
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 79

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 79

Espoo 2003 HUT-TCS-A79

NESTED EMPTINESS SEARCH FOR GENERALIZED BÜCHI

AUTOMATA

Heikki Tauriainen

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 79

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 79

Espoo 2003 HUT-TCS-A79

NESTED EMPTINESS SEARCH FOR GENERALIZED BÜCHI

AUTOMATA

Heikki Tauriainen

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio

Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Heikki Tauriainen

ISBN 951-22-6667-9

ISSN 1457-7615

2003

ABSTRACT: We generalize the classic explicit state emptiness checking al-
gorithm for Büchi word automata (the “nested depth-first search”) into Büchi
automata with multiple acceptance conditions. Bypassing an explicit accep-
tance condition reduction improves the algorithm’s worst case memory re-
quirements. The generalized algorithm handles multiple unconditional and
weak fairness constraints directly and is compatible with well-known proba-
bilistic explicit state model checking techniques.

KEYWORDS: Model checking, Büchi automata emptiness checking, nested
depth-first search

CONTENTS

1 Introduction 1

2 Preliminaries 2
2.1 Definitions . 2
2.2 Acceptance Condition Reduction 3

3 Emptiness Checking Algorithm 4
3.1 Outline . 5
3.2 Complexity . 5
3.3 Correctness . 7

4 Discussion 12
4.1 Disadvantages . 12
4.2 Simple Extensions . 12
4.3 Compatibility with Related Work 13

References 14

iv CONTENTS

1 INTRODUCTION

The automata-theoretic verification framework [23] provides a powerful ap-
proach to the correctness analysis of finite-state reactive and concurrent sys-
tems, by, for example, capturing the expressive power of many temporal log-
ics used for the specification of correctness requirements. In this framework,
both the system and its correctness requirements are expressed as finite au-
tomata on infinite objects, such as Büchi word automata: finite automata
operating on infinite strings, the acceptance of which is determined by a set
of states that the automaton should visit infinitely often while processing a
string. In some applications this set of accepting states is generalized into a
family of accepting state sets such that a string is accepted only if the basic
acceptance condition holds separately for each individual set in the family.
For example, multiple acceptance conditions may arise in temporal logic
model checking, where the correctness requirements are translated automat-
ically into Büchi automata from some other formalism such as a linear time
temporal logic formula [10].

Interpreted itself as an automaton, the (reachable) state space of the for-
mal model of the system under investigation encodes a set of infinite strings
corresponding to the computation paths that exist in the system. The correct-
ness specification is represented as an automaton that recognizes a collec-
tion of undesirable computation paths violating the specification. Checking
whether the system meets the correctness specification is done by taking the
synchronous product of all concurrent system components with the specifi-
cation automaton (see, for example, [5]) and testing whether the set of strings
recognized by the resulting automaton, which accepts a string if and only if
the system violates the specification, is empty.

The nonemptiness of a generalized Büchi automaton is equivalent to the
existence of a cycle of states (reachable from an initial state of the automa-
ton) that intersects all sets of accepting states. Although this can be decided
with the help of basic graph algorithms, such as Tarjan’s algorithm [22], the
unavoidable state explosion problem has forced the development of more
memory-efficient emptiness checking algorithms. In the special case of an
automaton with only a single set of accepting states, a well-known alterna-
tive is to use the nested depth-first search algorithm [5] or one of its vari-
ants [11, 17, 6, 2], all of which implement the emptiness check as two in-
terleaved depth-first traversals of a product structure constructed on-the-fly
from the system components and the specification automaton. Multiple ac-
ceptance conditions are usually handled by transforming the specification
automaton into an equivalent automaton with only a single acceptance con-
dition [3, 5] before invoking the nested depth-first search algorithm. How-
ever, an explicit automaton transformation results in a linear worst case blow-
up (in the number of acceptance conditions) in the size of the automaton.
When aiming for extreme memory-efficiency, even this linear blow-up can
have a nonnegligible impact on the memory requirements when composing
the specification automaton with the concurrent system components (the
product of which can be exponential in the number of components), for ex-
ample, in a conventional hash table based implementation in which each
product state descriptor consumes the same fixed amount of memory.

1 INTRODUCTION 1

This paper presents a generalization of the basic nested depth-first search
emptiness checking algorithm into Büchi automata with multiple accep-
tance conditions. By avoiding the blow-up caused by acceptance condi-
tion reduction, the generalized version of the algorithm allows a slight im-
provement in the algorithm’s minimum worst case memory requirements.
The generalized algorithm is compatible with well-known improvements to
explicit state model checking such as probabilistic model checking tech-
niques [15, 25, 21]. The generalized algorithm can also readily handle un-
conditional and weak fairness assumptions (see, for example, [9]) attached di-
rectly to the concurrent system components [1] without increasing the com-
plexity of the specification automaton.

2 PRELIMINARIES

This section reviews the definition of generalized Büchi automata and the
classic automata conversion used for handling generalized acceptance con-
ditions, together with an example to illustrate why avoiding the conversion
may be desirable in practice.

2.1 Definitions

A (nondeterministic) generalized Büchi automaton is a tuple
(Σ, Q, ∆, qI ,F), where Σ is a finite nonempty set called the alphabet, Q is
the finite set of states, ∆ ⊆ Q×Σ×Q is the transition relation, qI ∈ Q is the
initial state, and F ⊆ 2Q is the set of (generalized) acceptance conditions.

