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ABSTRACT: The symmetry reduction method is a technique for alleviating
the combinatorial explosion problem arising in the state space analysis of
concurrent systems. This thesis studies various issues involved in the method.
The focus is on systems modeled with Petri nets and similar formalisms, such
as the Murϕ description language.

For place/transition nets, the computational complexity of the sub-tasks
involved in the method is established. The problems of finding the sym-
metries of a net, comparing whether two markings are equivalent under the
symmetries, producing canonical representatives for markings, and deciding
whether a marking symmetrically covers another are classified to well-known
complexity classes. New algorithms for the central task of producing canon-
ical representatives for markings are presented. The algorithms apply and
combine techniques from computational group theory and from the algo-
rithms for the graph isomorphism problem. The experimental results show
that the new algorithms are competitive against the previous ones described
in the literature.

Data symmetries, i.e., state space symmetries produced by symmetric use
of data values, of a class high-level Petri nets, algebraic system nets, are also
studied. It is defined how the permutations of the data values produce cor-
responding permutations in the state space of the net. In addition, sufficient
conditions for the annotations in the net are defined in order to ensure that
the produced permutations are indeed symmetries. Because these condi-
tions turn out to be computationally difficult to verify, an approximation rule
is additionally given. The practical use of the developed theory is illustrated
by defining a class of high-level Petri nets allowing the use of common data
types such as lists, sets, and arrays. The data symmetries of such nets are
produced in a way similar to well-formed nets and the Murϕ system, i.e., by
declaring some primitive data types to be permutable and restricting the set
of applicable operations on such types.

New algorithms for checking whether two states are equivalent and for
producing representatives for states under data symmetries are also described.
The proposed algorithms either directly use the existing algorithms for the
graph isomorphism problem, or use a partition refinement process modified
from such algorithms. The algorithms are not limited to high-level Petri nets
but are also applicable to the Murϕ description language. The experimental
results show that the new algorithms are competitive against the previous
ones implemented in the Murϕ tool.

KEYWORDS: State space analysis, symmetry, Petri nets, place/transition
nets, algebraic system nets, the Murϕ system.
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1 INTRODUCTION

Concurrent and distributed hardware and software systems are increasingly
used nowadays in many applications where failure is highly undesirable:
telecommunication network switches, medical instruments, traffic control
systems, and so on. Therefore, there is also a growing need for computer-
aided analysis and verification techniques for such systems. The so-called
state space based methods are one of the most important approaches for this
task [Valmari 1998; Clarke et al. 1999]. They are based on enumerating all
the possible states that (the model of) a system may reach during its execu-
tion. This set of states is known as the reachability graph of the system. Var-
ious properties of the system can be verified by using its reachability graph,
such as absence of deadlocks, unreachability of undesirable “bad” states, or,
more generally, that the system’s behaviors fulfill a property specified by a
temporal logic formula. The main advantages of state space methods are
that they can be automated and, in the case the verified property does not
hold, can usually give a counter-example execution violating the property.
The latter property is very helpful when debugging systems. However, the
state space based methods suffer from the state explosion problem, meaning
that the number of possible states the system may have can be extremely
large. Many techniques have been suggested for alleviating the state ex-
plosion problem, see e.g. [Valmari 1998; Clarke et al. 1999], including (i)
representing state sets symbolically by using e.g. Binary Decision Diagrams
(BDDs), (ii) exploiting the independence of concurrent transitions in the so-
called partial order methods, (iii) using abstractions to simplify the system,
and (iv) exploiting the symmetries of the system. This thesis studies the last
technique, known as the symmetry reduction method, in the context of Petri
nets [Reisig and Rozenberg 1998a; 1998b] and similar system description
formalisms such as the Murϕ system [Dill 1996].

As its name implies, the symmetry reduction method exploits the symme-
tries (that is, automorphisms) of the state space. Such state space symmetries
are present in many systems, and are usually induced by a symmetric system
structure, use of replicated components, or symmetric use of data values. For
instance, the behavior of a distributed database system composed of a server
process and several identical client processes is usually symmetric with re-
spect to the clients. Thus the situation in which client 1 is accessing data
while the others are idle can be considered equivalent to the one in which
client 3 is accessing data while the others are idle. The state space symme-
tries partition the states into equivalence classes of states called orbits. The
main idea of the symmetry reduction method is that, for many verification
tasks, it is sufficient to consider only one representative state in each reach-
able orbit. In short, the symmetry reduction method can be seen as a process
of three phases.

1. Finding some information in the system description level that produces
state space symmetries. Since the whole purpose of the symmetry re-
duction method is to avoid enumerating the entire reachability graph,
state space symmetries must be found in the system description level.
Obviously, the nature of the state space symmetry producing informa-
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tion depends on the system description formalisms. In place/transition
nets, for instance, the structural symmetries of the net produce cor-
responding symmetries in the state space. On the other hand, in the
Murϕ system description formalism, as well as in many classes of high-
level Petri nets, symmetric use of data values produces state space sym-
metries.

2. Building a reduced reachability graph. This step is similar to the usual
reachability graph construction except that the states that are equiva-
lent under the symmetries are identified. The goal is to visit only one
representative state from each reachable orbit of states induced by the
symmetries. There are two ways to achieve this during the iterative
reachability graph construction process:

(a) Compare each newly visited state with all the already visited states
for equivalence. In this approach, one must be able to answer the
orbit problem asking whether two states are equivalent.

(b) Transform each newly visited state into an equivalent, canonical
representative state. Only these representative states are stored in
the reduced reachability graph. The task of transforming a state
into its canonical representative is called the constructive orbit
problem.

As the orbit problems above are, in general, computationally difficult,
they can be approximated (i) by using a sound but incomplete state
equivalence check, or (ii) by producing representative states that are
not necessarily canonical. Of course, this kind of approximation may
result in reduced reachability graphs containing more than one repre-
sentative from certain orbits.

3. Analysis of properties based on the reduced reachability graph. The
complexity of this step depends on the analyzed property and its rela-
tionship with the applied symmetries. For instance, a reduced reacha-
bility graph contains a deadlock state if and only if the original reacha-
bility graph does. Thus, checking deadlock freedom under symmetries
is straightforward. The same applies to temporal logic model checking
of formulae that are preserved by the symmetries. On the other hand,
temporal logic model checking of formulae that are not preserved by
the applied symmetries requires the use of more involved algorithms.

1.1 THIS THESIS

The aim of this thesis is to study and improve various aspects of the symmetry
reduction method in the context of Petri nets and similar formalisms. In
short, the following is achieved.

– For place/transition nets, the computational complexity of the sub-
tasks appearing in the symmetry reduction method is established and
new algorithms for producing canonical representatives for markings
are developed.

– For a class of high-level Petri nets, it is shown how symmetries induced
by symmetric use of data can be defined and detected by using an
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approach similar to that used in well-formed nets [Chiola et al. 1991]
and in the Murϕ system [Ip and Dill 1996].

– Finally, new algorithms for the orbit problems under data symmetries
are developed, covering both classes of high-level Petri nets and the
Murϕ system.

The contributions and their relationship to related work are discussed in
more detail below.

Place/Transition Nets. The symmetry reduction method for place/transi-
tion nets is introduced in [Starke 1991]. It is shown that the symmetries of a
net produce symmetries in its state space. A preliminary algorithm for com-
puting the symmetries of a net is additionally given. A considerably improved
algorithm for computing the symmetries of a net is described in [Schmidt
2000a], while [Schmidt 2000b] gives algorithms for integrating the symme-
tries into the reachability graph generation process. This thesis extends these
results in two ways.

– The computational complexity of the sub-tasks appearing in the sym-
metry reduction method for place/transition nets is established. First,
it is shown that finding a generating set for the symmetries of a net is
as hard as the graph automorphisms problem. It is then shown that the
problem of deciding whether two markings are equivalent under the
symmetries is as hard as the graph isomorphism problem. In addition,
it is shown that finding the lexicographically greatest marking equiv-
alent to a given marking is an FPNP-complete problem, and thus as
hard as many well-known optimization problems such as the traveling
salesperson problem. These latter results hold even for 1-safe and live
nets when a generating set for the net symmetry group in question is
given and the markings in question are actually reachable. Finally, it is
shown that the problem of deciding whether a marking symmetrically
covers another marking is an NP-complete problem. Furthermore, it
is proven that the symmetric coverability problem cannot be combined
with the canonical representative approach in a straightforward way.

– New algorithms for producing canonical representatives for markings
are developed. The algorithms use and combine techniques from com-
putational group theory and from algorithms for producing canonical
versions of graphs. They require that the symmetry group of the net is
computed prior to the reachability analysis and is stored in a standard
representation form for permutation groups. The first algorithm maps
the marking to a corresponding graph and then utilizes an algorithm
such as the nauty tool [McKay 1990] to obtain a canonical version
of the graph. The canonical representative for the marking is then
computed from an isomorphism between the graph and its canonical
version. The second algorithm finds a canonical representative for the
marking by performing a backtracking search in the symmetry group
representation, pruning the search (i) by considering only symmetries
that are “compatible” with the marking, (ii) by using the best candidate
marking found so far, and (iii) by using the symmetries that stabilize
the marking. The third algorithm first computes an ordered partition of
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the elements in the net for the marking in a symmetry-respecting way,
and then uses the partition to further prune the backtracking search
in the symmetry group representation. The ordered partition is com-
puted by applying partition refinement techniques developed in the
context of graph isomorphism algorithms [McKay 1981; Kreher and
Stinson 1999]. Some experimental results are also given, showing that
the proposed algorithms are competitive against those implemented in
the LoLA tool [Schmidt 2000b; 2000c].

These results have been published previously in [Junttila 2000; 2001; 2002a].

Data Symmetries of High-Level Petri Nets. Symmetries of high-level Petri
nets (i.e., nets in which the tokens can contain data values) are not normally
produced by a symmetric structure but by symmetric use of data values. One
of the earliest studies of the symmetry reduction method is in the context
of colored Petri nets [Huber et al. 1985a; Jensen 1995]. However, as col-
ored Petri nets do not define the syntax for the annotations appearing in the
net, automatic detection of data symmetries is difficult. For instance, in the
current version of the Design/CPN tool, the user must (i) provide the sym-
metries in some form, (ii) check that they actually are symmetries, and (iii)
write functions that check whether two markings are equivalent [Jørgensen
and Kristensen 1998]. This approach requires a considerable amount of ex-
pertise of the user.

Another kind of approach is taken in well-formed nets [Chiola et al. 1991]
and in the Murϕ verification system [Ip and Dill 1996], in which the type sys-
tem and the data manipulation operations are defined. In these formalisms,
some primitive data types can be declared to be “permutable”. The permuta-
tions of the domains of such data types produce corresponding permutations
in the state space. In order to ensure that the produced permutations are
symmetries, the set of data manipulation operations applicable on the per-
mutable primitive types is restricted. For instance, in the Murϕ system, a
data type can be declared to be a “scalar set” whose values can be freely per-
muted but it is not allowed to compare whether an element is smaller than
another. Therefore, the symmetry exploitation process in these formalisms
is much simpler: (i) the user declares some primitive data types to be per-
mutable, and (ii) the state space analyzer tool checks that only allowed op-
erations are used on these types, and employs general purpose algorithms for
the orbit problems during the reduced reachability graph generation.

In this thesis, defining and detecting data symmetries of high-level Petri
nets are studied in the context of algebraic system nets (ASNs) [Kindler and
Völzer 1998; 2001], which have the advantage of offering a framework for
defining both the syntax and the semantics of the type system and the data
manipulation operations appearing as annotations in the nets. In this sense,
they are a special case of colored Petri nets. On the other hand, as the syntax
and semantics are not permanently fixed, ASNs are more flexible than well-
formed nets. The contributions are:

– A general, abstract framework is developed for defining how the do-
mains of the data types appearing in an ASN can be permuted, and
how these domain permutations act on the markings and transition in-
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stances, i.e., on the state space of the net. A sufficient compatibility
condition is defined between the domain permutations and the anno-
tations in the net, ensuring that the induced state space permutations
are indeed symmetries. The computational complexity of checking
this condition is analyzed. Since it turns out to be co-NP-complete
even for very simple cases, an approximation rule for the compatibility
condition is additionally given.

– The use of the abstract framework is illustrated by defining a high-
level Petri net class called extended well-formed nets (in short, EWF-
nets). The EWF-nets have a very rich data type system, including many
common structured data types such as lists, association arrays, and sets,
making them quite practical for modeling systems employing data ma-
nipulation. The data symmetries of EWF-nets are defined in a way
similar to well-formed nets and the Murϕ system described above, i.e.,
by declaring some primitive data types to be permutable. The compat-
ibility of the operations that can be applied to the data types is analyzed
by using the approximation rule defined in the abstract framework.

These results have been reported previously in [Junttila 1998; 1999b; 1999a].

Algorithms for Data Symmetries. Finally, several algorithms for deciding
state equivalence and for building representative states under data symme-
tries are proposed. The class of systems studied is so abstract that it covers the
Murϕ system formalism, well-formed nets (both the standard and extended
ones), and the most commonly used instances of colored Petri nets. Basi-
cally, the states of the systems in this class are vectors of typed state variables,
the type system being the same as in the extended well-formed nets described
above.

One of the proposed algorithms exploits a mapping that transforms states
into corresponding characteristic graphs. The mapping is originally intro-
duced in [Junttila 1999a] for determining the computational complexity of
deciding whether two states are equivalent. Given a state, a canonical repre-
sentative for it can be obtained by first transforming it into the correspond-
ing graph. The canonical version of the graph is then obtained by applying
a tool such as nauty [McKay 1990]. Finally, the canonical representative
for the state is obtained by using an isomorphism mapping the graph to its
canonical version.

In the second algorithm family, ordered partitions of the permutable prim-
itive type elements are built for states in a symmetry-respecting way. The
partitions can then be utilized to limit the set of symmetries that have to
be considered when comparing whether two states are equivalent or when
building a representative for a state. Building and exploiting partitions of this
kind is not a new idea but already used in [Huber et al. 1985b; Jensen 1995;
Ip 1996; Sistla et al. 2000]. However, in this work (i) the partition build-
ing process is formally defined, (ii) both freely and cyclically permutable
primitive data types are handled in a uniform way, and (iii) some very ex-
pressive invariants, needed in the partition building process, are proposed.
For instance, an invariant that can handle all the considered data types is
developed, and other, highly efficient, invariants are proposed for data types
of special forms. Furthermore, a novel improvement based on considering a
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partition refinement tree, adapted from the algorithms for obtaining canoni-
cal forms of graphs [McKay 1981; Kreher and Stinson 1999], is described.

Some of the proposed algorithms have been implemented in the Murϕ
tool and the experimental results show that they are competitive against the
previous ones described in [Ip 1996].

These results have been reported previously in [Junttila 2002b].

1.2 OTHER RELATED WORK

In addition to the related work already mentioned (which will be further dis-
cussed during the thesis), there is a lot of other related work in the literature
concerning the symmetry reduction method.

Most of the work mentioned above concentrates on verifying only simple
properties such as deadlock freedom, non-reachability of (symmetric) bad
states and some Petri net related properties such as the home state prop-
erty. Verification of more complex properties by combining temporal logic
model checking and symmetries is introduced in [Clarke et al. 1993; Clarke
et al. 1996; Emerson and Sistla 1993; 1996]. In [Clarke et al. 1993; Clarke
et al. 1996] it is shown that reduced reachability graphs can be used in
model checking CTL? formulae, provided that the atomic propositions ap-
pearing in the formula are invariant under the applied symmetry group. In
[Emerson and Sistla 1993; 1996] a stronger result is obtained, requiring only
that certain subformulae are invariant under the symmetries. In addition,
[Emerson and Sistla 1993; 1996] describe an automata theoretic approach
for model checking asymmetric properties, see also [Sistla and Godefroid
2001]. In this approach, the reduced reachability graph is partially unwound
by adding some additional information making it possible to track how the
atomic propositions are permuted. The approach is extended to handle fair-
ness in [Emerson and Sistla 1995; 1997], and a further improved on-the-fly
version of it is described in [Gyuris and Sistla 1997; 1999]. Furthermore,
[Ajami et al. 1998] describes an approach exploiting the symmetries of the
Büchi automaton corresponding to (the negation of) the verified property.
Using the nested depth-first search algorithm in model checking under sym-
metries is discussed in [Bošnački 2002a].

In [Bošnački et al. 2000; 2001; 2002], the Spin model checker [Holzmann
1997] is extended to handle symmetries produced by symmetric use of data
and replicated processes. Algorithms for producing representative states are
proposed. The algorithms are, in a sense, simple modified versions of the
partition based algorithms in the Murϕ tool [Ip 1996]. A similar approach is
presented in [Derepas and Gastin 2001], where the input language of Spin is
also extended with new keywords in order to automatically detect symmetries
produced by replicated processes. The symmetries produced by dynamic cre-
ation of objects in object-based programs are discussed in [Iosif 2001; 2002].
[Iosif 2001] gives an efficient algorithm for producing canonical represen-
tative states in the presence of such symmetries, while [Iosif 2002] considers
combining such symmetries with the symmetries produced by replicated pro-
cesses. The symmetries produced by class loading and object allocation in
the Java language are also described in [Lerda and Visser 2001]. A heuris-
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tic is proposed for producing representative states, trying to always allocate
the same object (class) in the same position independently of the execution
order of concurrent threads.

In the context of hardware verification, symmetries and the use of Binary
Decision Diagrams (BDDs) is combined in [Clarke et al. 1996]. The com-
plexity and algorithms for solving the orbit problems by using BDDs is dis-
cussed. It is shown that the BDD for the orbit relation can be exponentially
large, and the use of multiple representative states is suggested for avoiding
this problem. See also [Clarke et al. 1998] for further complexity analysis
and discussion on the use of multiple representatives. [Barner and Grum-
berg 2002] proposes another approach for avoiding the BDD explosion prob-
lem. [Wang and Schmidt 2002] describes an approach for verifying concur-
rent software with pointer data structures. The approach uses BDD-like data
structures for storing sets of states and also exploits symmetries produced by
replicated processes. In [Manku et al. 1998] it is described how structural
symmetries of hardware designs and temporal logic formulae can be found
and utilized. Another approach for exploiting symmetries during hardware
verification is presented in [Pandey and Bryant 1999], where the symmetries
are used to prune the number of properties that have to be checked.

The symmetry reduction and partial order methods can be combined.
In [Valmari 1991] it is shown that a combination preserves the existence of
dead markings and infinite paths (see also [Tiusanen 1994]). It seems that
the proof of this does not require the use of canonical representatives, mean-
ing that approximation by using non-canonical representatives is allowed.
[Emerson et al. 1997] describes a combination that preserves next-operator
free temporal logic formulae whose atomic propositions are invariant under
the applied symmetry group. However, the proof requires canonical repre-
sentative states, i.e., approximation by using non-canonical representatives
is not considered (the same seems to apply to the combination presented
in [Iosif 2002]). [Bošnački 2002b] shows that it is actually possible to use
non-canonical representatives.

The symmetry reduction method has also been applied to certain systems
that are only “almost”, or partially, symmetric. For instance, a system of n
communicating processes may be otherwise symmetric except that the pro-
cesses have different priorities when entering in the mutual exclusion sec-
tion. [Haddad et al. 1995] studies reachability analysis of partially symmetric
well-formed nets by adding information in the symbolic markings in order to
handle asymmetric transitions. In [Haddad et al. 2000], asymmetric systems
are verified by “moving” the asymmetries in the system into the automata to
be model checked. In [Emerson and Trefler 1999; Emerson et al. 2000], the
asymmetry problem is handled by defining weaker symmetry conditions for
the transition relation of the system. These conditions still ensure that the
symmetry reduced state space preserves temporal logic formulae with sym-
metry invariant atomic propositions. [Sistla and Godefroid 2001] presents
an approach that allows symmetry reductions while model checking asym-
metric temporal logic formulae in asymmetric systems. It this approach, the
symmetry reduced reachability graph is unwound with respect to both the
sub-formulae of the verified property and some transition predicates that cap-
ture the asymmetries of the system.

1. INTRODUCTION 7



Symmetries can also be exploited in the performance analysis of systems.
A stochastic version of well-formed nets [Chiola et al. 1991] is introduced
in [Chiola et al. 1993]. Furthermore, [Emerson and Trefler 1998] gives a
model checking procedure for a real-time Mu-calculus.

Finally, a quite different approach is taken in [Godefroid 1999]. In the
approach, software systems written in full-fledged programming languages,
such as C,C++ or Java, are model checked without having an explicit en-
coding for states by using the state-less search method [Godefroid 1997]. Be-
cause the encoding for states is not available in the approach, the equivalence
of states is not directly exploited but the corresponding equivalence of transi-
tion sequences is used instead.

1.3 ORGANIZATION

This thesis is organized as follows.
Chapter 2 gives the necessary preliminaries. The symmetry reduction

method is explained to the extent needed in this work and some other pre-
liminary definitions are also given.

Chapters 3 and 4 discuss the symmetry reduction method for place/transi-
tion nets. Chapter 3 gives the basic definitions and studies the computational
complexity of the sub-tasks in the symmetry reduction method, while Chap-
ter 4 describes new algorithms for the orbit problems.

Chapters 5 and 6 discuss the data symmetries of algebraic system nets.
First, Chapter 5 gives an abstract framework for defining data symmetries.
Chapter 6 then illustrates the use of the framework by defining the class of
high-level Petri nets called extended well-formed nets.

Chapter 7 proposes several algorithms for deciding state equivalence and
for building representative states under data symmetries.

Finally, Chapter 8 concludes the thesis with some possible future research
topics.
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2 PRELIMINARIES

This chapter introduces the state space analysis and the symmetry reduction
method to the extent needed in this thesis. The presentation is based on the
papers discussed in Sections 1.1 and 1.2. At the end of the chapter, some
other preliminaries relevant to the thesis are also defined.

2.1 STATE SPACE ANALYSIS

Consider a system given in a system description formalism. The semantics of
the formalism describe the state space of the system, consisting of the set of
all possible states the system may have, the transitions transforming the states
to others, and the initial state of the system. Formally, the state space of the
system is a labeled transition system (LTS)

L = 〈Q,L,∆, qinit〉,

where

1. Q is a non-empty set of states,
2. L is a non-empty set of transition names (transition labels) such that
Q ∩ L = ∅,

3. ∆ ⊆ Q× L×Q is the transition relation, and
4. qinit ∈ Q is the initial state.

One may use q1
l−→ q2 to abbreviate 〈q1, l, q2〉 ∈ ∆, i.e., the fact that executing

the transition l in the state q1 leads to the state q2. A transition l ∈ L is
enabled in a state q1 ∈ Q, denoted by q1

l−→, if there is a state q2 ∈ Q such
that q1

l−→ q2. A state q1 is a deadlock state if no transition is enabled in it. A
path is a (finite of infinite) sequence q1

l1−→ q2
l2−→ . . . of states and transitions

such that qi
li−→ qi+1 holds for each i. A state q′ is reachable from a state q

if there is a finite path starting in q and ending in q′. A state is reachable
if it is reachable from the initial state. The reachability graph of an LTS
L = 〈Q,L,∆, qinit〉 is the LTS

RG(L) = 〈 ~Q,L, ~∆, qinit〉,

where ~Q ⊆ Q and ~∆ are inductively defined by the following rules.

1. qinit ∈ ~Q,
2. if q1 ∈ ~Q and 〈q1, l, q2〉 ∈ ∆, then q2 ∈ ~Q and 〈q1, l, q2〉 ∈ ~∆, and
3. nothing else is in ~Q or in ~∆.

That is, the reachability graph is the subgraph of the state space contain-
ing exactly all the reachable states and the transitions between them. In
other words, it describes all the possible behaviors the system may have when
started in the initial state. The standard algorithm for computing reachability
graphs is shown in Algorithm 2.1.
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Algorithm 2.1 An algorithm for computing reachability graphs
1: Set unprocessed = {qinit}
2: Set ~Q = {qinit}
3: Set ~∆ = ∅
4: while unprocessed 6= ∅ do
5: Take any q ∈ unprocessed and set unprocessed = unprocessed \ {q}
6: for all q l−→ q′ do
7: Set ~∆ = ~∆ ∪ 〈q, l, q′〉
8: if q′ /∈ ~Q then
9: Set unprocessed = unprocessed ∪ {q′}

10: Set ~Q = ~Q ∪ {q′}
11: return RG(L) = 〈 ~Q,L, ~∆, qinit〉

Example 2.1 Consider the very simple program for the mutual exclusion
problem with P processes shown in Figure 2.1, described in an informal
guarded command style programming language. The program consists of a
shared state variable si with the domain {N, T, C} for each process i in the
index set I = {1, . . . , P}. The value N denotes the non-critical section, T
the trying section, and C the critical section. The variables are manipulated
by the P asynchronous processes whose transitions are given by imposing pre-
and postconditions on variables. For instance, the transition t1 of process 1 is
enabled if the state variable s1 is set to N . When t1 is enabled and executed,
the state variable s1 is assigned to the value T in the next state.

The set of states of the program is Q = [I → {N, T, C}], i.e., the set of
all functions from the index set I to {N, T, C}. A state s : I → {N, T, C}
can also be denoted by the vector 〈s(1), . . . , s(N)〉, i.e., the first element de-
scribes the value of the variable s1, the second element describes the value
of s2, and so on. Transition labels are the transitions names for each process,
L =

⋃
i∈I{ti, ei, li}, e.g., L = {t1, e1, l1, t2, e2, l2} for P = 2, and the transi-

tion relation is defined by the program. The state space L of the program for
P = 2 is shown in Figure 2.2. The state 〈N,N〉 is the initial state, pointed
out by an arrow originating nowhere. The reachability graph of L is the L
itself except the state 〈C,C〉 and the arcs originating from it. Thus the “bad”
state 〈C,C〉 in which both of the processes are in the critical section is not
reachable. ♣

Let I = {1, . . . , P} be the index set
State variables:
si with domain {N, T, C} for each i ∈ I , initialized to N

Transitions for each i ∈ I :
ti: si = N → s′i = T
ei: (si = T ∧ ∀j∈Isj 6= C) → s′i = C
li: si = C → s′i = N

Figure 2.1: A simple mutual exclusion program for P processes
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〈T, N〉 〈N, T 〉

〈C, N〉 〈T, T 〉

〈T, C〉

〈C, C〉

〈C, T 〉

〈N, N〉

t1 t2

t1 e2e1 t2

〈N, C〉

e1 e2t2 t1

l2l1

l2 l1

l2 l1

Figure 2.2: The state space of the program in Figure 2.1 for P = 2

Obviously, checking whether a system may enter a deadlock state or a state
fulfilling some property can be easily performed on its reachability graph. In
addition to these kind of properties, more general ones can be specified and
verified by applying temporal logic model checking. In the following, the
very expressive branching time temporal logic CTL? is briefly reviewed. For
more details on temporal logic model checking, refer to [Clarke et al. 1999].
First, a set AP of atomic propositions is assumed. The truth of the atomic
propositions in the states of the system is given by a truth valuation function
µ : Q → ℘(AP), where ℘(AP) denotes the set of all subsets of AP (the
power set of AP ). An atomic proposition p ∈ AP is said to hold in a state
q if p ∈ µ(q). The formulae in CTL? are defined by the following grammar
when started in the nonterminal f :

f ::= p | Eg | Ag | f ∨ f | f ∧ f | ¬f
g ::= f | g ∨ g | g ∧ g | ¬g | Xg | Fg | Gg | g U g | g V g,

where p ranges over AP . The f formulae are called state formulae and the g
are path formulae. The operators E and A are the existential and universal
path quantifiers, while X, F, G, U, and V are the temporal operators “next”,
“finally”, “globally”, “until” and “release”, respectively. One writes L, q � f
to denote that the (state) formula f holds in the state q (for the definition of
�, see [Clarke et al. 1999]). The model checking problem is: given a CTL?

formula f , does it hold in the initial state of the system? For algorithms
solving this problem, see [Clarke et al. 1999]. The linear time temporal logic
LTL is the sublogic of CTL? in which each formula is of form Ag, where g
is a path formula not involving any E or A operators.

Example 2.2 Recall the system discussed in Example 2.1 and its state space
shown in Figure 2.2. Assume the atomic propositions Ni, Ti and Ci for each
process i in {1, . . . , P}. Define that the atomic proposition Ni holds in a
state s if and only if s(i) = N , and similarly for T and C. Now the LTL
property AG¬(C1 ∧ C2) states that for all the paths starting in the initial
state it always holds that the processes 1 and 2 are not simultaneously in their
critical sections, i.e., it is the mutual exclusion property for the two process
case P = 2. The property holds in the system because the state 〈C,C〉 is
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not reachable. Similarly, the property AG(T1 ⇒ FC1) states that for all
the paths starting in the initial state it always holds that if the process 1 is in
its trying section, then it will finally get in its critical section (a ⇒ b is the
standard abbreviation for ¬a ∨ b). It does not hold in the system because in
the infinite path 〈N,N〉 t1−→ 〈T,N〉 t2−→ 〈T, T 〉 e2−→ 〈T,C〉 l2−→ 〈T,N〉 t2−→ · · ·
the process 1 always stays in the trying section but never enters the critical
section. ♣

2.2 THE SYMMETRY REDUCTION METHOD

As its name implies, the symmetry reduction method exploits the symmetries
in the state space of a system. If two states are equivalent under the symme-
tries, then the behaviors starting from them are also equivalent. For many
verification tasks, such equivalent states can be identified, meaning that only
one or few states from each, possibly very large, set of mutually equivalent
states need to be considered during the state space analysis. This section de-
scribes the symmetry reduction method to the extend needed in this thesis.

Formally, a symmetry (or an automorphism) of a state space LTS L =
〈Q,L,∆, qinit〉 is a permutation π of Q ∪ L that respects

– the sets of states and transition names: π(Q) = Q and π(L) = L, and
– the transition relation: 〈q1, l, q2〉 ∈ ∆ ⇔ 〈π(q1), π(l), π(q2)〉 ∈ ∆.

It is straightforward to see that the composition π1 ◦ π2 of two state space
symmetries as well as the inverse π−1 of a state space symmetry are also state
space symmetries.1 Furthermore, the set of all state space symmetries of L
(the automorphism group of L) is denoted by Aut(L) and forms a group
under the function composition operation ◦.

Take any subgroup G of Aut(L). Two states, q1 and q2, are equivalent
underG if there is a state space symmetry π ∈ G such that π(q1) = q2. This is
denoted by q1 ≡G q2. Since G is a permutation group, ≡G is an equivalence
relation on Q ∪ L and the equivalence class of a state q, defined by [q]G =
{π(q) | π ∈ G}, is called the G-orbit of q. It is easy to see directly from the
definition of state space symmetries that, for each π ∈ G, q1

l1−→ q2
l2−→ · · · is

a path in L if and only if π(q1)
π(l1)−−→ π(q2)

π(l2)−−→ · · · is. That is, equivalent
states have equivalent future behaviors. Furthermore, a state q is a deadlock
state if and only if π(q) is.

A state space symmetry π stabilizes (fixes) a state q if π(q) = q. The set of
all symmetries in a subgroup G of Aut(L) stabilizing a state q, Stab(G, q) =
{π ∈ G | π(q) = q}, is the stabilizer subgroup of q in G. Assume that a

symmetry π stabilizes a state q. Now q
l1−→ q1 · · ·

ln−→ qn implies q
π(l1)−−→

π(q1) · · ·
π(ln)−−−→ π(qn) and thus the state π(qn) is reachable from q if the state

qn is. Furthermore, since π(q) = q implies π−1(q) = q, the state π(qn) is
reachable from q if and only if the state qn is. This is why it is sometimes
required that each applied symmetry stabilizes the initial state, i.e., the stabi-

1The composition f ◦g of two functions (including permutations) is evaluated from right
to left in this work, i.e., (f ◦ g)(x) = f(g(x)).
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lizer subgroup Stab(Aut(L), qinit) of the initial state (or any subgroup of it)
is considered instead of Aut(L).

Example 2.3 Recall the program in Figure 2.1 and its state space L (for
P = 2) in Figure 2.2, discussed in Example 2.1. The set of automorphisms
of L, Aut(L), consists of two permutations ofQ∪L: the identity permutation
I and the permutation

π =
(
〈N,N〉 〈T,N〉 〈N,T 〉 〈C,N〉 〈T,T 〉 〈N,C〉 〈C,T 〉 〈T,C〉 〈C,C〉 t1 e1 l1 t2 e2 l2
〈N,N〉 〈N,T 〉 〈T,N〉 〈N,C〉 〈T,T 〉 〈C,N〉 〈T,C〉 〈C,T 〉 〈C,C〉 t2 e2 l2 t1 e1 l1

)
.

Intuitively, the latter permutation corresponds to the swapping of process
identities. The states 〈T,N〉 and 〈N, T 〉 are equivalent under Aut(L) and
the orbit of 〈T,N〉 is [〈T,N〉]Aut(L) = {〈T,N〉, 〈N, T 〉}. Note that both of
the symmetries stabilize the initial state 〈N,N〉. Now 〈N,N〉 t2−→ 〈N, T 〉 t1−→
〈T, T 〉 is a path in the state space and so is its π-equivalent π(〈N,N〉) π(t2)−−−→
π(〈N, T 〉) π(t1)−−−→ π(〈T, T 〉), i.e., 〈N,N〉 t1−→ 〈T,N〉 t2−→ 〈T, T 〉. ♣

2.2.1 Finding State Space Symmetries

Since the goal of the symmetry reduction method is to avoid enumerating the
entire state space or the whole reachability graph, the state space symmetries
must be found without explicitly using the state space itself. This is achieved
by defining a group G on the system description level that then acts on the
state space level in a way that produces state space symmetries. In symmetry
reduction algorithms, one never explicitly uses a state space symmetry group
but a system description level group producing it.

Formally, an action of a group G (under a binary operation ∗) on a set X
is a function h : G×X → X such that for all x ∈ X it holds that

1. h(ι, x) = x, where ι is the identity element of G, and
2. h(g1 ∗ g2, x) = h(g1, h(g2, x)) for all g1, g2 ∈ G.

For each g ∈ G, define the function gh : X → X by gh(x) = h(g, x). By
standard group theory, the set Gh = {gh | g ∈ G} is a subgroup of Sym(X)
and thus each gh is a permutation of X .2 When the action h is understood
from the context, one may simply write g(x) instead of gh(x) and G instead
of Gh, whenever no confusion can arise.

Now the problem of finding state space symmetries consists of finding a
group G on the system description level whose action on the set Q ∪ L of
states and transition labels is a subgroup of Aut(L). Of course, the form of
the group G and the action depend on the applied system description for-
malism. For instance, in place/transition nets discussed in Chapters 3 and 4,
the symmetries of the net itself produce corresponding symmetries to its state
space (see Section 3.1). On the other hand, in the classes of high-level nets
studied in Chapters 5 and 6, as well as in the Murϕ system description for-
malism [Ip and Dill 1996], state space symmetries are produced by permut-
ing the values of state variables.

2Sym(X) denotes the group of all permutations of the set X under the function compo-
sition operator ◦.
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Example 2.4 Recall the program in Figure 2.1 discussed in Examples 2.1
and 2.3. Let Sym(I) denote the group of all permutations of the index set
I = {1, . . . , P}. For instance,

Sym({1, 2}) = {g2,1 = ( 1 2
1 2 ) , g2,2 = ( 1 2

2 1 )}

and

Sym({1, 2, 3}) = {g3,1 = ( 1 2 3
1 2 3 ) , g3,2 = ( 1 2 3

1 3 2 ) , g3,3 = ( 1 2 3
2 1 3 ) ,

g3,4 = ( 1 2 3
2 3 1 ) , g3,5 = ( 1 2 3

3 1 2 ) , g3,6 = ( 1 2 3
3 2 1 )}.

Define the action h of the group G = Sym({1, . . . , P}) on the set Q =
[{1, . . . , P} → {N, T, C}] of states by h(g, s) = s ◦ g−1 and on the transition
labels L =

⋃
i∈I{ti, ei, li} by h(g, yi) = yg(i), where y ∈ {t, e, l} and i ∈ I .

For instance, when P = 2, g2,2({1 7→ T, 2 7→ N}) = {1 7→ N, 2 7→ T}
and g2,2(e1) = e2. In fact, (under the action h) g2,2 corresponds to the auto-
morphism π described in Example 2.3. Similarly, if P = 3, then g3,5({1 7→
N, 2 7→ T, 3 7→ C}) = {1 7→ T, 2 7→ C, 3 7→ N} and g3,5(e1) = e3.

To see that h is a group action on Q∪L, notice that h(I, s) = s ◦ I−1 = s
and h(I, yi) = yI(i) = yi for the identity permutation I, and

h(g ◦ g′, s) = s ◦ (g ◦ g′)−1 = s ◦ (g′
−1 ◦ g−1) = (s ◦ g′−1

) ◦ g−1

= h(g, s ◦ g′−1
) = h(g, h(g′, s)), and

h(g ◦ g′, yi) = y(g◦g′)(i) = yg(g′(i)) = h(g, yg′(i)) = h(g, h(g′, yi))

for all g, g′ ∈ G. Similarly, the fact that the action of G = Sym(I) on Q ∪ L
is an automorphism group, i.e., that Gh is a subgroup of Aut(L), can be
verified by examining the transitions of the program. ♣

2.2.2 Reduced Reachability Graphs

After finding a group of state space symmetries, the next step is to exploit
them during the reachability graph generation. This is done by identifying
the states in each orbit, to goal being to examine only one (or few) state(s) in
each orbit.

Let G be a subgroup of Aut(L) for a state space LTS L = 〈Q,L,∆, qinit〉.
A reduced reachability graph (an RRG) of L under G is an LTS

RRG(L) = 〈Q̃, L, ∆̃, q′init〉,

such that (i) qinit ≡G q
′
init and (ii) Q̃ ⊆ Q and ∆̃ ⊆ Q̃× L× Q̃ fulfill the

following rules.

1. q′init ∈ Q̃,
2. if q ∈ Q̃ and 〈q, l, q1〉 ∈ ∆, then q′1 ∈ Q̃ and 〈q, l, q′1〉 ∈ ∆̃ for a q′1 such

that q1 ≡G q
′
1, and

3. if 〈q, l, q1〉 ∈ ∆̃, then (i) 〈q, l, q′1〉 ∈ ∆ for a q′1 such that q1 ≡G q
′
1, and

(ii) q is reachable from q′init in RRG(L).

That is, the initial state q′init of the RRG is equivalent to the initial state qinit

of the LTS L, and each transition q
l−→ q1 originating from a state q in the
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RRG is “redirected” to an equivalent successor state by having the transition
q

l−→ q′1 for a q′1 ≡G q1 in the RRG. The third rule in the definition ensures
that every edge in the RRG is a result of applying the second rule, i.e., that
there are no unjustified edges in the RRG. Note the indefinite article in the
second rule of the definition. This implies that there may be several RRGs
for L under G. The obvious algorithm for generating RRGs, derived from
Algorithm 2.1, is shown in Algorithm 2.2.

Algorithm 2.2 An algorithm for computing reduced reachability graphs
1: Choose any q′init such that qinit ≡G q

′
init

2: Set unprocessed = {q′init}
3: Set Q̃ = {q′init}
4: Set ∆̃ = ∅
5: while unprocessed 6= ∅ do
6: Take any q ∈ unprocessed and set unprocessed = unprocessed \ {q}
7: for all q l−→ q′ do
8: Choose any q′′ such that q′ ≡G q

′′

9: Set ∆̃ = ∆̃ ∪ 〈q, l, q′′〉
10: if q′′ /∈ Q̃ then
11: Set unprocessed = unprocessed ∪ {q′′}
12: Set Q̃ = Q̃ ∪ {q′′}
13: return RRG(L) = 〈Q̃, L, ∆̃, q′init〉

Example 2.5 Recall the program in Figure 2.1 discussed in Examples 2.1,
2.3, and 2.4. Figure 2.3 shows two RRGs for the program when P = 2. The
one on the left hand side is minimal in the sense that it contains only one
state from each reachable orbit. ♣
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Figure 2.3: Reduced reachability graphs for the program in Figure 2.1 when
P = 2

The crucial part in Algorithm 2.2 computing RRGs is the line 8, where an
equivalent successor state q′′ is selected. To obtain as small RRGs as possible,
there should be exactly one representative state from each reachable orbit
present in the state set of the reduced reachability graph. This goal can be
achieved by the following two ways.
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1. The new successor state q′ is pairwisely compared with each state in
the set Q̃ of already visited states. If a state equivalent to q′ is found in
Q̃, then the new successor state q′′ is defined to be that state, otherwise
q′′ is defined to be q′. In this approach one has to be able to answer
the orbit problem: given two states, are they equivalent? Symmetry-
respecting hash functions can sometimes be used to prune the set of
states in Q̃ that have to be checked for equivalence with q′. Never-
theless, it may be the case that the orbit problem has to be answered
several times for each new successor state.

2. The successor state q′ is transformed into a representative state repr(q′)
and q′′ is defined to be that state. Formally, a representative function
is a function repr : Q → Q such that repr(q) ≡G q holds for each
q ∈ Q. The representative function repr is canonical if q1 ≡G q2 im-
plies repr(q1) = repr(q2). In this case, repr(q) is the canonical rep-
resentative of q (under repr ). In this approach, the initial state should
be transformed into its representative as well, i.e., the line 1 in the
algorithm is modified to “Let q′init = repr(qinit)”. The problem of
computing a canonical representative for a state is called the construc-
tive orbit problem. Note that in this approach, as opposed to the first
one, the constructive orbit problem is solved only once for each new
successor marking. However, the constructive orbit problem can be
computationally harder than the orbit problem.

Since the problems of deciding whether a state is equivalent to another and
building canonical representative states are in general at least as hard as the
graph isomorphism problem, both of the approaches above contain tasks
for which no polynomial time algorithms are currently known. Luckily, the
approaches can be approximated by (i) using a sound but incomplete state
equivalence test in the first one, and (ii) by using a non-canonical representa-
tive function in the second one. Using such an approximation may result in
that more than one state in a reachable orbit is visited during the search and
thus the reduced reachability graph may not be of minimal size. Hence the
space consumption (and sometimes the time consumption, too) may grow
compared to the complete approach.

2.2.3 Analysis of Reduced Reachability Graphs

In the following, some basic properties of reduced reachability graphs are
given.

Assume a state space LTS L = 〈Q,L,∆, qinit〉, its reachability graph
RG(L) = 〈 ~Q,L, ~∆, qinit〉, a subgroup G of Aut(L), and a reduced reach-
ability graph RRG(L) = 〈Q̃, L, ∆̃, q′init〉 of L under G. Let q1 ∈ ~Q be a
state in the reachability graph and q′1 ∈ Q̃ be a state in the reduced reach-
ability graph such that q1 ≡G q

′
1. For instance, q1 could be the initial state

qinit and q′1 its representative q′init in the reduced reachability graph. Let π
be a symmetry in G that maps q1 to q′1. The following two lemmas and their
corollaries show that the behaviors starting from q1 and q′1 are equivalent.

Lemma 2.6 If 〈q1, l1, q2〉 ∈ ~∆ is a transition in the reachability graph, then
there is a transition 〈q′1, l′1, q′2〉 ∈ ∆̃ in the RRG such that l1 ≡G l

′
1 and
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q2 ≡G q
′
2.

Proof. Because 〈q1, l1, q2〉 ∈ ~∆, it also holds that 〈q1, l1, q2〉 ∈ ∆. As π is a
state space symmetry, 〈π(q1), π(l1), π(q2)〉 ∈ ∆ holds, too. Because π(q1) =
q′1 ∈ Q̃, 〈π(q1), π(l1), π(q2)〉 ∈ ∆ implies that 〈π(q1), π(l1), π1(π(q2))〉 ∈ ∆̃
and π1(π(q2)) ∈ Q̃ for a π1 ∈ G by the rule 2 in the definition of RRGs. �

Lemma 2.7 If 〈q′1, l′1, q′2〉 ∈ ∆̃ is a transition in the RRG, then there is a
transition 〈q1, l1, q2〉 ∈ ~∆ in the reachability graph such that l1 ≡G l

′
1 and

q2 ≡G q
′
2.

Proof. As 〈q′1, l′1, q′2〉 ∈ ∆̃, 〈q′1, l′1, π1(q
′
2)〉 ∈ ∆ for a π1 ∈ G by the rule 3 in

the definition of RRGs. This implies that 〈π−1(q′1), π
−1(l′1), π

−1(π1(q
′
2))〉 ∈

∆ because π−1 is a state space symmetry. Because π−1(q′1) = q1 ∈ ~Q,
〈q1, π−1(l′1), π

−1(π1(q
′
2))〉 ∈ ~∆ and π−1(π1(q

′
2)) ∈ ~Q. �

Corollary 2.8 If q1
l1−→ q2

l2−→ q3 · · · is a path in the reachability graph, then

there is a path q′1
l′1−→ q′2

l′2−→ q′3 · · · in the RRG such that li ≡G l
′
i and qi ≡G q

′
i

for each i.

Corollary 2.9 If q′1
l′1−→ q′2

l′2−→ q′3 · · · is a path in the RRG, then there is a path
q1

l1−→ q2
l2−→ q3 · · · in the reachability graph such that li ≡G l

′
i and qi ≡G q

′
i

for each i.

Because the initial states qinit and q′init of the reachability graph and the RRG,
respectively, are equivalent, the corollaries above imply the following corre-
spondence between the reachable states.

Corollary 2.10 If a state q is in the reachability graph, then there is a state q′

in the RRG such that q ≡G q
′.

Corollary 2.11 If a state q′ is in the RRG, then there is a state q in the reach-
ability graph such that q ≡G q

′.

Corollary 2.12 There is a deadlock state in the reachability graph if and only
if there is a deadlock state in the reduced reachability graph.

Corollary 2.13 Assume that G stabilizes the initial state qinit meaning that
π(qinit) = qinit for each π ∈ G. Then a state q is in the reachability graph if
and only if there is a state q′ in the RRG such that q ≡G q

′.

Proof. The “only if” direction is the same as Corollary 2.10. Assume that a
state q′ such that q ≡G q

′ is in the RRG. By Corollary 2.11, a state q′′ such
that q′′ ≡G q

′ is in the reachability graph. Recalling the discussion in the
beginning of Section 2.2, the state q′′ is reachable in the state space (i.e., in
the reachability graph) if and only if π(q′′) is for each π ∈ G, provided that
G stabilizes the initial state qinit . Therefore, q is in the reachability graph as
q ≡G q

′′ ≡G q
′. �
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Example 2.14 Recall the program in Figure 2.1, its reachability graph in
Figure 2.2, and the one of its RRGs shown in the right hand side of Fig-
ure 2.3. Neither the reachability graph nor the RRG contains a deadlock
state. For the path 〈N,N〉 t2−→ 〈N, T 〉 e2−→ 〈N,C〉 in the reachability graph,
there is an equivalent path 〈N,N〉 t2−→ 〈T,N〉 e1−→ 〈C,N〉 in the RRG. Sim-
ilarly, for the path 〈N,N〉 t1−→ 〈N, T 〉 t1−→ 〈T, T 〉 in the RRG, there is an
equivalent path 〈N,N〉 t1−→ 〈T,N〉 t2−→ 〈T, T 〉 in the reachability graph. ♣

Recall the model checking concepts defined in Section 2.1. An atomic
proposition p is said to be symmetry invariant (under the applied state space
symmetry group G) if p ∈ µ(q) ⇔ p ∈ µ(π(q)) holds for all π ∈ G and for
all states q ∈ Q. That is, p holds in a state if and only if it holds in all the
equivalent states. Let f be a CTL? formula containing only symmetry in-
variant atomic propositions. Then f holds in the reachability graph if and
only if it holds in the reduced reachability graph [Clarke et al. 1996; Emer-
son and Sistla 1996] (the Lemmas 2.6 and 2.7 above establish the necessary
bisimulation condition between the reachability graph and the RRG). Thus
such CTL? formulae can be model checked by using the reduced reacha-
bility graph instead of the original one. In the case the CTL? formula to be
verified contains atomic propositions that are not symmetry invariant, some
more advanced algorithms have to applied instead [Emerson and Sistla 1996;
1997; Gyuris and Sistla 1999; Sistla and Godefroid 2001]. Typically, these
advanced algorithms augment the edges of the reduced reachability graph
with the permutations that were used to obtain the representative succes-
sor states. This enables the algorithms to unwind the reduced reachability
graph in a necessary amount to deduce whether the formula holds. Model
checking under fairness constraints can also be handled by advanced algo-
rithms [Gyuris and Sistla 1999].

Example 2.15 Recall the system discussed in Examples 2.1 and 2.2. Con-
sider an atomic proposition C1 that holds in a state s if and only if s(1) = C,
i.e., the process 1 is in the critical section. It is not symmetry invariant be-
cause it holds in the state 〈C,N〉 but not in the equivalent state 〈N,C〉. On
the other hand, an atomic proposition ∨iNi defined to hold in a state s if
and only if ∃i ∈ I : s(i) = N , is symmetry invariant (and similarly for ∨iTi
and ∨iCi). Therefore, one can use reduced reachability graphs to verify the
property AG ((∨iTi) ⇒ F(∨iCi)) stating that, during all executions of the
system, it holds that if there is at some point a process in the trying section,
then at some future point there is a process (not necessarily the same one)
in the critical section. However, the property AG (T1 ⇒ FC1) stating the
same for process 1 cannot be verified by using reduced reachability graphs.
In fact, the property does not hold in the original reachability graph but holds
in the reduced reachability graph in the left hand side of Figure 2.3. With
the advanced algorithms mentioned above, the property can be verified on
a reduced reachability graph by partially unwinding it. Similarly, one can
use the advanced algorithms to verify the property ∧iAG (Ti ⇒ FCi) stating
the same property for all processes. Finally, the mutual exclusion property
can be expressed as AG¬(∨i6=j(Ci ∧ Cj)), where ∨i6=j(Ci ∧ Cj) is a sym-
metry invariant atomic proposition defined to hold in a state s if and only if
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∃i, j ∈ I : i 6= j ∧ s(i) = C ∧ s(j) = C. ♣

2.3 OTHER PRELIMINARIES

The following text describes some basic definitions needed in this work.

Functions. Let X and Y be two sets. The set of all functions from X to Y
is denoted by [X → Y ]. Let f ∈ [X → Y ]. f [x 7→ y] is the function defined
by f [x 7→ y](x′) = f(x′) for each x′ 6= x and f [x 7→ y](x) = y. For an
X ′ ⊆ X , the restriction of f to X ′ if the function f ′ ∈ [X ′ → Y ] such that
f ′(x) = f(x) for each x ∈ X ′.

