operator
ExtSUPP(P, M) for P and M below. Recall that in addition to reproducing
M , this part of the translation is responsible for defining the complementary

atoms a, for which a ∈ Hb(P ), and the atoms bt(r) and bt(r), which detect
the satisfaction of body(r) for rules r ∈ P . Out of these atoms, the ones
included in the set ExtSUPP(P, M) defined below are supposed be true in
the corresponding stable model N of TrAT(P ).

Definition 6.14 For a normal program P and an interpretation M of P ,
define ExtSUPP(P, M) =

(6.17) M ∪ {a | a ∈ Hb(P )−M} ∪

{bt(r) | r ∈ SR(P, M)} ∪ {bt(r) | r ∈ P − SR(P, M)}.

By the following definition, we introduce similar extension operators for
the other parts of TrAT(P ). For instance, the rules in TrCTR(P ) are re-
sponsible for selecting correct values for the counters whose purpose is to
capture the unique level numbering # w.r.t. M . As a result, the atoms
in ExtCTR(P, M, #) ought to be marked true in N . The last two parts of
the translation contribute atoms involved in the constraints on the values of
the counters, which implement the maximization/minimization principles
from Definition 5.2. Again, the respective extension operators ExtMAX and
ExtMIN determine which atoms evaluate to true given P , M , and #.

Definition 6.15 For a normal program P , an interpretation M of P , and
a function # : M ∪ SR(P, M) → {0, . . . , 2∇P − 1}, define the following
extension operators:

(6.18) ExtCTR(P, M, #) =
⋃

a∈M

ATctr
∇P (ctr(a), #a) ∪

⋃

a∈M

ATctr
∇P (nxt(a), #a + 1 mod 2∇P )] ∪

⋃

r∈SR(P,M) and body+(r)=∅

ATctr
∇P (ctr(r), 1) ∪

⋃

r∈SR(P,M) and body+(r)6=∅

ATctr
∇P (ctr(r), #r).
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(6.19) ExtMAX(P, M, #) =

{max(r) | r ∈ SR(P, M) and body+(r) 6= ∅} ∪
⋃

r∈SR(P,M) and a∈body+(r)

ATlt
∇P (ctr(r), #r, nxt(a), #a + 1 mod 2∇P ) ∪

⋃

r∈SR(P,M) and a∈body+(r)

ATeq
∇P (ctr(r), #r, nxt(a), #a + 1 mod 2∇P ).

(6.20) ExtMIN(P, M, #) = {min(a) | a ∈M} ∪
⋃

r∈SR(P,M)

ATlt
∇P (ctr(r), #r, ctr(head(r)), #head(r)) ∪

⋃

r∈SR(P,M)

ATeq
∇P (ctr(r), #r, ctr(head(r)), #head(r)).

The four extensions operators introduced so far are combined into one
extension operator for the whole translation TrAT(P ). It should be yet em-
phasized that the four sets of atoms involved in Definition 6.16 are disjoint.

Definition 6.16 For a normal program P , an interpretation M ⊆ Hb(P ) of
P , and a function # : M ∪ SR(P, M)→ {0, . . . , 2∇P − 1}, define

(6.21) ExtAT(P, M, #) = ExtSUPP(P, M) ∪

ExtCTR(P, M, #) ∪ ExtMAX(P, M, #) ∪ ExtMIN(P, M, #).

The correctness of the translation function TrAT is addressed in Proposi-
tions 6.17 and 6.19 as well as Theorem 6.20.

Proposition 6.17 Let P be a normal program. If M is a stable model of P

and # is the corresponding level numbering w.r.t. M , then the interpretation
N = ExtAT(P, M, #) is a stable model of TrAT(P ) such that M = N ∩
Hb(P ).

Definition 6.18 Let P be a normal program, N ⊆ Hb(TrAT(P )) an in-
terpretation of the translation TrAT(P ), and M = N ∩ Hb(P ). Define a
function # : M ∪ SR(P, M)→ {0, . . . , 2∇P − 1} by setting

1. #a = val∇P (ctr(a), N) for atoms a ∈M , and

2. #r = val∇P (ctr(r), N) for rules r ∈ SR(P, M).

Proposition 6.19 Let P be a normal program. If N is a stable model of
the translation TrAT(P ), then M = N ∩ Hb(P ) is a stable model of P and
N = ExtAT(P, M, #) where # is defined as in Definition 6.18.

Theorem 6.20 P ≤PF A.

However, due to the size and intricacy of TrAT, the correctness proofs
appear separately in Section 9. An important subsidiary notion used in the
proofs is the one of local stability given in Definition 6.21 below. As estab-
lished in Theorem 6.22, atomic programs lend themselves to localizing the
fixed point condition behind the stable model semantics. Consequently, the
proofs for Propositions 6.17 and 6.17 can be devised one part at a time.
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Definition 6.21 An interpretation I is locally stable w.r.t. a normal program
P if and only if I ∩ head(P ) = LM(P I).

Theorem 6.22 Let P1, . . . , Pn be atomic normal programs such that the sets
head(P1), . . . , head(Pn) form a partition of head(P ) for P =

⋃n

i=1 Pi.
For any S ⊆ {1, . . . , n}, an interpretation M ⊆ head(P ) is locally stable

w.r.t. PS =
⋃

i∈S Pi ⇐⇒ M is locally stable w.r.t. Pi for every i ∈ S.
Moreover, an interpretation M ⊆ Hb(P ) is a stable model of P ⇐⇒

M ⊆ head(P ) and M is locally stable w.r.t. Pi for every i ∈ {1, . . . , n}.

PROOF. Let us pick any set of indices S ⊆ {1, . . . , n}. ( =⇒ ) Let M ⊆
head(P ) be locally stable w.r.t. PS =

⋃

i∈S Pi. Thus we have

(6.22)

M ∩ head(PS) = M ∩ head(
⋃

i∈S Pi)
= M ∩ (

⋃

i∈S head(Pi))
= LM(P M

S )
= LM((

⋃

i∈S Pi)
M)

= LM(
⋃

i∈S P M
i )

=
⋃

i∈S LM(P M
i )

where the last equality holds by Lemma 4.9, as P M
i is atomic and posi-

tive for each i ∈ S. Then consider any index i ∈ S. Lemma 4.9 im-
plies that LM(P M

i ) = head(P M
i ) ⊆ head(Pi). Moreover, the properties

of P imply that
⋃

j∈S head(Pj) forms a partition of head(PS). Thus M ∩

head(Pi) = LM(P M
i ) follows by intersecting both sides of the equation

(6.22) with head(Pi). To conclude, M is locally stable w.r.t. Pi for every
i ∈ S.

( ⇐= ) Suppose that M ⊆ head(P ) is locally stable w.r.t. Pi for every
i ∈ S. Thus Mi = M ∩ head(Pi) = LM(P M

i ) holds for all i ∈ S. Since
⋃

i∈S head(Pi) forms a partition of head(PS), we obtain M ∩ head(PS) =
⋃

i∈S Mi =
⋃

i∈S LM(P M
i ). Since P M

i is atomic and positive for each i ∈ S,
we obtain by Lemma 4.9 that

M ∩ head(PS) =
⋃

i∈S LM(P M
i )

= LM(
⋃

i∈S P M
i )

= LM((
⋃

i∈S Pi)
M)

= LM(P M
S ).

Thus M is locally stable w.r.t. PS.
For the last claim, we note that M ⊆ Hb(P ) is a stable model of P , i.e.

M = LM(P M) ⇐⇒ M ⊆ head(P ) and M is locally stable w.r.t. P . 2

In analogy to the classes of positive programs, the four classes of normal
programs reside in the same expressiveness class if measured by the existence
of polynomial and faithful translation function, i.e. the relation ≤FM.

Corollary 6.23 A =PF U =PF B =PF P .

On the other hand, let us consider any class C ∈ {A,U ,B,P}. It follows
by Proposition 3.18 that C+ ≤PF C and by Theorem 4.23 that C 6≤PF C

+.
Thus C+ <PF C holds for all representatives of the two expressiveness classes.
The resulting hierarchy of classes of logic programs is illustrated in Figure 2.
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A =PF U =PF B =PF P

<
P

F

<
P

F

<
P

F

<
P

F

A+ =PF U+ =PF B+ =PF P+

Figure 2: Expressive Power Hierarchy based on polynomial and faithful (PF)
translation functions

6.3 Propositional Logic Revisited

In general, it is very challenging to translate a normal program P into a set
of clauses so that a one-to-one correspondence of models is obtained. For
instance, the approach [5] by Ben-Eliyahu and Dechter is based on a trans-
formation that is clearly polynomial, but the produced set of clauses may
possess multiple models corresponding to one stable model of P . However,
atomic programs provide a promising intermediary representation that is rel-
atively straightforward to translate into a set of propositional clauses. Here
we can apply Clark’s program completion as established by Fages [14], but
new atoms have to be introduced by the translation function TrCL in order
to keep the translation function linear; or even polynomial in the first place.

Definition 6.24 For an atomic normal program P ∈ A and an atom a ∈
Hb(P ), let DefP (a) = {r ∈ P | head(r) = a} and define the set of clauses

TrCL(a, P ) = {{a,¬bt(r)} | a ∈ Hb(P ) and r ∈ DefP (a)} ∪

{{¬a} ∪ {bt(r) | r ∈ DefP (a)} | a ∈ Hb(P )} ∪

{{bt(r)} ∪ body−(r) | r ∈ DefP (a)} ∪

{{¬bt(r),¬c} | r ∈ DefP (a) and c ∈ body−(r)}

where bt(r) is a new atom for each r ∈ P and

TrCL(P ) =
⋃

a∈Hb(P )

TrCL(a, P ).

The Herbrand base Hb(TrCL(P )) equals to Hb(P ) ∪ {bt(r) | r ∈ P} with
Hba(TrCL(P )) = ∅. The visible part Hbv(TrCL(P )) = Hbv(P ).

The intuitive reading of bt(r) is the same as in Section 6.2, i.e. bt(r) is sup-
posed to be true whenever the body of the rule r is true. Roughly speaking,
the clauses in the translation ensure that every atom a ∈ Hb(P ) is logically
equivalent to the disjunction of all bodies of rules r ∈ P with head(r) = a.
More precisely, clauses of the first two kinds in TrCL(a, P ) enforce the equiv-
alence of each a ∈ Hb(P ) with the disjunction

∨

{bt(r) | r ∈ DefP (a)}.
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On the other hand, each disjunct bt(r) is made equivalent to the conjunc-
tion of negative (classical) literals

∧

{¬c | c ∈ body−(P )} by clauses of the
last two kinds in TrCL(a, P ). The net effect is Clark’s completion for each
a ∈ Hb(P ). This leads to a tight correspondence of models as described next.

Definition 6.25 Given an interpretation I ⊆ Hb(P ) of P ∈ A, define

ExtCL(P, I) = I ∪ {bt(r) | r ∈ SR(P, I)}.

Proposition 6.26 Let P be an atomic normal program. If M ⊆ Hb(P ) is a
supported model of P , then N = ExtCL(P, M) is a model of TrCL(P ) such
that M = N ∩ Hb(P ).

PROOF. Let M be a supported model of P and let us assume that N 6|=
TrCL(P ) holds for the interpretation N = ExtCL(P, M). Four cases arise.

1. Suppose that N 6|= {a,¬bt(r)} for some a ∈ Hb(P ) and r ∈ P such
that head(r) = a. The truth definition of clauses implies a 6∈ N and
bt(r) ∈ N . Then a 6∈ M and r ∈ SR(P, M) follow by the defini-
tion of N . Thus M |= body(r) and M 6|= head(r), i.e. M 6|= r, a
contradiction.

2. Assume that N 6|= {¬a} ∪ {bt(r) | r ∈ DefP (a)} for some a ∈ Hb(P ).
It follows that a ∈ N and bt(r) 6∈ N for each r ∈ DefP (a). Then the
definition of N implies that a ∈ M and r 6∈ SR(P, M) for each r ∈ P

with head(r) = a. A contradiction, as M is a supported model of P .

3. Consider the case that N 6|= {bt(r)} ∪ body−(r) for some r ∈ P .
It follows that bt(r) 6∈ N and c 6∈ N for each c ∈ body−(r). The
interconnection of N and M implies r 6∈ SR(P, M) and c 6∈ M for
each c ∈ body−(r). Since r is atomic, we obtain M |= body(r), i.e.
r ∈ SR(P, M), a contradiction.

4. Suppose that N 6|= {¬bt(r),¬c} for some r ∈ P and c ∈ body−(r).
Then bt(r) ∈ N and c ∈ N hold by the truth definition. The defini-
tion of N implies r ∈ SR(P, M) and c ∈M . But then M 6|= ∼c holds
and we have M 6|= body(r) as well as r 6∈ SR(P, M), a contradiction.

Hence our assumption must be wrong, i.e. N |= TrCL(P ) must hold. 2

Proposition 6.27 Let P be an atomic normal program. If an interpretation
N ⊆ Hb(TrCL(P )) is a (classical) model TrCL(P ), then M = N ∩ Hb(P ) is
a supported model of P such that N = ExtCL(P, M).

PROOF. Let N be a model of TrCL(P ). Let us first establish that N =
ExtCL(P, M) holds for M = N ∩ Hb(P ). This boils down to establishing
that bt(r) ∈ N ⇐⇒ r ∈ SR(P, M) holds for all r ∈ P . So let us consider
any rule r ∈ P . ( =⇒ ) Assume that bt(r) ∈ N , i.e. N |= bt(r). Since
N |= TrCL(P ), we have N |= {¬bt(r),¬c} for any c ∈ body−(r). It follows
that N |= ¬c, i.e. c 6∈ N . Since c ∈ Hb(P ), we obtain c 6∈ M . Thus
M |= ∼c for each c ∈ body−(r). This implies M |= body(r), as r is atomic,
and r ∈ SR(P, M). ( ⇐= ) Suppose that bt(r) 6∈ N . That is, N 6|= bt(r).
Since N |= TrCL(P ), we know that N |=

∨

body−(r). Then there is an
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atom c ∈ body−(r) such that N |= c. Then the definition of M implies
c ∈ M , as c ∈ Hb(P ). But then M 6|= ∼c so that M 6|= body(r). Thus
r 6∈ SR(P, M).

Let us then assume that M 6|= P . Then there is a rule r ∈ P such that
M 6|= r, i.e. M |= body(r) and M 6|= head(r). It follows that r ∈ SR(P, M)
and head(r) = a 6∈ M . Since N = ExtCL(P, M), we obtain bt(r) ∈ N

and a 6∈ N . This implies N 6|= {a,¬bt(r)} by the truth definition of clauses.
Hence N 6|= TrCL(P ), a contradiction.

