
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 81

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 81

Espoo 2003 HUT-TCS-A81

EFFICIENT COMPUTER-AIDED VERIFICATION OF PARALLEL

AND DISTRIBUTED SOFTWARE SYSTEMS

Marko Mäkelä

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 81

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 81

Espoo 2003 HUT-TCS-A81

EFFICIENT COMPUTER-AIDED VERIFICATION OF PARALLEL

AND DISTRIBUTED SOFTWARE SYSTEMS

Marko Mäkelä

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of
the Department of Computer Science and Engineering, for public examination and debate in Auditorium
E at Helsinki University of Technology (Espoo, Finland) on the 28th of November, 2003, at 12 o’clock
noon.

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Marko Mäkelä

ISBN 951-22-6791-8

ISBN 951-22-6792-6 (PDF)

ISSN 1457-7615

Otamedia Oy

Espoo 2003

http://lib.hut.fi/Diss/2003/isbn9512267926/

ABSTRACT: The society is becoming increasingly dependent on appli-
cations of distributed software systems, such as controller systems and
wireless telecommunications. It is very difficult to guarantee the correct
operation of this kind of systems with traditional software quality assur-
ance methods, such as code reviews and testing. Formal methods, which
are based on mathematical theories, have been suggested as a solution.
Unfortunately, the vast complexity of the systems and the lack of com-
petent personnel have prevented the adoption of sophisticated methods,
such as theorem proving.

Computerised tools for verifying finite state asynchronous systems ex-
ist, and they been successful on locating errors in relatively small software
systems. However, a direct translation of software to low-level formal
models may lead to unmanageably large models or complex behaviour.
Abstract models and algorithms that operate on compact high-level de-
signs are needed to analyse larger systems.

This work introduces modelling formalisms and verification methods of
distributed systems, presents efficient algorithms for verifying high-level
models of large software systems, including an automated method for
abstracting unneeded details from systems consisting of loosely connected
components, and shows how the methods can be applied in the software
development industry.

KEYWORDS: distributed systems, software systems, model checking, ver-
ification, reachability analysis

Contents

Preface 1

List of Publications 2

1 Introduction 3
1.1 Interfaces and Abstraction in Software Systems 4
1.2 Objective and Methods . 5
1.3 Contributions . 6

2 Verification 8
2.1 Formulating and Checking the Desired Properties 9
2.2 Modelling Formalisms . 10

Guarded Command Languages 11
Process Algebra . 11
Transition Systems . 12
Petri Nets . 12
Logic . 15

2.3 Specialised Verification Methods and Tools 15
Theorem Proving . 15
Rewriting Systems and Equivalence Tests 16
Structural Analysis . 16
Symbolic Model Checking 17

3 State Space Enumeration 19
3.1 Benefits of State Space Enumeration 19
3.2 Alleviating the State Space Explosion 20

Eliminating Redundant Data 20
Dealing with Independent Actions 21
Compositional Verification 21

3.3 Reducing the Memory Usage 22
Relaxing the Loop Check 22
Compression Techniques 23
Approximating the Set of Reachable States 24

3.4 Reducing the Execution Time 24

4 Developing Verified Software Systems 25
4.1 Verifying Abstract Designs 25
4.2 Verifying Implementations 26

5 Summary 29
5.1 A Unification Algorithm for Computing Successors 29

Background . 29
Related Work . 30
A Description of the Algorithm 31
Contributions . 32

5.2 Modular Reachability Analyser 32
Background . 33
Related Work . 33

Contributions . 34
5.3 Parallelised State Space Enumeration 34

Background . 35
Related Work . 35
Contributions . 36

5.4 Modular State Space Enumeration 37
Background . 37
Related Work . 38
A Description of the Algorithm 39
Contributions . 40

5.5 Managing Component-Oriented Enterprise Applications . . 40
Background . 40
Related Work . 41
Contributions . 41

6 Conclusion 43
6.1 Topics for Further Research 43

References 45

A Corrections to Publications 60

B Algorithm Listings 61
B.1 Sequential State Space Enumeration 61
B.2 Parallel State Space Enumeration 61
B.3 Generating Successor States in a High-Level Petri Net . . . 62
B.4 Modular State Space Enumeration 63

Original Publications 64

PREFACE

This dissertation is the result of studies and research at the Laboratory
for Theoretical Computer Science of Helsinki University of Technology
from 1998 to 2003. I am grateful to my supervisor Doc. Nisse Husberg,
to Prof. Emeritus Leo Ojala and to Prof. Ilkka Niemelä, the current head
of the laboratory, for providing me with an opportunity to work at the
laboratory, and to my colleagues, especially Dr. Kimmo Varpaaniemi and
Dr. Keijo Heljanko, for valuable feedback and discussions.

The work was funded by the Helsinki Graduate School on Computer
Science and Engineering, the National Technology Agency of Finland
(TEKES), the Nokia Corporation, Elisa Communications, the Finnish
Rail Administration, EKE Electronics, Genera, the Academy of Finland
(Project 47754) and by personal grants from Tekniikan Edistämissäätiö
and Jenny and Antti Wihuri Fund. Without the funding and grants of
these organisations, full-time studies and international visits would not
have been possible.

Last but not least, I would like to thank my wife Heli and my friends
and family for support and encouragement.

Otaniemi, 24th of October, 2003

Marko Mäkelä

1

List of Publications

[P1] M. Mäkelä. Optimising enabling tests and unfoldings of algebraic
system nets. In José-Manuel Colom and Maciej Koutny, editors,
Application and Theory of Petri Nets 2001, 22nd International Con-
ference, ICATPN 2001, Newcastle upon Tyne, England, June 2001,
Lecture Notes in Computer Science 2075, pages 283–302, Springer-
Verlag, Berlin, Germany.

[P2] M. Mäkelä. Maria: Modular reachability analyser for algebraic
system nets. In Javier Esparza and Charles Lakos, editors, Appli-
cation and Theory of Petri Nets 2002, 23rd International Confer-
ence, ICATPN 2002, Adelaide, Australia, June 2002, Lecture Notes
in Computer Science 2360, pages 434–444, Springer-Verlag, Berlin,
Germany.

[P3] M. Mäkelä. Efficiently verifying safety properties with idle office
computers. In Charles Lakos, Robert Esser, Lars M. Kristensen
and Jonathan Billington, editors, Formal Methods in Software Engi-
neering and Defence Systems 2002, Adelaide, Australia, June 2002,
Conferences in Research and Practice in Information Technology
12, pages 11–16, Australian Computer Society Inc.

[P4] M. Mäkelä. Model checking safety properties in modular high-level
nets. In Wil M.P. van der Aalst and Eike Best, editors, Applica-
tion and Theory of Petri Nets 2003, 24th International Conference,
ICATPN 2003, Eindhoven, The Netherlands, June 2003, Lecture
Notes in Computer Science 2679, pages 201–220, Springer-Verlag,
Berlin, Germany.

[P5] J. Järvenpää and M. Mäkelä. Towards automated checking of comp-
onent-oriented enterprise applications. In Daniel Moldt, editor, Sec-
ond Workshop on Modelling of Objects, Components and Agents,
DAIMI report PB-561, pages 67–85. University of Århus, Denmark,
August 2002.

The dissertation consists of the five publications listed above, and a dis-
sertation summary. Publications [P1]–[P4] cover state space analysis
methods, and they have been solely written by the current author.

The publication [P5] is joint work with Jukka Järvenpää, who came
up with the idea of applying state space analysis to component-based
software and business logic. The formal modelling principles and the
experiment presented in [P5] were written by the current author, while
Mr. Järvenpää covered more practical aspects, such as the prototype
front-end for the Maria tool, to be used in simulated application main-
tenance work.

2 LIST OF PUBLICATIONS

1 INTRODUCTION

Until late 1980’s, home and office computers used to be isolated systems
that performed one task at a time. It was fairly easy to avoid and to cor-
rect programming errors, since the software was programmed to interact
with at most one entity at a time—if the printer or the disk drive was
slow, the user would have to wait for his turn.

Today, microprocessors or microcontrollers are replacing mechanical or
electric control systems, and they have enabled entirely new application
areas, such as mobile telecommunications. The computing nodes are
networked with each other, and the software they execute responds to
events arriving from independent sources, such as sensors, user interfaces,
or other computing nodes.

Clearly, an asynchronously operating distributed system is more dif-
ficult to manage than an isolated appliance that performs one task at
a time. On the other hand, a fault in an isolated system has negligi-
ble consequences when compared to a design flaw that may lock up a
telecommunication network, allow trains to collide in a railway safety
system, or discriminate some users in a congested situation.

Ensuring the correct operation of distributed software systems is a
challenge. Due to the nondeterministic nature of asynchronous systems,
it may be hard to reproduce faults. A timing-related error might not
show up at all when the software has been compiled with support for
debugging enabled, or when it is executed in a debugger. Computer aided
verification has been suggested as a supplementary method to testing and
code reviews. The idea behind it is to utilise the increasing computing
capacity to ease the design of complex systems.

One of the most promising computer aided verification methods is
model checking [33]. The basic idea is to construct a graph that contains
the reachable states of the system (or a model of it) as its nodes and
the state transitions as its edges. This graph is known as the Kripke
structure of the system, if its nodes are labelled with atomic propositions
that characterise the state of the system. The property we would like to
verify can be specified in temporal logic [33, Chapter 3]. A model check-
ing algorithm can determine whether the Kripke structure is a model of
the logic formula, i.e., whether the system meets its specification, and
reproduce execution traces that demonstrate detected violations.

Two decades ago, when model checking tools could handle up to tens
of thousands of states, the method was considered impractical by some
researchers [159]. Even though computers have evolved since then, there
still is a practical problem: almost any system of interest has a huge
number of reachable states. If the size of the system is characterised with
a parameter, such as the number of processes or the capacity of message
channels, the number of reachable states tends to grow exponentially in
this parameter [150, Section 1]. Symbolic model checking [117] tries to
solve the problem by representing sets of states with formulae. It has been
successful in the verification of hardware designs, which use simple data
types and operations. Alas, it is less likely to achieve similar reductions
in software specifications whose logical structures are less regular [25].

1 INTRODUCTION 3

In explicit state space enumeration, each node in the state graph is
visited (and often stored) separately. This can require huge amounts
of memory and processing time. The state explosion problem can be
countered by applying reduction methods, which ignore some states that
do not affect the property being checked, or by simplifying the model.

Abstract (simplified) models can be constructed at early stages of
development, allowing principal design problems to be detected and cor-
rected before any implementation work is started. Provided that the
model reflects the software architecture and the modelling formalism sup-
ports the concepts of the implementation language, it is possible to keep
the model up to date, in order to verify new features added to the im-
plementation. However, it can be expensive and error-prone to maintain
the model by hand. If the software architecture facilitates an automated
translation from code to abstract models, model checking can reveal an
order of magnitude more errors than testing [75].

Unfortunately, model checking is not yet a widespread technique in
software engineering. This could be attributed to the lack of efficient
computer tool support. Tools designed for interactive use may have prob-
lems with large automatically generated models due to inefficient use of
memory. On the other hand, heavy-duty model checking tools may lack
a simulator, which can be frustrating to someone who would like to ex-
periment with a model without having any specific verification question
in mind. Also, the formalism supported by the tool could be inefficient
in certain tasks. For instance, modelling point-to-multipoint communi-
cations in a language based on processes communicating over point-to-
point links can generate unnecessary overhead both in the model and its
state space. A generic high-level formalism, such as the algebraic system
nets [98] implemented in the Maria tool [P2], allows a broad range of
systems to be modelled in a compact and comprehensible way.

This research focuses on efficient techniques for modelling and model
checking parallel and distributed high-level software systems.

1.1 Interfaces and Abstraction in Software Systems

The complexity of software systems can be managed by partitioning de-
signs into layers containing replaceable modules that provide services.
A classic example is the reference model for open systems interconnec-
tion [84], the “protocol stack” where each layer provides refined service
to upper layers by making use of services provided by lower layers. The
lowest layer is the physical communication medium, and the highest layer
is the distributed application that provides service to real-world users.

Layers are inherent in many operating systems, programming lan-
guages and programming frameworks. Programming frameworks imple-
ment high-level interfaces to the system resources. The resources may be
managed in pools in order to optimise performance or to provide auto-
matic deallocation, so that the application code can be kept simpler.

The layers and service interfaces provide a nice form of abstraction.
The same application program module can be executed in any environ-
ment that provides the required interfaces. When a system has been

4 1 INTRODUCTION

built of suitably isolated parts, one can reason about its modules with-
out knowing the complete system in detail.

For instance, the designer of an Internet-based “shopping cart” appli-
cation can assume that all underlying hardware and software components
work properly. The components could include the TCP/IP stack [81] im-
plemented in the participating devices, a database management system,
and library routines for authenticating users and tracking sessions. To
ensure the correct operation of the whole system, the designer can focus
on the high-level application logic, as discussed in [P5].

At execution time, distributed or parallel software systems are parti-
tioned into execution contexts called processes or threads, each of which
represents a single flow of control. The processes can communicate with
each other by passing messages or accessing shared memory areas. De-
pending on the application, the processes can perform a large number of
internal computation steps between acts of communication. Distinguish-
ing local actions from synchronising or communicating ones can lead to
exponential savings [P4].

1.2 Objective and Methods

The aim of the research was to develop efficient computerised tools and
methods for modelling and verifying parallel and distributed high-level
software systems. Two places for improvement were identified:

1. The modelling formalism of a model checking tool should support
the high-level concepts and operations of programming languages
to avoid complicated or inefficient translations that are tedious and
error-prone to carry out by hand or to implement in a compiler.

2. Semi-automated means of deriving abstractions could enable the
use of model checking tools on more complex systems, even if little
or no model checking expertise is available.

The workload of model checking experts can be minimised by developing
translators from engineering documents and program code to verification
models and formal requirements. The closer the modelling formalism is
to the programming language, the simpler the translator can be made.
In the extreme case, no translator is needed—the software can be verified
by executing it in a special environment, as in [23].

There are multiple levels of abstractions. High-level programming
languages hide many details, such as memory management, processor
register allocation and instruction scheduling. Abstract data types hide
the details of data structures. If the modelling tool directly supports the
abstract concepts, systems that make use of them can be modelled more
compactly and explored more efficiently than with a lower-level tool.

On a higher level, abstraction is provided by layered or modular soft-
ware architectures. If there exist abstract descriptions of the components,
the system can be inspected one component at a time, replacing the rest
with abstract models. If not, modular state space exploration can create
abstractions “on-the-fly” by exploring the components in isolation and
considering only those global states where interactions occur.

1 INTRODUCTION 5

A constructive research method was applied. The algorithmic ideas for
efficient state space enumeration of high-level models were implemented
in the tool Maria, which was designed from the scratch by the current
author. The ideas were presented and implemented for high-level Petri
nets, but with the exception of [P1], it is straightforward to adapt them
to other formalisms.

1.3 Contributions

This dissertation presents algorithms and methods that make the soft-
ware reliability verification process more efficient. Publications [P1, P3]
describe efficient algorithms for exploring large state spaces of high-level
models. Publication [P2] shows how the usability of a model checking
tool can be improved by combining interpreter and compiler techniques.
Publications [P4, P5] present two methods for alleviating the state space
explosion [150] of modular or component-based systems.

The main contributions of each of the publications are the following:

[P1] One of the most time-consuming tasks of state space enumeration
tools for high-level Petri nets, determining the assignments under
which transitions are enabled, is viewed as a unification problem.
The presented algorithm, boosted with a pre-processing step for
reordering the input, has been optimised for computing successor
states while constructing the assignments. A variation of the al-
gorithm is demonstrated to produce significantly smaller unfolded
place/transition systems for certain instances of high-level nets than
the canonical method [98, Section 4.1].

[P2] A freely available, extensible state space enumeration tool for a
class of high-level Petri nets is presented. Unlike [10, 155], the tool
has been designed for checking automatically translated models of
software written in high-level languages.1 The interpreter-driven
mode of operation makes it easy to simulate large models, while
compiled code speeds up exhaustive analysis tasks.

[P3] The distributed version of the state space enumeration algorithm
in Maria [P2] is presented. The algorithm is not designed for
a dedicated computing cluster like [21, 69, 76, 82, 115, 124, 146],
nor is it tightly coupled with any formalism like [26, 124, 137],
but it is optimised for utilising the idle processing time of ordi-
nary office computers. The central server simplifies management,
allows dynamic load balancing and reduces the memory consump-
tion at the computing nodes. Experiments made with up to twelve
clients show over 90% processor utilisation, depending on the av-
erage branching degree of the model, and the utilisation factor has
been demonstrated to improve when state space reduction methods
are applied.

1Translators for PROD [155] have problems with data types [78] or restrict the source lan-
guage [17, Section 3]. The developers of a translator from SDL [89] into Design/CPN [119]
suggest the development of a new model checker as future work [30, Section 8].

6 1 INTRODUCTION

[P4] A simple algorithm is presented that checks safety properties in sys-
tems consisting of loosely coupled modules. Instead of generating a
single state space of all possible interleaved executions of the mod-
ules, the algorithm constructs local state spaces for each module
and only includes the synchronisation actions in the combined state
space, which can greatly reduce the processing power requirements.
The work is based on an earlier proposal [28], but the presented al-
gorithm supports nested modules, uses simpler data structures and
has been implemented—in a way compatible with [P3].

[P5] A method of modelling and model checking data-centric enterprise
applications built on component-based frameworks is presented.
The systems are formalised by combining automatically derived
models of the high-level application logic with previously stored
models of component behaviour. Related work has been reported
on telephone switches [75, 76] and device drivers [112].

The Structure of the Dissertation The dissertation consists of five pub-
lications and this dissertation summary, structured as follows.

Section 2 is an introduction to verification. It compares the available
formalisms and techniques for verifying the correct operation of parallel
and distributed systems. Section 3 presents state space enumeration, the
general-purpose technique for model checking high-level systems, and
describes options that allow more complex systems to be explored. It
provides the background information needed for understanding the three
algorithms [P1, P3, P4] that have been implemented in the Maria
tool [P2]. Section 4 describes the workflow of verification and estimates
the degree of automation that can be achieved with the use of different
tools and methods. Finally, the publications are summarised in Section 5
and our conclusions and outline for future development are presented in
Section 6.

1 INTRODUCTION 7

2 VERIFICATION

Jörg Desel [43] defines three terms for determining the quality of a system,
or a model thereof: validation, verification and evaluation. Validation an-
swers the question “was the right system built?” by determining whether
the system fulfills its intended purpose. Verification answers the ques-
tion “was the system built right?” by proving that the system matches
its specification. Evaluation captures other aspects of the system, such
as usability and end user acceptance, maybe performance as well.

This section concentrates on verification, determining whether a sys-
tem matches its requirements. Furthermore, it concentrates on nondeter-
ministic systems, which are difficult to inspect by testing, as variations in
timing can make them behave differently on the same input. To automate
verification, both the system and the requirements must be formalised.
Logic seems a natural choice for formulating requirements. For modelling
computing systems, there are many formalisms, which differ in their pre-
ferred level of abstraction.