Families. Let I be a set. A family A with I as the index set is a function
that assigns each i ∈ I a set Ai (or a set Ai if subscripts are already used
for something else). A family A can also be denoted by {Ai}i∈I . A family
{Ai}i∈I is pairwise disjoint if i 6= j implies Ai ∩ Aj = ∅, and finite if

⋃
i∈I Ai

is finite. If no confusion can arise, one may overload A to also denote the set⋃
i∈I Ai.

Multisets. A multiset over a set A is a function m : A → N and the set
of all multisets over A is denoted by [A→ N]. For an element a ∈ A, the
value m(a) is called the multiplicity of a in m. A multiset m can also be
represented by using the formal sum notation Σa∈Am(a) ′a. For instance, for
a set A = {a1, a2, a3}, the multiset m = {a1 7→ 1, a2 7→ 3, a3 7→ 0} can
be denoted by the formal sum 1 ′a1 + 3 ′a2 + 0 ′a3. Dropping the elements
with multiplicity 0 and omitting unit multiplicities, m can also be written as
a1 + 3 ′a2. The empty multiset mapping each a ∈ A to 0 is denoted by ∅. Let
m1,m2 be two multisets over A and n a natural number. Then

1. m1 ≤ m2 if and only if m1(a) ≤ m2(a) for each a ∈ A,
2. m1 +m2 is the multiset fulfilling (m1 +m2)(a) = m1(a) +m2(a) for

each a ∈ A,
3. if m2 ≤ m1, then m1 −m2 is the multiset fulfilling (m1 −m2)(a) =
m1(a)−m2(a) for each a ∈ A, and

4. n·m1 is the multiset fulfilling (n·m1)(a) = n×m1(a) for each a ∈ A.

Ordered Partitions. An ordered partition of a non-empty set A is a list
[C1, . . . , Cn] such that the set {C1, . . . , Cn} is a partition of A, i.e., (i) ∅ 6=
Ci ⊆ A for all 1 ≤ i ≤ n, (ii)

⋃n
i=1Ci = A, and (iii) Ci ∩ Cj = ∅

for all i 6= j. The sets Ci are called the cells of the partition. An or-
dered partition is discrete if all its cells are singleton sets and unit if it con-
tains only one cell (namely the set A). Define the function incell from
the ordered partitions of A and the elements of A to natural numbers by
incell([C1, . . . , Cn], x) = i⇔ x ∈ Ci.

An ordered partition p1 of A is finer than (or a refinement of) an or-
dered partition p2, denoted by p1 ≤ p2, if each cell in p1 is a subset of a
cell in p2. An ordered partition p1 of A is a cell order preserving refine-
ment of an ordered partition p2, denoted by p1 � p2, if p1 ≤ p2 and for all
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x, y ∈ A, incell(p1, x) < incell(p1, y) implies incell(p2, x) ≤ incell(p2, y).
That is, if p2 = [C2,1, . . . , C2,n], then any p1 such that p1 � p2 is of form
[C1,1,1, . . . , C1,1,d1 , . . . C1,n,1, . . . , C1,n,dn ] such that

⋃
1≤j≤di

C1,i,j = C2,i for
each 1 ≤ i ≤ n. For instance, it holds that [{b}, {a}, {c}] ≤ [{a}, {b, c}],
[{b}, {a}, {c}] � [{a}, {b, c}], and [{a}, {c}, {b}] � [{a}, {b, c}]. The rela-
tion � is reflexive, transitive and antisymmetric, i.e., a partial order on the
set of all ordered partitions of A.

A permutation γ ofA acts on ordered partitions ofA by γ([C1, . . . , Cn]) =
[γ(C1), . . . , γ(Cn)]. Clearly, incell(p, x) = incell(γ(p), γ(x)) for all ordered
partitions p of A and for all x ∈ A. Furthermore, if γ(p1) = p2, p1 � p3, and
p2 � p3, then γ(p3) = p3.

Computational Complexity. For computational complexity in general, re-
fer, e.g., to [Garey and Johnson 1979; Papadimitriou 1995]. The class P
(NP) consists of all decision problems decided by deterministic (non-deter-
ministic) Turing machines in polynomial time. co-NP denotes the class of
decision problems whose complements are in NP. For decision problems,
polynomial time many-one reductions are used in this work. The fact that a
decision problem A reduces to a decision problem B is denoted by A ≤p

m B.
For search problems the notion of reducibility is not so well standardized

as for decision problems. In this work, the following definitions are used.
A search problem can be defined through a relation A ⊆ Σ∗ × Σ∗, where
Σ is a finite, fixed alphabet. The relation is assumed to be polynomially
balanced, meaning that there is a fixed polynomial p such that 〈x, y〉 ∈ A
implies |y| ≤ p(|x|). The search problem associated with A is: given an
input string x ∈ Σ∗, output a y such that 〈x, y〉 ∈ A or “no” if there is no
such y. A search problem A polynomial time many-one reduces to a search
problem B, denoted by A ≤p

m B, if there are functions R and S computable
in deterministic polynomial time such that for all instances x ∈ Σ∗ it holds
that

– there is a w such that 〈x,w〉 ∈ A if and only if there is a z such that
〈R(x), z〉 ∈ B, i.e., the reduced instance R(x) has a solution in B if
and only if the original instance x has a solution in A, and

– if 〈R(x), z〉 ∈ B, then 〈x, S(x, z)〉 ∈ A, i.e., from a solution z to the
reduced instance R(x) in B, a solution S(x, z) to the original instance
x in A can be computed.

Polynomial time many-one hardness and equivalence is defined as for de-
cision problems. A search problem is in FPNP if there is a deterministic
polynomial time Turing machine with an access to an NP-oracle that solves
the problem. The reduction defined above is very similar to those used in
[Krentel 1988; Papadimitriou 1995]. It is also a bit stronger, meaning that
all the problems that are, for instance, FPNP-complete under the reductions
in [Krentel 1988; Papadimitriou 1995], are also FPNP-complete under the
proposed reduction.

Graph Iso- and Automorphisms. A directed graph is a pair G = 〈V,E〉,
where V is the finite set of vertices (nodes) and E ⊆ V × V is the set of
edges. A graph is undirected if its edge set is symmetric. An isomorphism
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from a graphG1 = 〈V1, E1〉 to a graphG2 = 〈V2, E2〉 is a bijection γ from V1

to V2 such that 〈v, v′〉 ∈ E1 ⇔ 〈γ(v), γ(v′)〉 ∈ E2. If there is an isomorphism
from G1 to G2, then G1 and G2 are said to be isomorphic. An isomorphism
from a graph G = 〈V,E〉 to itself is called an automorphism of G. The set
of all automorphisms, denoted by Aut(G), forms a group under the function
composition operator ◦, i.e., is a permutation group on V .

The computational complexity of deciding whether two graphs are iso-
morphic, or the GRAPH ISOMORPHISM problem, is an interesting topic in
itself. It is one of the main candidates for a problem in NP that is neither in P
nor NP-complete (such problems must exist if P 6= NP as is widely believed).
See, e.g., [Köbler et al. 1993] for further discussion on the complexity of the
GRAPH ISOMORPHISM problem. Based on the results in [Miller 1979], it is
easy to see that the complexity of the GRAPH ISOMORPHISM problem stays
the same for different variants of graphs. Especially, the following two such
graph classes will be used in this work.

– A directed, vertex and edge labeled graph is a triple G = 〈V,E, L〉,
where V and E are as above, and L assigns each vertex and edge a
label. An isomorphism from G1 = 〈V1, E1, L1〉 to G2 = 〈V2, E2, L2〉
is a bijection γ from V1 to V2 such that (i) 〈v, v′〉 ∈ E1 if and only if
〈γ(v), γ(v′)〉 ∈ E2, (ii) L1(v) = L2(γ(v)) for each v ∈ V1, and (iii)
L1(〈v, v′〉) = L2(〈γ(v), γ(v′)〉) for each 〈v, v′〉 ∈ E1.

– A directed, vertex labeled and edge weighted graph is a triple G =
〈V,E, L〉, where V is as before, E ⊆ V × N× V the finite set of
weighted edges (a triple 〈v, w, v′〉 in E denotes an edge from v to v′

having weight w), and L assigns each vertex in V a label. Note that
there may be multiple edges from a vertex to another, each having a
different weight. An isomorphism from G1 = 〈V1, E1, L1〉 to G2 =
〈V2, E2, L2〉 is a bijection γ from V1 to V2 such that (i) 〈v, w, v′〉 ∈ E1

if and only if 〈γ(v), w, γ(v′)〉 ∈ E2, and (ii) L1(v) = L2(γ(v)) for each
v ∈ V1.
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3 PLACE/TRANSITION NETS: COMPUTATIONAL COMPLEXITY

Place/transition nets, see e.g. [Desel and Reisig 1998], are a popular formal-
ism for modeling concurrent systems. Their major advantages are that they
are easy to define and to understand, and also have a fairly standard graphical
representation form. The symmetry reduction method for place/transition
nets is introduced in [Starke 1991], showing that the structural symmetries
of a net produce symmetries in its state space and also giving a preliminary
algorithm for computing the symmetries of a net. A considerably improved
algorithm for computing the symmetries of a net is given in [Schmidt 2000a].
The algorithm can also be used for checking whether two markings (i.e.,
states) are equivalent under the symmetries, and (when extended) also for
checking whether a marking symmetrically covers another (see Section 3.4
for the definition of symmetric coverability). Algorithms for the orbit prob-
lems, needed in the reduced reachability graph construction, are described
in [Schmidt 2000b].

This chapter studies the computational complexity of the sub-tasks in-
volved in the symmetry reduction method for place/transition nets. Some
of the results have been reported previously in [Junttila 2000; 2001]. For a
survey of other complexity results concerning Petri nets, see [Esparza 1998].

First, some standard basic definitions of place/transition nets and their
symmetries are given with examples. It is then shown that finding the sym-
metries of a net is a task equivalent to finding the automorphism group of a
graph. The same applies to the task of finding all the symmetries of a net that
stabilize a marking. The algorithms for the task are briefly discussed.

The computational complexity of the orbit problems is studied next. It
is shown that deciding whether two markings are equivalent under the sym-
metries is from the computational complexity point of view equivalent to the
graph isomorphism problem. Interestingly, it turns out that this result holds
independently of whether the symmetry group of the net is given as input
or not. It is also shown that finding the lexicographically greatest (or small-
est) marking in the orbit of a given marking is a problem as hard as many
well-known optimization problems such as the traveling salesperson prob-
lem, i.e., FPNP-complete. Algorithms for the orbit problems, including some
new ones for producing canonical representative markings, are discussed in
the next chapter.

Finally, the computational complexity of the symmetry reduction method
combined with the coverability graph approach is studied. It turns out that
the problem of deciding whether there is a symmetry mapping a given mark-
ing to one covering another given marking is NP-complete. Furthermore, it
is shown that the symmetric coverability problem cannot be combined in a
straightforward way with the canonical representative marking approach.

3.1 BASIC DEFINITIONS

First, some basic definitions of place/transition nets and their symmetries are
given. The representation is based on [Starke 1991; Schmidt 2000a; Desel
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and Reisig 1998].
A place/transition net (or a P/T-net) is a tuple

N = 〈P, T, F,W,M0〉,

where

1. P is a finite, non-empty set of places,
2. T is a finite set of transitions such that P ∩ T = ∅,
3. F ⊆ (P × T ) ∪ (T × P ) is the flow-relation (or the set of arcs),
4. W : F → N \ {0} associates each arc in F with a positive multiplicity

(or weight), and
5. M0 : P → N is the initial marking.

A marking of N is a multiset over P , i.e., a function M : P → N. The
set of all markings is denoted by M and the empty marking is the one map-
ping each place to 0. One may also say that a place p has n tokens in a
marking M if M(p) = n. The places and transitions are commonly called
the nodes of the net. The arc weight function W is implicitly extended to
(P × T ) ∪ (T × P ) → N by defining that W (〈x, y〉) = 0 if 〈x, y〉 /∈ F . A
transition t ∈ T is enabled in a marking M , denoted by M [t〉, if W (〈p, t〉) ≤
M(p) for each p ∈ P . If t is enabled in M , it may fire and transform M
into the marking M ′ defined by M ′(p) = M(p)−W (〈p, t〉) +W (〈t, p〉) for
each p ∈ P . This is denoted by M [t〉 M ′. The state space of N is the LTS
〈M, T, [〉,M0〉, where [〉 = {〈M, t,M ′〉 |M [t〉M ′}. The term marking is
used as a synonym for state in this and the next chapter. The net N is k-safe
if M(p) ≤ k holds for each place p ∈ P in each reachable marking M . The
net is bounded if it is k-safe for some fixed k. A transition t ∈ T is dead at a
marking M if it is not enabled in any marking reachable from M . The net is
live if there are no dead transitions at any reachable marking.

Example 3.1 Consider the variant of Genrich’s railroad system net [Genrich
1991] shown in Figure 3.1. It is a model of a railroad system in which two
trains, call them a and b, drive in a cyclic railroad with six segments 0, . . . , 5.
The semaphores Vi, 0 ≤ i ≤ 5, are used to signal when it is allowed for
a train to enter a segment i. The places of the net are drawn as circles,
transitions as rectangles, and the arcs between them as directed edges. All
the arc multiplicities in the net equal to 1 and are not drawn here or in any
subsequent figures. The black filled circles, tokens, in the figure describe the
initial marking Ua0 +Ub3 +V1 +V4 of the net. A token in a place Uxi denotes
that the train x is in the segment i and a token in a place Vi denotes that
a train can enter the segment i. The reachability graph of the net is shown
in Figure 3.2. Based on it, it is easy to check that the net is 1-safe and live.
Furthermore, it can be verified from the reachability graph that the trains
cannot be in the same or adjacent segments at the same time. ♣

Symmetries of a net are automorphisms of the net when seen as a labeled
directed graph. That is, they are permutations of the nodes of the net that
respect (i) node type, (ii) the flow relation, and (iii) the arc multiplicities.
Formally:

Definition 3.2 A symmetry (or automorphism) of N is a permutation σ of
P ∪ T that
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Figure 3.1: A net for a railroad system
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Figure 3.2: The reachability graph of the net in Figure 3.1

1. respects node type: σ(P ) = P and σ(T ) = T ;
2. respects the flow relation: 〈x, y〉 ∈ F ⇔ 〈σ(x), σ(y)〉 ∈ F ; and
3. respects the arc multiplicities: W (〈x, y〉) = W (〈σ(x), σ(y)〉) for each
〈x, y〉 ∈ F .

The set of all symmetries of N (the automorphism group of N ) is denoted by
Aut(N) and is a subgroup of Sym(P ∪ T ). A symmetry σ of N acts on the
markings ofN by σ(M) = M ◦ σ−1, or equivalently, (σ(M)) (σ(p)) = M(p)
for each p ∈ P . That is, the place σ(p) has multiplicity n in the marking
σ(M) if and only if the place p has multiplicity n in the markingM . Because
I(M) = M and (σ1 ◦ σ2)(M) = M ◦ (σ1 ◦ σ2)

−1 = M ◦ σ−1
2 ◦ σ−1

1 =
σ2(M) ◦ σ−1

1 = σ1(σ2(M)), the definition is a group action on the set M
of markings. A symmetry of the net produces a corresponding state space
symmetry:

Lemma 3.3 ([Starke 1991]) If σ is a symmetry of N , then

M [t〉M ′ ⇔ σ(M) [σ(t)〉 σ(M ′).
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Figure 3.3: Two reduced reachability graphs for the net in Figure 3.1

Example 3.4 Recall the net N in Figure 3.1. The group Aut(N) is gener-
ated by the rotation

σrot =
(
Ua0 Ua1 Ua2 Ua3 Ua4 Ua5 Ub0 ··· Ub5 V0 ··· V5 ta0 ··· ta5 tb0 ··· tb5
Ua1 Ua2 Ua3 Ua4 Ua5 Ua0 Ub1 ··· Ub0 V1 ··· V0 ta1 ··· ta0 tb1 ··· tb0

)
and the swapping of train identities

σswap =
(
Ua0 ··· Ua5 Ub0 ··· Ub5 V0 ··· V5 ta0 ··· ta5 tb0 ··· tb5
Ub0 ··· Ub5 Ua0 ··· Ua5 V0 ··· V5 tb0 ··· tb5 ta0 ··· ta5

)
,

meaning that all the elements in Aut(N) (and only those) can be expressed
as a finite composition of σrot and σswap. The group Aut(N) has 12 elements.
The initial marking

M0 = Ua0 + Ub3 + V1 + V4

is equivalent (under Aut(N)) to the marking

M = Ua4 + Ub1 + V2 + V5

as (σswap ◦ σrot)(M0) = σswap(σrot(M0)) = σswap(Ua1 + Ub4 + V2 + V5) = M .
The orbit of M0 consists of the markings

M0, Ua1 + Ub4 + V2 + V5,
Ua2 + Ub5 + V0 + V3, Ua3 + Ub0 + V1 + V4,
Ua4 + Ub1 + V2 + V5, and Ua5 + Ub2 + V0 + V3.

Figure 3.3 shows two reduced reachability graphs for the net, the left one
being minimal in the sense that it contains only one marking from each
reachable orbit. ♣

Finally, assume a subgroup G of Aut(N). A symmetry σ ∈ G stabilizes a
marking M if σ(M) = M . The set of all stabilizers of M in G, denoted by
Stab(G,M), is a subgroup of G. In the case G = Aut(N), one may write
Stab(N,M) instead of Stab(G,M). Obviously, Aut(N) = Stab(N, M̃)
for any marking M̃ for which M̃(p) = M̃(p′) for all p, p′ ∈ P , e.g., for
the empty marking. Furthermore, let Stab(G,M1, . . . ,Mk) to denote the
maximal subgroup of G stabilizing each of the markings M1, . . . ,Mk, i.e.,
Stab(G,M1, . . . ,Mk) = Stab(G,M1) ∩ · · · ∩ Stab(G,Mk).

3.1.1 Representing Symmetries

Since the automorphism group Aut(N) may have up to |P |! · |T |! permu-
tations, its subgroups (including the group itself) cannot be efficiently repre-
sented by explicitly listing all the constituent permutations. Instead, a group
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is represented by a set of generators, i.e., by giving a set of permutations be-
longing to the group such that any permutation in the group can be expressed
as a finite composition of the permutations in the set. In fact, for any permu-
tation group on a set with n elements there is a generating set consisting only
of n − 1 permutations [Jerrum 1986]. Furthermore, there are deterministic
polynomial time algorithms that, given a generating set for a permutation
group, compute a standard representation for the group. Using the presen-
tation, testing whether a permutation belongs to the group can be done in
polynomial time. One such standard representation, called Schreier-Sims
representation, will be described and applied in the next chapter.

From now on, permutation groups are always represented by means of
generating sets. This means that “given the groupG” should be read as “given
a generating set for the group G” and “find the group G” should be read as
“find a generating set for the group G”.

3.2 FINDING THE SYMMETRIES

The first task in the symmetry reduction method is to find the symmetries.
In the context of P/T-nets, this equals to finding the automorphism group
of the net in question. In addition, it may be required that the group stabi-
lizes a marking, for instance, the initial marking. This section discusses the
computational complexity and algorithms for the task.

3.2.1 Computational Complexity

The symmetry finding task is formulated in the following problems.

Problem 3.5 NET AUTOMORPHISMS. Given a net N , find Aut(N).

Problem 3.6 MARKING STABILIZERS. Given a netN and a set of markings
{M1, . . . ,Mk} of N , find the group Stab(Aut(N),M1, . . . ,Mk).

Note that the latter problem covers the problem of computing the subgroup
of Aut(N) stabilizing the initial marking. Recall that the group Aut(N) is
the same as the group Stab(Aut(N), M̃), where M̃ is the empty marking,
and thus the latter problem definition also covers the first one. Therefore,

NET AUTOMORPHISMS ≤p
m MARKING STABILIZERS.

As the following arguments show, both of these problems are equivalent to
the GRAPH AUTOMORPHISMS problem.1

Theorem 3.7 MARKING STABILIZERS ≤p
m GRAPH AUTOMORPHISMS.

Proof. The net N = 〈P, T, F,W,M0〉 in question together with the given
markingsM1, . . . ,Mk is just interpreted as a directed, vertex and edge labeled
graph G = 〈V,E, L〉, where

1. V = P ∪ T ,
1For a third version of the problem, see Problem 3.15.
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2. E = F ,
3. L(p) = 〈M1(p), . . . ,Mk(p)〉 for each place p ∈ P , i.e., the number of

tokens in the given markings,
4. L(t) = “T” for each transition t ∈ T , and
5. L(f) = W (f) for each arc f ∈ F .

See the left hand side of Figure 3.4 for a simple example (arc multiplici-
ties are omitted for simplicity). Clearly the automorphism group of the con-
structed graph is exactly the automorphism group of the net stabilizing the
given markings. �

Theorem 3.8 GRAPH AUTOMORPHISMS ≤p
m NET AUTOMORPHISMS.

Proof. For a directed graph G = 〈V,E〉, construct the net 〈P, T, F,W,M0〉
where

1. P = V ,
2. T = E,
3. F = {〈v, 〈v, v′〉〉 | 〈v, v′〉 ∈ E} ∪ {〈〈v, v′〉, v′〉 | 〈v, v′〉 ∈ E},
4. W (f) = 1 for each f ∈ F , and
5. M0(p) = 0 for each place p ∈ P .

See the right hand side of Figure 3.4 for a simple example (arc multiplicities
and edge labels are omitted for simplicity). It follows directly from the defini-
tion that the group Aut(N) restricted to the set of places is exactly the group
Aut(G). �

Corollary 3.9 Both NET AUTOMORPHISMS and MARKING STABILIZERS
are polynomial time many-one equivalent to GRAPH AUTOMORPHISMS.

 

 

"T"

0

"T""T"

1 0  

 

 

(a) From nets to graphs. (b) From graphs to nets.

Figure 3.4: Mappings between graphs and nets for the automorphism prob-
lem

3.2.2 Algorithms

A backtracking search algorithm for solving the NET AUTOMORPHISMS and
MARKING STABILIZERS problems is described in [Schmidt 2000a]. The al-
gorithm is based on representing the sets of possible net automorphisms as
constraints. The constraints are then refined and split during the backtrack-
ing search until the constraints represent a single automorphism. Although
the algorithm is somewhat different from the “standard” graph automorphism
algorithms such as [McKay 1981; Kreher and Stinson 1999], it also has many
common features: it is based on similar “split and refine” idea and it can
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prune the search tree by using the already found automorphisms. The algo-
rithm also produces a Schreier-Sims representation of the requested group
(see Section 4.1.1 for the definition of the Schreier-Sims representation).

By the reduction from MARKING STABILIZERS to GRAPH AUTOMOR-
PHISMS described above in the proof of Theorem 3.7, it is obvious that one
can also employ standard tools for the GRAPH AUTOMORPHISMS problem
to find the symmetries of a P/T-net. For instance, one may use the nauty tool
[McKay 1981; 1990]. In the case the selected graph automorphism tool does
not support directed, vertex and edge labeled graphs (for instance, nauty does
not support edge labels), some extra vertices and edges have to be included
in the graph corresponding to a net (cf. Section 4.2). Also note that some
design choices made in graph automorphism tools may adversely affect their
efficiency when applied to finding the symmetries of P/T-nets. For example,
the nauty tool is optimized for undirected and dense graphs (the graph is
internally represented as an adjacency matrix in nauty), while P/T-nets are
usually sparse and always directed. For experimental evidence of this, see
Section 4.5.2.

3.3 COMPUTATIONAL COMPLEXITY OF THE ORBIT PROBLEMS

After finding the symmetries of a net, the next task is to exploit them during
the reduced reachability graph generation. That is, one has to be able to
(i) decide whether two markings are equivalent under the symmetries, or
(ii) build a canonical representative for a marking. This section studies the
computational complexity of these two problems in the context of P/T-nets.
Algorithms for the orbit problems are discussed in Chapter 4.

3.3.1 The Marking Equivalence Problem

The problem of deciding whether two markings are equivalent under the
symmetries is studied by considering two versions of the problem. In the
“hard”, or general, version the symmetries of the net are not given as input:

Problem 3.10 MARKING EQUIVALENCE (ME). Given a net N and mark-
ings M , M1, and M2 of N , are the markings M1 and M2 equivalent under
the stabilizer group Stab(N,M)?

As marked nets can be seen as directed, vertex and edge labeled graphs, the
following is a quite straightforward result.

Theorem 3.11 ME ≤p
m GRAPH ISOMORPHISM.

Proof. Let N = 〈P, T, F,W,M0〉. For the marking Mi of N , i ∈ {1, 2},
interpret the net marked with Mi as the directed, vertex and edge labeled
graph GMi

= 〈VMi
, EMi

, LMi
〉, where

1. VMi
= P ∪ T ,

2. EMi
= F ,

3. LMi
(p) = 〈M(p),Mi(p)〉 for each p ∈ P ,

4. LMi
(t) = “T” for each t ∈ T , and
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5. LMi
(f) = W (f) for each f ∈ F .

This construction is essentially the same as the one in the proof of Theo-
rem 3.7. It is easy to see directly from the definition of GMi

that M1 and M2

are equivalent under Stab(N,M) if and only if GM1 and GM2 are isomor-
phic. �

In the “easy” version of the marking equivalence problem, the input con-
tains more information about the net. Especially, (a generating set for) the
automorphism group of the net is given.

Problem 3.12 MARKING EQUIVALENCE, version 2 (ME2). Given a 1-safe
and live net N , the group Aut(N) and two reachable markings of N , are the
markings equivalent under Aut(N)?

Obviously, ME2 ≤p
m ME. Interestingly, the upper computational complex-

ity bound of the “hard” version ME is the same as the lower bound of the
“easy” version ME2.

Theorem 3.13 GRAPH ISOMORPHISM ≤p
m ME2.

Proof. Suppose that two directed graphs,G = 〈V,E〉 andG′ = 〈V,E ′〉, with
the same set of vertices are given. (If they have a different number of vertices,
they cannot be isomorphic and one can output a simple 1-safe and live net
having no non-trivial symmetries and two different reachable markings for it;
if they have different sets of vertices, any renaming of the vertices will do.)
The net N̂ = 〈P̂ , T̂ , F̂ , Ŵ , M̂0〉 is defined as follows:

P̂ = {p̂nv | v ∈ V } ∪
{
p̂ev,v′ | v, v′ ∈ V

}
∪
{
p̂fv,v′ | v, v

′ ∈ V
}
∪{

p̂g1v,v′ | v, v
′ ∈ V

}
∪
{
p̂g21
v,v′ | v, v

′ ∈ V
}
∪
{
p̂g22v,v′ | v, v

′ ∈ V
}

T̂ =
{
t̂del
v,v′ | v, v′ ∈ V

}
∪
{
t̂add
v,v′ | v, v′ ∈ V

}
∪{

t̂g11v,v′ | v, v
′ ∈ V

}
∪
{
t̂g12v,v′ | v, v

′ ∈ V
}
∪{

t̂g21
v,v′ | v, v

′ ∈ V
}
∪
{
t̂g22v,v′ | v, v

′ ∈ V
}
∪{

t̂g23v,v′ | v, v
′ ∈ V

}
F̂ =

{
〈p̂ev,v′ , t̂del

v,v′〉 | v, v′ ∈ V
}
∪
{
〈t̂del
v,v′ , p̂

f
v,v′〉 | v, v

′ ∈ V
}
∪{

〈p̂fv,v′ , t̂
add
v,v′〉 | v, v′ ∈ V

}
∪
{
〈t̂add
v,v′ , p̂

e
v,v′〉 | v, v′ ∈ V

}
∪{

〈p̂ev,v′ , t̂
g11
v,v′〉 | v, v

′ ∈ V
}
∪
{
〈p̂nv , t̂

g11
v,v′〉 | v, v

′ ∈ V
}
∪{

〈t̂g11v,v′ , p̂
g1
v,v′〉 | v, v

′ ∈ V
}
∪
{
〈p̂g1v,v′ , t̂

g12
v,v′〉 | v, v

′ ∈ V
}
∪{

〈t̂g12v,v′ , p̂
e
v,v′〉 | v, v′ ∈ V

}
∪
{
〈t̂g12
v,v′ , p̂

n
v 〉 | v, v′ ∈ V

}
∪{

〈p̂ev,v′ , t̂
g21
v,v′〉 | v, v

′ ∈ V
}
∪
{
〈p̂nv′ , t̂

g21
v,v′〉 | v, v

′ ∈ V
}
∪{

〈t̂g21
v,v′ , p̂

g21
v,v′〉 | v, v

′ ∈ V
}
∪
{
〈p̂g21v,v′ , t̂

g22
v,v′〉 | v, v

′ ∈ V
}
∪{

〈t̂g22v,v′ , p̂
g22
v,v′〉 | v, v

′ ∈ V
}
∪
{
〈p̂g22v,v′ , t̂

g23
v,v′〉 | v, v

′ ∈ V
}
∪{

〈t̂g23v,v′ , p̂
e
v,v′〉 | v, v′ ∈ V

}
∪
{
〈t̂g23
v,v′ , p̂

n
v′〉 | v, v′ ∈ V

}
Ŵ (f̂) = 1 for each f̂ ∈ F̂
M̂0 =

∑
v∈V

1 ′p̂nv +
∑
v,v′∈V

1 ′p̂ev,v′
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(c) Substitution rules for the dashed and dotted lines in (b).

Figure 3.5: Reduction from a graph to a live and 1-safe net

Figure 3.5(b) and (c) illustrate the construction by showing the net N̂ (tran-
sition names are omitted for the sake of readability) for graphs over the vertex
set V = {1, 2, 3}. (Figure 3.5(a) shows one such a graph.) It is not hard to
see that the net N̂ is live and 1-safe.

The main idea of the construction is that the places of the form p̂ev,v′ are
used to represent the adjacency matrix of the graph under consideration. For
the graph G, the corresponding marking M̂G of N̂ is defined by

M̂G =
∑
v∈V

1 ′p̂nv +
∑

〈v,v′〉∈E

1 ′p̂ev,v′ +
∑

〈v,v′〉/∈E

1 ′p̂fv,v′ .

The marking M̂G′ for the graph G′ is constructed similarly. Obviously, both
of these markings are reachable.

The automorphisms of N̂ are exactly those that are produced by the ho-
momorphism h : Sym(V ) → Sym(P̂ ∪ T̂ ) defined as follows. For each
π ∈ Sym(V ), h(π) maps (i) each p̂nv to p̂nπ(v), (ii) each p̂xv,v′ to p̂xπ(v),π(v′),
where x ∈ {e, f, g1, g21, g22}, and (iii) each t̂xv,v′ to t̂xπ(v),π(v′), where x ∈
{g11, g12, g21, g22, g23}. That is, Aut(N̂) = h(Sym(V )). Since the group
Sym(V ) can be represented by two generators, namely the rotation π1 =( v1 v2 v3 ··· v|V |−1 v|V |
v2 v3 v4 ··· v|V | v1

)
and the permutation swapping of the first two elements

π2 =
( v1 v2 v3 ··· v|V |
v2 v1 v3 ··· v|V |

)
, the generators for Aut(N̂) are h(π1) and h(π2). Now

it is reasonably easy to see that M̂G and M̂G′ are equivalent under Aut(N̂)

if and only if G and G′ are isomorphic because Aut(N̂) corresponds to the
group of all permutations on the vertex set V naturally extended to the ad-
jacency matrix of a graph with the vertex set V . That is, if the vertices of G
can be permuted in a way that the adjacency matrix of G becomes equal to
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the adjacency matrix of G′, then (and only then) can the marking M̂G be
permuted by Aut(N̂) to become equal to M̂G′ . For instance, consider the
marking∑

v∈V

1 ′p̂nv + p̂f1,1 + p̂e1,2 + p̂e1,3 + p̂f2,1 + p̂f2,2 + p̂e2,3 + p̂f3,1 + p̂f3,2 + p̂f3,3

corresponding to the graph in Figure 3.5(a). Applying the generator h(π1) to
the marking, the marking∑

v∈V

1 ′p̂nv + p̂f1,1 + p̂f1,2 + p̂f1,3 + p̂e2,1 + p̂f2,2 + p̂e2,3 + p̂e3,1 + p̂f3,2 + p̂f3,3

is obtained. This marking corresponds to the graph obtained from that in
Figure 3.5(a) by replacing the vertex “1” with “2”, “2” with “3”, and “3” with
“1”. By definition, this graph is isomorphic to the one in Figure 3.5(a).

Also notice that Aut(N̂) stabilizes the initial marking M̂0. �

Corollary 3.14 Both ME and ME2 are polynomial time many-one equiva-
lent to GRAPH ISOMORPHISM.

This result implies that, from the computational complexity point of view,
pre-calculation of the automorphism group of a net does not provide any
help for solving the problem of whether two markings of the net are equiv-
alent (not even for 1-safe and live nets). However, in practice it is probably
reasonable to compute the automorphism group of the net since it yields
useful information. For instance, it may reveal that the net has no non-trivial
automorphisms and thus the symmetry reduction method is of no use for the
net. Furthermore, knowing the automorphism group can assist in the choice
of the algorithm for the orbit problem since the performances of different al-
gorithms may depend on the order of the automorphism group, see [Schmidt
2000b] and Section 4.5.2.

As noted in [Jensen 1995; 1996], the stabilizers of markings can some-
times be exploited during the generation of reduced reachability graphs.
That is, if M [t〉 M ′, then M [σ(t)〉 σ(M ′) for each σ ∈ Stab(G,M), where
G is the group under which the reduced reachability graph is generated (usu-
ally, G is Aut(N) or Stab(N,M0)). Thus the transition σ(t) is enabled in M
if and only if t is, and the successor markings M ′ and σ(M ′) are equivalent.
Note that, given (a generating set for) the group G′ = Stab(G,M), it is easy
(i) to check whether there is a symmetry in G′ mapping a transition t to an-
other transition t′, and (ii) to compute theG′-orbit of each transition t [Butler
1991]. Based on Theorem 3.7, finding the group Stab(G,M), whereG is the
stabilizer group of a set of markings, can be solved with an algorithm for the
GRAPH AUTOMORPHISMS problem. Also consider the following “easy” ver-
sion of the MARKING STABILIZERS problem.

Problem 3.15 MARKING STABILIZERS 2. Given a 1-safe and live net N ,
the group Aut(N), and a reachable marking M of N , find the stabilizer
group Stab(N,M).

Considering the net N̂ and the marking M̂G corresponding to a graphG con-
structed in the proof of Theorem 3.13, it is easy to see that the stabilizer group

3. PLACE/TRANSITION NETS: COMPUTATIONAL COMPLEXITY 31



Stab(N̂ , M̂G) restricted to the places of form p̂nv is exactly the automorphism
group of G. Thus

GRAPH AUTOMORPHISMS ≤p
m MARKING STABILIZERS 2.

In addition, since MARKING STABILIZERS 2 ≤p
m MARKING STABILIZERS

and MARKING STABILIZERS ≤p
m GRAPH AUTOMORPHISMS, MARKING

STABILIZERS 2 is equivalent to the GRAPH AUTOMORPHISMS problem.

Relationship to a string orbit problem. The marking equivalence problem
studied above is quite similar to a string orbit problem considered in [Babai
and Luks 1983; Clarke et al. 1998]. Let Σ be a finite alphabet and I a finite
index set. A Σ-string on I is a function s : I → Σ. A permutation g of I
acts on Σ-strings on I by g(s) = s ◦ g−1. Given a permutation group G on I ,
two Σ-strings on I , s and s′, are said to be G-equivalent if there is a permu-
tation g ∈ G mapping s to s′. The STRING ORBIT problem is: Given two
Σ-strings on an index set I and a permutation group G on I , are the strings
G-equivalent? In [Clarke et al. 1998] it is shown that the STRING ORBIT
problem is equivalent to the problems in the Luks equivalence class [Babai
1994]. The Luks equivalence class contains many natural problems concern-
ing permutation groups, and it is believed that the decision problems in it,
although in NP, are (i) harder than those that are equivalent to the GRAPH
ISOMORPHISM problem and (ii) not NP-complete [Hoffmann 1982; Babai
1994].

The fact that the two versions, ME and ME2, of the marking equivalence
problem discussed above are equivalent to the GRAPH ISOMORPHISM prob-
lem is because the considered groups are automorphism groups of graphs,
not arbitrary permutation groups. However, deciding whether two markings
are equivalent under an arbitrary subgroup of Aut(N) is equivalent to the
STRING ORBIT problem as shown below.

Problem 3.16 GENERALIZED MARKING EQUIVALENCE (GME). Given
a net N , a subgroup G of Aut(N), and two markings M1 and M2 of N , are
the markings equivalent under G?

Theorem 3.17 GME is polynomial time many-one equivalent to STRING
ORBIT.

Proof. The reduction from STRING ORBIT to GME is given first. Assume
that Σ = {1, . . . , k} is the applied finite alphabet. Given an index set I ,
two Σ-strings, s and s′, on I , and a permutation group G on I , the net N
is constructed as follows. The set of places P of the net is simply the index
set I . The net has no transitions or arcs, and the initial marking is empty.
Obviously, G is a subgroup of Aut(N). The marking M corresponding to
the string s is simply defined by M(i) = s(i) for each place i ∈ P . The
marking M ′ for s′ is constructed similarly. It is quite clear that the markings
M and M ′ are equivalent under G if and only if s and s′ are G-equivalent.

To reduce the other way, assume a net N , a subgroup G of Aut(N), and
two markings M1 and M2 of N . Let

K = max {k ∈ N | ∃p ∈ P : k = M1(p) ∨ k = M2(p)}
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be the maximum number of tokens appearing in any place in the two mark-
ings in question. Let I = {ip,j | p ∈ P ∧ j ∈ N ∧ 1 ≤ j ≤ dlogKe} be the
index set and Σ = {0, 1} the binary alphabet. The marking Ml, l ∈ {1, 2}, is
transformed into a Σ-string sl on I by binary coding the number of tokens in
each place p in the index elements of form ip,j . The groupG′ on I is obtained
from G by the group isomorphism γ : g 7→ g′ such that g′(ip,j) = ig(p),j for
each place p and for each 1 ≤ j ≤ dlogKe. Now s1 and s2 are G′-equivalent
if and only if M1 and M2 are equivalent under G. �

3.3.2 Finding the Lexicographical Leader Marking

Recall that a canonical representative marking function is a mapping

canrepr : M → M

such that (i) canrepr(M) ≡G M for each marking M , and (ii) M1 ≡G M2

implies canrepr(M1) = canrepr(M2). Therefore, given a canonical repre-
sentative function canrepr, one can decide whether two markings M1 and
M2 are equivalent by simply computing both canrepr(M1) and canrepr(M2),
and comparing whether they are equal. In this sense, computing any canoni-
cal representative function is at least as hard as testing whether two markings
are equivalent and thus at least as hard as the GRAPH ISOMORPHISM prob-
lem.

Perhaps the most natural choice for the canonical representative marking
is the lexicographically greatest (or smallest) marking in the orbit. In order
to define lexicographical orders, a base (or an element ordering) of a net
N = 〈P, T, F,W,M0〉 is defined to be an ordered list β = [β1, . . . , β|P |+|T |] of
the elements in P ∪T such that all the places are listed before the transitions.
The lexicographical ordering <β of the markings of N under the base β is
defined by:

M1 <β M2

if and only if there is an i, 1 ≤ i ≤ |P |, such that

1. M1(βi) < M2(βi), and
2. for all 1 ≤ j < i, M1(βj) = M2(βj).

Define that M1 ≤β M2 if either M1 <β M2 or M1 = M2. For instance,
if the set of places is P = {pa, pb, pc}, the base is β = [pb, pc, pa, . . .], and
M1 = pb + 2 ′pc and M2 = 3 ′pa + pb are two markings, then M2 <β M1.

As is proven next, it is not easy to find the lexicographically greatest mark-
ing in the orbit of a given marking under a given element ordering. In fact,
it is as hard as some classical optimization problems such as the TRAVELING
SALESPERSON problem, i.e., FPNP-complete. As in the MARKING EQUIV-
ALENCE problems discussed above, two versions of the lex-greatest marking
problem are defined. The “hard”, or general, version is:

Problem 3.18 LEX-GREATEST MARKING (LGM). Given a net N , a base
β of N , and two markings M and M ′ of N , find the <β-greatest marking in
the Stab(N,M)-orbit of M ′.

In order to classify the complexity of this problem, a decision version of it is
defined and classified as follows.
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Problem 3.19 LEX-GREATEST MARKING, decision version (LGM(D)).
Given a net N , a base β of N , and two markings M and M ′ of N , is there
a marking that is (i) <β-greater than M ′ and (ii) in the Stab(N,M)-orbit of
M ′?

Lemma 3.20 LGM(D) is in NP.

Proof. Simply guess a permutation σ ∈ Sym(P ∪ T ) and (deterministically)
verify in polynomial time that (i) σ is an automorphism of N , (ii) σ stabilizes
M , and (iii) M ′ <β σ(M ′). �

Based on the above lemma, the following is easy to prove.

Theorem 3.21 LGM is in FPNP.

Proof. Let k = maxp∈P M
′(p) be the maximum number of tokens in any

place in the markingM ′. Thus the size of the input for the problem is at least
Ω(|P |+ log2 k). Clearly, any marking that is in the Stab(N,M)-orbit of M ′

has at most k tokens in any place. There are k|P | possible markings fulfilling
this restriction. With standard binary search, the lexicographically greatest
marking in the Stab(N,M)-orbit of M ′ can be found by using log2 k

|P | =
|P | log2 k (a polynomial amount in |P | + log2 k) queries to an NP-oracle
deciding the problem LGM(D). �

The “easy” version of the lex-greatest marking problem is:

Problem 3.22 LEX-GREATEST MARKING, version 2 (LGM2). Given a
1-safe and live net N , a base β of N , the group Aut(N) and a reachable
marking M of N , find the <β-greatest marking in the Aut(N)-orbit of M .

Clearly LGM2 ≤p
m LGM. Again, the lower computational complexity

bound of the “easy” version is the same as the upper bound of the “hard”
version.

Theorem 3.23 LGM2 is FPNP-hard.

Proof. The following FPNP-complete problem in [Krentel 1988] is reduced
to LGM2.

MAXIMUM SATISFYING ASSIGNMENT (MSA). Given a Bool-
ean formula φ over a set X = {x1, . . . , xn} of variables, find the
lexicographically largest x1 · · ·xn ∈ {0, 1}n that satisfies φ or 0 if
φ is not satisfiable.

MSA stays FPNP-complete for Boolean formulae in conjunctive normal form
with at most three literals in each clause. Assume such a formula φ over a set
{x1, . . . , xn} of n Boolean variables. First, the possible duplicate literals in
each clause and tautological clauses in φ are removed. This can be accom-
plished in polynomial time without affecting the satisfying truth assignments
of φ. For instance, a clause x2 ∨ ¬x7 ∨ ¬x7 is replaced with x2 ∨ ¬x7 and a
clause x3 ∨ ¬x5 ∨ x5 is removed. Assume that the resulting formula has m
clauses c1, . . . , cm. The set of Boolean variables appearing in a clause cj is
denoted by vars(cj), e.g., vars(x2 ∨ ¬x7) = {x2, x7}.

A truth assignment T : X ′ → {0, 1} for a set X ′ ⊆ X can also be repre-
sented by an index-sorted string such that
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1. xi is in the string if and only if xi ∈ X ′ and T (xi) = 1 and
2. x̄i is in the string if and only if xi ∈ X ′ and T (xi) = 0.

For instance, a truth assignment {x1 7→ 1, x3 7→ 0} for the Boolean variables
x1, x3 is denoted by the string x1x̄3. For a Boolean variable xi, 1 ≤ i ≤ n,
and a truth assignment T for a set X ′ ⊆ X , the truth assignment flipi(T ) is
the same as T except that the value of xi is swapped from 0 to 1 or vice versa
if xi ∈ X ′. For instance, flip3({x1 7→ 1, x3 7→ 0}) = {x1 7→ 1, x3 7→ 1}
and flip2({x1 7→ 1, x3 7→ 0}) = {x1 7→ 1, x3 7→ 0}. Obviously, any other
truth assignment for X ′ can be formed by applying a composition of at most
n flipping functions to T .

The net N for the formula φ is constructed as follows. First, for each
Boolean variable xi ∈ X , the net has the subnet

px̄i
pxi

Li

including the places pxi
and px̄i

, where the dotted circle named Li is an ab-
breviation for a cycle net consisting of i places and transitions. For instance,

L5

is an abbreviation for

For each clause cj in φ and for each (at most 8) truth assignment T for
vars(cj), the net has the subnet

Lj

pcT
j

,u

pcT
j

,s

including the places pcTj ,s and pcTj ,u (T is represented in the string form),
where Lj is as above. Each place pxi

is connected to the place pcTj ,s if and
only if xi ∈ vars(cj) and T (xi) = 1. Similarly, each place px̄i

is connected
to the place pcTj ,s if and only if xi ∈ vars(cj) and T (xi) = 0. This connection
between two places p and p′ is made by the subnet

p
′

p

abbreviated by

p
′

p
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For instance, a part of the net for a formula φ having a clause c7 = x1 ∨ ¬x3

is

... ...

... ...

p̂
c
x1x3

7
,u

p̂
c
x1x3

7
,s

p̂
c
x̄1x̄3

7
,u

p̂
c
x̄1x̄3

7
,s

p̂
c
x1x̄3

7
,u

p̂
c
x1x̄3

7
,s

p̂
c
x̄1x3

7
,u

p̂
c
x̄1x3

7
,s

p̂x̄1
p̂x1

p̂x3
p̂x̄3

L1 L3

L7 L7 L7 L7

The initial marking M0 for the net is shown in the figures above, i.e., the
cycle subnets each have one token in the place connected to the rest of the
net. By construction, the net is 1-safe and live.

For each Boolean variable xi, 1 ≤ i ≤ n, there is a unique automor-
phism Nflipi of the net corresponding to the truth value flipping flipi of the
value of xi. That is, Nflipi(pxi

) = px̄i
, Nflipi(px̄i

) = pxi
, Nflipi(pxk

) =
pxk

for k 6= i, Nflipi(px̄k
) = px̄k

for k 6= i, Nflipi(pcTj ,s) = p
c
flipi(T )
j ,s

,

Nflipi(pcTj ,u) = p
c
flipi(T )
j ,u

, and the images of other places and transitions

are uniquely determined. For instance, Nflip3 maps px3 to px̄3 , px1 to it-
self, and pcx̄1x̄3

7 ,u to pcx̄1x3
7 ,u. In fact, the group Aut(N) is generated by the

set {Nflipi | 1 ≤ i ≤ n}. Notice that (i) Nflipi ◦ Nflipj = Nflipj ◦ Nflipi for
each 1 ≤ i, j ≤ n, (ii) Nflipi ◦ Nflipi = I for each 1 ≤ i ≤ n, and (iii)
the group Aut(N) is an abelian 2-group of order 2n. Furthermore, the group
Aut(N) stabilizes the initial marking M0.

Take a truth assignment T ′ for X = {x1, . . . , xn} formed from the truth
assignment T0 mapping each xi to 0 by a sequence flip = flipi1 ◦ · · · ◦
flipik of truth value flippings, i.e., flip(T0) = T ′. Define the marking MT ′

corresponding to T ′ by:

1. For each 1 ≤ i ≤ n, MT ′(pxi
) = T ′(xi) and MT ′(px̄i

) = 1 − T ′(xi).
That is, the markings of the places pxi

and px̄i
inMT ′ uniquely describe

the truth assignment T ′.
2. For each 1 ≤ j ≤ m and for each truth assignment T for the Boolean

variables appearing in the clause cj ,
(a) MT ′(pcTj ,s) = 1 if flip(T ) satisfies the clause cj and 0 otherwise,

and
(b) MT ′(pcTj ,u) = 0 if flip(T ) satisfies the clause cj and 1 otherwise.

3. MT ′(p) = 0 for all other places p in the net.
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Obviously, MT ′ is reachable from the initial marking M0. It is easy to show
that Nflipi(MT ′) = Mflipi(T

′) for each 1 ≤ i ≤ n:

– For the place pxi
, Nflipi(MT ′)(pxi

) = Nflipi(MT ′)(Nflipi(px̄i
)) =

MT ′(px̄i
) = 1− T ′(xi) = (flipi(T

′))(xi) = Mflipi(T
′)(pxi

).
– Similarly for the place px̄i

.
– For each place pxk

, where i 6= k, it holds that Nflipi(MT ′)(pxk
) =

Nflipi(MT ′)(Nflipi(pxk
)) = MT ′(pxk

) = T ′(xk) = (flipi(T
′))(xk) =

Mflipi(T
′)(pxk

).
– Similarly for each place px̄k

, i 6= k.
– For each place pcTj ,s, Nflipi(MT ′)(pcTj ,s) = MT ′(Nflip−1

i (pcTj ,s)) =

MT ′(Nflipi(pcTj ,s)) because Nflipi is its own inverse. It now holds that
MT ′(Nflipi(pcTj ,s)) = MT ′(p

c
flipi(T )
j ,s

) = 1 if and only if flip(flipi(T ))

satisfies the clause cj and 0 otherwise. But also Mflipi(T
′)(pcTj ,s) = 1 if

and only if flipi(flip(T )) = flip(flipi(T )) satisfies the clause cj . Thus
Nflipi(MT ′)(pcTj ,s) = Mflipi(T

′)(pcTj ,s).
– Similarly for each place pcTj ,u.
– All the other places are empty in both Nflipi(MT ′) and Mflipi(T

′).

Thus the orbit of a marking MT ′ consists exactly of all the markings cor-
responding to truth assignments for X . Note especially that MT ′(p

c
T0
j ,s

) = 1,

where T0 is the truth assignment mapping all Boolean variables to 0, if and
only if the clause cj is satisfied in the truth assignment T ′. Now define the
base β for the net by listing (i) first all the m places of form p

c
T0
j ,s

(ii) then

the places px1 , . . . , pxn in that order, and (iii) finally the rest of the elements
of the net. Take a marking MT ′ corresponding to a truth assignment T ′. The
lexicographically greatest marking M in the orbit of MT ′ under β has the
following property:

1. M(p
c
T0
j ,s

) = 1 for all the first m places in β if and only if the formula

φ is satisfiable, and
2. if this is the case, the markings for next n places of form px1 , . . . , pxn

describe the lexicographically greatest satisfying truth assignment.