Finally, we suppose that M is not a supported model, i.e. there is an atom
a ∈ M such that r 6∈ SR(P, M) for all r ∈ P such that head(r) = a. Since
a ∈ Hb(P ), we have a ∈ N , too. In addition, the fact that N = ExtCL(P, M)
implies bt(r) 6∈ N for each r ∈ DefP (a). It follows that N 6|= {¬a}∪{bt(r) |
r ∈ DefP (a)}. Therefore, we have N 6|= TrCL(P ), a contradiction. Hence,
M is necessarily a (supported) model of P . 2

Example 6.28 A logic program P consisting of two rules r1 = a ← ∼a and
r2 = a← ∼b has unique stable model M = {a}. On the other hand,

TrCL(P ) = { a ∨ ¬bt(r1), a ∨ ¬bt(r2),¬a ∨ bt(r1) ∨ bt(r2),¬b,

bt(r1) ∨ a,¬bt(r1) ∨ ¬a, bt(r2) ∨ b,¬bt(r2) ∨ ¬b }

has a unique model N = {a, bt(r2)}, as interpretations are restricted to
Hb(TrCL(P )) = {a, b, bt(r1), bt(r2)}.

The translation function TrCL is clearly non-modular, since the clauses of
the type {¬a} ∪ {bt(r) | r ∈ DefP (a)} create a dependency between rules
possessing the same head a. Let us then address polynomiality and faithful-
ness as suggested by the one-to-one correspondence obtained in Example
6.28.

Proposition 6.29 Let P be an atomic normal program. Then M ⊆ Hb(P )
is a stable model of P if and only if M is a supported model of P .

PROOF. ( =⇒ ) This holds by Proposition 5.7 despite the fact that P is
atomic. ( ⇐= ) Let M be a supported model of P . Let us define a function
# from M ∪ SR(P, M) to N such that #a = 1 for all a ∈M and #r = 1 for
all r ∈ SR(P, M). Since P is atomic, we have body+(r) = ∅ for every r ∈ P

and it is easy to inspect from Definition 5.2 that # is a level numbering w.r.t.
M . Thus M is a stable model of P by Theorem 5.8. 2

Theorem 6.30 A ≤PF SC.

PROOF. A atomic rule r = a ← ∼c1, . . . ,∼cm consists of 3m + 2 symbols
if each atom counts as one symbol and one symbol is reserved for separating
it from other rules. The translation function TrCL translates r effectively into

(6.23) {a,¬bt(r)}, {bt(r), c1, . . . , cm},

{¬bt(r),¬c1}, . . . , and {¬bt(r),¬cm},

which contain 10m + 11 symbols — including separating commas. In ad-
dition, the rule r contributes one literal to {¬a} ∪ {bt(r′) | r′ ∈ DefP (a)}
which produces two additional symbols for r and 4 symbols for each a ∈
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Hb(P ). Thus an atomic program P consisting of
∑

r∈P (3× |body−(r)|+ 2)
symbols is translated into TrCL(P ) consisting of

∑

r∈P (10 × |body−(r)| +
13)+4×|Hb(P )| symbols. The translation TrCL(P ) can be produced by go-
ing through the rules of P , creating the clauses in (6.23), and keeping an ac-
count of atoms that appear as heads in the rules. The clause {¬a}∪ {bt(r′) |
r′ ∈ DefP (a)} needs to be created for such atoms. Thus we conclude TrCL

to be polynomial.
Then we need to establish the faithfulness of TrCL. Let P be an atomic

normal program. Note that Hb(P ) ⊆ Hb(TrCL(P )) and Hbv(TrCL(P )) =
Hbv(P ) hold directly by Definition 6.24. It follows by Propositions 6.29 and
6.26 that there is an extension function ExtCL : SM(P ) → CM(TrCL(P ))
that maps M ∈ SM(P ) into N = ExtCL(P, M) included in CM(TrCL(P ))
such that M = N ∩ Hb(P ). Moreover, Propositions 6.27 and 6.29 imply
that that if N ∈ CM(TrCL(P )), then M = N ∩ Hb(P ) ∈ SM(P ) and
N = ExtCL(P, M). Thus we may conclude TrCL to be faithful by Theorem
3.19. 2

Corollary 6.31 SC =PF A =PF U =PF B =PF P .

Corollary 6.32 C+ <PF SC holds for any C ∈ {A,U ,B,P}.
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Figure 3: A translation of a normal program into atomic one
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7 RELATED WORK

Let us first comment on the major changes to an earlier published draft of this
report [24] in which the systematic classification method for logic programs,
as presented in Section 3.4, was initiated. In contrast to [24], slightly different
requirements on translation functions are currently imposed in Section 3.3.

1. Firstly, the notion of modularity is now more fine-grained due to mod-
ule conditions M1–M4 introduced in Definition 3.15. That is, (3.6)
is supposed to hold in limited context while P and Q can be arbi-
trary according to [24]. Moreover, our earlier approach assumes that
Tr(P ) = P for all P ∈ C1 if Tr : C1 → C2 and C1 ⊂ C2, i.e. C1 has a
more restricted syntax than C2. The net effect is that

(7.1) Tr(P ∪Q) = P ∪ Tr(Q)

should hold for all P ∈ C1 and Q ∈ C2 whenever C1 ⊂ C2, if Tr is to
be modular. This notion produces analogous intranslatability results
given a chain of classes of logic programs — like A ⊂ U ⊂ B ⊂ P in
[24] and this report. However, problems arise if classes, which are syn-
tactically different, such as SC distinguished in Section 3.1, are taken
into consideration. Then it is not guaranteed that the composition of
modular translations is modular (c.f. Proposition 3.17). Moreover, it
is not clear how to interpret (7.1) if P and Tr(Q) belong to syntacti-
cally different classes of logic programs. For these reasons, we employ
a weaker notion of modularity in this report. As a consequence, the in-
translatability results obtained in Section 4 become stronger than those
established in [24].

2. A further difference concerns the notion of faithfulness. In [24], a faith-
ful translation function Tr : C1 → C2 must satisfy Hb(P ) ⊆ Hb(Tr(P ))
and there must exist a bijection f : SemC1(P ) → SemC2(Tr(P )) such
that M = f(M)∩Hb(P ) for all M ∈ SemC1(P ). Compared to this, we
employ a weaker notion of faithfulness in this report. This is because
the notion of faithfulness is restricted to visible atoms only, and it is
enough that the semantics is preserved up to Hbv(P ) ⊆ Hb(P ). That
is, Hbv(P ) = Hbv(Tr(P )) and M ∩ Hbv(P ) = f(M) ∩ Hbv(Tr(P ))
in the bijective relationship described above. Again, the weaker notion
of faithfulness is in favor of the intranslatability results, which become
stronger in this way.

Otherwise, the resulting classification of logic programs are analogous (Fig-
ure 1 vs. [24, Figure 2]), except that the comparison with propositional logic
is more natural using the current criteria, because polynomiality, faithful-
ness and modularity are properly preserved under composition. By designing
the relations ≤PFM, <PFM, =PFM, . . . based on these properties, we have ac-
commodated the classification method proposed for non-monotonic logics
[22, 26] to the case of logic programs. The frameworks are analogous, but
somewhat different. Most importantly, the semantics of a non-monotonic
theory is determined by a set of extensions which are typically propositionally
closed theories6. In contrast to this, we assume that the semantics of a logic

6Recall that a propositionally closed theory is fully determined by the set of its models.
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program P is determined by a set of interpretations/models. The notions of
modularity are also different due to major syntactic differences.

Let us then briefly comment on computational complexity. As established
by Marek and Truszczyński [34], the problem of checking whether a normal
logic program P has a stable model forms an NP-complete decision prob-
lem. The translation function TrAT presented in Section 4.4 implies that the
satisfiability problem SAT is polynomial time reducible to the problem of
checking whether an atomic/unary/binary normal logic program has a stable
model. This indicates that the computational complexity of the latter prob-
lem remains NP-complete under the three syntactic restrictions used in this
report. This indicates that the expressive powers of the classes A, U , and B
cannot be differentiated in terms of traditional complexity measures. In con-
trast to this, the relation <PFM based on the existence of a polynomial, faithful
and modular translation function enables us to detect strict differences. This
is mainly because the reducibilities involved in complexity results preserve
only the yes/no answers to decision problems. Otherwise transformations be-
tween decision problems can be arbitrary as long as they remain computable
in polynomial time. As it is clear by Theorems 4.7, 4.10, 4.18, 4.21, 4.23, and
4.29 presented in Section 4 faithfulness and modularity play a central role in
our intranslatability results.

As shown in Section 4.4, normal programs cannot be translated into sets
of clauses in a faithful and modular way. Niemelä [36, Proposition 4.3] pro-
vides a formal counter-example in this respect, too, but the result is based on
quite different notions of faithfulness and modularity: the existence of mod-
els is to be preserved, and Tr is considered modular if P ∪ F and Tr(P )∪ F

are equally satisfiable where F is a very simple program, namely a set of
facts; or a positive atomic program in our terminology. Of course, the aim
is to make that particular intranslatability result as strong as possible. De-
spite this particular intranslatability result, the composition of the translation
functions TrAT and TrCL from Section 6 is sufficient to reduce normal logic
programs into propositional satisfiability. The resulting translation function
is definitely not modular, but still highly structural so that actual transla-
tions can be computed in a quite systematic fashion. On the other hand,
Niemelä [36] presents the basic technique to express propositional satisfiabil-
ity problems as normal logic programs — the objective being to preserve the
existence of models. However, the translation function TrLP from Section
4.4 is designed to meet stronger criteria. First, a one-to-one correspondence
of models is established. Second, particular attention is paid to make TrLP

modular so that clauses can be translated into rules on clause-by-clause basis.

Partial evaluation techniques have been introduced to unfold rules of pro-
grams in a semantics preserving way. A good example in this respect is an
approach by Brass and Dix [6]. They propose equivalence transformations
for normal and disjunctive logic programs under the stable model semantics
[18]. Let us describe these transformations in case of normal logic programs.
Two of their transformations eliminate tautological and inapplicable rules,
which are rules (2.1) such that a = ai for some i, and rules (2.1) such that
ai = bj for some i and j, respectively. The third transformation is particu-
larly interesting from the perspective of this report, as it affects the number
of positive body literals. When a rule (2.1) in a normal program P is partially
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evaluated with respect to one of its positive body literals ai, it is replaced by a
rule

a← a1, . . . , ai−1, c1, . . . , ck, ai+1, . . . , an,∼b1, . . . ,∼bm,∼d1, . . . ,∼dl

for every rule ai ← c1, . . . , ck,∼d1, . . . ,∼dl of P having ai as the head. In
this way, the positive occurrences of ai are replaced by each rule defining
ai. Thus, partial evaluation may have a quite opposite effect compared to the
goals of this paper, as it might increase the number of positive body literals. It
is quite easy to see that the translation function TrPE corresponding to partial
evaluation is not modular. It is also possible to construct examples for which
TrPE causes an exponential blow-up in the length of the program.

Antoniou et al. [1] apply a modularity condition when developing normal
forms for Nute’s defeasible logic [37]. Although defeasible logic is based on
a completely different semantics, its rule-based syntax makes it reminiscent
of normal programs. Thus a comparison is called for. Firstly, Antoniou et
al. consider a translation function Tr to be correct, if D ≡L(D) Tr(D) for
every D. Here ≡ denotes semantical equivalence, i.e., the theories yield ex-
actly the same conclusions in the language L(D) of D. This is somewhat
analogous to the notion of faithfulness employed in this paper, but certain
differences remain. The first is due to the proof-theoretic semantics of de-
feasible which assigns a unique set of conclusions to each theory. The sec-
ond is that our notion is less constrained, since the preservation of conclu-
sions is restricted to visible atoms only. A further property addressed in [1]
is incrementality, which presumes that the translation function Tr satisfies
D1∪D2 ≡L(D1)∪L(D2) Tr(D1)∪Tr(D2) for every D1 and D2. In the presence
of correctness, this equation implies D1 ∪D2 ≡L(D1)∪L(D2) Tr(D1 ∪D2), the
form of which is very close to the equation (3.6) involved in our definition of
modularity. The main difference is that our definition of modularity is based
on syntactical equality = rather than semantical equivalence ≡v. Moreover,
there is no counterpart to module conditions in the approach by Antoniou et
al. Actually, Antoniou et al. reserve the term modularity for a stronger prop-
erty. For this, the translation function Tr must satisfy D1 ∪D2 ≡L(D1)∪L(D2)

D1 ∪ Tr(D2) for any defeasible theories D1 and D2.7 If Tr is correct, then
modularity is implied by Tr(D1 ∪D2) ≡L(D1)∪L(D2) D1 ∪ Tr(D2) — an ob-
vious analog of (7.1) which makes it impossible to apply such a notion to
translation functions between classes of logic programs that are syntactically
different.

Ben-Eliyahu and Dechter [5] study the possibilities of reducing head-
cycle-free disjunctive logic programs, under the stable model semantics [18],
to propositional logic. Since normal programs are special cases of head-cycle-
free disjunctive programs, a comparison with our results follows. One of the
results obtained by Ben-Eliyahu and Dechter [5, Theorem 2.8] is a char-
acterization of stable models that resembles the one developed in Section
5. However, they impose weaker conditions on level numberings. That is,
they insist on the existence of a function f : Hb(P ) → N

+ such that for
each a ∈ M , there is a rule r ∈ SR(P, M) satisfying f(b) < f(a) for ev-
ery b ∈ body+(r). It is easy to see that a level numbering # conforming to

7Thus any modular transformation is also incremental and correct [1].
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Definition 5.2 can be extended to such a function f , but such functions are
by no means unique even if the range of f is limited. This is in contrast to
Theorem 5.8 where the uniqueness of level numberings is established. The
translation function TrBD (called translate-2 in [5]) produces a propositional
theory TrBD(P ) that consists of four parts. The first two parts ensure that
each model N of TrBD(P ) captures a classical model M of P . The third part
makes M a supported and stable model of P whereas the fourth part can be
neglected in case of normal programs. In particular, the fact that f(a) = i

holds for an atom a ∈ Hb(P ) is expressed by making a new atom in(a)i true
in N . In our approach, similar objectives can be identified for the parts of
TrAT(P ) given in Definition 6.12. In contrast to the composition TrAT◦TrCL,
the translation function TrBD does not necessarily yield a one-to-one corre-
spondence between the stable models of P and the classical models of the
translation. This is because the level numberings used by Ben-Eliyahu and
Dechter are not unique. Moreover, the language of P is not preserved by
TrBD, i.e., Hb(P ) ∩ Hb(TrBD(P )) = ∅. Thus TrBD is far from being faithful
in the sense given by Definition 3.14. A further difference is that ||TrBD(P )||
is quadratic in ||P || in the worst case. The translation functions developed in
this report are more compact: ||TrCL(TrAT(P ))|| is of order ||P || × ∇P , as a
binary encoding of level numbers is used.