In top-down design methodologies, the system is first described at an
abstract level. The abstract description is divided into components or
modules that are gradually refined towards concrete implementations.
Kurshan [102, Section 8.6] discusses the concept of stepwise refinement :

[T]here is a circle of thinking which supports the view that
one may start with a high-level (abstract) specification, refine
it in a linear fashion down to a model which may be physically
implemented (adding more detail at each step) and be done.
It is thought that if each model is consistent with its more
abstract specification (in the refinement succession), then one
knows that the lowest-level model is true to each of its spec-
ifications.

High-level (abstract) models can also be thought as “rapid prototypes”
that permit early “debugging.” The top-down methodology is well suited
for proof systems, such as the Temporal Logic of Actions [105]. Accord-
ing to Lamport [105, Section 9.5.1], the refinement steps could even be
automated to some degree:

Derivation of a program by a rigorous procedure that guar-
antees its correctness is preferable to post hoc verification.
[. . .] Any method for proving that one program implements
another can be used as the basis for program derivation. [. . .]
Unfortunately, we know of no concurrent algorithm used in a
real system that was systematically derived, not simply jus-
tified by post hoc verification.

In bottom-up design methodologies, the “low level” entities are defined
first and used as building blocks of more and more complex entities.
The “low level” entities can be readily available as the primitives of a
programming language or the services of the operating system or existing
software packages. They can also be constructed by the designer.

8 2 VERIFICATION

Many programmers have a pragmatic approach to problems. They
construct small prototypes and experiment with them in order to be-
come familiar with the problem at hand. The question is whether the
produced code meets its requirements. In the ideal world, there would
exist formal requirements and descriptions of each module. In practice,
no detailed requirements might be available, and everyone working on the
system could have a slightly different view. However, every system should
fulfill some generic safety properties, such as the absence of deadlocks,
failed assertions, arithmetic errors, data integrity violations or resource
leakages. Such properties can be verified by model checking or state space
enumeration, which is the topic of Section 3.

2.1 Formulating and Checking the Desired Properties

Dwyer et al. [49] motivate specification patterns—a high-level front-end
to temporal logics—with the following example:

For example, consider the following requirement for an eleva-
tor: Between the time an elevator is called at a floor and the
time it opens its door at that floor, the elevator can arrive
at that floor at most twice. To verify this property with a
linear temporal logic (LTL) model checker, a developer would
have to translate this informal requirement into the following
LTL formula:

2((call ∧3open) →
((¬atfloor ∧ ¬open) U

(open ∨ ((atfloor ∧ ¬open) U
(open ∨ ((¬atfloor ∧ ¬open) U

(open ∨ ((atfloor ∧ ¬open) U
(open ∨ (¬atfloorUopen))))))))))

In the automata-theoretic approach to verification, a desired property of a
system is negated and translated into an automaton. Figure 1 illustrates
such an automaton for our property. The leftmost state is the only initial
state, and the rightmost one is an accepting, or a “bad” state. Also the
state space of the model is interpreted as an automaton. A synchronised
product automaton of the two automata is constructed. The system is
in error if a “bad” state is reachable in the product. State space analysis
tools look for such states and produce error traces—executions from an
initial state of the two automata that lead to an error.

The automaton in Figure 1 contains only one“bad”state. The shortest
path to this state is via the edge labelled call∧¬open∧atfloor followed

0 1 2 3 4 5 6 7
open

¬call call ∧ ϕ
call∧ψ

ψ ϕ
ψϕ

ψ ϕ
ψϕ

ψ
ϕ

¬open
open

ψ := ¬open ∧ ¬atfloor ϕ := ¬open ∧ atfloor

Figure 1: An automaton for the property that an elevator called at a floor may
arrive at the floor at most twice without opening its door.

2 VERIFICATION 9

by horizontal edges. Informally, the first step—from state 0 to state 2 of
the automaton—corresponds to the case where the elevator has already
arrived at the floor when it is called. Then, keeping its door shut, the
elevator leaves and arrives twice. After that, in state 6 of the property
automaton, it does not matter how many more times the elevator might
arrive. An error is signalled once the elevator door finally opens.

Does an elevator whose door never opens fulfill this property? Intu-
itively, one could believe “no,” but the “bad” state in Figure 1 cannot be
reached without the door being open at some point. This example shows
that the desired properties have to be formulated carefully, and even the
obvious requirements must be stated explicitly—computers are dumb.

We believe that a substantial amount of errors can be captured with
assertions or invariants, stating that some condition must hold in each
possible state of the system or whenever a given program statement is
about to be executed. Such properties can be directly checked in the state
space of the model—without computing a product automaton—since the
property automaton has only one non-accepting, or “good” state.

Many properties can be automatically derived from engineering doc-
uments, such as the referential integrity rules for databases, or assertion
statements in source code. Assertion statements of the form assert(q)
can be formulated in linear temporal logic as 2(p → q), where p indicates
the point of execution. In Maria, these can be translated into reject
statements or intentional evaluation errors [P3, Section 2.1].

Havelund and Skakkebæk [66, Section 2.1] and Holzmann [75, Section
6] propose temporal assertion statements, such as assert eventually(q)
for 2(p → 3q). As opposed to safety properties, these liveness properties
require something to eventually happen, without setting any fixed bound.
An automaton on infinite sequences is needed for expressing liveness. The
liveness model checker [106, 107] in our toolset has been built on top of
the safety model checker [P3].

2.2 Modelling Formalisms

Before a system can be verified, a model of it must be constructed using
some formalism. Figure 2 shows the relations between some families of
modelling formalisms. State spaces consist of the reachable states of
a system and transitions leading from a state to another. They can be
presented with transition systems or process algebra. Higher-level models
can be expanded to transition systems, and high-level Petri nets can be
unfolded to place/transition nets. There exist translations between some
guarded command languages and Petri nets. There is some variation in
each family. For instance, transition systems can be defined to include

Transition System

Process Algebra Guarded Command Language

Place/Transition Net High-Level Petri Net

Figure 2: Some language families for describing computations.

10 2 VERIFICATION

state propositions [151], or the emphasis may be on the transitions or
actions, as it often is in process algebra and in compositional modelling.

In software engineering, one use of models is to convey information in
a more structured format than natural language, as in UML class dia-
grams [125, Part 5] or sequence diagrams [125, Part 7]. Often such models
do not specify all details, or they lack exact semantics. For verification
purposes, a computer must be able to interpret all of the model.

Timing can play a significant role especially in real-time systems. In
untimed formalisms, the actions or transitions are not assigned any du-
rations or timing constraints. Only the order in which events occur is
observable—nothing exact can be deduced about the time. In timed
formalisms, enabled transitions may be forced to occur within a prede-
termined time, and they may be assigned a probability for occurring.

This section presents some of the modelling formalisms that are sup-
ported by computerised verification tools. Emphasis is on untimed for-
malisms, since certain types of timed transitions can be simulated by
quantising the time in discrete ticks, as in [20].

Guarded Command Languages
Guarded commands play a central role in Dijkstra’s mini-language [45,
Chapter 4]. A guarded command is defined as a sequence of statements
that may be executed if a Boolean expression holds. The predicates
of programs expressed in the mini-language are solely transformed by
assignment statements. The only other statements are the repetition
(do. . . od) and the choice (if. . . fi) of guarded command sets.

Dijkstra’s original work is directed towards the development of se-
quential programs. Extensions for describing parallel systems include
parbegin. . . parend blocks [44] and message passing [71].

One of the best known model checkers for communication protocols,
Spin [74] of Bell Labs, is based on a process oriented guarded command
language where processes may communicate via message channels.

Dijkstra’s notation has also influenced Murϕ [46], SMV [117] and the
Basic Petri Net Programming Notation of PEP [13, Section 3.1].

Process Algebra
In the Calculus of Communicating Systems [120, 121] (CCS), the pro-
cesses may have internal actions denoted by the τ symbol, and a pair of
processes can engage in a synchronisation event where one process“sends”
and the other “receives” a symbol, e.g., α and ᾱ. The Algebra of Com-
municating Shared Resources [32] extends CCS by allowing prioritised
actions that may consume resources and time.

In 1978, Hoare introduced the Communicating Sequential Processes
(CSP) using a guarded command language notation [71] inspired by Di-
jkstra [45, Chapter 4]. In this definition, processes communicated in a
similar fashion to CCS, by sending and receiving messages via synchro-
nised point-to-point channels. In 1985, Hoare defined CSP in the form it
is known today in his famous book [72]. In [72, Section 7.4.1], he com-
pares CCS and CSP. The major semantic difference is that CSP allows
any number of processes to take part in a synchronisation.

2 VERIFICATION 11

The term“process algebra”does not only refer to algebraic notation for
transition systems, but also to a method of verifying concurrent systems.
Process algebra offers an alternative to model checking (Section 2.1): The
model of the system can be shown to be equivalent with a simpler model
where the property obviously holds.

Transition Systems
Transition systems are perhaps the simplest way of describing the be-
haviour of a computing system. As in Figure 1, they can be viewed as
directed graphs of the possible state transitions of a system. They can
also be represented textually in some process algebraic notation.

Transition system tools include Cæsar/Aldébaran [52] and the re-
cently published Tampere Verification Tool [151] (TVT). User-definable
rules for parallel composition allow TVT to serve as a verification back-
end for many process algebras, including LOTOS [85], which is also sup-
ported by Cæsar/Aldébaran. LOTOS features data types, variables
and parameterised actions, and various synchronisations.

Transition systems are a simple formalism. To model complex be-
haviour, it may be practical to construct a higher-level model and trans-
late the states spaces of its components into transition systems. Transi-
tion systems can be generated from Petri net models with Maria [P2],
and from other high-level specifications, such as an SDL [89] specification
of a communication protocol [110].

Transition systems can be reduced or compared with respect to various
equivalence relations, such as strong bisimulation [121, Definition 7.1.1].
This is useful when the system is modelled as a parallel composition of
components. The composition can be made smaller if it is constructed
incrementally, hiding actions and reducing the resulting intermediate sys-
tems whenever possible. Kaivola [93] presents efficient reduction and
comparison algorithms for the NDFD equivalence relation [93, Definition
4.2.7], which preserves all properties expressed in the nexttime-less linear
temporal logic [93, Section 3.2].

Transition systems can also be viewed as a simple formalism for de-
scribing state space reduction techniques. It is not necessary to explicitly
construct transition systems in order to apply the techniques. Instead,
the techniques can be directly implemented in state space enumeration
tools, like the partial order reduction methods in Spin [74, Section 3.3]
and Prod [155] and the modular state space exploration in Maria [P4].

Petri Nets
Computing systems consisting of multiple processing units usually com-
municate via shared variables (common storage that can be read or writ-
ten by multiple processing units) or by exchanging messages over point-
to-point or point-to-multipoint communication channels. In transition
systems and process algebra, modelling shared storage easily requires
large numbers of actions. Guarded command languages have a provision
for shared data, but their message primitives are usually limited to point-
to-point channels. It would be nice to have a more generic formalism that
supports both shared data and arbitrary synchronisations.

12 2 VERIFICATION

1 0

2 3

0 10

22

1010

5 5
customer1

customer5

customer10

cashier1

cashier5

cashier10 1‘10
2‘5+ x>y

+3‘5
10‘11‘x

x
y ‘y

1‘x

x
y ‘y

customer cashier

(a) as a place/transition net (b) as a high-level net

Figure 3: An algorithm for breaking money.

In 1962, the dissertation of Carl Adam Petri, Kommunikation mit
Automaten, introduced a graphical formalism for modelling synchronisa-
tions and communications between automata. The draft standard [15]
defines two classes of Petri nets: place/transition nets and high-level nets.

Place/transition nets [15, Clause 10.1] have places that contain a non-
negative amount of tokens, which can be removed or added by the occur-
rences of transitions. A transition is connected to places via input arcs
and output arcs whose weights indicate how many tokens the occurrence
of the transition removes from the input places and adds to the output
places. A transition is enabled (it may occur) if its each input place
contains at least as many tokens as the weight of the arc indicates. The
state (marking) is defined as the number of tokens in each place.

Let us consider a situation that could happen near a coin-operated
machine. A customer comes to a cashier with a bank bill in his hand,
asking “Could you break this for me?” The cashier then changes the
money to an equivalent amount of money in smaller coins or bills. In
Figure 3(a), the money owned by the two parties is represented by the
marking of six places, denoted with circles. The marking is represented
with numbers enclosed in the place symbols. In Figure 3(a), the customer
has two coins or bills of value 5 and one of value 10.

The possible actions are modelled by transitions, drawn as rectangles.
The input and output arcs are denoted by arrows leading to or from the
transition symbols. Arcs are associated with positive integer weights. By
convention, weights of 1 are omitted from diagrams. In our algorithm,
the cashier always returns one type of money, e.g., ten small coins for
one big bill, as in the transition in the center of Figure 3(a).

In high-level Petri nets [15, Clause 10.2], places and tokens are as-
sociated with data types (also known as colours or algebraic sorts). In
other words, the tokens can represent data that is stored in the places.
Figure 3(b) is a more compact version of Figure 3(a). The six places
are folded to two places whose markings are multi-sets of coin or bill
denominations. The rule for breaking money can now be specified with
one transition that has two variables : x for the money offered by the
customer and y for the change given by the cashier. These variables are
constrained by the transition guard x > y. The available denominations
are no longer hard-coded in the model, as in Figure 3(a).2

2To allow arbitrary positive integers as denominations, the guard must be refined so that
x/y is an integer, since the cashier cannot return fractions of coins or bills.

2 VERIFICATION 13

High-level nets are better suited for detailed modelling of high-level
software systems than place/transition nets, since the arithmetic oper-
ations in the software can be directly translated into arc inscriptions
and transition guards. If the data domains of a high-level net are small
enough, the net can be unfolded to a place/transition net of manageable
size. Figure 3(a) depicts the unfolded counterpart of Figure 3(b).

Less expressive power often means more analysis power. Structural
analysis makes it possible to prove certain types of properties for a large
class of systems. Structural properties are much easier to derive for
place/transition nets than for high-level nets. The structural properties
of a place/transition net simply depend on its topological structure [123,
Section VII].

The computer tools for analysing Petri net models range from research
prototypes to commercial packages. PEP [13] and LoLA [136] operate
on ordinary place/transition systems. They can analyse simple high-level
net models via unfolding. Tools that operate directly on high-level nets
include Prod [155] (which is based on predicate/transition nets [59]),
Design/CPN [119] and CPN/Tools [10] (which support coloured nets [91])
and Maria [P2] (for algebraic system nets [98]).

Originally, Petri nets were an untimed formalism. Extensions have
been developed for performance modelling and analysis [123, Section IX].
Analysis tools include GreatSPN [27] for timed and stochastic Petri nets
and SMART [31] for various stochastic modelling formalisms.

Petri nets may have a shortcoming when it comes to modelling com-
plex software systems: they lack structuring capabilities. From the the-
oretical perspective, all transitions are equal, and the data and control
flows are indistinguishable from each other. It may be easier to under-
stand and maintain nets when they are divided into fairly isolated com-
ponents or modules. In the Design/CPN editor, the net can be drawn
on multiple pages, which are connected via shared places or substitution
transitions—a special form of macro expansion. The textual modelling
language of Maria supports similar techniques. Maria can preserve
some structure during analysis, as it supports modular exploration of
multiple nets that are synchronised via shared transitions [P4].

For modelling object-oriented software systems, more sophisticated
structuring capabilities have been proposed. Proposed extensions include
Object Petri Nets [103], Concurrent Object-Oriented Petri Nets [14] and
Agent-Oriented Coloured Petri Nets [122] that have evolved into Refer-
ence Nets [101]. One reason why the tool support on these formalisms
is directed toward modelling, simulation and executable code generation
rather than verification is the large number of combinations in which iden-
tifiers can be assigned to resources or objects. Each object is assigned an
abstract value that uniquely identifies it throughout its lifetime. If the
pool of available identifier values is limited to n, at most n objects can
coexist. For instance, the identifiers for objects representing the items of
an n-element linked list can be chosen in n! = n(n − 1) · · · 3 · 2 · 1 ways
from such a pool. That is, there are n! equivalent combinations that are
considered distinct. Techniques that address this problem are discussed
in Section 3.2.

14 2 VERIFICATION

Logic
One of the most abstract modelling formalisms is logic. There, the pos-
sible states of a system are specified with a number of propositions or
conditions. Verifying a property of the system is a matter of checking
whether the formula stating the property can be derived from the formu-
lae that describe the system by applying some proof rules.

Chandy and Misra [24] presented an abstract way of developing al-
gorithms. Their Unity notation has no explicit control flow. Mapping
Unity algorithms to hardware architectures is nontrivial, as the imple-
mentations of an abstract algorithm on shared or distributed memory
can heavily differ from each other. Also Reisig [132] describes abstract
distributed algorithms, using algebraic nets. Like Chandy and Misra, he
presents a system for proving safety and a limited form of liveness.

The Z notation has recently become an international standard [87].
Several computerised type checkers and theorem proving tools are avail-
able. Z is related to B [3] and VDM [68, 88], which is closely related
to Meta IV, a language for defining semantics. Extensions to Z include
objects and CSP-style parallel composition [53].

Lamport’s Temporal Logic of Actions [105] (TLA) is an untyped lan-
guage based on linear temporal logic and a set of axioms and proof rules.
The behaviour of the system is described with mathematical and logical
equations—there is no concept of assignment. TLA is intended to be
a tool for specifying concurrent algorithms at a very abstract level and
proving that they satisfy the desired safety and liveness properties.

2.3 Specialised Verification Methods and Tools

There exist several methods and computerised tools for verifying formal
specifications. Some are specialised in certain types of systems, while
state space enumeration can be adapted for any kind of a finite system.
The specialised techniques usually support a restricted set of built-in
operations, and they can often manage very large or infinite state spaces.

If there exists a specialised technique for analysing a particular type
of a system, it usually makes sense to use that technique. There are
two possible problems. Sometimes, it may be difficult to translate the
system description into the formalism used by the tool. If the tool makes
use of computationally complex heuristic algorithms, it may exhaust the
available computing resources even when checking a fairly simple model.

The remainder of this section presents some specialised verification
methods and discusses their suitability for verifying software systems.
Of these methods, symbolic model checking is closest to the generic tech-
nique of state space enumeration, which is covered in Section 3.

Theorem Proving
The strength of theorems is that they can assert that something works
for a large or infinite number of parameter combinations. Proof systems
are efficient for verifying systems consisting of little control logic, such as
special-purpose arithmetic units, as in [16, Chapter 3]. Theorem proving
also suits well for abstract specifications, like those written in DisCo [90],

2 VERIFICATION 15

a specification language for reactive systems that is based on TLA [105].