�

Corollary 3.24 The problems LGM and LGM2 are both FPNP-complete.

The string orbit problem revisited. Recall the STRING ORBIT problem
defined in page 32. As a direct consequence of the above theorem, the fol-
lowing problem is also FPNP-complete: Given a Σ-string s on an ordered in-
dex set I and a permutation group G on I , find the lexicographically greatest
string that is G-equivalent to s. This holds when G is an abelian 2-group, too.
Note that the string canonization algorithm presented in [Babai and Luks
1983] provides a canonical representative (not the lexicographical leader un-
der the given base) for the nets and markings used in the proof of Theo-
rem 3.23 in polynomial time.
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3.4 SYMMETRIC COVERABILITY

In order to verify the boundedness of a P/T-net, a coverability graph of the net
can be constructed [Karp and Miller 1969; Finkel 1990]. A markingM is said
to cover a marking M ′ if M ′ ≤ M . In order to build the coverability graph,
markings are extended to be functions of form M : P → (N∪{ω}), where ω
is a symbol not in N and for all x ∈ N ∪ {ω}, x ≤ ω. The coverability graph
construction can be combined with the symmetry reduction method [Huber
et al. 1985a; Petrucci 1990]. The following definitions are from [Schmidt
2000a].

Definition 3.25 A marking M symmetrically covers a marking M ′, denoted
by M ′ 5M , if there is a symmetry σ ∈ Aut(N) such that M ′ ≤ σ(M).

Problem 3.26 SYMMETRIC COVERABILITY. Given a net N and two of its
markings, M and M ′, does M symmetrically cover M ′?

The algorithm for solving whether two markings are equivalent, presented
in [Schmidt 2000a], is extended in the same paper to solve the SYMMETRIC
COVERABILITY problem, too. Interestingly, the complexity of SYMMETRIC
COVERABILITY jumps from GRAPH ISOMORPHISM to NP-completeness,
a phenomenon resembling that happening when moving from the GRAPH
ISOMORPHISM to SUBGRAPH ISOMORPHISM problem [Garey and Johnson
1979].

Theorem 3.27 SYMMETRIC COVERABILITY is NP-complete.

Proof. Obviously SYMMETRIC COVERABILITY is in NP. NP-hardness is
shown by reduction from the NP-complete problem CLIQUE asking if an
undirected graph G = 〈V,E〉 has a clique of size k or more (it can be as-
sumed that k ≥ 2). The graph G is assumed to have a reflexive edge set
meaning that all vertices have a self-loop. Construct the net N̂ and as in the
proof of Theorem 3.13. For the graph G = 〈V,E〉, construct the marking

M̂G =
∑

〈v,v′〉∈E

1 ′p̂ev,v′ .

Take any subset V ′ of V such that |V ′| = k and build the marking M̂k =∑
v,v′∈V ′ 1 ′p̂ev,v′ corresponding to a k-clique. Now clearly M̂G symmetrically

covers M̂k if and only if G has a clique of size k or more. �

Remark 3.28 Again, the complexity of SYMMETRIC COVERABILITY does
not depend on whether the automorphism group of the net in question is
given as input. Furthermore, it does not depend on the extension of markings
with the ω symbol.

An elegant way to solve the symmetric coverability problem would be to
define a canonical representative function that solves the coverability prob-
lem at the same time:
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p1p2

p0

Figure 3.6: A net with no suitable canonical representative function

Definition 3.29 A canonical representative function canrepr is suitable for
symmetric coverability if canrepr(M ′) ≤ canrepr(M) ⇔ M ′ 5M for all
M,M ′ ∈ M.

Unfortunately, suitable representative functions do not always exist, as is
shown in the next example and theorem.

Example 3.30 The function that selects the lexicographically greatest mark-
ing in the orbit is not a suitable canonical representative function for all
nets. For a counter-example, consider the net in Figure 3.6 and assume
a base β = [p0, p1, p2, . . .]. Now the marking M = 2 ′p0 + 2 ′p1 + 0 ′p2 is
its own representative canrepr(M), while for M ′ = 0 ′p0 + 1 ′p1 + 2 ′p2 the
representative is canrepr(M ′) = 2 ′p0 + 0 ′p1 + 1 ′p2. Now M symmetrically
covers M ′ since σ(M) = 0 ′p0 + 2 ′p1 + 2 ′p2 ≥M ′, where σ maps each pi to
pi+1 mod 3. But canrepr(M ′) ≤ canrepr(M) does not hold. ♣

Theorem 3.31 There are nets for which suitable canonical representative
functions do not exist.

Proof. Assume that such functions exist for all nets. Consider again the net
N in Figure 3.6. Take the marking M = 2 ′p0 + 2 ′p1 + 0 ′p2 and any of
its representatives, say canrepr(M) = M . Consider two other markings,
M1 = 2 ′p0 + 1 ′p1 + 0 ′p2 and M2 = 1 ′p0 + 2 ′p1 + 0 ′p2. Clearly M symmetri-
cally covers both M1 and M2. In order to canrepr to be suitable for symmet-
ric coverability, it must be that canrepr(M1) = M1 and canrepr(M2) = M2

(other representatives lead to a situation in which place p2 has one or more
tokens and thus canrepr(M) would not cover them). Now consider the mark-
ing M ′ = 2 ′p0 + 1 ′p1 + 1 ′p2 which symmetrically covers both markings M1

and M2. For canrepr to be suitable, it must be that canrepr(M ′) = M ′ since
other representatives do not cover canrepr(M1). But now canrepr(M ′) does
not cover canrepr(M2). Thus the initial assumption must be wrong and suit-
able canonical representative functions do not exist for all nets. �
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4 PLACE/TRANSITION NETS: NEW CANONICAL MARKING AL-
GORITHMS

The previous chapter studied the computational complexity issues concern-
ing the symmetry reduction method for place/transition nets. In addition,
algorithms for computing the automorphism group of the net, i.e., for find-
ing the symmetries, were described in Section 3.2.2. This chapter studies
the algorithms for the next step in the symmetry reduction method, i.e., for
exploiting the symmetries during the reduced reachability graph generation.
As described in Section 2.2.2, this requires an algorithm either

1. deciding whether two markings are equivalent under the symmetries,
or

2. building canonical representatives for markings.

Some algorithms for the task in the context of P/T-nets are described in
[Schmidt 2000a; 2000b]:

– The first algorithm, “iterating the symmetries”, applies all the symme-
tries to the new marking and checks whether the resulting marking has
already been visited during the reduced reachability graph construc-
tion. The facts that (i) the symmetries are stored in a special form
called Schreier-Sims representation (described in Section 4.1.1), and
(ii) the set of already visited markings is stored as a prefix sharing de-
cision tree, are exploited to prune the set of symmetries that have to
considered.

– The second algorithm, “iterating the states”, pairwisely checks the new
marking with each already visited marking for equivalence by using the
algorithm described in [Schmidt 2000a]. The set of necessary equiv-
alence tests is reduced by using symmetry-respecting hash functions.
This approach does not need the pre-calculation of the symmetries of
the net.

– The third algorithm, “canonical representatives”, computes a (non-
canonical) representative for the newly generated marking. This is
done by a limited search with greedy heuristics in the Schreier-Sims
representation of symmetries, trying to find the lexicographically small-
est equivalent marking.

The new algorithms described in this chapter follow the canonical repre-
sentative function approach. That is, they describe how to compute a func-
tion

canrepr : M → M

such that

1. canrepr(M) ≡G M , and
2. M1 ≡G M2 implies canrepr(M1) = canrepr(M2),

where G is the applied symmetry group. All the new algorithms presented
require that the symmetry group of the net is known and stored in a standard
form called Schreier-Sims representation. This is not a serious drawback
because it is beneficial to first compute the symmetry group of the net in
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order to see whether there are any non-trivial symmetries, i.e., to see whether
the symmetry reduction method can help at all. In addition, the performance
of symmetry reduction algorithms may depend on the size of the symmetry
group, see [Schmidt 2000b] and Section 4.5.2, and thus knowing it may help
in selecting an appropriate algorithm.

The first new algorithm presented in Section 4.2 uses a black box graph
canonizer algorithm to produce a canonical representative for a marking.
First, the characteristic graph of the marking is build. Characteristic graphs
have the property that the characteristic graphs of two markings are isomor-
phic if and only if the markings are equivalent. Furthermore, the isomor-
phisms between the characteristic graphs correspond exactly to the symme-
tries transforming the markings to each other. The canonical version of the
characteristic graph of a marking is then obtained by applying a black box
graph canonizer, and finally the canonical representative for the marking is
obtained by using an isomorphism between the characteristic graph and its
canonical version. In Section 7.6, an analogous algorithm is described for
high-level Petri nets and similar formalisms.

The second algorithm, presented in Section 4.3, is a backtracking search
algorithm in the Schreier-Sims representation of the symmetry group. The
algorithm returns the smallest marking produced by symmetries that are
“compatible” with the marking in question. The search is pruned (i) by
considering only symmetries that are “compatible” with the marking, (ii) by
using the smallest already found equivalent marking, and (iii) by exploiting
the stabilizers of the marking (which are found during the search). This
algorithm is a variant of the backtracking search algorithms developed in
computational group theory, see e.g. [Butler 1991]. However, the compati-
bility definition between symmetries and markings is, to author’s knowledge,
novel. Moreover, the algorithm can be seen as a complete, canonical version
of the “canonical representatives” algorithm described in [Schmidt 2000b]
augmented with effective pruning techniques.

The third algorithm presented in Section 4.4 combines the techniques
used in Sections 4.2 and 4.3 by “opening” the black box graph canonizer. A
standard preprocessing technique of existing graph isomorphism algorithms
(see e.g. [McKay 1981; Kreher and Stinson 1999]) is used to produce an
ordered partition of the marking in question in a symmetry-respecting way.
The partition is then used to prune the backtrack search in the Schreier-Sims
representation by considering only symmetries that are compatible with the
partition.

The algorithms and results presented in this chapter have been published
in [Junttila 2002a].

4.1 PRELIMINARIES

Some common preliminaries for the proposed algorithms are given first.
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4.1.1 The Schreier-Sims Representation

Although a permutation group on a set of n elements may have up to n!
permutations, there are representations for permutation groups that have size
polynomial in n. The following text describes one standard representation
form that has some useful properties exploited later in this chapter. For more
on permutation group algorithms, see [Butler 1991]. The presentation here
is based on [Kreher and Stinson 1999].

Assume a finite set X and a permutation group G on X . For instance,
X may be the set P ∪ T and G the group Aut(N) for a P/T-net N =
〈P, T, F,W,M0〉. Assume that |X| = n and order the elements in X in
any order β = [x1, x2, . . . , xn]. Let

G0 = G

G1 = {g ∈ G0 | g(x1) = x1}
G2 = {g ∈ G1 | g(x2) = x2}

...
Gn = {g ∈ Gn−1 | g(xn) = xn} .

The groups G0, G1, . . . , Gn are subgroups of G such that

G = G0 ≥ G1 ≥ · · · ≥ Gn = {I}

where I denotes the identity permutation. Note that a permutation g ∈ Gi,
0 ≤ i ≤ n, fixes each element x1, . . . , xi. For each 1 ≤ i ≤ n, let [xi]Gi−1

=
{g(xi) | g ∈ Gi−1} denote the orbit of xi under Gi−1. Assume that [xi]Gi−1

=
{xi,1, xi,2, . . . , xi,ni

} for an 1 ≤ ni ≤ n. For each 1 ≤ j ≤ ni, choose
a hi,j ∈ Gi−1 such that hi,j(xi) = xi,j and let Ui = {hi,1, hi,2, . . . , hi,ni

}.
Now Ui is a left transversal of Gi in Gi−1, i.e., hi,j ◦Gi 6= hi,k ◦Gi for
j 6= k and Gi−1 = hi,1 ◦Gi ∪ · · · ∪ hi,ni

◦Gi, where h ◦ Gi denotes the
left coset {h ◦ g | g ∈ Gi}. The structure ~G = [U1, U2, . . . , Un] is a Schreier-
Sims representation of the group G. Each element in g ∈ G, and only
those, can be uniquely written as a composition g = h1 ◦ h2 ◦ · · · ◦ hn,
where hi ∈ Ui, and thus the order of G equals to |U1||U2| · · · |Un|. The
ordering β = [x1, x2, . . . , xn] is called the base of the representation. It
can be and is assumed from now on that each Ui contains the identity per-
mutation I. As each Ui contains at most n − i + 1 permutations, there
are at most n(n+ 1)/2 permutations in the Schreier-Sims representation
~G = [U1, U2, . . . , Un]. Many operations, such as testing whether a permu-
tation belongs to the group, can be performed in polynomial time by using
Schreier-Sims representations. Furthermore, given a generating set of per-
mutations for a group, the Schreier-Sims representation for the group can be
calculated in polynomial time.

The ground sets in [Schmidt 2000a; 2000b] are actually Schreier-Sims
representations. Thus the algorithm for computing the symmetries of a net
presented in [Schmidt 2000a] produces a Schreier-Sims representation of the
symmetry group.

Finally, note that a more compact representation consisting of at most
n−1 permutations could also be used instead of the Schreier-Sims represen-
tation [Jerrum 1986].
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p1 p2

p3p4

t2,1

t3,4

t1,2

t4,3

t4,1 t3,2t1,4 t2,3

Figure 4.1: An example net

Example 4.1 Consider the net in Figure 4.1. Its symmetry group, call it G,
under the base

β = [p1, p2, p3, p4, t1,2, t2,1, t2,3, t3,2, t3,4, t4,3, t4,1, t1,4]

has a Schreier-Sims representation ~G = [U1, U2, . . . , U|P |+|T |], where

U1 =



h1,1 = I

h1,2 =
(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p2 p3 p4 p1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4 t1,2 t2,1

)
h1,3 =

(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p3 p4 p1 p2 t3,4 t4,3 t4,1 t1,4 t1,2 t2,1 t2,3 t3,2

)
h1,4 =

(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p4 p1 p2 p3 t4,1 t1,4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3

)


,

U2 =

{
h2,1 = I

h2,2 =
(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p1 p4 p3 p2 t1,4 t4,1 t4,3 t4,2 t3,2 t2,3 t2,1 t1,2

) }
, and

Ui = {I} for 3 ≤ i ≤ |P |+ |T |.

Therefore, |G| = 8. ♣

4.1.2 Compatible Permutations

In addition to the standard Schreier-Sims representation definitions above,
some new concepts are needed in the rest of the chapter.

To facilitate the understanding of the following concepts, a Schreier-Sims
representation ~G = [U1, . . . , Un] of a permutation group G on a set X un-
der a base β = [x1, . . . , xn] can be seen as a tree. The levels of the tree
correspond to the base of the representation and each node at a level i has
|Ui| children at the level i + 1, the edges to the children being labeled with
the permutations in Ui. For instance, Figure 4.2 shows (a prefix of) the tree
corresponding to the Schreier-Sims representation in Example 4.1.

Consider a path in the tree starting in the root and ending in a node v at a
level i. Composing the labels of the edges in the path defines the correspond-
ing permutation g ∈ U1 ◦ · · · ◦ Ui−1 ⊆ G. Thus the full paths ending in leaf
nodes of the tree define exactly the permutations in the group. The node v
has |Ui| child nodes, and extending the path to any of them defines an exten-
sion permutation of g which is in g ◦ Ui. The set {g(h(xi)) | h ∈ Ui} is now
the set of |Ui| possible images of the ith base element xi under all the per-
mutations corresponding to the paths going through the node v. Figure 4.3
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h1,1 h1,2

h2,1 h2,1 h2,2h2,2 h2,1 h2,2 h2,1 h2,2

h1,3 h1,4

p3

p2

p1

Figure 4.2: Schreier-Sims representation seen as a tree

shows the tree in Figure 4.2 when the base element images are augmented
in the edges. For instance, consider the “fourth” path with the edges h1,2 and
h2,2. The image of the first base element p1 is now h1,2(p1) = p2 and the
second base element p2 is mapped to h1,2(h2,2(p2)) = h1,2(p4) = p1.

p3

p2

p1

h1,3 h1,4

h2,1 h2,2 h2,1 h2,2 h2,1 h2,2 h2,1 h2,2

p2 p4 p1p3 p4 p2 p1 p3

p1 p2

h1,1 h1,2
p3 p4

Figure 4.3: Schreier-Sims representation tree augmented with the base ele-
ment images

Assume that the elements in the permuted set X are associated with natu-
ral numbers by a valuation function pval : X → N. Now the edges in the tree
can be augmented with the values of the base element images assigned by
pval. For instance, Figure 4.4 shows the tree in Figure 4.3 augmented in this
way when pval = {p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 0, t1,2 7→ 0, . . . , t1,4 7→ 0}.

p3

p2

p1

h1,3 h1,4

h2,1 h2,2 h2,1 h2,2 h2,1 h2,2 h2,1 h2,2

p2

0

p4

0

p1

10

p3 p4 p2 p1 p3

1 00 0

p1

1

p2

0

h1,1 h1,2
p3 p4

0 0

Figure 4.4: Schreier-Sims representation tree augmented with the base ele-
ment images and their values

Next, consider a node v at level i in the tree. It has |Ui| children and the
edges to children are weighted by the valuation pval in the way described
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above. The weights form a multiset over natural numbers. For instance, the
multiset for the root node in Figure 4.4 is 3 ′0 + 1 ′1 and the multiset for the
second node from the left in the second level is 1 ′0 + 1 ′1. The idea now
is to prune the tree by considering only a nonempty subset of children of
each node in the way from root to leaf nodes. This pruning is done by ap-
plying a multiset selector to the multiset of edge weights leaving the node.
The multiset selector chooses a nonempty set of “good” edge weights. Only
the children of the node reachable via an edge with “good” weight are then
considered and the rest are pruned away. Formally, a multiset selector is a
function from nonempty multisets over natural numbers to nonempty sets
of natural numbers such that each number in the image set has a non-zero
multiplicity in the argument multiset. That is, if select is a multiset selector
and n ∈ select(m), then m(n) ≥ 1. For instance, the trivial multiset selec-
tor is selecttrivial = {n |m(n) ≥ 1}, e.g. selecttrivial(3

′2 + 2 ′4 + 2 ′5 + 4 ′7) =
{2, 4, 5, 7}. For a better example, define the minimal element multiset se-
lector selectmin such that selectmin(m) = {n}, where n is the smallest num-
ber that has non-zero multiplicity in m. Now selectmin(3

′2 + 2 ′4 + 2 ′5 +
4 ′7) = {2}. Similarly, the maximal element multiset selector selectmax

would give selectmax(3
′2 + 2 ′4 + 2 ′5 + 4 ′7) = {7}. Also define the min-

imal element with minimal frequency multiset selector selectminminfreq such
that selectminminfreq(m) = {n}, where n is the smallest number among those
that have the smallest non-zero multiplicity in m. E.g., selectminminfreq(3

′2 +
2 ′4 + 2 ′5 + 4 ′7) = {4}. Similarly, the maximal element with minimal fre-
quency multiset selector selectmaxminfreq would give selectmaxminfreq(3

′2+2 ′4+
2 ′5+4 ′7) = {5}. A function multiset selector is a multiset selector for which
the image set always contains exactly one element. All the other multiset
selectors above except selecttrivial clearly fulfill this condition. Figure 4.5(a)
shows the tree in Figure 4.4 pruned by applying the minimal element mul-
tiset selector selectmin, and Figure 4.5(b) shows the result when the maximal
element with minimal frequency multiset selector is applied instead.

h1,3 h1,4

h2,1 h2,1 h2,2 h2,2

0

p3 p4 p2 p3

00 0

p2

0

h1,2
p3 p4

0 0

h2,1 h2,2

p2

0

p4

0

p1

1

h1,1

(a) selectmin (b) selectmaxminfreq

Figure 4.5: Pruned Schreier-Sims representation trees

The following definition formalizes the above discussed pruning proce-
dure. The permutations corresponding to the full paths in the tree that sur-
vive the pruning will be called compatible. Assume a fixed multiset selector
select, a permutation group G on a set X with |X| = n and a Schreier-Sims
representation ~G = [U1, . . . , Un] of G under a base β = [x1, . . . , xn].

4. PLACE/TRANSITION NETS: NEW CANONICAL MARKING ALGORITHMS 45



Definition 4.2 A permutation g1 ◦ · · · ◦ gn ∈ G, where gj ∈ Uj for each
1 ≤ j ≤ n, is compatible with a valuation pval : X → N if

pval((g1 ◦ · · · ◦ gi−1 ◦ gi)(xi)) ∈ select

∑
h∈Ui

1 ′pval((g1 ◦ · · · ◦ gi−1 ◦ h)(xi))


holds for each 1 ≤ i ≤ n (when i = 1, g1 ◦ · · · ◦ gi−1 = I).

Note that there is always at least one permutation compatible with the valua-
tion. Furthermore, it is straightforward to see that if

– the valuation pval is an injection, i.e., pval(x) = pval(x′) ⇒ x = x′ for
all elements x, x′ ∈ X , and

– select is a function multiset selector,

then there is exactly one element in G that is compatible with pval. Define
the action of G on the valuation functions pval : X → N by g(pval) =
pval ◦ g−1 (or equivalently, (g(pval))(g(x)) = pval(x) for each x ∈ X) for
each g ∈ G. The following property of compatibility is crucial in latter
sections.

Theorem 4.3 Let g ∈ G. A permutation ĝ ∈ G is compatible with a valu-
ation pval if and only if the permutation g ◦ ĝ ∈ G is compatible with the
permuted valuation g(pval).

Proof. Assume that ĝ1 ◦ · · · ◦ ĝn is the unique representation of ĝ in the fixed
Schreier-Sims representation of G. Similarly, let ĝ′1 ◦ · · · ĝ′n be the unique
representation of ĝ′ = g ◦ ĝ. Fix any i, 1 ≤ i ≤ n. It has to be shown that

pval((ĝ1 ◦ · · · ◦ ĝi)(xi)) ∈

select

(∑
h∈Ui

1 ′pval({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(xi) | h ∈ Ui})

)

if and only if

(g(pval))((ĝ′1 ◦ · · · ◦ ĝ′i)(xi)) ∈

select

(∑
h∈Ui

1 ′(g(pval))(
{
(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(xi) | h ∈ Ui

}
)

)
.

First, note that (ĝ1◦· · ·◦ĝi)(xi) = ĝ(xi) because the “postfix” permutation
ĝi+1 ◦ · · · ◦ ĝn of ĝ fixes xi. Similarly, (ĝ′1 ◦ · · · ◦ ĝ′i)(xi) = ĝ′(xi) = g(ĝ(xi)).
Thus pval((ĝ1◦· · ·◦ ĝi)(xi)) = pval(ĝ(xi)) and (g(pval))((ĝ′1◦· · ·◦ ĝ′i)(xi)) =
(g(pval))(ĝ′(xi)) = (pval ◦ g−1)(g(ĝ(xi))) = pval(ĝ(xi)), implying

pval((ĝ1 ◦ · · · ◦ ĝi)(xi)) = (g(pval))((ĝ′1 ◦ · · · ◦ ĝ′i)(xi)). (4.1)

Second, note that {h(xi) | h ∈ Ui} = [xi]Gi−1
, i.e., the orbit of xi under

Gi−1. Therefore, the set {(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(xi) | h ∈ Ui} equals to (ĝ1 ◦
· · ·◦ ĝi−1)([xi]Gi−1

). As the last permutations ĝi◦· · ·◦ ĝn in the representation
of ĝ belong to the subgroup Gi−1, (ĝi ◦ · · · ◦ ĝn)([xi]Gi−1

) = [xi]Gi−1
. Thus

{(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(xi) | h ∈ Ui} = (ĝ1 ◦ · · · ◦ ĝi−1)([xi]Gi−1
) = ĝ([xi]Gi−1

).
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Similarly, the set
{
(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(xi) | h ∈ Ui

}
equals to ĝ′([xi]Gi−1

) =

(g ◦ ĝ)([xi]Gi−1
) = g

(
ĝ([xi]Gi−1

)
)

Therefore,{
(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(xi) | h ∈ Ui

}
= g ({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(xi) | h ∈ Ui}) .

This implies that∑
h∈Ui

1 ′(g(pval))(
{
(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(pβ,i) | h ∈ Ui

}
) =∑

h∈Ui

1 ′(pval ◦ g−1)(g ({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui})) =∑
h∈Ui

1 ′pval({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui})

and thus

select(
∑
h∈Ui

1 ′(g(pval))(
{
(ĝ′1 ◦ · · · ◦ ĝ′i−1 ◦ h)(pβ,i) | h ∈ Ui

}
)) =

select(
∑
h∈Ui

1 ′pval({(ĝ1 ◦ · · · ◦ ĝi−1 ◦ h)(pβ,i) | h ∈ Ui})).

�

The theory above was developed for arbitrary permutation groups. How-
ever, applying it to P/T-nets and their automorphism groups is straightfor-
ward. Assume a P/T-netN = 〈P, T, F,W,M0〉 and a subgroupG of Aut(N).
Any Schreier-Sims representation ~G = [U1, . . . , U|P |+|T |] of G is from now
on assumed to be given under a base β = [pβ,1, . . . , pβ,|P |, tβ,1, . . . , tβ,|T |] in
which the places are enumerated before transitions. It can be safely assumed
that each set Uj , where |P | + 1 ≤ j ≤ |P | + |T |, contains only the identity
permutation. If this were not the case, then the subgroup of G stabilizing
each place would be non-trivial and the net would contain identical transi-
tions (that is, transitions that consume the same number of tokens from the
same places and produce the same number of places to the same places).
Such transitions can be safely identified. Under these assumptions, the ele-
ment valuation functions are called place valuations and are restricted to be
functions of form pval : P → N (it is implicitly defined that pval(t) = 0 for
each transition t ∈ T ). Observe that this definition is exactly the same as
for markings, a different name is only used in order to avoid confusions later.
The action of permutations in Aut(N) on place valuations is also defined
similarly to that on markings.

Example 4.4 Recall the net in Figure 4.1 and the Schreier-Sims represen-
tation of its automorphism group G described in Example 4.1. Assume a
place valuation pval = {p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 0} and the minimal
element multiset selector selectmin. Now

selectmin

(∑
h∈U1

1 ′pval(h(pβ,1))

)
=

selectmin (1 ′pval(p1) + 1 ′pval(p2) + 1 ′pval(p3) + 1 ′pval(p4)) =

selectmin (1 ′1 + 1 ′0 + 1 ′0 + 1 ′0) =

selectmin (3 ′0 + 1 ′1) = {0}
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and thus pval(ĝ1(p1)) = 0 must hold for any permutation ĝ = ĝ1 ◦ · · · ◦ ĝ12,
ĝi ∈ Ui for each 1 ≤ i ≤ 12, that is compatible with pval. This requirement
is fulfilled by h1,2, h1,3 and h1,4.

If ĝ1 = h1,2, then

selectmin

(∑
h∈U2

1 ′pval(h1,2(h(pβ,2)))

)
=

selectmin (1 ′pval(p3) + 1 ′pval(p1)) =

selectmin (1 ′1 + 1 ′0) = {0}

and thus pval(h1,2(ĝ2(p2))) = 0 must hold for any permutation ĝ = h1,2 ◦
ĝ2 · · · ◦ ĝ12 that is compatible with pval. This requirement is fulfilled by h2,1.
Because Ui = {I} for i ≥ 3, the symmetry h1,2 ◦ h2,1 =

(
p1 p2 p3 p4 t1,2 ...
p2 p3 p4 p1 t2,3 ...

)
is

compatible with pval.
Similar computations show that the other permutations compatible with

pval are

h1,3 ◦ h2,1 =
(
p1 p2 p3 p4 t1,2 ...
p3 p4 p1 p2 t3,4 ...

)
,

h1,3 ◦ h2,2 =
(
p1 p2 p3 p4 t1,2 ...
p3 p2 p1 p4 t3,2 ...

)
, and

h1,4 ◦ h2,2 =
(
p1 p2 p3 p4 t1,2 ...
p4 p3 p2 p1 t4,3 ...

)
.

To sum up, there are 4 permutations that are compatible with pval. Note
that these permutations correspond to the paths in the pruned tree in Fig-
ure 4.5(a).

Observe that if the maximal element with minimal frequency multiset
selector were used instead, only 2 permutations, namely h1,1 ◦h2,1 and h1,1 ◦
h2,2, would be compatible with pval. These permutations correspond to the
paths in the pruned tree in Figure 4.5(b). ♣

Algorithm 4.1 describes the obvious depth-first backtrack search algorithm
enumerating all permutations compatible with a place valuation.

Algorithm 4.1 An algorithm enumerating all compatible permutations
function compatible_permutations(pval)

1: Call backtrack(1, I)
function backtrack(l, ĝ)
Require: l is the backtracking level
Require: ĝ is the currently enumerated compatible permutation

2: if l = |P |+ 1 then
3: Report ĝ
4: return
5: Evaluate S = select(Σh∈Ul

1 ′pval(ĝ(h(pβ,l))))
6: for all h ∈ Ul such that pval(ĝ(h(pβ,l))) ∈ S do
7: Call backtrack(l + 1, ĝ ◦ h)
8: return
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4.2 USING THE CANONICAL VERSION OF THE CHARACTERISTIC GRAPH

The first canonical representative marking function presented is based on the
use of graph canonizers, i.e., functions that transform graphs to unique, iso-
morphic representatives called canonical versions. For instance, the nauty
tool implements such a function [McKay 1990]. First, the characteristic
graph of the marking in question is built. The canonical version of the char-
acteristic graph is then obtained by using the graph canonizer. Finally, the
canonical representative for the marking is obtained from a mapping trans-
forming the characteristic graph to its canonical version.

Characteristic Graphs. Consider a P/T-net N = 〈P, T, F,W,M0〉 and the
stabilizer group G = Stab(N, M̂) of a marking M̂ . Usually, M̂ is either
the initial marking M0 or the empty marking (in the latter case, Stab(N, M̂)
equals to Aut(N)). A characteristic graph assigner (under G) is a function
that assigns each marking M a graph GM (in a fixed class of graphs) such that
its vertex set contains P ∪ T and for all markings M1,M2 of N it holds that

1. if g ∈ G maps a marking M1 to M2, then there is an isomorphism γ
from GM1 to GM2 such that γ restricted to P ∪ T equals to g, and

2. if γ is an isomorphism from GM1 to GM2 , then (i) γ(P ) = P , (ii) γ(T ) =
T , and (iii) γ restricted to P ∪ T belongs to G and maps M1 to M2.

Then the graph GM is called the characteristic graph of M . Clearly, two
markings are equivalent under G if and only if their characteristic graphs are
isomorphic. Thus testing whether two markings are equivalent under G can
be done by (i) building their characteristic graphs, and (ii) testing whether
the characteristic graphs are isomorphic by using a tool for solving the graph
isomorphism problem. Furthermore, the stabilizer group Stab(G,M) can
be easily retrieved from the automorphism group of GM by simply restricting
it to P ∪ T .

For the class of directed, vertex and edge labeled graphs it is easy to define
characteristic graphs. One can simply define that the characteristic graph of
a marking M is the graph GM = 〈V,E, L〉 such that

1. the vertex set is the set of nodes of the net: V = P ∪ T ,
2. the edges are the arcs of the net N : E = F , and
3. each place p ∈ P is labeled with the pair of numbers defined by the

markings M̂ and M : L(p) = 〈M̂(p),M(p)〉
4. each transition t ∈ T is labeled with the text string “T”, L(t) = “T”, so

that it is distinguished from the vertices representing the places, and
5. each edge f ∈ F is labeled with the arc multiplicity L(f) = W (f).

Note that this construction is similar to the ones in the proofs of Theorems 3.7
and 3.11. It is quite straightforward to see that the requirements for a charac-
teristic graph assigner are fulfilled by the above definition.

For the class of undirected, vertex labeled graphs, some extra vertices and
edges are inserted to compensate the lack of edge labels and direction. One
can define that the characteristic graph of a marking M is the graph GM =
〈V,E, L〉 such that

1. the vertex set is V = P ∪ T ∪ F ,
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2. for each arc 〈x, y〉 ∈ F , the edge set E contains the edges 〈x, 〈x, y〉〉
and 〈〈x, y〉, y〉, and these are the only edges in E,

3. for each place p ∈ P , L(p) = 〈M̂(p),M(p)〉,
4. for each transition t ∈ T , L(t) is the text string “T”, and
5. for each arc 〈p, t〉 ∈ F ∩ (P × T ), L(〈p, t〉) is the concatenation of the

text string “i” (for input arc) and the numberW (〈p, t〉) and for each arc
〈t, p〉 ∈ F ∩ (T × P ), L(〈t, p〉) is the concatenation of the text string
“o” (for output arc) and the number W (〈t, p〉).

Now an isomorphism γ from a graph G1 = 〈V1, E1, L1〉 to G2 = 〈V2, E2, L2〉
is a bijection from V1 to V2 such that

1. 〈v, v′〉 ∈ E1 ⇔ 〈γ(v), γ(v′)〉 ∈ E2, and
2. L1(v) = L2(γ(v)) for each vertex v ∈ V1.

It is again straightforward to see that the requirements for a characteristic
graph assigner are fulfilled by the above definition.

Figure 4.6 shows a marked net and its characteristic graphs for both of the
graph classes mentioned above (the marking M̂ is assumed to be the empty
marking).
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Figure 4.6: A marked net and its characteristic graphs

The characteristic graph assigners defined above can be improved in the
case the groupG = Stab(N, M̂) is given. Assume that the set of nodes P ∪T
of the net is ordered. The orbits of the nodes underG, [x]G = {g(x) | g ∈ G}
for each x ∈ P ∪ T , inherit the same ordering by e.g. considering the first
element in each orbit. Let orbitnum(x) = i if the node x ∈ P ∪ T belongs
to the ith orbit. Now the labels of the vertices in the characteristic graph
corresponding to the places and transitions can be replaced by (i) L(p) =
〈orbitnum(p),M(p)〉 for each place p, and (ii) L(t) = orbitnum(t).“T” for
each transition t. Note that this construction requires that the group G is
the stabilizer group of a marking, it does not work for arbitrary subgroups of
Aut(N).
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Graph canonizers. For a fixed class of graphs, a function K from graphs to
graphs is a graph canonizer if for all graphs G,G′ it holds that

– K(G) is isomorphic to G, and
– K(G) = K(G′) if and only if G and G′ are isomorphic.

The graph K(G) is the canonical version of G. It can be assumed that the
vertex set of the canonical version of a graph with n vertices is {1, 2, . . . , n}
and that a bijective canonization mapping, i.e., an isomorphism from G to
K(G), is provided, too.

A graph canonizer can be used for obtaining canonical representative
markings, as shown next. First, it is assumed that a Schreier-Sims repre-
sentation for the group G = Stab(N, M̂) is given. For a marking M ∈ M,
consider the following procedure.

1. Build the characteristic graph GM .
2. Compute the canonical versionK(GM) of GM and a canonization map-

ping γ from GM to K(GM) .
3. Define the place valuation pval by ∀p ∈ P : pval(p) = γ(p), i.e., the

place p is associated with the number of the vertex into which the vertex
p in the characteristic graph is mapped by γ. Clearly, pval is injective.

4. Take the unique element ĝ ∈ G that is compatible with pval (under a
fixed function multiset selector select).

5. Return ĝ−1(M) as the representative marking.

Denote the marking ĝ−1(M) above by KM(M). The fact that KM(M) is
unique for M despite the indefinite article at item 2 in the process described
above (that is, any canonization mapping can be selected) is proven in the
following theorem.

Theorem 4.5 The mapping KM is a canonical representative function.

Proof. Clearly KM(M) is equivalent to M under G because KM(M) is ob-
tained by applying an element of G to M .

Assume two markings, M1 and M2, that are equivalent under G. By defi-
nition, their characteristic graphs GM1 and GM2 , respectively, are isomorphic.
Assume that K(GM1) (which equals to K(GM2)) is the canonical version of
GM1 and GM2 . Take any canonization mapping (i.e., isomorphism) γ1 from
GM1 toK(GM1) and γ2 from GM2 toK(GM1). Now γ−1

2 ◦γ1 is an isomorphism
from GM1 to GM2 and γ−1

1 ◦ γ2 is an isomorphism from GM2 to GM1 . By the
definition of characteristic graphs, γ−1

2 ◦ γ1 restricted to P ∪ T belongs to G
and maps M1 to M2 and γ−1

1 ◦ γ2 restricted to P ∪ T belongs to G and maps
M2 to M1.

Define the place valuations pval1 and pval2 by ∀p ∈ P : pval1(p) = γ1(p)
and ∀p ∈ P : pval2(p) = γ2(p). Now

(
(γ−1

2 ◦ γ1)(pval1)
)
(p) = pval1((γ

−1
2 ◦

γ1)
−1(p)) = pval1(γ

−1
1 (γ2(p))) = γ1(γ

−1
1 (γ2(p))) = γ2(p) = pval2(p), i.e.,

γ−1
2 ◦ γ1 restricted to P ∪ T maps pval1 to pval2.

Observe that pval1 and pval2 are clearly injective functions. Assume that
ĝ1 is the unique element inG that is compatible with pval1. By Theorem 4.3,
ĝ1 is compatible with pval1 if and only if (γ−1

2 ◦ γ1) ◦ ĝ1 is compatible with
pval2. Thus (γ−1

2 ◦γ1)◦ ĝ1 is the unique element inG that is compatible with
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Figure 4.7: A marked net, its characteristic graph, and the canonical version
of the characteristic graph

pval2. Now ((γ−1
2 ◦ γ1) ◦ ĝ1)

−1(M2) = ĝ−1
1 ((γ−1

1 ◦ γ2)(M2)) = ĝ−1
1 (M1) and

thus KM(M1) = KM(M2).
The fact that KM(M) is uniquely determined follows by considering the

case M1 = M2. �

Example 4.6 Consider the marked version of the netN in Figure 4.1, shown
in the left hand side of Figure 4.7. The characteristic graph GM of the mark-
ing (when M̂ is the empty marking) is shown in the middle of Figure 4.7.

Suppose a graph canonizer that produces the canonical version K(GM)
of GM shown in the right hand side of Figure 4.7. There are two isomor-
phisms, i.e., canonization mappings, from the characteristic graph GM to its
canonical version K(GM), namely

γ1 =
(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

10 12 11 9 3 8 1 7 4 2 6 5

)
and

γ2 =
(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

10 9 11 12 5 6 2 4 7 1 8 3

)
.

The corresponding place valuations are

pval1 = {p1 7→ 10, p2 7→ 12, p3 7→ 11, p4 7→ 9} and
pval2 = {p1 7→ 10, p2 7→ 9, p3 7→ 11, p4 7→ 12},

respectively. Assuming the Schreier-Sims representation of Aut(N) used in
Example 4.1 and that the minimal element multiset selector is applied,

ĝ1 = h1,4 ◦ h2,1 =
(
p1 p2 p3 p4 t1,2 ···
p4 p1 p2 p3 t4,1 ···

)
is the only permutation compatible with pval1 and

ĝ2 = h1,2 ◦ h2,2 =
(
p1 p2 p3 p4 t1,2 ···
p2 p1 p4 p3 t2,1 ···

)
is the only permutation compatible with pval2. The canonical representative
marking for M is thus

ĝ−1
1 (M) = ĝ−1

2 (M) = 1 ′p2.

Finally, note that
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– Stab(Aut(N),M) = {I, h2,2},
– Aut(K(GM)) = {I, ( 1 2 3 4 5 6 7 8 9 10 11 12

2 1 5 7 3 8 4 6 12 10 11 9 )},
– Aut(GM) = γ−1

1 ◦ Aut(K(GM)) ◦ γ1 = γ−1
2 ◦ Aut(K(GM)) ◦ γ2 ={

I,
(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p1 p4 p3 p2 t1,4 t4,1 t4,3 t3,4 t3,2 t2,3 t2,1 t1,2

)}
, and

– Stab(Aut(N),M) equals to Aut(GM) restricted to P ∪ T (that is, to
Aut(GM) for the class of characteristic graphs used here).

♣

4.3 BACKTRACK SEARCH IN THE SCHREIER-SIMS REPRESENTATION

This section presents representative marking algorithms that are based on se-
lecting a permutation that is compatible with the marking in question. That
is, the marking itself is interpreted as a place valuation. A canonical represen-
tative marking function is obtained by performing a backtracking search in
the Schreier-Sims representation for the lexicographically smallest marking
produced by a compatible permutation. Pruning techniques for the search
are also discussed.

First, assume a base β = [pβ,1, . . . , pβ,|P |, tβ,1, . . . , tβ,|T |] where the places
are enumerated before the transitions and a Schreier-Sims representation
~G = [U1, . . . , U|P |+|T |] of any subgroup G of Aut(N) under this base. Sim-
ilarly, a fixed multiset selector is implicitly assumed throughout this and the
following section. Let

posreps(M) =
{
ĝ−1(M) | ĝ ∈ G and ĝ is compatible with M

}
denote the set of possible representative markings forM . That is, the inverses
of the symmetries compatible with the marking are applied to the marking.
For equivalent markings, the sets of possible representative markings are the
same:

Theorem 4.7 For each marking M ∈ M and for each symmetry g ∈ G,
posreps(M) = posreps(g(M)).

Proof. By Theorem 4.3, ĝ is compatible withM if and only if g◦ ĝ is compat-
ible with g(M). In addition, (g◦ ĝ)−1(g(M)) = ĝ−1(g−1(g(M))) = ĝ−1(M).

�

Obviously, M ′ ∈ posreps(M) implies M ′ ≡G M . However, it does not, in
general, hold that M ∈ posreps(M). Note that the number of symmetries
in G compatible with M is a multiple of |Stab(G,M)|: if ĝ is compatible
with M , then by Theorem 4.3 the permutation g ◦ ĝ ∈ G is compatible with
the marking g(M) = M for each stabilizer g ∈ Stab(G,M). That is, if ĝ is
compatible with M , then (and only then) all the permutations in the right
coset Stab(G,M) ◦ ĝ are compatible with M .

The “hardness” of a marking can be classified as follows. Define that a
marking M is

1. trivial if there is exactly one permutation in G compatible with the
marking M ,
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2. easy if it is not trivial but the set posreps(M) contains only one mark-
ing,

3. hard if it is neither trivial nor easy.

Note that this classification depends on the applied Schreier-Sims represen-
tation and multiset selector. It is easy to see that the classification is closed
under G, i.e. a marking is trivial/easy/hard if and only if all the markings
equivalent to it under G are trivial/easy/hard, respectively. Note that for both
trivial and easy markings, the set posreps(M) contains only one marking.
The difference is that easy markings have several permutations in G that are
compatible with the marking.

A very simple (non-canonical) representative marking algorithm would
be to simply take an arbitrary permutation ĝ ∈ G that is compatible with the
marking M in question and then return ĝ−1(M) as the representative mark-
ing. Theorem 4.7 guarantees that it is possible, although not guaranteed,
that the same representative marking is selected for two equivalent markings.
However, for trivial and easy markings, as classified above, the unique canon-
ical representative marking is returned.

A canonical representative marking algorithm can be obtained by first
defining a total order between all the markings and then selecting the small-
est (or greatest) marking in the set of possible representative markings to
be the representative marking. A natural total ordering between the mark-
ings is the lexicographical ordering <β induced by the applied base β, de-
fined on page 33. Now define canrepr(M) to be the <β-smallest marking
in the set posreps(M). As posreps(M) = posreps(g(M)), canrepr(M) =
canrepr(g(M)) for each marking M and for each g ∈ G. Furthermore,
canrepr(M) ≡G M . The canonical representative marking canrepr(M) for
a marking M can be obtained by the depth-first backtracking search shown
in Algorithm 4.2, derived from Algorithm 4.1.

Algorithm 4.2 An algorithm finding the smallest marking in posreps(M)

function canrepr(M)
Require: A global marking BestMarking

1: Set BestMarking = p 7→ ∞ for all p ∈ P
2: Set pval(p) = M(p) for each place p
3: Call backtrack(1, I)
4: return BestMarking

function backtrack(l, ĝ)
Require: l is the backtracking level
Require: ĝ is the currently enumerated compatible permutation

5: if l = |P |+ 1 then
6: if ĝ−1(M) ≤β BestMarking then
7: Set BestMarking = ĝ−1(M)
8: return
9: Evaluate S = select(Σh∈Ul

1 ′pval(ĝ(h(pβ,l))))
10: for all h ∈ Ul such that pval(ĝ(h(pβ,l))) ∈ S do
11: Call backtrack(l + 1, ĝ ◦ h)
12: return
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Example 4.8 Recall the net in Figure 4.1 and the Schreier-Sims representa-
tion of its automorphism groupG described in Example 4.1. In Example 4.4,
it was shown that the symmetries

h1,2 ◦ h2,1 =
(
p1 p2 p3 p4 t1,2 ...
p2 p3 p4 p1 t2,3 ...

)
,

h1,3 ◦ h2,1 =
(
p1 p2 p3 p4 t1,2 ...
p3 p4 p1 p2 t3,4 ...

)
,

h1,3 ◦ h2,2 =
(
p1 p2 p3 p4 t1,2 ...
p3 p2 p1 p4 t3,2 ...

)
, and

h1,4 ◦ h2,2 =
(
p1 p2 p3 p4 t1,2 ...
p4 p3 p2 p1 t4,3 ...

)
are compatible with the marking M = 1 ′p1 (under the minimal element
multiset selector). Thus posreps(M) = {1 ′p3, 1

′p4} and M is hard. Under
the applied base, 1 ′p4 is the lexicographically smallest marking in the set
posreps(M). ♣

Pruning with the already fixed prefix. Consider a permutation g = g1 ◦
· · · ◦ gi in G, where 1 ≤ i ≤ |P | and gj ∈ Uj for each 1 ≤ j ≤ i. Now
each “extended” permutation g̃ = g1 ◦ · · · ◦ gi ◦ gi+1 ◦ g|P |+|T | in G maps
pβ,1 to g(pβ,1), pβ,2 to g(pβ,2), and so on up to and including pβ,i that is
mapped to g(pβ,i). Thus the values of the first i places in g̃−1(M) are known:
(g̃−1(M)) (pβ,1) = M(g̃(pβ,1)) = M(g(pβ,1)), . . . , and (g̃−1(M)) (pβ,i) =
M(g̃(pβ,i)) = M(g(pβ,i)). If a marking M ′ ∈ posreps(M) such that (i)
M ′(pβ,j) = M(g(pβ,j)) for each 1 ≤ j < k and (ii) M ′(pβ,k) < M(g(pβ,k))
for a 1 ≤ k ≤ i has already been found during the search, one knows that
M ′ <β g̃

−1(M) for all extensions g̃ of g and can therefore skip all such g̃.
To improve the possibilities of this pruning technique to work efficiently,

the Schreier-Sims representation can be optimized to have the fixed elements
as early as possible in the base. Let pβ,i be the last element in the base where
a place pβ,j , j ≥ i, may be permuted i.e. hi,l(pβ,j) 6= pβ,j for an hi,l ∈ Ui.
Now the base can be changed so that pβ,j is after pβ,i but before any pβ,k for
which Uk ⊃ {I}.

Finding and pruning with stabilizers. Take any “prefix” permutation g̃ =
g1 ◦ · · · ◦ gi−1 ∈ U1 ◦ · · · ◦ Ui−1 for an 1 ≤ i ≤ |P |. Consider two left cosets,
(g̃ ◦ gi) ◦Gi+1 and (g̃ ◦ g′i) ◦Gi+1, where gi, g′i ∈ Ui. Let π be a stabilizer of a
marking M that (i) fixes each place g̃(pβ,1), . . . , g̃(pβ,i−1), and (ii) maps the
place (g̃◦gi)(pβ,i) to (g̃◦g′i)(pβ,i). Now, if a permutation g′ belongs to the left
coset (g̃ ◦ g′i)◦Gi+1, then π−1 ◦ g′ must belong to the left coset (g̃ ◦ gi)◦Gi+1

since (i) (π−1 ◦g′)(pβ,j) = π−1(g̃(pβ,j)) = g̃(pβ,j) for each 1 ≤ j < i and (ii)
(π−1 ◦ g′)(pβ,i) = π−1((g̃ ◦ g′i)(pβ,i)) = (g̃ ◦ gi)(pβ,i). Furthermore, for each
markingM , (π−1◦g′)−1(M) = (g′−1◦π)(M) = g′−1(M). Therefore, the left
cosets (g̃◦g′i)◦Gi+1 and (g̃◦gi)◦Gi+1 produce the same markings. In addition,
if g is compatible withM , then π−1 ◦g is compatible with π−1(M) = M and
therefore the sets of possible representative markings in the left cosets are the
same. To sum up, if all the permutations in a left coset (g̃ ◦ gi) ◦ Gi+1 have
already been searched and there is a stabilizer π with the above mentioned
properties, one can ignore the left coset (g̃◦g′i)◦Gi+1 as it produces the same
possible representative markings.
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Stabilizers of markings can be found during the backtrack search on the
Schreier-Sims representation. Assume that M ′ is a marking that has been
found earlier during the search by traversing a path g = g1 ◦ · · · ◦ gi−1 ◦ gi ◦
gi+1 ◦ · · · g|P | meaning that g−1(M) = M ′. For instance, M ′ could be the
lexicographically smallest marking found so far. Assume that the currently
traversed path is g′ = g1◦· · ·◦gi−1◦g′i◦g′i+1◦· · · g′|P |, where g′i 6= gi. If it holds
that g′−1(M) = M ′ = g−1(M), then g′ ◦ g−1 is a stabilizer of M and (i) g′ ◦
g−1 fixes each (g1◦· · ·◦gj)(pβ,j), 1 ≤ j < i, as (g′◦g−1)((g1◦· · ·◦gj)(pβ,j)) =
(g′ ◦ g−1)(g(pβ,j)) = g′(pβ,j) = (g1 ◦ · · · ◦ gj)(pβ,j), and (ii) g′ ◦ g−1 maps
(g1 ◦ · · · ◦ gi−1 ◦ gi)(pβ,i) = g(pβ,i) to g′(pβ,i) = (g1 ◦ · · · ◦ gi−1 ◦ g′i)(pβ,i).
Thus g′ ◦g−1 is a stabilizer of M fulfilling the properties discussed above (the
prefix g̃ being g1◦· · ·◦gi−1), and the search can be “back-jumped” to the level
i − 1. This is the most trivial (and easiest to implement) way to prune with
the found stabilizers. There are many ways to achieve even larger degree of
pruning by composing the found stabilizers, see [Kreher and Stinson 1999;
McKay 1981; Butler 1991] and also the discussion in Section 7.4.2.