There are also other characterizations of stable models that are closely re-
lated to the one established in Section 5. Fages [15] calls an interpretation
I ⊆ Hb(P ) of a normal program P well-supported if and only if there exists
a strict well-founded partial order ≺ on I such that for any atom a ∈ I , there
exists r ∈ SR(P, I) satisfying head(r) = a and b ≺ a for all b ∈ body+(r).
The basic result [15, Theorem 3.2] that well-supported models of a normal
program P are stable models of P , and vice versa. In fact, it is possible to
associate such an ordering with a level numbering conforming to Definition
5.2: just define a ≺ b ⇐⇒ #a < #b for any a ∈ I and b ∈ I . The
resulting ordering can be considered as a canonical one, as # is known to be
unique by Theorem 5.8. Moreover, Fages distinguishes positive order con-
sistent normal programs whose models are necessarily well-supported. As a
consequence, the classical models of the completed program P [7], or sup-
ported models of P , coincide with the stable models of P . Quite recently,
Babovich et al. [4] and also Erdem and Lifschitz [13] generalize Fages’ re-
sults by introducing the notion of tightness for logic programs. The tightness
of a logic program P is defined relative a set atoms A ⊆ Hb(P ), which makes
Fages’ theorem applicable to a wider range of programs. To understand the
contribution of this report in this respect, let us point out that atomic normal
programs are automatically positive order consistent, or absolutely tight in
the terminology of [13]. Therefore, arbitrary normal programs can be trans-
formed into absolutely tight ones in a fairly systematic fashion by applying
the translation function TrAT presented in Section 6. A further implication
is that a transitive closure of relation can be properly captured with classical
models. This is has already been established by Erdem and Lifschitz [12] for
relations that can be represented in terms of a tight program.

As already discussed in Section 3.2, a basic notion of equivalence is ob-
tained for a given class of programs C by requiring that programs to possess
the same stable models, i.e. P ≡ Q ⇐⇒ SemC(P ) = SemC(Q). Lifs-
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chitz et al. [29] study a stronger condition, which involves an arbitrary con-
text R ∈ C in which P and Q could be placed as subprograms. That is, P

and Q are strongly equivalent, denoted by P ≡s Q ⇐⇒ for all R ∈ C,
SemC(P ∪ R) = SemC(Q ∪ R). Lifschitz et al. [29] and later Turner [43]
characterize strong equivalence in various ways, e.g., using Heyting’s logic
of here-and-there. We find the equivalence relations ≡v and ≡w, as intro-
duced in Section 3.2, more practically oriented than the two relations above.
It is very typical that logic programs contain additional atoms for knowledge
representation purposes. Such atoms act as auxiliary concepts which are not
directly relevant for the problem being solved and can be hidden from the
user. Therefore, it is justifiable to omit such atoms as long as the equivalence
of logic programs is concerned. In case of hidden atoms, the relations≡ and
≡v are quite different, but as established in Proposition 3.11 we have P ≡ Q

⇐⇒ P ≡v Q ⇐⇒ P ≡w Q when Hbv(P ) = Hb(P ) = Hb(Q) = Hbv(Q).
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8 CONCLUSIONS

This report concentrates on the problem of reducing the number of posi-
tive subgoals in the bodies of rules. To address this problem, we propose a
framework based on PFM translation functions in Section 3; the aim being a
comparison classes of logic programs — obtained by restricting the number
of positive subgoals in rules — on the basis of their expressive power.

Retrospectively speaking, the adjustment of the framework, which was ini-
tiated in [24], involved many objectives that had to be settled. For instance,
our preliminary comparisons with propositional satisfiability suggested that
the framework should be general enough to enable a comparison of a vari-
ety of classes of logic programs, which may differ by syntax or semantics —
or even both. Furthermore, we realized that the notion of modularity em-
ployed in [24] does not generalize properly for the comparison of classes that
do not share syntax. Thus extra care was needed in order to guarantee that
the requirements on PFM translation functions are preserved under com-
positions. A further objective was to keep our preliminary (in)translatability
results [24] valid under any updates that seemed necessary to the first version
of the framework. We believe that the current framework meets these ob-
jectives successfully, as indicated by the results established in the rest of this
report. However, the development of the underlying theory involved many
important technical details such as visibility of atoms, mechanisms to extend
Herbrand bases, notions of equivalence, and module conditions. Many of
these ideas raised from our practical experiences with answer set program-
ming and existing implementations.

The expressiveness analysis performed in Section 4.2 is quite straightfor-
ward, but it reveals the main constituents of monotonic rule-based reasoning.
In the simplest possible form, we have just sets of atomic rules a ← stating
that certain atoms are true in the world; and no further inferences are pos-
sible. Unary rules enrich this setting by allowing chained inferences with
rules, e.g. we can infer a using rules a ← b; b ← c; and c ←. In the
richest form, we have binary rules that incorporate conjunctive conditions to
rule-based reasoning. For instance, a follows by the rules a← b, c; b← d;
c← d; and d←. Non-binary rules, which have more than two positive sub-
goals, are easily reducible to these primitive forms. In contrast to this, binary
and unary rules are not expressible in a modular way using unary and atomic
rules, respectively, as implied by the formal counter examples.

The analysis continues in Section 4.3 and it is established that this set-
ting is not affected even if normal logic programs are considered. That is,
negation as failure is insufficient to fully compensate conjunctive conditions
nor chained inferences (c.f. Example 4.20). Looking back to the expressive
power hierarchy in Figure 1, the number of positive body literals appears to
be an essential syntactic restriction, as strict differences in expressive power
can be established. Thus, in analogy to our previous experience on classify-
ing non-monotonic logics [22], the method based on PFM translation func-
tions yields a more accurate measure of expressive power than the levels of
polynomial time hierarchy (PH) do. It is also interesting to realize that clas-
sical sets of clauses do not properly capture reasoning with (atomic) normal
programs, as shown in Section 4.4. There is also practical evidence for this,
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as many problems are more easily formalized using rules rather than clauses.

The characterization of stable models developed in Section 5 reveals that
the computation of the least model for a positive normal program can be
understood as a minimization/maximization process. As discussed in Section
7, a particular novelty of a level numbering conforming to Definition 5.2 is
that the values assigned to atoms are uniquely determined. This is in sharp
contrast with earlier characterizations of stable models, where similar num-
berings are used to distinguish stable models, but the value assignment can
be done even in infinitely many ways. Due to the tight correspondence of
models encompassed in the notion of faithfulness employed in this report,
unique level numberings are crucial for the main objective of Section 6, i.e.
a polynomial and faithful translation of normal programs into atomic ones.

In Section 6, we try to complete our view by considering non-modular
alternatives in cases where modular translations turned out to be impossible.
As a fundamental result, we develop a counter-based approach for translating
normal programs into atomic ones. Compared to earlier attempts, there are
several distinctive features in our approach. All finite normal programs can
be covered and a bijective relationship of models is obtained. Moreover, the
translation function TrAT preserves the Herbrand base of the program, only
new atoms are added. The length of the translation ||TrAT(P )|| as well as
the translation time are of order ||P || × log2 |Hb(P )|, indicating that TrAT

is sub-quadratic. We consider this as a breakthrough, since the best known
transformation to date [5] is quadratic. Nevertheless, it should be noted that
the translation function TrAT is far from being optimal. There are several
techniques that can be used to decrease the number of rules that have to
be generated for a particular normal program; and the number of binary
counters as well as the number of bits involved in them. One technique is to
compute the strongly connected components of P , as already suggested by
Ben-Eliyahu and Dechter [5] in case of their translation, and to apply TrAT

componentwise. However, we leave such optimizations to be considered
elsewhere, as the main interest in the current work is to establish a translation
function possessing certain, but still quite promising, properties.

Let us then return to the fundamental question that initiated this work.
The formal counter examples crafted in the proofs of Theorems 4.18 and
4.21 indicate that it is impossible to rewrite rules such that all positive body
literals are removed, if we expect faithfulness and modularity from such trans-
formations. On the other hand, as established in Theorem 6.20, there are
compensatory polynomial and faithful techniques, but which cannot be ap-
plied on a rule-by-rule basis. For instance, we have to know∇P before atoms
and rules can be translated. Thus our final answer to the question is affir-
mative: positive body literals can be removed, but the price may be quite
high. That is, lots of extra rules involving new atoms may be needed, as a
consequence of which the search for stable models is likely to degrade.

To conclude, binary rules tend to block contrapositive inference in prac-
tice. To see this, consider a binary rule a ← b, c; the head of which is is
known to be false in a stable model M under construction. Given that the
truth values of b and c are not yet known, all we can infer that b is false in
M , or c is false in M , in order to satisfy the rule in M . Recall that M must
be a classical model as well. This leads to a case analysis which can be in
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the worst case at least as expensive as ordinary branching with respect to b or
c. That is, analyzing separately the cases that b (resp. c) is true in M and b

(resp. c) is false in M . Such a setting is illustrated by our final example.

Example 8.1 Consider a binary normal logic program

P = {a← b, c; b← ∼b1; b1 ← ∼b; c← ∼c1; c1 ← ∼c}

which has four stable models: M1 = {a, b, c}, M2 = {b, c1}, M3 = {b1, c}
and M4 = {b1, c1}. Suppose we would like to compute the stable models
M of P in which a is false. As suggested by the contrapositive interpretation
of a← b, c; one possibility is to branch the search using the conditions that
(i) b is false in M and (ii) c is false in M . While analyzing the case (i), we
find the stable models M3 and M4. On the other hand, the stable models M2

and M4 are discovered when (ii) is analyzed.8 Thus M4 is encountered twice
during the search, as it satisfies both assumptions on M . Another approach
is to branch according to the condition (i) above and the condition that (iii)
b is true in M . In the case (iii), the stable model M2 is found directly. In
the latter setting, each stable model is encountered exactly once, because the
assumptions on M are mutually exclusive. 2

Nevertheless, we do not claim that contrapositive reasoning is not useful.
For instance, if a and b are known to be false and true, respectively, then it
is reasonable to infer that c must be false, too, in the setting of Example 8.1.
However, depending on our assumptions on the truth values of atoms, binary
rules may block contrapositive reasoning in practice.

8.1 Future Work

The current expressive power hierarchy in Figure 1 was obtained as a by-
product while analyzing the possibilities for reducing the number of positive
body literals. It is clear that the hierarchy can be extended by analyzing the
expressiveness of other classes of logic programs. One direction is to con-
sider classes with richer syntax such as extended programs [17], disjunctive
programs [18] and nested programs [30]. The other is to take different seman-
tics, such as the well-founded semantics [45], into consideration. Our recent
results on partial stable models [27] and disjunctive programs [25] provide a
promising starting point in this respect. A comparison with Schlipf’s results
[40] is also called for in the case of normal programs. We are also develop-
ing an optimized implementation of the translation function TrAT presented
in Section 6. This work will include comparison with other similar systems
such as ASSAT [31], CMODELS [3] and QUIP [10].

8.2 Acknowledgments

The author wishes to thank Mirek Truszczyński for his suggestion to apply
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9 APPENDIX: PROOFS

9.1 Correctness of SELj

Lemma 9.1 Let j be the number of bits. If N is a set of atoms such that
c 6∈ N and N ∩ Hbctr

j (a) = ATctr
j (a, n) holds for some number n satisfying

0 ≤ n < 2j, then LM(SELj(a, c)
N) = ATctr

j (a, n).
If N is a set of atoms such that c ∈ N , then LM(SELj(a, c)

N) = ∅.

PROOF. Suppose that N satisfies the if-part of the first claim. Then consider
any atom a and i such that 0 < i ≤ j. Now ai ← belongs to SELj(a, c)

N

⇐⇒ ai 6∈ N by the structure of SELj(a, c) ⇐⇒ ai ∈ ATctr
j (a, n) by the

requirements imposed on N and (6.3). It is similarly established that ai ←
is included in SELj(a, c)

N ⇐⇒ ai ∈ ATctr
j (a, n). Since SELj(a, c)

N is
both positive and atomic, it follows by Lemma 4.9 that LM(SELj(a, c)

N) =
ATctr

j (a, n).
Then assume that c ∈ N . Since ∼c appears in each rule of the program

SELj(a, c), we obtain SELj(a, c)
N = ∅ and LM(SELj(a, c)

N) = ∅. 2

Lemma 9.2 Let j be the number of bits and N a set of atoms such that
N ∩ Hbctr

j (a) = LM(SELj(a, c)
N).

If c 6∈ N , then N ∩ Hbctr
j (a) = ATctr

j (a, n) holds for n = valj(a, N).

If c ∈ N , then N ∩ Hbctr
j (a) = ∅.

PROOF. Suppose that c 6∈ N and define n = valj(a, N). Then it holds for
any i in the range 0 < i ≤ j that ai ∈ N ⇐⇒ n[i] = 1 by (6.6) ⇐⇒
ai ∈ ATctr

j (a, n) by (6.3). On the other hand, it holds that ai ∈ N ⇐⇒
ai ∈ LM(SELj(a, c)

N) ⇐⇒ ai ← belongs to SELj(a, c)
N ⇐⇒ ai 6∈ N by

the structure of SELj(a, c) ⇐⇒ n[i] = 0 by (6.6) ⇐⇒ ai ∈ ATctr
j (a, n) by

(6.3). Since i was arbitrary and Hbctr
j (a) does not contain other atoms than

ai and ai for each i ∈ {1, . . . , n}, the claim follows.
The case in which c ∈ N follows. Since each rule of SELj(a, c) is condi-

tioned by ∼c, we have SELj(a, c)
N = ∅ and LM(SELj(a, c)

N) = ∅. 2

9.2 Correctness of NXTj

It is worth pointing out that the translation NXTj(a, b, c) is based on the
following method to increase the value of a binary counter by one. The least
significant bit of the counter is always changed. If the bit changed from 1 to
0, then the next significant bit is changed, too, and so on.

Lemma 9.3 Let j be the number of bits and N a set of atoms such that
c 6∈ N , N∩Hbctr

j (a) = ATctr
j (a, n) for some number n such that 0 ≤ n < 2j,

and m = n + 1 mod 2j. Then

bi ← belongs to NXTj(a, b, c)N ⇐⇒ bi ∈ ATctr
j (b, m), and(9.1)

bi ← belongs to NXTj(a, b, c)N ⇐⇒ bi ∈ ATctr
j (b, m)(9.2)

hold for i = j and for any 0 < i < j satisfying

bi+1 ∈ N ⇐⇒ bi+1 ∈ ATctr
j (b, m) and(9.3)

bi+1 ∈ N ⇐⇒ bi+1 ∈ ATctr
j (b, m).(9.4)
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PROOF. Given that c 6∈ N , the rule bj ← belongs to NXTj(a, b, c)N ⇐⇒
aj 6∈ N by the structure of NXTj(a, b, c) ⇐⇒ aj 6∈ ATctr

j (a, n) by the
requirements on N ⇐⇒ aj ∈ ATctr

j (a, n) by (6.3) ⇐⇒ n[j] = 0 by
(6.3) ⇐⇒ m[j] = 1, as m = n + 1 mod 2j, ⇐⇒ bj ∈ ATctr

j (b, m) by
(6.3). Moreover, it follows by the symmetry present in the sets ATctr

j (a, n)

and ATctr
j (b, m) as well as the program NXTj(a, b, c) that the rule bj ←

belongs to NXTj(a, b, c)N ⇐⇒ bj ∈ ATctr
j (b, m).