If the system uses complex data structures or if its control logic consists
of many computing steps—as the case often is with software—the logic
formulae may become too complex for any theorem proving system. Due
to the heuristic nature of theorem proving algorithms, most theorem
provers require quite a bit of manual intervention. A small modification
to the model can confuse the heuristics and lead the algorithm to an
infinite loop.

If the property being verified does not hold, the theorem prover might
not be able to clearly show what is going wrong. The problem can be
diagnosed or the proof validated with an interactive animator or simula-
tor, as in the DisCo tool set [96, Section 4], or with a model checker, as
in the Symbolic Analysis Laboratory [12] (SAL).

Both DisCo and SAL delegate theorem proving to the Prototype Ver-
ification System [126] (PVS). Another theorem prover for typed higher-
order logic (and the Z notation) is ProofPower [5], which is based on
the extensible language Standard ML. Maude, a framework for building
theorem provers, is a tool for rewriting logic with user-defined strategies.
It can be used as a model checker or simulator [34, Section 8.1].

Rewriting Systems and Equivalence Tests
Most tools for process algebra or transition systems include some kind
of a rewriting system for reducing or comparing models with respect
to some equivalence relation that preserves the property being verified.
VERSA [32] rewrites process algebraic models and tests transition sys-
tems for equivalence.

When the system is designed in a top-down fashion, equivalence tests
can be used for verifying each refinement step, proving that the system
implements its specification. However, the refinement steps in software
system development are rarely presented in formal notation.

Since process algebras are action-oriented, it may be difficult to effi-
ciently translate data-intensive software systems into them. Simply in-
stantiating distinct “read” and “write” actions for each possible value of
each variable could make the model too large to be processed in any tool.

Structural Analysis
Certain properties of a system can be checked without considering its
dynamic behaviour. For instance, modern compilers for strongly typed
high-level programming languages ensure that the data types are used
in a consistent way. They may also warn about variables or procedures
that have been defined but are never used.

Advanced compilers even issue warnings for procedure-local variables
that may be used before they are initialised. In the general case, the
variable can be referred to in conditional blocks, and the conditions can
be affected by the environment of the procedure. Thus, the structural
analysis performed by the compiler cannot be affirmative in all cases.

Some properties or analysis algorithms may apply to certain classes
of models. With structural analysis, a model can be determined to be-
long to a particular class. Then all properties proven for that class will

16 2 VERIFICATION

trivially hold in the model, and there might be a more efficient analysis
method. For instance, Murata [123, Section VI] summarises the live-
ness, safeness and reachability criteria for different topological classes of
place/transition nets. He then demonstrates some “short-cuts” for one
special case, marked graphs [123, Section VII].

Place/transition nets can also be classified by their matrix representa-
tions [123, Section VIII]. From matrix equations, it is possible to derive
net invariants that hold for all possible initial states of the system. Tran-
sition invariants indicate possible loops of the system, and place invari-
ants can be used for reasoning about the possible states of the system.

We believe that structural analysis augments other verification tech-
niques. In high-level software systems, a relatively simple static anal-
ysis tool can locate simple programming errors more efficiently than a
full-blown theorem prover or model checker. However, static analysis
generally cannot prove or disprove arbitrary properties of a system.

Symbolic Model Checking
Symbolic model checking methods manipulate data structures that rep-
resent sets of reachable states of the model. The data structure can be
interpreted as a characterising function that maps state variables to truth
values. The set consists of those states that the function maps to “true.”

The actions of the model being checked perform operations on state
variables. Symbolic methods translate these operations into operations
on the data structures representing the sets of states. Thus, the effect
of an action in the model can be computed in all previously discovered
states of the system simultaneously. Therefore, symbolic model checking
can explore very large, even infinite state spaces in limited time.

However, it can be nontrivial to map the operations on single states to
operations on sets of states. Therefore, many symbolic model checking
tools are limited to rather low-level description formalisms.

Decision Diagrams. Boolean Decision Diagrams [18] (BDD), which rep-
resent Boolean functions as directed acyclic graphs, have been particu-
larly successful in verifying hardware designs, where the data types and
operations tend to be simpler and more regular than in software [25].

Software systems make use of integers, arrays, and other high-level
data types. In order to apply BDDs on such systems, the data types have
to be mapped into Booleans. An integer variable must be translated into
multiple Boolean variables, and any operations on it, such as addition
or multiplication, have to be expressed with Boolean operators. Such
a translation could greatly increase the size of the model. Predicate
abstraction [41] is more viable, since it describes the state of the system
with predicates, which are modelled with Boolean variables.

Data Decision Diagrams [39] generalise BDDs to arbitrary data types.
The operations on the data types are not hard-coded in the algorithm,
as with BDDs [18, Section 4], but they have to be formalised as homo-
morphisms on DDDs [39, Section 1.3]. This method could prove efficient
on software systems, if some essential data types and operations were
formalised and packaged in an extensible tool.

2 VERIFICATION 17

Complete finite prefixes. An interesting type of symbolic model check-
ing that resembles structural analysis is the unfolding of finite-state
place/transition systems into complete finite prefixes that describe their
dynamic behaviour [118]. A prefix can in some cases be exponentially
smaller than the reachable state space of the system, which makes the
prefixes interesting for verification purposes.

In order to apply net unfoldings on software systems modelled with
high-level Petri nets, one would have to unfold the models into place/
transition nets. In practice, this is often infeasible due to the complexity
of the used data types. Recently, the technique has been extended to
high-level nets [97]. Even though the use of place/transition nets can be
avoided, the high-level nets should be constructed carefully. For example,
if “read” operations atomically shift the contents of FIFO buffers, the
resulting prefixes may become very large due to the number of distinct
events, one for each possible buffer content.

Lossy FIFO systems. A distributed system that consists of processes
communicating via unbounded channels can have an infinite number of
reachable states. However, it is possible to prove safety properties of such
systems with a backward reachability analysis algorithm [2].

If there is no abstract definition of the processes, it can be tedious to
construct the state machines by hand. Leppänen and Luukkainen [110]
extracted the state machines from a formal model of a communication
protocol by partitioning the model and performing state space enumera-
tion on the partitions.

A similar treatment could be given to program code, by repeatedly
executing the code of each process for a bounded number of steps, simu-
lating “receive” actions with nondeterministic choice of possible actions,
as in the VeriSoft tool [23]. However, this would generate finite trees
of observed actions rather than nonterminating automata. Folding the
trees into cyclic graphs may require a considerable degree of insight and
manual work.

Bounded Model Checking. In bounded model checking, a non-termi-
nating system is searched for counterexamples to a given property for a
bounded number of execution steps. The technique can be implemented
in symbolic model checking as well as explicit state space enumeration,
and it can also be encoded as a propositional satisfiability problem, which
can be solved by a tool like Prover [141]. Amla et al. [4] compare these
three approaches and conclude that BDDs perform best in deep coun-
terexamples, while satisfiability solvers and random state space explo-
ration are the winners for small bounds.

18 2 VERIFICATION

3 STATE SPACE ENUMERATION

State space enumeration refers to techniques that incrementally construct
the set of reachable states in a model by considering the effect of enabled
actions in each reachable state separately. The basic technique can be
applied to any computing system whose states can be stored, restored
and compared.

Appendix B.1 contains the basic state space enumeration procedure.
Its three most important parameters are the initial state s0 of the sys-
tem, the state transformation rules successors, and a function error(s)
that identifies erroneous states. We do not specify the details of the pro-
cedure reportError. It could display diagnostic information and abort the
exploration, either unconditionally or based on some criteria, such as the
severity of the error or the number of errors reported so far.

The search algorithm makes use of two data structures: the set of
states it has explored, and a collection of states that are waiting to be
processed. It must be possible to insert items into the set and to check
if the set contains a given item. The collection must support insertion
and removal of items, and emptiness check. If the collection is a queue,
then the search proceeds breadth first, guaranteeing that a shortest path
to an error is found first.

State space enumeration is a general-purpose tool with one practical
limitation: the model being analysed must have a limited number of
states and enabled actions. Otherwise checking all the reachable states
one by one will consume too much time or memory. This limitation can
be alleviated by the use of different state space reduction techniques.

The rest of this section discusses the benefits of state space enumer-
ation, compares state space reduction techniques, and presents ways to
reduce the execution time of state space enumeration.

3.1 Benefits of State Space Enumeration

Easy implementation. Unlike the specialised methods discussed in Sec-
tion 2.3, state space enumeration can treat the function for computing
successor states as a “black box.” Thus, there is no need to model the
system in detail, provided that the nondeterminism in it can be con-
trolled by the model checking testbed. For instance, to check whether a
computerised player of a two-player board game can lose a game it starts,
it is sufficient to have a program interface to the function that computes
the next move on a given board. The initial state s0 would be the empty
board, and the successor relation can be defined as the next move of the
computerised player combined with all possible moves of its opponent,
which would be simulated by our verification harness. The function error
would identify those boards where the opponent has won.

Counterexamples. When there are millions of reachable states, merely
providing the user with an erroneous state can be as frustrating as re-
porting “there is an error somewhere in your system.” A counterexample
trace is a sequence of actions that leads from the initial state to the error.

3 STATE SPACE ENUMERATION 19

Unlike in proof systems, it is straightforward to construct error traces
with the state space enumeration algorithm. Prod [155] extends the
algorithm presented in Appendix B.1 by constructing a reachability graph
that records the reachable states S as its nodes and the successor relation
as its edges. When an erroneous state is found, a path to it can be found
by graph traversal.

Not all edges of the graph need to be recorded in order to recover
error traces. In fact, it is sufficient to maintain a mapping from each
encountered state s′ to its ancestor s, from which s′ was first generated
by successors. By repetitively applying this mapping, the trace can be
obtained from the error to the initial state s0. In order to conserve
memory, Maria writes this mapping sequentially into a disk file [P3,
Section 2.4], similar to Murϕ.

3.2 Alleviating the State Space Explosion

Almost any system of interest has a huge number of reachable states.
If the size of the system is characterised with a parameter, such as the
number of processes or the capacity of message channels, the number
of reachable states tends to grow exponentially in this parameter [150,
Section 1]. However, given a simple verification question, it is possible to
throw some information away by creating a more abstract model or by
applying some reduction in the state exploration algorithm, thus reducing
the number of states that need to be explored [150, Section 4.1].

Eliminating Redundant Data
One way of deriving abstract models is removing data and program code.
Automated slicing techniques [147] can eliminate those parts that cannot
affect the property being verified. A formal treatment of property pre-
serving abstractions for process algebra and temporal logic has been given
in [114]. The model can be reduced further if the behaviour of the system
is over-approximated or under-approximated [66, Section 3.2]. However,
errors found in an over-approximated model might not correspond to
errors in the original system. Lazy abstraction [70], which applies pred-
icate abstraction [41], starts with a very abstract model and refines it
gradually to rule out errors that lack counterparts in the concrete model.

Models may contain redundant data. Kaivola [93] exploited the the-
ory of data-independence [109] and showed that several properties of a
communication protocol can be verified by considering only three dis-
tinct data packets that represent all packets circulating in the system.
Valmari [150, Section 7.1] discusses the elimination of remnant variable
values—that is, resetting variables whose current values will not be read.
This technique has been implemented in Spin [74].

During state space exploration, it may be possible to identify some
reachable states as redundant and ignore them. For instance, seven of the
eight states shown in Figure 4 are redundant. Symmetry reduction tech-
niques [83, 142] are essential in model checking certain types of systems,
such as software systems that dynamically allocate resources. Junttila
describes some approximative algorithms that can be applied to systems

20 3 STATE SPACE ENUMERATION

Figure 4: The cells of an n×n board can permuted in eight ways by rotation
and reflection. The boards above look different but represent the same state.
One of them could be chosen as a canonical representative of the group.

(a) interleaved actions (b) coarsened atomicity (c) dynamic reduction

Figure 5: Concurrent execution of k independent processes consisting of
n sequential actions produces kn possible states (a). Atomic processes pro-
duce 2n states (b). Partial order reduction techniques reduce the number of
choices in each state, and may thus explore only one path of kn states (c).

with a large number of dynamically allocated objects [92, Section 7].

Dealing with Independent Actions
A key contributor to the state space explosion is nondeterminism caused
by concurrently enabled independent actions. Figure 5 shows an extreme
case and illustrates two examples of partial order reduction methods [128],
which were originally presented as an aid for proving properties of par-
allel programs [6, 113]. The atomic keyword of Spin [74] or a resource
token [78] in Petri nets groups process-local actions into bigger indivis-
ible steps. The result, in Figure 5(b), can be reduced further with path
compression [P3, Section 4.1], which is a special case of a more generic
method [95]. Both methods can be combined with partial order reduc-
tion, which ignores some enabled actions, as in Figure 5(c).

Compositional Verification
In compositional reachability analysis or modular verification [64, 160],
the model is checked in multiple phases. It may be possible to transform
the property being checked into something that can be checked on each
component separately or on a composition of fewer components. Also, the
full state space of the system can be composed incrementally, collapsing
the sequences of internal actions in each intermediate composition.

When compositional verification is applied to labelled transition sys-
tems, as in [160] or [150, Section 7.3], the desired property is verified with
respect to globally visible actions. For the purpose of verification, it may
be necessary to make some internal actions visible and thus increase the
size of the resulting composed transition systems. It is more efficient to
decompose the automaton describing the property into something that
can be directly synchronised with the components [25, Section 3.2].

One compositional technique that can be automated fairly easily is
modular state space exploration, which is discussed in Section 5.4.

3 STATE SPACE ENUMERATION 21

3.3 Reducing the Memory Usage

A major problem of state space enumeration is its potentially large mem-
ory usage. In typical workstations, mechanical storage (disk space) is
some orders of magnitude bigger and several orders of magnitude slower
to access than solid-state memory (register file, caches and main mem-
ory). Therefore, it is essential for performance to reduce the size of the
data structures, so that they fit in the main memory, or to design algo-
rithms that reduce access to external storage, as in [130].

Two data structures that dominate the memory usage of the state
space enumeration algorithm in Appendix B.1: the set S of reachable
states and the “work queue” Q of states that have not been explored.
The queue ensures that all states will be included in the search, and the
set prevents infinite loops.

Many memory reduction techniques aim to reduce the number of states
inserted into S, taking the risk that parts of the state space may be
explored several times. Valmari [150, Section 5.4] presents an extreme
case—a recursive algorithm that does not construct a set of reachable
states but enumerates the set in each recursion level. He concludes:

[I]t is in theory possible to solve interesting verification tasks
in relatively small memory. However, the known algorithms
that do that consume unimaginable amounts of time.

Relaxing the Loop Check
In the tic-tac-toe game, pieces are inserted to the board until one of
the players wins or the board becomes full. Thus, no board state can
occur twice in a game, and the set S that prevents infinite loops in the
state space enumeration algorithm (Appendix B.1) can be omitted to
save memory space.

Unfortunately, models of parallel and distributed systems tend to pro-
duce cyclic state space graphs. Therefore, the loop check can only be
omitted in special cases, or states that are known not to recur can “by-
pass” the set S.

State Space Caching. The idea of state space caching [60, Section 2] is
to discard parts of the set S when the exploration algorithm is running
out of memory. Loops can be prevented by organising the unexplored
states Q as a stack and by replacing the test s′ 6∈ S with s′ 6∈ S ∧ s′ 6∈ Q.
The drawback of this idea is that discarded states may be revisited if
they can be reached via different execution paths. The situation can
be ameliorated by applying partial order reductions and by adapting
the cache deletion policy [60, Sections 4–5]. The compression of non-
branching paths [P3, Section 4.1] bears some similarity with state space
caching, but it also works in breadth-first search, producing short error
traces.

The Sweep-Line Method. When the state space may contain cycles,
some states must be stored in the set S, so that infinite loops can be

22 3 STATE SPACE ENUMERATION

avoided. However, S could be reduced by removing those states that
the system cannot possibly enter any more. For instance, the number
of pieces on a chess board is a progress measure that never increases on
any path consisting of valid moves. In the sweep-line method [99, 100],
once all states with a given progress measure have been explored, they
are discarded. The ability of Maria to distinguish “visible” (transient)
and “hidden” (persistent) states [P5, Section 4.3.3], called “predicate-
bounded depth first search” in a later publication [50], is a special case of
the generalised sweep-line method [100], which is compatible with non-
monotonic progress measures. A practical problem with the sweep-line
method is the definition of suitable progress measures.

Compression Techniques
Various compression techniques can be used for removing redundant in-
formation from the data structures S and Q used by the state space
enumeration algorithm (Appendix B.1). For instance, if the states in S
can be addressed individually, Q can contain references to S instead of
copies of states. In Spin [73, Chapter 13] and LoLA [136, Section 5.2], Q
keeps track on the performed transitions, so that backtracking becomes
a matter of “undoing” transitions.

Utilising Constraints. Maria encodes model states to bit strings be-
fore storing them [P2, Section 3.4]. In the bit strings, a data item that
has been constrained to n possible values is represented with a fixed
amount of dlog2 ne bits. A variable-length representation is used for un-
constrained multi-sets (Petri net places without capacity constraints).
Places for which an invariant expression (a special case of the place in-
variants of algebraic system nets [98]) is given are omitted from the bit
vector, since their markings can be recomputed.

Representing Sets with Graphs. If the reachable states follow some pat-
tern, it can be efficient to represent them with a graph structure. The
performance of Boolean Decision Diagrams [18] (BDD) greatly depends
on the way how the system state is translated into Boolean variables and
in which order these variables occur in the diagrams. Also, a BDD can
consume more space when state space reductions are applied, since reduc-
tions remove regularity [156]. Graph Encoded Tuple Sets [62] (GETS)
seem to yield good results even when partial order reduction is applied.
However, this kind of dynamically growing and shrinking graph data
structures tend to create very random access patterns with potentially
large transformation steps. Thus, it is hard to implement them efficiently
for other than uniprocessor systems working on central memory.

Hierarchal Representations. Comparable performance to GETS can be
reached with the much simpler“collapse”option [62, Section 5.8] of Spin,
which divides the state into process-specific components. The state is
represented as a sequence of index numbers to component state sets. In
modular state spaces, further savings may be achieved by representing

3 STATE SPACE ENUMERATION 23

the nodes of the synchronisation graph with indexes to strongly connected
components of the module state space graphs [29, Section 4.1].

Distributed Storage. There is a practical limit on the amount of main
memory that can be easily installed in commonly available computing
workstations. One way of gaining access to more storage space is util-
ising the networking capabilities of modern workstations. Schmidt [137]
describes a tree data structure for representing the set of reachable states,
and an algorithm that allows the migration of subtrees to other comput-
ing nodes. When a computing node is about to run out of memory, it
can delegate work to other nodes. This should work better in dynamic
environments than Parallel Murϕ [146], which distributes states among
the workstations according to predefined hash signatures.

Approximating the Set of Reachable States
The memory usage reduction methods discussed so far have one thing in
common: when the state space exploration algorithm terminates without
encountering any errors, the model is guaranteed to be error-free.