Transition pruning with stabilizers. Stabilizers of markings can also be
used to prune the set of successor markings that have to be visited during the
reduced reachability graph generation, see e.g. [Jensen 1995] and the dis-
cussion on page 31. As generators of Stab(G,M) can be found during the
search through the Schreier-Sims representation as discussed above, the or-
bits of the transitions under Stab(G,M) can be computed during the search,
too.

4.4 PARTITION GUIDED SCHREIER-SIMS SEARCH

It is possible to combine the backtracking search in the Schreier-Sims repre-
sentation described in Section 4.3 with a standard preprocessing technique
applied in graph isomorphism algorithms. Assuming a fixed subgroup G of
Aut(N) and given a marking M , an ordered partition of P ∪ T is first com-
puted in a way that respects the symmetries in G. The procedure computing
the partition forM is based on the use of invariants and is a variant of the stan-
dard techniques used in graph isomorphism checking and canonical labeling
of graphs, see e.g. [McKay 1981; Kreher and Stinson 1999]. The place val-
uation corresponding to the partition is then used to prune the search in the
Schreier-Sims representation of G. That is, instead of searching through the
permutations that are compatible with the marking in question as was done
in Section 4.3, the permutations compatible with the constructed place val-
uation are searched. The hope is that the place valuation is closer to being
injective than the original marking, i.e., that it can distinguish more places
from each other.

4.4.1 Partition Generators

Assume a net N , a subgroup G of Aut(N), and a Schreier-Sims representa-
tion ~G = [U1, . . . , U|P |+|T |] of G under a base β = [p1, . . . , p|P |, t1, . . . , t|T |]
in which the places are enumerated before the transitions. Recall the ba-
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sic definitions of ordered partitions in Section 2.3 and denote the set of all
ordered partitions of P ∪ T by P.

Next, the marking M in question is assigned an ordered partition of P ∪T
in a way that respects the symmetries in G. The idea is to try to distinguish
between the elements in P ∪ T so that distinguishable elements are put in
different cells. Formally, define the following.

Definition 4.9 A function pg : M → P assigning each marking an ordered
partition is a G-partition generator if for all markings M ∈ M and for all
g ∈ G it holds that pg(g(M)) = g(pg(M)).

That is, for permuted markings, similarly permuted ordered partitions are
assigned. A technique for obtaining G-partition generators will be described
in Section 4.4.2. Now assume a fixed G-partition generator pg.

An ordered partition can be interpreted as a place valuation by simply
assigning each place the cell number in which it appears in the ordered
partition. Formally, the place valuation pvalp corresponding to an ordered
partition p of P ∪ T is defined by

pvalp(p) = incell(p, p)

for each place p ∈ P . The next lemma shows that the place valuations
assigned to equivalent markings in this way are equivalent, too.

Lemma 4.10 For all g ∈ G and all markings M , pvalpg(g(M)) = g(pvalpg(M)).

Proof. For each place p ∈ P it holds that

pvalpg(g(M))(p) = incell(pg(g(M)), p) = incell(g(pg(M)), p) =

incell(pg(M), g−1(p)) =
(

pvalpg(M)

)
(g−1(p)) =

(
g(pvalpg(M))

)
(p).

�

A direct consequence of this is that each stabilizer g ∈ Stab(G,M) is a
stabilizer of pvalpg(M):

Corollary 4.11 For each g ∈ Stab(G,M), g(pvalpg(M)) = pvalpg(M).

Thus Stab(G,M) is a subgroup of Stab(G, pvalpg(M)). For all “reasonable”
G-partition generators, the stabilizer groups are actually the same.1

Lemma 4.12 If incell(pg(M), p1) = incell(pg(M), p2) ⇒ M(p1) = M(p2)
holds for all places p1, p2 ∈ P , then Stab(G, pvalpg(M)) = Stab(G,M).

Proof. In Corollary 4.11, it is shown that Stab(G,M) ⊆ Stab(G, pvalpg(M)).
Take any permutation g ∈ Stab(G, pvalpg(M)), any place p ∈ P and as-

sume that incell(pg(M), p1) = incell(pg(M), p2) implies M(p1) = M(p2)
for all places p1, p2 ∈ P . It is now shown that

(g(M))(p) = M(p)

1Such “reasonable” cases are obtained by simply applying the marking invariant de-
scribed in the following subsection during the partition generation process.
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meaning that g ∈ Stab(G,M) and that Stab(G, pvalpg(M)) ⊆ Stab(G,M).
Since g is a stabilizer of pvalpg(M) in G, g(pvalpg(M)) = pvalpg(M) holds and
implies that

(g(pvalpg(M)))(p) = pvalpg(M)(p). (4.2)

By the action of g on pvalpg(M), (g(pvalpg(M)))(p) = pvalpg(M)(g
−1(p)), which

combined with (4.2) gives pvalpg(M)(p) = pvalpg(M)(g
−1(p)). Applying the

definition of pvalpg(M) gives incell(pg(M), p) = incell(pg(M), g−1(p)). The
initial assumption now implies that M(p) = M(g−1(p)), which in turn im-
plies that (g(M))(p) = M(g−1(p)) = M(p), concluding the proof. �

After building the ordered partition pg(M) for the marking M and the
corresponding place valuation pvalpg(M), let

posreps(M) =
{
ĝ−1(M) | ĝ ∈ G and ĝ is compatible with pvalpg(M)

}
denote the set of possible representative markings for M (recall Section 4.3).
Like earlier in Theorem 4.7, it can be proven that for equivalent markings,
the sets of possible representative markings coincide.

Theorem 4.13 For each marking M ∈ M and for each symmetry g ∈ G,
posreps(M) = posreps(g(M)).

Proof. By Theorem 4.3 and Lemma 4.10, ĝ is compatible with pvalpg(M) if
and only if g ◦ ĝ is compatible with g(pvalpg(M)) = pvalpg(g(M)). In addition,
(g ◦ ĝ)−1(g(M)) = ĝ−1(g−1(g(M))) = ĝ−1(M). �

Again, M ′ ∈ posreps(M) implies M ′ ≡G M and it is not, in general, the
case that M ∈ posreps(M). Furthermore, by Theorem. 4.3, a permutation
ĝ is compatible with pvalpg(M) if and only if the permutation g ◦ ĝ is com-
patible with g(pvalpg(M)) = pvalpg(M) for any stabilizer g ∈ G of pvalpg(M).
Hence, the number of permutations compatible with pvalpg(M) is a multiple

of
∣∣∣Stab(G, pvalpg(M))

∣∣∣ (that in all reasonable cases equals to |Stab(G,M)|
by Lemma 4.12).

Now the lexicographically smallest state in posreps(M) can be searched
by using the backtrack search shown in Algorithm 4.2 described in Sec-
tion 4.3 with the obvious changes (i.e., changing the line 2 to refer to the
valuation pvalpg(M) instead of M ). Obviously, the pruning technique based
on the fixed prefix is sound, and Corollary 4.11 ensures that the stabilizer
pruning technique is also sound.

Similarly to that in Section 4.3, a hardness measure can be defined for
markings. Define that a marking M is

1. trivial if the partition pg(M) is discrete,
2. easy if it is not trivial but the set posreps(M) contains only one mark-

ing,
3. hard if it is neither trivial nor easy.
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Again, this classification depends on the applied (i) Schreier-Sims represen-
tation, (ii)G-partition generator, and (iii) multiset selector. Furthermore, the
classification is closed under G. Assuming that a function multiset selector is
applied, then for each trivial marking M there is a unique permutation com-
patible with the partition pg(M) and thus the set posreps(M) contains only
one marking. On the other hand, easy markings may have several permuta-
tions in G that are compatible with the partition. The definition of triviality
defined here is stronger than that in Section 4.3 in the sense that there may be
markingsM for which there is only one permutation compatible with pg(M)
although pg(M) is not discrete. The definition here is chosen because it re-
veals the efficiency of the applied G-partition generator better (more trivial
markings, the better). However, a fundamental limitation ofG-partition gen-
erators is that they cannot distinguish between the elements that are in the
same Stab(G,M)-orbit:

Fact 4.14 If g ∈ Stab(G,M) for a marking M , then pg(g(M)) = g(pg(M))
implies pg(M) = g(pg(M)) and thus each element x ∈ P ∪ T must be in
the same cell in the partition pg(M) as the element g(x).

Thus a trivial marking M has the trivial stabilizer group, i.e., Stab(G,M) =
{I}.

Example 4.15 Consider the net in Figure 4.1 and the Schreier-Sims repre-
sentation ~G of its automorphism group G described in Example 4.1.

Assume a marking M = 1 ′p1 and a G-partition generator pg mapping M
to

pg(M) = [{p3}, {p2, p4}, {p1}, {t1,2, t1,4}, {t2,1, t4,1}, {t3,2, t3,4}, {t2,3, t4,3}].

By Fact 4.14, this is one of the finest partitions that any G-partition generator
can produce since h1,1 ◦ h2,2 =

(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p1 p4 p3 p2 t1,4 t4,1 t4,3 t3,4 t3,2 t2,3 t2,1 t1,2

)
is a

stabilizer of M in G. The corresponding place valuation is

pvalpg(M) = {p1 7→ 3, p2 7→ 2, p3 7→ 1, p4 7→ 2}

and the symmetries in G compatible with pvalpg(M) are h1,3 ◦ h2,1 and h1,3 ◦
h2,2. Now (h1,3 ◦ h2,1)

−1(M) = 1 ′p3 and (h1,3 ◦ h2,2)
−1(M) = 1 ′p3. Thus

posreps(M) = {1 ′p3}. According to the above hardness measure for mark-
ings, M is easy.

For the marking M ′ = 1 ′p2 (which is equivalent to M as g = h1,2 ◦ h2,1 =(
p1 p2 p3 p4 t1,2 ···
p2 p3 p4 p1 t2,3 ···

)
maps M to M ′), the G-partition generator pg must map

M ′ to pg(M ′) = pg(g(M)) = g(pg(M)), i.e.,

pg(M ′) = [{p4}, {p1, p3}, {p2}, {t2,3, t2,1}, {t3,2, t1,2}, {t4,3, t4,1}, {t3,4, t1,4}].

Again, this is one of the finest partitions one can get by using any G-partition
generator since h1,3 ◦ h2,2 =

(
p1 p2 p3 p4 t1,2 ···
p3 p2 p1 p4 t3,2 ···

)
is a stabilizer of M ′ in G.

The corresponding place valuation is pvalpg(M ′) = {p1 7→ 2, p2 7→ 3, p3 7→
2, p4 7→ 1} and the symmetries compatible with pvalpg(M ′) are h1,4 ◦ h2,1 and
h1,4 ◦ h2,2. Now (h1,4 ◦ h2,1)

−1(M ′) = 1 ′p3 and (h1,4 ◦ h2,2)
−1(M ′) = 1 ′p3.

Thus posreps(M ′) = posreps(M) as required by Theorem 4.13. ♣
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4.4.2 Partition Refiners and Invariants

The G-partition generators discussed above can be obtained by using G-
partition refiners defined below.

Definition 4.16 A G-partition refiner is a function R : M×P → P such
that both

1. R(M, p) � p, and
2. R(g(M), g(p)) = g(R(M, p))

hold for all g ∈ G, for all markings M ∈ M, and for all partitions p ∈ P.

That is, the refined partition must be a cell order preserving refinement of the
argument partition and for permuted arguments, the result has to be similarly
permuted. A direct consequence of the definition is that if a permutation
g ∈ G fixes both a marking M and a partition p (i.e., G(M) = M and
g(p) = p), then it fixes the refined partition R(M, p), too. Two G-partition
refiners can be composed:

Lemma 4.17 The composition R2 ?R1 of two G-partition refiners R1 and
R2, defined by (R2?R1)(M, p) = R2(M,R1(M, p)), is aG-partition refiner.

Proof. Because (R2 ? R1)(M, p) = R2(M,R1(M, p)) � R1(M, p) � p,
(R2?R1)(M, p) is a cell order preserving refinement of p. On the other hand,
g((R2 ?R1)(M, p)) = g(R2(M,R1(M, p))) = R2(g(M), g(R1(M, p))) =
R2(g(M),R1(g(M), g(p))) = (R2 ?R1)(g(M), g(p)) for each g ∈ G. �

This implies that a finite sequenceRn?Rn−1?· · ·?R1 ofG-partition refiners,
defined by Rn(M,Rn−1(M, · · · (M,R1(M, p)) . . .)), is also a G-partition re-
finer. When a G-partition refiner is applied to the unit partition, the result is
a G-partition generator.

Lemma 4.18 For each G-partition refiner R, the function pgR : M → P

defined by pgR(M) = R(M, [P ∪ T ]) is a G-partition generator.

Proof. For each g ∈ G, pgR(g(M)) = R(g(M), [P∪T ]) = R(g(M), g([P∪
T ])) = g(R(M, [P ∪ T ]) = g(pgR(M)). �

A way to obtain G-partition refiners is based on the use of G-invariants.

Definition 4.19 A function I : M×P× {P ∪ T} → Z is a G-invariant if

I(M, p, x) = I(g(M), g(p), g(x)).

holds for all g ∈ G, for all markings M ∈ M, for all ordered partitions p ∈ P

of P ∪ T , and for all nodes x ∈ P ∪ T .

Clearly any G-invariant is also a G′-invariant for any subgroup G′ of G. The
following are G-invariants for any subgroup G of Aut(N).

– The node type invariant Inode type is defined by

Inode type(M, p, x) =

{
0 if x ∈ P
1 if x ∈ T .

60 4. PLACE/TRANSITION NETS: NEW CANONICAL MARKING ALGORITHMS



– Assume a fixed total order between the places and transitions. Now the
orbits of G inherit this order and the G-orbit invariant IG-orbit is defined
by IG-orbit(M, p, x) = orbitnum(x), where orbitnum(x) is defined as
on page 50.

– The marking invariant Imarking is defined by

Imarking(M, p, x) =

{
M(x) if x ∈ P
−1 if x ∈ T .

– The preset of an element x ∈ P ∪ T is the set •x = {x′ | 〈x′, x〉 ∈ F}
and the postset x• is the set {x′ | 〈x, x′〉 ∈ F}. The partition indepen-
dent weighted in- and out-degree invariants are defined by

Iin-degree of weight w(M, p, x) = |{x′ ∈ •x |W (〈x′, x〉) = w}|

and

Iout-degree of weight w(M, p, x) = |{x′ ∈ x• |W (〈x, x′〉) = w}|.

– The partition dependent weighted in- and out-degree invariants are de-
fined by

Iin-degree of weight w from cell c(M, p, x) =

|{x′ ∈ •x |W (〈x′, x〉) = w ∧ incell(p, x′) = c}|

and

Iout-degree of weight w to cell c(M, p, x) =

|{x′ ∈ x• |W (〈x, x′〉) = w ∧ incell(p, x′) = c}|.

Note that the partition independent weighted in- and out-degree invariants
and the node type invariant are subsumed by the G-orbit invariant in the
sense that if the values of two nodes are equal under the G-orbit invariant,
they are equal under these invariants, too. That is, they cannot distinguish
elements that the G-orbit invariant cannot.

A partition can be refined according to an invariant by splitting the cells
according to the values assigned to nodes by the invariant in the partition.
Formally, an invariant defines the corresponding partition refiner as follows.
For aG-invariant I , define the functionRI : M×P → P byRI(M, p) = pr
such that for all x, x′ ∈ {P ∪ T}, for all p ∈ P, and for all M ∈ M,

1. incell(pr, x) = incell(pr, x
′) if and only if incell(p, x) = incell(p, x′)

and I(M, p, x) = I(M, p, x′), and
2. incell(pr, x) < incell(pr, x

′) if and only if either
(a) incell(p, x) < incell(p, x′), or
(b) incell(p, x) = incell(p, x′) and I(M, p, x) < I(M, p, x′).

Lemma 4.20 The function RI is a G-partition refiner.
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Proof. The fact thatRI(M, p) � p is straightforward to see. Take any g ∈ G,
any marking M , and any partition p. Assume that RI(M, p) = pr,1 and
RI(g(M), g(p)) = pr,2. It remains to be shown that g(pr,1) = pr,2. For all
x, x′ ∈ P ∪ T ,

incell(g(pr,1), x) = incell(g(pr,1), x
′)

⇔ incell(pr,1, g
−1(x)) = incell(pr,1, g

−1(x′))

⇔ incell(p, g−1(x)) = incell(p, g−1(x′)) and
I(M, p, g−1(x)) = I(M, p, g−1(x′))

⇔ incell(g(p), x) = incell(g(p), x′) and
I(g(M), g(p), x) = I(g(M), g(p), x′)

⇔ incell(pr,2, x) = incell(pr,2, x
′)

and thus the cells in g(pr,1) and in pr,2 are the same. Similarly, for all x, x′ ∈
P ∪ T ,

incell(g(pr,1), x) < incell(g(pr,1), x
′)

⇔ incell(pr,1, g
−1(x)) < incell(pr,1, g

−1(x′))
⇔ (a) incell(p, g−1(x)) < incell(p, g−1(x′)) or

(b) incell(p, g−1(x)) = incell(p, g−1(x′)) and
I(M, p, g−1(x)) < I(M, p, g−1(x′))

⇔ (a) incell(g(p), x) < incell(g(p), x′) or
(b) incell(g(p), x) = incell(g(p), x′) and

I(g(M), g(p), x) < I(g(M), g(p), x′)
⇔ incell(pr,2, x) < incell(pr,2, x

′)

and thus the cells in g(pr,1) and in pr,2 are ordered in the same way. There-
fore, g(pr,1) = pr,2. �

Partition refiners with respect to some invariants can also be defined proce-
durally so that in the resulting partition two nodes are in the same cell if and
only if their invariant values in that partition are the same. This is especially
the case for the partition dependent weighted in- and out-degree invariants,
where the procedure corresponds to the method of computing the so-called
equitable partition in [McKay 1981; Kreher and Stinson 1999].

To sum up, a G-partition generator can be obtained by

1. defining a sequence I1.I2. . . . .In of G-invariants, and
2. refining the unit partition according to the sequence, meaning that the
G-partition refiner sequence RIn ?RIn−1 ? · · · ?RI1 is applied to it (by
Lemmas 4.20, 4.17, and 4.18).

Example 4.21 Consider again the net in Figure 4.1 and the Schreier-Sims
representation ~G of its automorphism group G described in Example 4.1.

Assume a marking M = 1 ′p1. Initially, the partition is

pM,0 = [{p1, p2, p3, p4, t1,2, . . .}].

Refining this partition according to the G-orbit invariant yields

pM,1 = [{p1, p2, p3, p4}, {t1,2, . . .}],
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and refining according to the marking M gives

pM,2 = [{p2, p3, p4}, {p1}, {t1,2, . . .}].

Evaluating the invariant Iin-degree of weight 1 from cell 1 in the partition pM,2 gives
Iin-degree of weight 1 from cell 1(M, pM,2, pi) = 0 for each 1 ≤ i ≤ 4, and that
Iin-degree of weight 1 from cell 1(M, pM,2, t) equals to 0 for t = t1,2 and t = t1,4 and
to 1 for other transitions. Refining pM,2 thus yields

pM,3 = [{p2, p3, p4}, {p1}, {t1,2, t1,4}, {t2,1, t2,3, t3,2, t4,3, t3,4, t4,1}]

Refining this ordered partition according to Iin-degree of weight 1 from cell 2 changes
nothing and thus pM,4 = pM,4. Next, Iin-degree of weight 1 from cell 3(M, pM,4, p)
equals to 0 for p = p1 and p = p3 and to 1 for p = p2 and p = p4, and
Iin-degree of weight 1 from cell 3(M, pM,4, t) = 0 for all transitions. Thus

pM,5 = [{p3}, {p2, p4}, {p1}, {t1,2, t1,4}, {t2,1, t2,3, t3,2, t4,3, t3,4, t4,1}]

Refining with Iin-degree of weight 1 from cell 4 and Iin-degree of weight 1 from cell 5 changes
nothing. Next, refining according to Iout-degree of weight 1 to cell 1 yields

pM,8 = [{p3}, {p2, p4}, {p1}, {t1,2, t1,4}, {t2,1, t3,2, t3,4, t4,1}, {t2,3, t4,3}]

and refining according to Iout-degree of weight 1 to cell 2 yields

pM,9 = [{p3}, {p2, p4}, {p1}, {t1,2, t1,4}, {t2,1, t4,1}, {t3,2, t3,4}, {t2,3, t4,3}].

This partition cannot be refined further by any invariant since the permuta-
tion

(
p1 p2 p3 p4 t1,2 t2,1 t2,3 t3,2 t3,4 t4,3 t4,1 t1,4

p1 p4 p3 p2 t1,4 t4,1 t4,3 t3,4 t3,2 t2,3 t2,1 t1,2

)
∈ G is a stabilizer of M in G

also fixing the partition pM,9. ♣

4.5 EXPERIMENTAL RESULTS

This section presents some experimental results. The results are obtained
by using and extending the LoLA reachability analyzer, version 1.0 beta
[Schmidt 2000c]. The source code for the extended LoLA , including all
the nets that are used in the experiments, is available via

http://www.tcs.hut.fi/~tjunttil/

4.5.1 Net Classes

The following net classes are used in the experiments.

Mutual exclusion in grid-like networks. These nets are based on the nets
in [Schmidt 2000b]. A net “grid d n” models a d-dimensional hypercube of
agents with n agents in each dimension. Each agent has two states, critical
and non-critical, and can move from the non-critical state to the critical one
if none of its neighbors is in the critical state. See Figure 4.8 for the net “grid
3 2” (the dotted lines are drawn only to visualize the three dimensions). The
automorphism group of an d dimensional grid net is isomorphic to the au-
tomorphism group of an d-dimensional (hyper)cube and has the order 2dd!.
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Figure 4.8: A three dimensional grid with two agents per row

Dining philosophers. A version of the classic dining philosophers net. A
net “ph n” has n philosophers and the automorphism group of such net is
isomorphic to the cyclic group of order n.

Database managers. An unfolding of the colored Petri net presented in
[Jensen 1992]. “db n” denotes the net with n managers, having the automor-
phism group isomorphic to the symmetric group of degree n.

Graph enumeration nets. These nets resemble the one appearing in the
proof of Theorem 3.13, inspired by the system in the proof of Theorem 3.4
in [Ip 1996]. Assume a vertex set V = {1, . . . , n} and consider the set of
all the directed, unlabeled graphs over V having no self-loops. The following
net, call it “digraphs n”, enumerates all such graphs in its reachable markings
(see Figure 4.9 for an example when n = 3). For each vertex v ∈ V , the net
has the place pv. Similarly, for each possible edge 〈v1, v2〉 ∈ V × V such
that v1 6= v2, the net has the place pv1,v2 . The purpose is that the places of
form pv1,v2 describe the adjacency matrix of a graph over V and that a place
pv1,v2 contains one token in a marking if and only if the graph corresponding
to the marking has an edge 〈v1, v2〉. For each place pv1,v2 there is a transition
removing one token from it. In addition, each place pv corresponding to a
vertex v is connected to each place of form pv,v′ with a gadget shown as a
dashed line and explained in Figure 4.9. Similarly, pv is also connected to
each place of form pv′,v with a gadget shown as a dotted line and explained
in Figure 4.9. These gadgets guarantee that the automorphism group of the
net is isomorphic to the permutation group consisting of all permutations of
V (i.e., to the symmetric group of degree n). The action of a permutation
π of V on the places is such that each pv is permuted to pπ(v) and each
pv1,v2 is permuted to pπ(v1),π(v2). Thus the action of π corresponds to the
usual action of a permutation of the vertex set on the adjacency matrix of a
graph. In the initial marking, all the places of form pv1,v2 corresponding to the
possible edges have one token and the others are empty. Thus the set of all
reachable markings of the net corresponds to the set of all directed, unlabeled
graphs over V having no self-loops. Furthermore, two reachable markings are
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equivalent if and only if their corresponding graphs are isomorphic. Thus a
minimal reduced reachability graph consisting only of one marking of each
orbit has exactly one marking for each class of mutually isomorphic graphs.

p2,3p2,1p1,2 p3,1 p3,2p1,3

p1 p2 p3

where abbreviates and abbreviates

Figure 4.9: A net enumerating all directed graphs without self-loops over
three vertices

A similar net, call it “graphs n”, enumerating all undirected, unlabeled
graphs over n vertices having no self-loops can be constructed by similar prin-
ciples. See Figure 4.10 for an example when n = 4.

p{1,2} p{1,3} p{1,4} p{2,3} p{2,4} p{3,4}

p1 p2 p3 p4

Figure 4.10: A net enumerating all undirected graphs without self-loops over
four vertices

Properties of nets. Table 4.1 lists the properties of the nets used in the
experiments. The columns |P | and |T | describe the number of places and
transitions in the net, respectively, and |G| gives the size of the symmetry
group stabilizing the initial marking (the group that is used in the experi-
ments). The number of reachable markings and transition firings as well as
the run time of LoLA in seconds without the symmetry reduction method
are given in the last three columns, respectively. For some nets the number
of reachable markings is too large and running LoLA would result in run-
ning out of memory. In such cases, the run time of LoLA is not given but
the number of reachable states is given analytically.

4.5.2 Results

The experimental results were obtained in a PC machine with 1GHz AMD
Athlon processor and 1 gigabyte of memory, running the Debian Linux op-
erating system. The extended LoLA was compiled with the GNU g++ com-
piler with the -O3 optimization flag switched on. All run-times were obtained
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reachable LoLA
net |P | |T | |G| markings edges time

ph 10 40 30 10 6,726 43,480 1
ph 13 52 39 13 94,642 795,353 4
ph 16 64 48 16 1,331,714 13,774,112 90
db 8 193 128 40,320 17,497 81,664 1
db 9 244 162 362,880 59,050 314,946 3

db 10 301 200 3,628,800 196,831 1,181,000 15
db 20 1201 800 20! 1+20×(320−1) ≈ 23× 109

grid 2 5 50 50 8 55,447 688,478 3
grid 3 3 54 54 48 70,633 897,594 4
grid 5 2 64 64 3840 254,475 3,689,792 20
graphs 6 21 45 720 32,678 245,760 1
graphs 7 28 63 5,040 2,097,152 22,020,096 86
graphs 8 36 84 40,320 2(8

2) = 228 ≈ 268× 106

graphs 9 45 108 362,880 2(9
2) = 236 ≈ 68× 109

digraphs 3 9 18 6 64 192 1
digraphs 4 16 36 24 4,096 24,576 1
digraphs 5 25 60 120 1,048,576 10,485,760 39
digraphs 6 36 90 720 26×(6−1) = 230 ≈ 109

Table 4.1: Properties of the nets

by the Unix time command and are user times rounded up to full seconds
unless otherwise stated. The available memory was limited to 900 megabytes
and the available time to 24 hours by the Unix ulimit command.

The symmetry reduction algorithms in the original LoLA , described in
[Schmidt 2000b], are numbered as follows: 1 refers to the “iterating the
symmetries” algorithm, 2 is the “iterating the states” algorithm, and 3 is the
“canonical representative” algorithm2. The results of these algorithms are
shown in Table 4.2. The current LoLA implementation seems to contain
some bugs since the algorithms 1 and 2 should both produce minimal re-
duced reachability graphs but the numbers of the markings in the generated
reduced reachability graphs are not the same.

Table 4.3 shows the results of the Schreier-Sims search algorithm de-
scribed in Section 4.3. The maximal element with minimal frequency mul-
tiset selector is used because it seems to usually give the best results. For in-
stance, the minimal element multiset selector gives for some nets bit smaller
running times since it can be implemented more efficiently, but in some nets
the running times are much worse. Pruning with the fixed prefix, the trivial
pruning with the found stabilizers, and the base optimization described on
page 55 are applied, too. The pruning of transitions with the found stabi-
lizers was not implemented because the current LoLA implementation only
stores the symmetry group restricted to the set of places. The “trivial %” and
“easy %” columns show the percentage of trivial and easy canonized mark-
ings, respectively, as defined in Section 4.3. The “max dead” and “av. dead”
columns show the maximum and average number of dead nodes, respec-

2Not a canonical representative marking function by the terms used in this work.
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LoLA alg. 1 LoLA alg. 2
net markings edges time markings edges time

ph 10 684 4,421 1 684 4,421 8
ph 13 7,282 61,193 2 7,282 61,193 629
ph 16 83,311 861,696 33 ≥83,311 ≥861,000 >24h
db 8 37 177 1 37 177 3
db 9 46 250 9 46 250 6

db 10 56 341 118 56 341 11
db 20 >24h 211 2,681 1,477

grid 2 5 7,567 94,143 1 7,471 92,982 183
grid 3 3 2,154 27,620 2 2,103 26,994 62
grid 5 2 296 4,336 7 287 4,237 14
graphs 6 156 1,170 1 152 1,140 1
graphs 7 1,044 10,962 17 1,022 10,731 27
graphs 8 12,346 172,844 2,358 12,095 169,330 3,662
graphs 9 >47,683 >675,000 >24h >55,400 >792,000 >24h

digraphs 3 16 48 1 16 48 1
digraphs 4 218 1,308 1 215 1,290 1
digraphs 5 9,735 97,357 3 9,567 95,670 1,197
digraphs 6 1,598,555 24,060,959 1,810 >85,469 >908,000 >24h

LoLA alg. 3
net markings edges time

ph 10 684 4,421 1
ph 13 7,282 61,193 1
ph 16 83,311 861,696 9
db 8 2,188 10,215 1
db 9 6,562 35,002 1

db 10 19,684 118,109 4
db 20 >399,000 >3,110,000 >418

grid 2 5 14,236 177,007 2
grid 3 3 10,847 136,446 2
grid 5 2 3,020 44,502 1
graphs 6 1,646 11,572 1
graphs 7 37,195 361,478 3
graphs 8 1,536,698 19,805,842 246
graphs 9 >5,128,600 >61,941,000 >801

digraphs 3 16 48 1
digraphs 4 347 2,038 1
digraphs 5 40,078 375,708 3
digraphs 6 >4,581,000 >56,146,000 >512

Table 4.2: Results for the original LoLA algorithms
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tively, in the search trees for hard markings. As can be seen, practically all
markings are usually hard and the number of bad nodes in a search tree can
grow quite large. The main reason for this behavior is probably that all the
nets are 1-safe, i.e., the number of tokens in a place in each reachable mark-
ing is at most one. Thus the multiset selector cannot usually prune the search
tree efficiently.

trivial easy max av.
net markings edges time % % dead dead

ph 10 684 4,421 1 7.71 0.50 9 1.38
ph 13 7,282 61,193 1 2.85 0.00 12 2.09
ph 16 83,311 861,696 15 1.04 0.01 15 2.98
db 8 37 177 1 0 6.21 66 24.98
db 9 46 250 1 0 4.80 132 39.49

db 10 56 341 1 0 3.81 259 60.36
db 20 211 2,681 172 0 0.86 40,152 1,844.12

grid 2 5 7,471 92,982 1 0 3.88 7 2.07
grid 3 3 2,103 26,994 1 0 1.59 46 12.14
grid 5 2 288 4,253 1 0 1.03 278 126.94
graphs 6 156 1,170 1 0 0.09 313 109.76
graphs 7 1,044 10,962 3 0 0.01 1,413 272.48
graphs 8 12,346 172,844 82 0 0.00 8,770 580.28
graphs 9 274,668 4,944,024 5,036 0 0.00 70,017 226.80

digraphs 3 16 48 1 29.17 22.92 2 1.17
digraphs 4 218 1,308 1 0 4.05 7 3.15
digraphs 5 9,608 96,080 2 0 0.09 27 7.97
digraphs 6 1,540,944 23,114,160 929 0 0.00 93 17.19

Table 4.3: Results of the plain Schreier-Sims search

Table 4.4 shows the results for the partition guided Schreier-Sims search
algorithm described in Section 4.4. The applied partition generator first re-
fines the unit partition according to the orbit and marking invariants and then
refines the resulting partition with the partition dependent weighted in- and
out-degree invariants until no improvement is achieved. For efficiency rea-
sons, this latter refinement is implemented in a procedural way as discussed
on page 62. As can be seen from the results, the amounts of trivial and easy
markings are now much higher, compared to the marking guided Schreier-
Sims search algorithm discussed above. Furthermore, the hard markings are
also easier, and although the number of dead nodes can be still in thou-
sands, on the average it is very low. For nets with small symmetry groups,
the overhead of computing the ordered partition sometimes makes the algo-
rithm slower than the marking guided Schreier-Sims search (e.g., the dining
philosophers nets and the nets “grid 2 5”, “grid 3 3”, and “digraphs 6”).

Table 4.5 shows the results of the characteristic graph approach described
in Section 4.2 when nauty (version 2.0 beta 9) [McKay 1990] is used as the
graph canonizer. The “trivial %” column shows the percentage of the trivial
canonized markings, i.e., markings for which the search tree of nauty con-
tains only one node. The “max nodes” and “av. nodes” columns give the
maximum and average number of nauty search tree nodes, respectively, for
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the canonized non-trivial markings. Note that the percentage of the triv-
ial markings encountered is essentially the same as in the partition guided
Schreier-Sims search approach discussed above. This not a surprise since
the preprocessing technique in nauty and the applied partition generator are
based on the same ideas (recall Section 4.4). Note that although the search
tree sizes of nauty are very small in all examples, the running times are high.
The bad running times are because of the following:

1. nauty does not handle edge labels and is optimized for undirected
graphs. P/T-nets are, on the other hand, edge labeled and directed.
Thus some extra vertices have to be included in the graphs (recall Sec-
tion 4.2).

2. While P/T-nets are usually sparse, nauty is designed for dense graphs
in the sense that the graphs are internally represented as adjacency
matrixes. Thus storing a graph with thousands of vertices takes a lot of
memory and consequently slows down the refinement routines needed
during the search tree traversal in nauty.

The results would probably look very different if a graph canonizer designed
for (i) sparse, and (ii) vertex and edge labeled directed graphs were used.

As a final note, observe that the proposed Schreier-Sims search algorithms
could be approximated (that is, made non-canonical) by performing only a
limited search in the Schreier-Sims representation. For instance, an upper
limit for the traversed nodes could be set. This would ensure that the time
spent in computing a representative for a marking is kept in a reasonable
amount, although with the risk that equivalent markings are included in the
reduced reachability graph.
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trivial easy max av.
net markings edges time % % dead dead

ph 10 684 4,421 1 98.76 1.24 - -
ph 13 7,282 61,193 4 99.997 0.003 - -
ph 16 83,311 861,696 66 99.91 0.09 - -
db 8 37 177 1 0 100 - -
db 9 46 250 1 0 100 - -

db 10 56 341 1 0 100 - -
db 20 211 2,681 27 0 100 - -

grid 2 5 7,471 92,982 9 90.86 8.71 2 1.19
grid 3 3 2,103 26,994 4 60.82 33.22 16 1.86
grid 5 2 288 4,253 1 2.26 72.00 15 2.30
graphs 6 156 1,170 1 11.11 57.78 40 3.31
graphs 7 1,044 10,962 1 24.70 50.58 196 3.18
graphs 8 12,346 172,844 15 40.52 42.95 535 3.71
graphs 9 274,668 4,944,024 586 57.46 33.92 2,045 3.02

digraphs 3 16 48 1 77.08 22.92 - -
digraphs 4 218 1,308 1 78.29 21.18 3 2.29
digraphs 5 9,608 96,080 7 89.15 10.22 10 1.52
digraphs 6 1,540,944 23,114,160 2,404 95.68 4.05 34 1.10

Table 4.4: Results of the partition guided Schreier-Sims search

trivial max av.
net markings edges time % nodes nodes

ph 10 684 4,421 8 98.76 3 3.00
ph 13 7,282 61,193 201 99.997 3 3.00
ph 16 83,311 861,696 4,866 99.91 3 3.00
db 8 37 177 87 0 36 18.09
db 9 46 250 278 0 45 24.11
db 10 56 341 877 0 55 31.12
db 20 >24h

grid 2 5 7,471 92,982 2,303 90.86 8 3.13
grid 3 3 2,103 26,994 1,498 60.82 10 3.52
grid 5 2 288 4,253 920 2.26 21 5.71
graphs 6 156 1,170 3 11.11 21 5.47
graphs 7 1,044 10,962 38 24.70 28 5.29
graphs 8 12,346 172,844 1,053 40.52 36 4.83
graphs 9 274,668 4,944,024 49,916 57.46 45 4.26

digraphs 3 16 48 1 77.08 4 3.09
digraphs 4 218 1,308 2 78.29 8 3.23
digraphs 5 9,608 96,080 243 89.15 13 3.23
digraphs 6 >1,028,419 >14,187,000 >24h

Table 4.5: Results of the characteristic graph approach
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5 DATA SYMMETRIES OF ALGEBRAIC SYSTEM NETS

The place/transition nets discussed in the previous chapters are easy to de-
fine and to understand. However, their major drawback in modeling and
analyzing complex systems is that the nets tend to grow very large. This is es-
pecially the case when use of data is modeled: the tokens in place/transition
nets have only one “color”, i.e., they do not contain any other information
except of being present or absent in a place. Thus data values must be mod-
eled by using extra places. The large size of a net makes it more difficult to
understand the net and therefore increases the risk of modeling errors. High-
level Petri nets, including net classes such as colored Petri nets [Jensen 1981;
1992], predicate/transition nets [Genrich 1991], well-formed nets [Chiola
et al. 1991], many-sorted high-level nets [Billington 1989], and algebraic sys-
tem nets [Kindler and Reisig 1996; Kindler and Völzer 1998; 2001], have
been introduced to solve this problem. In these net classes, tokens are al-
lowed to have many “colors”, i.e., to contain data values. This allows more
concise model descriptions and easier handling of data, and thus enables the
modeler to handle more complex systems.

A way to perform state space analysis of high-level Petri nets is to first un-
fold the high-level net into a corresponding low-level net (for instance, into
a place/transition net), and then perform the analysis on that net. This ap-
proach enables the use of existing algorithms and tools for low-level nets. For
example, if a high-level net is unfolded into a place/transition net, the sym-
metries can be automatically found and exploited by the algorithms discussed
in the previous chapters. However, the main drawback of the unfolding ap-
proach is that the unfolded low-level net is often impractically large, or even
infinite when infinite data domains are used as token colors. Yet it may be
the case that the reachability graph of the net is of manageable size. This
can happen because the unfolded low-level net may contain places and tran-
sitions that are never actually used during the reachability graph generation
(i.e., are dead).

The semantics for high-level nets are usually given explicitly, not by un-
foldings into low-level nets. Thus it is also possible to perform the state space
analysis directly on the high-level net. This approach does not need the un-
folding phase and can thus avoid the problem discussed above. This and the
next two chapters study how symmetries can be exploited in this direct analy-
sis approach. First, this and the next chapter discuss how data symmetries are
defined and found in a class of high-level Petri nets. Chapter 7 then presents
algorithms for the orbit problems in the context of high-level Petri nets and
similar formalisms such as the Murϕ system description language [Ip and
Dill 1996].

To illustrate the difference between the symmetries of place/transition nets
and high-level Petri nets, consider the three nets shown in Figure 5.1. The
net in Figure 5.1(a) is the railroad place/transition net already discussed in
the previous chapters. The net in Figure 5.1(b) is a high-level net (an alge-
braic system net) corresponding to the net in Figure 5.1(a) in which the train
identities are folded together. The idea is that each pair Uai and Ubi, where
0 ≤ i ≤ 5, of places is folded into one place Ui and the tokens ta and tb that
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(b) A folded version of (a). (c) Another folded version of (a).

Figure 5.1: A place/transition net and two corresponding high-level Petri nets

can appear in such places carry the identity of the train. Similarly, each pair
goai and gobi of transitions is also folded into one transition goi. Each transi-
tion goi has one variable t which can be bound to either ta or tb. A transition
whose variable is bound is a transition instance, and is the entity that may be
enabled and fired rather than the transitions themselves. The tokens taken
from and added to places during the firing process are determined by the arc
annotations. For instance, in the initial marking

{U0 7→ 1 ′ta, U3 7→ 1 ′tb, V1 7→ 1 ′•, V4 7→ 1 ′•}

depicted in the figure, the transition instance go0(ta) (i.e., go0 when t is
bound to ta) is enabled and firing it leads to the marking

{U1 7→ 1 ′ta, U3 7→ 1 ′tb, V4 7→ 1 ′•, V5 7→ 1 ′•}.

The net in Figure 5.1(c) is a still further folded version in which the rail-
road sections are also folded together. The semantics of these high-level
nets are formally defined later in this chapter but should be intuitively clear.
The reachability graph of the net in Figure 5.1(c) is shown in Figure 5.2
(where each node of form “u, v” denotes the marking {U 7→ u, V 7→ v}).
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Note the obvious isomorphism between it and the reachability graph of the
place/transition net in Figure 5.1(a) shown in Figure 3.2. In fact, the state
spaces of all the three nets in Figure 5.1 are isomorphic. Thus they also have
the same (isomorphic) state space symmetries. However, only the rotational
structural symmetry of the place/transition net in Figure 5.1(a) is present in
the structure of the high-level net in Figure 5.1(b), while the high-level net
in Figure 5.1(c) does not have even that symmetry in the structural level.
Instead, the missing symmetry information in these high-level nets is hidden
in the way the data values are used in the high-level nets. For instance, tak-
ing the net in Figure 5.1(c), the rotational state space symmetry is obtained
by permuting each data value si corresponding to a railroad section to the
successor section value s(i+1) mod 6. Similarly, the state space symmetry pro-
duced by swapping the train identities is obtained by permuting the value ta
to tb and vice versa. The fact that these permutations of data values actually
produce state space symmetries is guaranteed by the way the data values are
manipulated by the transitions.

〈ta, s0〉 + 〈tb, s3〉,s1 + s4

go(ta, s0)

go(ta, s0)go(tb, s3)

go(ta, s1)

go(tb, s4)

go(tb, s3)

go(tb, s4)

go(ta, s1)

go(tb, s5)go(ta, s2)

go(tb, s5)

go(ta, s2)go(tb, s2)

go(ta, s5)

go(ta, s3)

go(ta, s4)

go(ta, s5)
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go(tb, s1)

go(tb, s0)

go(tb, s1)

go(tb, s2)

go(t1, s3)

go(ta, s4)

〈ta, s0〉 + 〈tb, s4〉,s1 + s2〈ta, s1〉 + 〈tb, s3〉,s4 + s5

〈ta, s1〉 + 〈tb, s4〉,s2 + s5

〈ta, s2〉 + 〈tb, s4〉,s0 + s5 〈ta, s1〉 + 〈tb, s5〉,s2 + s3

〈ta, s2〉 + 〈tb, s5〉,s0 + s3

〈ta, s3〉 + 〈tb, s5〉,s0 + s1 〈ta, s2〉 + 〈tb, s0〉,s3 + s4

〈ta, s3〉 + 〈tb, s0〉,s1 + s4

〈ta, s4〉 + 〈tb, s0〉,s1 + s2

〈ta, s5〉 + 〈tb, s1〉,s2 + s3
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〈ta, s4〉 + 〈tb, s1〉,s2 + s5

〈ta, s5〉 + 〈tb, s2〉,s0 + s3

〈ta, s0〉 + 〈tb, s2〉,s3 + s4 〈ta, s5〉 + 〈tb, s3〉,s0 + s1

Figure 5.2: The reachability graph of the net in Figure 5.1(c)

This chapter builds a framework for defining such data type based symme-
tries in a class of high-level nets, namely algebraic system nets (ASNs). The
focus is on ASNs because the abstract signatures and algebras employed in
ASNs offer a convenient framework for defining both the syntax and seman-
tics of the arc and transition annotations. This is an advantage over colored
Petri nets (CP-nets), where the annotations are just general functions. In this
sense, CP-nets are more abstract than ASNs, or, ASNs are a more formalistic
version of CP-nets. On the other hand, in well-formed nets (WFNs) the syn-
tax and semantics of annotations are fixed in advance. In this sense, ASNs are
more flexible than WFNs. Although the focus in this chapter is on algebraic
system nets, the results presented here also have relevance to other classes of
high-level Petri nets. For instance, Theorem 5.15 in Section 5.3.4 implies
that it is not easy (i) to check whether user given data permutations actually
produce state space symmetries or (ii) to automatically find data symmetries
in arbitrary, reasonably expressive classes of high-level Petri nets (such as CP-
nets).

In order to illustrate the use of the developed framework, a class of ASNs
called extended well-formed nets is defined in the next chapter. In this net
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class, the symmetries are induced by defining a special type system. This ap-
proach resembles to ones taken in the well-formed nets [Chiola et al. 1991]
and in the Murϕ description language [Ip and Dill 1996]. The name ex-
tended well-formed nets was chosen because the employed type system is
richer than that of well-formed nets.

Most of the material in this chapter has been published previously in
[Junttila 1998; 1999a; 1999b].

5.1 SIGNATURES AND ALGEBRAS

First, a framework for defining data types and operations on them is given.
The framework is based on signature and algebras, commonly used in alge-
braic specifications [Wirsing 1990]. The definitions in this and next section
are based on [Kindler and Reisig 1996; Kindler and Völzer 1998; 2001], ex-
cept that the introduction of special error values in algebras is by the author.

Signatures and Algebras. First, signatures declare the types and the names
of the operations that can be applied on them. Formally, a signature Sig =
〈T ,F〉 consists of

1. a non-empty set T of types, and
2. a pairwise disjoint family F = {Fσ,T}σ∈T ∗,T∈T of operation names.

An operation f ∈ FT1.....Tn,T stands for an operation from T1, . . . , Tn to T ,
where T1, . . . , Tn are the argument types and T is the range type of f . The
set Fε,T , where ε is the empty string, is the set of Sig -constants of type T . The
pairwise disjointness of F is a mere technicality because the operations can
always be renamed. It is only imposed in order to obtain unambiguous inter-
pretation of terms (which are defined later). For instance, one may use the
same operation name “add” to denote addition in the contexts of both natu-
ral numbers and multiset types as long as it is understood which operation is
meant.

Next, algebras concretize signatures by assigning each type a domain and
each operation a function. A special error value err is included in the def-
initions in order to allow error handling. Formally, a Sig -error algebra (or
simply a Sig -algebra) A = 〈DA,FA〉 has the following components:

1. A family DA =
{
DA
T

}
T∈T of non-empty domains for types. It is as-

sumed that no DA
T contains the error value err while D̃A

T denotes the
set DA

T ∪ {err}.
2. A family FA =

{
fA
}
f∈F of operations. For each operation name f ∈

FT1...Tn,T , the operation fA is a function fA : D̃A
T1
× · · · × D̃A

Tn
→ D̃A

T .

Unless it is otherwise stated, it is implicitly assumed that each operation re-
turns err if any of its arguments is err (actually, only one exception in Sec-
tion 6.2 will be considered). An operation fA is safe if fA(v1, . . . , vn) = err

implies that at least one of v1, . . . , vn equals to err.

Variables. A pairwise disjoint family X = {XT}T∈T such that X ∩ F = ∅
is called a family of Sig -variables. A variable x ∈ XT is said to be of type T .
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Again, the disjointness of variables and operation names is a technicality only
imposed to avoid confusions between constants (which are operations) and
variables. An assignment α to the variables in X is a mapping α : X → DA

such that x ∈ XT implies α(x) ∈ DA
T . Note that variables cannot be assigned

to the error value.

Terms. For a family X = {XT}T∈T of Sig -variables, the set TermsSig
T (X )

of Sig -terms of type T over X is the minimal set (in the set inclusion sense)
defined inductively by the following rules:

1. XT ⊆ TermsSig
T (X ).

2. If f ∈ FT1...Tn,T and term i ∈ TermsSig
Ti

(X ) for each 1 ≤ i ≤ n, then
f(term1, . . . , termn) ∈ TermsSig

T (X ).1

The set TermsSig
T = TermsSig

T (∅) denotes the set of Sig -ground terms of
type T and TermsSig(X ) =

⋃
T∈T TermsSig

T (X ) is the set of Sig -terms over
X . Note that terms may also be written in mix-fix notation whenever no
confusion can arise. As an example, a term +(a, b) for an operation + ∈
FInt.Int,Int may be written as a+ b.

An assignment α to the variables in X is extended to the corresponding
evaluation of terms over X , evalα, by the following inductive definition for
each term ∈ TermsSig(X ).

1. If term = x for a variable x ∈ XT , then evalα(term) = α(x).
2. If term = f(term1, . . . , termn) for an operation f ∈ FT1...Tn,T , then

evalα(term) = fA(evalα(term1), . . . , evalα(termn)).

Obviously, if a term term is of type T , then evalα(term) ∈ D̃A
T . Note that

for ground terms all evaluations yield the same value because variables are
not involved in ground terms. For a ground term term one may thus simply
write eval (term) instead of evalα(term) (for any assignment α). Also notice
that the terms composed only of safe operations never evaluate to err.

Example 5.1 Consider a signature Sig and a Sig -algebra A including the
type Bool for booleans with the domain DA

Bool = {false, true}. Operations
for Bool include the ones corresponding to the usual Boolean operations, for
instance

1. the constants false, true ∈ Fε,Bool with the interpretations falseA() =
false and trueA() = true,

2. the unary operation neg ∈ FBool,Bool with negA(x) = ¬x meaning that
negA(false) = true and negA(true) = false, and

3. the binary operations and, or, xor, equiv, implies ∈ FBool.Bool,Bool with
the obvious interpretations, for instance, impliesA(x, y) = x⇒ y.

Assume a family X = {XBool = {x, y}} of Sig -variables. Now the term
and(x, or(y, true)) over X can be evaluated under an assignment α = {x 7→

1For a constant f ∈ Fε,T , one may simply write f instead of f().

5. DATA SYMMETRIES OF ALGEBRAIC SYSTEM NETS 75



true, y 7→ false}, resulting in

evalα(and(x, or(y, true))) = andA(evalα(x), evalα(or(y, true)))

= andA(α(x), orA(evalα(y), evalα(true)))

= andA(true, orA(α(y), trueA()))

= andA(true, orA(false, true))

= andA(true, true)

= true.

♣

5.2 ALGEBRAIC SYSTEM NETS

First, as Booleans and multisets will have a special role in algebraic system
nets, the following is assumed from now on.