Thus we have established (9.1) and (9.2) when i = j. Let us then consider
any i such that 0 < i < j and the equations (9.3) and (9.4) are satisfied. It
follows by the structure of NXTj(a, b, c) that bi ← belongs to NXTj(a, b, c)N

⇐⇒ ai 6∈ N , ai+1 6∈ N , and bi+1 6∈ N , or
ai 6∈ N and ai+1 6∈ N , or
ai 6∈ N and bi+1 6∈ N

⇐⇒ ai ∈ ATctr
j (a, n), ai+1 ∈ ATctr

j (a, n), and bi+1 ∈ ATctr
j (b, m), or

ai ∈ ATctr
j (a, n) and ai+1 ∈ ATctr

j (a, n), or
ai ∈ ATctr

j (a, n) and bi+1 ∈ ATctr
j (b, m)

by the requirements on N , (6.3), as well as (9.3) and (9.4)
⇐⇒ n[i . . . i + 1] = 01 and m[i + 1] = 0, or

n[i . . . i + 1] = 10, or
n[i] = 1 and m[i + 1] = 1 by (6.3)

⇐⇒ m[i] = 1, as m = n + 1 mod 2j,

⇐⇒ bi ∈ ATctr
j (b, m). In this way, we have established (9.1). Due to

symmetry, the proof for (9.2) is obtained by systematically exchanging

1. ai and ai;

2. bi and bi;

3. n[i] = 0 and n[i] = 1; as well as

4. m[i] = 0 and m[i] = 1

in the proof of (9.1). 2

Lemma 9.4 Let j be the number of bits.
If N is a set of atoms such that c 6∈ N , N ∩ Hbctr

j (a) = ATctr
j (a, n) for

a number n such that 0 ≤ n < 2j , and N ∩ Hbctr
j (a) = ATctr

j (b, m) for
m = n + 1 mod 2j, then LM(NXTj(a, b, c)N) = ATctr

j (b, m).
If N is a set of atoms such that c ∈ N , then LM(NXTj(a, b, c)N) = ∅.

PROOF. Let us assume that N is a set of atoms satisfying the if-part of the first
claim. Then the assumptions of Lemma 9.3 are satisfied, and both (9.3) and
(9.4) hold for each 0 < i < j. It follows by Lemma 9.3 that (9.1) and (9.2)
hold for any 0 < i ≤ j. Since the reduct NXTj(a, b, c)N is both positive and
atomic, we conclude LM(NXTj(a, b, c)N) = ATctr

j (b, m) by Lemma 4.9.
On the other hand, all the rules of NXTj(a, b, c) are guarded by the neg-

ative literal ∼c. Thus, if c ∈ N , we have NXTj(a, b, c)N = ∅ which implies
LM(NXTj(a, b, c)N) = ∅ by Lemma 4.9. 2
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Lemma 9.5 Let j be the number of bits and N a set of atoms such that
N ∩ Hbctr

j (b) = LM(NXTj(a, b, c)N).

If c 6∈ N and N ∩ Hbctr
j (a) = ATctr

j (a, n) holds for n = valj(a, N), then

N ∩ Hbctr
j (b) = ATctr

j (b, m) for m = n + 1 mod 2j.

If c ∈ N , then N ∩ Hbctr
j (b) = ∅.

PROOF. Suppose that N satisfies the if-part of the first claim. In the sequel,
it is proved by induction on j − i ≥ 0 that bi ∈ N ⇐⇒ bi ∈ ATctr

j (b, m),

and that bi ∈ N ⇐⇒ bi ∈ ATctr
j (b, m).

Base case: j − i = 0 which implies i = j. It follows by Lemmas 9.3 and
4.9 and the requirements on N that bj ∈ N ⇐⇒ bj ∈ LM(NXTj(a, b, c)N)
⇐⇒ bj ← belongs to NXTj(a, b, c)N ⇐⇒ bj ∈ ATctr

j (b, m). The fact that

bj ∈ N ⇐⇒ bj ∈ ATctr
j (b, m) follows by symmetry. Induction step:

j − i > 0 which implies 0 < i < j. Now (9.3) and (9.4) are satisfied by
the inductive hypothesis. Thus bi ∈ N ⇐⇒ bi ∈ LM(NXTj(a, b, c)N) by
the assumptions on N ⇐⇒ bi ← belongs to NXTj(a, b, c)N by Lemma 4.9
⇐⇒ bi ∈ ATctr

j (b, m) by Lemma 9.3 and the inductive hypothesis. The fact

that bi ∈ N ⇐⇒ bi ∈ ATctr
j (b, m) is established by symmetry.

If N is a set of atoms such that c ∈ N , then NXTj(a, b, c)N = ∅ so that
LM(NXTj(a, b, c)N) = ∅ follows by Lemma 4.9. 2

9.3 Correctness of FIXj

Lemma 9.6 Let j be the number of bits and 0 ≤ n < 2j. If N is a set of
atoms such that c 6∈ N , then LM(FIXj(a, n, c)N) = ATctr

j (a, n).
If N is a set of atoms such that c ∈ N , then LM(FIXj(a, n, c)N) = ∅.

PROOF. Let N be a set of atoms such that c 6∈ N and 0 < i ≤ j. The struc-
ture of FIXj(a, n, c) and Lemma 4.9 imply that ai ∈ LM(FIXj(a, n, c)N)
(resp. ai ∈ LM(FIXj(a, n, c)N)) ⇐⇒ the rule ai ← (resp. ai ←) belongs
to FIXj(a, n, c)N ⇐⇒ n[i] = 0 (resp. n[i] = 1) ⇐⇒ ai ∈ ATctr

j (a, n)
(resp. ai ∈ ATctr

j (a, n)). Hence the claim. In case that c ∈ N , we have
FIXj(a, n, c)N = ∅ so that the claim follows by Lemma 4.9. 2

9.4 Correctness of LTj

Lemma 9.7 Let j be the number of bits and N a set of atoms such that
c 6∈ N , N ∩ Hbctr

j (a) = ATctr
j (a, n) for 0 ≤ n < 2j , and N ∩ Hbctr

j (b) =
ATctr

j (b, m) for 0 ≤ m < 2j.
If 0 < i ≤ j and in addition, i < j implies

(9.5) lt(a, b)i+1 ∈ N ⇐⇒ lt(a, b)i+1 ∈ ATlt
j (a, n, b, m),

then

(9.6) lt(a, b)i ← belongs to LTj(a, b, c)N ⇐⇒

lt(a, b)i ∈ ATlt
j (a, n, b, m).

If 0 < i ≤ j and

(9.7) lt(a, b)i ∈ N ⇐⇒ lt(a, b)i ∈ ATlt
j (a, n, b, m),
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then

(9.8) lt(a, b)i ← belongs to LTj(a, b, c)N ⇐⇒

lt(a, b)i ∈ ATlt
j (a, n, b, m).

PROOF. If i = j, then the rule lt(a, b)j ← is included in LTj(a, b, c)N ⇐⇒
aj 6∈ N and bj 6∈ N ⇐⇒ aj ∈ ATctr

j (a, n) and bj ∈ ATctr
j (b, m) by the

requirements on N ⇐⇒ n[j] = 0 and m[j] = 1 by (6.3) ⇐⇒ n[j] < m[j]
⇐⇒ lt(a, b)j ∈ ATlt

j (a, n, b, m) by (6.4). Thus (9.6) holds when i = j.
If 0 < i < j, then (9.5) holds and lt(a, b)i ← belongs to LTj(a, b, c)N

⇐⇒ ai 6∈ N and bi 6∈ N , or

ai 6∈ N and bi 6∈ N , and lt(a, b)i+1 6∈ N , or

ai 6∈ N and bi 6∈ N , and lt(a, b)i+1 6∈ N

by the structure of LTj(a, b, c)
⇐⇒ ai ∈ ATctr

j (a, n) and bi ∈ ATctr
j (b, m), or

ai ∈ ATctr
j (a, n), bi ∈ ATctr

j (b, m), and
lt(a, b)i+1 ∈ ATlt

j (a, n, b, m), or
ai ∈ ATctr

j (a, n), bi ∈ ATctr
j (b, m), and

lt(a, b)i+1 ∈ ATlt
j (a, n, b, m)

by the requirements on N , (9.5), as well as (6.4)
⇐⇒ n[i] = 0 and m[i] = 1, or

n[i] = m[i] = 0 and n[i + 1 . . . j] < m[i + 1 . . . j], or
n[i] = m[i] = 1 and n[i + 1 . . . j] < m[i + 1 . . . j] by (6.4)

⇐⇒ n[i . . . j] < m[i . . . j]
⇐⇒ lt(a, b)i ∈ ATlt

j (a, n, b, m).

Thus we have established (9.6). Then consider any 0 < i ≤ j and assume

that (9.7) holds. Now the rule lt(a, b)i ← belongs to LTj(a, b, c)N ⇐⇒
lt(a, b)i 6∈ N by the structure of LTj(a, b, c) ⇐⇒ lt(a, b)i 6∈ ATlt

j (a, n, b, m)

by (9.7) ⇐⇒ lt(a, b)i ∈ ATlt
j (a, n, b, m) by (6.4). Thus (9.8) holds. 2

Lemma 9.8 Let j be the number of bits.
If N is a set of atoms such that c 6∈ N , N ∩ Hbctr

j (a) = ATctr
j (a, n) for

0 ≤ n < 2j, N ∩ Hbctr
j (b) = ATctr

j (b, m) for 0 ≤ m < 2j , and N ∩

head(LTj(a, b, c)) = ATlt
j (a, n, b, m), then

LM(LTj(a, b, c)N) = ATlt
j (a, n, b, m).

If N is a set of atoms such that c ∈ N , then LM(LTj(a, b, c)N) = ∅.

PROOF. Suppose that c 6∈ N . Consequently, it is easy to see that (9.5) is
satisfied by every 0 < i < j and (9.7) is satisfied by every 0 < i ≤ j. Then
(9.6) and (9.8) hold for all 0 < i ≤ j. Since LTj(a, b, c)N is atomic, it
follows by Lemma 4.9 that LM(LTj(a, b, c)N) = ATctr

j (a, n, b, m). On the
other hand, if c ∈ N , then LTj(a, b, c)N = ∅ by the structure of LTj(a, b, c)
so that LM(LTj(a, b, c)N) = ∅. 2

Lemma 9.9 Let j be the number of bits and N a set of atoms such that
N ∩ head(LTj(a, b, c)) = LM(LTj(a, b, c)N).
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If c 6∈ N , N ∩ Hbctr
j (a) = ATctr

j (a, n) where n = valj(a, N), and N ∩

Hbctr
j (b) = ATctr

j (b, m) where m = valj(b, N), then

N ∩ head(LTj(a, b, c)) = ATlt
j (a, n, b, m).

If c ∈ N , then N ∩ head(LTj(a, b, c)) = ∅.

PROOF. Suppose that N satisfies the if-part of the first claim. We use in-
duction on j − i ≥ 0 to establish that lt(a, b)i ∈ N ⇐⇒ lt(a, b)i ∈
ATlt

j (a, n, b, m), and lt(a, b)i ∈ N ⇐⇒ lt(a, b)i ∈ ATlt
j (a, n, b, m).

Base case: j − i = 0 which implies i = j. The structure of LTj(a, b, c)
implies together with Lemmas 9.7 and 4.9 that lt(a, b)j ∈ N ⇐⇒ lt(a, b)j ∈
LM(LTj(a, b)N) ⇐⇒ lt(a, b)j ← belongs to LTj(a, b)N ⇐⇒ lt(a, b)j ∈
ATlt

j (a, n, b, m). Thus (9.7) holds for i = j so that the other equivalence
is similarly obtained using (9.8). Induction step: j − i > 0 which implies
0 < i < j. Note that (9.5) is satisfied by the inductive hypothesis. Thus
(9.6) holds by Lemma 9.7. It follows by Lemma 4.9 that lt(a, b)i ∈ N ⇐⇒
lt(a, b)i ∈ LM(LTj(a, b)N) ⇐⇒ lt(a, b)i ← belongs to LTj(a, b)N ⇐⇒
lt(a, b)i ∈ ATlt

j (a, n, b, m). Thus we have established (9.7) which implies

(9.8) by Lemma 9.7. Then lt(a, b)i ∈ N ⇐⇒ lt(a, b)i ∈ ATlt
j (a, n, b, m)

can be established similarly to (9.7). 2

9.5 Correctness of EQj

Lemma 9.10 Let j be the number of bits and N a set of atoms such that
c 6∈ N , N ∩ Hbctr

j (a) = ATctr
j (a, n) for 0 ≤ n < 2j , and N ∩ Hbctr

j (b) =
ATctr

j (b, m) for 0 ≤ m < 2j. If

(9.9) eq(a, b) ∈ N ⇐⇒ eq(a, b) ∈ ATeq
j (a, n, b, m),

then

(9.10) eq(a, b)← belongs to EQj(a, b, c)N ⇐⇒

eq(a, b) ∈ ATeq
j (a, n, b, m).

Moreover,

(9.11) eq(a, b)← belongs to EQj(a, b, c)N ⇐⇒

eq(a, b) ∈ ATeq
j (a, n, b, m).

PROOF. Suppose that (9.9) holds. Now the rule eq(a, b) ← belongs to

EQj(a, b, c)N ⇐⇒ eq(a, b) 6∈ N by the structure of EQj(a, b, c) ⇐⇒

eq(a, b) 6∈ ATeq
j (a, n, b, m) by (9.9) ⇐⇒ eq(a, b) ∈ ATeq

j (a, n, b, m) by

(6.5). On the other hand, the rule eq(a, b)← is included in EQj(a, b, c)N
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⇐⇒ ∃i ∈ {1, . . . , j} such that ai 6∈ N and bi 6∈ N , or
ai 6∈ N and bi 6∈ N

⇐⇒ ∃i ∈ {1, . . . , j} such that ai ∈ ATctr
j (a, n) and bi ∈ ATctr

j (b, m), or
ai ∈ ATctr

j (a, n) and bi ∈ ATctr
j (b, m)

⇐⇒ ∃i ∈ {1, . . . , j} such that n[i] = 0 and m[i] = 1, or
n[i] = 1 and m[i] = 0

⇐⇒ n[1 . . . j] 6= m[1 . . . j]
⇐⇒ n 6= m

⇐⇒ eq(a, b) ∈ ATeq
j (a, n, b, m). 2

Lemma 9.11 Let j be the number of bits.
If N is a set of atoms such that c 6∈ N , N ∩ Hbctr

j (a) = ATctr
j (a, n) for

0 ≤ n < 2j, N ∩ Hbctr
j (b) = ATctr

j (b, m) for 0 ≤ m < 2j , and N ∩
head(EQj(a, b, c)) = ATeq

j (a, n, b, m), then

LM(EQj(a, b, c)N) = ATeq
j (a, n, b, n).