To save memory space, the set S of reachable states can be approx-
imated with a one-way hash data structure. If the structure maps two
states s 6= s′ identically, the states reachable from s or s′ may remain
unexplored. In other words, the algorithm may produce false positive
answers—claiming that the system is free of errors when it is not.

Maria implements two methods of this kind: bit-state hashing [74,
Section 3.4.2] and hash compaction [145, Section 2.3]. They can be used
for estimating the lower bound of the state space graph size for models
whose full state space graph would exceed the available memory capacity.
These methods can reach nearly full coverage in a fraction of the storage
capacity that would be needed for a full search.

3.4 Reducing the Execution Time

For a smooth workflow, it is important that the verification tool finds
errors quickly. Many tools check properties “on-the-fly” while exploring
the reachable states. In this way, errors that are reachable from the
initial state with a small number of steps can be found quickly, without
generating the full state space graph of the system.

Also simulation can be characterised with the terms“off-line” and“on-
the-fly.” For instance, the probe tool of Prod [155] explores previously
generated state space graphs, while the graph browser of Maria [P2]
can compute successor states on demand. Simple modelling errors can be
found by browsing the state space for a few steps from the initial state.
An “on-the-fly” tool allows this without exploring the full state space.

Once the simple mistakes have been corrected, the model checking
runs may need to visit a substantial part of the reachable states of the
system. In explicit state space enumeration, this may take several hours
on a contemporary workstation if there are tens or hundreds of millions of
reachable states or enabled transition instances. One way of reducing the
processing time is parallel processing, which is the topic of Section 5.3.

24 3 STATE SPACE ENUMERATION

Requirement

Design
Model verified? feasible?

requirement
Verify next

translation
Adjust the

correct it
cause and
Find the

translate analyse error

no errors no

yes

Figure 6: The verification procedure.

4 DEVELOPING VERIFIED SOFTWARE SYSTEMS

The main obstacle that prevents the widespread application of verifica-
tion in the development of distributed software systems is the problem
of automating the verification procedure, which is illustrated in Figure 6.
The design can be anything between an abstract specification and a con-
crete implementation. The translation of a design into a model can pro-
duce a refinement of an abstract specification or an abstraction of an
implementation. If the analysis of the model reveals an error, its feasi-
bility is checked. Should the problem not manifest itself in the original
design, the translation is adjusted, so that the model would better reflect
the design. Otherwise the cause of the error is located, and the design
or its requirements are revised.

As reasoned in Section 3, it is relatively easy to implement state space
enumeration on almost any computing system. In other words, the core
verification procedure can be automated even if the specialised methods
reviewed in Section 2.3 cannot be applied. However, the huge number of
reachable states that practically every system of interest is bound to have,
calls for abstract or reduced models, as discussed in Section 3.2. Because
not all errors of the abstract model can happen in the design, they must
be tested for feasibility. Sometimes, this test and the adjustment of the
translation rules can be automated, as in [70] and [158, Chapter 7].

Section 2 discusses formalisms and tools for describing systems and
their intended behaviour. In top-down design methodologies, the system
is gradually refined from an abstract description. In the bottom-up ap-
proach, the system is composed from readily implemented components.

The top-down approach permits early “debugging” of designs before
anything is implemented, which can greatly reduce the cost of correcting
errors. However, errors can still be introduced when the design is im-
plemented [157, Section 2]. Thus, in order to assert that also the imple-
mentation meets the requirements, verification models must be extracted
from the implementation. This is also how those bottom-up designs that
lack formal descriptions can be verified.

The rest of this section discusses the verification of designs and imple-
mentations, emphasising the degree of automation that can be reached.

4.1 Verifying Abstract Designs

In top-down design methodologies, the distributed system is first de-
scribed at an abstract level. Ideally, this description is a formal model

4 DEVELOPING VERIFIED SOFTWARE SYSTEMS 25

that abstracts from implementation details, such as the communication
architecture, as in Unity [24]. If the specification is not executable [67],
the under-specified parts must be refined in order to verify the design [54,
Section 1]. Once the abstract design has been verified, it is gradually re-
fined until an implementation is obtained, possibly in a restricted high-
level programming language that is translated into executable code.

The process algebraic method of verifying concurrent systems appears
to work well on relatively abstract specifications. Many techniques, such
as visual verification [152] and compositional verification [150, Section
7.3], seem to require similar insight as the derivation of mathematic
proofs, something that is difficult to teach or automate.

If a theorem prover tool is used for verifying the design, and it is
unable to complete a proof, a logic expert will be needed, either to guide
the tool or to explain the designers or programmers what is going wrong.

If the modelling language lacks a construct that is necessary for ver-
ifying a property, the construct must be simulated. For instance, data
arrays can be simulated by instantiating a variable for each array element
and translating array operations into if-then-else blocks that branch ac-
cording to the index value. The result can be a model that is harder to
understand and much larger than the piece of software being modelled.

When Avrunin et al. [7] compared finite-state verification techniques,
they noticed that the SMV [117] version of one of their models is about
three times the size of the Spin [74] version. For manually constructed
models, it is good to use a formalism that has direct counterparts for
the most frequently used constructs of the specification language. For
instance, Maria [P2] was selected for modelling a complex protocol
because of its support for structured data types [149, Section 4.4].

Model checking tools demonstrate violations of requirements with ex-
ecution traces that can be an invaluable diagnostic aid to the designer.
The design can be described in any language whose execution semantics
have been implemented in software. Ideally, the process of verifying the
requirements can be fully automated, and expertise in formal methods is
only needed when the requirements are formulated.

4.2 Verifying Implementations

In the bottom-up approach, the system is composed from readily imple-
mented subsystems or modules. It is unrealistic to assume that there
would exist formal specifications for these components, or any detailed
requirements. However, there are some implicit requirements, such as the
absence of deadlocks and resource leakages. More specific requirements
can be embedded in the program code as runtime assertions. All these
properties can in principle be verified by state space enumeration.

Verifying implementations would be easier if languages like Gypsy [61]
and Occam [79] were in wider use. These languages isolate the program-
mer from the details of the runtime system and lack constructs that are
problematic in verification, such as pointer data structures. However,
such omissions make the language inflexible and inefficient for certain
system-level applications.

26 4 DEVELOPING VERIFIED SOFTWARE SYSTEMS

The PathStar development project at Bell Labs [76] showed that a
general-purpose programming language can be treated as a formal model,
provided that the source code is annotated in such a way that an auto-
mated translator is able to make suitable abstractions. In that project,
verification experts translated requirement specifications from English
prose into temporal logic formulae and maintained the abstraction rules
of the translator, so that it was possible to model check the software
under development on a daily basis.

The Spin model checker [74], which was used in the PathStar project,
has been designed for analysing computer protocols. It is based on a
process-oriented language Promela [73, Chapter 5]. The application-
oriented approach of Spin has turned out to suit extremely well to mod-
elling communication protocols. There are translations to Promela
from many languages, including Java [38] and TNSDL [148], a program-
ming language of Nokia digital exchanges. Third-party modifications to
Spin include dSpin [42], with improved support for modelling object-
oriented software, and EASN [139], which supports ASN.1 data types
that are used in some protocol standards.

Although the syntax of Promela resembles some programming lan-
guages, Promela is not a programming language. The second gen-
eration of Java PathFinder [157] does not translate Java to Promela,
because Spin does not support some features of the source language, such
as floating point arithmetics. Furthermore, some parts of the implemen-
tation could have been implemented in a different language, as in [78,
Section 4.1], or the source code can be unavailable. Java PathFinder
addresses these problems with a custom implementation of explicit state
space enumeration that can handle programs of up to 10,000 source code
lines by interpreting Java bytecode.

Model checking bigger programs requires some simplifications. The
designers of Java PathFinder mention abstract interpretation and tech-
niques based on static analysis and runtime analysis [157, Section 3.3].

Predicate abstraction [41] reduces the domains of data variables. For
instance, an integer variable x can in some cases be represented with a
Boolean variable b that indicates whether x is positive. The state space
of the program can be reduced by replacing all occurrences of x with b
and rewriting the operations so that b is updated in a consistent way.
Java PathFinder and Bandera [38] rely on user-defined predicates, while
SLAM [8], BLAST [70] and BOOP [158], which check non-distributed
C programs by translating them into automata with Boolean variables,
derive the predicates automatically with a theorem proving tool by using
weakest preconditions. It should be noted that an automated abstraction
refinement loop might never terminate [158, Section 7.4]. MAGIC [22]
checks C programs based on simulation relations between labelled tran-
sition systems. It employs both theorem provers and propositional satis-
fiability solvers.

Slicing [147] can eliminate those statements that have no effect on
the predicates that are needed for answering the verification question at
hand. Shape analysis [37] can detect data structures that may be shared
between concurrently running threads. This is essential for detecting

4 DEVELOPING VERIFIED SOFTWARE SYSTEMS 27

the component structure of the system, which can be utilised by the
methods discussed in Section 3.2. Corbett’s shape analysis method may
have problems with systems that make intensive use of procedures, as all
procedure calls must be inlined [37, Section 5.1].

Runtime analysis focuses on a single execution trace at a time, by
capturing information from a running system. The algorithm suggested
by Dinning and Schonberg [47] is based on Lamport’s “happened before”
relation [104] and partial ordering of events. The Eraser algorithm [135]
checks that all shared memory accesses follow a consistent locking dis-
cipline. Due to the nondeterministic nature of distributed systems, the
information is less accurate than could be obtained from exhaustive anal-
ysis. However, the information can be used for focusing the state space
enumeration efforts on potentially erroneous parts of the system. Java
PathFinder can better check locking problems in this way [157, Section
3.3.3].

Spin and Java PathFinder are based on specialised modelling for-
malisms. A more generic formalism, such as algebraic system nets [98],
could be applied to the analysis of a broader range of distributed systems.
However, readability can be lost in a translation of software into Petri
nets. Dividing the net into components, as in [56], provides some help,
but dynamic structures in the source language easily lead into duplicated
net structure, as in [78, Section 3.2]. Our proposed tool for verifying
data-centric enterprise applications [P5] translates only a small amount
of high-level application code and composes it with compact models of
the surrounding entities of the code.

28 4 DEVELOPING VERIFIED SOFTWARE SYSTEMS

5 SUMMARY

The five subsections of this section summarise the publications [P1]–[P5],
present related work and list the contributions of each publication.

5.1 A Unification Algorithm for Computing Successors

This section is a summary of the publication [P1], which describes an al-
gorithm for finding the enabled bindings of transitions in a high-level
Petri net. A simplified version of the algorithm is presented in Ap-
pendix B.3.

Background
Compared to many other high-level modelling formalisms of parallel and
distributed systems, high-level Petri nets (Section 2.2) have two funda-
mental differences. First, the state transformation rules of high-level nets,
called transitions, do not directly define equations or assignments on the
state variables of the model, called places. Instead, transitions are con-
nected to places via arcs that are labelled with expressions on transition
variables. Second, each place can contain multiple values (tokens) at a
time, and a transition is enabled if the places connected to its input arcs
contain all values that the input arc expressions expand to.

The strength of high-level nets lies in the decoupling of places and vari-
ables. For instance, the protocol for leader election in an unidirectional
ring [48] can be modelled with transitions that atomically receive a mes-
sage, make decisions and send a message if needed. In a Promela [73,
Chapter 5] model of the protocol, each Petri net transition corresponds
to several transitions. This explains why the Petri net model generates
much smaller state spaces than the Promela model (Table 1).

Unfortunately, the strength is also a shortcoming. High-level Petri
nets are a somewhat difficult language for modelling distributed software
systems. On one hand, they lack the structuring capabilities of pro-
gramming languages and the notion of control flow. On the other hand,
programming environments are rarely based on multi-set data structures
or the ability to perform several assignments simultaneously. Thus, the
mechanical translation of a software system into a high-level Petri net is
unlikely to fully utilise the potential of Petri nets.

From the analysis point of view, high-level Petri nets require a more

Table 1: Unreduced state space sizes for the leader election protocol [48] for
different numbers of processes, obtained with SPIN 4.0.4 and MARIA 1.3.3.

PROMELA High-level net
n states events states events
3 399 873 69 126
4 2,400 7,073 240 588
5 15,779 58,181 870 2,693
6 106,435 470,271 3,213 12,013
7 723,053 3,725,165 11,949 52,310

5 SUMMARY 29

Table 2: Time needed to solve the “n queens” problem on a 700 MHz In-
tel Pentium III system.

Problem Size Design/CPN PROD MARIA FC-CBJ
n solutions 4.0.5 April 2, 2003 1.3.4
4 2 0 s 0.0 s 0.0 s 0.0 s
5 10 0 s 0.0 s 0.0 s 0.0 s
6 4 0 s 0.0 s 0.0 s 0.0 s
7 40 1 s 0.0 s 0.0 s 0.0 s
8 92 33 s 0.0 s 0.0 s 0.0 s
9 352 631 s 0.2 s 0.3 s 0.0 s

10 724 20,100 s 2.1 s 3.4 s 0.0 s
11 2,680 23.5 s 39.0 s 0.2 s
12 14,200 304.4 s 506.0 s 0.9 s
13 73,712 4,018.1 s 7,042.8 s 5.1 s

complicated algorithm than extended finite state automata, the formal
model behind Promela [73, Chapter 5], Estelle [86] and SDL [89]. While
extended automata operate directly on state variables, high-level nets call
for a unification algorithm that finds all valuations of transition variables
under which the arc expressions are compatible with place markings.

Related Work
Unification as a Constraint Satisfaction Problem. Sanders has mapped
the computation of enabled transition bindings in high-level nets to a
constraint satisfaction problem. Originally [133], he supported a class of
nets where the place markings are restricted to power-sets rather than
multi-sets. Later [134], he presented a variation of the FC-CBJ algorithm
(Forward Checking with Conflict-Directed Backjumping) that supports
multi-set markings and constant-multiplicity arc expressions. It should
be noted that this algorithm cannot be used for finding the bindings of
the transition in Figure 3(b) because of the non-constant multiplicity x

y
.

Sanders presents a high-level net model [133, Figure 1] of the problem
of placing n queens on an n×n chess board in such a way that they do not
threaten each other. The net consists of one place and one transition,
whose n variables are bound to the tokens 1, . . . , n that the place is
initially marked with. The diagonal movement rules of the queens are
formulated in the transition guard.

The state space of the high-level net consists of two states and a num-
ber of events. For each solution to the problem, there is one event from
the initial to the final state. We explored the net with some Petri net
tools, and we also solved the problem with the CSPLIB [154] implemen-
tation of the FC-CBJ algorithm. For the Petri net tools, the execution
times reported in Table 2 exclude the time needed by code generators.

The main reason why FC-CBJ outperforms the Petri net tools in this
example is that it allocates look-up tables of infeasible solutions [134,
Section 6]. When the search backtracks, it updates the conflict relation,
so that related combinations will not be explored again. Such tables can
be impractical if there are many variables with very large domains.

30 5 SUMMARY

Since the implementations of Sanders do not appear to be available,
we were unable to measure their performance on models of high-level
software systems, which are unlikely to feature this kind of combinatorial
problems within a single transition. Sanders admits [133, Section 6]:

The provision of advanced constraint satisfaction algorithms
for all transitions in a model introduces a problem on its own:
some transitions in a model will have limited bindings and be
very easy to solve. It is important not to spend excessive time
attempting to reduce such problems when they can be easily
solved by brute force.

Unification in Generic High-Level Nets. To our knowledge, the only
state space exploration tools for high-level nets with variable-multiplicity
arc inscriptions that work without unfolding are Design/CPN [119] and
its successor CPN/Tools [10], Prod [155], and Maria [P2].

The algorithm of Design/CPN has been described in [140, pages 10–
13] and in more detail by Haagh and Hansen [65, Chapter 4]. Haagh and
Hansen lay emphasis on randomised simulation, which can be sped up by
various look-ahead techniques [65, Chapter 2] and by finding one enabled
transition instance without enumerating all of them. Their improvements
to the original Design/CPN algorithm have been implemented in a sepa-
rately available “new simulator” package. Unfortunately, we were unable
to measure the performance of this package, because it does not support
exhaustive state space enumeration, only random simulation.

In Table 2, the proportional speed difference between Design/CPN
and other Petri net tools seems to grow with the size of the problem.
Thus, it cannot be solely explained by the choice of implementation lan-
guage. Without access to the internals of Design/CPN, we cannot offer
a definite explanation. One possible cause for the poor performance of
Design/CPN could be that the order in which it binds variables to input
arcs is determined dynamically, while Prod and Maria apply a static
scheduling, which implies less overhead. Another possibility is that Prod
and Maria evaluate the transition guard earlier in the search tree and
thus enumerate fewer infeasible solutions than Design/CPN.

The reason why Prod performs slightly better than Maria in Table 2
is that its inscription language corresponds more closely to the target lan-
guage of the code generator. Furthermore, unlike Maria, Prod does not
trap evaluation errors or report domain violations of output places. The
two tools use a very similar unification algorithm. The main differences
are in the data type system and expression evaluation.

A Description of the Algorithm
Appendix B.3 lists the algorithm in a form that can be used as a sub-
routine of the state space enumeration procedure, which is listed in Ap-
pendix B.1 and discussed in Section 3. The algorithm is presented as a
recursive procedure analyse arcs, which is invoked by successors for each
transition of the net. The recursive loop processes each input arc of the
transition, augmenting the valuation of transition variables during the

5 SUMMARY 31

search. Once all input arcs have been processed and the valuation has
been completed to a full transition instance, the procedure analyse arcs
computes and reports the resulting successor state.

The algorithm distinguishes two kinds of input arc expressions: ones
that contain unbound variables, and ones whose value can be evaluated
under the valuation collected so far. The former kind is processed by the
subroutines analyse variable and bind variables. The latter kind of expres-
sions is managed by the procedure analyse constant, which evaluates the
expression and subtracts it from the marking before proceeding to the
next input arc via the recursive invocation of analyse arcs. In case the
expression cannot be subtracted from the marking, the search backtracks.

Arc expressions that contain unbound variables can be associated with
any available token in the corresponding input place. This association
is recorded in the array t.unified in the procedures analyse variable and
bind variables. First, analyse variable evaluates the multiplicity of the arc
expression. If it turns out to be zero, the expression will evaluate to the
empty multi-set, regardless of the values of the unbound variables, and
the search can proceed to the next input arc. Only if the multiplicity is
positive will the valuation be augmented by bind variables.

The procedure bind variables iterates over every available sub-marking
c‘m of the place corresponding to the input arc, and associates the input
arc expression with one of them at a time. It extracts a value for every
variable that is to be bound from the input arc expression, and augments
the assignment. Provided that the transition guard is enabled and that
the markings associated with previously processed input arc expressions
are possible under the augmented valuation, the algorithm advances to
the following input arc by invoking analyse arcs.