Requirement 5.2 Each signature Sig = 〈T ,F〉 and each Sig -algebra A =
〈DA,FA〉 used in algebraic system nets has to fulfill the following.

1. The set T of types includes the type Bool for Booleans having the do-
main DA

Bool = {false, true}.
2. If T ∈ T is a type, then Multiset(T ) is also a type in T with the domain
DA

Multiset(T ) = [DA
T → N], i.e., the set of all multisets over the domain

of T .

Basically, an algebraic system net is a Petri net augmented with algebraic
annotations.

Definition 5.3 An algebraic system net (ASN) is a tuple

N = 〈P, T, F, Sig ,A, type, vars ,W, guard ,minit〉,

with the following components.

– P is a finite non-empty set of places.
– T is a finite set of transitions such that P ∩ T = ∅.
– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (the flow relation).
– Sig = 〈T ,F〉 is a signature.
– A = 〈DA,FA〉 is a Sig -algebra.
– type : P → T assigns each place a type. For each place p, the

type type(p) is the type, the set DA
type(p) is the domain, and the type

Multiset(type(p)) is the multiset type of p.
– vars associates each transition t ∈ T with a finite family vars(t) of

Sig -variables.
– W is an arc annotation function assigning each arc 〈t, p〉, 〈p, t〉 ∈ F ,

where p ∈ P and t ∈ T , a Sig -term of place’s multiset type over transi-
tion’s variables: W (t, p),W (p, t) ∈ TermsSig

Multiset(type(p))(vars(t)).
– guard assigns each transition t ∈ T a guard that is a Boolean term over

transition’s variables, i.e., guard(t) ∈ TermsSig
Bool(vars(t)).
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– minit is the symbolic initial marking assigning each place a Sig -ground
term of place’s multiset type. That is, minit(p) ∈ TermsSig

Multiset(type(p)).

Now assume a fixed ASN N . A marking is a function M that assigns each
place a multiset over its domain: M(p) ∈ DA

Multiset(type(p)) for each p ∈ P .
The set of all markings is denoted by M. The initial marking Minit is the
evaluation of the symbolic initial marking: Minit(p) = eval (minit(p)) for
each place p ∈ P (it is assumed that eval (minit(p)) 6= err).

Let t ∈ T be a transition. An assignment α to its variables vars(t) is
called a mode (or a binding) for t and the pair 〈t, α〉, also denoted by tα,
is a transition instance. The set of all transition instances is denoted by T.
For a transition instance tα, the input effect function t−α describes the tokens
that are removed from the places when the transition instance is fired. It is
defined for each place p ∈ P by

t−α (p) =

{
evalα(W (p, t)) if 〈p, t〉 ∈ F
∅ otherwise.

Similarly, the output effect function t+α describes the tokens that are pro-
duced in the places and is defined for each place p ∈ P by

t+α (p) =

{
evalα(W (t, p)) if 〈t, p〉 ∈ F
∅ otherwise.

A transition instance tα is enabled in a marking M , denoted by M [tα〉, if

1. evalα(guard(t)) = true, i.e., the guard evaluates to true,
2. t−α (p) 6= err and M(p) ≥ t−α (p) for each place p ∈ P , and
3. t+α (p) 6= err for each place p ∈ P .

If tα is enabled in M , it may fire and transform M into the new marking M ′

defined by
M ′(p) = M(p)− t−α (p) + t+α (p)

for each place p ∈ P . This is denoted by M [tα〉 M ′. The state space of the
ASN N is the LTS

〈M,T, [〉,Minit〉,

where [〉 = {〈M1, tα,M2〉 ∈ M× T×M |M1 [tα〉M2}.

Example 5.4 The ASN in Figure 5.1(c) can now be formally defined. First,
the signature Sig and the Sig -algebra A have the following types and opera-
tions.

– The type Trains for train identities with the domain DA
Trains = {ta, tb}

and the constants ta, tb ∈ Fε,Trains with the interpretations txA() = tx
for each x ∈ {a, b}.

– The type Secs for the railroad sections with DA
Secs = {s0, . . . , s5} and

the constants s0, . . . , s5 ∈ Fε,Secs with the interpretations siA() = si for
each i ∈ {0, . . . , 5}. Furthermore, the predecessor and successor op-
erations pred, succ ∈ FSecs,Secs are defined by predA(si) = s(i−1) mod 6

and succA(si) = s(i+1) mod 6.
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– The structure type Struct(Trains,Secs) having the domain

DA
Struct(Trains,Secs) = DA

Trains ×DA
Secs

and the constructor operation makeStruct ∈ FTrains.Secs,Struct(Trains,Secs)

defined by makeStructA(t, s) = 〈t, s〉.
– The corresponding multiset types for the types above. For any type T

and the corresponding multiset type Multiset(T ) with DA
Multiset(T ) =

[DT → N], the unit multiset operation unitMS ∈ FT,Multiset(T ) is de-
fined by unitMSA(v) = 1 ′v. and the multiset addition operation is
denoted by the operation add ∈ FMultiset(T ).Multiset(T ),Multiset(T ).

The net consists of

– two places: P = {U, V },
– one transition: T = {go}, and
– four arcs: F = {〈U, go〉, 〈go, U〉, 〈V, go〉, 〈go, V 〉}.

The types of the places are type(U) = Struct(Trains,Secs) and type(V ) =
Secs, and the transition go has two variables: t of type Trains and s of type
Secs. The arcs are annotated as follows:

– W (〈U, go〉) = unitMS(makeStruct(t, s)),
– W (〈go, U〉) = unitMS(makeStruct(t, succ(s))),
– W (〈V, go〉) = unitMS(succ(s)), and
– W (〈go, V 〉) = unitMS(pred(s)).

The guard of the transition is the constant true, and the symbolic initial mark-
ing is defined by

minit(U) = add(unitMS(makeStruct(ta, s0)), unitMS(makeStruct(tb, s3)))
minit(V ) = add(unitMS(s1), unitMS(s4)).

The annotation terms in Figure 5.1(c) are written in abbreviated informal
form, e.g. unitMS(makeStruct(t, succ(s))) is simply written as 〈t, succ(s)〉.

The transition instance 〈go, {t 7→ ta, s 7→ s0}〉, abbreviated by go(ta, s0), is
enabled in the initial markingMinit = {U 7→ 〈ta, s0〉+ 〈tb, s3〉, V 7→ s1 + s4}
because

1. the guard of go is invariably true,
2. go−{t7→ta,s 7→s0}(U) = 1 ′〈ta, s0〉 ≤Minit(U), and
3. go−{t7→ta,s 7→s0}(V ) = 1 ′s1 ≤Minit(V ).

Firing it leads to the marking {U 7→ 〈ta, s1〉+ 〈tb, s3〉, V 7→ s4 + s5}. The
entire reachability graph of the net is shown in Figure 5.2. ♣

Example 5.5 By augmenting the signature and algebra in the previous ex-
ample with (i) a type Token having the domain DA

Token = {•} and (ii) the
corresponding multiset type Multiset(Token), the net in Figure 5.1(b) can be
described as an ASN, too. ♣
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5.3 DATA SYMMETRIES

It is now defined how the domains of data types can be permuted and how
these permutations act on the markings and transition instances of ASNs. A
sufficient condition is then presented for the domain permutations to actually
produce state space symmetries. The computational complexity of verifying
whether a domain permutation fulfills this condition is then studied. Since
this problem turns out to be co-NP-complete even for very simple cases, an
approximation of this condition is also presented. This approximated condi-
tion is extensively used in Chapter 6.

5.3.1 Domain Permutations

A domain permutation ψT for a type T ∈ T is a permutation of its domain,
i.e., a member of Sym(DA

T ). A domain permutation ψT is implicitly ex-
tended to the error domain D̃A

T by ψT (err) = err, meaning that error values
are never permuted. A domain permutation for a set T ′ ⊆ T of types is a fam-
ily ψT ′

=
{
ψT
}
T∈T ′ of domain permutations for the types in T ′. A domain

permutation group for T ′ is a non-empty set ΨT ′ of domain permutations for
T ′ forming a group under the type-wise function composition operator ∗ on
domain permutations for T ′ defined by{

ψT1
}
T∈T ′ ∗

{
ψT2
}
T∈T ′ =

{
ψT3
}
T∈T ′ ⇔ ∀T ∈ T ′ : ψT1 ◦ ψT2 = ψT3 .

A domain permutation (group) for the set T of all types is also called a do-
main permutation (group) for A or simply a domain permutation (group).
Thus a domain permutation ψT may simply be written by ψ and a domain
permutation group ΨT by Ψ.

Requirement 5.6 As Booleans and multisets have a special role in ASNs (re-
call Requirement 5.2), the following is required from each domain permuta-
tion ψ =

{
ψT
}
T∈T used in ASNs.

1. Booleans are not permuted: ψBool(x) = x for each x ∈ {false, true}.
2. The domain permutation for each multiset type Multiset(T ) is defined

by the domain permutation for the type T as follows: for each mul-
tiset m ∈ DMultiset(T ) over DT , ψMultiset(T )(m) is the multiset fulfilling(
ψMultiset(T )(m)

)
(ψT (v)) = m(v) for each v ∈ DT . That is, an element

v ∈ DT has multiplicity n in m if and only if ψT (v) has multiplicity n
in ψMultiset(T )(m).

This requirement has some direct consequences on the usual multiset oper-
ations.

Lemma 5.7 Let m1,m2 be two multisets in the domain of a multiset type
Multiset(T ), and let ψ =

{
ψT
}
T∈T be a domain permutation fulfilling Re-

quirement 5.6. Then the following hold.

1. ψMultiset(T )(∅) = ∅.
2. m1 ≤ m2 if and only if ψMultiset(T )(m1) ≤ ψMultiset(T )(m2).
3. ψMultiset(T )(m1 +m2) = ψMultiset(T )(m1) + ψMultiset(T )(m2).
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4. If m2 ≤ m1, then

ψMultiset(T )(m1 −m2) = ψMultiset(T )(m1)− ψMultiset(T )(m2).

5. ψMultiset(T )(n ·m1) = n · ψMultiset(T )(m1) for each natural number n.

Proof. Item 1.
(
ψMultiset(T )(∅)

)
(ψT (v)) = ∅(v) = 0 for each v ∈ DT .

Item 2. m1 ≤ m2 if and only if m1(v) ≤ m2(v) for all v ∈ DT if and
only if

(
ψMultiset(T )(m1)

)
(ψT (v)) ≤

(
ψMultiset(T )(m2)

)
(ψT (v)) for all v ∈ DT

if and only if
(
ψMultiset(T )(m1)

)
(v) ≤

(
ψMultiset(T )(m2)

)
(v) for all v ∈ DT by

the bijectivity of ψT if and only if ψMultiset(T )(m1) ≤ ψMultiset(T )(m2).
Item 3. For each v ∈ DT , (

ψMultiset(T )(m1 +m2)
)
(ψT (v)) =

(m1 +m2) (v) =

m1(v) +m2(v) =(
ψMultiset(T )(m1)

)
(ψT (v)) +

(
ψMultiset(T )(m2)

)
(ψT (v)) =(

ψMultiset(T )(m1) + ψMultiset(T )(m2)
)
(ψT (v)).

Item 4. By item 1, it holds that m2 ≤ m1 if and only if ψMultiset(T )(m2) ≤
ψMultiset(T )(m1). The rest is similar to item 3.

Item 5. For each v ∈ DT ,(
ψMultiset(T )(n ·m1)

)
(ψT (v)) =

(n ·m1) (v) =

n×m1(v) =

n×
(
ψMultiset(T )(m1)

)
(ψT (v)) =

(
n · ψMultiset(T )(m1)

)
(ψT (v)).

�

5.3.2 Actions of Domain Permutations

Domain permutations act on variable assignments by simply permuting the
assigned values. That is, a domain permutation ψ =

{
ψT
}
T∈T acts on a

variable assignment α to X = {XT}T∈T by ψ(α) : x 7→ ψT (α(x)) for each
variable x ∈ XT ∈ X .

Similarly, a domain permutation ψ =
{
ψT
}
T∈T acts on the markings

by permuting the multisets assigned to places, or formally, ψ(M) : p 7→
ψMultiset(type(p))(M(p)) for each marking M and each place p ∈ P .

Finally, a domain permutation ψ =
{
ψT
}
T∈T acts on the transition in-

stances by permuting the mode assignment and leaving the transition name
intact. That is, ψ(tα) = tψ(α) for each transition instance tα.

Example 5.8 Recall the net described in Figure 5.1(c) and in Example 5.4,
and consider a domain permutation ψ in which

ψTrains =
( ta tb

tb ta

)
,

ψSecs = ( s0 s1 s2 s3 s4 s5
s2 s3 s4 s5 s0 s1 ) ,

ψStruct(Trains,Secs) = 〈tx, si〉 7→ 〈ψTrains(tx), ψSecs(si)〉
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and the domain permutations for the Boolean type Bool and multiset types
are defined as required in Requirement 5.6. This domain permutation cor-
responds to the swapping of the train identities and rotating the railroad sec-
tions two steps. Now the initial marking

M = {U 7→ 〈ta, s0〉+ 〈tb, s3〉, V 7→ s1 + s4}

is mapped to

ψ(M) = {U 7→ 〈tb, s2〉+ 〈ta, s5〉, V 7→ s3 + s0} .

Furthermore, the transition instance go{t7→ta,s 7→s0}, which is enabled in M ,
is mapped to ψ(go{t7→ta,s 7→s0}) = go{t7→ψTrains(ta),s 7→ψSecs(s0)} = go{t7→tb,s 7→s2},
which is enabled in ψ(M). Firing go{t7→ta,s 7→s0} in M leads to the mark-
ing M ′ = {U 7→ 〈ta, s1〉+ 〈tb, s3〉, V 7→ s4 + s5}, while firing go{t7→tb,s 7→s2} in
ψ(M) leads to the marking {U 7→ 〈tb, s3〉+ 〈ta, s5〉, V 7→ s0 + s1} = ψ(M ′).
Thus the state space symmetry equation

M [go{t7→ta,s 7→s0}〉M
′ ⇔ ψ(M) [ψ(go{t7→ta,s 7→s0})〉 ψ(M ′)

holds for this particular domain permutation and for these markings and tran-
sition instances.

To see that the state space symmetry equation does not necessarily hold
for arbitrary domain permutations, consider a domain permutation ψbad in
which

ψTrains
bad =

( ta tb
tb ta

)
,

ψSecs
bad = ( s0 s1 s2 s3 s4 s5

s1 s0 s2 s3 s4 s5 ) ,

ψ
Struct(Trains,Secs)
bad = 〈tx, si〉 7→ 〈ψTrains(tx), ψSecs(si)〉

corresponding to the swapping of the train identities and swapping of the
zeroth and first railroad sections. The transition instance go{t7→ta,s 7→s0} is still
enabled in the initial marking M = {U 7→ 〈ta, s0〉+ 〈tb, s3〉, V 7→ s1 + s4}
but the transition instance ψbad(go{t7→ta,s 7→s0}) = go{t7→tb,s 7→s1} is not enabled
in the marking ψbad(M) = {U 7→ 〈tb, s1〉+ 〈ta, s3〉, V 7→ s0 + s4}. This is
because the domain permutation ψbad is not “compatible” (defined formally
in the following subsection) with some of the arc annotation terms. ♣

5.3.3 Term Compatibility

As shown in Example 5.8 above, not all domain permutations produce state
space symmetries. In the following, a sufficient condition ensuring this is
presented.

A term and a domain permutation are said to be compatible if it holds for
each variable assignment on the variables appearing in the term that for the
permuted variable assignment the evaluation result of the term is similarly
permuted. Formally:

Definition 5.9 A term term ∈ TermsSig
T (X ) and a domain permutation

ψ =
{
ψT
}
T∈T are compatible if

evalψ(α)(term) = ψT (evalα(term))
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holds for each assignment α to the variables in X . The term term is com-
patible with a domain permutation group Ψ if it is compatible with all the
domain permutations in the group.

Note that a term consisting only of a variable is by the definition compatible
with all possible domain permutations because evalψ(α)(x) =

(
ψ(α)

)
(x) =

ψT (α(x)) = ψT (evalα(x)) for any variable x of a type T .
The following definition gives a sufficient condition for a domain per-

mutation to produce state space symmetries, as proven in the theorem be-
low. Similar conditions for colored Petri nets have been presented previously
in [Jensen 1995, Definition 3.16] and in [Chiola et al. 1997, Definition 2.8].

Definition 5.10 A domain permutation ψ =
{
ψT
}
T∈T is compatible with

the ASNN if it is compatible with all the transition guard and arc annotation
terms appearing in the net. Similarly, a domain permutation group Ψ is
compatible with the net if all the domain permutations in it are.

Theorem 5.11 If a domain permutation ψ =
{
ψT
}
T∈T is compatible with

the net, then the state space symmetry equation

M1 [tα〉M2 ⇔ ψ(M1) [ψ(tα)〉 ψ(M2)

holds.

Proof. Take a marking M and a transition instance tα. Since the guard
guard(t) is a Boolean term compatible with ψ and the Booleans are not per-
muted,

evalα(guard(t)) = ψBool(evalα(guard(t))) = evalψ(α)(guard(t)). (5.1)

Because arc annotation terms are compatible with ψ, it can be shown that

t−ψ(α)(p) = ψMultiset(type(p))(t−α (p)) (5.2)

for each place p. Namely, if 〈p, t〉 ∈ F , then t−ψ(α)(p) = evalψ(α)(W (p, t)) =

ψMultiset(type(p))(evalα(W (p, t))) = ψMultiset(type(p))(t−α (p)). If 〈p, t〉 /∈ F , then
t−ψ(α)(p) = ∅ = ψMultiset(type(p))(∅) = ψMultiset(type(p))(t−α (p)) by Lemma 5.7.
Similar arguments show that

t+ψ(α)(p) = ψMultiset(type(p))(t+α (p)) (5.3)

for each place p.
Now the transition instance tα is enabled inM if and only if ψ(tα) = tψ(α)

is enabled in ψ(M):

1. By (5.1), the guard guard(t) evaluates to true under α if and only if it
does under ψ(α).

2. For each place p, t−α (p) 6= err if and only if ψMultiset(type(p))(t−α (p)) =
t−ψ(α)(p) 6= err as err is never permuted and by (5.2). Furthermore,
by Lemma 5.7, M(p) ≥ t−α (p) if and only if ψMultiset(type(p))(M(p)) ≥
ψMultiset(type(p))(t−α (p)) if and only if (ψ(M)) (p) ≥ t−ψ(α)(p) by the defi-
nition of the action of ψ on markings and by (5.2).
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3. Similarly, t+α (p) 6= err if and only if ψMultiset(type(p))(t+α (p)) = t+ψ(α)(p) 6=
err.

In the case the transition instances are enabled, the successor markings are
equivalent:

(ψ(M)) (p)− t−ψ(α)(p) + t+ψ(α)(p) =

ψMultiset(type(p))(M(p))− ψMultiset(type(p))(t−α (p)) + ψMultiset(type(p))(t+α (p)) =
ψMultiset(type(p))

(
M(p)− t−α (p) + t+α (p)

)
by applying (5.2), (5.3), and Lemma 5.7. �

Example 5.12 Recall the domain permutation ψbad in Example 5.8. The
term unitMS(succ(s)) annotating the arc from the transition go to the place
V in Figure 5.1(c) is not compatible with ψbad because

eval{t7→ta,s 7→s0}(unitMS(succ(s))) = 1 ′s1

but

evalψbad({t7→ta,s 7→s0})(unitMS(succ(s))) =

eval{t7→tb,s 7→s1}(unitMS(succ(s))) =

1 ′s2 6= ψ
Multiset(Secs)
bad (1 ′s1) = 1 ′s0.

Thus ψbad is not compatible with the net in Figure 5.1(c). ♣

In addition to ensuring that a domain permutation group produces state
space symmetries (Theorem 5.11 above), Definition 5.9 can also be applied
when analyzing whether an atomic proposition of a temporal logic formula
is invariant with respect to the applied symmetry group (recall the definitions
in Section 2.2.3). Assume that the ASN under the study has the set P =

{p1, . . . , pn} of places. Define the family P̂ of corresponding place variables
that includes the variable p̂i of the multiset type Multiset(type(pi)) for each
place pi. Now an atomic proposition can be defined to be a Boolean term
over the variables in P̂ , i.e., a term term ∈ TermsSig

Bool(P̂ ). An atomic propo-
sition term is defined to hold in a markingM if and only if it evaluates to true
“in the marking” meaning that eval{p̂1 7→M(p1),...,p̂n 7→M(pn)}(term) = true. If
the atomic proposition is compatible with a domain permutation group, then
it is invariant under the corresponding state space permutations, too.

Theorem 5.13 Assume that an atomic proposition term ∈ TermsSig
Bool(P̂ ) is

compatible with a domain permutation group Ψ. Then it is invariant under
Ψ, i.e., it holds in a marking M if and only if it holds in the marking ψ(M)
for each ψ ∈ Ψ.

Proof. The atomic proposition term holds in a marking ψ(M) if and only if

eval{p̂1 7→(ψ(M))(p1),...,p̂n 7→(ψ(M))(pn)}(term) =

eval{p̂1 7→ψMultiset(type(p1))(M(p1)),...,p̂n 7→ψMultiset(type(pn))(M(pn))}(term) =

evalψ({p̂1 7→M(p1),...,p̂n 7→M(pn)})(term) =

ψBool(eval{p̂1 7→M(p1),...,p̂n 7→M(pn)}(term)) =

eval{p̂1 7→M(p1),...,p̂n 7→M(pn)}(term) = true
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by applying (i) the definitions of how domain permutations act on markings
and variable assignments, (ii) the fact that term is compatible with ψ, and (ii)
the fact that Booleans are not permuted. Therefore, the atomic proposition
term holds in a marking M if and only if it holds in the marking ψ(M). �

An application of this theorem and examples of atomic propositions will be
described in Section 6.3.

5.3.4 Complexity of Deciding Term Compatibility

In the light of Definition 5.10 and Theorems 5.11 and 5.13 above, deciding
whether a term and a domain permutation are compatible is an important
task. For instance, given an ASN and a domain permutation specified by the
user, it is desirable to be able to check whether the domain permutation is
compatible with all the transition and arc annotations in the net. Formally,
the term compatibility problem is defined as:

Problem 5.14 TERM COMPATIBILITY. Given a term and a domain permu-
tation, are they compatible?

Unfortunately, the term compatibility problem is not easy even for very sim-
ple, fixed algebras.

Theorem 5.15 For a fixed algebra, TERM COMPATIBILITY is co-NP-com-
plete.

Proof. Assume a very simple algebra, namely the Boolean algebra with one
type, Bool with the domain {false, true}, and a truth-functionally complete
set of operations (such as {∧,∨,¬} with the usual interpretations), recall
Example 5.1. Take any Boolean formula f over a set X of Boolean variables.
Define f ′ = x ∨ ¬f , where x is a new Boolean variable not in X and let X ′

be X augmented with x. Clearly f ′ can be expressed as a term over X ′ in
the Boolean algebra. Consider the only non-identity domain permutation ψ
in the algebra: the one flipping the truth values true and false. Now f ′ is
evaluated to true for all assignments on X ′ such that x 7→ true. But, in order
f ′ to be compatible with ψ, this implies that for all assignments permuted
by ψ, i.e., for all assignments where x 7→ false, f ′ must evaluate to false.
Therefore ¬f must be false for all assignments on X meaning that f has to
evaluate to true for all assignments on X . Thus f is valid if and only if f ′ is
compatible with ψ. Since VALIDITY is a co-NP-complete problem, TERM
COMPATIBILITY is co-NP-hard.

The membership of TERM COMPATIBILITY in co-NP follows by notic-
ing that one can simply guess a disqualifying assignment α to the variables
occurring in the term term in non-deterministic polynomial time and then
calculate and compare evalψ(α)(term) and ψT (evalα(term)) in determinis-
tic polynomial time. “Yes” is then returned if they were not equal and “No”
otherwise. This non-deterministic polynomial time computation clearly ac-
cepts the complement of TERM COMPATIBILITY.

Although the Booleans are not allowed to be permuted in algebras used in
ASNs, the proof can be made to work by just assuming any other type whose
operations can simulate the Boolean operations. �
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As the proof above shows, TERM COMPATIBILITY is a hard problem even
for fixed algebras with finite domains. This is because of the quantification
over the variable assignments in the definition of term compatibility. In the
case a term only involves a small number of variables, each having a small
domain, it may be feasible in practice to decide term compatibility by simply
enumerating all the variable assignments and checking the term evaluation
results for each of them.

Obviously, deciding whether a term is compatible with a domain permuta-
tion group is at least as hard as deciding whether it is compatible with a single
domain permutation. Of course, an algorithm for deciding term compatibil-
ity with a domain permutation can be used for deciding compatibility with
a domain permutation group by simply applying it to each domain permuta-
tion in the group. However, by representing domain permutation groups by
means of generating sets, this task can be made easier as shown below.

Definition 5.16 A domain permutation group Ψ is generated by a set of do-
main permutations if all the domain permutations in Ψ, and only those, can
be written as a finite composition of domain permutations and their inverses
appearing in the set.

Note that if Ψ is generated by a set S, then S is a subset of Ψ.

Example 5.17 Recall the net described in Figure 5.1(c) and studied in Ex-
amples 5.4 and 5.8. Consider the domain permutation group Ψ in which
each domain permutation ψ fulfills the following rules:

– ψTrains ∈ Sym(DA
Trains),

– ψSecs = (succA)k for some k,
– ψStruct(Trains,Secs) : 〈tx, si〉 7→ 〈ψTrains(tx), ψSecs(si)〉, and
– the domain permutations for the Boolean type Bool and multiset types

are defined as required in Requirement 5.6.

That is, a domain permutation in the group may swap the train identities and
rotate the railroad sections. The group has 2!×6 = 12 domain permutations.
It can be generated by two domain permutations in Ψ, namely

– ψ1 in which ψTrains
1 =

( ta tb
tb ta

)
and ψSecs

1 = I, and
– ψ2 in which ψTrains

2 = I and ψSecs
2 = succA.

♣

The following lemma and corollary state that, in order to check whether a
term is compatible with a domain permutation group, it is sufficient to check
that the term is compatible with each domain permutation in a generating
set of the group.

Lemma 5.18 Assume that a term term ∈ TermsSig
T (X ) is compatible with

domain permutations ψ =
{
ψT
}
T∈T , ψ1 =

{
ψT1
}
T∈T , and ψ2 =

{
ψT2
}
T∈T .

Then term is also compatible with the inverse domain permutation ψ−1 and
the composition domain permutation ψ1 ∗ ψ2.

5. DATA SYMMETRIES OF ALGEBRAIC SYSTEM NETS 85



Proof. Inverses. Take any assignment α to the variables in X and assume
that evalψ−1(α)(term) = v for some v ∈ DT . Because ψ is compatible with
term, evalα(term) = eval (ψ∗ψ−1)(α)(term) = evalψ(ψ−1(α))(term) equals
to ψT (evalψ−1(α)(term)) = ψT (v). Therefore, evalψ−1(α)(term) = v =

ψT
−1

(ψT (v)) = ψT
−1

(evalα(term)).
Composition. For each assignment α it holds that eval (ψ1∗ψ2)(α)(term) =

eval (ψ1(ψ2(α))(term) = ψT1 (evalψ2(α)(term)) = ψT1 (ψT2 (evalα(term))) =
(ψT1 ◦ ψT2 )(evalα(term)). �

Corollary 5.19 Assume that a domain permutation group Ψ is generated by
a set S of domain permutations. Then a term term ∈ TermsSig

T (X ) is com-
patible with Ψ if and only if it is compatible with each ψ ∈ S.

Now consider an arbitrary fixed algebra with finitely many types, each type
having a finite domain. Furthermore, assume that the following tasks can be
computed in deterministic polynomial time: (i) given an assignment to the
variables in a finite family of variables and a term over the variables, evaluate
the term, and (ii) given a domain permutation, apply it to an element in the
domain of a type or to a variable assignment over a finite family of variables.

Problem 5.20 TERM COMPATIBILITY 2 (TC2). Given a term term and a
domain permutation group Ψ by means of a generating set S, is term com-
patible with Ψ?

Theorem 5.21 Under a fixed algebra fulfilling the assumptions made above,
TC2 is co-NP-complete.

Proof. The co-NP-hardness follows directly from the proof of Theorem 5.15
(setting Ψ to consist of the the identity mapping and the truth value flipping
permutation ψ, f ′ is compatible with Ψ if and only if f is valid).

As Ψ is given by a generating set, one can solve the problem TC2 by
(i) non-deterministically guessing a disqualifying domain permutation ψ in
the generating set S, (ii) non-deterministically choosing a disqualifying as-
signment, and (iii) proceeding in the same way as in the inclusion part of
Theorem 5.15. Thus TC2 is in co-NP. �

The existence of compatible domain permutations for a term is another
interesting question.

Problem 5.22 EXISTENCE OF COMPATIBLE DOMAIN PERMUTATIONS.
Given a term term, is there a non-identity domain permutation ψ such that
term is compatible with ψ?

By the above theorems, this problem is apparently not easy since even ver-
ifying whether a single domain permutation is compatible with the term is
hard. Notice the difference to place/transition nets described in Chapter 3:
it is easy to verify whether a permutation of places and transitions is an auto-
morphism of a place/transition net.
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5.3.5 Approximating Term Compatibility

In the light of results presented above, an approximation scheme for term
compatibility is highly desirable. One such scheme can be achieved by con-
sidering a lower level compatibility, namely that between domain permuta-
tions and individual operations.

Definition 5.23 An operation fA, where f ∈ FT1...Tn,T , and a domain per-
mutation ψ =

{
ψT
}
T∈T are compatible if

fA(ψT1(v1), . . . , ψ
Tn(vn)) = ψT (fA(v1, . . . , vn))

holds for all v1 ∈ D̃A
T1
, . . . , vn ∈ D̃A

Tn
. An operation f is compatible with a

domain permutation group Ψ if it is compatible with each domain permuta-
tion in Ψ.

Hence, an operation is compatible with a domain permutation if for per-
muted input arguments it will give a similarly permuted output. An immedi-
ate consequence of the definition is that a domain permutation compatible
with a constant f (recall that constants are operations) cannot permute its
value to other values since fA() = ψT (fA()) must hold. Also note that in
the usual case when an operation returns err whenever and only when any of
the arguments is err, it suffices to consider the compatibility under the non-
error arguments since err is never permuted. It is easy to prove that terms
composed only of variables and compatible operations are compatible.

Lemma 5.24 Let ψ =
{
ψT
}
T∈T be a domain permutation and let term ∈

TermsSig
T (X ) be a term such that the operations appearing in it are compat-

ible with ψ. Then evalψ(α)(term) = ψT (evalα(term)) holds for all assign-
ments α on X , i.e., term is compatible with ψ.

Proof. By induction on the structure of the term.
Induction base. If term = x, where x is a variable of type T , then

evalψ(α)(term) = ψ(α)(x) = ψT (α(x)) = ψT (evalα(term)).
Induction hypothesis. Let term i ∈ TermsSig

Ti
(X ), 1 ≤ i ≤ n, be terms

compatible with ψ (that is, evalψ(α)(term i) = ψTi(evalα(term i))).
Induction step. Assume term = f(term1, . . . , termn) ∈ TermsSig

T (X ),
where f ∈ FT1,...,Tn,T . Now

evalψ(α)(term) = fA(evalψ(α)(term1), . . . , evalψ(α)(termn))

= fA(ψT1(evalα(term1)), . . . , ψ
Tn(evalα(termn)))

= ψT (fA(evalα(term1), . . . , evalα(termn)))

= ψT (evalα(term)).

by applying the induction hypothesis and the fact that fA is compatible with
ψ. �

Example 5.25 The requirement that the operations appearing in a term are
compatible is a sufficient condition for the term to be compatible. To see that
it is not a necessary one, consider a term equals(c(), d()), where c and d are
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constants of a type T and equals ∈ FT.T,Bool is such that equalsA(x, y) = true
if and only if x and y are the same element. The constants c and d are not
compatible with any domain permutation permuting the elements cA() and
dA() in DA

T . But the term itself is compatible with all domain permutations
that leave the domain of Bool intact. This is because cA() and dA() are the
same element if and only if ψT (cA()) and ψT (dA()) are the same element
(by the bijective nature of permutations). ♣

Remark 5.26 The definition of compatibility between domain permutations
and operations is similar to that of signature isomorphisms in [Wirsing 1990].
That is, if all operations are compatible with a domain permutation, then the
domain permutation is a Sig -isomorphism from the algebra A to itself.

Approximating term compatibility through operation compatibility is es-
pecially convenient when defining net classes for automatic reachability an-
alyzers. That is, following the approaches taken in [Chiola et al. 1991] and
in [Ip and Dill 1996], the type system of a net description language is such
that it allows definition of special type classes to which only certain restricted
operations can be applied. Operations are analyzed by hand once during the
language design phase in order to find out what kind of domain permuta-
tions are compatible with them. Thus checking the compatibility of a term
corresponds to checking that only the allowed compatible operations appear
in it. This approach is illustrated the next chapter.
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6 EXTENDED WELL-FORMED NETS

In order to illustrate the theory developed in the previous chapter, a subclass
of algebraic system nets is now defined. The proposed net class is called
extended well-formed nets (EWF-nets) because it is inspired by and extends
the class of well-formed nets [Chiola et al. 1991]. See [Mäkelä 2001b; 2001a;
2002] for a discussion on implementing a reachability analyzer for a high-
level Petri net class similar to EWF-nets.

The EWF-nets use signatures and algebras fulfilling certain rules. First,
the types are partitioned into (i) primitive types, such as integers, Booleans,
enumeration types, integer sub-ranges, process identifiers, and so on, and (ii)
structured types, such as lists, sets and so on, built over the primitive types.
To facilitate easy description and automatic verification of data symmetries,
an approach similar to that used in well-formed nets [Chiola et al. 1991] and
in the Murϕ system [Ip and Dill 1996] is used. That is, the set of primitive
types is further partitioned into the classes of ordered, cyclic, and unordered
primitive types.1 The idea is that the domains of ordered primitive types may
not be permuted, cyclic primitive types allow cyclic permutations, and the
domains of unordered primitive types can be permuted arbitrarily. The do-
mains and domain permutations of structured types are uniquely defined by
those for the primitive types. The compatibility of data manipulation opera-
tions on types is then classified once in the net class definition phase. This
enables semi-automatic detection of symmetries by the following procedure.

1. The user (i.e., the modeler of the net) declares the primitive types to
be either ordered, cyclic, or unordered.

2. The reachability analyzer tool verifies that only compatible operations
appear in the arc and transition guard annotations. This is a very simple
syntactical check.

3. If this is the case, the domain permutations will actually produce state
space symmetries. These symmetries can be automatically exploited
by the algorithms described in the next chapter.

The main difference of this procedure to the so-called permutation symmetry
approach described in [Jensen 1995, Section 3.3] is that the compatibility of
the data manipulation operations is classified once in the net class definition
phase. This makes symmetry verification, the step 2 above, very simple, thus
eliminating the need for building algorithms checking that the domain per-
mutations are compatible with the net annotations (which, in the light of the
complexity results in Section 5.3.4, can be computationally quite hard).

6.1 TYPE SYSTEM

The types, domains, and domain permutations used in EWF-nets are now
defined. The same type system will also be used in the next chapter studying
the algorithms for the orbit problems under data symmetries.

1Unordered primitive types are called scalar sets in the Murϕ terminology.
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6.1.1 Types

First, a set T0 of primitive types is assumed. Based on primitive types, the set
T of types is defined by the grammar

T ::= T0 | List(T ) | Struct(T, . . . , T ) | Set(T ) | Multiset(T ) |
AssocArray(T, T ) | Union(T, . . . , T )

where T0 ranges over T0. The types in T \ T0 are called structured types over
T0.

Next, each primitive type T ∈ T0 is associated with a domain DT . Based
on these, the domains of structured types are naturally defined by the follow-
ing inductive rules:

DList(T ) = D∗
T DStruct(T1,...,Tn) = DT1 × · · · ×DTn

DSet(T ) = ℘(DT ) DAssocArray(T1,T2) = [DT1  DT2 ]
DMultiset(T ) = [DT → N] DUnion(T1,...,Tn) =

⋃
1≤i≤n{Ti} ×DTi

where ℘(A) denotes the power set of the set A, and [A  B] denotes the
set of all partial functions from A to B.2 For instance, if Int and Bool are
primitive types with the domains DInt = Z and DBool = B = {false, true},
respectively, then List(Struct(Bool, Int, Int)) is a type with the domain (B×
Z × Z)∗. Note that arrays can be defined by means of association arrays: if
Int[1–10] is a primitive type with the domain DInt[1–10] = {1, 2, . . . , 10},
then the type AssocArray(Int[1–10], Int) corresponds to a 10-element array
of integers (with the possibility for undefined array elements). Also notice
that an element in the domain of an union type is a pair consisting of a
type name and an element of that type. This enables one to retrieve the
type of an element in an union in the case the domains of the unionized
types are overlapping. For instance, consider the union type Union(T1, T2),
where T1 = Struct(Int, Int) and T2 = List(Int). Now the structure element
〈T1, 〈3, 6〉〉 is distinguished from the list element 〈T2, 〈3, 6〉〉.

Recall that the domain permutations for multisets used in ASNs must ful-
fill certain rules defined in Requirement 5.6. Similarly, the domain permu-
tations for structured types are naturally defined by the domain permutations
for the primitive types.

Requirement 6.1 The following rules must hold for each domain permuta-
tion ψ =

{
ψT
}
T∈T used in EWF-nets.

– ψList(T )(〈v1, . . . , vn〉) = 〈ψT (v1), . . . , ψ
T (vn)〉,

– ψStruct(T1,...,Tn)(〈v1, . . . , vn〉) = 〈ψT1(v1), . . . , ψ
Tn(vn)〉,

– ψSet(T )(V ) =
{
ψT (v) | v ∈ V

}
,

– ψMultiset(T )(m) : ψT (v) 7→ m(v),
– ψAssocArray(T1,T2)(a) =

{
〈ψT1(v1), ψ

T2(v2)〉 | 〈v1, v2〉 ∈ a
}

, and
– ψUnion(T1,...,Tn)(〈Ti, v〉) = 〈Ti, ψTi(v)〉.

That is, each domain permutation ψ =
{
ψT
}
T∈T can be uniquely expressed

by the domain permutation
{
ψT
}
T∈T0

for the primitive types only.

2A partial function from a set A to a set B is a subset f of A × B such that each a ∈ A
appears at most once as the first component of pairs in f .
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6.1.2 Permutable Primitive Types

In order to exploit symmetries by using the theory devised in Section 5.3 (es-
pecially in Section 5.3.5), the set of primitive types, T0, is partitioned into
three subclasses: ordered, cyclic, and unordered primitive types. The follow-
ing limitations are set on the domains and domain permutations of the types
in these classes. First, the domains of the primitive types must comply with
the following rules.

1. The domain of each ordered primitive type T is an arbitrary set.
2. The domain of each cyclic primitive type T is a finite set of form

DT = {v0, v1, . . . , vn−1} for an n ≥ 1, associated with a cyclic suc-
cessor function succT such that succT (vi) = vi+1 mod n.

3. The domain of each unordered primitive type T is a finite set.

Second, a domain permutation ψT =
{
ψT
}
T∈T is allowed if it fulfills the

following rules in addition to those described in Requirement 6.1.

1. For each ordered primitive type T , ψT = I, i.e., the identity permuta-
tion.

2. For each cyclic primitive type T , ψT = succkT for a 0 ≤ k < |DT |, i.e.,
a rotation of DT defined by the successor function.

3. For each unordered primitive type T , ψT ∈ Sym(DT ), i.e., an arbitrary
permutation of DT .

From now on, an allowed domain permutation is denoted by using the sym-
bol θ rather than ψ. The set of all allowed domain permutations, denoted by
Θ, is a domain permutation group. Cyclic and unordered primitive types are
also called permutable primitive types and the set of such types of denoted by
TP . Clearly, each allowed domain permutation can be uniquely described
by giving the domain permutations for the permutable primitive types only.

In addition, it is assumed that the type Bool for Booleans with the domain
DBool = {false, true} is an ordered primitive type. Thus the type system
clearly fulfills the Requirements 5.2 and 5.6. Furthermore, it is assumed that
the type Nat for natural numbers with the domain DNat = {0, 1, 2, . . .} is an
ordered primitive type.

Example 6.2 Consider again the railroad net in Figure 5.1(c) (recall Ex-
amples 5.4 and 5.17). Assume that the primitive type Secs is declared to
be cyclic with the successor function as defined in Example 5.4, and that
the primitive type Trains is unordered. Then there are |DSecs| × |DTrains|! =
6× 2! = 12 allowed domain permutations, one of them being

θ =
(
θSecs = ( s0 s1 s2 s3 s4 s5

s2 s3 s4 s5 s0 s1 ) , θTrains =
( ta tb

tb ta

))
from Example 5.8. It maps the initial state

Minit = {U 7→ 〈ta, s0〉+ 〈tb, s3〉, V 7→ s1 + s4}

to
θ(Minit) = {U 7→ 〈ta, s5〉+ 〈tb, s2〉, V 7→ s0 + s3}.

The domain permutation ψbad in Example 5.8 is not an allowed domain per-
mutation because the permutation for the cyclic primitive type Secs is not a
power of the successor function. ♣
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6.2 OPERATIONS

In the following, operations for the type classes defined above are introduced
and their compatibility with the allowed domain permutations is analyzed
according to Definition 5.23. It turns out that this analysis is in most cases
quite straightforward. Some of the operations have erroneous invocations in
which case the special error element err is returned. In fact, these operations
are the reason why error algebras had to be introduced in the first place. For
net classes simpler than EWF-nets, normal algebras would have sufficed.

Equality Testing
For each type T , the equality testing operation equals ∈ FT.T,Bool is defined
by equals(v, v) = true if v = v′ and false otherwise. Thus one can, for
example, compare two lists l, l′ ∈ DList(T ) for equality by using the operation
equals ∈ FList(T ).List(T ),Bool. Since all the allowed domain permutations are
bijections and Bool is an ordered primitive type, equals(θT (v), θT (v′)) =
true if and only if equals(v, v′) = true if and only if θBool(equals(v, v′)) =
true. Thus equals is compatible with all allowed domain permutations.

If-Then-Else
For each type T , the standard if-then-else operation iteT ∈ FBool.T.T,T is de-
fined by

iteT (b, v1, v2) =


v1 if b = true

v2 if b = false, and
err if b = err.

The iteT operation may also be written in mix-fix notation as if · then · else ·.
The operation is compatible with each allowed domain permutation θ be-
cause the Booleans and the error values are not permuted. For instance,
iteT (θBool(true), θT (v1), θ

T (v2)) = iteT (true, θT (v1), θ
T (v2)) = θT (v1) =

θT (iteT (true, v1, v2)).
Finally, observe that iteT (true, v1, err) = v1 and iteT (false, err, v2) = v2,

making an exception to the implicit assumption that an operation returns err

if any of its arguments is err.

Ordered Primitive Types
As the domains of ordered primitive types are not permuted by allowed do-
main permutations, all the operations involving only them are compatible
with all allowed domain permutations. For instance, the natural number
constants 0,1, . . . ∈ Fε,Nat defined by n() = n are such operations. So are
the Boolean operations described in Example 5.1. Furthermore, the usual
operations for natural numbers such as

1. plus ∈ FNat.Nat,Nat defined by plus(v, v′) = v + v′,
2. minus ∈ FNat.Nat,Nat defined by minus(v, v′) = v − v′ if v ≥ v′ and err

otherwise, and
3. less ∈ FNat.Nat,Bool defined by less(v, v′) = true if v < v′ and false

otherwise,

are also compatible with Θ.
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Cyclic Primitive Types
Assume a cyclic primitive type T with a domain DT = {v0, v1, . . . , vn−1},
associated with the successor function succT (vi) = vi+1 mod n. Since the
domain of T may be permuted by the allowed domain permutations, the
constants vi ∈ Fε,T defined by vi() = vi for 1 ≤ i ≤ n are not com-
patible with Θ. However, the parameterized successor element operation
successor ∈ FNat.T,T defined by successor(m, v) = succmT (v) is compatible
with Θ since for each allowed domain permutation θ in which θT = succkT
for a 0 ≤ k < n,

successor(θNat(m), θT (v)) = successor(m, θT (v))

= succmT (θT (v))

= succmT (succkT (v))

= succkT (succmT (v))

= θT (successor(m, v)).

Define that an element v ∈ DT is the k-successor of an element v′ ∈ DT

if k is the smallest integer such that succkT (v′) = v. Clearly, for each v, v′ ∈
DT and each allowed domain permutation θ, v is the k-successor of v′ if
and only if θT (v) is the k-successor of θT (v′). Thus the distance operation
dist ∈ FT.T,Nat, defined by dist(v, v′) = k if v′ is the k-successor of v, is
compatible with Θ.

By using the operations above, it is possible to simulate more complex op-
erations. For instance, assume that term, term2, term3 are terms of type T .
Now the immediate successor of the element described by term can be de-
fined by the term successor(1, term), abbreviated by successor(term), and
the predecessor element can be defined by the term successor(n-1, term),
abbreviated by predecessor(term). Similarly, between(term, term1, term2)
abbreviates the Boolean term less(dist(term1, term), dist(term1, term2)).

Unordered Primitive Types
Since the domain of an unordered primitive type T can be permuted ar-
bitrarily by allowed domain permutations, there are not many compatible
operations for it. One such exception is the equality testing operation dis-
cussed above. Especially, again, the constants v ∈ Fε,T defined by v() = v
for each v ∈ DT are not compatible with Θ. However, note that unordered
(like ordered and cyclic) primitive types can be used as elements in sets, lists,
etc. by the operations described below.

In some cases, it may be necessary to include some special, unpermuted
elements in the domain of an unordered (or cyclic) primitive type T . For
instance, a special “undefined” value is often required to handle the case
when the value of a variable is not defined. As this kind of elements are not
permuted, they can be accessed by using constants and other operations not
allowed for permutable elements. Including unpermuted elements can be
handled in two ways. The first one is by specifying an ordered primitive type
T ′ that includes all such unpermuted elements and using the union type
Union(T, T ′) instead of T . The other way of achieving the same is to (i) ex-
tend the domain of T to include the unpermuted elements and (ii) define
the allowed domain permutations for T to permute only the permutable sub-
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set of the domain. The latter approach requires that some obvious, trivial
changes are made in the algorithms for the orbit problems presented in the
next chapter.

Quantification
Before presenting operations for structured types, an important way of defin-
ing new operations based on the existing ones is introduced by an example.
Consider that one wants to check whether a Boolean condition holds for all
the elements of a type T . The Boolean condition itself can be expressed as a
Boolean term. Now define an operation

“for all z : T it holds term” ∈ FT1...Tn,Bool,

where term is a Boolean term over the family of variables consisting of the
variable z of type T and the variables z1, . . . , zn of types T1, . . . , Tn, respec-
tively. In order to have well-foundedness, i.e., non-cyclic definitions, the
term term may not contain the operation “for all x : T it holds term” it-
self. The idea is that the variable z is the universally quantified variable,
while the free variables z1, . . . , zn in term are bound by the arguments for
the operation. Thus “for all x : T it holds term”(v1, . . . , vn) evaluates to

– true if eval{z1 7→v1,...,zn 7→vn,z 7→v}(term) = true for all v ∈ DT ,
– err if eval{z1 7→v1,...,zn 7→vn,z 7→v}(term) = err for a v ∈ DT , and
– false otherwise.

The important thing is that if the term term is compatible with all allowed
domain permutations, then the operation is, too. The compatibility of term
in turn can be derived by checking that only compatible operations appear
in it.

Lemma 6.3 If the term term is compatible with an allowed domain permu-
tation θ, then the operation “for all x : T it holds term” is, too.

Proof. It suffices to note that eval{z1 7→θT1 (v1),...,zn 7→θTn (vn),z 7→θT (v)}(term) =

eval θ({z1 7→v1,...,zn 7→vn,z 7→v})(term) = θBool(eval{z1 7→v1,...,zn 7→vn,z 7→v}(term)) =
eval{z1 7→v1,...,zn 7→vn,z 7→v}(term) as term is compatible with θ and the Booleans
are not permuted. Thus θBool(“for all x : T it holds term”(v1, . . . , vn)) =
“for all x : T it holds term”(v1, . . . , vn) always yields the same values as
“for all x : T it holds term”(θT1(v1), . . . , θ

Tn(vn)). �

As an example, consider the operation

“for all z : Struct(Bool,PIds) it holds
implies(greaterOrEqual(multiplicity(z1, z),1),

equals(getField2(z), z2))”

inFMultiset(Struct(Bool,PIds)).PIds,Bool. It evaluates to true if and only if the multiset
given as the first argument contains only elements of type Struct(Bool,PIds)
whose second field is equal to the second argument (the operations appearing
in the term are formally defined later). The operation can be written in an
informal abbreviated form if it is understood what is meant. For instance,

∀z of Struct(Bool,PIds) : (x1(z) ≥ 1 ⇒ getField2(z) = x2)
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denotes the term formed from the operation when the arguments for it are
the variables x1 and x2.

Nesting operations defined this way can be somewhat cumbersome, at
least in the formal way. For instance, consider the quantified Boolean ex-
pression

∀y1 of Bool : (∀y2 of Bool : (y2 ∧ y1) ∨ (¬y1 ∧ y2)) ,

easily written in the informal abbreviated form. The innermost quantifier
can be expressed by a Boolean operation

“for all z : Bool it holds (z ∧ z1) ∨ (¬z1 ∧ z)”

in FBool,Bool. Thus z corresponds to the variable y2 and z1 corresponds to the
variable y1. Now the whole expression is the constant term

“for all z : Bool it holds “for all z : Bool it holds (z ∧ z1) ∨ (¬z1 ∧ z)”(z)”

in Fε,Bool. Note that the outermost term is

“for all z : Bool it holds (z ∧ z1) ∨ (¬z1 ∧ z)”(z),

i.e., a term consisting of one unary operation and the variable z (the variable
z1 only appears in the name of the operation, and is thus considered to be
merely a text string).

Lists
For a list type List(T ), the following operations are compatible with all al-
lowed domain permutations.