If N is a set of atoms such that c ∈ N , then LM(EQj(a, b, c)N) = ∅.

PROOF. Suppose that N satisfies the if-part of the first claim. Consequently,
the prerequisites of Lemma 9.10 are satisfied — including the equation (9.9).
Thus (9.10) and (9.11) follow by Lemma 9.10. Since EQj(a, b, c)N is atomic,
we obtain LM(EQj(a, b, c)N) = ATeq

j (a, n, b, m) by Lemma 4.9. On the
other hand, if c ∈ N , then EQj(a, b, c)N = ∅, as ∼c is included in the body
of each rule in EQj(a, b, c). It follows that LM(EQj(a, b, c)N) = ∅. 2

Lemma 9.12 Let j be the number of bits and N a set of atoms such that
N ∩ head(EQj(a, b, c)) = LM(EQj(a, b, c)N).

If c 6∈ N , N ∩ Hbctr
j (a) = ATctr

j (a, n) where n = valj(a, N), and N ∩

Hbctr
j (b) = ATctr

j (b, m) where m = valj(b, N), then

N ∩ head(EQj(a, b, c)) = ATeq
j (a, n, b, m).

If c ∈ N , then N ∩ head(EQj(a, b, c)) = ∅.

PROOF. Suppose that N satisfies the if-part of the first claim so that the

prerequisites of Lemma 9.10 are met. Then eq(a, b) ∈ N ⇐⇒ eq(a, b) ∈

LM(EQj(a, b)N) ⇐⇒ eq(a, b) ← belongs to EQj(a, b)N ⇐⇒ eq(a, b) ∈
ATeq

j (a, n, b, m) by Lemma 4.9 and (9.11) in Lemma 9.10. This is how (9.9)
is established first, and then the fact that eq(a, b) ∈ N ⇐⇒ eq(a, b) ∈
ATeq

j (a, n, b, m) follows similarly using (9.10). Thus LM(EQj(a, b, c)N) =
ATeq

j (a, n, b, m).
The latter claim follows by the same arguments as in Lemma 9.11. 2

9.6 Correctness of TrSUPP(P )

Lemma 9.13 Let P be a normal program, M ⊆ Hb(P ) an interpretation
of P , and # a function from M ∪ SR(P, M) to {0, . . . , 2∇P − 1}, and N =
ExtAT(P, M, #). The respective intersections of N with head(TrSUPP(P )),
head(TrCTR(P )), head(TrMAX(P )), and head(TrMIN(P )) are the sets
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ExtSUPP(P, M), ExtCTR(P, M, #), ExtMAX(P, M, #), and
ExtMIN(P, M, #).

PROOF. Definitions 6.14 and 6.8 imply that ExtSUPP(P, M) is contained in
head(TrSUPP(P )). The same can be stated about the other three extension
operators ExtCTR, ExtMAX, and ExtMIN, and the respective translations of
P by Definitions 6.15, 6.9, 6.10, and 6.11. In addition to this, the four sets
of head atoms are disjoint by Definitions 6.8, 6.9, 6.10, and 6.11. The rest
follows by the definition of ExtAT in Definition 6.16. 2

Proposition 9.14 Let P be a normal program. If M is a supported model
of P , # a level numbering w.r.t. M , and N = ExtAT(P, M, #), then N ∩
head(TrSUPP(P )) = ExtSUPP(P, M) = LM(TrSUPP(P )N).

PROOF. Let M be a supported model of P and # a level numbering w.r.t.
M . Recall the translation TrSUPP(P ) from Definition 6.8 and the set of
atoms N = ExtSUPP(P, M) from Definition 6.14. The first equality N ∩
head(TrSUPP(P )) = ExtSUPP(P, M) follows directly by Lemma 9.13. The
second equality is established by showing that a rule r ∈ TrSUPP(P )N ⇐⇒
head(r) ∈ ExtSUPP(P, M). There are four types of rules in the translation
TrSUPP(P ) that have to be checked in this respect.

1. Consider any atom a ∈ Hb(P ) for which TrSUPP(P ) contains the rule
a ← ∼a. Now a ← belongs to TrSUPP(P )N ⇐⇒ a 6∈ N ⇐⇒
a 6∈ M , as N ∩ head(TrSUPP(P )) = ExtSUPP(P, M), ⇐⇒ a ∈
ExtSUPP(P, M).

2. Then let r ∈ P for which bt(r) ← ∼body+(r),∼body−(r) is in-
cluded in the translation TrSUPP(P ). Consequently, the rule bt(r) ←

belongs to TrSUPP(P )N ⇐⇒ N |= ∼body+(r) ∪ ∼body−(r) ⇐⇒

body+(r)∩N = ∅ and body−(r)∩N = ∅ ⇐⇒ body+(r) ⊆M and
body−(r) ∩M = ∅, since N ∩ head(TrSUPP(P )) = ExtSUPP(P, M)
and body+(r) ∪ body−(r) ⊆ Hb(P ), ⇐⇒ M |= body(r) ⇐⇒
r ∈ SR(P, M) ⇐⇒ bt(r) ∈ ExtSUPP(P, M).

3. Then consider the rule bt(r) ← ∼bt(r) associated with a rule r ∈ P

and included in TrSUPP(P ). Now bt(r)← is included in TrSUPP(P )N

⇐⇒ bt(r) 6∈ N ⇐⇒ r 6∈ SR(P, M), as N ∩ head(TrSUPP(P )) =
ExtSUPP(P, M), ⇐⇒ bt(r) ∈ ExtSUPP(P, M).

4. Finally, there is a rule head(r) ← ∼bt(r) ∈ TrSUPP(P ) for each r ∈
P . Then for any a ∈ head(P ), the rule a ← belongs to TrSUPP(P )N

⇐⇒ ∃r ∈ P such that head(r) = a and bt(r) 6∈ N ⇐⇒ ∃r ∈
SR(P, M) such that head(r) = a, as N ∩ head(TrSUPP(P )) equals to
ExtSUPP(P, M), ⇐⇒ a ∈ M , since M is a supported model of P ,
⇐⇒ a ∈ ExtSUPP(P, M).

It follows by Lemma 4.9 that LM(TrSUPP(P )N) = ExtSUPP(P, M). 2

Proposition 9.15 Let P be a normal program. If N is a stable model of
TrAT(P ), then N ∩ head(TrSUPP(P )) = ExtSUPP(P, M) for M = N ∩
Hb(P ).
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PROOF. Let N be a stable model of TrAT(P ), i.e. N = LM(TrAT(P )N).
Recall the translation TrSUPP(P ) and head(TrSUPP(P )) from Definition 6.8.
In the sequel, we establish for all atoms a ∈ head(TrSUPP(P )) that a ∈ N

⇐⇒ a ∈ ExtSUPP(P, M). Four cases have to be analyzed.

1. Recall that head(P ) ⊆ head(TrSUPP(P )). The definition of M im-
plies for all a ∈ head(P ) that a ∈ N ⇐⇒ a ∈ M ⇐⇒ a ∈
ExtSUPP(P, M).

2. Then consider any a ∈ Hb(P ) for which a ∈ head(TrSUPP(P )). It
follows that a ∈ N ⇐⇒ a ∈ LM(TrAT(P )N) ⇐⇒ a ← belongs
to TrAT(P )N by Lemma 4.9 ⇐⇒ a ← belongs to TrSUPP(P )N by
the structure of TrAT(P ) ⇐⇒ a 6∈ N by the structure of TrSUPP(P )
⇐⇒ a 6∈ M by the definition of M , as a ∈ Hb(P ), ⇐⇒ a ∈
ExtSUPP(P, M).

3. Let us then analyze any r ∈ P and the respective atom bt(r) included

in head(TrSUPP(P )). Recall that bt(r) ← ∼body+(r),∼body−(r)
belongs to TrSUPP(P ). The relationship established in the previous
item implies for any a ∈ body+(r) that (i) a 6∈ N ⇐⇒ a ∈ M .
On the other hand, the definition of M implies that (ii) a 6∈ N ⇐⇒
a 6∈ M for any a ∈ body−(r). Thus bt(r) ∈ N ⇐⇒ bt(r) ∈
LM(TrAT(P )N) ⇐⇒ bt(r) ← belongs to TrAT(P )N by Lemma 4.9
⇐⇒ bt(r) ← belongs to TrSUPP(P )N by the structure of TrAT(P )

⇐⇒ N |= ∼body+(r) and N |= ∼body−(r) ⇐⇒ M |= body(r) by
(i) and (ii) above ⇐⇒ r ∈ SR(P, M) ⇐⇒ bt(r) ∈ ExtSUPP(P, M).

4. The case of the complementary atom bt(r) ∈ head(TrSUPP(P )) fol-

lows. Recall that r ∈ P and that the rule bt(r) ← ∼bt(r) is included
in TrSUPP(P ). Thus bt(r) ∈ N ⇐⇒ bt(r) ∈ LM(TrAT(P )N) ⇐⇒
bt(r) ← belongs to TrAT(P )N by Lemma 4.9 ⇐⇒ bt(r) ← belongs
to TrSUPP(P )N by the structure of TrAT(P ) ⇐⇒ bt(r) 6∈ N ⇐⇒

r 6∈ SR(P, M), as shown above, ⇐⇒ bt(r) ∈ ExtSUPP(P, M). 2

Proposition 9.16 Let P be a normal program. If N is a stable model of
TrAT(P ), then M = N ∩ Hb(P ) is a supported model of P .

PROOF. Let N be a stable model of TrAT(P ) and define M as above. Sup-
pose that M 6|= P . Then there is a rule r ∈ P such that M |= body(r)
but M 6|= head(r). Thus r ∈ SR(P, M) and it follows by Proposition 9.15

that bt(r) ∈ N and bt(r) 6∈ N . But then head(r) ← belongs to the reduct
TrSUPP(P )N ⊆ TrAT(P )N implying that head(r) ∈ LM(TrAT(P )N) = N .
As head(r) ∈ Hb(P ), we obtain head(r) ∈ M . That is, M |= head(r), a
contradiction. Hence M |= P is the case.

Let us then assume that M is not a supported model of P . Then there is
an atom a ∈ M such that for every rule r ∈ P with head(r) = a, we have
M 6|= body(r), i.e. r 6∈ SR(P, M). Then let r be any rule with head(r) = a.

Recall that head(r) ← ∼bt(r) is included in TrSUPP(P ). It follows Propo-

sition 9.15 that r 6∈ SR(P, M) ⇐⇒ bt(r) ∈ N ⇐⇒ head(r) ← is not
included in TrSUPP(P )N ⇐⇒ head(r) ← does not belong to TrAT(P )N .
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To summarize, it follows by Lemma 4.9 that a 6∈ LM(TrAT(P )N). Thus
a 6∈ N by the stability of N . Then the definition of M implies a 6∈ M , a
contradiction. 2

9.7 Correctness of TrCTR(P )

Proposition 9.17 Let P be a normal program. If M is a stable model of P ,
# the corresponding level numbering w.r.t. M , and N = ExtAT(P, M, #),
then N ∩ head(TrCTR(P )) = ExtCTR(P, M, #) = LM(TrCTR(P )N).

PROOF. Let M be a stable model of P , # the corresponding level num-
bering, as implied by Theorem 5.8, and N = ExtCTR(P, M, #). Now
N ∩ head(TrCTR(P )) = ExtCTR(P, M, #) holds directly by Lemma 9.13.
The translation TrCTR(P ) contains four kinds of subprograms as listed in
Definition 6.9. We shall establish that N is locally stable w.r.t. each of these.

1. Consider a subprogram Qctr(a) = SEL∇P (ctr(a), a) associated with an
atom a ∈ Hb(P ). Now head(Qctr(a)) = Hbctr

∇P (ctr(a)) is one of the
subsets that form head(TrCTR(P )). Two cases arise depending on the
membership of a in N . If a 6∈ N , then a ∈ M by the definition of
N . The definition of ExtCTR(P, M, #) = N ∩ head(TrCTR(P )) im-
plies that N ∩head(Qctr(a)) = ATctr

∇P (ctr(a), #a). Then LM(QN
ctr(a)) =

ATctr
∇P (ctr(a), #a) follows by Lemma 9.1. On the other hand, if a ∈ N ,

we have a 6∈ M by the definition of N . Then N ∩ head(Qctr(a)) = ∅
by the definition of ExtCTR(P, M, #) = N ∩ head(TrCTR(P )) and
LM(QN

ctr(a)) = ∅ by Lemma 9.1, as a ∈ N holds. Thus N is locally

stable w.r.t. Qctr(a) in both cases.

2. Let us then analyze the program Qnxt(a) = NXT∇P (ctr(a), nxt(a), a)
associated with a ∈ Hb(P ). Now head(Qnxt(a)) = Hbctr

∇P (nxt(a)) is
one part of head(TrCTR(P )). Like above, we have two cases to con-
sider. Suppose that a 6∈ N is the case. As noted in the previous
item, a ∈ M and N ∩ head(Qctr(a)) = ATctr

∇P (ctr(a), #a). In addition,
N ∩head(Qnxt(a)) = ATctr

∇P (nxt(a), #a+1 mod 2∇P ) by the definition
of ExtCTR(P, M, #) = N ∩ head(TrCTR(P )), since head(Qnxt(a)) =
Hbctr
∇P (nxt(a)). Proposition 6.6 implies that #a+1 mod 2∇P = #a+1.