Details of finding assignment candidates and checking the compatibil-
ity of previously unified expressions can be found in the publication [P1].

Contributions
Publication [P1] presents a search algorithm for determining the assign-
ments under which transitions are enabled in a given marking of a high-
level Petri net. A similar algorithm has been implemented earlier in
Prod [155], but it was never formally documented.

Unlike Prod, the presented unification algorithm [P1, Section 3] traps
evaluation errors. Also, while Prod processes the input arcs in the
order of appearance, a preprocessing step in Maria tries to improve
the ordering [P1, Section 4.2]. Both tools skip the unification loop if an
input place is empty (Prod) or does not contain enough tokens (Maria).

The algorithm is normally used for computing possible successor states
in high-level Petri nets. In Maria, it is also the core of an algorithm [P1,
Section 3.3] that may drastically reduce the size of place/transition nets
translated from models containing large data domains.

5.2 Modular Reachability Analyser

This section is a summary of the publication [P2], which presents an
extensible state space enumeration tool for high-level Petri nets.

32 5 SUMMARY

Background
Verifying industrial-size designs with minimal manual effort is a chal-
lenge. Publication [P2] lists the following tool requirements for auto-
mated checking of distributed software systems:

High-level formalism. The formalism should provide enough expressive
power, so that high-level system descriptions can be modelled in a
straightforward way.

Ease of use via translators. If there are automated model translators for
the tool, end users do not need to be familiar with the underlying
formalism; they can work in the domain they are used to.

Efficient utilisation of computing resources. The tools should work in a
variety of computer systems, ranging from personal computers to
multiprocessor supercomputers, and memory management should
be optimised to accommodate large state spaces.

Section 5.1 discusses the merits and weaknesses of high-level Petri
nets. We believe that implementation-level designs are best verified us-
ing translations into low-level formalisms, such as extended automata
or transition systems. The tools and methods for this are discussed in
Section 4.2. Table 1 in Section 5.1 supports our belief that high-level
Petri nets are an efficient formalism for modelling and verifying designs
of parallel and distributed systems. The rest of this section compares
Maria to other verification tools for Petri nets.

Related Work
Place/Transition Systems. PEP [13] and LoLA [136] operate on ordinary
place/transition systems. They can analyse simple high-level net models
via unfolding. Also Maria can unfold models into PEP or LoLA format.

PEP models can consist of components, which can be nets or simple
high-level languages, such as the Basic Petri Net Programming Nota-
tion [13, Section 3.1]. For analysis purposes, PEP unfolds the system
into a place/transition system. This can be impractical when the data
domains are large and only a small fraction of the potential states will be
reachable. With some work, PEP models can be translated into Maria
format in order to verify them, as in [20, Section 5.1].

PEP implements McMillan’s algorithm [118] for unfolding nets into
complete finite prefixes. LoLA supports symmetry reduction [144] and
partial order reduction methods [128].

High-Level Nets. To our knowledge, the only state space exploration
tools for high-level nets that support conditionals in arc expressions [15,
Section 6.5] are Design/CPN [119] and its successor CPN/Tools [10],
Prod [155], and Maria [P2].

Design/CPN [119], a system for modelling and analysing with coloured
nets [91], has evolved around a graphical editor. It supports the mod-
elling of timed systems, and it offers symmetry reduction [77] of state
spaces. The analysis algorithms of Design/CPN have been implemented

5 SUMMARY 33

in Standard ML, which makes it easy to experiment with different anal-
ysis methods, such as the sweep-line method [99, 100]. The choice of
implementation language could be one reason why Table 2 suggests that
Design/CPN consumes more resources than other high-level net tools.

Prod [155] is one of the best-known model checker tools for high-
level nets. It has long served as a benchmark for competing tools. Prod
is based on predicate/transition nets [59], but its state space reduction
methods operate internally on place/transition nets.

Contributions
Many state space enumeration tools translate the model into a high-
level programming language and thus delegate the computation of the
successor relation to the runtime system of that language. Such tools
include Spin [74], Murϕ [46], Prod [155] and Design/CPN [119]. In
Maria, the executable code generator is optional [P2, Section 3.2]. The
interpreter-based operation of Maria is useful in interactive simulations
and debugging, as it avoids the overhead of invoking a compiler.3 The
interpreter is also good for analysing automatically generated models of
SDL specifications [1] or Java code [P5], which tend to become very large.

The built-in preprocessor of Maria supports aggregation operations
over bounded domains. For instance, the Maria model of the“n queens”
problem (Section 5.1) can be varied for different values of n by simply
redefining the “queen” data type. For Prod and Design/CPN, the tran-
sition guard ∀q1, q2 6= q1 : |xq1 − xq2| 6= |q1 − q2| has to be expanded
differently for each value of n. For the experiment reported in Table 2,
the expansions were obtained from the Maria syntax tree dump facility.

Maria represents the states of its models in two different ways. The
expanded representation is used when determining successor states and
performing computations. Long-term storage of explored states in disk
files or main memory is based on a condensed representation, a compact
bit string whose encoding has been documented in [116]. Due to this
compact encoding, Maria usually needs less storage space than Prod
or Design/CPN. In the experiment reported in [P2, Section 4.3], Maria
was also significantly faster than Prod.

5.3 Parallelised State Space Enumeration

This section is a summary of the publication [P3], which describes a
distributed algorithm for enumerating state spaces. The algorithm is
presented in Appendix B.2. It is a simple modification of the sequen-
tial algorithm (Appendix B.1), which is discussed in Section 5.1. There
is a central server that stores the set of reachable states S locally and
distributes the work queue Q of unprocessed states among clients, which
send back the successor states for each unprocessed state.

3One of the most complex MARIA models written so far, about 500 kilobytes of text, is
a model of a radio link control protocol [149]. Compiling the MARIA-generated C code of
the model takes tens of minutes. In that time, the interpreter would generate hundreds of
thousands of states of that model.

34 5 SUMMARY

Background
Parallel processing can speed up the execution of algorithms that contain
loops which can be iterated in arbitrary order. Ideally, if a single proces-
sor completes n iterations of a loop in t units of time, k processors will
complete the task in t

k
time units if 1 ≤ k ≤ n. In practice, the execution

time of a single iteration may vary, and inter-processor communication
may slow down the execution. Furthermore, the number of iterations may
be determined at run time, as in the state space enumeration algorithm.

There are two types of memory in parallel computing systems: dis-
tributed and shared. Distributed memory can be implemented by build-
ing a networked cluster of inexpensive commonly available processing
units, but shared memory requires special hardware. The nice thing
about state space enumeration is that the algorithms can be implemented
efficiently on distributed memory systems. The specialised methods dis-
cussed in Section 2.3 require random access to a large pointer-linked data
structure that must be shared among the processors. Parallel imple-
mentations of these methods may be inefficient even on shared memory
systems. Heljanko, Khomenko and Koutny [69, Section 4] offer insuf-
ficient memory bandwidth as an explanation for the poor performance
they observed on a four-processor shared memory workstation.

Many algorithms contain multiple levels of loops. Inner loops are iter-
ated more frequently than outer loops. On one hand, the computations
in inner loops could be distributed to more processors than the com-
putations in outer loops. On the other hand, the processors need to
communicate when entering or leaving a parallelised loop.

If the inner loops are parallelised, the processors may spend more
time in communications than in computations. Lorentsen and Kris-
tensen [115] distribute a subroutine of the function that determines the
successor states of given state. In terms of the algorithms in Appen-
dices B.1 and B.3, their parallelised loop is nested inside one or two
sequentially iterated loops. Several synchronisations are needed to pro-
cess one state, while our algorithm [P3, Section 3] can exchange several
states in one synchronisation. This could explain why the algorithm of
Lorentsen and Kristensen could not efficiently utilise more than 4 or 5
slave processors [115, Table 2].

Parallelising the outermost loop could leave many processors “unem-
ployed” if there are not enough iterations, but the communications over-
head will be low and the iteration steps can be existing programs. The
TrailBlazer system [76] does not speed up a single model checker run,
but it can check several properties in parallel by invoking Spin [74] on
multiple computers. The rest of this section discusses parallel processing
within a single model checker run.

Related Work
Various distributed algorithms and strategies have been suggested for
discrete event simulation [26, 57]. However, these simulation algorithms
do not systematically explore the reachable states of the model—instead,
they perform a random walk in the state space graph and collect statistics
on the performance of the modelled system. In state space exploration,

5 SUMMARY 35

the enabled actions are not executed at random, but all reachable states
are covered. The look-ahead techniques of distributed simulation cannot
be utilised because of the large number of possible successor states.

Schmidt [137] lists two objectives for using clusters of workstations
in state space verification. First, larger state spaces can be explored
without running out of memory. Second, the parallel processing may
speed up computation. Parallel Murϕ [146] tries to combine both aspects
by distributing states to processors according to a hash function, but
Schmidt argues that its memory usage might not be evenly distributed
if there were hundreds rather than tens of workstations. Furthermore,
Nicol and Ciardo [124], who present a distributed algorithm for exploring
integer manipulation systems, point out that automatic parallelisation
cannot depend on a user-defined hash function for every model. Černá
and Pelánek [21], who present a distributed algorithm for finding fair
counterexamples for liveness properties, do not provide any statistics on
memory usage distribution.

Inggs and Barringer [82] present a parallel state space enumeration al-
gorithm for shared memory supercomputers. To improve load balancing,
each process has two queues of unprocessed states: a private one and a
shared one, from which other processes can “steal” work when their own
queues become empty. The private queue can be accessed without any
inter-process communication overhead.

Schmidt’s distributed algorithm [137] is an extreme case that tries to
fully utilise the distributed memory capacity of the cluster at the expense
of processing time. The other extreme would centralise the memory usage
and distribute the computations only. Both extremes may seem unrea-
sonable at first. However, Schmidt’s evenly distributed memory scheme
provides orders of magnitude faster random access times than magnetic
storage. Also, while it makes sense to utilise all the available memory
in a dedicated computing cluster, there could be networked devices that
have spare processing power but relatively little memory.

Contributions
Unlike many distributed model checking algorithms [21, 69, 76, 82, 115,
124, 146], our distributed state space exploration algorithm [P3] has been
optimised for utilising the available processing power of regular office
computers, whose processors are idle or underutilised most of the time.
A computer user is unlikely to notice a background process, as long as it
does not consume much memory or cause disk activity. In our algorithm,
the memory usage is centralised on one dedicated computer. The server
distributes unprocessed states to clients, which send back the successor
states for each unprocessed state. The clients can join and leave the
computation at any time. Our implementation of the server distributes
the work queue of a disconnected client among the remaining clients.

The implementation of this distributed algorithm in Maria is based
on connection-oriented communications [80, Section 2.10] provided by all
commonly used operating systems. In our experiments, a heterogeneous
network of office computers performed well compared to a supercomputer.
In the algorithm, the average number of new successor states generated

36 5 SUMMARY

from each state is a critical factor. If the server runs out of unprocessed
states that it could distribute to clients, some clients may become idle.
Thus, the number of clients the algorithm can utilise depends on the
structure of the state space being explored.

The processor utilisation of our algorithm can be improved by applying
state space reductions in the clients [P3, Section 4.1]. Partial order
reduction could improve the scalability even further, for two reasons:
First, it reduces the number of explored events and thus the number
of old states the clients report to the server. Second, each client will
spend more time per reported state and thus preserve the communication
bandwidth of the server, allowing more clients to participate.

5.4 Modular State Space Enumeration

This section is a summary of the publication [P4], which presents a
modular state space enumeration algorithm for nested hierarchies of high-
level Petri nets that synchronise via shared transitions. A simplified
version of the algorithm is presented in Appendix B.4.

Background
Modular state spaces were originally presented on transition systems.
Later, the idea has been lifted to higher-level formalisms, such as com-
municating state machines [94] and high-level Petri nets with flat [28]
and nested synchronisation hierarchies [P4].

Let us consider the system of [P4, Figure 1], comprising three deter-
ministic processes that synchronise on two actions. The synchronisation
graph of this system, depicted at the right of Figure 7, shows all observ-
able synchronisations of the system. The full state space in Figure 8
is dominated by interleaved executions of concurrently enabled internal
actions of the processes. Clearly, for this kind of a system, the time and
space needed for constructing the modular state space is linearly pro-
portional to the number of internal steps, while conventional state space
enumeration requires an exponential amount of time.

Model checking works in a slightly different way in modular state
spaces than in a flat state space. A property of a single module can
be checked by synchronising the automaton of the property with some

12 13 14

T F

4 5 6

11 t5

t2
t2

11
4
T

11
1
T

11
6
F t2

T

1 2 3

11 12 13 14

F t2
t5
t5

11
1
T

11
4
T

14
3
T t5

11
4
T

11
1
T

t2t5

Figure 7: The construction of a synchronisation graph. There are three mod-
ules and two synchronising actions, t2 and t5. In the initial state, only t2 is
enabled, as all modules that synchronise on it can internally reach a state
where it is enabled. Similarly, only t5 is enabled in the successor state. In a
synchronisation, the states of non-participating modules do not change.

5 SUMMARY 37

actions of the module [P4, Section 4.2]. Properties over multiple modules
can be verified by adding synchronisations between the modules or by
changing some internal actions visible, so that interesting changes in the
states of the modules become observable in the synchronisation graph.

Related Work
Modular analysis of high-level nets was introduced by Christensen and
Petrucci [28, 29], who did not present an algorithm. Instead, they showed
how certain Petri net properties can be proved on modular state spaces.
Christensen and Petrucci suggest that the algorithm should compute
strongly connected components of module state space graphs. Our algo-
rithm for checking safety properties [P4, Section 4] does not do so. As a
result, it requires less memory but typically revisits module state spaces
several times. The running time of our algorithm can be reduced by the
use of caches [P4, Section 5.3].

In order to roughly compare the performance of the algorithm sug-
gested by Christensen and Petrucci with our algorithm, we obtained from
Laure Petrucci a prototype implementation for computing the modular
synchronous product of finite state machines, and some models in this
formalism. We implemented our algorithm for the same formalism and
made some experiments. As expected, our implementation uses much
less memory than Petrucci’s. To our surprise, for this set of models, our
implementation turned out to explore the synchronisation graph an order
of magnitude faster than Petrucci’s, even though it revisits the module
state spaces thousands of times. The situation would be different if the
strongly connected components were needed in further analysis, or if it
were expensive to explore the successor states in the modules.

11
6
F

12
6
F

13
6
F

14
6
F

14
3
T

14
3
F

11
4
T

11
4
F

11
1
T

12
1
T

13
1
T

14
1
T

11
5
T

12
4
T

11
5
F

12
4
F

11
6
T

12
5
T

13
4
T

12
5
F

13
4
F

12
6
T

13
5
T

14
4
T

13
5
F

14
4
F

13
6
T

14
5
T

11
1
F

11
2
T

14
5
F

14
6
T

12
1
F

12
2
T

11
2
F

11
3
T

13
1
F

13
2
T

12
2
F

12
3
T

11
3
F

14
1
F

14
2
T

13
2
F

13
3
T

12
3
F

14
2
F

13
3
F

Figure 8: The flat state space graph of the system. The initial state is the node
at the top left. The states where a synchronisation occurs are highlighted with
a black border. There are four occurrences of t2 and two occurrences of t5.

38 5 SUMMARY

Partial order reduction, which postpones the occurrences of some en-
abled transitions that are independent of others, could achieve similar
results. For performance reasons, the dependence relation is often ap-
proximated, as in [74, Section 3.3]. Although modular state space enu-
meration treats the processes as “black boxes” with known interfaces, it
can outperform partial order reduction, as in [131, Section 3.4.3].

Karaçalı and Tai [94] have improved partial order reduction by making
it aware of modules. Their algorithm also needs transition dependency
information, which may be difficult to derive for complex components.

Under thread-modular model checking [55], each thread is checked sep-
arately, abstracting the behaviour of interleaved steps of other threads.
The algorithm works by incrementally computing two relations. It does
not handle dynamic thread creation or message passing operations.

For high-level Petri nets, modular analysis has been generalised to
incremental state space construction of net refinements [111], which seems
to work well on object-oriented systems refined by inheritance. However,
it is unclear how the substitutability criteria that incremental analysis
depends on could be defined for other than object-oriented models.

Usually, the system is divided into modules by the designer. Buchholz
and Kemper [19] present criteria for dividing place/transition nets into
modules. A similar division can be obtained for software systems by
shape analysis [37]. It would be nice to know how effective this kind of
algorithms are compared to a human designer: If a modular specification
were flattened and then remodularised using an automatic tool, could the
desired properties be verified more efficiently in the transformed model?
Unfortunately, we were unable to obtain a copy of APNN Toolbox,
which should implement the algorithm of Buchholz and Kemper.

A Description of the Algorithm
Compared to basic state space enumeration, the modular algorithm needs
one extra bit of information is of the system: it must be possible to de-
termine which synchronisations are possible in a given state of a module.

The modules are arranged as a hierarchy tree. Synchronisations are
possible between sibling modules (which have a common parent). The
parent module encapsulates the child modules; the state of a module is
a component of its parent’s state. Transitions synchronising on a given
label may only occur as a concurrent step comprising all transitions syn-
chronising on the label.

The algorithm listed in Appendix B.4 comprises several procedures.
The entry procedure is explore, and the states reachable via local transi-
tions are enumerated by transitions. The procedure modules enumerates
the possible synchronisation points of child modules by recursively invok-
ing explore on them. It also invokes sync in order to evaluate the effect
of synchronisations in the state space of the parent module.

The algorithm is invoked as explore on a given state of the root module.
The parameter S is an initially empty set that will record the possible
synchronisation points in the modules. It will be extended by transitions
and examined by sync. For the root module, which does not have any
transitions that synchronise on a label, the set S remains empty.

5 SUMMARY 39

Figure 7 can help to understand the algorithm. To construct the
synchronisation state space of the root module, the algorithm would be
invoked on its initial state as explore(m, 〈T, 4, 11〉, ∅). The invocation
of transitions has no effect on the root module of this system, since it
does not contain any transitions. The call to modules will split the state
to three components, s1 = T, s2 = 4, s3 = 11, corresponding to the
three child modules of the root module m, C(m) = {1, 2, 3}. The pro-
cedure modules will recursively invoke explore on each of these modules,
to construct the mapping S = {(1, t2, F), (2, t2, 6), (3, t5, 14)} of possible
synchronisation points. It will pass this mapping to sync, which will enu-
merate all its subsets that contain all transitions synchronising on a given
label. In this case, there is only one such subset, {(1, t2, F), (2, t2, 6)}.
The procedure sync makes a copy of the state of the parent module,
s = 〈T, 4, 11〉, and overwrites the components corresponding to the child
module states where the synchronisation is possible, s∗ = 〈F, 6, 11〉. Fi-
nally, in lines 6 and 7 of sync, the state s′ = 〈T, 1, 11〉 resulting from the
concurrent step of the synchronising transitions will be added to the state
space of the parent module. The synchronisation on t5 will be explored
in a similar way in the second iteration of explore, with s = 〈T, 1, 11〉.