– Operation: emptyList ∈ Fε,List(T )

Definition: emptyList() = 〈〉
– Operation: isEmpty ∈ FList(T ),Bool

Definition: isEmpty(l) = true if l = 〈〉 and false otherwise

– Operation: length ∈ FList(T ),Nat

Definition: length(〈v1, v2, . . . , vn〉) = n

– Operations: getElement ∈ FList(T ).Nat,T and
setElement ∈ FList(T ).Nat.T,List(T )

Definitions: getElement(〈v1, ..., vn〉, i) =

{
vi if 1 ≤ i ≤ n

err otherwise
setElement(〈v1, . . . , vi−1, vi, vi+1, . . . , vn〉, i, v) ={

〈v1, . . . , vi−1, v, vi+1, . . . , vn〉 if 1 ≤ i ≤ n

err otherwise

– Operations: addFirst, addLast ∈ FList(T ).T,List(T )

Definitions: addFirst(〈v1, . . . , vn〉, v) = 〈v, v1, . . . , vn〉
addLast(〈v1, . . . , vn〉, v) = 〈v1, . . . , vn, v〉
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– Operations: removeBeginning, removeEnd ∈ FList(T ).Nat,List(T )

Definitions:

removeBeginning(〈v1, . . . , vn〉, l) =

{
〈vl+1, . . . , vn〉 if l < n

〈〉 if l ≥ n

removeEnd(〈v1, . . . , vn〉, l) =

{
〈v1, . . . , vn−l〉 if l < n

〈〉 if l ≥ n

A version which returns err if l > n could also be defined.
– Operation: concatenate ∈ FList(T ).List(T ),List(T )

Definition: concatenate(〈v1, v2, . . . , vn〉, 〈u1, u2, . . . , um〉) =
〈v1, v2, . . . , vn, u1, u2, . . . , um〉

Note that the usual types of stacks and first-in first-out buffers (FIFOs) are
covered by the above definition of lists. If term is a term of type List(T ), one
may use first(term) and last(term) to denote the terms getElement(term,1)
and getElement(term, length(term)), respectively. Similarly, one may write
removeFirst(term) to abbreviate the term removeBeginning(term,1) and
removeLast(term) for removeEnd(term,1).

Structures
For a structure sort Struct(T1, . . . , Tn), only the element manipulation and
construction operations are needed.

– Operation: getFieldi ∈ FStruct(T1,...,Tn),Ti
, for each 1 ≤ i ≤ n

Definition: getFieldi(〈v1, . . . , vn〉) = vi

– Operation: setFieldi ∈ FStruct(T1,...,Tn).Ti,Struct(T1,...,Tn), 1 ≤ i ≤ n

Definition: setFieldi(〈v1, . . . , vi−1, vi, vi+1 . . . , vn〉, v′i) =
〈v1, . . . , vi−1, v

′
i, vi+1 . . . , vn〉

– Operation: makeStruct ∈ FT1.....Tn,Struct(T1,...,Tn)

Definition: makeStruct(v1, . . . , vn) = 〈v1, . . . , vn〉

These operations are clearly compatible with all allowed domain permuta-
tions.

Sets
Assume a set type Set(T ) and let V, V1, V2 ∈ ℘(DT ) be sets belonging to
the domain of Set(T ). The compatibility of the following operations with
all allowed domain permutations is quite evident by noticing that, for each
allowed domain permutation θ =

{
θT
}
T∈T , an element v ∈ DT is in the set

V if and only if the element θT (v) is in the set θSet(T )(V ).

– Operation: cardinality ∈ FSet(T ),Nat

Definition: cardinality(V ) = |V | if |V | is finite and err otherwise
– Operation: isIn ∈ FT.Set(T ),Bool

Definition: isIn(v, V ) = true if v ∈ V and false otherwise
– Operation: “all z : T such that term” ∈ FT1...Tn,Set(T ) where term is

a Boolean term over the family X of variables consisting of
the variable z of type T and the variables z1, . . . , zn of types
T1, . . . , Tn, respectively
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Definition: “all z : T such that term”(v1, . . . , vn) ={
v ∈ DT | eval{z1 7→v1,...,zn 7→vn,z 7→v}(term) = true

}
Returns the set of elements of type T for which the term term evaluates
to true under the values given as the arguments (cf. the quantification
operation defined earlier). For example, if PIds is a primitive type with
DPIds = {pid1, pid2, pid3}, then the operation

“all z : Struct(PIds,PIds) such that equals(getField1(z), z1)”

in FPIds,Set(Struct(PIds,PIds)) gives under the the argument pid2 the set
{〈pid2, pid1〉, 〈pid2, pid2〉, 〈pid2, pid3〉}.
If the term term is compatible with all allowed domain permutations,
the operation is, too. Again, in order to avoid cyclic definitions, the
term term may not contain the operation “all z : T such that term”.

– Operation: toMultiSet ∈ FSet(T ),Multiset(T )

Definition: toMultiSet(V ) = Σv∈V 1 ′v

Other typical set operations can again be abbreviated by the ones listed
above. Let term1, term2 be terms of type Set(T ). Now emptySet() is an ab-
breviation for the term “all z : T such that false”() returning the empty set,
fullSet() is an abbreviation for the term “all z : T such that true”() return-
ing the set DT , complement(term1) is an abbreviation for the term

“all z : T such that not(isIn(z, z1))”(term1),

union(term1, term2) is an abbreviation for

“all z : T such that or(isIn(z, z1), isIn(z, z2))”(term1, term2),

intersection(term1, term2) is an abbreviation for

“all z : T such that and(isIn(z, z1), isIn(z, z2))”(term1, term2),

and setMinus(term1, term2) is an abbreviation for

“all z : T such that and(isIn(z, z1), not(isIn(z, z2)))”(term1, term2).

Multisets
Assume a multiset type Multiset(T ). The compatibility of the following oper-
ations with all allowed domain permutations is partly proven in Lemma 5.7
and can be easily seen by the fact that, for each allowed domain permu-
tation θ =

{
θT
}
T∈T , an element v ∈ DT appears n times in a multiset

m ∈ DMultiset(T ) if and only if the element θT (v) appears n times in the mul-
tiset θMultiset(T )(m).

– Operation: multiplicity ∈ FMultiset(T ).T,Nat

Definition: multiplicity(m, v) = m(v)

– Operation: add ∈ FMultiset(T ).Multiset(T ),Multiset(T )

Definition: add(m1,m2) = m1 +m2

– Operation: minus ∈ FMultiset(T ).Multiset(T ),Multiset(T )
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Definition: minus(m1,m2) =

{
m1 −m2 if m2 ≤ m1

err otherwise
– Operation: times ∈ FNat.Multiset(T ),Multiset(T )

Definition: times(n,m) = n ·m
– Operation: lessOrEqual ∈ FMultiset(T ).Multiset(T ),Bool

Definition: lessOrEqual(m1,m2) = true if and only if m1 ≤ m2

– Operation: unitMS ∈ FT,Multiset(T )

Definition: unitMS(v) = 1 ′v

– Operation: all
An abbreviation for toMultiSet(“all x : T such that true”). Returns
the multiset consisting of one copy of each element in the domain of
T .

– Operation: size ∈ FMultiset(T ),Nat

Definition: size(m) =
∑

v∈DT
m(v) if the sum is finite and err if it is

not.
Returns the number of all elements in a multiset i.e. its size. In the
case of an infinite multiset, the error return value was chosen because
introducing∞ in the domain of Nat could cause some inconveniences
elsewhere. In practice, all multisets can be expected to be finite.

– Operation: toSet ∈ FMultiset(T ),Set(T )

Definition: toSet(m) = {v ∈ DT |m(v) ≥ 1}
– Operation: “construct term” ∈ FT1...Tn,Multiset(T ), term being a term

of type Nat over the family X of variables consisting of the
variable z of type T and the variables z1, . . . , zn of types
T1, . . . , Tn, respectively

Definition: “construct term”(v1, . . . , vn) =∑
v∈DT

eval{z1 7→v1,...,zn 7→vn,z 7→v}(term) ′v
or err if term evaluates to err for the assignment {z1 7→
v1, . . . , zn 7→ vn, z 7→ v} for a v ∈ DT

Returns the multiset where the multiplicity of an element is computed
by applying the term term . If the term term is compatible with all
allowed domain permutations, the operation is, too (by recalling the
fact that Nat is an ordered primitive type).
For instance, the operation

“construct if equals(z, z1) then 0 else multiplicity(z2, z)”

in FT.Multiset(T ),Multiset(T ) for a type T returns the multiset over T in
which an element v has multiplicity 0 if it equals to the first argument
and the same multiplicity as in the multiset given as the second argu-
ment otherwise. That is, if DT = {v1, v2, v3}, x1 is a variable of type
T assigned to v2, and x2 is a variable of type Multiset(T ) assigned to
2 ′v1 + 5 ′v2 + 3 ′v3, then

“construct if equals(z, z1) then 0 else multiplicity(z2, z)”(x1, x2) =
2 ′v1 + 0 ′v2 + 3 ′v3.

Similarly, “construct 1”() = 1 ′v1 + 1 ′v2 + 1 ′v3 and “construct 0” is
the constant operation for the empty multiset.
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Association Arrays
Let T = AssocArray(T1, T2) be an association array type. The compatibility
of operations below with each allowed domain permutation θ can be estab-
lished by noticing that an element v1 ∈ DT1 is associated with an element
v2 ∈ DT2 by an association array a ∈ DT if and only if the element θT1(v1) is
associated with the element θT2(v2) by the association array θT (a).

– Operation: emptyAssocArray ∈ Fε,AssocArray(T1,T2)

Definition: emptyAssocArray() = ∅
– Operation: isDefined ∈ FAssocArray(T1,T2).T1,Bool

Definition: isDefined(a, v) = true if a(v) is defined and false other-
wise

– Operations: get ∈ FAssocArray(T1,T2).T1,T2 ,
set ∈ FAssocArray(T1,T2).T1.T2,AssocArray(T1,T2), and
unset ∈ FAssocArray(T1,T2).T1,AssocArray(T1,T2)

Definitions: get(a, i) =

{
a(i) if a(i) is defined
err otherwise

set(a, i, v) = a[i 7→ v]

unset(a, i) =

{
a \ {〈i, a(i)〉} if a(i) is defined
a otherwise

– Operation: “initialize to term” ∈ FT ′
1...T

′
n,AssocArray(T1,T2), where term

is a term of type T2 over the familyX of variables consisting
of the variable z of type T1 and the variables z1, . . . , zn of
types T ′

1, . . . , T
′
n, respectively

Definition: “initialize to term”(v1, . . . , vn) ={
〈v, eval{z1 7→v1,...,zn 7→vn,z 7→v}(term)〉 | v ∈ DT1

}
.

Returns the association array in which the image of an element is com-
puted by applying the term term. If the term term is compatible with
all allowed domain permutations, the operation is, too.
For instance, assume that Ring is a cyclic primitive type with the do-
main DRing = {r0, r1, r2} and the obvious successor function. Now
the operation “initialize to makeStruct(successor(z), z1)” from Nat
to AssocArray(Ring,Struct(Ring,Nat)) returns with the argument 2
the association array {r0 7→ 〈r1, 2〉, r1 7→ 〈r2, 2〉, r2 7→ 〈r0, 2〉}.

Unions
The following operations for union types are clearly compatible with all al-
lowed domain permutations.

– Operation: makeT ∈ FT,Union(T1,...,Tn) for each T ∈ {T1, . . . , Tn}
Definition: makeT (v) = 〈T, v〉
Creates an union element out of a constituent type element.

– Operation: isOfT ∈ FUnion(T1,...,Tn),Bool for each T ∈ {T1, . . . , Tn}
Definition: isOfT (〈T ′, v〉) = true if T ′ = T and false otherwise
Checks the type of the union element.

– Operation: castToT ∈ FUnion(T1,...,Tn),T for each T ∈ {T1, . . . , Tn}
Definition: castToT (〈T ′, v〉) = v if T ′ = T and err otherwise
“Casts” an union element back to its base type or returns error if types
mismatch.
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6.3 EXAMPLES

In the following, some very simple examples of EWF-nets are given. More
complicated examples can be obtained by translating existing well-formed
and colored Petri nets into extended well-formed nets. For instance, the col-
ored Petri net model of Lamport’s fast mutual exclusion algorithm presented
in [Jørgensen and Kristensen 1999] can be interpreted as an EWF-net in a
very straightforward way. Furthermore, the same symmetries of the model
that are used in [Jørgensen and Kristensen 1999] can be defined in the cor-
responding EWF-net model by simply declaring the process identifier type
PID to be unordered. For more examples of modeling and analyzing sys-
tems with high-level Petri nets, see e.g. [Jensen 1997; Reisig and Rozenberg
1998b].

Railroad net. The railroad net in Figure 5.1(c) (also recall Examples 5.4
and 6.2) is an EWF-net. Its symmetries can be exploited by just declaring
the type Secs to be cyclic and the type Trains to be unordered primitive
types. Now the following LTL property can be used to verify that two trains
are never in the same railroad section:

AG(∀x1 of Struct(Trains,Secs) : ∀x2 of Struct(Trains,Secs) :

(Û(x1) ≥ 1 ∧ Û(x2) ≥ 1 ∧ getField1(x1) 6= getField1(x2)) ⇒
getField2(x1) 6= getField2(x2)),

where Û is the place variable of type Multiset(Struct(Trains,Secs)) corre-
sponding the marking in the place U as described in Section 5.3.3. As the
atomic proposition in the formula only uses operations that are compatible
with all the allowed domain permutations, it is invariant with respect to the
symmetries of the net. Therefore, the formula can be checked directly on a
reduced reachability graph of the net. Similarly, the following LTL property
states that two trains can never be in the consecutive railroad sections:

AG(∀x1 of Struct(Trains,Secs) : ∀x2 of Struct(Trains,Secs) :

(Û(x1) ≥ 1 ∧ Û(x2) ≥ 1 ∧ getField1(x1) 6= getField1(x2)) ⇒
getField2(x1) 6= successor(getField2(x2))).

Distributed Database Net. Figure 6.1 shows an EWF-net version of the
well-known distributed database system [Jensen 1992]. The type PIds for
process identifiers is an unordered primitive type with the domain DPIds =
{pid1, . . . , pidn} for some n, and the arc annotation term Mes(s) is an ab-
breviation for

“all z : Struct(PIds,PIds) such that getField1(z) = z1 ∧ getField2(z) 6= z1”(s).

That is, Mes(s) returns the set of all pairs of elements in PIds such that the
first element equals to s and the second does not. As usual, the annotations
in the figure are in an abbreviated informal form, e.g. the arc annotation s is
formally unitMS(s) and Mes(s) means toMultiset(Mes(s)).
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Figure 6.1: The distributed database net
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7 ALGORITHMS FOR DATA SYMMETRIES

In this chapter, new algorithms are developed for the orbit problems un-
der data symmetries, i.e., symmetries that are produced by symmetric use of
data values. The studied framework is so general that it covers the extended
well-formed nets described in the previous chapter, the original well-formed
nets [Chiola et al. 1991], the Murϕ verification system [Ip and Dill 1996], as
well as the most commonly used instances of colored Petri nets (the so-called
permutation symmetries in [Jensen 1995]). In the framework, a system is
considered to consist of a finite set of typed state variables, a state being an
assignment to the variables. The applied type system is the same as for the
extended well-formed nets, covering the type systems in Murϕ, well-formed
nets, and the structured colors in [Jensen 1995, Section 3.3]. Symmetries
of such systems are produced in the same way as in the above mentioned
formalisms, i.e., by permuting the values of certain primitive types. The tran-
sition relation of a system is implicitly assumed to be induced by the applied
formalism.

The first proposed algorithm family is based on building an ordered parti-
tion of the elements for each permutable primitive type appearing in a system
state. The partition family is built in a symmetry-respecting way so that equiv-
alent states are assigned equivalent partitions. The partitions can then be ex-
ploited to prune the set of symmetries that have to be considered when com-
paring whether two states are equivalent or when building a representative
for the state. The partition family for a state is iteratively build via a process
that refines the current partition by applying symmetry-respecting invariants
to it. This approach resembles the one taken in Section 4.4 and also the
preprocessing step in graph isomorphism algorithms [McKay 1981; Kreher
and Stinson 1999]. As already mentioned in Section 1.1, using symmetry-
respecting partitions to prune the set of symmetries is already used, for in-
stance, in [Jensen 1995; Ip 1996; Sistla et al. 2000; Lorentsen 2002]. How-
ever, the approach presented in this chapter offers the following improve-
ments.

1. The process of building the partition for a state, as well as the invariants
needed in the process, are formally and rigorously defined.

2. Both unordered and cyclic primitive types are handled in the same
unified way.

3. The invariants proposed in this chapter can handle all the structured
types. Moreover, some very powerful invariants are proposed for types
of certain forms.

In addition, a novel improvement inspired by graph isomorphism and can-
onization algorithms is presented. In this approach, the partition for a state,
built as described above, is used as the root for a finite search tree. The search
tree is built by iteratively splitting a cell in the partition and refining the re-
sulting partition until a discrete partition is obtained. By considering only
the leaf nodes in the search tree, i.e., the discrete partitions, the set of sym-
metries that have to be considered when solving the orbit problems can be
further reduced.
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The second algorithm family for solving the orbit problems is based on
assigning a state the corresponding characteristic graph, i.e., on translating
the state into a graph that captures the symmetries of the state. Thus the
task of comparing whether two states are equivalent can be solved by testing
whether the corresponding characteristic graphs are isomorphic. Similarly,
one can obtain a canonical representative for a state by using the canonical
version of its characteristic graph. Therefore, one can apply existing graph
isomorphism and canonization algorithms, such as the nauty tool [McKay
1990], for solving the orbit problems. This resembles the approach taken in
Section 4.2.

Some of the proposed algorithms are implemented in the Murϕ tool. The
experimental results show that the new algorithms are competitive against the
previous ones implemented in Murϕ.

The material in this chapter has been published in [Junttila 2002b].

7.1 AN ABSTRACT SYSTEM CLASS

First, an abstract system model is introduced. The model covers the well-
formed nets [Chiola et al. 1991], the Murϕ system [Ip and Dill 1996], and
the extended well-formed nets described in the previous chapter in the sense
that each system described with one of these formalisms can be transformed
into the model. The main benefit of the model is that the details of the ac-
tual transition relation (the semantics of the actual formalism) are abstracted
away. Those details play no role in the contributions of this chapter.

The applied type system is as described in Section 6.1 in the previous
chapter. That is, the set T of types is partitioned into (i) primitive types such
as Booleans, integers, process identifiers, and so on, and (ii) structured types
such as lists, sets, association arrays etc. built on the primitive types. Fur-
thermore, the set T0 of primitive types is partitioned into ordered, cyclic, and
unordered ones. The cyclic and unordered primitive types are commonly
called permutable and the set of such types is denoted by TP .

A system is defined to be a tuple S = 〈X ,−→, s0〉, where

– X is a finite, non-empty set of state variables. Each x ∈ X is associated
with a type Tx. A state s is a mapping associating each x ∈ X with an
element in the domain of its type Tx: s(x) ∈ DTx . The set of all states
is denoted by S.

– −→ ⊆ S × S is the transition relation describing how the states may
evolve to others, and

– s0 ∈ S is the initial state.

The state space of the system S is the unlabeled transition system (rooted
graph) 〈S,−→, s0〉. To see the connection between this system model and
the formalisms mentioned above, first consider a Murϕ description of a sys-
tem. Translation to the system model is easy since the Murϕ description
consists of (i) a type system similar to that in Section 6.1, (ii) a set of state
variables, and (iii) a set of rules that transform the values of state variables, in-
ducing the transition relation. Similarly, a well-formed net (extended or not)
consists of (i) a type system, (ii) a set of places (which can be seen as state vari-
ables of multiset types), and (iii) a set of transitions connected to places with
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arcs. The semantics of well-formed nets describe how the transitions modify
the values of places (state variables) and thus induce a transition relation.

Example 7.1 Recall the EWF-net in Figure 5.1(c) (reprinted in Figure 7.1),
discussed in Examples 5.4, 5.8, and 6.2. It can be seen as a system consisting
of two state variables, U of type Multiset(Struct(Trains,Secs)) and V of type
Multiset(Secs), where Trains is an unordered primitive type with the domain
DTrains = {ta, tb} and Secs is a cyclic primitive type with the domain DSecs =
{s0, . . . , s5}. ♣

succ(si) = s(i+1)mod6

pred(si) = s(i−1)mod6

s1
〈t, s〉

V

go

〈t, succ(s)〉 pred(s) s4

〈ta, s0〉
〈tb, s3〉

U
succ(s)

Figure 7.1: An EWF-net for a railroad system

Example 7.2 Figure 7.2 shows a Murϕ version of the mutual exclusion pro-
gram discussed in Example 2.1. The corresponding system has one state
variable s of type AssocArray(PIds,Loc), where PIds is an unordered prim-
itive type with the domain DPIds = {pid1, . . . , pidP} and Loc is an ordered
primitive type with the domain DLoc = {N, T, C}. The transition relation is
induced by the rules in the figure and the invariant “Mutual exclusion” states
the correctness property to be checked by Murϕ. ♣

The symmetries of systems are produced by the corresponding group Θ
of allowed domain permutations also described in Section 6.1. An allowed
domain permutation θ =

{
θT
}
T∈T acts on the states by permuting the values

assigned to the state variables, i.e., θ(s) : x 7→ θTx(s(x)) for each state s.
Under a subgroup Θ′ of Θ, two states, s and s′, are Θ′-equivalent if there
is an allowed domain permutation θ ∈ Θ′ such that θ(s) = s′. Under the
group Θ, one can simply say that Θ-equivalent states are equivalent. The fact
that the allowed domain permutations produce state space symmetries, i.e.,
that the state space symmetry equation

s −→ s′ ⇔ θ(s) −→ θ(s′)

holds for each θ ∈ Θ, is ensured by the restrictions on the allowed data
manipulation operations applied in the above mentioned formalisms (see
the previous chapter).

7.1.1 Stabilizers and Storing Subgroups

The concept of stabilizers is now briefly recalled. An allowed domain per-
mutation θ =

{
θT
}
T∈T fixes (or stabilizes) an element v ∈ DT of a type T if

θT (v) = v. The stabilizer (sub)group of v in a subgroup Θ′ of Θ is

Stab(Θ′, v) = {θ | θ ∈ Θ′ and θ is a stabilizer of v} .
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const

P: 2;

type

PIds: scalarset(P);

Loc: enum{N,T,C};

var

s: Array[PIds] of Loc;

Startstate

Begin

for i:PIds do s[i] := N; end;

End;

Ruleset i:PIds do

Rule "t"

s[i] = N ==> s[i] := T;

EndRule;

Rule "e"

s[i] = T & forall j:PIds do s[j] != C end ==> s[i] := C;

EndRule;

Rule "l"

s[i] = C ==> s[i] := N;

EndRule;

EndRuleset;

Invariant "Mutual exclusion"

forall i:PIds Do s[i] = C ->

forall j:PIds Do

i != j -> s[j] != C

End

End

Figure 7.2: A Murϕ version of the mutual exclusion program in Example 2.1

Similarly for states, θ is a stabilizer of a state s if θ(s) = s. Clearly this is
equivalent to the requirement that θTx(s(x)) = s(x) for each state variable
x ∈ X . Given a subgroup Θ′ of Θ, the stabilizer group of a state s in Θ′ is

Stab(Θ′, s) = {θ ∈ Θ′ | θ(s) = s} .

Obviously, Stab(Θ′, s) =
⋂
x∈X Stab(Θ′, s(x)). Stabilizers can also be cal-

culated iteratively: assuming that the state variables are x1, . . . , xn, let Θ1 =
Stab(Θ′, s(x1)), Θ2 = Stab(Θ1, s(x2)),. . . , and Θn = Stab(Θn−1, s(xn)).
Now Θn = Stab(Θ′, s). The group Stab(Θ, s) is simply called the stabilizer
group of the state s. The following theorem relates the stabilizer groups of
equivalent states.

Theorem 7.3 Assume that an allowed domain permutation θ ∈ Θ maps a
state s1 to s2, i.e., θ(s1) = s2. Then

1. Stab(Θ, s2) = θ ∗ Stab(Θ, s1) ∗ θ−1, where θ ∗ Stab(Θ, s1) ∗ θ−1 =
{θ ∗ θ′ ∗ θ−1 | θ′ ∈ Stab(Θ, s1)}, and
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2. the left coset θ ∗ Stab(Θ, s1) = {θ ∗ θ′ | θ′ ∈ Stab(Θ, s1)} is the set of
all allowed domain permutations mapping s1 to s2.

As a direct consequence, (i) |Stab(Θ, s1)| = |Stab(Θ, s2)|, (ii) there are
|Stab(Θ, s1)| allowed domain permutations mapping s1 to s2, and (iii) there
are |Θ|/|Stab(Θ, s1)| states that are equivalent to s1.

Proof. Part 1. For each θ′ ∈ Stab(Θ, s1), (θ ∗ θ′ ∗ θ−1)(s2) = (θ ∗ θ′)(s1) =
θ(s1) = s2 and thus θ ∗ Stab(Θ, s1) ∗ θ−1 ⊆ Stab(Θ, s2). For each θ′′ ∈
Stab(Θ, s2), θ′′ = θ ∗ θ−1 ∗ θ′′ ∗ θ ∗ θ−1 ∈ θ ∗ Stab(Θ, s1) ∗ θ−1 because
θ−1 ∗ θ′′ ∗ θ ∈ Stab(Θ, s1) and thus Stab(Θ, s2) ⊆ θ ∗ Stab(Θ, s1) ∗ θ−1.

Part 2. For each θ ∗ θ′ ∈ θ ∗ Stab(Θ, s1), (θ ∗ θ′)(s1) = θ(s1) = s2. On
the other hand, if θ′′(s1) = s2, then (θ−1 ∗ θ′′)(s1) = θ−1(s2) = s1 implies
that θ−1 ∗ θ′′ ∈ Stab(Θ, s1) and θ ∗ (θ−1 ∗ θ′′) = θ′′ belongs to the left coset
θ ∗ Stab(Θ, s1). �

Example 7.4 Recall the EWF-net in Figure 7.1 and Example 7.1. Consider
the initial state

s0 = {U 7→ 〈ta, s0〉+ 〈tb, s3〉, V 7→ s1 + s4}.

The stabilizer group Stab(Θ, s0) has two members:

θ1 =
(
θSecs
1 = ( s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5 ) , θTrains
1 =

( ta tb
ta tb

))
and

θ2 =
(
θSecs
2 = ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains
2 =

( ta tb
tb ta

))
.

♣

Note that although the group of allowed domain permutations Θ can be
very large, there is no need to represent it explicitly — it is implicitly repre-
sented by the knowledge of which primitive types are cyclic or unordered.
However, it is not so easy to represent a subgroup of Θ, for instance the sta-
bilizer group of a state. Fortunately, there are efficient data structures for
representation of permutation groups, for instance the Schreier-Sims repre-
sentation discussed in Section 4.1.1. In order to use those data structures,
one only has to rename the domains of permutable primitive types to be mu-
tually disjoint. Now any domain permutation (group) can be represented by
a permutation (group) on the set

⋃
T∈TP

DT .

7.2 VALUE TREES AND CHARACTERISTIC GRAPHS

Before proceeding to the algorithms for the orbit problems, some new con-
cepts have to be defined.

An element of a complex structured type can be easily illustrated by its
“parse tree” that is here called a value tree. Formally, for a type T and an el-
ement v ∈ DT , the value tree VT (T, v) is an edge weighted tree that has the
node T ::v as its root. The children of the root node are defined inductively
as follows.

– For a primitive type T , the root node T ::v has no children.
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Figure 7.3: A value tree

– A root node List(T )::〈v1, . . . , vn〉, has as its children the value trees
VT (T, vi), 1 ≤ i ≤ n, the edge to each VT (T, vi) having weight i.

– A root node Struct(T1, . . . , Tn)::〈v1, . . . , vn〉, has as its children the
value trees VT (Ti, vi), 1 ≤ i ≤ n, the edge to each VT (Ti, vi) hav-
ing weight i.

– A root node Set(T )::V has as its children the value trees VT (T, v) for
each v ∈ V , the edge to each such VT (T, v) having weight 1.

– A root node Multiset(T )::m has as its children the trees VT (T, v) for
each v ∈ DT with m(v) ≥ 1, the edge to each such VT (T, v) having
weight m(v).

– A root node AssocArray(T1, T2)::a has, for each 〈v1, v2〉 ∈ a, the fol-
lowing tree as its child with the edge to it having weight 1. The child
tree consists of an anonymous root node with two children: the value
tree VT (T1, v1) with the edge to it having weight 1 and the value tree
VT (T2, v2) with the edge to it having weight 2.

– A root node Union(T1, . . . , Tn)::〈Ti, vi〉 has the value tree VT (Ti, vi) as
its only child, the edge to it having weight 1.

Example 7.5 Figure 7.3 shows the value tree for the element

{pid1 7→ 〈false, pid2〉, pid3 7→ 〈true, pid1〉}

of type AssocArray(PIds,Struct(Bool,PIds)), where PIds is a primitive type
with the domain DPIds = {pid1, pid2, pid3, pid4} and Bool is a primitive type
with the domain DBool = {false, true}. ♣

It is straightforward to see that value trees have the following property:

Fact 7.6 If there is a path T ::v w1−→ n1
w2−→ n2 · · ·nk

wk+1−−−→ T ′::v′ from
the root node T ::v to a leaf node T ′::v′ in a value tree VT (T, v), then for
each allowed domain permutation θ, there is a path T ::θT (v)

w1−→ θ(n1)
w2−→

θ(n2) · · · θ(nk)
wk+1−−−→ T ′::θT ′

(v′) from the root node T ::θT (v) to a leaf node
T ′::θT ′

(v′) in the value tree VT (T, θT (v)) (where θ(ni) is an anonymous
node if ni is, and Ti::θTi(vi) if ni = Ti::vi).

Assume a state variable x of type T . The value tree of x in a state s con-
sists of the root node x that has the value tree VT (T, s(x)) as its only child,
the edge to it having weight 1. By combining the values trees of all state
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Figure 7.4: A characteristic graph

variables in a state, the characteristic graph for the state can be constructed
(cf. Section 4.2).

Definition 7.7 The characteristic graph of a state s is the vertex labeled and
edge weighted directed graph Gs obtained as follows.

1. Take the disjoint union of the value trees of each state variable x in the
state s.

2. For each primitive type T and each element v ∈ DT , merge all the
nodes T ::v into one node.

3. For each permutable primitive type T , if there is no node T ::v for an
element v ∈ DT , include it in the graph.

4. For each cyclic primitive type T , add a directed edge of weight 1 from
each node T ::v to its successor node T ::succT (v)

5. Label nodes as follows:
(a) Each node T ::v for a permutable primitive type T is labeled with

T .
(b) Each node T ::v for an ordered primitive type T is labeled with

T.v.
(c) Each node T ::v for a non-primitive type T is labeled with T .
(d) Each node x corresponding to a state variable x is labeled with

var_x.

Example 7.8 Recall the previous example and assume that Bool is an or-
dered primitive type and PIds is an unordered primitive type. Figure 7.4
now shows the characteristic graph of a state s over two state variables: (i)
x1 of type Struct(PIds,PIds) having the value s(x1) = 〈pid1, pid1〉, and (ii)
x2 of type AssocArray(PIds,Struct(Bool,PIds)) having the value s(x2) =
{pid1 7→ 〈false, pid2〉, pid3 7→ 〈true, pid1〉}. Note especially that there
are two edges from the node Struct(PIds,PIds)::〈pid1, pid1〉 to the node
PIds::pid1, and that there is an isolated node PIds::pid4. ♣

Since isomorphisms between two vertex labeled, edge weighted directed
graphs have to preserve node labels and edge weights, it is quite straightfor-
ward to see that characteristics graphs have the following properties:

Fact 7.9 For each allowed domain permutation θ, there is an isomorphism
γ from the characteristic graph Gs of a state s to the characteristic graph Gθ(s)
of the state θ(s) such that for each permutable primitive type T and for each
element v ∈ DT , θT (v) = v′ ⇔ γ(T ::v) = T ::v′.
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Figure 7.5: A modified characteristic graph

Fact 7.10 If there is an isomorphism γ from the characteristic graph Gs of
a state s to the characteristic graph Gs′ of a state s′, then there is a unique
allowed domain permutation θ mapping s to s′ such that for each permutable
primitive type T and for each v ∈ DT , γ(T ::v) = T ::v′ ⇔ θT (v) = v′.

From these two facts it follows directly that the characteristic graphs of two
states are isomorphic if and only if the states are equivalent. Furthermore,
the stabilizer subgroup of a state in Θ can be easily extracted from the auto-
morphism group of the characteristic graph for the state. Now consider the
following problem.

Problem 7.11 STATE EQUIVALENCE. Given two states, are they equiva-
lent?

The proof of Theorem 4 in [Ip and Dill 1996] shows that the STATE EQUIV-
ALENCE problem is at least as hard as the GRAPH ISOMORPHISM prob-
lem. With the following modifications to characteristic graphs, it can be
shown that the STATE EQUIVALENCE problem is actually as hard as the
GRAPH ISOMORPHISM problem. These modifications remove the “super-
fluous” nodes corresponding to the elements of permutable primitive types
not appearing in a state. First, remove item 3 in Definition 7.7 and replace
item 4 with

4 For each cyclic primitive type T , and for each node T ::v in the graph
do the following. If k > 0 is the smallest integer such that T ::succkT (v)
is a node in the graph, add a directed edge of weight k from T ::v to
T ::succkT (v).

It is easy to see that the modified characteristic graphs of two states are iso-
morphic if and only if the states are equivalent. Furthermore, the size of the
modified characteristic graph is linear in the size of the state (when states are
coded in a standard, uncompressed way, used in the examples for instance).

Corollary 7.12 STATE EQUIVALENCE is polynomial time many-one equiv-
alent to GRAPH ISOMORPHISM.

Example 7.13 Recall the EWF-net in Figure 7.1. Figure 7.5 shows the mod-
ified characteristic graph for the state {U 7→ 〈ta, s0〉+ 〈tb, s3〉, V 7→ s1 + s4}.
(For the sake of simplicity, some node names and labels that should be obvi-
ous are omitted). ♣
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7.3 A BASIC PARTITION BASED ALGORITHM

A basic partition based representative state algorithm is now presented. The
idea is that, given a state for which a representative is to be computed,

1. first assign the state a partitioning of the domains of the permutable
primitive types in a symmetry-respecting way,

2. then select an allowed domain permutation that is “compatible” with
the partitioning, and

3. return the state permuted with the selected domain permutation as the
representative.

This process is very similar to the one presented in Section 4.4 for place/tran-
sition nets. However, the technical details are different because states are
now much more complex data structures than the markings of place/transi-
tion nets. For instance, the invariants used in building the partitions are quite
different. For the sake of simplicity, in the rest of the chapter it is assumed
that the applied symmetry group is the group Θ of all allowed domain per-
mutations. If a subgroup of Θ were considered instead, the definitions given
in this and following sections (e.g., the compatibility definition between sym-
metries and partitions) would have to be reformulated to resemble those used
in Chapter 4.

First, recall the definitions and notations for ordered partitions described
in Section 2.3. An ordered permutable primitive type partition is a family
p =

{
pT
}
T∈TP

, where each pT is an ordered partition of the domain DT .
The set of all ordered permutable primitive type partitions is denoted by
P. The definitions for ordered partitions are naturally extended to ordered
permutable primitive type partitions. That is, p is discrete (unit) if all its
constituent partitions are discrete (unit). Similarly, a domain permutation
ψ =

{
ψT
}
T∈TP

acts on a partition p =
{
pT
}
T∈TP

by ψ(p) =
{
ψT (pT )

}
T∈TP

and
{
pT1
}
T∈TP

�
{
pT2
}
T∈TP

if pT1 � pT2 for each T ∈ TP . As only ordered
partitions will be used in the following, the prefix “ordered” is usually omitted
and one simply speaks of partitions. For convenience, the prefix “permutable
primitive type” may also be omitted whenever no confusion can arise.

A state s is associated with a partition by using a function that respects the
group of allowed domain permutations (i.e., symmetries of the system).

Definition 7.14 A function pg : S → P that maps each state to a per-
mutable primitive type partition is a partition generator if

pg(θ(s)) = θ(pg(s))

holds for all allowed domain permutations θ ∈ Θ and for all states s ∈ S .

That is, for permuted states the partition assigned by pg should be simi-
larly permuted. A way to produce such functions will be developed in Sec-
tion 7.3.1.

The compatibility condition between allowed domain permutations and
partitions is given by the following definition. As the group Θ of all allowed
domain permutations is considered, the definition is much simpler than the
corresponding Definition 4.2 for place/transition nets.
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Definition 7.15 An allowed domain permutation
{
θT
}
T∈TP

is compatible
with a partition

{
pT
}
T∈TP

if

– For each cyclic primitive type T with DT = {v0, . . . , vn−1} and pT =
[CT

1 , . . . , C
T
m], θT is such that it maps an element v ∈ CT

1 to v0.
– For each unordered primitive type T with DT = {v1, . . . , vn} and

pT = [CT
1 , . . . , C

T
m], θT must fulfill the following: if incell(pT , vi) <

incell(pT , vj), then for the permuted elements vi′ = θT (vi) and vj′ =
θT (vj) it holds that i′ < j′. That is, the n1 elements in the first cell CT

1

are mapped to v1, . . . , vn1 , the n2 elements in the second cell CT
2 are

mapped to vn1+1, . . . , vn1+n2 , and so on.

Obviously, for each partition there is at least one allowed domain permuta-
tion compatible with it.

The following lemma and theorem provide results corresponding to The-
orems 4.3 and 4.13, respectively, for place/transition nets.

Lemma 7.16 For each allowed domain permutation θ it holds that an al-
lowed domain permutation θ̂ is compatible with a partition p if and only if
the allowed domain permutation θ̂∗θ−1 is compatible with the partition θ(p).

Proof. It suffices to prove the “only if” direction because the compatibility
of θ̂ ∗ θ−1 with θ(p) then implies the compatibility of (θ̂ ∗ θ−1) ∗ (θ−1)−1 = θ̂
with θ−1(θ(p)) = p.

Let θ =
{
θT
}
T∈TP

, θ̂ =
{
θ̂T
}
T∈TP

, and p =
{
pT
}
T∈TP

such that pT =

[CT
1 , . . . , C

T
cT

].
For a cyclic primitive type T , assume that θ̂T maps a vi ∈ CT

1 to v0,
i.e., θ̂T (vi) = v0. Observe that θ̂T = θ̂T ◦ θT−1 ◦ θT and therefore (θ̂T ◦
θT

−1
)(θT (vi)) = v0. But now θT (vi) is in the first cell θT (CT

1 ) for the type T
in the partition θ(p) and thus θ̂ ∗ θ−1 fulfills the compatibility requirement
w.r.t. θ(p) for the type T .

For an unordered primitive type T , assume that for vi, vj ∈ DT it holds
that incell(θT (pT ), vi) < incell(θT (pT ), vj). Thus incell(pT , θT

−1
(vi)) <

incell(pT , θT
−1

(vj)) holds, too. As θ̂ is compatible with p, θ̂T (θT
−1

(vi)) =

vi′ = (θ̂T ◦ θT−1
)(vi) and θ̂T (θT

−1
(vj)) = vj′ = (θ̂T ◦ θT−1

)(vj) such that
i′ < j′, and thus θ̂ ∗ θ−1 fulfills the compatibility requirement w.r.t. θ(p) for
the type T . �

Next, assuming a fixed partition generator pg, define

posreps(s) =
{
θ̂(s) | θ̂ is compatible with pg(s)

}
to denote the set of possible representative states for a state s. For two equiv-
alent states, the sets of possible representative states are the same.

Theorem 7.17 For each state s and for each allowed domain permutation θ,
posreps(s) = posreps(θ(s)).
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Proof. By Lemma 7.16, θ̂ is compatible with pg(s) if and only if θ̂ ∗ θ−1 is
compatible with θ(pg(s)) = pg(θ(s)). Thus θ̂(s) ∈ posreps(s) if and only if
(θ̂ ∗ θ−1)(θ(s)) = θ̂(s) ∈ posreps(θ(s)). �

Example 7.18 Consider the state s = {U 7→ 〈ta, s1〉+ 〈tb, s3〉, V 7→ s4 + s5}
for the railroad system net in Figure 7.1 (recall Example 7.1). Assume a
partition generator pg that produces the partition

pg(s) =
(
pSecs

s,4 = [{s0, s2}, {s4, s5}, {s1, s3}], pTrains
s,4 = [{ta, tb}]

)
.

for s. Having the fixed ordering s0 < s1 < · · · < s5 between the railroad
sections and ta < tb between the train identities, the four possible allowed
domain permutations compatible with the partition are

θ1 =
(
θSecs
1 = ( s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5 ) , θTrains
1 =

( ta tb
ta tb

))
,

θ2 =
(
θSecs
2 = ( s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5 ) , θTrains
2 =

( ta tb
tb ta

))
,

θ3 =
(
θSecs
3 = ( s0 s1 s2 s3 s4 s5

s4 s5 s0 s1 s2 s3 ) , θTrains
3 =

( ta tb
ta tb

))
, and

θ4 =
(
θSecs
4 = ( s0 s1 s2 s3 s4 s5

s4 s5 s0 s1 s2 s3 ) , θTrains
4 =

( ta tb
tb ta

))
.

The corresponding possible representative states for s are:

θ1(s) = {U 7→ 〈ta, s1〉+ 〈tb, s3〉, V 7→ s4 + s5} = s,

θ2(s) = {U 7→ 〈ta, s3〉+ 〈tb, s1〉, V 7→ s4 + s5},
θ3(s) = {U 7→ 〈ta, s5〉+ 〈tb, s1〉, V 7→ s2 + s3}, and
θ4(s) = {U 7→ 〈ta, s1〉+ 〈tb, s5〉, V 7→ s2 + s3}.

Now consider the state s′ = {U 7→ 〈ta, s0〉 + 〈tb, s4〉, V 7→ s1 + s2} ob-
tained from s by rotating the railroad sections 3 steps and swapping the train
identities, i.e., by applying

θ =
(
θSecs = ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains =
( ta tb

tb ta

))
.

Since s′ = θ(s), the partition generator pg must assign the partition θ(pg(s))
to s′, i.e.,

pg(s′) = θ(pg(s)) =
(
pSecs

s′,4 = [{s3, s5}, {s1, s2}, {s0, s4}], pTrains
s′,4 = [{ta, tb}]

)
.

The four possible allowed domain permutations compatible with the parti-
tion are

θ1′ =
(
θSecs
1′ = ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains
1′ =

( ta tb
ta tb

))
= θ2 ∗ θ−1,

θ2′ =
(
θSecs
2′ = ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains
2′ =

( ta tb
tb ta

))
= θ1 ∗ θ−1,

θ3′ =
(
θSecs
3′ = ( s0 s1 s2 s3 s4 s5

s1 s2 s3 s4 s5 s0 ) , θTrains
3′ =

( ta tb
ta tb

))
= θ4 ∗ θ−1, and

θ4′ =
(
θSecs
4′ = ( s0 s1 s2 s3 s4 s5

s1 s2 s3 s4 s5 s0 ) , θTrains
4′ =

( ta tb
tb ta

))
= θ3 ∗ θ−1.

The corresponding possible representative states for s′ are:

θ1′(s
′) = {U 7→ 〈ta, s3〉+ 〈tb, s1〉, V 7→ s4 + s5} = θ2(s),

θ2′(s
′) = {U 7→ 〈ta, s1〉+ 〈tb, s3〉, V 7→ s4 + s5} = θ1(s),

θ3′(s
′) = {U 7→ 〈ta, s1〉+ 〈tb, s5〉, V 7→ s2 + s3} = θ4(s), and

θ4′(s
′) = {U 7→ 〈ta, s5〉+ 〈tb, s1〉, V 7→ s2 + s3} = θ3(s).
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Thus the sets of possible representative states for s and s′ are the same as
expected because of Lemma 7.16, Theorem 7.17, and the fact that the states
s and s′ are equivalent. ♣

The partition generators have the same basic limitations as theG-partition
generators for place/transition nets, recall Fact 4.14.

Fact 7.19 Let θ =
{
θT
}
T∈TP

be a stabilizer of a state s. Then pg(θ(s)) =

θ(pg(s)) implies pg(s) = θ(pg(s)) for any partition generator pg. Thus each
stabilizer of s respects the cells in pg(s), meaning that if v ∈ DT belongs to
the cell CT

i in the partition pg(s), then θT (v) belongs to the cell CT
i , too.

Optimal partition generator functions, i.e., functions that produce minimal
partitions whose cells are as small as possible, are probably not, in gen-
eral, computable in polynomial time. For if such functions could always be
computed efficiently, one would know by the fact above whether the group
Stab(Θ, s) is non-trivial (has other elements besides the identity): if a par-
tition has a cell with more than one element for some primitive type, then
Stab(Θ, s) is non-trivial. Combined with the construction in the proof of
Theorem 3.4 in [Ip 1996], the non-triviality of Stab(Θ, s) would reveal that
a graph has non-trivial automorphisms. For this task no polynomial-time al-
gorithms are currently known.

Assuming a fixed partition generator pg and a total order on the set S of
states, a canonical representative for a state s can be obtained by the follow-
ing procedure.

1. Build the partition pg(s).
2. Search through all the allowed domain permutations that are compat-

ible with pg(s). Let θ be such an allowed domain permutation that
results in the smallest state θ(s).

3. Return θ(s) as the representative.

That is, the smallest state in posreps(s) is returned as the canonical represen-
tative state (the canonicity is ensured by Theorem 7.17). Searching through
all the allowed domain permutations compatible with the partition pg(s) is
quite straightforward to do systematically. As in Section 4.3, the search could
be pruned by the stabilizers of the state and by the knowledge of which el-
ements are fixed at some point in the search. However, since the states are
more complex structures than the markings of place/transition nets, espe-
cially the second pruning technique is not so easily implementable and also
depends on the applied total order between the states. Because of this, it is
much simpler in practice to generate only a possibly non-canonical represen-
tative for a state s by just selecting an arbitrary allowed domain permutation
θ that is compatible with the partition pg(s) and returning the state θ(s) as
the representative. This procedure is described in Algorithm 7.1. Note that
for some states, even this simple procedure is enough to generate canonical
representatives as discussed in Section 7.4.3.

7.3.1 Partition Refiners and Invariants

It is now shown how partition generators defined above can be built in a way
similar to that used in Section 4.4.2. First, partition refiners are introduced.
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Algorithm 7.1 A representative algorithm based on partitions
Input: A state s

Output: A representative state that is equivalent to s

Require: A partition generator pg
1: Compute the partition p = pg(s)
2: Choose any allowed domain permutation θ that is compatible with p

3: Return θ(s) as the representative state

They are functions that, given a state and a partition, return a cell order
preserving refinement of the partition in a symmetry-respecting way.

Definition 7.20 A partition refiner is a function R : S ×P → P such that
for all states s ∈ S and for all partitions p ∈ P it holds that (i) R(s, p) � p

and (ii) θ(R(s, p)) = R(θ(s), θ(p)) for all allowed domain permutations θ.

Again, the composition R2 ?R1 of two partition refiners R1 and R2, defined
by (R2?R1)(s, p) = R2(s,R1(s, p)), is a partition refiner (see Lemma 4.17).
Thus any finite sequenceRn?Rn−1? · · ·?R1 of partition refiners, defined by
Rn(s,Rn−1(s, · · · (s,R1(s, p)) . . .)), is also a partition refiner. When a parti-
tion refiner is applied to the unit partition, the result is a partition generator.

Theorem 7.21 For a partition refiner R, the function pgR(s) = R(s, p0),
where p0 =

{
pT0 = [DT ]

}
T∈TP

is the unit partition, is a partition generator.

Proof. Observe that θ(p0) = p0 for any allowed domain permutation θ. Thus
pgR(θ(s)) = R(θ(s), p0) = R(θ(s), θ(p0)) = θ(R(s, p0)) = θ(pgR(s)). �

Now the task of building partition generators is reduced to building par-
tition refiners. This task is accomplished by using invariants. An invariant
is a function that tries to distinguish between the elements of a permutable
primitive type under a given state and partition. It must distinguish the el-
ements in a way that respects the allowed domain permutations, i.e., under
a permuted state and partition, the invariant should distinguish the similarly
permuted elements.

Definition 7.22 An invariant for a permutable primitive type T is a function
I from the domain DT×S×P such that for all elements v ∈ DT , for all states
s ∈ S, for all partitions p ∈ P, and for all allowed domain permutations
θ ∈ Θ, it holds that

I(v, s, p) = I(θT (v), θ(s), θ(p)).

The codomain of I is assumed to be a set with a total order <.

An invariant I is partition independent if it does not depend on the partition
argument, otherwise it is partition dependent. Invariants can also be defined
for types instead of states:

Definition 7.23 A type invariant for a permutable primitive type T in a type
T ′ is a function I from the domain DT ×DT ′ ×P such that for all elements
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v ∈ DT , for all elements v′ ∈ DT ′ , for all partitions p ∈ P, and for all allowed
domain permutations θ ∈ Θ, it holds that

I(v, v′, p) = I(θT (v), θT
′
(v′), θ(p)).

Again, the codomain of I is assumed to be a set with a total order <.

Type invariants can be interpreted as invariants:

Lemma 7.24 If I is a type invariant for a permutable primitive type T in a
type T ′ and x is a state variable of type T ′, then Ix(v, s, p) = I(v, s(x), p) is
an invariant for T .

Proof. For all θ ∈ Θ, Ix(θT (v), θ(s), θ(p)) = I(θT (v), (θ(s))(x), θ(p)) =
I(θT (v), θT

′
(s(x)), θ(p)) = I(v, s(x), p) = Ix(v, s(x), p). �

Example 7.25 For each primitive type T and for each type T ′, the function

]T
′

T : DT ×DT ′ → N ∪ {∞},

read “the element v of type T appears ]T ′
T (v, v′) times in the element v′ of

type T ′”, is defined by the following rules:

1. If T ′ is primitive type, then

]T
′

T (v, v′) =

{
1 if T = T ′ and v = v′

0 otherwise.