Then, by Lemma 9.4, it holds that LM(QN
nxt(a)) = ATctr

∇P (nxt(a), #a +

1). On the other hand, if a ∈ N , then a 6∈ M by the definition of N .
Then the definition of ExtCTR(P, M, #) = N ∩ head(TrCTR(P )) im-
plies N ∩ head(Qnxt(a)) = ∅ and LM(QN

nxt(a)) = ∅ follows by Lemma

9.4. Thus N is locally stable w.r.t. Qnxt(a).

3. Our next concern is the program Qctr(r) = SEL∇P (ctr(r), bt(r)) as-
sociated with a rule r ∈ P such that body+(r) 6= ∅. Note that
head(Qctr(r)) = Hbctr

∇P (ctr(r)) is a part of head(TrCTR(P )). Since

bt(r) appears as the control atom of the subprogram, two cases arise de-

pending its membership in N . If bt(r) 6∈ N , then r ∈ SR(P, M) by the
definition of N . It follows that N ∩ head(Qctr(r)) = ATctr

∇P (ctr(r), #r)
by the definition of ExtCTR(P, M, #) = N ∩ head(TrCTR(P )). Thus,
we obtain LM(QN

ctr(r)) = ATctr
∇P (ctr(r), #r) by Lemma 9.1. The case
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bt(r) ∈ N is covered as follows. Now r 6∈ SR(P, M) by the definition
of N . The definition of ExtCTR(P, M, #) = N ∩head(TrCTR(P )) im-
plies N ∩ head(Qctr(r)) = ∅. This is in harmony with LM(QN

ctr(r)) = ∅

which holds by Lemma 9.1. To conclude, N is locally stable w.r.t.
Qctr(r).

4. The last subprogram Qctr(r) = FIX∇P (ctr(r), 1, bt(r)) is associated
with a rule r ∈ P such that body+(r) = ∅. Recall that head(Qctr(r)) =
ATctr
∇P (ctr(r), 1). There are two possibilities. If r ∈ SR(P, M), then

#r = 1 by Definition 5.2. The definition of ExtSUPP(P, M) = N ∩

head(TrSUPP(P )) implies bt(r) 6∈ N . Then Lemma 9.6 implies that
LM(QN

ctr(r)) = ATctr
∇P (ctr(r), 1). This complies with the definition

of ExtCTR(P, M, #) = N ∩ head(TrCTR(P )) by which we obtain
N ∩ head(Qctr(r)) = ATctr

∇P (ctr(r), 1). On the other hand, if r 6∈

SR(P, M), then bt(r) ∈ N by the definition of ExtSUPP(P, M) =
N ∩ head(TrSUPP(P )). Then N ∩ head(Qctr(r)) = ∅ by the defini-
tion of ExtCTR(P, M, #) = N ∩ head(TrCTR(P )) and accordingly
LM(QN

ctr(r)) = ∅ by Lemma 9.6. Thus N is locally stable w.r.t. Qctr(r)

in both cases.

It follows by Theorem 6.22 that N is locally stable w.r.t. TrCTR(P ), i.e. N ∩
head(TrCTR(P )) = LM(TrCTR(P )N). 2

Proposition 9.18 Let P be a normal program. If N is a stable model of
TrAT(P ), then N ∩ head(TrCTR(P )) = ExtCTR(P, M, #) for M = N ∩
Hb(P ) and the function # : M ∪ SR(P, M)→ {0, . . . , 2∇P − 1} from Def-
inition 6.18.

PROOF. Let N be a stable model of TrAT(P ) so that N = LM(TrAT(P )N)
holds. Let M = N ∩Hb(P ) and define the function # as in Definition 6.18.
Proposition 9.15 implies for any a ∈ Hb(P ) and r ∈ P that

a ∈M ⇐⇒ a 6∈ N , and(9.12)

r ∈ SR(P, M) ⇐⇒ bt(r) 6∈ N.(9.13)

Then recall the translation TrCTR(P ) and head(TrCTR(P )) from Definition
6.9. The set of head atoms head(TrCTR(P )) is partitioned as follows.

1. First, we have head(Qctr(a)) = Hbctr
∇P (ctr(a)) for any a ∈ Hb(P ) and

the respective subprogram Qctr(a) = SEL∇P (ctr(a), a). Since N is a
stable model of TrAT(P ), it follows by Theorem 6.22 that N is locally
stable w.r.t. Qctr(a) ⊆ TrAT(P ), i.e. N ∩ head(Qctr(a)) = LM(QN

ctr(a)).

Two cases arise for our consideration. If a ∈ M , then a 6∈ N by (9.12)
and N ∩ head(Qctr(a)) = ATctr

∇P (ctr(a), #a) follows by Lemma 9.2,
since #a = val∇P (ctr(a), N) holds by the definition of #a for a ∈ M .
On the other hand, if a 6∈ M , we have a ∈ N by (9.12). It follows by
Lemma 9.2 that N∩head(Qctr(a)) = ∅. To conclude, N∩head(Qctr(a))
is compatible with the definition of ExtCTR(P, M, #) for each a ∈
Hb(P ).
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2. Let us then analyze the program Qnxt(a) = NXT∇P (ctr(a), nxt(a), a)
associated with a ∈ Hb(P ). Now head(Qnxt(a)) = Hbctr

∇P (nxt(a)). The
stability of N implies the local stability of N w.r.t. Qnxt(a) by Theorem
6.22. Thus N ∩ head(Qnxt(a)) = LM(QN

nxt(a)). In analogy to the first

item above, two cases arise depending on the membership of a in M .
If a ∈ M , then a 6∈ N by (9.12). Moreover, we know by the first item
that N∩head(Qctr(a)) = ATctr

∇P (ctr(a), #a). Thus we may conclude by
Lemma 9.5 that N ∩head(Qnxt(a)) = ATctr

∇P (nxt(a), #a+1 mod 2∇P ).
But if a 6∈M , then a ∈ N by (9.12) and we obtain N∩head(Qnxt(a)) =
∅ by Lemma 9.5. Thus N ∩head(Qnxt(a)) coincides with the definition
of ExtCTR(P, M, #) in both cases.

3. The case of a rule r ∈ P with body+(r) 6= ∅ follows. The respec-

tive subprogram Qctr(r) = SEL∇P (ctr(r), bt(r)), which is included in
TrAT(P ), is handled analogously to Qctr(a) in the first item. The only

notable difference is that the controlling atom bt(r) is governed by
(9.13). This relationship gives the crucial link to the definitions of #r

and ExtCTR(P, M, #) in Definitions 6.15 and 6.18, respectively.

4. The last subprogram that needs our attention is the one associated with

a rule r ∈ P with body+(r) = ∅: let Qctr(r) = FIX∇P (ctr(r), 1, bt(r)).
Now head(Qctr(r)) = ATctr

∇P (ctr(r), 1) and since N is locally stable
w.r.t. Qctr(r), it holds that N ∩ head(Qctr(r)) = LM(QN

ctr(r)). Two cases

arise. If bt(r) 6∈ N , then N ∩ head(Qctr(r)) = ATctr
∇P (ctr(r), 1) by

Lemma 9.6 and r ∈ SR(P, M) by (9.13). Thus #r = 1 by the
definition of #r and N ∩ head(Qctr(r)) complies with the definition

of ExtCTR(P, M, #). On the other hand, if bt(r) ∈ N , then N ∩
head(Qctr(r)) = ∅ follows by Lemma 9.6. This is compatible with the
definition of ExtMAX(P, M, #), as r 6∈ SR(P, M) by (9.13). Hence N

is locally stable w.r.t. Qctr(r).

Thus we have covered all subprograms of TrCTR(P ) contributing to the set
head(TrCTR(P )). In each case, we obtained a perfect compatibility w.r.t.
ExtCTR(P, M, #). Hence N ∩ head(TrCTR(P )) = ExtCTR(P, M, #). 2

9.8 Correctness of TrMAX(P )

Proposition 9.19 Let P be a normal program. If M is a stable model of P ,
# the corresponding level numbering w.r.t. M , and N = ExtAT(P, M, #),
then N ∩ head(TrMAX(P )) = ExtMAX(P, M, #) = LM(TrMAX(P )N).

PROOF. Let M be a stable model of P and # the corresponding level
numbering w.r.t. M , as implied by Theorem 5.8. Let us note that N ∩
head(TrMAX(P )) = ExtMAX(P, M, #) is implied directly by the definition
of N and Lemma 9.13. The translation TrMAX(P ) given in Definition 6.10
consists of several subprograms leading to a case analysis. In each case, we
establish the local stability of N w.r.t. the subprogram in question.

Then let r ∈ P such that body+(r) 6= ∅. Subprograms of the translation
TrMAX(r,∇P ) from Definition 6.10 are analyzed next.
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1. Let Qnxt(a) = LT∇P (ctr(r), nxt(a), bt(r)) associated with an atom a ∈
body+(r). Two cases arise. If r ∈ SR(P, M), then a ∈ M , as M |=
body(r). Thus #r and #a are well-defined, as # is a level number-
ing w.r.t. M . Moreover, #a + 1 mod 2∇P = #a + 1 by Proposition

6.6. The atom bt(r) 6∈ N by the definition of ExtSUPP(P, M) = N ∩
head(TrSUPP(P )). It follows by the definition of ExtCTR(P, M, #) =
N ∩ head(TrCTR(P )) that N ∩ Hbctr

∇P (ctr(r)) = ATctr
∇P (ctr(r), #r)

and N ∩ Hbctr
∇P (nxt(a)) = ATctr

∇P (ctr(r), #a + 1). Also, we have N ∩
head(Qnxt(a)) = ATlt

∇P (ctr(r), #r, nxt(a), #a + 1) by the definition of
ExtMAX(P, M, #) = N ∩ head(TrMAX(P )). Consequently, Lemma
9.8 implies that LM(QN

nxt(a)) = ATlt
∇P (ctr(r), #r, nxt(a), #a + 1).

On the other hand, if r 6∈ SR(P, M) holds, then bt(r) ∈ N by the
definition of ExtSUPP(P, M) = N ∩ head(TrSUPP(P )). Then the
definition of ExtMAX(P, M, #) = N ∩ head(TrMAX(P )) implies that
N ∩ head(Qnxt(a)) = ∅, as r 6∈ SR(P, M). In accordance to this, we
obtain LM(QN

nxt(a)) = ∅ by Lemma 9.8. To conclude the case analysis

above, N is locally stable w.r.t. the subprogram Qnxt(a).

2. The subprogram Rnxt(a) = EQ∇P (ctr(r), nxt(a), bt(r)) associated with
a ∈ body+(r) is covered analogously to Qnxt(a), but we have to ap-
ply Lemma 9.11 rather than Lemma 9.8. Then N ∩ head(Rnxt(a)) =
LM(RN

nxt(a)) which indicates that N is locally stable w.r.t. Rctr(r).

3. Let

Qmax(r) = {max(r)← ∼bt(r),∼eq(ctr(r), nxt(a)) | a ∈ body+(r)}.

If r ∈ SR(P, M) holds, then bt(r) 6∈ N follows by the definition of
ExtSUPP(P, M) = N ∩ head(TrSUPP(P )). Then the rule max(r) ←
belongs to the reduct QN

max(r)

⇐⇒ ∃a ∈ body+(r) such that eq(ctr(r), nxt(a)) 6∈ N

⇐⇒ ∃a ∈ body+(r) such that #r = #a + 1 holds by the definition
of ExtMAX(P, M, #) = N ∩ head(TrMAX(P )). The last is vacuously
true by Theorem 5.8, as M is a supported model of P and # is a level
numbering w.r.t. M . It follows by Lemma 4.9 that LM(QN

max(r)) =

{max(r)} which equals to N ∩ head(Qmax(r)) by the definition of the
set ExtMAX(P, M, #) = N ∩ head(TrMAX(P )).

If r 6∈ SR(P, M) holds, then bt(r) ∈ N follows by the definition of
ExtSUPP(P, M) = N∩head(TrSUPP(P )). The structure of Qmax(r) im-
plies that QN

max(r) = ∅ is this case. Thus N ∩ head(Qmax(r)) = ∅, as dic-

tated by the definition of ExtMAX(P, M, #), equals to LM(QN
max(r)) =

∅. Hence N is locally stable w.r.t. Qmax(r).

Finally, let us consider the set of constraints Qx =

(9.14)
⋃

r∈P and a∈body+(r)

{x← ∼x,∼bt(r),∼lt(ctr(r), nxt(a))1} ∪

⋃

r∈P and body+(r)6=∅

{x← ∼x,∼bt(r),∼max(r)}.
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Note that x 6∈ N by definition and we would like to establish that x ← does
not belong QN

x , which could result for two reasons.

1. Suppose that bt(r) 6∈ N and lt(ctr(r), nxt(a))1 6∈ N hold for some
rule r ∈ P such that body+(r) 6= ∅ and an atom a ∈ body+(r). The
definition of ExtSUPP(P, M) = N∩head(TrSUPP(P )) implies that r ∈

SR(P, M), as bt(r) 6∈ N . Then the definition of ExtMAX(P, M, #) =
N ∩ head(TrMAX(P )) implies that lt(ctr(r), nxt(a))1 ∈ N and #r <

#a + 1 for an atom a ∈ body+(r). A contradiction, as r ∈ SR(P, M)
and # is a level numbering w.r.t. M .

2. Suppose that bt(r) 6∈ N and max(r) 6∈ N for some rule r ∈ P

such that body+(r) 6= ∅. Then r ∈ SR(P, M) follows as above,
and max(r) ∈ N follows by the definition of ExtMAX(P, M, #) =
N ∩ head(TrMAX(P )), a contradiction.

It follows that QN
x = ∅ so that LM(QN

x ) = ∅ by Lemma 4.9. Thus N ∩
head(Qx) = LM(QN

x ), which means that N is locally stable w.r.t. Qx. To
conclude, we have established that N is locally stable w.r.t. each subprogram
of TrMAX(P ) and by Theorem 6.22, N is locally stable w.r.t. TrMAX(P ), too.

2

Proposition 9.20 Let P be a normal program. If N is a stable model of
TrAT(P ), then N ∩ head(TrMAX(P )) = ExtMAX(P, M, #) for M = N ∩
Hb(P ) and the function # : M ∪ SR(P, M)→ {0, . . . , 2∇P − 1} from Def-
inition 6.18.

PROOF. Let N be a stable model of TrAT(P ), and define M and # as
above. It follows by Theorem 6.22 that N is locally stable w.r.t. TrMAX(P ) ⊆
TrAT(P ). Moreover, the relationships (9.12) and (9.13) pointed out in the
proof of Proposition 9.18 are valid in this proof as well. Moreover, recall the
translation TrMAX(P ) from Definition 6.10. In the sequel, we analyze sub-
programs that partition head(TrMAX(P )) suitably. Note that Theorem 6.22
implies that N is locally stable w.r.t. each subprogram.

Recall the subprogram Qx from (9.14) for which head(Qx) = {x}. Let
us then assume that x ∈ N . Since N is locally stable w.r.t. TrMAX(P ), it
is locally stable w.r.t. Qx, too. Thus x ∈ LM(QN

x ) so that x ← must be-
long to QN

x . Since ∼x appears in the body of each rule in Qx this implies
that x 6∈ N , a contradiction. Hence x 6∈ N . Accordingly, it holds that
x 6∈ ExtMAX(P, M, #) by the definition of ExtMAX(P, M, #). Subprograms
which are associated with rules r ∈ P such that body+(r) 6= ∅ are analyzed
next.