The algorithm is described in more detail in [P4, Section 4.1].

Contributions
The article presents a slightly more general version of modular high-level
nets than Christensen and Petrucci [28] and an algorithm for checking
safety properties in these nets by exhaustive enumeration of modular
state spaces. To our knowledge, no concrete algorithm for exploring
modular high-level nets has been presented before.

The ability of modular state space enumeration to treat the modules
as “black boxes” is important, since it avoids the need to construct de-
tailed formal models. Our algorithm supports modules within modules,
which may be useful when verifying layered designs, such as distributed
applications on computer networks [P4, Figure 3].

We believe that in practice, the verification of distributed software
systems can benefit from modular analysis. By focusing on synchroni-
sations, modular state space enumeration constructs a more abstract or
optimised model “on-the-fly.” Thus, some of the tedious work of opti-
mising models for verification [150, Section 7.1] is avoided and shifted to
the exploration algorithm. Unoptimised models are likely to be easier to
maintain and reuse than optimised ones.

5.5 Managing Component-Oriented Enterprise Applications

This section is a summary of the publication [P5], which presents a
method of developing component-based enterprise applications in a way
that enables the use of model checking tools.

Background
Enterprise application systems aim to integrate business processes within
companies. The current trend is to expand integration across organisa-

40 5 SUMMARY

tions, which requires that the software systems of different organisations
be integrated together. It is likely that the pieces of the system originate
from many different software vendors.

Software components have been suggested as a way of managing the
situation where nobody has a full view of the entire system. Components
are packaged software artifacts that provide functionality through a set
of well defined interfaces. These interfaces isolate component develop-
ment from the rest of the system and allow components to be replaced
individually. The core system contains only minimal functionality, and
the necessary tailoring is done by writing some application code that
composes software components within the system framework.

Enterprise applications used to be deployed on a mainframe computer
that was accessed through dumb terminals. In the early 1990’s, client/
server architectures migrated the application logic to personal computers.
In the late 1990’s, web-based architectures introduced application servers
that reside between clients and database servers.

Sneed and Göschl [143] distinguish unit testing, integration testing
and system testing. Unit testing can reveal trivial programming mis-
takes within a single software component. Integration testing focuses
on interactions between components, and system testing covers the en-
tire system and its external interfaces. Holzmann [75] shows that model
checking can reach very good coverage with a harness that is a fraction
of the size of the software being tested.

Related Work
VeriWeb [11] is an automated tool for testing web applications. It com-
bines the VeriSoft tool [23] with a web browser. The authors give some
examples of generating input for forms and implementing checks against
errors in the server responses. VeriWeb could be a useful regression
testing tool for checking applications after they have been updated and
installed.

The large number of core hardware and software components in web-
based architectures makes it expensive to set up environments for integra-
tion and system testing. A testing environment that works on abstract
models could save a lot of money and effort. The application code could
be explored by Spin [74] or Java PathFinder [157]. However, it can be
difficult to model relational data with these tools.

Lie et al. [112] present a method for automatically extracting mod-
els from low level software implementations. The extracted model is
combined with a model of the hardware implementation. MAGIC [22]
checks C programs with respect to models specified with labelled tran-
sition systems. These approaches are similar to the one suggested in
Publication [P5], except that in Publication [P5], models extracted from
program code are combined with high-level Petri net models of software
components and the environment of the application.

Contributions
Publication [P5] proposes a tool that allows software maintainers to ver-
ify the correctness of enterprise applications before system level testing.

5 SUMMARY 41

Since the tool is independent of the deployment environment, modifica-
tions the applications can be tested more frequently, without setting up
a copy of the production environment. Not all components need to be
available in order to test the application; high-level models of them will
suffice.

It is difficult to avoid the state space explosion when exploring software
systems. In Publication [P5], the model is constructed in such a way that
there are persistent and transient states. In a persistent state, all local
data is discarded. Also, similar to the sweep-line method [100], sequences
of transient states are discarded when the search enters a persistent state.
Finally, the user is given control on the behaviour of the environment and
the domain sizes of parameters.

42 5 SUMMARY

6 CONCLUSION

Our research goal has been to develop efficient computerised tools and
methods for verifying safety properties of parallel and distributed high-
level software systems. The main challenges are the state explosion prob-
lem and the amount of human effort needed to construct models suitable
for verification. Specialised analysis methods can manage very large state
spaces, but they usually require a tedious translation of the software sys-
tem into a formal model. State space enumeration is a generic technique
that can be implemented easily on almost any computing system. The
techniques presented in this work allow state space enumeration to work
efficiently on a broader range of systems.

All algorithms presented in this work have been implemented in a
freely distributable state space enumeration tool and model checker for
high-level Petri nets. Its modelling language facilitates compact descrip-
tion of systems that make use of structured data. The inherent con-
currency in Petri nets makes it straightforward to model hybrid systems
containing nondeterministic components.

This work describes a selection of automated techniques for locating
errors in distributed software systems. The interpreter-based state space
enumeration described in Publication [P2] is most useful in early stages of
system development, when the design is likely to contain a large number
of simple mistakes. Parallel search algorithms [P3] and modular state
spaces [P4] become important when more detail is added to the models
and their state spaces grow bigger.

There is evidence that model checking can outperform traditional test-
ing by an order of magnitude. Widespread adoption of verification tech-
niques among software engineers requires integration of formal methods
in the software development process. Initial steps have been taken in the
development of telephone switches [76] and embedded controllers [157].
Developers of enterprise applications [P5] could be the next beneficiaries
of automated formal methods. It took two decades to develop efficient
verification tools, and it will take some time to change the attitudes.

6.1 Topics for Further Research

Our distributed implementation of state space enumeration [P3] traverses
the state spaces in roughly breadth-first order, which produces short
error traces for violations of safety properties. An algorithm for verifying
liveness properties has to traverse the state space in depth-first order, in
order to detect loops. It would be interesting to see whether the work
queues of unprocessed states could be permuted in such a way that the
parallel traversal proceeds in nearly depth-first order.

Our implementation of the algorithm has not been tested on very
large networks of workstations. Its scalability could be improved by dis-
tributing the server process on multiple physical computers, perhaps as
outlined in [127].

Java PathFinder [157] can verify Java programs on the object code
level, by implementing the algorithms in a special virtual machine. The

6 CONCLUSION 43

freely available Ladybug tool [35] is a runtime analyser that works by
instrumenting Java bytecode. This kind of tools are helpful when not all
source code is available. Developers of device drivers or other system-level
software could benefit from similar tools that operate on machine code
rather than on the bytecode of a virtual machine. Such a tool could be
constructed from a virtual machine like Bochs [108] or a binary-to-binary
translator like that of the Valgrind [138] memory debugger. Valgrind
already includes an implementation of the Eraser algorithm [135] for
checking the locking discipline of shared memory accesses, but it does
not implement any state space exploration or model checking algorithms.

The processes or modules of a system and the relations between them
are not always clearly reflected by models or program code. With the
help of shape analysis [37], our modular state space enumeration algo-
rithm [P4] could also be applied to such “flat” descriptions. In order
to verify reactive systems with the algorithm, it should be extended to
support the verification of liveness properties.

Combinations of different types of formal methods can be more pow-
erful than a single method. Tools based on automated predicate abstrac-
tion [8, 22, 70, 158] combine propositional satisfiability solving, theorem
proving, symbolic model checking, and techniques on transition systems.
The currently available tools of this kind can manage software written
for a single processor or for multiple processors that communicate via
shared memory, but not by passing messages. This kind of methods
are challenged by undecidability results from computational complexity
theory.

44 6 CONCLUSION

References

[1] Annikka Aalto, Nisse Husberg, and Kimmo Varpaaniemi. Auto-
matic formal model generation and analysis of SDL. In Rick Reed
and Jeanne Reed, editors, SDL 2003: System Design, 11th Inter-
national SDL Forum, volume 2708 of Lecture Notes in Computer
Science, pages 285–299, Stuttgart, Germany, July 2003. SDL Fo-
rum Society, Springer-Verlag, Berlin, Germany.

[2] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-
the-fly analysis of systems with unbounded, lossy, FIFO channels.
In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Ver-
ification 1998, 10th International Conference, volume 1427 of Lec-
ture Notes in Computer Science, pages 305–318, Vancouver, BC,
Canada, June 1998. Springer-Verlag, Berlin, Germany.

[3] Jean-Raymond Abrial. The B-Book: Assigning Programs to Mean-
ings. Cambridge University Press, UK, 1996.

[4] Nina Amla, Robert Kurshan, Kenneth L. McMillan, and Ricardo
Medel. Experimental analysis of different techniques for bounded
model checking. In Garavel and Hatcliff [58], pages 34–48.

[5] Rob D. Arthan. On formal specification of a proof tool. In Søren
Prehn and Hans Toetenel, editors, 4th International Symposium of
VDM Europe, volume 551 of Lecture Notes in Computer Science,
pages 356–370, Noordwijkerhout, The Netherlands, October 1991.
Springer-Verlag, Berlin, Germany.

[6] Edward A. Ashcroft and Zohar Manna. Formalization of properties
of parallel programs. In Bernard Meltzer and Donald Michie, ed-
itors, Proceedings of the Sixth Annual Machine Intelligence Work-
shop, Edinburgh, 1970, volume 6 of Machine Intelligence, pages
17–41. Edinburgh University Press, UK, 1971.

[7] George S. Avrunin, James C. Corbett, Matthew B. Dwyer, Co-
rina S. Păsăreanu, and Stephen F. Siegel. Comparing finite-state
verification techniques for concurrent software. Technical Report
UM-CS-1999-069, Department of Computer Science, University of
Massachusetts at Amherst, Amherst, MA, USA, November 1999.

[8] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symp-
tom to cause: Localizing errors in counterexample traces. In
Alex Aiken and Greg Morrisett, editors, Proceedings of the 30th

ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 97–105, New Orleans, LA, USA, January
2003. ACM Press, New York, NY, USA.

[9] Thomas Ball and Sriram K. Rajamani, editors. Model Checking
Software, 10th International SPIN Workshop, volume 2648 of Lec-
ture Notes in Computer Science, Portland, OR, USA, May 2003.
Springer-Verlag, Berlin, Germany.

REFERENCES 45

[10] Michel Beaudouin-Lafon, Wendy Mackay, Peter Andersen, Paul Ja-
necek, Mads Jensen, Michael Lassen, Kasper Lund, Kjeld Morten-
sen, Stephanie Munck, Anne Ratzer, Katherine Ravn, Søren Chris-
tensen, and Kurt Jensen. CPN/Tools: A post-WIMP interface for
editing and simulating coloured Petri nets. In Colom and Koutny
[36], pages 71–80.

[11] Michael Benedikt, Juliana Freire, and Patrice Godefroid. VeriWeb:
Automatically testing dynamic web sites. In The Eleventh Inter-
national World Wide Web Conference, pages 654–668, Honolulu,
HI, USA, May 2002. International World Wide Web Conference
Committee.

[12] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Muñoz,
Sam Owre, Harald Rueß, John Rushby, Vlad Rusu, Hassen Säıdi,
Natarajan Shankar, Eli Singerman, and Ashish Tiwari. An
overview of SAL. In C. Michael Holloway, editor, Lfm2000:
Fifth NASA Langley Formal Methods Workshop, pages 187–196,
Williamsburg, VA, USA, June 2000. National Aeronautics and
Space Administration.

[13] Eike Best. Partial order verification with PEP. In Peled et al. [128],
pages 305–328.

[14] Olivier Biberstein. CO-OPN/2: An Object-Oriented Formalism for
the Specification of Concurrent Systems. Thèse no 2919, Université
de Genève, Genève, Switzerland, July 1997.

[15] Jonathan Billington et al. High-level Petri nets—concepts, defi-
nitions and graphical notation, version 4.7.3. Final Draft Inter-
national Standard ISO/IEC 15909, ISO/IEC JTC1/SC7, Genève,
Switzerland, May 2002.

[16] Per Bjesse. Gate Level Description of Synchronous Hardware and
Automatic Verification Based on Theorem Proving. PhD thesis,
Chalmers University of Technology and Göteborg University, Göte-
borg, Sweden, May 2001.

[17] Eric Bruneton and Jean-François Pradat-Peyre. Automatic verifi-
cation of Concurrent Ada programs. In Michael González Harbour
and Juan A. de la Puente, editors, Ada-Europe International Con-
ference on Reliable Software Technologies, volume 1622 of Lecture
Notes in Computer Science, pages 146–157, Santander, Spain, June
1999. Springer-Verlag, Berlin, Germany.

[18] Randal E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, 35(8):677–691,
August 1986.

[19] Peter Buchholz and Peter Kemper. Hierarchical reachability graph
generation for Petri nets. Formal Methods in System Design,
21(3):281–315, November 2002.

46 REFERENCES

[20] Cécile Bui Thanh, Hanna Klaudel, and Franck Pommereau. Petri
nets with causal time for system verification. Electronic Notes in
Theoretical Computer Science, 68(5), May 2003. CONCUR 2002
Satellite Workshops—Models for Time-Critical Systems.

[21] Ivana Černá and Radek Pelánek. Distributed explicit fair cycle
detection (set based approach). In Ball and Rajamani [9], pages
49–73.

[22] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and
Helmut Veith. Modular verification of software components in C.
In Lori A. Clarke, Laura K. Dillon, and Walter Tichy, editors,
Proceedings of the 25th International Conference on Software En-
gineering, pages 385–395, Portland, OR, USA, May 2003. IEEE
Computer Society Press, Los Alamitos, CA, USA.

[23] Satish Chandra, Patrice Godefroid, and Christopher Palm. Soft-
ware model checking in practice: An industrial case study. In Will
Tracz, Jeff Magee, and Michal Young, editors, Proceedings of the
24th International Conference on Software Engineering, pages 431–
441, Orlando, FL, USA, May 2002. ACM Press, New York, NY,
USA.

[24] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A
Foundation. Addison-Wesley, 1988.

[25] Shing Chi Cheung and Jeff Kramer. Checking safety properties
using compositional reachability analysis. ACM Transactions on
Software Engineering and Methodology, 8(1):49–78, January 1999.

[26] Giovanni Chiola and Alois Ferscha. Distributed simulation of timed
Petri nets: Exploiting the net structure to obtain efficiency. In
Marco Ajmone Marsan, editor, Application and Theory of Petri
Nets 1993, 14th International Conference, volume 691 of Lecture
Notes in Computer Science, pages 146–165, Chicago, IL, USA, June
1993. Springer-Verlag, Berlin, Germany.

[27] Giovanni Chiola, Giuliana Franceschinis, Rossano Gaeta, and Ma-
rina Ribaudo. GreatSPN 1.7: Graphical editor and analyzer
for timed and stochastic Petri nets. Performance Evaluation,
24(1&2):47–68, November 1995. Special Issue on Performance
Modeling Tools.

[28] Søren Christensen and Laure Petrucci. Modular state space anal-
ysis of coloured Petri nets. In Giorgio De Michelis and Michel
Diaz, editors, Application and Theory of Petri Nets 1995, 16th In-
ternational Conference, volume 935 of Lecture Notes in Computer
Science, pages 201–217, Turin, Italy, June 1995. Springer-Verlag,
Berlin, Germany.

[29] Søren Christensen and Laure Petrucci. Modular analysis of Petri
nets. The Computer Journal, 43(3):224–242, 2000.

REFERENCES 47

[30] Tatyana Gennadievna Churina, Michail Yu. Mashukov, and Va-
lery Alexandrovitch Nepomniaschy. Towards verification of SDL
specified distributed systems: coloured Petri nets approach. In
Ludwik Czaja, editor, Proceedings of the CS&P 2001 Workshop,
pages 37–48, Warsaw, Poland, October 2001. Warsaw University.

[31] Gianfranco Ciardo, Robert L. Jones III, Andrew S. Miner, and
Radu I. Siminiceanu. SMART: Stochastic model analyzer for re-
liability and timing. In Peter Kemper, editor, Tools of Aachen
2001 International Multiconference on Measurement, Modelling
and Evaluation of Computer-Communication Systems, pages 29–
34, September 2001.

[32] Duncan Clarke, Insup Lee, and Hong-Liang Xie. VERSA: A tool
for the specification and analysis of resource-bound real-time sys-
tems. Journal of Computer and Software Engineering, 3(2):189–
215, April 1995.

[33] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[34] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Mart́ı-Oliet, José Meseguer, and José F. Quesada. Maude:
Specification and programming in rewriting logic. Theoretical Com-
puter Science, 185(2):187–243, August 2002.

[35] Jr. Clovis Seragiotto. Ladybug: a tool for dynamic detection of
race conditions in Java programs. http://www.par.univie.ac.

at/~clovis/ladybug/, July 2003.

[36] José-Manuel Colom and Maciej Koutny, editors. Application and
Theory of Petri Nets 2001, 22nd International Conference, volume
2075 of Lecture Notes in Computer Science, Newcastle upon Tyne,
UK, June 2001. Springer-Verlag, Berlin, Germany.

[37] James C. Corbett. Using shape analysis to reduce finite-state mod-
els of concurrent Java programs. ACM Transactions on Software
Engineering and Methodology, 9(1):51–93, January 2000.

[38] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn
Laubach, Corina S. Păsăreanu, Robby, and Hongjun Zheng. Ban-
dera: Extracting finite-state models from Java source code. In
Carlo Ghezzi, Mehdi Jazayeri, and Alexander Wolf, editors, Pro-
ceedings of the 22nd International Conference on Software Engi-
neering, pages 439–448, Limerick, Ireland, June 2000. ACM Press,
New York, NY, USA.

[39] Jean-Michel Couvreur, Emmanuelle Encrenaz, Emmanuel Paviot-
Adet, Denis Poitrenaud, and Pierre-André Wacrenier. Data deci-
sion diagrams for Petri net analysis. In Esparza and Lakos [51],
pages 101–120.

48 REFERENCES

http://www.par.univie.ac.at/~clovis/ladybug/
http://www.par.univie.ac.at/~clovis/ladybug/

[40] Dennis Dams, Rob Gerth, Stefan Leue, and Mieke Massink, editors.
Theoretical and Practical Aspects of SPIN Model Checking: 5th

and 6th International SPIN Workshops, Trento, Italy, July 1999,
Toulouse, France, September 1999. Proceedings, volume 1680 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Ger-
many, 1999.

[41] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with
predicate abstraction. In Nicolas Halbwachs and Doron Peled, ed-
itors, Computer Aided Verification, 11th International Conference,
volume 1633 of Lecture Notes in Computer Science, pages 160–171,
Trento, Italy, July 1999. Springer-Verlag, Berlin, Germany.

[42] Claudio Demartini, Radu Iosif, and Riccardo Sisto. dSPIN: A dy-
namic extension of SPIN. In Dams et al. [40], pages 261–276.