2. ]List(T ′)
T (v, 〈v′1, . . . , v′n〉) =

∑
1≤i≤n ]

T ′
T (v, v′i)

3. ]Struct(T ′
1,...,T

′
n)

T (v, 〈v′1, . . . , v′n〉) =
∑

1≤i≤n ]
T ′

i
T (v, v′i)

4. ]Set(T ′)
T (v, V ′) =

∑
v′∈V ′ ]T

′
T (v, v′)

5. ]Multiset(T ′)
T (v,m) =

∑
v′∈DT ′ m(v′)× ]T

′
T (v, v′)

6. ]AssocArray(T ′
1,T

′
2)

T (v, a) =
∑

〈v′1,v′2〉∈a
(]
T ′
1
T (v, v′1) + ]

T ′
2
T (v, v′2))

7. ]Union(T ′
1,...,T

′
n)

T (v, 〈T ′
i , v

′〉) = ]
T ′

i
T (v, v′)

It is easy to see that ]T ′
T (v, v′) = ]T

′
T (θT (v), θT

′
(v′)) for all allowed domain

permutations θ. Now the function I]T in T ′(v, v′, p) = ]T
′

T (v, v′) is a partition
independent type invariant for T in T ′. If x is a state variable of type T ′, then
the corresponding invariant is I]T in x(v, s, p) = I]T in T ′(v, s(x), p), i.e., the
number of times v appears in the value of x in the state s. ♣

More invariants will be introduced later. Given an invariant for a per-
mutable primitive type T and a partition p, the partition may be refined ac-
cording to the invariant by splitting the cells of the partition for T so that each
new cell contains all the elements in the original cell that are assigned to the
same value by the invariant.

Definition 7.26 Given an invariant I for a permutable primitive type T , de-
fine the function RI : S ×P → P by RI(s, p) = pref, where

1. for any permutable primitive type T ′ 6= T , pT
′

ref = pT
′ , and

2. the partition pTref is the one such that for all v, v′ ∈ DT ,
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(a) incell(pTref, v) = incell(pTref, v
′) if and only if

incell(pT , v) = incell(pT , v′) and I(v, s, p) = I(v′, s, p), and
(b) incell(pTref, v) < incell(pTref, v

′) if and only if either
i. incell(pT , v) < incell(pT , v′), or

ii. incell(pT , v) = incell(pT , v′) and I(v, s, p) < I(v′, s, p).

Lemma 7.27 The function RI is a partition refiner.

Proof. Similar to the proof of Lemma 4.20. �

When the partition refiner RI is applied to a partition p in a state s, i.e.,
partition p is replaced by RI(s, p), p is said to be refined according to I .
Given a sequence I1.I2. . . . .In of invariants (for arbitrary primitive types), a
partition p is said to be refined according to the sequence to mean that the
partition refiner sequence RIn ?RIn−1 ? · · · ?RI1 is applied to it. To sum up,
a partition generator can be obtained by

1. defining a sequence I1.I2. . . . .In of invariants, and
2. refining the unit partition according to the sequence (by Lemma 7.27

and Theorem 7.21).

Example 7.28 Consider the state s = {U 7→ 〈ta, s1〉+ 〈tb, s3〉, V 7→ s4 + s5}
for the railroad system net in Figure 7.1 (cf. Example 7.18). Initially, the
partition is the unit partition

ps,0 =
(
pSecs

s,0 = [{s0, s1, s2, s3, s4, s5}], pTrains
s,0 = [{ta, tb}]

)
.

The partition is now refined according to the sequence

I]Trains in U .I]Trains in V .I]Secs in U .I]Secs in V

of invariants described in Example 7.25. Refining the partition for Trains
according to the invariant I]Trains in U leads to

ps,1 =
(
pSecs

s,1 = [{s0, s1, s2, s3, s4, s5}], pTrains
s,1 = [{ta, tb}]

)
,

i.e., does not change anything since both ta and tb appear once in the value
of U . Similarly, refining the partition for Trains according to the invariant
I]Trains in V changes nothing. Refining the partition for Secs according to the
invariant I]Secs in U leads to

ps,3 =
(
pSecs

s,3 = [{s0, s2, s4, s5}, {s1, s3}], pTrains
s,3 = [{ta, tb}]

)
,

distinguishing the railroad sections s1 and s3 from the others because they
appear once in the value of U while the others do not. Further refining
according to the invariant I]Secs in V gives

ps,4 =
(
pSecs

s,4 = [{s0, s2}, {s4, s5}, {s1, s3}], pTrains
s,4 = [{ta, tb}]

)
.

Applying the same sequence of invariants to the other state s′ = {U 7→
〈ta, s0〉+ 〈tb, s4〉, V 7→ s1 + s2} in Example 7.18 gives the partition

ps′,4 = θ(ps,4) =
(
pSecs

s′,4 = [{s3, s5}, {s1, s2}, {s0, s4}], pTrains
s′,4 = [{ta, tb}]

)
.

♣
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7.3.2 Some Useful Invariants

A Successor Based Invariant for Cyclic Primitive Types
A partition dependent invariant is now introduced. Using this invariant, it
is possible to exploit the partition produced so far to obtain further partition
refinement. For a cyclic primitive type T , consider the function

IT,succ(v, s, p) = incell(pT , succT (v))

returning the cell number of the successor element of the element v in the
partition p. That is, IT,succ distinguishes between two elements if their suc-
cessors are already distinguished in the partition p.

Lemma 7.29 The function IT,succ is an invariant.

Proof. Assume that succT (v) belongs to the ith cell in the partition pT . Then
for any allowed domain permutation θ =

{
θT
}
T∈TP

in which θT = succkT
for a 1 ≤ k ≤ |DT |, the element succT (θT (v)) = succT (succkT (v)) =
succkT (succT (v)) = θT (succT (v)) belongs to the ith cell in the partition
θ(pT ). �

Therefore, if the initial partition is already refined according to an invari-
ant sequence, the resulting partition may be further refined by applying the
invariant IT,succ. The resulting partition may again be further refined by
the same invariant until no refinement happens, i.e., until a fixed point is
reached (in other words, the sequence of length |DT | of invariant IT,succ is
applied). Note that, while IT,succ is partition dependent, it does not depend
on the state argument.

Example 7.30 Reconsider the state

s = {U 7→ 〈ta, s1〉+ 〈tb, s3〉, V 7→ s4 + s5}

and the partition

ps,4 =
(
pSecs

s,4 = [{s0, s2}, {s4, s5}, {s1, s3}], pTrains
s,4 = [{ta, tb}]

)
for it given in Examples 7.18 and 7.28. Evaluating the invariant ISecs,succ in
the partition gives

ISecs,succ(s0, s, ps,4) = 3, ISecs,succ(s1, s, ps,4) = 1,
ISecs,succ(s2, s, ps,4) = 3, ISecs,succ(s3, s, ps,4) = 2,
ISecs,succ(s4, s, ps,4) = 2, and ISecs,succ(s5, s, ps,4) = 1.

Refining according to this results in the partition

ps,5 =
(
pSecs

s,5 = [{s0, s2}, {s5}, {s4}, {s1}, {s3}], pTrains
s,5 = [{ta, tb}]

)
.

Further evaluating the invariant ISecs,succ in this partition gives

ISecs,succ(s0, s, ps,5) = 4, ISecs,succ(s1, s, ps,5) = 1,
ISecs,succ(s2, s, ps,5) = 5, ISecs,succ(s3, s, ps,5) = 3,
ISecs,succ(s4, s, ps,5) = 2, and ISecs,succ(s5, s, ps,5) = 1.
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Refining according to this results in the partition

ps,6 =
(
pSecs

s,6 = [{s0}, {s2}, {s5}, {s4}, {s1}, {s3}], pTrains
s,6 = [{ta, tb}]

)
.

Now there are only two domain permutations compatible with the partition
(compared to four in Example 7.18):

θ1 =
(
θSecs
1 = ( s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5 ) , θTrains
1 =

( ta tb
ta tb

))
, and

θ2 =
(
θSecs
2 = ( s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5 ) , θTrains
2 =

( ta tb
tb ta

))
.

The corresponding possible representative states for s are:

θ1(s) = {U 7→ 〈ta, s1〉+ 〈tb, s3〉, V 7→ s4 + s5} = s, and
θ2(s) = {U 7→ 〈ta, s3〉+ 〈tb, s1〉, V 7→ s4 + s5}.

♣

Ordered Structured Types
Consider a structured type T ′ composed only of primitive types, lists, struc-
tures and unions. Now the value tree (recall Section 7.2) for any v′ ∈ DT ′ is
ordered in the sense that the children of each node can be totally ordered by
the edge labelings. Therefore, it is possible to uniquely number the nodes in
the value tree, for instance in a depth-first manner. Now each element v of
a primitive subtype T of T ′ that appears in the element v′ can be associated
with a unique number, e.g. the smallest number of those nodes of form T ::v
in the tree. The elements of T ′ not appearing in v′ can be associated with the
number 0. For instance, consider the value tree shown in Figure 7.6 for the
element l = 〈〈v3, 3, u1〉, 〈v3, 2, u3〉〉 of type List(Struct(T1, Int, T2)), where
T1 is an unordered primitive type with DT1 = {v1, v2, v3, v4} and T2 is a
cyclic primitive type with DT2 = {u1, u2, u3, u4}. The depth-first numbering
of nodes is shown in boldface font in the figure. Thus the elements of T1 are
associated with integers by the mapping {v1 7→ 0, v2 7→ 0, v3 7→ 1, v4 7→ 0}
and those of T2 by {u1 7→ 3, u2 7→ 0, u3 7→ 7, u4 7→ 0}. Define the function
Idfs-numbering of T in T ′ : DT ×DT ′×P → N to be the mapping described above.
Based on Fact 7.6, it should be obvious that it is a partition independent type
invariant with the following property: if two elements, v1 and v2, of type T
appear in the element v′, then I(v1, v

′, p) 6= I(v2, v
′, p). Therefore, refining

a partition according to such an invariant leads to a partition in which all
the elements appearing in the element v′ are in their own cells. For cyclic
primitive types, the resulting partition should be further refined by using the
successor based invariant described above.

The above procedure does not work for structured types composed of sets,
multisets or association arrays. This is because the value tree is not ordered
in the above sense and therefore a unique numbering cannot assigned to
the nodes as above. However, this restriction can be circumvented in some
special cases. For instance, consider an association array where the domain
of the first type (the type whose elements are associated with elements of
the second type) is not permuted by allowed domain permutations, e.g., a
type AssocArray(Int[1-3],Struct(T1, Int)), where Int[1-3] with the domain
DInt[1-3] = {1, 2, 3} is an ordered primitive type. This type corresponds to
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Int::3T1::v3 T2::u1 Int::2 T2::u3

1
2

3
2

31

21

4 8

9

T1::v3

1 2 3 5 6 7

Figure 7.6: An ordered value tree

Int[1-3]::1

1 2

Int[1-3]::3

1 2

T1::v3 Int::7 T1::v2 Int::1

1 2 21

T1::v3 Int::7 T1::v2 Int::1

1 2 21

1 3

Figure 7.7: Mapping an unordered value tree to an ordered one

a normal array of size 3 (with possibility for undefined elements), and the
elements in it are totally ordered. In this kind of case the value tree can
be modified to be ordered, as shown in Figure 7.7 for an element {1 7→
〈v3, 7〉, 3 7→ 〈v2, 1〉}, and the above procedure for producing type invariants
can be applied.

Although state variables of the “easy” structured types described above are
common in Murϕ descriptions, in high-level Petri nets the state variables
are of multiset types which are not handled by the above procedure. Yet the
above procedure can be applied to multisets over the “easy” structured types
in some important special cases: if a multiset contains only one element or
all the elements in the multiset have different multiplicities, then the value
tree becomes ordered and the above procedure works fine. The same applies
to set types in the case a set contains only one element.

There is an important special case that often occurs in high-level Petri
nets: a state variable of type Multiset(T ), where T is a permutable primi-
tive type. Define the partition independent type invariant Imultiplicity : DT ×
DMultiset(T ) ×P → N by Imultiplicity(v,m, p) = m(v). In the case T is an un-
ordered primitive type, Imultiplicity has the property that if a partition is refined
according to this invariant, resulting in a partition p1, then θMultiset(T )

2 (m) =

θ
Multiset(T )
3 (m) for all allowed domain permutations θ2 and θ3 that are com-

patible with partitions p2 � p1 and p3 � p1, respectively. Thus Imultiplicity in a
sense canonizes the multiset value m.

Hash-Like Invariants
The invariants introduced so far have been quite simple. More compli-
cated special invariants could be easily defined, but there are too many of
them to cover all imaginable cases. For instance, assuming a state variable
x of type Multiset(Struct(Int, T )), where Int with DInt = {0, 1, 2, . . .} is
an ordered primitive type, the function IT,x,〈3,?〉 for the type T defined by
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IT,x,〈3,?〉(v, s, p) = s(x)(〈3, v〉), i.e., the number of 〈3, v〉-elements in the
value of x in the state s, is an invariant. The more complicated the types of
the state variables get, the more complicated the possible invariants get, too.
It is now shown how to calculate a general purpose invariant that depends on
the structure of a state in a larger degree than the previous ones. It is also
partition dependent. Moreover, calculating the invariant is relatively easy: it
resembles the way one would compute a hash value for a structured object.

For each primitive type T , a function

gT (v, T ′, v′, p)

over four arguments is defined. The first argument is an element v in the
domain of the type T , the second argument is a type T ′, the third argument
is an element v′ in the domain of the type T ′, and the last argument is a
partition. The first argument v is the element for which the “hash value”
is computed, while the second and third arguments describe the object in
which this computation is performed. The fourth argument gives the current
partition. The function gT is defined recursively top-down on the structure
of the second argument type T ′: the value depends on the values of the
subtypes of T ′. In the leaves, when T ′ is a primitive type, the function has a
value depending on (i) the relationship between the types T and T ′, (ii) the
relationship between the values as the first and third argument, and (iii) the
partition p.

Firstly, an associative and commutative binary operation ⊕ on Z is as-
sumed. Furthermore, for each type T , hT : Z → Z and hT,n : Zn → Z
are assumed to be arbitrary functions unless otherwise stated. The inductive
definition of the function gT now is:

1. For an ordered primitive type T ′, gT (v, T ′, v′, p) = hT ′(v′), where hT ′

is a function from DT ′ to Z.
2. For a cyclic primitive type T ′,

gT (v, T ′, v′, p) ={
hT ′(incell(pT

′
, v′)) if T 6= T ′

hT ′,2(k, incell(pT
′
, v′)) if T = T ′ and v′ is the k-successor of v.

3. For an unordered primitive type T ′,

gT (v, T ′, v′, p) =

{
hT ′,2(incell(pT

′
, v′), 0) if T 6= T ′ or T = T ′ ∧ v 6= v′

hT ′,2(incell(pT
′
, v′), 1) if T = T ′ ∧ v = v′.

4. For a list type T ′ = List(T1),

gT (v, T ′, 〈v1, . . . , vn〉, p) = hT ′,n(gT (v, T1, v1, p), . . . , gT (v, T1, vn, p)).

5. For a structure type T ′ = Struct(T1, . . . , Tn),

gT (v, T ′, 〈v1, . . . , vn〉, p) = hT ′,n(gT (v, T1, v1, p), . . . , gT (v, Tn, vn, p)).

6. For a set type T ′ = Set(T1),

gT (v, T ′, v′, p) = hT ′

(⊕
v′′∈v′

gT (v, T1, v
′′, p)

)
.
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7. For a multiset type T ′ = Multiset(T1),

gT (v, T ′, v′, p) = hT ′

 ⊕
v′′∈DT1

,v′(v′′)≥1

hT ′,2(v
′(v′′), gT (v, T1, v

′′, p))

 .

8. For an association array type T ′ = AssocArray(T1, T2),

gT (v, T ′, v′, p) = hT ′

 ⊕
〈v1,v2〉∈v′

hT ′,2(gT (v, T1, v1, p), gT (v, T2, v2, p))

 .

9. For an union type T ′ = Union(T1, . . . , Tn),

gT (v, T ′, 〈Ti, v′〉, p) = hT ′(gT (v, Ti, v
′, p)).

Lemma 7.31 For each allowed domain permutation θ =
{
θT
}
T∈T ,

gT (v, T ′, v′, p) = gT (θT (v), T ′, θT
′
(v′), θ(p)).

Proof. By induction on the structure of T ′.
Induction base.

1. For an ordered primitive type T ′,

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′(θT

′
(v′))

= hT ′(v′)

= gT (v, T ′, v′, p)

since θT ′
(v′) = v′ for an ordered primitive type T ′.

2. Let T ′ be a cyclic primitive type.
(a) If T 6= T ′, then

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′(incell(θT

′
(pT

′
), θT

′
(v′)))

= hT ′(incell(pT
′
, v′))

= gT (v, T ′, v′, p).

(b) If T = T ′, then

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′,2(k, incell(θT

′
(pT

′
), θT

′
(v′)))

= hT ′,2(k, incell(pT
′
, v′))

= gT (v, T ′, v′, p)

because v′ is the k-successor of v if and only if θT (v′) is the k-
successor of θT (v).

3. Let T ′ be an unordered primitive type.
(a) If T 6= T ′ or T = T ′ ∧ v 6= v′, then

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′,2(incell(θT

′
(pT

′
), θT

′
(v′)), 0)

= hT ′,2(incell(pT
′
, v′), 0)

= gT (v, T ′, v′, p)

because in the case T = T ′, v 6= v′ if and only if θT (v) 6= θT (v′).
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(b) If T = T ′ ∧ v = v′, then

gT (θT (v), T ′, θT
′
(v′), θ(p)) = hT ′,2(incell(θT

′
(pT

′
), θT

′
(v′)), 1)

= hT ′,2(incell(pT
′
, v′), 1)

= gT (v, T ′, v′, p)

because v = v′ if and only if θT (v) = θT (v′).

Induction hypothesis. Assume that the lemma holds for types T1,. . . ,Tn.
Induction step.

– For a list type T ′ = List(T1),

gT (θT (v), T ′, θT
′
(〈v1, . . . , vn〉), θ(p)) =

gT (θT (v), T ′, 〈θT1(v1), . . . , θT1(vn)〉, θ(p)) =
hT ′,n(gT (θT (v), T1, θ

T1(v1), θ(p)), . . . , gT (θT (v), T1, θ
T1(vn), θ(p))) =

hT ′,n(gT (v, T1, v1, p), . . . , gT (v, T1, vn, p)) =
gT (v, T ′, 〈v1, . . . , vn〉, p).

– For a structure type T ′ = Struct(T1, . . . , Tn), the proof is similar to the
list case above.

– For a set type T ′ = Set(T1),

gT (θT (v), T ′, θT
′
(v′), θ(p)) =

hT ′

 ⊕
v′′∈θT ′ (v′)

gT (θT (v), T1, v
′′, θ(p))

 =

hT ′

 ⊕
v′′∈θT ′ (v′)

gT (v, T1, θ
T1
−1

(v′′), p)

 =

hT ′

( ⊕
v′′′∈v′

gT (v, T1, v
′′′, p)

)
=

gT (v, T ′, v′, p)

by using the commutativity and associativity of ⊕, and by noticing that
for all v′ ∈ DSet(T1) and all v′′ ∈ DT1 , v′′ ∈ v′ ⇔ θT1(v′′) ∈ θSet(T1)(v′).

– Assume that T ′ = Multiset(T1). Now an element v′′ ∈ DT1 has mul-
tiplicity n in a multi-set v′ ∈ DMultiset(T1) if and only if the element
θT1(v′′) has multiplicity n in the multi-set θT ′

(v′). The rest of the proof
is similar to the previous case.

– Let T ′ = AssocArray(T1, T2). Now for each v′ ∈ DAssocArray(T1,T2), a
pair 〈v1, v2〉 ∈ v′ if and only if 〈θT1(v1), θ

T2(v2)〉 ∈ θT
′
(v′). The rest of

the proof is similar to the case T ′ = Set(T1).
– For an union type T ′ = Union(T1, . . . , Tn),

gT (θT (v), T ′, θT
′
(〈Ti, v′〉), θ(p)) = gT (θT (v), T ′, 〈Ti, θTi(v′)〉, θ(p))

= hT ′(gT (θT (v), Ti, θ
Ti(v′), θ(p)))

= hT ′(gT (v, Ti, v
′, p))

= gT (v, T ′, 〈Ti, v′〉, p).

122 7. ALGORITHMS FOR DATA SYMMETRIES



�

Corollary 7.32 For a permutable primitive type T and for a type T ′,

IT,hash in T ′(v, v′, p) = gT (v, T ′, v′, p)

is a type invariant. Similarly, if x is a state variable of type T ′, then

IT,hash in x(v, s, p) = gT (v, T ′, s(x), p)

is an invariant.

Example 7.33 Consider again the state s = {U 7→ 〈ta, s1〉 + 〈tb, s3〉, V 7→
s4 + s5} for the railroad system net in Figure 7.1, recall Examples 7.18, 7.28
and 7.30. Let the commutative and associative operation ⊕ above be the
integer addition operation, and let

hTrains,2(1, 0) = 374, hTrains,2(2, 0) = 1374,
hTrains,2(1, 1) = 242 · 374, hTrains,2(2, 1) = 242 · 1374,
hSecs,2(k, 1) = (k + 1) · 837, hSecs,2(k, 2) = (k + 1) · 274,
hSecs,2(k, 3) = (k + 1) · 97, hSecs,2(k, 4) = (k + 1) · 4732,
hSecs,2(k, 5) = (k + 1) · 194, hSecs,2(k, 6) = (k + 1) · 958,
hMultiset(Struct(Trains,Secs)(x) = x, hMultiset(Struct(Trains,Secs)),2(x, y) = x · y,
hStruct(Trains,Secs),2(x, y) = x · by

2
c.

Initially, the partition is

ps,0 =
(
pSecs

s,0 = [{s0, s1, s2, s3, s4, s5}], pTrains
s,0 = [{ta, tb}]

)
.

Evaluating the invariant ISecs,hash in U in the partition gives

ISecs,hash in U (s0, s, ps,0) =
gSecs(s0,Multiset(Struct(Trains,Secs)), 〈ta, s1〉+ 〈tb, s3〉, ps,0) =

1 · gSecs(s0,Struct(Trains,Secs), 〈ta, s1〉, ps,0)
+1 · gSecs(s0,Struct(Trains,Secs), 〈tb, s3〉, ps,0) =

1 · (gSecs(s0,Trains, ta, ps,0) · bgSecs(s0,Secs, s1, ps,0)/2c)
+1 · (gSecs(s0,Trains, tb, ps,0) · bgSecs(s0,Secs, s3, ps,0)/2c) =

1 · (hTrains(1, 0) · bhSecs,2(1, 1)/2c) + 1 · (hTrains(1, 0) · bhSecs,2(3, 1)/2c) =
1 · (374 · b(2 · 837)/2c) + 1 · (374 · b(4 · 837)/2c) =

1 · (374 · 837) + 1 · (374 · 1674) =
939114,

and

ISecs,hash in U(s1, s, ps,0) = 625702,

ISecs,hash in U(s2, s, ps,0) = 1252152,

ISecs,hash in U(s3, s, ps,0) = 938740,

ISecs,hash in U(s4, s, ps,0) = 1565190, and
ISecs,hash in U(s5, s, ps,0) = 1251778.
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Now the partition is refined to

ps,1 =
(
pSecs

s,1 = [{s1}, {s3}, {s0}, {s5}, {s2}, {s4}], pTrains
s,1 = [{ta, tb}]

)
.

Evaluating ISecs,hash in V in this partition yields no further information since
the partition for Secs is already discrete. Evaluating ITrains,hash in U in the parti-
tion gives ITrains,hash in U(ta, s, ps,1) = 37883582 and ITrains,hash in U(tb, s, ps,1) =
12555928, refining the partition to

ps,2 =
(
pSecs

s,2 = [{s1}, {s3}, {s0}, {s5}, {s2}, {s4}], pTrains
s,2 = [{tb}, {ta}]

)
.

Now there is only one allowed domain permutation compatible with ps,2,
namely

θ =
(
θSecs = ( s0 s1 s2 s3 s4 s5

s5 s0 s1 s2 s3 s4 ) , θTrains =
( ta tb

tb ta

))
,

and the corresponding representative state is

θ(s) = {U 7→ 〈ta, s2〉+ 〈tb, s0〉, V 7→ s3 + s4}.

♣

Note that the h-functions defined in the above example are not probably op-
timal since they are quite similar. Although they suffice for demonstrative
purposes, in a real implementation some better bit-level manipulation oper-
ations should be applied instead in order to reduce the possibility of value
collision. The h-functions may also, for instance, employ pseudo-random
numbers to obtain relative independence from each other. The main thing
to take care of is that the operation ⊕ is commutative and associative.

7.4 IMPROVEMENTS BASED ON SEARCH TREES

Recall the Algorithm 7.1 for producing representative states. Given a state
s, the partition pg(s) is first produced, an arbitrary allowed domain permuta-
tion θ compatible with it is then selected, and finally the state θ(s) is returned
as the representative. In the case the partition pg(s) has a non-singleton cell
for a permutable primitive type, there may be many compatible allowed do-
main permutations, and thus, potentially but not necessarily, many possible
representative states for s. Especially, when pg(s) has a non-singleton cell of
size n for an unordered primitive type, the choice of which element will be
the “first” one does not affect the n − 1 choices taken for the rest of the ele-
ments (except that they cannot be the “first” element). Nor does it affect in
any way the choices that have to be made for other non-singleton cells. This
section presents an improvement that can reduce the set of possible repre-
sentative states. In this approach, the choices may affect or eliminate the
choices yet to be taken. The idea for the approach is borrowed from the stan-
dard algorithms for the graph isomorphism problem [McKay 1981; Kreher
and Stinson 1999].

First, a fixed partition generator pg and a fixed partition refiner R are
assumed.

Definition 7.34 The search tree of a state s and a partition p =
{
pT
}
T∈TP

is
a tree ST (s, p) defined by the following inductive rules.
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1. If each partition pT in p is discrete, then the tree ST (s, p) is the single
leaf node p.

2. Otherwise, let pT = [CT
1 , . . . , C

T
n ] be the first non-discrete partition in

p (according to some fixed ordering between the permutable primitive
types). Let CT

i = {vi,1, vi,2, . . .} be the first non-singleton cell in pT .
The tree ST (s, p) then consists of the root node p which has as its
children the trees ST (s,R(s, pj)), where for each 1 ≤ j ≤

∣∣CT
i

∣∣ the
partition pj is the same as p except that the partition for the type T is

pTj = [CT
1 , . . . , C

T
i−1, {vi,j}, CT

i \ {vi,j}, CT
i+1, . . . , C

T
n ].

In other words, for each element in the first non-discrete cell CT
i , the

cell is split in two parts by distinguishing the element into its own cell.
The child ST (s,R(s, pj)) above is called the vi,j -child of the node p

and the edge from p to it is labeled with T.vi,j . One may use p
T.v−−→ p′

to denote that p′ is a v-child of p.

The search tree ST (s) of a state s is the search tree ST (s, pg(s)).

Algorithm 7.1 is now modified as follows. Given a state s, travel along one,
arbitrary path in the search tree ST (s) until a leaf node (discrete partition) p

is encountered, take the unique allowed domain permutation θ that is com-
patible with p and return θ(s) as the representative. The resulting algorithm
is shown in Algorithm 7.2.

Algorithm 7.2 A representative algorithm based on search trees
Input: A state s

Output: A representative state that is equivalent to s

1: Build the partition p = pg(s)
2: Choose any path in the search tree ST (s, p) ending in a discrete partition

p′

3: Let θ be the unique allowed domain permutation compatible with p′

4: Return θ(s) as the representative state

Example 7.35 Consider the state s = {U 7→ 〈ta, s0〉+ 〈tb, s3〉, V 7→ s1 + s4}
for the railroad system net in Figure 7.1. Refining the initial partition with
the invariant sequence I]Trains in U .I]Trains in V .I]Secs in U .I]Secs in V (i.e., applying
the partition generator) gives the partition

p =
(
pSecs = [{s2, s5}, {s1, s4}, {s0, s3}], pTrains = [{ta, tb}]

)
.

This partition is the best one can get by using any partition generator function
in the sense that the elements in any cell in it cannot be distinguished by any
such function. This is because the allowed domain permutation

θ =
(
θSecs = ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains =
( ta tb

tb ta

))
is a stabilizer of s in Θ (recall Fact 7.19). The four domain permutations
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compatible with the partition are

θ1 =
(
θSecs
1 = ( s0 s1 s2 s3 s4 s5

s4 s5 s0 s1 s2 s3 ) , θTrains
1 =

( ta tb
ta tb

))
,

θ2 =
(
θSecs
2 = ( s0 s1 s2 s3 s4 s5

s4 s5 s0 s1 s2 s3 ) , θTrains
2 =

( ta tb
tb ta

))
,

θ3 =
(
θSecs
3 = ( s0 s1 s2 s3 s4 s5

s1 s2 s3 s4 s5 s0 ) , θTrains
3 =

( ta tb
ta tb

))
, and

θ4 =
(
θSecs
4 = ( s0 s1 s2 s3 s4 s5

s1 s2 s3 s4 s5 s0 ) , θTrains
4 =

( ta tb
tb ta

))
.

The corresponding two possible representative states for s are:

θ1(s) = θ4(s) = {U 7→ 〈ta, s4〉+ 〈tb, s1〉, V 7→ s2 + s5} and
θ2(s) = θ3(s) = {U 7→ 〈ta, s1〉+ 〈tb, s4〉, V 7→ s2 + s5}.

Assume the partition refiner R that is induced by the invariant sequence
that first contains six ISecs,succ invariants and after those enough hash-like in-
variants described in Section 7.3.2. The search tree ST (s) has p as the root
node. The cell {s2, s5} is now the first non-singleton cell in p and thus p is
split to

p1,1 =
(
pSecs

1,1 = [{s2}, {s5}, {s1, s4}, {s0, s3}], pTrains
1,1 = [{ta, tb}]

)
and

p2,1 =
(
pSecs

2,1 = [{s5}, {s2}, {s1, s4}, {s0, s3}], pTrains
2,1 = [{ta, tb}]

)
,

respectively. Refining these with the ISecs,succ invariants gives

p1,2 =
(
pSecs

1,2 = [{s2}, {s5}, {s1}, {s4}, {s0}, {s3}], pTrains
1,2 = [{ta, tb}]

)
and

p2,2 =
(
pSecs

2,2 = [{s5}, {s2}, {s4}, {s1}, {s3}, {s0}], pTrains
2,2 = [{ta, tb}]

)
,

respectively. Refining these with the invariant ISecs,hash in U or ISecs,hash in V

improves nothing since the partitions for Secs are already discrete. However,
refining the partitions with the ITrains,hash in U invariant, by using the functions
of Example 7.33, yields the partitions

p1,3 =
(
pSecs

1,3 = [{s2}, {s5}, {s1}, {s4}, {s0}, {s3}], pTrains
1,3 = [{ta}, {tb}]

)
and

p2,3 =
(
pSecs

2,3 = [{s5}, {s2}, {s4}, {s1}, {s3}, {s0}], pTrains
2,3 = [{tb}, {ta}]

)
,

respectively. These two partitions are the two leaf nodes of the search tree
ST (s), shown in Figure 7.8, and the allowed domain permutations compat-
ible with them are

θ1,3 =
(
θSecs
1,3 = ( s0 s1 s2 s3 s4 s5

s4 s5 s0 s1 s2 s3 ) , θTrains
1,3 =

( ta tb
ta tb

))
= θ1 and

θ2,3 =
(
θSecs
2,3 = ( s0 s1 s2 s3 s4 s5

s1 s2 s3 s4 s5 s0 ) , θTrains
2,3 =

( ta tb
tb ta

))
= θ4.

The corresponding representative state for s is:

θ1,3(s) = θ2,3(s) = {U 7→ 〈ta, s4〉+ 〈tb, s1〉, V 7→ s2 + s5}.

♣
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p

Secs.s5Secs.s2

p1,3 p2,3

Figure 7.8: A search tree

7.4.1 Properties of Search Trees

Some properties of search trees are listed below.

Theorem 7.36 For each allowed domain permutation θ, a partition pchild is a
v-child of the root node of the search tree ST (s, p) if and only if the partition
θ(pchild) is a θT (v)-child of the root node of the search tree ST (θ(s), θ(p)).

Proof. If p is discrete, then ST (s, p) has no children. But now θ(p) is also
discrete and ST (θ(s), θ(p)) has no children.

Clearly, pT = [CT
1 , . . . , C

T
n ] is the first non-discrete partition in p if and

only if θT (pT ) = [θT (CT
1 ), . . . , θT (CT

n )] is the first non-discrete partition in
θ(p). Furthermore, CT

i = {vi,1, vi,2, . . .} is the first non-singleton cell in pT

if and only if θT (CT
i ) = {θT (vi,1), θ

T (vi,2), . . .} is the first non-singleton cell
in θT (pT ). Now the root node p of the tree ST (s, p) has as its children the
nodes R(s, pj), where for each 1 ≤ j ≤

∣∣CT
i

∣∣ the partition pj is the same as
p except that the partition for T is

pTj = [CT
1 , . . . , C

T
i−1, {vi,j}, CT

i \ {vi,j}, CT
i+1, . . .].

But the root node θ(p) of the tree ST (θ(s), θ(p)) has as its children the nodes
R(θ(s), pj′), where for each 1 ≤ j ≤

∣∣θT (CT
i )
∣∣ =

∣∣CT
i

∣∣ the partition pj′ is
the same as θ(p) except that the partition for T is

pTj′ = [θT (CT1 ), . . . , θT (CTi−1), {θT (vi,j)}, θT (CTi ) \ {θT (vi,j)}, θT (CTi+1), . . .]

which equals to θ(pTj ). Thus the root node θ(p) of the tree ST (θ(s), θ(p))
has as its children the nodes R(θ(s), θ(pj)) = θ(R(s, pj)), meaning that
pchild is a vi,j -child of ST (s, p) if and only if θ(pchild) is a θT (vi,j)-child of
ST (θ(s), θ(p)). �

Corollary 7.37 For each allowed domain permutation θ,

p
T1.v1−−−→ p1 · · ·

Tn.vn−−−→ pn

is a path in the search tree ST (s, p) if and only if

θ(p)
T1.θT1 (v1)−−−−−−→ θ(p1) · · ·

Tn.θTn (vn)−−−−−−→ θ(pn)

is a path in the search tree ST (θ(s), θ(p)).

Corollary 7.38 For each allowed domain permutation θ, a partition p′ is a
node in the search tree ST (s, p) if and only if the partition θ(p′) is a node in
the search tree ST (θ(s), θ(p)).
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Since θ(pg(s)) = pg(θ(s)) for the partition generator pg, the above results
generalize to search trees for states. For instance:

Corollary 7.39 For each allowed domain permutation θ, a partition p′ is a
node in the search tree ST (s) if and only if the partition θ(p′) is a node in
the search tree ST (θ(s)).

Corollary 7.40 For each stabilizer θ ∈ Stab(Θ, s) of a state s in Θ, a par-
tition p′ is a node in the search tree ST (s) if and only if the partition θ(p′)
is.

Since R(s, p) � p holds for the partition refiner R used in the construc-
tion of search trees, some additional properties also hold. First of all, each de-
scendant of a node is a cell order preserving refinement of the node. Further-
more, all the nodes in a search tree are mutually distinct partitions. It is also
easy to verify that if θ is compatible with a partition p1, then θ is compatible
with any partition p2 such that p1 � p2.1 Therefore, the number of possible
representative states for Algorithm 7.2 is at most that for Algorithm 7.1 (when
the same partition generator is applied). In addition, by Corollary 7.40, it
holds that the number of leaf nodes in the search tree ST (s) is a multiple of
|Stab(Θ, s)|.

Given a discrete partition p, there is a unique allowed domain permuta-
tion, denote it by θ̂p, that is compatible with it. Thus the set of leaf nodes in
a search tree ST (s, p) defines the non-empty set of possible representative
states by

posreps(ST (s, p)) =
{
θ̂p(s) | p is a leaf node in ST (s, p)

}
.

Define posreps(ST (s)) = posreps(ST (s, pg(p))).

Lemma 7.41 For each allowed domain permutation θ, posreps(ST (s, p)) =
posreps(ST (θ(s), θ(p))).

Proof. For each allowed domain permutation θ,

1. by Corollary 7.38, a partition p is a leaf node in ST (s, p) if and only if
θ(p) is a leaf node in ST (θ(s), θ(p)), and

2. by Lemma 7.16, θ̂ is compatible with p if and only if θ̂ ∗ θ−1 is compat-
ible with the partition θ(p).

Thus (θ̂ ∗ θ−1)(θ(s)) = θ̂(s) ∈ posreps(ST (θ(s), θ(p))) if and only if θ̂(s) ∈
posreps(ST (s, p)). �

Corollary 7.42 For each allowed domain permutation θ, posreps(ST (s)) =
posreps(ST (θ(s)))

Thus the sets of states from which Algorithm 7.2 selects the representative
are the same for equivalent states.

1This would not necessarily hold if an arbitrary subgroup of Θ were used together with a
compatibility definition similar to the one in Chapter 4.
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7.4.2 Producing Canonical Representative States

Although Algorithm 7.2 is better than Algorithm 7.1, it does not necessarily
produce canonical representative markings. In order to accomplish this, as-
sume a total order < on the set S of states. Given a state s, one can now
select the smallest state in the set posreps(ST (s)) to be the representative
state. This can be done by performing a depth-first search in the search
tree ST (s). This procedure produces canonical representative states because
posreps(ST (s)) = posreps(ST (θ(s))) for any allowed domain permutation
θ by Corollary 7.42. The problem is that the search tree can have expo-
nentially many nodes, at least it has |Stab(Θ, s)| nodes by Corollary 7.40.
Fortunately, the search in the search tree can be pruned.

Pruning by Image Restriction. Assume that sbest is the smallest state in
posreps(ST (s)) found so far during the search tree traversal. If the current
partition whose children are not yet traversed is p and it can be deduced that
all the states in posreps(ST (s, p)) must be larger than sbest , then one can
backtrack the search, i.e., skip the subtree ST (s, p) of ST (s). Deducing
that all the states in posreps(ST (s, p)) must be larger than sbest can be done
by the following observations. First, if an allowed domain permutation θ̂1

is compatible with a descendant p1 of p in the search tree, then θ̂1 is also
compatible with p. Therefore, if a state is in posreps(ST (s, p)), then it must
be produced from s by applying an allowed domain permutation θ fulfilling
the following rules: (i) if pT = [CT

1 , . . . , C
T
c ] for an unordered primitive

type T with DT = {v1, . . . , vn}, then θ must map CT
1 to {v1, . . . , v|CT

1 |},

CT
2 to {v|CT

1 |+1, . . . , v|CT
1 |+|CT

2 |} and so on, and (ii) if pT = [CT
1 , . . . , C

T
c ]

for a cyclic primitive type T with DT = {v0, . . . , vn−1}, then θ must map an
element in CT

1 to v0. Thus the possible images of the elements of permutable
primitive types are restricted by p and one may be able to deduce that all
the states in posreps(ST (s, p)) must be larger than sbest . Of course, this
deduction step depends on the selected total order < on the states.

Pruning with Stabilizers. This technique is adapted from the standard
graph isomorphism algorithms, see e.g. [McKay 1981; Kreher and Stinson
1999] and also compare to the stabilizer pruning technique discussed in Sec-
tion 4.3. Consider the root node p of a subtree ST (s, p) in the search tree
ST (s). Assume that it has two children, e.g., p T.v−−→ p1 and p

T.v′−−→ p2. If there
is a stabilizer θ of s that (i) respects p, i.e., θ(p) = p, and (ii) maps v to v′, i.e.,
θT (v) = v′, then θ(p1) = p2 by Theorem 7.36. Now posreps(ST (s, p1)) =
posreps(ST (θ(s), θ(p1))) = posreps(ST (s, θ(p1))) = posreps(ST (s, p2)),
meaning that the possible representative states in the subtrees ST (s, p1) and
ST (s, p2) are the same. Therefore, if the subtree ST (s, p1) is already tra-
versed, there is no need to traverse the subtree ST (s, p2).

As in Section 4.3, stabilizers of a state can be found during the search
tree traversal. Assume that a leaf node p1 has already been visited in the
search tree. If currently visited leaf node is p2 and θ̂p2(s) = θ̂p1(s), then
θ̂−1

p2
∗ θ̂p1 is a stabilizer of s. Of course, the natural candidate for the partition

p1 to be remembered and compared against during the search tree traversal
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is the partition p for which the state θ̂p(s) is the smallest encountered so far.
Because for every leaf node p in the search tree and for every stabilizer θ there
is the corresponding leaf node θ(p) in the search tree and θ̂θ(p) = θ̂p ∗ θ−1

implying (θ̂p ∗ θ−1)−1 ∗ θ̂p = θ, every stabilizer can be encountered during
the search tree traversal.

Finding the stabilizers is not enough: recall that in order to prune the
child p

T.v′−−→ p2 of a node p and only traverse the child p
T.v−−→ p1, one must

have a stabilizer that (i) respects p, i.e., θ(p) = p, and (ii) maps v to v′.
There are two well-known strategies for storing the stabilizers found during
the search tree traversal and finding such that fulfill the above requirement,
see [Kreher and Stinson 1999; McKay 1981].

The first is to use a Schreier-Sims representation for storing the group of
stabilizers generated by the stabilizers found so far. Assume that the current
search node p, whose v, v′-children are to be pruned, is reached from the
root node of the search tree via a path pg(s) T1.v1−−−→ p1 · · ·

Tn.vn−−−→ p. If there
is a stabilizer θ that fixes all the elements v1, . . . , vn, then θ maps p to itself.
Thus one must find whether there is a stabilizer stored in the group of stabi-
lizers found so far fixing each v1, . . . , vn and mapping v to v′. This can be
accomplished by using an operation called base change on the Schreier-Sims
representation of the stabilizers found so far. Although this is can be done in
polynomial time in the size of the union of the domains of the permutable
primitive types (the number of permuted elements), it can still be quite time
consuming and requires non-trivial algorithms.

The other approach does not store the stabilizers at all. Assume that
a leaf node pn,1 has already been visited by traversing a path pg(s) T1.v1−−−→
p1 · · ·

Ti.vi−−→ pi
Ti+1.vi+1,1−−−−−−→ pi+1,1 · · ·

Tn,1.vn,1−−−−−→ pn,1 and that the whole subtree
ST (s, pi+1,1) has already been traversed. Suppose now that the currently vis-

ited leaf node is pn,2 and the path to it is pg(s) T1.v1−−−→ p1 · · ·
Ti.vi−−→ pi

Ti+1.vi+1,2−−−−−−→
pi+1,2 · · ·

Tn,2.vn,2−−−−−→ pn,2, i.e., the node pi is the latest common ancestor of pn,1
and pn,2. If θ̂pn,2(s) = θ̂pn,1(s), then θ = θ̂−1

pn,2
∗ θ̂pn,1 is a stabilizer of s. If

it also holds that θ maps pn,1 to pn,2, then θ maps each pj , 1 ≤ j ≤ i, to
itself (as pn,1 � pj and pn,2 � pj) and vi+1,1 to vi+1,2. This implies that θ
maps pi+1,1 to pi+1,2 and the subtrees ST (s, pi+1,1) and ST (s, pi+1,2) have
the same possible representative states. Therefore, one can immediately skip
the rest of the subtree ST (s, pi+1,2) as ST (s, pi+1,1) has already been tra-
versed. Furthermore, if a partition pj , 1 ≤ j ≤ i, has a v-child and a v′-child
and a power of θ maps v to v′, then the possible representative states in the
v- and v′-subtrees of pj are the same.

7.4.3 A Relative Hardness Measure for States

In a way similar to that in Sections 4.3 and 4.4, a hardness measure for states
can now be defined. The measure depends on the selected partition gener-
ator pg and on the partition refiner R. The set of states, S, are divided into
three classes:

– A state s is trivial if the search tree ST (s) contains only one node, i.e.,
pg(s) is a discrete partition.
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– A state s is easy if it is not trivial and for any two leaf nodes (discrete
partitions) p1 and p2 in the search tree ST (s), it holds that there is a
stabilizer θ ∈ Stab(Θ, s) such that θ(p1) = p2.

– A state s is hard if it is neither trivial nor easy.

These classes are closed under symmetries:

Lemma 7.43 If a state s is trivial/easy/hard, then θ(s) is also trivial/easy/hard
for any allowed domain permutation θ.

Proof. If a state s is trivial, then the search tree ST (s, pg(s)) contains only
one node, i.e., pg(s) is a discrete partition. But now for each allowed domain
permutation θ, it must be that pg(θ(s)) = θ(pg(s)) is also a discrete partition,
and thus the search tree ST (θ(s), pg(θ(s))) contains only one node and θ(s)
is also trivial.

Now assume that a state s is easy and take any allowed domain permu-
tation θ. The search tree ST (θ(s), pg(θ(s))) must contain more than one
node: if it contained only one node, θ(s) would be trivial and, by the previ-
ous case, θ−1(θ(s)) = s would also be trivial, which contradicts the assump-
tion that s is easy. Take any two leaf nodes, say p1′ and p2′ , in the search tree
ST (θ(s), pg(θ(s))). By Corollary 7.39, θ−1(p1′) and θ−1(p2′) are leaf nodes
in the search tree ST (s, pg(s)). Since s is easy, there is a stabilizer θstab of s

such that θstab(θ
−1(p1′)) = θ−1(p2′). Now θ ∗ θstab ∗ θ−1 is a stabilizer of θ(s)

and (θ ∗ θstab ∗ θ−1)(p1′) = θ(θstab(θ
−1(p1′))) = θ(θ−1(p2′)) = p2′ . Thus θ(s)

is also easy.
If a state s is hard, then the state θ(s) must also be hard for any allowed do-

main permutation θ. For if θ(s) were trivial (easy), then by the previous cases
θ−1(θ(s)) = s would also be trivial (easy), which contradicts the assumption
that s is hard. �

An algorithm is said to produce a canonical representative for a state s if it
holds that for all allowed domain permutations θ, the algorithm produces the
same representative state for s and θ(s). That is, if two states are equivalent,
then the algorithm will produce the same representative state for them.

Theorem 7.44 If a state s is trivial, then Algorithm 7.1 produces a canonical
representative for it.

Proof. Since s is trivial, the partition pg(s) is a discrete partition, there is
a unique allowed domain permutation θ̂ compatible with pg(s), and the
unique representative state is θ̂(s). For any allowed domain permutation
θ, θ(s) is also trivial, the partition pg(θ(s)) = θ(pg(s)) is discrete, θ̂ ∗ θ−1

is compatible with θ(pg(s)) by Lemma 7.16, and the representative state for
θ(s) is (θ̂ ∗ θ−1)(θ(s)) = θ̂(s). �

Theorem 7.45 If a state s is trivial or easy, then Algorithm 7.2 produces a
canonical representative for it.

Proof. The case in which s is trivial follows directly from Theorem 7.44.
Now assume that s is easy.
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Figure 7.9: Two isomorphic graphs

First, it is shown that choosing any path in the search tree ST (s, pg(s))
leads to the same representative state for s. Take any two leaf nodes, say p1

and p2, in the search tree ST (s, pg(s)). Since s is easy, there is a stabilizer
θ of s mapping p1 to p2, i.e., θ(p1) = p2. If θ̂ is the unique allowed domain
permutation compatible with p1, then θ̂ ∗ θ−1 is the unique allowed domain
permutation compatible with θ(p1) = p2 by Lemma 7.16. But now (θ̂ ∗
θ−1)(s) = θ̂(θ−1(s)) = θ̂(s) since θ−1 is a stabilizer of s because θ is.

Because the state θ(s) for any allowed domain permutation θ is also easy
and the sets of possible representative states for s and θ(s) are the same, i.e.,
posreps(ST (s)) = posreps(ST (θ(s))), by Corollary 7.42, the same repre-
sentative state is produced for both s and θ(s). �

7.4.4 A Sidetrack on Equivalence Testing of States

Consider the problem of determining whether two states, say s and s′, are
equivalent. Of course, given a canonical representative function, this task
is easy: compute the canonical representatives of the two states in question
and check whether they are equal. The other obvious (but highly inefficient)
solution is to test for each allowed domain permutation θ whether θ(s) = s′.
It is now shown how this approach can be improved by using the techniques
introduced in this section.

Assuming a partition generator pg, the definition of partition generators
directly implies the following: if θ is an allowed domain permutation map-
ping a state s to a state s′, then it must map the partition pg(s) to the partition
pg(s′). Based on this, it is sufficient to test whether θ(s) = s only for those
allowed domain permutations θ that map the partition pg(s) to the partition
pg(s′). Of course, if the cell structures of the partitions differ, i.e., there is
a primitive type T such that the partitions for it in pg(s) and pg(s′) differ in
the number of cells or in the size of the corresponding cells, it can be di-
rectly concluded that there are no allowed domain permutations mapping
pg(s) to pg(s′) and thus s and s′ are not equivalent. This approach of testing
whether two states are equivalent is not new, but has already been used in
e.g. [Jensen 1995; Lorentsen 2002]. However, the invariants described ear-
lier in this chapter, needed in building the partitions, are more powerful than
those used in [Jensen 1995; Lorentsen 2002]. A similar approach is also taken
in [Sistla et al. 2000], where symmetry-respecting signatures (partitions) are
first built for states to be tested and then random permutations mapping the
signatures to each other are generated to find out whether there is a permu-
tation mapping the states to each other. That is, an incomplete probabilistic
algorithm is used.
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Example 7.46 Consider a system that has a state variable G (for graph) of
type Set(Struct(Vertices,Vertices)), where Vertices is an unordered primi-
tive type with the domain DVertices = {v1, v2, v3, v4}. Take the states

s = {G 7→ {〈v1, v2〉, 〈v2, v3〉, 〈v3, v4〉, 〈v4, v1〉}}

and
s′ = {G 7→ {〈v3, v1〉, 〈v1, v4〉, 〈v4, v2〉, 〈v2, v3〉}}

corresponding to the directed graphs shown in Figure 7.9. The states are
equivalent since θ =

{
θVertices = ( v1 v2 v3 v4v3 v1 v4 v2 )

}
maps s to s′. After apply-

ing any partition generator pg to the states, it must be that the partition for
Vertices is pVertices = [{v1, v2, v3, v4}] in both partitions pg(s) and pg(s′).
This follows from Fact 7.19 by observing that the stabilizer group Stab(Θ, s)
is generated by

(
θVertices = ( v1 v2 v3 v4v2 v3 v4 v1 )

)
while Stab(Θ, s′) is generated by(

θVertices = ( v1 v2 v3 v4v4 v3 v1 v2 )
)
.