1. Let Qnxt(a) = LT∇P (ctr(r), nxt(a), bt(r)) associated with an atom a ∈
body+(r). Since N is locally stable w.r.t. Qnxt(a), it holds that N ∩
head(Qnxt(a)) = LM(QN

nxt(a)). There are two cases to consider. First, if

bt(r) 6∈ N , then r ∈ SR(P, M) by (9.13). Proposition 9.18 implies

(9.15)

{

N ∩ Hbctr
∇P (ctr(r)) = ATctr

∇P (ctr(r), #r) and
N ∩ Hbctr

∇P (nxt(a)) = ATctr
∇P (nxt(a), #a + 1 mod 2∇P ).
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Then N ∩head(Qnxt(a)) = ATlt
∇P (ctr(r), #r, nxt(a), #a+1 mod 2∇P )

follows by Lemma 9.9. This is fully compatible with the definition of

ExtMAX(P, M, #). Second, if bt(r) ∈ N , we have r 6∈ SR(P, M) by
(9.13). In addition to this, Lemma 9.9 implies that N∩head(Qnxt(a)) =
∅, in harmony with the definition of ExtMAX(P, M, #).

2. Then consider Rnxt(a) = EQ∇P (ctr(r), nxt(a), bt(r)) associated with
a ∈ body+(r). This subprogram is handled analogously to the one
above — starting from the local stability of N w.r.t. it. Like above,

bt(r) 6∈ N implies r ∈ SR(P, M) and (9.15). Then the equality
N ∩ head(Rnxt(a)) = ATeq

∇P (ctr(r), #r, nxt(a), #a + 1 mod 2∇P ) fol-

lows by Lemma 9.12. Similarly, bt(r) ∈ N implies r ∈ SR(P, M)
and N ∩ head(Rnxt(a)) = ∅ by Lemma 9.12. Hence the structure of
ExtMAX(P, M, #) is respected.

3. Let

Qmax(r) = {max(r)← ∼bt(r),∼eq(ctr(r), nxt(a)) | a ∈ body+(r)}.

Since N is locally stable w.r.t. Qmax(r), it follows that N∩head(Qmax(r))

equals to LM(QN
max(r)). Again, two cases arise. If bt(r) 6∈ N , then

r ∈ SR(P, M) by (9.13). Let us then assume max(r) 6∈ N . Since the

rule x ← ∼x,∼bt(r),∼max(r) is included in Qx, we obtain that x ←
is included in QN

x . Thus x ∈ N , a contradiction. Hence max(r) ∈ N

is necessarily the case. Recall that max(r) ∈ ExtMAX(P, M, #), too.

On the other hand, if bt(r) ∈ N , then r 6∈ SR(P, M) by (9.13). It
follows that QN

max(r) = ∅ so that max(r) 6∈ LM(QN
max(r)). Thus we

have a perfect match with the definition of ExtMAX(P, M, #) which
excludes max(r) when r 6∈ SR(P, M).

We have now covered all sets of atoms that constitute head(TrMAX(P )). It
follows that N ∩ head(TrMAX(P )) = ExtMAX(P, M, #). 2

Proposition 9.21 Let P be a normal program. If N is a stable model of
TrAT(P ), M = N ∩ Hb(P ) and # from Definition 6.18, then

(9.16) #r =
{

max{#a + 1 mod 2∇P | a ∈ body+(r)}, if body+(r) 6= ∅.
1, otherwise.

holds for every r ∈ SR(P, M).

PROOF. Let N be a stable model of TrAT(P ) and define M as above and #
by Definition 6.18. Then let us consider any r ∈ P such that r ∈ SR(P, M)
for which #r is well-defined. As established in Proposition 9.18, this partic-

ular value is held by ctr(r) in binary. Then (9.13) implies that bt(r) 6∈ N .
Two cases arise depending whether body+(r) = ∅ or not.

If body+(r) = ∅, then N ∩ Hbctr
∇P (ctr(r)) = ATctr

∇P (ctr(r), 1) by Proposi-
tion 9.18. Thus #r = val∇P (ctr(r), N) = 1, as insisted by Definition 6.18.

If body+(r) 6= ∅, there is at least one atom a ∈ body+(r). Let us assume
that #r < #a+1 mod 2∇P . Recall that the value #a+1 mod 2∇P is held by
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the counter nxt(a), i.e. N ∩Hbctr
∇P (nxt(a)) = ATctr

∇P (nxt(a), #a+1 mod 2∇P )
by Proposition 9.18. Since N ∩ head(TrMAX(P )) = ExtMAX(P, M, #) by

Proposition 9.20, we obtain lt(ctr(r), nxt(a))1 6∈ N . Then recall that the rule

x ← ∼x,∼bt(r),∼lt(ctr(r), nxt(a))1 included in TrMAX(P ). It follows that
x ← is included in TrMAX(P )N and furthermore x ∈ N , a contradiction.
Thus we conclude that #r ≥ #a + 1 mod 2∇P actually holds for all a ∈
body+(r).

On the other hand, we established max(r) ∈ N in the proof of Proposi-
tion 9.20 where the program Qmax(r) was analyzed. Since N is locally sta-
ble w.r.t. Qmax(r), it follows that max(r) ∈ LM(QN

max(r)). Then Lemma 4.9

implies that max(r) ← belongs to QN
max(r). This is possible only if there

is a ∈ body+(r) such that eq(ctr(r), nxt(a)) 6∈ N . It follows by Propo-

sition 9.20 that eq(ctr(r), nxt(a)) 6∈ ExtMAX(P, M, #), or equivalently, it
holds that eq(ctr(r), nxt(a)) ∈ ExtMAX(P, M, #). Then the definition of
ExtMAX(P, M, #) implies that #r = #a + 1 mod 2∇P . To conclude, we
have established that

#r = max{#a + 1 mod 2∇P | a ∈ body+(r)}.

2

9.9 Correctness of TrMIN(P )

Proposition 9.22 Let P be a normal program. If M is a stable model of P ,
# the corresponding level numbering w.r.t. M , and N = ExtAT(P, M, #),
then LM(TrMIN(P )N) = ExtMIN(P, M, #).

PROOF. Let M be a stable model of P and # the corresponding level num-
bering, as implied by Theorem 5.8. We note that N ∩ head(TrMIN(P )) =
ExtMIN(P, M, #) holds directly by the definition of N and Lemma 9.13. The
translation TrMIN(P ) given in Definition 6.11 consists of multiple subpro-
grams leading to a case analysis. In each case, we establish the local stability
of N w.r.t. the subprogram in question.

Given a rule r ∈ P , the subprograms of TrMIN(r,∇P ) from Definition
6.11 are addressed next. Suppose that head(r) = a.

1. Let Qctr(a) = LT∇P (ctr(r), ctr(a), bt(r)). Two cases arise depend-
ing on the status of r. If r ∈ SR(P, M), then a ∈ M , as M |=
body(r) and M |= r. Thus #r and #a are well-defined, as # is
a level numbering w.r.t. M . The atom bt(r) 6∈ N by the defini-
tion of ExtSUPP(P, M) = N ∩ head(TrSUPP(P )). It follows by the
definition of ExtCTR(P, M, #) = N ∩ head(TrCTR(P )) that N ∩
Hbctr
∇P (ctr(r)) = ATctr

∇P (ctr(r), #r) as well as that N ∩Hbctr
∇P (ctr(a)) =

ATctr
∇P (ctr(a), #a). Also, we have

N ∩ head(Qctr(a)) = ATlt
∇P (ctr(r), #r, ctr(a), #a)

by the definition of ExtMIN(P, M, #) = N ∩ head(TrMIN(P )). Thus

LM(QN
ctr(a)) = ATlt

∇P (ctr(r), #r, ctr(a), #a)
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follows by Lemma 9.8.

On the other hand, if r 6∈ SR(P, M) holds, then bt(r) ∈ N by the
definition of ExtSUPP(P, M) = N ∩ head(TrSUPP(P )). The defini-
tion of ExtMIN(P, M, #) = N ∩ head(TrMIN(P )) implies that N ∩
head(Qctr(a)) = ∅, as r 6∈ SR(P, M). In accordance to this, we ob-
tain LM(QN

ctr(a)) = ∅ by Lemma 9.8. To conclude the preceding case

analysis, N is locally stable w.r.t. Qctr(a).

2. The subprogram Rctr(a) = EQ∇P (ctr(r), ctr(a), bt(r)) is covered anal-
ogously to Qctr(a), but we have to apply Lemma 9.11 in this case rather
than Lemma 9.8. Then N ∩ head(Rctr(a)) = LM(RN

ctr(a)) which indi-

cates that N is locally stable w.r.t. the subprogram Rctr(a).

The following subprogram is associated with any atom a ∈ head(P ). Let

Qmin(a) = {min(a)← ∼bt(r),∼eq(ctr(r), ctr(a)) | r ∈ DefP (a)}. Note that
head(Qmin(a)) = {min(a)}. It follows that min(a) ∈ N ⇐⇒ a ∈ M by
the definition of ExtMIN(P, M, #) = N ∩ head(TrMIN(P )) ⇐⇒ ∃r ∈
DefP (a) such that r ∈ SR(P, M), as M is a supported model of P , ⇐⇒
∃r ∈ DefP (a) such that r ∈ SR(P, M) and #r = #a by Definition 5.2, as

# is a level numbering w.r.t. M , ⇐⇒ ∃r ∈ DefP (a) such that bt(r) 6∈ N

and eq(ctr(r), ctr(a)) 6∈ N by the definitions of ExtSUPP(P, M) = N ∩
head(TrSUPP(P )) and ExtMIN(P, M) = N ∩ head(TrMIN(P )) ⇐⇒ the
rule min(a) ← belongs to the reduct QN

min(a) ⇐⇒ min(a) ∈ LM(QN
min(a)).

Hence N is locally stable w.r.t. Qmin(a).
Finally, let us consider the set of constraints

(9.17) Qy =
⋃

r∈P

{y← ∼y,∼bt(r),∼lt(ctr(r), ctr(head(r)))1} ∪

⋃

a∈Hb(P )

{y← ∼y,∼a,∼min(a)}.

Note that y 6∈ N by definition and we would like to establish that y ← does
not belong QN

y , which might result for two reasons.

1. Let bt(r) 6∈ N and lt(ctr(r), ctr(head(r)))1 6∈ N hold for some r ∈ P .
The definition of ExtSUPP(P, M) = N ∩ head(TrSUPP(P )) implies

that r ∈ SR(P, M), as bt(r) 6∈ N . Note that r ∈ SR(P, M) implies
that head(r) = a ∈ M , as M |= r. Then #r < #a follows by the def-
inition of ExtMIN(P, M, #) = N ∩ head(TrMIN(P )). A contradiction
by Definition 5.2, as a ∈M and # is a level numbering w.r.t. M .

2. Suppose that a 6∈ N and min(a) 6∈ N hold for some atom a ∈ Hb(P ).
Then the definition of ExtSUPP(P, M) = N ∩ head(TrSUPP(P )) im-
plies a ∈ M . Moreover, min(a) ∈ N follows by the definition of
ExtMIN(P, M, #) = N ∩ head(TrMIN(P )), a contradiction.

It follows that QN
y = ∅ so that LM(QN

y ) = ∅ by Lemma 4.9. Thus N ∩
head(Qy) = LM(QN

y ), which means that N is locally stable w.r.t. Qy. To
conclude, we have established that N is locally stable w.r.t. each subprogram
of TrMIN(P ). Hence N is locally stable w.r.t. TrMIN(P ) by Theorem 6.22.

2
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Proposition 9.23 Let P be a normal program. If N is a stable model of
TrAT(P ), then N ∩ head(TrMIN(P )) = ExtMIN(P, M, #) for M = N ∩
Hb(P ) and the function # : M ∪ SR(P, M)→ {0, . . . , 2∇P − 1} from Def-
inition 6.18.

PROOF. Let N be a stable model of TrAT(P ), and define M and # as
above. It follows by Theorem 6.22 that N is locally stable w.r.t. TrMIN(P ) ⊆
TrAT(P ). Moreover, the relationships (9.12) and (9.13) pointed out in the
proof of Proposition 9.18 are valid in this proof as well. Let us recall the
translation TrMIN(P ) and the set head(TrMIN(P )) from Definition 6.10. In
the sequel, we analyze subprograms Q ⊆ TrMIN(P ) which partition the set
head(TrMIN(P )) suitably such that Theorem 6.22 implies that N is locally
stable w.r.t. each subprogram Q being analyzed.

Recall the program Qy from (9.17) for which head(Qy) = {y}. Let us
then assume that y ∈ N . Since N is locally stable w.r.t. TrMIN(P ), it is
locally stable w.r.t. Qy, too. Thus y ∈ LM(QN

y ) so that y ← must belong to
QN

y . Since∼y appears in the body of each rule in Qy this implies that y 6∈ N ,
a contradiction. Hence y 6∈ N . Accordingly, we have y 6∈ ExtMIN(P, M, #)
by the definition of ExtMIN(P, M, #).

Let us then address the subprograms of TrMIN(r,∇P ) which are associated
with a rule r ∈ P . Let head(r) = a.

1. Let Qctr(a) = LT∇P (ctr(r), ctr(a), bt(r)). Since N is locally stable
w.r.t. Qctr(a), it holds that N ∩ head(Qctr(a)) = LM(QN

ctr(a)). There

are two cases to consider. First, if bt(r) 6∈ N , then r ∈ SR(P, M) by
(9.13) and Proposition 9.18 implies the following:

(9.18)

{

N ∩ Hbctr
∇P (ctr(r)) = ATctr

∇P (ctr(r), #r) and
N ∩ Hbctr

∇P (ctr(a)) = ATctr
∇P (ctr(a), #a).

Then N ∩ head(Qctr(a)) = ATlt
∇P (ctr(r), #r, nxt(a), #a) is obtained

by Lemma 9.9. This conforms to the definition of ExtMIN(P, M, #).

Second, if bt(r) ∈ N , we have r 6∈ SR(P, M) by (9.13). On the other
hand, Lemma 9.9 implies that N∩head(Qctr(a)) = ∅, in harmony with
the definition of ExtMIN(P, M, #).

2. Then consider Rctr(a) = EQ∇P (ctr(r), ctr(a), bt(r)). This subprogram
is handled analogously to the one above — starting from the local sta-

bility of N w.r.t. Rctr(a). Like above, bt(r) 6∈ N implies r ∈ SR(P, M)
and (9.18). Then N ∩ head(Rctr(a)) = ATeq

∇P (ctr(r), #r, ctr(a), #a)

follows by Lemma 9.12. Quite similarly, bt(r) ∈ N implies r 6∈
SR(P, M) and N ∩ head(Rctr(a)) = ∅ by Lemma 9.12. To conclude,
the structure of ExtMIN(P, M, #) is respected.