[43] Jörg Desel. Model validation—a theoretical issue? In Esparza and
Lakos [51], pages 23–43.

[44] Edsger W. Dijkstra. Co-operating sequential processes. In F. Ge-
nuys, editor, Programming Languages, pages 43–112. Academic
Press, New York, NY, USA, 1968.

[45] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall,
Englewood Cliffs, NJ, USA, 1976.

[46] David L. Dill, Andreas J. Drexler, Alan J. Hu, and C. Han Yang.
Protocol verification as a hardware design aid. In International
Conference on Computer Design: VLSI in Computers and Proces-
sors, pages 522–525, Cambridge, MA, USA, October 1992. IEEE
Computer Society Press, Los Alamitos, CA, USA.

[47] Anne Dinning and Edith Schonberg. Detecting access anomalies in
programs with critical sections. In Barton P. Miller and Charles E.
McDowell, editors, Proceedings of the 1991 ACM/ONR Workshop
on Parallel and Distributed Debugging, pages 85–96. ACM Press,
New York, NY, USA, May 1991.

[48] Danny Dolev, Maria Klawe, and Michael Rodeh. An O(n log n)
unidirectional distributed algorithm for extrema finding in a circle.
Journal of Algorithms, 3(3):245–260, September 1982.

[49] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
Patterns in property specifications for finite-state verification. In
Barry Boehm, David Garlan, and Jeff Kramer, editors, Proceed-
ings of the 21st International Conference on Software Engineering,
pages 411–420, Los Angeles, CA, USA, May 1999. IEEE Computer
Society Press, Los Alamitos, CA, USA.

[50] Matthew B. Dwyer, Robby, Xianghua Deng, and John Hatcliff.
Space reductions for model checking quasi-cyclic systems. In Ra-
jeev Alur and Insup Lee, editors, EMSOFT 2003, 3rd International

REFERENCES 49

Conference on Embedded Software, volume 2855 of Lecture Notes in
Computer Science, pages 173–189, Philadelphia, PA, USA, October
2003. Springer-Verlag, Berlin, Germany.

[51] Javier Esparza and Charles Lakos, editors. Application and Theory
of Petri Nets 2002, 23rd International Conference, volume 2360
of Lecture Notes in Computer Science, Adelaide, Australia, June
2002. Springer-Verlag, Berlin, Germany.

[52] Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne
Rasse, Carlos Rodŕıguez, and Joseph Sifakis. A toolbox for the
verification of LOTOS programs. In Tony Montgomery, editor,
Proceedings of the 14th International Conference on Software En-
gineering, pages 246–259, Melbourne, Australia, May 1992. ACM
Press, New York, NY, USA.

[53] Clemens Fischer. CSP-OZ: A combination of Object-Z and CSP.
Technical Report TRCF-97-2, Universität Oldenburg, Fachbereich
Informatik, Abteilung Semantik, Oldenburg, Germany, April 1997.

[54] Clemens Fischer and Heike Wehrheim. Model-checking CSP-OZ
specifications with FDR. In Keijiro Araki, Andy Galloway, and
Kenji Taguchi, editors, Proceedings of the 1st International Con-
ference on Integrated Formal Methods, pages 315–334, York, UK,
June 1999. Springer-Verlag, Berlin, Germany.

[55] Cormac Flanagan and Shaz Qadeer. Thread-modular model check-
ing. In Ball and Rajamani [9], pages 213–224.

[56] Hans Fleischhack and Bernd Grahlmann. A compositional Petri
net semantics for SDL. In Jörg Desel and Manuel Silva, edi-
tors, Application and Theory of Petri Nets 1998, 19th International
Conference, volume 1420 of Lecture Notes in Computer Science,
pages 144–164, Lisbon, Portugal, June 1998. Springer-Verlag, Ber-
lin, Germany.

[57] Richard M. Fujimoto. Parallel discrete event simulation. Commu-
nications of the ACM, 33(10):30–53, October 1990. Special Issue
on Simulation.

[58] Hubert Garavel and John Hatcliff, editors. Proceedings of the 9th

International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’2003), volume 2619 of
Lecture Notes in Computer Science, Warsaw, Poland, April 2003.
Springer-Verlag, Berlin, Germany.

[59] Hartmann J. Genrich. Predicate/transition nets. In Wilfried Brau-
er, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Petri Nets:
Central Models and their Properties—Advances in Petri Nets 1986,
Part I, Proceedings of an Advanced Course, volume 254 of Lecture
Notes in Computer Science, pages 207–247. Springer-Verlag, Ber-
lin, Germany, 1987. Bad Honnef, Germany, September 1986.

50 REFERENCES

[60] Patrice Godefroid, Gerard J. Holzmann, and Didier Pirottin. State-
space caching revisited. Formal Methods and System Design,
7(3):1–15, November 1995.

[61] Donald I. Good, Richard M. Cohen, Charles G. Hoch, Lawrence W.
Hunter, and Dwight F. Hare. Report on the language Gypsy: Ver-
sion 2.0. Technical Report ICSCA-CMP-10, Certifiable Minicom-
puter Project, Institute for Computing Science and Computer Ap-
plications, The University of Texas at Austin, Austin, TX, USA,
September 1978.

[62] Jean-Charles Grégoire. State space compression in SPIN with
GETSs. In Grégoire et al. [63], pages 90–108.

[63] Jean-Charles Grégoire, Gerard J. Holzmann, and Doron Peled, edi-
tors. Second SPIN Workshop, Rutgers University, NJ, USA, August
1996.

[64] Orna Grumberg and David E. Long. Model checking and modular
verification. ACM Transactions on Programming Languages and
Systems, 16(3):843–871, May 1994.

[65] Torben Bisgaard Haagh and Tommy Rudmose Hansen. Optimis-
ing a coloured Petri net simulator. Master’s thesis, University
of Århus, Denmark, December 1994. http://www.daimi.au.dk/

CPnets/publ/thesis/HanHaa1994.pdf.

[66] Klaus Havelund and Jens Ulrik Skakkebæk. Applying model check-
ing in Java verification. In Dams et al. [40], pages 216–231.

[67] Ian J. Hayes and Cliff B. Jones. Specifications are not (necessarily)
executable. Software Engineering Journal, 4(6):330–338, November
1989.

[68] Ian J. Hayes, Cliff B. Jones, and John E. Nicholls. Understanding
the differences between VDM and Z. Technical Report UMCS-93-
8-1, University of Manchester, Department of Computer Science,
Manchester, UK, 1993.

[69] Keijo Heljanko, Viktor Khomenko, and Maciej Koutny. Paralleli-
sation of the Petri net unfolding algorithm. In Joost-Pieter Ka-
toen and Perdita Stevens, editors, Proceedings of the 8th Interna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’2002), volume 2280 of Lecture
Notes in Computer Science, pages 371–385, Grenoble, France, April
2002. Springer-Verlag, Berlin, Germany.

[70] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gré-
goire Sutre. Lazy abstraction. In John Launchbury and John C.
Mitchell, editors, Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 58–70,
Portland, OR, USA, January 2002. ACM Press, New York, NY,
USA.

REFERENCES 51

http://www.daimi.au.dk/CPnets/publ/thesis/HanHaa1994.pdf
http://www.daimi.au.dk/CPnets/publ/thesis/HanHaa1994.pdf

[71] Charles Anthony Richard Hoare. Communicating sequential pro-
cesses. Communications of the ACM, 21(8):666–677, August 1978.

[72] Charles Anthony Richard Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall International, Englewood Cliffs, NJ, USA,
1985.

[73] Gerard J. Holzmann. Design and Validation of Computer Protocols.
Prentice Hall, Englewood Cliffs, NJ, USA, 1991.

[74] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5):279–295, May 1997.

[75] Gerard J. Holzmann. From code to models. In Valmari and Ya-
kovlev [153], pages 3–10.

[76] Gerard J. Holzmann and Margaret H. Smith. An automated verifi-
cation method for distributed systems software based on model ex-
traction. IEEE Transactions on Software Engineering, 28(4):364–
377, April 2002.

[77] Peter Huber, Arne M. Jensen, Leif O. Jepsen, and Kurt Jensen.
Reachability trees for high-level Petri nets. Theoretical Computer
Science, 45(3):261–292, 1986.

[78] Nisse Husberg and Tapio Manner. Emma: developing an industrial
reachability analyser for SDL. In Jeannette M. Wing, Jim Wood-
cock, and Jim Davies, editors, World Congress on Formal Methods
in the Development of Computing Systems, volume 1708 of Lec-
ture Notes in Computer Science, pages 642–661, Toulouse, France,
September 1999. Springer-Verlag, Berlin, Germany.

[79] Daniel C. Hyde. Introduction to the programming language Oc-
cam. http://www.eg.bucknell.edu/~cs366/occam.pdf, March
1995. Course material for CSCI 366 Parallel Computation, Buck-
nell University, Lewisburg, PA, USA.

[80] Standard for information technology—portable operating system
interface (POSIX r©). IEEE Std 1003.1-2001, Institute of Electrical
and Electronics Engineers, Inc., New York, NY, USA, December
2001.

[81] Transmission control protocol. STD 7, Internet Engineering Task
Force, September 1981.

[82] Cornelia P. Inggs and Howard Barringer. Effective state exploration
for model checking on a shared memory architecture. Electronic
Notes in Theoretical Computer Science, 68(4), October 2002. CON-
CUR 2002 Satellite Workshops—Parallel and Distributed Model
Checking.

[83] C. Norris Ip and David L. Dill. Better verification through sym-
metry. Formal Methods in System Design, 9(1/2):41–75, August
1996.

52 REFERENCES

http://www.eg.bucknell.edu/~cs366/occam.pdf

[84] Information technology—open systems interconnection—basic ref-
erence model: the basic model. ISO/IEC 7498-1:1994, International
Organization for Standardization, Genève, Switzerland, 1994.

[85] Information technology—open systems interconnection—LOTOS
—a formal description technique based on the temporal ordering
of observational behaviour. ISO 8807:1989, International Organi-
zation for Standardization, Genève, Switzerland, 1989.

[86] Information technology—open systems interconnection—Estelle: a
formal description technique based on an extended state transition
model. ISO 9074:1997, International Organization for Standardiza-
tion, Genève, Switzerland, 1997. Withdrawn May 1999.

[87] Information technology—Z formal specification notation—syntax,
type system and semantics. ISO/IEC 13568:2002, International
Organization for Standardization, Genève, Switzerland, 2002.

[88] Information technology—programming languages, their environ-
ments and system software interfaces—Vienna development meth-
od—specification language—Part 1: base language. ISO/IEC
13817-1:1996, International Organization for Standardization, Ge-
nève, Switzerland, 1996.

[89] Specification and description language (SDL). Recommendation
Z.100 (08/02), International Telecommunication Union, Genève,
Switzerland, September 2002.

[90] Hannu-Matti Järvinen and Reino Kurki-Suonio. The DisCo lan-
guage and temporal logic of actions. Technical Report 11, Tampere
University of Technology, Software Systems Laboratory, 1990.

[91] Kurt Jensen. Coloured Petri Nets. Basic Concepts, Analysis Meth-
ods and Practical Use. Volume 1, Basic Concepts. Monographs in
Theoretical Computer Science. Springer-Verlag, Berlin, Germany,
2nd corrected edition, 1997.

[92] Tommi Junttila. Symmetry reduction algorithms for data symme-
tries. Research Report A-72, Helsinki University of Technology,
Department of Computer Science and Engineering, Laboratory for
Theoretical Computer Science, Espoo, Finland, May 2002.

[93] Roope Kaivola. Equivalences, preorders and compositional verifica-
tion for linear time temporal logic and concurrent systems. Report
A-1996-1, University of Helsinki, Department of Computer Science,
Helsinki, Finland, March 1996. PhD Thesis.

[94] Bengi Karaçalı and Kuo-Chung Tai. Model checking based on si-
multaneous reachability analysis. In Klaus Havelund, John Penix,
and Willem Visser, editors, SPIN Model Checking and Software
Verification, 7th International SPIN Workshop, volume 1885 of Lec-
ture Notes in Computer Science, pages 34–53, Stanford, CA, USA,
August 2000. Springer-Verlag, Berlin, Germany.

REFERENCES 53

[95] Shmuel Katz and Hillel Miller. Saving space by fully exploiting
invisible transitions. Formal Methods in System Design, 14(3):311–
332, May 1999.

[96] Pertti Kellomäki. Composing distributed systems from reusable as-
pects of behavior. In Distributed Computing Systems Workshops,
22nd International Conference, pages 481–486, Vienna, Austria,
July 2002. IEEE Computer Society Press, Los Alamitos, CA, USA.

[97] Victor Khomenko and Maciej Koutny. Branching processes of high-
level Petri nets. In Garavel and Hatcliff [58], pages 458–472.

[98] Ekkart Kindler and Hagen Völzer. Algebraic nets with flexible arcs.
Theoretical Computer Science, 262(1–2):285–310, July 2001.

[99] Lars M. Kristensen and Thomas Mailund. A compositional sweep-
line state space exploration method. In Peled and Vardi [129], pages
327–343.

[100] Lars M. Kristensen and Thomas Mailund. A generalised sweep-
line method for safety properties. In Lars-Henrik Eriksson and
Peter Alexander Lindsay, editors, FME 2002: Formal Methods—
Getting IT Right. International Symposium of Formal Methods Eu-
rope, volume 2391 of Lecture Notes in Computer Science, pages
549–567, Copenhagen, Denmark, July 2002. Springer-Verlag, Ber-
lin, Germany.

[101] Olaf Kummer. Simulating synchronous channels and net in-
stances. In Jörg Desel, Peter Kemper, Ekkart Kindler, and An-
dreas Oberweis, editors, 5. Workshop Algorithmen und Werkzeuge
für Petrinetze, Forschungsbericht 694, pages 73–78, Dortmund,
Germany, October 1998. Universität Dortmund, Fachbereich In-
formatik.

[102] Robert P. Kurshan. Computer-Aided Verification of Coordinating
Processes—The Automata-Theoretic Approach. Princeton Univer-
sity Press, Princeton, NJ, USA, 1994.

[103] Charles Lakos. Object oriented modelling with object Petri nets.
In Gul Agha, Fiorella de Cindio, and Grzegorz Rozenberg, editors,
Concurrent Object-Oriented Programming and Petri Nets, volume
2001 of Lecture Notes in Computer Science, pages 1–37. Springer-
Verlag, Berlin, Germany, 2001.

[104] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565, July
1978.

[105] Leslie Lamport. The temporal logic of actions. ACM Transac-
tions on Programming Languages and Systems, 16(3):872–923, May
1994.

54 REFERENCES

[106] Timo Latvala. Model checking LTL properties of high-level Petri
nets with fairness constraints. In Colom and Koutny [36], pages
242–262.

[107] Timo Latvala and Keijo Heljanko. Coping with strong fairness.
Fundamenta Informaticae, 43(1–4):175–193, 2000.

[108] Kevin Lawton et al. The open source IA-32 emulation project.
http://bochs.sourceforge.net, 1994–2002.

[109] Ranko Lazić and David Nowak. A unifying approach to data-
independence. In Catuscia Palamidessi, editor, CONCUR 2000—
Concurrency Theory, 11th International Conference, volume 1877
of Lecture Notes in Computer Science, pages 581–596, University
Park, PA, USA, August 2000. Springer-Verlag, Berlin, Germany.

[110] Sari Leppänen and Matti Luukkainen. Compositional verification
of a third generation mobile communication protocol. In Ten-
Hwang Lai, editor, Proceedings of the 2000 ICDCS Workshops,
pages E118–E125, Taipei, Taiwan, April 2000.

[111] Glenn Lewis and Charles Lakos. Incremental state space construc-
tion for coloured Petri nets. In Colom and Koutny [36], pages
263–282.

[112] David Lie, Andy Chou, Dawson Engler, and David L. Dill. A simple
method for extracting models from protocol code. In Proceedings
of the 28th Annual International Symposium on Computer Archi-
tecture, ISCA 2001, pages 192–203, Göteborg, Sweden, July 2001.
IEEE Computer Society Press, Los Alamitos, CA, USA.

[113] Richard J. Lipton. Reduction: A method of proving properties of
parallel programs. Communications of the ACM, 18(12):717–721,
December 1975.

[114] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani,
and Sadek Bensalem. Property preserving abstractions for the ver-
ification of concurrent systems. Formal Methods in System Design,
6(1):11–44, January 1995.

[115] Louise Lorentsen and Lars Michael Kristensen. Exploiting stabi-
lizers and parallelism in state space generation with the symmetry
method. In Valmari and Yakovlev [153], pages 211–220.

[116] Marko Mäkelä. Condensed storage of multi-set sequences. In Kurt
Jensen, editor, Practical Use of High-Level Petri Nets, DAIMI re-
port PB-547, pages 111–125. University of Århus, Denmark, June
2000.

[117] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Norwell, MA, USA, 1993.

REFERENCES 55

http://bochs.sourceforge.net

[118] Kenneth L. McMillan. A technique of state space search based on
unfolding. Formal Methods in System Design, 6(1):45–65, January
1995.

[119] Meta Software Corporation, Cambridge, MA, USA. Design/CPN
Reference Manual for X-Windows, Version 2.0, 1993.

[120] Robin Milner. Synthesis of communicating behaviour. In Józef
Winkowski, editor, Mathematical Foundations of Computer Sci-
ence, Proceedings, 7th Symposium, volume 64 of Lecture Notes
in Computer Science, pages 71–83, Zakopane, Poland, September
1978. Springer-Verlag, Berlin, Germany.

[121] Robin Milner. Communication and Concurrency. Prentice Hall,
Englewood Cliffs, NJ, USA, 1989.

[122] Daniel Moldt and Frank Wienberg. Multi-agent-systems based on
coloured Petri nets. In Pierre Azéma and Gianfranco Balbo, edi-
tors, Application and Theory of Petri Nets 1997, 18th International
Conference, volume 1248 of Lecture Notes in Computer Science,
pages 82–101, Toulouse, France, June 1997. Springer-Verlag, Ber-
lin, Germany.

[123] Tadao Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, April 1989.

[124] David M. Nicol and Gianfranco Ciardo. Automated parallelization
of discrete state-space generation. Journal of Parallel and Dis-
tributed Computing, 47(2):153–167, December 1997.

[125] OMG Unified Modeling Language. Specification v1.4, formal/01-
09-67, Object Management Group, Needham, MA, USA, Septem-
ber 2001.

[126] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von
Henke. Formal verification for fault-tolerant architectures: Pro-
legomena to the design of PVS. IEEE Transactions on Software
Engineering, 21(2):107–125, February 1995.

[127] Andrew Page, Thomas Keane, Richard Allen, Thomas J. Naught-
on, and John Waldron. Multi-tiered distributed computing plat-
form. In Proceedings of the Second International Conference on
the Principles and Practice of Programming in Java, pages 191–
194, Kilkenny City, Ireland, June 2003. Department of Computer
Science, National University of Ireland.