There are 4! = 24 allowed domain permutations mapping the partition
pVertices in pg(s) to the (same) partition pVertices in pg(s′). However, by The-
orem 7.3, there are only |Stab(Θ, s)| = 4 allowed domain permutations
mapping s to s′. This example can be extended to graphs with n vertices in
which there are n! allowed domain permutations mapping the partitions to
each other but only n of them mapping the states to each other. Thus n!− n
of n!, i.e., almost all allowed domain permutations will fail in the equivalence
testing approach described above. ♣

The above equivalence test can be improved by using search trees. As-

sume two states, s1 and s2. Take any path pg(s1)
T1,v1,1−−−−→ p1,1 . . .

Tn,v1,n−−−−→ p1,n

in the search tree ST (s1) ending in a discrete partition p1,n. Let θ̂1 be the
allowed domain permutation compatible with the leaf partition p1,n. If s1

and s2 are equivalent, then there is an allowed domain permutation θ map-
ping s1 to s2 and consequently (by Corollary 7.39) a leaf node θ(p1,n) in
the search tree ST (s2, pg(s2)). Then by Lemma 7.16, θ̂1 ∗ θ−1 is compat-
ible with θ(p1,n) and (θ̂1 ∗ θ−1)(s2) = (θ̂1 ∗ θ−1)(θ(s1)) = θ̂1(s1). Fur-
thermore, if θ̂2 is compatible with a discrete partition p2 in the search tree
ST (s2, pg(s2)) and θ̂1(s1) = θ̂2(s2), then (θ̂−1

2 ∗ θ̂1)(s1) = s2 and the
states are equivalent. Therefore, in order to check whether s1 and s2 are
equivalent, perform a backtracking search in the search tree ST (s2) starting
from the root node to find whether there is a leaf node p2 in it such that
the allowed domain permutation θ̂2 compatible with p2 maps s2 to θ̂1(s1).
The states s1 and s2 are equivalent if and only if such a leaf node can be
found. To prune the search tree, note that if θ maps s1 to s2, then by Corol-

lary 7.37 there is a path θ(pg(s1))
T1,θT1 (v1,1)−−−−−−−→ θ(p1,1) . . .

Tn,θTn (v1,n)−−−−−−−→ θ(p1,n)

in the search tree ST (s2) and by Lemma 7.16, θ̂1 ∗ θ−1 is compatible with
θ(p1,n) and (θ̂1 ∗ θ−1)(s2) = (θ̂1 ∗ θ−1)(θ(s1)) = θ̂1(s1). Therefore, if a path

pg(s2)
T1,v2,1−−−−→ p2,1 . . .

Tk,v2,k−−−−→ p2,k, k < n, is currently being traversed in the
search tree ST (s2), and the cell structures of p1,k and p2,k differ (meaning
that there cannot be any θ mapping p1,k to p2,k), there is no need to traverse
the children of the node p2,k. Naturally, this algorithm can be made proba-
bilistic by traversing the paths in the search tree ST (s2) randomly.
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Example 7.47 (Example 7.46 continued) Applying any reasonably efficient
invariants, such as those described in Section 7.3.2, in the partition refiner
R will make the search tree for the state s to look something like this:

[{v1}, {v3}, {v4}, {v2}] [{v2}, {v4}, {v1}, {v3}] [{v3}, {v1}, {v2}, {v4}] [{v4}, {v2}, {v3}, {v1}]

[{v1, v2, v3, v4}]

and the search tree for the state s′ is thus:

[{v1, v2, v3, v4}]

[{v1}, {v2}, {v3}, {v4}] [{v2}, {v1}, {v4}, {v3}] [{v4}, {v3}, {v1}, {v2}][{v3}, {v4}, {v2}, {v1}]

Now the domain permutation θ̂1 =
(
θ̂Vertices
1 = ( v1 v2 v3 v4v1 v4 v2 v3 )

)
compatible

with the leftmost leaf node
(
pVertices = [{v1}, {v3}, {v4}, {v2}]

)
of the search

tree for s maps s to θ̂1(s) = {G 7→ {〈v1, v4〉, 〈v4, v2〉, 〈v2, v3〉, 〈v3, v1〉}}.
Now taking any leaf node in the search tree for s′, the allowed domain per-
mutation compatible with it maps s′ to θ̂1(s). For instance, the allowed do-
main permutation θ̂2 =

(
θ̂Vertices
2 = ( v1 v2 v3 v4v2 v1 v4 v3 )

)
compatible with the leaf

node
(
pVertices = [{v2}, {v1}, {v4}, {v3}]

)
of the search tree for s′ maps s′ to

θ̂2(s
′) = {G 7→ {〈v4, v2〉, 〈v2, v3〉, 〈v3, v1〉, 〈v1, v4〉}} = θ̂1(s). ♣

As the above example shows, using search trees can bring exponential savings
in the state equivalence test approach.

7.5 HANDLING LARGE AND INFINITE UNORDERED PRIMITIVE TYPES

So far, it has been assumed that the domains of unordered primitive types
(scalar sets) are finite. However, in some cases it would be convenient to have
unordered primitive types with very large or even infinite domains. For in-
stance, modeling unbounded resources such as process identifiers would re-
quire the domain to be infinite. Without restrictions, infinite domains cause
problems in algorithms presented above because partitions are assumed to be
ordered lists of subsets of domains. For instance, if a partition contains two
cells that have infinitely many elements and an invariant would distinguish
infinitely many elements in both of these cells, then the partition refined ac-
cording to the invariant would result in an ordered list that first has infinitely
many cells (refined from the first original cell) and after that, yet infinitely
many cells (refined from the second original cell). This is absurd and would
require partitions to be something else than ordered lists or redefinition of the
invariant partitioning process. Likewise, having a cell with infinitely many
elements not as the last cell invalidates the Definition 7.15 of compatible
allowed domain permutations.

However, these problem can be circumvented by assuming finite states
in the sense that only finitely many elements in the infinite domain of each
unordered primitive type actually appear in a given state. This is a plausible
assumption since infinitely many elements appearing in a state would also
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cause some other problems, starting with the problem of how to represent
states. Now consider the allowed domain permutation θ that only swaps two
elements v and v′ of type T not appearing in the state s. Clearly θ(s) = s and
pg(θ(s)) = θ(pg(s)) implies pg(s) = θ(pg(s)), meaning that the elements
v and v′ must belong to the same cell in the partition assigned to s by any
partition generator pg. Therefore, partition generators cannot distinguish
between the elements not appearing in a state. Furthermore, if θ′ maps the
state s to s′, then θ′ ∗ θ also maps s to s′ meaning that it does not matter how
the non-appearing elements are permuted among themselves. Thus one may
conclude that the elements of unordered primitive types that do not appear
in the state in question can be ignored. An algorithmic view of this is to first
apply the following invariant for each unordered primitive type T during the
computation of the partition generator.

Definition 7.48 The invariant IT,appears(v, s, p) is defined to be 0 if the ele-
ment v of a type T appears in the value of any state variable in the state s

(meaning that I]T in x(v, s, p) ≥ 1 for a x ∈ X ), and 1 otherwise.

This splits the elements in the domain of T in two cells: those that appear in
the state s (a finite set under the assumption made above) and those that do
not (an infinite set). The latter cell is then ignored. Because it was chosen
that the elements appearing in the state are assigned the value 0 by IT,appears

(i.e., have a smaller value than those not appearing in the state), the n ele-
ments appearing in the state are in the first cell and are thus “compressed”
to be the first n elements in the domain by any allowed domain permutation
compatible with the partition produced this way.

Another view of the same idea is to first apply an allowed domain permu-
tation that “compresses” the elements appearing in the domains of infinite
unordered primitive types and then use the algorithms for finite domains de-
scribed previously without modification. That is, for a finite state s1, take any
allowed domain permutation θ1 that, for each infinite unordered primitive
type T , maps the n elements in DT appearing in the state s1 to the first n
elements in the domain DT . Similarly for another finite state s2. Now the
states s1 and s2 are equivalent if and only if s′1 = θ1(s1) and s′2 = θ2(s2)
are equivalent and if they are, there is an allowed domain permutation that
(i) maps θ1(s1) to θ2(s2) and (ii) for each infinite unordered primitive type
fixes all the elements not appearing in θ1(s1) or in θ2(s2). One can now
reduce the domains of all infinite unordered primitive types to finite sets
consisting only of the elements that appear in the state θ1(s1) or in θ2(s2).
Now θ1(s1) and θ2(s2) are equivalent under the allowed domain permutation
group for the reduced domains if and only if they are under the original al-
lowed domain permutation group. Furthermore, if θ1′(s

′
1) = θ2′(s

′
2), where

θ1′ and θ2′ are allowed domain permutations under the reduced domains,
then θ1′(θ1(s1)) = θ2′(θ2(s2)) when θ1′ and θ2′ are interpreted as if they were
allowed domain permutations for the unreduced domains. Thus the (canon-
ical) representatives computed under the reduced domains can be directly
used as (canonical) representatives for the original states.
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7.6 ALGORITHMS BASED ON CHARACTERISTIC GRAPHS

It is now illustrated how characteristic graphs of states described in Sec-
tion 7.2 can be used for deciding whether two states are equivalent and for
building a canonical representative for a state. The approach presented here
is quite similar to the one described in Section 4.2 for place/transition nets.

Assuming an algorithm for deciding whether two vertex labeled, edge
weighted directed graphs are isomorphic, the obvious algorithm for deciding
whether two states are equivalent under the group Θ of all allowed domain
permutations is

1. to build the characteristic graphs Gs and Gs′ for the two states s and s′

in question, and
2. then check whether Gs and Gs′ are isomorphic.

In the case of a graph isomorphism algorithm only supporting a weaker form
of graphs, say vertex labeled undirected graphs, one has to transform the char-
acteristic graphs into that graph class by replacing edges with additional, ap-
propriately labeled vertices (as illustrated in Section 4.2).

It is now shown how to obtain a canonical representative function for
states, provided that a canonizer for graphs is available (compare with the
approach taken in Section 4.2). Recall that a canonizer for graphs is formally
a function K from graphs to graphs such that

1. for each graph G, G and K(G) are isomorphic, and
2. if two graphs G and G′ are isomorphic, then K(G) = K(G′).

The graph K(G) is called the canonical version of G. Furthermore, it is
assumed that the graph canonizer produces graphs that have the vertex set
drawn from {1, 2, . . .}. That is, if G has a finite vertex set V , then the canoni-
cal version K(G) has the vertex set {1, 2, . . . , |V |}. In addition, it is assumed
that an isomorphism κ from G to K(G) is provided.

A graph canonizer K is extended to KS operating on states as follows.
Given a state s, consider its characteristic graph Gs. Assume that κ is a map-
ping from the vertices of Gs to the vertices of its canonical version K(Gs).
Take the allowed domain permutation θ =

{
θT
}
T∈TP

that is compatible
with κ, meaning that the following rules are fulfilled.

– For each cyclic primitive type T with DT = {v0, . . . , vn−1}, consider
the set {κ(T ::v) | v ∈ DT} of κ-images of the nodes in the character-
istic graph corresponding to the elements in the domain of T . Now
θT is the one that maps the element v ∈ DT having the smallest value
κ(T ::v) in the set to v0.

– For each unordered primitive type T with DT = {v1, . . . , vn}, θT is
the one that maps an element v ∈ DT to vi if and only if v has the ith
smallest value κ(T ::v) in the set {κ(T ::v) | v ∈ DT}.

Denote the state θ(s) by KS(s). The whole algorithm is shown in Algo-
rithm 7.3. The next theorem establishes the correctness of the algorithm.

Theorem 7.49 The function KS is a canonical representative function.
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Algorithm 7.3 A canonical representative algorithm based on characteristic
graphs
Input: A state s

Output: A canonical representative state for s

Require: A graph canonizer K
1: Build the characteristic graph Gs

2: Compute a mapping κ from Gs to its canonical version K(Gs)
3: Take the allowed domain permutation θ that is compatible with κ
4: Return θ(s) as the canonical representative state

Proof. Obviously, for any state s, s and KS(s) are equivalent since KS(s) is
obtained from s by using an allowed domain permutation.

Assume two equivalent states, s1 and s2. It now has to be proven that
KS(s1) = KS(s2). Take

1. the characteristic graphs Gs1 = 〈V1, . . .〉 and Gs2 = 〈V2, . . .〉 (which are
isomorphic since s1 and s2 are equivalent),

2. their canonical versions K(Gs1) and K(Gs2) (which are equal since Gs1

and Gs2 are isomorphic),
3. any isomorphism κ1 from Gs1 to K(Gs1) and any isomorphism κ2 from
Gs2 to K(Gs2), and

4. the two allowed domain permutations θκ1 =
{
θTκ1

}
T∈TP

and θκ2 ={
θTκ2

}
T∈TP

that are compatible with κ1 and κ2, respectively.

Showing that KS(s1) = KS(s2) equals to showing that θκ1(s1) = θκ2(s2).
For this, it suffices to prove that θκ2

−1 ∗ θκ1 =
{
θTκ2

−1 ◦ θTκ1

}
T∈TP

maps s1 to

s2. First, note that κ2
−1 ◦ κ1 is an isomorphism from the characteristic graph

Gs1 to the characteristic graph Gs2 . By Fact 7.10, there is an allowed domain
permutation θ =

{
θT
}
T∈TP

mapping s1 to s2 such that for each permutable
primitive type T and each v ∈ DT it holds that (κ2

−1 ◦ κ1)(T ::v) = T ::v′ ⇔
θT (v) = v′. It now suffices to show that θκ2

−1 ∗ θκ1 = θ. Also notice that
for any permutable primitive type T , the image set κ1({T ::v | v ∈ DT}) of
the nodes in the characteristic graph Gs1 corresponding to the elements of
the type must equal to the image set κ2({T ::v | v ∈ DT}) of the nodes in the
characteristic graph Gs2 since the isomorphisms κ1 and κ2 must respect node
types. The following two cases must be considered.

1. Let T be a cyclic primitive type with DT = {v0, . . . , vn−1}. Let v′ ∈
DT be the element for which κ1(T ::v′) = minv∈DT

κ1(T ::v). Similarly,
let v′′ ∈ DT be the element for which κ2(T ::v′′) = minv∈DT

κ2(T ::v).
Therefore, θTκ1

(v′) = v0 = θTκ2
(v′′) and θTκ2

−1 ◦ θTκ1
is the one that maps

v′ to v′′. But now also κ1(T ::v′) = κ2(T ::v′′), meaning that (κ2
−1 ◦

κ1)(T ::v′) = T ::v′′ and thus θT must equal to θTκ2

−1 ◦ θTκ1
.

2. Assume that T is an unordered primitive type with DT = {v1, . . . , vn}.
Let v′ ∈ DT be the element having the ith smallest value κ1(T ::v′)
among the vertices of form T ::v in the vertex set set V1. Similarly,
let v′′ ∈ DT be the element having the ith smallest value κ2(T ::v′′)
among the vertices of form T ::v in the vertex set set V2. Therefore,
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θTκ1
(v′) = vi = θTκ2

(v′′) and θTκ2

−1 ◦ θTκ1
maps v′ to v′′. But now also

κ1(T ::v′) = κ2(T ::v′′) and thus (κ2
−1 ◦ κ1)(T ::v′) = T ::v′′.
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Figure 7.10: Two characteristic graphs and their common canonical version

Example 7.50 Recall the net in Figure 7.1, discussed in Example 7.1. Con-
sider the states s1 = {U 7→ 〈ta, s0〉 + 〈tb, s3〉, V 7→ s1 + s4} and s2 = {U 7→
〈ta, s4〉+ 〈tb, s1〉, V 7→ s2 + s5}. The states are equivalent since both

θ1 =
(
θSecs
1 = ( s0 s1 s2 s3 s4 s5

s4 s5 s0 s1 s2 s3 ) , θTrains
1 =

( ta tb
ta tb

))
and

θ2 =
(
θSecs
2 = ( s0 s1 s2 s3 s4 s5

s1 s2 s3 s4 s5 s0 ) , θTrains
2 =

( ta tb
tb ta

))
map s1 to s2. The characteristic graphs Gs1 and Gs2 of the states are de-
picted in Figures 7.10(a) and 7.10(b), respectively. In the figures, the fol-
lowing common abbreviations for vertex names are used: v5 = Trains::ta,
v6 = Trains::tb, v7 = Secs::s0, v8 = Secs::s1, v9 = Secs::s2, v10 = Secs::s3,
v11 = Secs::s4, and v12 = Secs::s5. Assume that a graph canonizer produces
the canonical version K(Gs1) = K(Gs2) shown in Figure 7.10(c) for these
characteristic graphs.

There are two isomorphisms from Gs1 to K(Gs1):

κ1,1 =
(
U V v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
13 7 4 3 1 2 11 12 6 9 5 8 10 14

)
and

κ1,2 =
(
U V v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
13 7 4 3 2 1 12 11 8 10 14 6 9 5

)
.

The two allowed domain permutations compatible with these isomorphisms
are

θs1,1 =
(
θSecs

s1,1
= ( s0 s1 s2 s3 s4 s5

s4 s5 s0 s1 s2 s3 ) , θTrains
s1,1

=
( ta tb

ta tb

))
and

θs1,2 =
(
θSecs

s1,2
= ( s0 s1 s2 s3 s4 s5

s1 s2 s3 s4 s5 s0 ) , θTrains
s1,2

=
( ta tb

tb ta

))
,
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respectively. The canonical representative state for s1 is thus

KS(s1) = θs1,1(s1) = θs1,2(s1) = {U 7→ 〈ta, s4〉+ 〈tb, s1〉, V 7→ s2 + s5}.

Similarly, there are two isomorphisms from Gs2 to K(Gs2):

κ2,1 =
(
U V v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
13 7 4 3 1 2 11 12 5 8 10 14 6 9

)
and

κ2,2 =
(
U V v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12
13 7 4 3 2 1 12 11 14 6 9 5 8 10

)
.

The two allowed domain permutations compatible with these isomorphisms
are

θs2,1 =
(
θSecs

s2,1
= ( s0 s1 s2 s3 s4 s5

s0 s1 s2 s3 s4 s5 ) , θTrains
s2,1

=
( ta tb

ta tb

))
and

θs2,2 =
(
θSecs

s2,2
= ( s0 s1 s2 s3 s4 s5

s3 s4 s5 s0 s1 s2 ) , θTrains
s2,2

=
( ta tb

tb ta

))
,

respectively. The canonical representative state for s2 is thus

KS(s2) = θs2,1(s2) = θs2,2(s2) = {U 7→ 〈ta, s4〉+ 〈tb, s1〉, V 7→ s2 + s5}

equaling to KS(s1). ♣

Finally, note that Algorithms 7.1 and 7.3 can be combined as follows.
Given a state s, first compute the partition pg(s) for it by using a fixed par-
tition generator pg. If pg(s) is discrete, then return the state θ̂(s) as the
canonical representative state, where θ̂ is the allowed domain permutation
compatible with pg(s). If pg(s) =

{
pT
}
T∈TP

is not discrete, build the char-
acteristic graph Gs. Then change the label of each vertex of form T ::v for a
permutable primitive type T from T to T.incell(pT , v), and proceed to the
line 2 of Algorithm 7.3.

7.7 SOME EXPERIMENTAL RESULTS

The Algorithms 7.1, 7.2, and 7.3 proposed in this chapter have been imple-
mented in the version 3.1 of the Murϕ tool [Dill 1996]. The source code for
the extended Murϕ is available via

http://www.tcs.hut.fi/~tjunttil/

The Murϕ tool has been selected for the experiments for two reasons:

1. Murϕ already includes some symmetry reduction algorithms described
in [Ip and Dill 1996; Ip 1996]. Thus Murϕ already contains some com-
mon routines needed in the symmetry reduction method, for instance,
routines for permuting the states. This makes the implementation of
new algorithms easier. Furthermore, the already implemented algo-
rithms offer a good benchmark for new algorithms.

2. The standard Murϕ distribution includes some complex, “real-life” sys-
tem descriptions exhibiting symmetry.

This section presents some experimental results on the example systems con-
tained in the Murϕ distribution as well as on some others.
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The original Murϕ tool has four representative algorithms, described by
the help page of the tool and in [Ip 1996]. The first one simply applies all
the allowed domain permutations to the state in question and returns the
smallest state obtained as the canonical representative state. The other three
algorithms first build an ordered partition as in Section 7.3 by using some
invariants and then apply all, 10, or 1, respectively, domain permutations
compatible with the partition to the state and return the smallest state found
this way as the representative state. The Algorithm 7.1 in this chapter is
basically the last Murϕ algorithm except that more powerful invariants for
building the partition are used. In more detail, the partition generator in
Algorithms 7.1 and 7.2 is obtained as follows. First, the invariants for ordered
structured types described in Section 7.3.2 are applied on state variables if
possible. Then, for the other state variables, the hash-like invariants described
in Section 7.3.2 are applied until no refinement occurs. In Algorithm 7.2, the
applied partition refiner is produced by refining with the hash-like invariants.

In addition to the example systems in the Murϕ distribution, the follow-
ing graph enumeration systems inspired by the proof of Theorem 3.4 in [Ip
1996] are used. Figure 7.11 shows a Murϕ program called graphs5.m. It

const

nof_vertices: 5;

type

Vertex: scalarset(nof_vertices);

var

edges: Array[Vertex] of Array[Vertex] of boolean;

Startstate

Begin

for i:Vertex do for j:Vertex do

if(i!=j) then edges[i][j] := true; else edge s[i][j]:=false; end;

end; end;

End;

Ruleset i:Vertex do

Ruleset j:Vertex do

Rule "Delete edge"

edges[i][j]=TRUE ==> edges[i][j] := FALSE; edges[j][i] := FALSE;

EndRule;

EndRuleset;

EndRuleset;

Invariant "dummy"

TRUE

Figure 7.11: A system enumerating undirected graphs

has the unordered primitive type (scalar set) called Vertex with the domain
of size 5 for the vertices of a graph, and one state variable called edges of
type AssocArray(Vertex,AssocArray(Vertex,Bool)) with the intuition that
each vertex is associated with each vertex and a Boolean value describing
whether there is an edge from the first vertex to the second one. The ini-
tial state is such that all the edges except self-loops are in it. The transition
(rule) “Delete Edge” then removes one (undirected) edge, meaning that the
reachability graph of the system consists of all the self-loopless (undirected)
graphs with 5 vertices. Consequently, a minimal symmetry reduced reacha-
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bility graph consists of all such graphs up to isomorphism. Changing the rule
“Delete Edge” into

Ruleset i:Vertex do

Ruleset j:Vertex do

Rule "Delete edge"

edges[i][j]=TRUE ==> edges[i][j] := FALSE;

EndRule;

EndRuleset;

EndRuleset;

results in the system called digraphs5.m, enumerating all the directed graphs
of 5 vertices.

Table 7.1 shows the data of the experiments, run in an AMD Athlon 1GHz
processor powered PC machine under the Linux operating system. The run-
ning times reported are in seconds. Note that the Murϕ algorithms 1 and
2 as well as Algorithm 7.3 are canonical representative functions and thus
the state columns for these algorithms give the minimum size of the reduced
reachability graph.

As the Murϕ examples (from adash to n_peterson) show, Algorithm 7.1 is
quite fast and produces almost minimal reduced reachability graphs in these
examples. In some cases it produces considerably smaller number of states
than the original Murϕ algorithm 4, which is due to the use of more power-
ful invariants, especially the hash-like invariants described in Section 7.3.2.
Usually it slightly outperforms (in terms of generated states) even the Murϕ
algorithm 3 which has an advantage of trying 10 permutations instead of just
selecting an arbitrary one. Interestingly, the Algorithm 7.2 produces minimal
reduced reachability graphs for these instances although it is not a canoni-
cal representative algorithm. Furthermore, it is not significantly slower than
Algorithm 7.1.

In the graph enumeration problems (graphn and digraphn), the Algo-
rithms 7.1 and 7.2 perform very well, producing reachability graphs that are
reasonably close to the minimal ones. Again, especially the Algorithm 7.2
produces nearly optimal results in reasonably short time. The Murϕ algo-
rithms 2–4 do not perform very well because the invariants implemented in
the standard Murϕ tool cannot do anything in these systems. Note that al-
though the number of states in the reduced reachability graphs can be very
small, the number of times the representative function is called can be much
bigger. For instance, on the problem instance graph8 the Algorithm 7.2 pro-
duces a reachability graph with 12376 states but with 346528 edges (exe-
cuted transitions), meaning that the representative function is actually called
346528 times during the reachability graph generation.

The Algorithm 7.3 is also implemented by using the nauty tool (version
2.0 beta 9) [McKay 1990] as the graph canonizer. The bad running time
results shown in Table 7.1 are probably due to the same reasons as described
in Section 4.5.2. First, the characteristics graphs of states can be quite large.
The graphs can be large to begin with, and in addition, as nauty is specially
optimized for undirected graphs having no edge weights, some nodes have
to be added in the graphs in order to use nauty. As an example, the nauty
version of the characteristic graph of a state in the eadash instance has 2,768
vertices. Furthermore, the nauty tool is designed for dense graphs — the
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graphs are represented as adjacency matrixes. Thus a characteristic graph
of a state in the eadash instance takes almost one megabyte of memory to
represent. This considerably slows down the partition refinement algorithms
in nauty. Therefore, even though the search tree for the characteristic graph
of a state in nauty is usually very small, it may take a lot of time to compute it.
The results for Algorithm 7.3 might look quite different if a graph canonizer
designed for directed, edge weighted, and sparse graphs were available.

system Murϕ Murϕ Murϕ Murϕ
name algorithm 1 algorithm 2 algorithm 3 algorithm 4

states time states time states time states time
adash 10466 7 10466 7 10466 7 10471 7

cache3 31433 88 31433 8 31433 5 31433 5
eadash 133426 524 133426 374 133480 423 191088 378
ldash 254743 542 254743 403 254974 423 314194 447

mcslock1 23636 3 23636 3 23645 3 24668 3
mcslock2 540219 57 540219 63 540219 64 542071 61

list6 23410 7 23410 2 23410 2 23446 2
n_peterson 163298 5341 163298 42 163298 42 163298 42
digraphs3 16 1 16 1 16 1 64 1
digraphs4 218 1 218 1 554 1 4096 1
digraphs5 9608 111 9608 116 142113 392 >381000 >1h
graphs5 34 1 34 1 183 1 1024 1
graphs6 156 34 156 23 5408 12 32768 14
graphs7 1044 1963 1044 2008 >105000 >1h >141000 >1h
graphs8 >210 >1h >210 >1h >257000 >1h >335000 >1h

system Algorithm Algorithm Algorithm
name 7.1 7.2 7.3

states time states time states time
adash 10466 7 10466 7 10466 9766

cache3 31433 5 31433 5 31433 556
eadash 133439 312 133426 311 >200 >1h
ldash 254755 356 254743 354 >1030 >1h

mcslock1 23644 2 23636 2 23636 33
mcslock2 540220 47 540219 47 540219 735

list6 23410 2 23410 2 23410 62
n_peterson 163298 32 163298 35 163298 420
digraphs3 16 1 16 1 16 1
digraphs4 228 1 218 1 218 1
digraphs5 9832 5 9616 5 9608 54
graphs5 40 1 34 1 34 1
graphs6 243 1 156 1 156 5
graphs7 1683 5 1046 4 1044 63
graphs8 19601 99 12376 67 12346 1556

Table 7.1: Some experimental results

7.8 RELATED WORK

The algorithms in the Murϕ tool were already discussed in the previous sec-
tions, see especially Section 7.7. The main difference between Algorithm 7.1
and the Murϕ algorithms is that more powerful invariants are applied. Es-
pecially, the hash-like invariants in Section 7.3.2 are novel. Furthermore,
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also cyclic primitive types (non-reflexive ring symmetries in the Murϕ termi-
nology) are handled in the same unified way. The Algorithms 7.2 and 7.3
presented in this chapter are novel.

In [Huber et al. 1985b; Jensen 1995; Lorentsen 2002], a very elementary
version of the partition refinement process is given and applied to checking
whether two markings of a colored Petri net are equivalent. Especially, no
other structured types than those of form Multiset(T ), where T is an un-
ordered primitive type, are taken into account when refining partitions.

The approach taken in [Sistla et al. 2000] is discussed in Section 7.4.4.
Another kind of approach based on computational group theory is pre-

sented in [Lorentsen and Kristensen 2001]. The idea there is that, given a
state s, first compute the stabilizer group Stab(Θ, s) and then check all the
|Θ|/|Stab(Θ, s)| left coset representative permutations of Stab(Θ, s) in Θ
and select the smallest state obtained as the canonical representative state.
When |Stab(Θ, s)| is large, substantial savings can be obtained compared
to the approach in which all the permutations in Θ are tested. However,
whenever |Stab(Θ, s)| is very small, no such large savings are obtained; es-
pecially in systems in which most of the reachable states have the trivial sta-
bilizer group, i.e., |Stab(Θ, s)| = 1, all the permutations are tested in most
of the cases. Note that the states for which |Stab(Θ, s)| is very small are also
the states for which the symmetry reduction method has the largest reduc-
tion possibility: the number |Θ|/|Stab(Θ, s)| of equivalent states that can
be ignored is large. An advantage of this algorithm is that, as it gives the
stabilizer group Stab(Θ, s), some transitions starting from s can be pruned
away (never executed) because they will lead to equivalent successor states.
However, note that computing the group Stab(Θ, s) is in general as hard
as finding the automorphism group of a graph (a task for which no poly-
nomial time algorithms are known). In [Lorentsen and Kristensen 2001],
the stabilizer group Stab(Θ, s) is basically found iteratively by letting Θ1 =
Stab(Θ, s(x1)), Θ2 = Stab(Θ1, s(x2)), . . . , and Θn = Stab(Θn−1, s(xn)),
where x1, . . . , xn are the state variables. Now Θn = Stab(Θ, s). The back-
tracking algorithm presented in [Butler 1991] is used to compute each of the
groups Stab(Θi, s(xi+1)). However, one could compute the stabilizer group
Stab(Θ, s) and the lexicographically smallest state equivalent to s (i.e., a
canonical representative state for s) at the same time by the following proce-
dure. Assuming the state variables x1, . . . , xn, initialize the left coset θ0 ∗Θ0

to be I ∗ Θ, where I is the identity domain permutation. Let θi be a domain
permutation in the coset θi−1 ∗Θi−1 that has minimal θi(s(xi)) (the domains
of types are assumed to be totally ordered). The coset after the ith round is
then θi ∗ Θi, where Θi = Stab(Θi−1, s(xi)). Now θn ∗ Θn is a canonical
labeling coset, where θn(s) is the lexicographically smallest state equivalent
to s and Θn = Stab(Θ, s). In this approach, a modified version of the back-
tracking algorithm presented in [Butler 1991] is not only used to compute
each of the groups Θi = Stab(Θi−1, s(xi)) but also the domain permutation
θi in the coset θi−1 ∗Θi−1 that has minimal θi(s(xi)).

In [Chiola et al. 1991], an algorithm is presented for computing a sym-
bolic representative marking for each encountered marking in the context
of well-formed nets. To author’s understanding, the symbolic representative
for a marking there is in some sense the smallest equivalent marking aug-
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mented with the information telling which elements of permutable primitive
types can be freely interchanged (i.e., with the stabilizers of the marking that
are produced by single transpositions of elements of permutable primitive
types).
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8 CONCLUSIONS

The following sums up the main achievements of this thesis.
The computational complexity of sub-tasks arising in the symmetry reduc-

tion method for place/transition nets is established. Finding the symmetries
of a net is shown to be equivalent to the well-known problem of finding the
automorphisms of a graph. The task of deciding whether two markings are
equivalent under the symmetries is shown to be in general equivalent to the
problem of deciding whether two graphs are isomorphic. Interestingly, this
result holds independently of whether the symmetry group of the net is given
as input. Finding the lexicographically greatest marking in the orbit of a
marking (a canonical representative for the marking) is shown to be FPNP-
complete and thus equivalent to many classical optimization problems. It is
also shown that deciding whether a marking symmetrically covers another is
an NP-complete problem and that the symmetric coverability problem can-
not be combined with the canonical representative approach in a straightfor-
ward way.

New algorithms for producing canonical representatives for markings of
place/transition nets are described. The algorithms use a standard represen-
tation for permutation groups to store and search through the symmetries
of a net. The first algorithm maps the marking to be canonized to a corre-
sponding characteristic graph and then applies a black box graph canonizer to
obtain a canonical form of the characteristic graph. The canonical represen-
tative of the marking is then derived from it. The second proposed algorithm
is a variant of the backtracking search algorithms applied in computational
group theory. It searches through the group representation of the symme-
tries of the net in order to find a canonical representative for the marking.
The set of symmetries that have to be considered during the search is pruned
(i) by applying a novel compatibility definition between the markings and
symmetries, (ii) by using the best representative marking found earlier dur-
ing the search, and (iii) by the stabilizers of the marking found during the
search. The third algorithm combines the first and second ones by “open-
ing” the black box graph canonizer of the first algorithm. This is done by
first computing an ordered partition of the net elements for the marking to
be canonized. This corresponds to the preprocessing step used in many al-
gorithms for the graph isomorphism problem. The partition is then used to
prune the search in the group presentation of net’s symmetries (i.e., the sec-
ond algorithm). The experimental results show that the proposed algorithms
are competitive against the previous ones implemented in the LoLA tool. In
addition to place/transition nets, the proposed algorithms could also be ap-
plied in explicit state model checking of other system formalisms in which
the symmetries permute the components of the system but not the values of
the components.

Data symmetries, i.e., symmetries that are produced by symmetric use of
data values, of the high-level Petri net class of algebraic system nets are also
studied. It is defined how the permutations of data values used in a net pro-
duce corresponding permutations in its state space. A sufficient condition for
the arc and transition annotations appearing in the net is defined in order to

8. CONCLUSIONS 145



ensure that the produced state space permutations are actually symmetries.
Because the complexity analysis shows that verifying the condition is com-
putationally expensive, an approximation rule for the condition is also given.
This developed theory is illustrated by defining a concrete high-level Petri
net class of extended well-formed nets. The type system applied in such nets
allows the use of many common high-level data structures such as sets, asso-
ciation arrays and lists. The symmetries of such nets can be found by using
syntactical restrictions similar to those in well-formed nets and in the Murϕ
system. In addition to high-level Petri nets, the developed theory could also
be applied when developing new system description formalisms involving
high-level data structures. Especially, it allows one to analyze in the formal-
ism definition phase what kind of data symmetries are compatible with the
applied data manipulation operations.

New algorithms for the orbit problems under data symmetries are de-
scribed. The studied framework covers the well-formed nets (both the ex-
tended and original ones), the Murϕ system, as well as the most commonly
used instances of colored Petri nets. The first algorithm family is based on
building an ordered partitioning of the elements of the permutable primitive
types appearing in a state in a symmetry-respecting way. The partitioning is
then used to prune the set of symmetries that have to be considered when
comparing whether two states are equivalent or when building a representa-
tive for the state. The difference to the similar work, e.g. [Jensen 1995; Ip
1996], is that (i) the partition building process is rigorously defined, (ii) both
unordered and cyclic primitive types are handled in a uniform way, and (iii)
also some very expressive invariants, needed in the partition building pro-
cess, are proposed. Furthermore, a novel improvement based on building a
partition refinement search tree, inspired by the algorithms for graph isomor-
phism checking and canonization, is proposed. The second proposed algo-
rithm family is based on transforming states into corresponding characteristic
graphs and then performing the equivalence checking and canonization on
the graphs instead of states. This approach is similar to the one proposed
for place/transition nets in this thesis. Some of the proposed algorithms are
implemented in the Murϕ tool and the experimental results show that they
are competitive against the previous ones. The proposed approximation al-
gorithms, returning a possibly non-canonical representative for a state, also
seem to work quite well in the sense that they produce almost always canoni-
cal representatives in the experimented system instances. In addition to high-
level Petri nets and the Murϕ system, the proposed algorithms could also be
applied to model checking of software systems as discussed e.g. in [Bošnački
et al. 2002; Derepas and Gastin 2001; Lerda and Visser 2001; Iosif 2002] (see
the discussion in Section 1.2). As an example, consider a system consisting of
several concurrent processes, possibly of different types and each having a set
of local variables. Furthermore, assume that there are some global variables
as well as a shared memory with no pointer arithmetics allowed (e.g. a Java-
like heap memory in which each memory location contains a structure or an
array of elements). This kind of system can be easily interpreted as a system
of the typed state variable form assumed by the proposed algorithms. First,
an association array state variable associates each process identifier with the
state of the process (a structure consisting of the type, program counter, and
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local variables of the process). Secondly, the global variables are simply in-
terpreted as state variables. And thirdly, the shared memory is interpreted as
a state variable of an association array type, associating each memory location
to its contents. Assuming that the process identifiers and memory locations
can be permuted, i.e., are unordered primitive types, the proposed algorithms
can now be applied for producing representative states.

8.1 FUTURE WORK

Some potential future research and implementation topics are listed below.

An Efficient Graph Canonizer for Sparse, Vertex and Edge Labeled Di-
rected Graphs. In Sections 4.2 and 7.6, two quite similar approaches for
producing canonical representative states are introduced. In the approaches,
the state to be canonized is first transformed into the corresponding charac-
teristic graph. A canonical version of the characteristic graph is then pro-
duced by applying a black box graph canonizer algorithm, and the canon-
ical representative state is derived from the canonical version. The experi-
mental results in Sections 4.5.2 and 7.7 show that the current state-of-the-art
graph canonizer, the nauty tool, does not perform very well in the tested in-
stances. This is because nauty seems to be designed and specially optimized
for graphs that (i) are dense and undirected, and (ii) do not have edge la-
bels or weights. It would be interesting to see how this characteristic graph
approach would perform if a graph canonizer designed especially for sparse,
directed, and edge labeled/weighted graphs were applied instead.

The Babai-Luks Algorithm for Place/Transition Nets. An alternative for
producing canonical representative markings for place/transition nets not dis-
cussed in Chapter 4 is the string canonization algorithm in [Babai and Luks
1983]. The algorithm does the canonization orbit-wise, and also exploits
the imprimitivity of groups. However, the algorithm seems to involve more
complex permutation group algorithms and thus implementing it is left as a
future challenge.

Combining Structural and Data Symmetries. In some cases, it would be
necessary to combine structural symmetries (like those used in place/tran-
sition nets) with data symmetries (like those used in extended well-formed
nets). For instance, the net in Figure 5.1(b) has both types of symmetry. The
definitions and orbit problem algorithms for such “mixed” symmetries will
probably resemble the fusion of those for place/transition nets and extended
well-formed nets.

Practical Use of “Partial” Symmetries. As discussed in Section 1.2, there
are some approaches concerning the use of the symmetry reduction method
on systems that are only partially symmetric. For instance, in [Emerson and
Trefler 1999; Emerson et al. 2000], conditions weaker than the standard state
space symmetry condition, yet ensuring that applying the symmetry reduc-
tion method is sound, are defined. However, the issue of how to automat-
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ically find system description level information that produces such partial
symmetries is not addressed. The approach presented in [Sistla and Gode-
froid 2001], in which the transition constraints causing the asymmetry are
tracked during the reduced reachability graph generation, is possibly easier
to apply in practice. For instance, the approach could probably be applied to
data symmetries of high-level Petri nets or the Murϕ system by allowing the
use of symmetry breaking (incompatible) operations on permutable primi-
tive types. However, defining and implementing the approach in these for-
malisms may be a non-trivial task and requires further study.
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D. Bošnački and S. Leue, Eds. Lecture Notes in Computer Science,
vol. 2318. Springer, 22–41.

IP, C. N. 1996. State reduction methods for automatic formal verifica-
tion. Ph.D. thesis, Department of Computer Science, Stanford Uni-
versity.

IP, C. N. AND DILL, D. L. 1996. Better verification through symmetry.
Formal Methods in System Design 9, 1/2 (Aug.), 41–76.

JENSEN, K. 1981. Coloured Petri nets and the invariant-method. Theo-
retical Computer Science 14, 317–336.

JENSEN, K. 1992. Coloured Petri Nets: Basic Concepts, Analysis Meth-
ods and Practical Use: Volume 1, Basic Concepts, Second ed. Mono-
graphs in Theoretical Computer Science. Springer.

JENSEN, K. 1995. Coloured Petri Nets: Basic Concepts, Analysis Meth-
ods and Practical Use: Volume 2, Analysis Methods. Monographs in
Theoretical Computer Science. Springer.

JENSEN, K. 1996. Condensed state spaces for symmetrical coloured Petri
nets. Formal Methods in System Design 9, 1/2 (Aug.), 7–40.

JENSEN, K. 1997. Coloured Petri Nets: Basic Concepts, Analysis Meth-
ods and Practical Use: Volume 3, Practical Use. Monographs in The-
oretical Computer Science. Springer.

JENSEN, K. AND ROZENBERG, G., Eds. 1991. High-level Petri Nets;
Theory and Application. Springer.

JERRUM, M. 1986. A compact representation for permutation groups.
Journal of Algorithms 7, 1 (Mar.), 60–78.

JØRGENSEN, J. B. AND KRISTENSEN, L. M. 1998. Design/CPN
OE/OS Graph Manual. Computer Science Department, University
of Aarhus. Version 1.1.

JØRGENSEN, J. B. AND KRISTENSEN, L. M. 1999. Computer aided
verification of Lamport’s fast mutual exclusion algorithm using colored
Petri nets and occurrence graphs with symmetries. IEEE Transactions
on Parallel and Distributed Systems 10, 7 (July), 714–732.

152 BIBLIOGRAPHY



JUNTTILA, T. 1999a. Detecting and exploiting data type symmetries of al-
gebraic system nets during reachability analysis. Research Report A57,
Helsinki University of Technology, Laboratory for Theoretical Com-
puter Science, Espoo, Finland. Dec.

JUNTTILA, T. 2000. Computational complexity of the Place/Transition-
net symmetry reduction method. Research Report A59, Helsinki Uni-
versity of Technology, Laboratory for Theoretical Computer Science,
Espoo, Finland. Apr.

JUNTTILA, T. 2002a. New canonical representative marking algorithms
for place/transition-nets. Research Report A75, Helsinki University of
Technology, Laboratory for Theoretical Computer Science, Espoo,
Finland. Oct.

JUNTTILA, T. 2002b. Symmetry reduction algorithms for data symme-
tries. Research Report A72, Helsinki University of Technology, Labo-
ratory for Theoretical Computer Science, Espoo, Finland. May.

JUNTTILA, T. A. 1998. Towards well-formed algebraic system nets.
In Workshop Concurrency, Specification & Programming, H.-D.
Burkhard, L. Czaja, and P. Starke, Eds. Number 110 in Informatik-
Bericht. Humboldt-Universität zu Berlin, 116–127.

JUNTTILA, T. A. 1999b. Finding symmetries of algebraic system nets.
Fundamenta Informaticae 37, 3 (Feb.), 269–289.

JUNTTILA, T. A. 2001. Computational complexity of the Place/Transi-
tion-net symmetry reduction method. Journal of Universal Computer
Science 7, 4, 307–326.

KARP, R. M. AND MILLER, R. E. 1969. Parallel program schemata. Jour-
nal of Computer and System Sciences 3, 2 (May), 147–195.

KINDLER, E. AND REISIG, W. 1996. Algebraic system nets for modelling
distributed algorithms. Petri Net Newsletter 51, 16–31.

KINDLER, E. AND VÖLZER, H. 1998. Flexibility in algebraic nets. In
Application and Theory of Petri Nets 1998; Proceedings of the 19th
International Conference, ICATPN’98, J. Desel and M. Silva, Eds.
Lecture Notes in Computer Science, vol. 1420. Springer, 345–364.

KINDLER, E. AND VÖLZER, H. 2001. Algebraic nets with flexible arcs.
Theoretical Computer Science 262, 1–2 (July), 285–310.

KÖBLER, J., SCHÖNING, U., AND TORÁN, J. 1993. The Graph Iso-
morphism Problem: Its Structural Complexity. Progress in Theoreti-
cal Computer Science. Birkhäuser, Boston, USA.

KREHER, D. L. AND STINSON, D. R. 1999. Combinatorial Algo-
rithms: Generation, Enumeration and Search. CRC Press, Boca Ra-
ton, Florida, USA.

KRENTEL, M. W. 1988. The complexity of optimization problems. Jour-
nal of Computer and System Sciences 36, 3 (June), 490–509.

LERDA, F. AND VISSER, W. 2001. Addressing dynamic issues of program
model checking. See Dwyer [2001], 80–102.

LORENTSEN, L. 2002. Coloured Petri nets and state space generation
with the symmetry method. In Fourth Workshop and Tutorial on Prac-
tical Use of Coloured Petri Nets and the CPN Tools, K. Jensen, Ed.
Number DAIMI PB–560 in technical reports of the Department of
Computer Science, University of Aarhus. 121–138.

BIBLIOGRAPHY 153



LORENTSEN, L. AND KRISTENSEN, L. M. 2001. Exploiting stabilizers
and parallelism in state space generation with the symmetry method.
In Proceedings of the Second International Conference on Applica-
tion of Concurrency to System Design (ACSD 2001). IEEE Com-
puter Society, 211–220.

MÄKELÄ, M. 2001a. Optimizing enabling tests and unfoldings of alge-
braic system nets. In Application and Theory of Petri Nets 2001; Pro-
ceedings of the 22nd International Conference, ICATPN 2001, J.-M.
Colom and M. Koutny, Eds. Lecture Notes in Computer Science, vol.
2075. Springer, 283–302.

MÄKELÄ, M. 2001b. A reachability analyser for algebraic system nets.
Research Report A69, Helsinki University of Technology, Laboratory
for Theoretical Computer Science, Espoo, Finland. June.

MÄKELÄ, M. 2002. Maria: Modular reachability analyser for algebraic
system nets. In Application and Theory of Petri Nets 2002; Proceed-
ings of the 23rd International Conference, ICATPN 2002, J. Esparza
and C. Lakos, Eds. Lecture Notes in Computer Science, vol. 2360.
Springer, 434–444.

MANKU, G. S., HOJATI, R., AND BRAYTON, R. 1998. Structural sym-
metry and model checking. See Hu and Vardi [1998], 159–171.

MCKAY, B. D. 1981. Practical graph isomorphism. Congressus Numer-
antium 30, 45–87.

MCKAY, B. D. 1990. Nauty user’s guide (version 1.5). Tech. Rep. TR-
CS-90-02, Computer Science Department, Australian National Uni-
versity.

MILLER, G. L. 1979. Graph isomorphism, general remarks. Journal of
Computer and System Sciences 18, 2 (Apr.), 128–142.

PANDEY, M. AND BRYANT, R. E. 1999. Exploiting symmetry when ver-
ifying transistor-level circuits by symbolic trajectory evaluation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 18, 7 (July), 918–935.

PAPADIMITRIOU, C. H. 1995. Computational Complexity. Addison-
Wesley, Reading, Massachusetts, USA.

PELED, D. A. AND VARDI, M. Y., Eds. 2002. Formal Techniques for
Networked and Distributed Systems, FORTE 2002. Lecture Notes in
Computer Science, vol. 2529. Springer.

PETRUCCI, L. 1990. Combining Finkel’s and Jensen’s reduction tech-
niques to build covering trees for coloured nets. Petri Net Newslet-
ter 36, 32–36.

REISIG, W. AND ROZENBERG, G., Eds. 1998a. Lectures on Petri Nets
I: Basic Models. Lecture Notes in Computer Science, vol. 1491.
Springer.

REISIG, W. AND ROZENBERG, G., Eds. 1998b. Lectures on Petri Nets
II: Applications. Lecture Notes in Computer Science, vol. 1492.
Springer.

SCHMIDT, K. 2000a. How to calculate symmetries of Petri nets. Acta In-
formatica 36, 7, 545–590.

SCHMIDT, K. 2000b. Integrating low level symmetries into reachabil-
ity analysis. In Tools and Algorithms for the Construction and Anal-

154 BIBLIOGRAPHY



ysis of Systems; 6th International Conference, TACAS 2000, S. Graf
and M. Schwartzbach, Eds. Lecture Notes in Computer Science, vol.
1785. Springer, 315–330.

SCHMIDT, K. 2000c. LoLA: A low level analyser. In Application and The-
ory of Petri Nets 2000; Proceedings of the 21st International Confer-
ence, ICATPN 2000, M. Nielsen and D. Simpson, Eds. Lecture Notes
in Computer Science, vol. 1825. Springer, 465–474.

SISTLA, A. P. AND GODEFROID, P. 2001. Symmetry and reduced sym-
metry in model checking. In Computer Aided Verification: 13th Inter-
national Conference, CAV 2001, G. Berry, H. Comon, and A. Finkel,
Eds. Lecture Notes in Computer Science, vol. 2102. Springer, 91–
103.

SISTLA, A. P., GYURIS, V., AND EMERSON, E. A. 2000. SMC: A
symmetry-based model checker for verification of safety and liveness
properties. ACM Transactions on Software Engineering and Method-
ology 9, 2 (Apr.), 133–166.

STARKE, P. H. 1991. Reachability analysis of Petri nets using symmetries.
Systems Analysis Modelling Simulation 8, 4/5, 293–303.

TIUSANEN, M. 1994. Symbolic, symmetry, and stubborn set searches. In
Application and Theory of Petri Nets 1994, R. Valette, Ed. Lecture
Notes in Computer Science, vol. 815. Springer, 511–530.

VALMARI, A. 1991. Stubborn sets of coloured Petri nets. In XII Interna-
tional Conference on Application and Theory of Petri Nets. Gjern,
Denmark, 102–121.

VALMARI, A. 1998. The state explosion problem. See Reisig and Rozen-
berg [1998a], 429–528.

WANG, F. AND SCHMIDT, K. 2002. Symmetric symbolic safety-analysis
of concurrent software with pointer data structures. See Peled and
Vardi [2002], 50–64.

WIRSING, M. 1990. Algebraic specification. In Handbook of Theoretical
Computer Science, J. van Leeuwen, Ed. Vol. B: Formal models and
semantics. Elsevier Science Publishers B.V., Chapter 13, 675–788.

BIBLIOGRAPHY 155







HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE
RESEARCH REPORTS

HUT-TCS-A67 Timo Latvala
Model Checking Linear Temporal Logic Properties of Petri Nets with Fairness Constraints.
January 2001.

HUT-TCS-A68 Javier Esparza, Keijo Heljanko

Implementing LTL Model Checking with Net Unfoldings. March 2001.

HUT-TCS-A69 Marko Mäkelä
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