Finally, given any atom a ∈ head(P ), let us define

Qmin(a) = {min(a)← ∼bt(r),∼eq(ctr(r), ctr(a)) | r ∈ DefP (a)}.

Since N is locally stable w.r.t. Qmin(a), it holds that N ∩ head(Qmin(a)) =
LM(QN

min(a)). Two cases arise. If a 6∈ N , then a ∈ M by (9.12). Let us then

assume min(a) 6∈ N . Since the rule y← ∼y,∼a,∼min(a) is included in Qy,
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we obtain that y ← is included in QN
y . Thus y ∈ N , a contradiction. Hence

min(a) ∈ N must hold. Recall that min(a) ∈ ExtMIN(P, M, #), too. On the
other hand, if a ∈ N , then a 6∈M by (9.12). Since M is a supported model of

P , it follows that r 6∈ SR(P, M) holds for every r ∈ DefP (a). Thus bt(r) ∈ N

for all r ∈ DefP (a) by (9.13). It follows that QN
min(a) = ∅ so that min(a) 6∈

LM(QN
min(a)) = ∅. This matches with the definition of ExtMIN(P, M, #)

which excludes min(a) when a 6∈ M . To conclude, we have established that
N ∩ head(Qmin(a)) is fully compatible with ExtMIN(P, M, #).

In this way, we have covered all subprograms contributing a partition to
head(TrMIN(P )). Thus N ∩ head(TrMIN(P )) = ExtMIN(P, M, #). 2

Proposition 9.24 Let P be a normal program. If N is a stable model of
TrAT(P ), M = N ∩ Hb(P ) and the function # from Definition 6.18, then

(9.19) #a = min{#r | r ∈ SR(P, M) and a = head(r)}

holds for every a ∈M .

PROOF. Let N be a stable model of TrAT(P ). Then define M as above and
the function # using Definition 6.18. It follows by Proposition 9.16 that M

is a supported model of P . Then let us consider any a ∈M , for which a 6∈ N

holds by (9.12).
Let r be any rule r ∈ DefP (a) such that r ∈ SR(P, M). Then both

#a and #r are well-defined by Definition 6.18. Let us then assume that
#r < #a. Recall that N ∩ Hbctr

∇P (ctr(r)) = ATctr
∇P (ctr(r), #r) and N ∩

Hbctr
∇P (ctr(a)) = ATctr

∇P (ctr(a), #a) by Proposition 9.18. Since the set N ∩
head(TrMIN(P )) equals to ExtMIN(P, M, #) by Proposition 9.23, it follows

that lt(ctr(r), ctr(a))1 6∈ N . Then recall that the rule

y← ∼y,∼bt(r),∼lt(ctr(r), nxt(a))1

included in TrMIN(P ). Now (9.13) implies that bt(r) 6∈ N . It follows that
y ← is included in TrMIN(P )N and furthermore y ∈ N . But this is a con-
tradiction w.r.t. Proposition 9.23. Thus we may conclude that #r ≥ #a

actually holds for all r ∈ DefP (a) such that r ∈ SR(P, M).
On the other hand, we established min(a) ∈ N in the proof of Propo-

sition 9.23, where the program Qmin(a) was analyzed. Since N is locally
stable w.r.t. Qmin(r), it follows that min(a) ∈ LM(QN

min(a)). Then Lemma

4.9 implies that min(a) ← belongs to QN
min(a). This is possible only if there

is r ∈ DefP (a) such that bt(r) 6∈ N and eq(ctr(r), nxt(a)) 6∈ N . It fol-
lows that r ∈ SR(P, M) by (9.13). Moreover, Proposition 9.23 implies

that eq(ctr(r), ctr(a)) 6∈ ExtMIN(P, M, #). Then the definition of the set
ExtMIN(P, M, #) implies that eq(ctr(r), ctr(a)) ∈ ExtMIN(P, M, #) which
indicates that #r = #a is in fact the case. To conclude, we have established
the claim regarding #a. 2

9.10 Correctness of TrAT(P )

Proposition 9.25 If M is a supported model of a normal program P and
# : M ∪ SR(P, M) → {0, . . . , 2∇P − 1} a function satisfying (9.16) and
(9.19), then # is a level numbering w.r.t. M .
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PROOF. We should essentially establish the requirement imposed on #r in
Definition 5.2 using (9.16) and (9.19). If M = ∅, then also SR(P, M) = ∅,
since M |= P , and # is trivially a level numbering w.r.t. M . Thus we assume
M 6= ∅ and its implication SR(P, M) 6= ∅ in the sequel. Let r be any
rule from SR(P, M). By (9.16) the value #r is either 1 when body+(r) =
∅; or #r is the maximum among the values #b + 1 mod 2∇P where b ∈
body+(r) when body+(r) 6= ∅. In the latter case, the level number #b

is the predecessor of #r modulo 2∇P for some b ∈ body+(r). Note that
b ∈ M , as r ∈ SR(P, M). Since M is a supported model of P , there is a
rule r′ ∈ SR(P, M) such that head(r′) = b and #b = #r′ is the minimum
(9.19) and the predecessor of #r modulo 2∇P ; i.e. #r = #r′ + 1 mod 2∇P .
To conclude our analysis so far,

1. either body+(r) = ∅ and #r = 1; or

2. body+(r) 6= ∅ and there are b ∈ body+(r) and r′ ∈ SR(P, M) such
that head(r′) = b ∈M , #r′ = #b, and #r = #r′ + 1 mod 2∇P .

Since r was arbitrary in the preceding analysis, we can build a sequence of
rules r1, . . . , rn from SR(P, M) such that r1 = r, for all i ∈ {1, . . . , n− 1},
body+(ri) 6= ∅ and #ri = #ri+1 + 1 mod 2∇P ; and body+(rn) = ∅. Sup-
pose that such rn cannot be found, i.e. the sequence r1, r2, . . . contains only
rules ri with body+(ri) = ∅. Note that the sequence

#head(r1), #head(r2), . . .

is decreasing modulo 2∇P by construction and also identical to the sequence
#r1, #r2, . . . after the first element. Since # is a function, we conclude that
the head atoms head(r2), head(r3), . . . must be different from each other at
least until the rule r(2∇P +1), which is encountered after 2∇P steps and the
level number of which coincides with #r1 due to modulo arithmetics. As
a consequence, there are 2∇P different atoms in Hb(P ). A contradiction,
as 2∇P ≥ |Hb(P )| + 2. Hence the existence of rn with body+(r) = ∅ is
guaranteed. Given the range of #, this implies that #r = n where n <

2∇P . A further implication is that the level numbers #r assigned to rules
r ∈ SR(P, M) are always greater than 0, because r was freely chosen above.

As a consequence, the level numbers #a assigned to atoms a ∈ M are
greater than 0 by (9.19). Let us then assume that #a = 2∇P − 1 for some
a ∈ M . By (9.19) there is a rule r ∈ SR(P, M) such that #r = #a = 2∇P−1
and we can construct a sequence of rules r1, . . . , rn as above, which starts
from the rule r1 = r. Since #r = 2∇P − 1, the length of the sequence
must be n = 2∇P − 1. Moreover, the values #r1 = #head(r1), #r2 =
#head(r2), form a decreasing sequence. Since # is a function, there must
be 2∇P − 1 different (head) atoms in head(P ) ⊆ Hb(P ) as well as Hb(P ).
A contradiction, as 2∇P − 1 ≥ |Hb(P )| + 2 − 1 = |Hb(P )| + 1. Thus
0 < #a < 2∇P − 1 for all a ∈ M . Given this crucial piece of information
and a rule r ∈ SR(P, M) with body+(r) 6= ∅, the first part of the equation
(9.16) can be rewritten as

#r = max{#b + 1 mod 2∇P | b ∈ body+(r)}
= max{#b + 1 | b ∈ body+(r)}
= max{#b | b ∈ body+(r)}+ 1.
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To conclude, # is a level numbering w.r.t. M , as it is a function from M ∪
SR(P, M) to N and the requirements of Definition 5.2 are met. 2

Proposition 9.26 Let P be a normal program. If M is a stable model of P

and # is the corresponding level numbering w.r.t. M , then the interpretation
N = ExtAT(P, M, #) is a stable model of TrAT(P ) such that M = N ∩
Hb(P ).

PROOF. Let M be a stable model of P . The existence of the unique level
numbering # w.r.t. M is implied by Theorem 5.8. Define N as the set of
atoms ExtAT(P, M, #) given in Definition 6.16.

The translations TrSUPP(P ), TrCTR(P ), TrMAX(P ), and TrMIN(P ) which
constitute TrAT(P ) have been designed so that head(TrAT(P )) is partitioned
by the respective sets of head atoms. Moreover, Propositions 9.14, 9.17, 9.19,
and 9.22 imply that N is locally stable w.r.t. these partitions of TrAT(P ). It
follows by Theorem 6.22 that N is a stable model of TrAT(P ). Moreover, the
projection N ∩ Hb(P ) = M by Definitions 6.14 and 6.16. 2

Proposition 9.27 Let P be a normal program. If N is a stable model of
the translation TrAT(P ), then M = N ∩ Hb(P ) is a stable model of P , the
function # from Definition 6.18 is a level numbering w.r.t. M and N =
ExtAT(P, M, #).

PROOF. Let N be a stable model of TrAT(P ) and define M = N ∩ Hb(P )
as above. Note that the set SR(P, M) is also well-defined, as M is. Thus
we may define a function # — a level numbering candidate — using Def-
inition 6.18. It follows by Proposition 9.16 that M is a supported model of
P . Moreover, the function # meets the requirements for a level numbering
w.r.t. M by Propositions 9.21, 9.24, and 9.25. Thus M is a stable model of P .
Moreover, the projections N∩head(TrSUPP(P )), N∩head(TrCTR(P )), N∩
head(TrMAX(P )), and N∩head(TrMIN(P )) equal to the sets ExtSUPP(P, M)
(Proposition 9.15), ExtCTR(P, M, #) (Proposition 9.18), ExtMAX(P, M, #)
(Proposition 9.20), and ExtMIN(P, M, #) (Proposition 9.23), respectively. By
Definition 6.16, the union of these sets is ExtAT(P, M, #). Since N ⊆
head(TrAT(P )) and the disjoint union of

head(TrSUPP(P )), head(TrCTR(P )), head(TrMAX(P )), and
head(TrMIN(P ))

coincides with head(TrAT(P )), it follows that N = ExtAT(P, M, #). 2

PROOF of Theorem 6.20. Let us first address the polynomiality of TrAT.
Given a normal logic program P , it is obvious that the Herbrand base Hb(P )
can be determined by performing a linear pass through the program. This is
basically a linear-time operation, but the removal of duplicates adds a loga-
rithmic factor in the worst case — recall that Hb(P ) is a set of atoms rather
than a list of atoms. Once Hb(P ) is known, then |Hb(P )| and ∇P can be
computed in linear/logarithmic time. Let us then consider each one of the
translations TrSUPP(P ), TrCTR(P ), TrMAX(P ), and TrMIN(P ) separately.

1. Recall TrSUPP(P ) from Definition 6.8. Each atom a ∈ Hb(P ) is trans-
lated into a rule of five symbols; recall that separators count as one extra
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symbol for each rule. A rule (2.1) consisting of 2n + 3m + 3 symbols is
translated into three rules consisting of 2n + 3m + 13 symbols in total.
Thus ||TrSUPP(P )|| is 5× |Hb(P )|+ ||P ||+ 10× |P | which is clearly
linear in ||P ||, as |Hb(P )| < ||P || and |P | < ||P ||. Furthermore, the
translation can be formed in linear time by doing a linear pass through
Hb(P ) and P and producing the required rules.

2. Let us then consider the translation TrCTR(P ) from Definition 6.9,
which uses the primitives from Table 2 as subprograms. By count-
ing the symbols in the rules involved in these programs, we obtain
the lengths ||SELj(a, c)|| = 16j, ||NXTj(a, b, c)|| = 72j − 56, and
||FIXj(a, n, c)|| = 5j in general. The translation TrCTR(P ) concerns
both atoms a ∈ Hb(P ) and rules r ∈ P . The translation of an atom
a involves 16∇P + 72∇P − 56 = 88∇P − 56 symbols whereas the
translation of a rule r contains either 16∇P or 5∇P — depending
on body+(r). Therefore, ||TrCTR(P )|| is bounded from above by the
number |Hb(P )| × (88∇P − 56) + |P | × 16∇P which is linear in
||P || × ∇P , since |Hb(P )| < ||P || and |P | < ||P ||. It is also obvious
that TrCTR(P ) can be formed by doing a linear pass through Hb(P )
and P . Thus TrCTR(P ) can be produced in time linear to ||P || × ∇P .

3. The translation TrMAX(P ) from Definition 6.10 is based on the prim-
itives in Table 3. Generally speaking, the lengths of the programs
therein are ||LTj(a, b, c)|| = 47j − 28 and ||EQj(a, b, c)|| = 22j + 8.
The translation TrMAX(P ) deals basically with positive body atoms a ∈
body+(r) appearing in non-atomic rules r. Then ||TrMAX(r,∇P, a)||
is 47∇P − 28 + 22∇P + 8 + 19 = 69∇P − 1. As a consequence,
||TrMAX(P )|| is bounded from above by ||P ||× (69∇P −1)+ |P |×11,
as the number of positive body atoms in P is less than ||P || and the
number of non-atomic rules is at most |P |. This makes ||TrMAX(P )||
linear in ||P || ×∇P and the time required to compute TrMAX(P ) is of
order ||P || × ∇P , as TrMAX(P ) can be formed on a rule-by-rule basis.

4. The case of the translation TrMIN(P ) from Definition 6.11 is similar. A
rule r ∈ P is translated so that ||TrMIN(r,∇P )|| = 69∇P − 1, too, and
||TrMIN(P )|| is bounded from above by |P |× (69∇P −1)+ |Hb(P )|×
11 which is also linear in ||P || × ∇P . The actual translation can be
produced in time linear to ||P ||×∇P by passing through P and Hb(P ).

It remains to show the faithfulness of TrAT. Definition 6.12 implies that
Hb(P ) ⊆ Hb(TrAT(P )) and Hbv(TrAT(P )) = Hbv(P ). By Proposition
9.26 and Theorem 5.8, there is an extension function ExtAT that maps M ∈
SM(P ) into N = ExtAT(P, M, #) ∈ SM(TrAT(P )) such that M = N ∩
Hb(P ). Recall that the level numbering # is uniquely determined in this
relationship. Moreover, we know by Proposition 9.27 and Theorem 5.8
that if N ∈ SM(TrAT(P )), then M = N ∩ Hb(P ) ∈ SM(P ) and N =
ExtAT(P, M, #) where # is the unique level numbering associated with M .
Thus we may conclude TrAT faithful by Theorem 3.19. 2
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