[128] Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holzmann, ed-
itors. Partial Order Methods in Verification: DIMACS Workshop,
July 24–26, 1996, volume 29 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, Princeton University,
NJ, USA, 1997. American Mathematical Society, Providence, RI,
USA.

56 REFERENCES

[129] Doron A. Peled and Moshe Y. Vardi, editors. Formal Techniques
for Networked and Distributed Systems—FORTE 2002, 22nd IFIP
WG 6.1 International Conference, volume 2529 of Lecture Notes in
Computer Science, Houston, TX, USA, November 2002. Springer-
Verlag, Berlin, Germany.

[130] Giuseppe Della Penna, Benedetto Intrigila, Enrico Tronci, and
Marisa Venturini Zilli. Exploiting transition locality in the disk
based Murϕ verifier. In Mark Aagaard and John W. O’Leary, edi-
tors, Formal Methods in Computer-Aided Design, 4th International
Conference, volume 2517 of Lecture Notes in Computer Science,
pages 202–219, Portland, OR, USA, November 2002. Springer-
Verlag, Berlin, Germany.

[131] Laure Petrucci. Modélisation, vérification et applications. Mémoire
d’habilitation à diriger des recherches, Université d’Évry, Évry,
France, December 2002.

[132] Wolfgang Reisig. Elements of Distributed Algorithms: Modeling
and Analysis with Petri Nets. Springer-Verlag, Berlin, Germany,
1998.

[133] Michael J. Sanders. Constraint programming with object-oriented
Petri nets. In 1998 IEEE International Conference on Systems,
Man, and Cybernetics, pages 289–294, San Diego, CA, USA, Oc-
tober 1998.

[134] Michael J. Sanders. Efficient computation of enabled transition
bindings in high-level Petri nets. In 2000 IEEE International
Conference on Systems, Man, and Cybernetics, pages 3153–3158,
Nashville, TN, USA, October 2000.

[135] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: a dynamic data race detector for
multithreaded programs. ACM Transactions on Computer Sys-
tems, 15(4):391–411, November 1997.

[136] Karsten Schmidt. LoLA: A low level analyser. In Mogens Nielsen
and Dan Simpson, editors, Application and Theory of Petri Nets
2000, 21st International Conference, volume 1825 of Lecture Notes
in Computer Science, pages 465–474, Århus, Denmark, June 2000.
Springer-Verlag, Berlin, Germany.

[137] Karsten Schmidt. Distributed verification with LoLA. Fundamenta
Informaticae, 54(2–3):253–262, February 2003.

[138] Julian Seward. Valgrind, an open-source memory debugger for x86-
GNU/Linux. http://developer.kde.org/~sewardj/, May 2003.

[139] Vivek K. Shanbhag, K. Gopinath, Markku Turunen, Ari Ahtiainen,
and Matti Luukkainen. EASN: Integrating ASN.1 and model check-
ing. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,

REFERENCES 57

http://developer.kde.org/~sewardj/

Computer Aided Verification, 13th International Conference, CAV
2001, volume 2102 of Lecture Notes in Computer Science, pages
382–386, Paris, France, July 2001. Springer-Verlag, Berlin, Ger-
many.

[140] Robert M. Shapiro, Jawahar Malhotra, Kurt Jensen, Søren Chris-
tensen, and Peter Huber. Computer-aided generation of programs
modelling complex systems using colored Petri nets. United States
Patent 5,257,363, Meta Software Corporation, Cambridge, MA,
USA, October 1993. Filed April 9, 1990.

[141] Mary Sheeran and Gunnar St̊almarck. A tutorial on St̊almarck’s
proof procedure for propositional logic. Formal Methods in System
Design, 16(1):23–58, January 2000.

[142] A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson. SMC: A
symmetry-based model checker for verification of safety and live-
ness properties. ACM Transactions on Software Engineering and
Methodology, 9(2):133–166, April 2000.

[143] Harry Sneed and Siegfried Göschl. Testing software for Internet
applications. Software Focus, 1(1):15–22, September 2000.

[144] Peter H. Starke. Reachability analysis of Petri nets using sym-
metries. Systems Analysis Modelling Simulation, 8(4/5):293–303,
1991.

[145] Ulrich Stern and David L. Dill. A new scheme for memory-efficient
probabilistic verification. In Reinhard Gotzhein and Jan Bred-
ereke, editors, Formal Description Techniques IX: Theory, appli-
cation and tools, IFIP TC6 WG6.1 International Conference on
Formal Description Techniques IX / Protocol Specification, Testing
and Verification XVI, volume 69 of IFIP Conference Proceedings,
pages 333–348, Kaiserslautern, Germany, October 1996. Chapman
& Hall, London, UK.

[146] Ulrich Stern and David L. Dill. Parallelizing the Murϕ verifier.
Formal Methods in System Design, 18(2):117–129, March 2001.

[147] Frank Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, 1995.

[148] Heikki Tuominen. Embedding a dialect of SDL in Promela. In
Dams et al. [40], pages 245–260.

[149] Teemu Tynjälä, Sari Leppänen, and Vesa Luukkala. Verifying reli-
able data transmission over UMTS radio interface with high level
Petri nets. In Peled and Vardi [129], pages 178–193.

[150] Antti Valmari. The state explosion problem. In Wolfgang Reisig
and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Ba-
sic Models, Advances in Petri Nets, volume 1491 of Lecture Notes
in Computer Science, pages 429–528. Springer-Verlag, Berlin, Ger-
many, 1998.

58 REFERENCES

[151] Antti Valmari et al. Tampere Verification Tool. http://www.cs.

tut.fi/ohj/VARG/TVT/, 2000–2003.

[152] Antti Valmari and Manu Setälä. Visual verification of safety and
liveness. In Marie-Claude Gaudel and Jim Woodcock, editors, FME
’96: Industrial Benefit and Advances in Formal Methods, Third
International Symposium of Formal Methods Europe, volume 1051
of Lecture Notes in Computer Science, pages 228–247, Oxford, UK,
March 1996. Springer-Verlag, Berlin, Germany.

[153] Antti Valmari and Alex Yakovlev, editors. 2nd International Con-
ference on Application of Concurrency to System Design, Newcas-
tle upon Tyne, UK, June 2001. IEEE Computer Society Press, Los
Alamitos, CA, USA.

[154] Peter van Beek. An extensive library of routines for experimenting
with different backtracking methods for solving binary CSPs. http:
//ai.uwaterloo.ca/~vanbeek/software/csplib.tar.gz, April
1994.

[155] Kimmo Varpaaniemi, Jaakko Halme, Kari Hiekkanen, and Tino
Pyssysalo. PROD reference manual. Technical Report B-13, Hel-
sinki University of Technology, Department of Computer Science
and Engineering, Digital Systems Laboratory, Espoo, Finland, Au-
gust 1995. See also http://www.tcs.hut.fi/Software/prod/.

[156] Willem Visser. Memory efficient storage in SPIN. In Grégoire et al.
[63], pages 21–35.

[157] Willem Visser, Klaus Havelund, Guillaume Brat, and Seungjoon
Park. Model checking programs. In Perry Alexander and Pierre
Flener, editors, International Conference on Automated Software
Engineering, pages 3–11. IEEE Computer Society Press, Los
Alamitos, CA, USA, September 2000.

[158] Georg Weißenbacher. An abstraction/refinement scheme for model
checking C programs. Diplomarbeit in Telematik, IST—Institut
für Softwaretechnologie der Technischen Universität Graz, Graz,
Austria, March 2003.

[159] Colin H. West. Applications and limitations of automated protocol
validation. In Carl A. Sunshine, editor, IFIP WG6.1 Second Inter-
national Workshop on Protocol Testing, Specification and Verifica-
tion, pages 361–371, Idyllwild, CA, USA, May 1982. North-Holland
Publishing Company, Amsterdam, The Netherlands.

[160] Wei Jen Yeh and Michal Young. Compositional reachability anal-
ysis using process algebra. In Proceedings of the Symposium on
Software Testing, Analysis, and Verification, pages 49–59, Victo-
ria, British Columbia, October 1991. ACM Press, New York, NY,
USA.

REFERENCES 59

http://www.cs.tut.fi/ohj/VARG/TVT/
http://www.cs.tut.fi/ohj/VARG/TVT/
http://ai.uwaterloo.ca/~vanbeek/software/csplib.tar.gz
http://ai.uwaterloo.ca/~vanbeek/software/csplib.tar.gz
http://www.tcs.hut.fi/Software/prod/

A CORRECTIONS TO PUBLICATIONS

[P1]: • In Figure 3, the test k = n should be k > n or k = n + 1.

• In Section 4.2, the summand in the definition of the secondary
cost function c2(Sk) should be [Xj 6= ∅] instead of [Xk 6= ∅].

[P3]: In Algorithms 1 and 3, S should be initialised to S = {s0} instead
of S = ∅.

60 A CORRECTIONS TO PUBLICATIONS

B ALGORITHM LISTINGS

B.1 Sequential State Space Enumeration

/* Enumerate states reachable from s0 */
/*1*/ void verify(s0) {
/*2*/ Set S = {s0}, Q = {s0};
/*3*/ /* Report a reachable state (call-back procedure) */
/*4*/ void reportState(s, t) {
/*5*/ if (error(s))
/*6*/ reportError(s,“erroneous state”);
/*7*/ else if (s 6∈ S)
/*8*/ S = S ∪ {s}, Q = Q ∪ {s};
/*9*/ }

/*10*/ while (Q 6= ∅) {
/*11*/ let s ∈ Q; Q = Q \ {s}; successors(s, reportState);
/*12*/ }
/*13*/ }

B.2 Parallel State Space Enumeration

/* Client: compute successor states */
/*1*/ void client(server) {
/*2*/ Set S;
/*3*/ /* Report a reachable state (call-back procedure) */
/*4*/ void reportState(s, t) {
/*5*/ if (error(s)) reportError(s,“erroneous state”);
/*6*/ else S.add(s);
/*7*/ }
/*8*/ State s;
/*9*/ while (null 6= (s = server .getState())) {

/*10*/ S = ∅; successors(s, reportState);
/*12*/ server .putStates(S);
/*13*/ }
/*14*/ }
/* Server: enumerate states reachable from s0 */
/*1*/ void server() {
/*2*/ Set S = {s0}, Q = {s0};
/*3*/ while (not all clients block in getState)
/*4*/ serve remote procedure invocations;
/*5*/ }
/* Server: assign an unprocessed state to a client */
/*1*/ remote procedure State getState() {
/*2*/ wait until Q 6= ∅; let s ∈ Q,Q = Q \ {s}; return s;
/*3*/ } /* returns null if all clients are waiting here */

/* Server: receive successor states from a client */
/*1*/ remote procedure void putStates(S ′) {
/*2*/ Q = Q ∪ (S ′ \ S); S = S ∪ S ′;
/*3*/ }

B ALGORITHM LISTINGS 61

B.3 Generating Successor States in a High-Level Petri Net

/* Report all successors of the given marking */
/*1*/ void successors(M, rep) {
/*2*/ for each transition t {
/*3*/ analyse arcs(M, t,EmptyValuation, 0, rep);
/*4*/ }
/*5*/ }
/* Analyse the remaining input arcs */
/*1*/ void analyse arcs(M, t, x, k, rep) {
/*2*/ if (k ≥ t.numInputs)
/*3*/ rep(M + eval(t.outputs , x), t);
/*4*/ else if (t.variables [k] 6= ∅)
/*5*/ analyse variable(M, t, x, k, rep);
/*6*/ else
/*7*/ analyse constant(M, t, x, k, rep);
/*8*/ }
/* Evaluate an input arc expression */
/*1*/ void analyse constant(M, t, x, k, rep) {
/*2*/ Marking m = eval(t.inputs [k], x);
/*3*/ if (an error occurred in eval)
/*4*/ reportError(M,“undefined input arc”, t, x);
/*5*/ else if (m ≤ M)
/*6*/ analyse arcs(M −m, t, x, k + 1, rep);
/*7*/ }
/* Process an input arc with bindable variables */
/*1*/ void analyse variable(M, t, x, k, rep) {
/*2*/ int c = eval multiplicity(t.inputs [k], x);
/*3*/ if (c > 0)
/*4*/ bind variables(M, t, x, k, rep, c);
/*5*/ else if (c 6= 0)
/*6*/ reportError(M,“undefined multiplicity”, t, x);
/*7*/ else {
/*8*/ t.unified [k] = ∅;
/*9*/ analyse arcs(M, t, x, k + 1);

/*10*/ }
/*11*/ }
/* Bind variables from an input arc */
/*1*/ void bind variables(M, t, x, k, rep, c) {
/*2*/ for each m such that c‘m ≤ M [t.inplace[k]]) {
/*3*/ Valuation x′ = x;
/*4*/ for each variable v ∈ t.variables [k]
/*5*/ x′[v] = candidate(m, t.inputs [k], v);
/*6*/ t.unified [k] = c‘m;
/*7*/ if (enabled(t.guard , x′))
/*8*/ if (

∧k
j=0 compatible(t.unified [j], t.inputs [j], x′))

/*9*/ analyse arcs(M − t.unified [k], t, x′, k + 1, rep);
/*10*/ }
/*11*/ }

62 B ALGORITHM LISTINGS

B.4 Modular State Space Enumeration

/* Enumerate states reachable from s0 in module */
/*1*/ void explore(module, s0,S) {
/*2*/ Set S = {s0}, Q = {s0};
/*3*/ while (Q 6= ∅) {
/*4*/ let s ∈ Q, Q = Q \ {s};
/*5*/ transitions(module, s, S, Q,S);
/*6*/ modules(module, s, S, Q);
/*7*/ }
/*8*/ }
/* Enumerate locally reachable states from s in module */
/*1*/ void transitions(module, s, S, Q,S) {
/*2*/ /* Report a reachable state (call-back procedure) */
/*3*/ void reportState(s′, t) {
/*4*/ for each sync label tf of t
/*5*/ S = S ∪ {(module, tf , s)};
/*6*/ if t has no sync label
/*7*/ report(s′, S, Q);
/*8*/ }
/*9*/ module.successors(s, reportState);

/*10*/ }
/* Explore the modules of m from s */
/*1*/ void modules(m, s, S,Q) {
/*2*/ Set S = ∅;
/*3*/ for each module ∈ C(m)
/*4*/ explore(module, smodule ,S);
/*5*/ for each sync transition tf of m
/*6*/ sync(m, s, S, Q,S, tf);
/*7*/ }
/* Compute the synchronisations on tf */
/*1*/ void sync(m, s, S, Q,S, tf) {
/*2*/ for each

⋃
module ∈ C(m)

synchronising on tf

{(module, tf, smodule)} ⊆ S {

/*3*/ State s∗ = s;
/*4*/ for each module ∈ C(m) synchronising on tf
/*5*/ s∗module = smodule ;

/*6*/ for each s′ such that s∗
tf−→ s′

/*7*/ report(s′, S, Q);
/*8*/ }
/*9*/ }
/* Report a reachable state */
/*1*/ void report(s, S,Q) {
/*2*/ if (error(s))
/*3*/ reportError(s,“erroneous state”);
/*4*/ else if (s 6∈ S)
/*5*/ S = S ∪ {s}, Q = Q ∪ {s};
/*6*/ }

B ALGORITHM LISTINGS 63

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE
RESEARCH REPORTS

HUT-TCS-A68 Javier Esparza, Keijo Heljanko

Implementing LTL Model Checking with Net Unfoldings. March 2001.

HUT-TCS-A69 Marko Mäkelä

A Reachability Analyser for Algebraic System Nets. June 2001.

HUT-TCS-A70 Petteri Kaski

Isomorph-Free Exhaustive Generation of Combinatorial Designs. December 2001.

HUT-TCS-A71 Keijo Heljanko
Combining Symbolic and Partial Order Methods for Model Checking 1-Safe Petri Nets.
February 2002.

HUT-TCS-A72 Tommi Junttila

Symmetry Reduction Algorithms for Data Symmetries. May 2002.

HUT-TCS-A73 Toni Jussila

Bounded Model Checking for Verifying Concurrent Programs. August 2002.

HUT-TCS-A74 Sam Sandqvist
Aspects of Modelling and Simulation of Genetic Algorithms: A Formal Approach.
September 2002.

HUT-TCS-A75 Tommi Junttila

New Canonical Representative Marking Algorithms for Place/Transition-Nets. October 2002.

HUT-TCS-A76 Timo Latvala

On Model Checking Safety Properties. December 2002.

HUT-TCS-A77 Satu Virtanen

Properties of Nonuniform Random Graph Models. May 2003.

HUT-TCS-A78 Petteri Kaski

A Census of Steiner Triple Systems and Some Related Combinatorial Objects. June 2003.

HUT-TCS-A79 Heikki Tauriainen

Nested Emptiness Search for Generalized Büchi Automata. July 2003.

HUT-TCS-A80 Tommi Junttila
On the Symmetry Reduction Method for Petri Nets and Similar Formalisms.
September 2003.

HUT-TCS-A81 Marko Mäkelä
Efficient Computer-Aided Verification of Parallel and Distributed Software Systems.
November 2003.

ISBN 951-22-6791-8

ISBN 951-22-6792-6 (PDF)

ISSN 1457-7615

http://lib.hut.fi/Diss/2003/isbn9512267926/

	Preface
	List of Publications
	Introduction
	Interfaces and Abstraction in Software Systems
	Objective and Methods
	Contributions

	Verification
	Formulating and Checking the Desired Properties
	Modelling Formalisms
	Guarded Command Languages
	Process Algebra
	Transition Systems
	Petri Nets
	Logic

	Specialised Verification Methods and Tools
	Theorem Proving
	Rewriting Systems and Equivalence Tests
	Structural Analysis
	Symbolic Model Checking

	State Space Enumeration
	Benefits of State Space Enumeration
	Alleviating the State Space Explosion
	Eliminating Redundant Data
	Dealing with Independent Actions
	Compositional Verification

	Reducing the Memory Usage
	Relaxing the Loop Check
	Compression Techniques
	Approximating the Set of Reachable States

	Reducing the Execution Time

	Developing Verified Software Systems
	Verifying Abstract Designs
	Verifying Implementations

	Summary
	A Unification Algorithm for Computing Successors
	Background
	Related Work
	A Description of the Algorithm
	Contributions

	Modular Reachability Analyser
	Background
	Related Work
	Contributions

	Parallelised State Space Enumeration
	Background
	Related Work
	Contributions

	Modular State Space Enumeration
	Background
	Related Work
	A Description of the Algorithm
	Contributions

	Managing Component-Oriented Enterprise Applications
	Background
	Related Work
	Contributions

	Conclusion
	Topics for Further Research

	References
	Corrections to Publications
	Algorithm Listings
	Sequential State Space Enumeration
	Parallel State Space Enumeration
	Generating Successor States in a High-Level Petri Net
	Modular State Space Enumeration

	Original Publications