Let A = (Σ, Q, ∆, qI ,F) be a generalized Büchi automaton. If
(q, σ, q′) ∈ ∆ holds for some σ ∈ Σ, we call q′ an immediate successor
of q (denoted by q → q′). A path in the automaton is a sequence of states
x = (qi)

n
i=1 (n ∈ N∪{ω}) such that, for all i ≥ 1 (and i < n if n < ω), qi+1 is

an immediate successor of qi. If n ≥ 2, the path is nontrivial. If x = (qi)
n
i=1 is

a finite path in A, we say that qn is reachable from q1 (via x) in A (denoted by
q1 →

∗ qn). When x is nontrivial, we occasionally use the notation q1 →
+ qn

for reachability to emphasize this property.

Let x be a path in A. If n < ω, x fulfills the acceptance condition F ∈ F
iff qi ∈ F holds for some 1 ≤ i ≤ n. If n = ω, define the set inf(x) = {q ∈
Q | ∀i ≥ 1 : ∃j > i : qj = q} of states occurring infinitely many times in x.
In this case we say that the path x fulfills the acceptance condition F ∈ F iff
inf(x) ∩ F 6= ∅.

An (infinite) word over the alphabet Σ is a sequence of symbols w =
(σi)

ω
i=1, where σi ∈ Σ holds for all i ≥ 1. A run of A over w is an infinite

path r = (qi)
ω
i=1 in the automaton such that q1 = qI and (qi, σi, qi+1) ∈ ∆

holds for all i ≥ 1. We say that r is accepting iff r fulfills all acceptance
conditions F ∈ F . If A has an accepting run over an infinite word w, we say
that A accepts w. The set of infinite words accepted by the automaton A is
called the language recognized by A. A is empty iff the language recognized
by it is empty.

2 2 PRELIMINARIES

2.2 Acceptance Condition Reduction

Any generalized Büchi automaton can be transformed into an automaton
that recognizes the same language as the original automaton but uses only
a single acceptance condition. For example, the well-known construction
of [5] transforms an automaton A = (Σ, Q, ∆, qI ,F) with state set Q =
{q1, q2, . . . , qn} (where qI = q1) and a nonempty1 set of generalized ac-
ceptance conditions F = {F1, F2, . . . , Fm} into another automaton A′ =
(Σ, Q′, ∆′, q′I ,F

′), where Q′ = {q(i,j)}
i=n,j=m
i=1,j=1 , ∆′ =

⋃m

k=1 ({(q(i,k), σ, q(j,k)) |
(qi, σ, qj) ∈ ∆, qi /∈ Fk} ∪ {(q(i,k), σ, q(j,1+(k mod |F|))) | (qi, σ, qj) ∈ ∆, qi ∈
Fk}), q′I = q(1,k), and F ′ = {{q(i,k) | qi ∈ Fk}}, for some fixed 1 ≤ k ≤ m.

When applied to an automaton A with n states and m ≥ 1 generalized
acceptance conditions, the transformation yields an automaton A′ with nm
states and one acceptance condition such that A′ and A recognize the same
language. The construction gives an O(nm) worst case lower bound for the
number of states in an automaton obtained by acceptance condition reduc-
tion. As shown in the following example, this lower bound is optimal, i.e., the
linear blow-up in the number of states in the automaton cannot be avoided
in the general case. (We explicate this well-known result in automata theory
only for illustration.)

Example. Let Σn denote a finite alphabet with n distinct symbols σ1, . . . , σn

together with an extra symbol # different from each σi. For each n ≥ 2,
define a set of infinite strings Ln over Σn characterized by the expression

Ln =
(

((∪n
i=2σi)#

n)∗σ1#
n((∪n

i=1
i6=2

σi)#
n)∗σ2#

n((∪n
i=1
i6=3

σi)#
n)∗σ3#

n · · ·

· · · ((∪n−1
i=1 σi)#

n)∗σn#n
)ω

,

i.e., the set of infinite strings built from (n+1)-symbol “blocks” over Σ, each
of which consists of one of the symbols σi (1 ≤ i ≤ n) followed by exactly n
#’s, with the additional constraint that each σi has to occur in the resulting
string infinitely many times.

The set of strings Ln can be recognized by the 2n-state generalized Büchi
automaton An = (Σn, Qn, ∆n, qn

I ,Fn), where Qn = {qn
1 , qn

2 , qn
3 , . . . , qn

2n},
qn
I = qn

1 , the transition relation ∆n = (
⋃n

i=1{(q
n
1 , σi, q

n
i+1), (q

n
i+1, #, qn

n+2)})

∪(
⋃2n

i=n+2{(q
n
i , #, qn

(i mod 2n)+1)}), and Fn =
⋃n+1

i=2 {{qn
i }}. As a concrete

example, Fig. 2.2 (a) depicts the automaton A3.
By the above construction, there exists a Büchi automaton with 2nm (with

m = |Fn| = n) states and a single acceptance condition recognizing the
language Ln. Figure 2.2 (b) shows the result when the conversion is applied
to the automaton A3. Although the result could be simplified, there is a lower
bound for the size of the automaton: we argue that any automaton (with a
single acceptance condition) that recognizes the same language always has
more than nm states.

Let A = (Σn, Q, ∆, qI , {F}) be an automaton that recognizes Ln using
only one acceptance condition F , and let w ∈ Ln. Thus, A accepts w, and
there exists an accepting run r of A on w and a state q ∈ F ∩ inf(r). Let u

1If F = ∅, A′ can be defined simply as A′ = (Σ, Q, ∆, qI , {Q}).

2 PRELIMINARIES 3

q3
1

q3
21

q3
3

2

q3
4

3

q3
5 q3

6

σ1

σ2

σ3

#

#

#

#

#

q(1,1)

q(2,1)

1

q(3,1)

q(4,1) q(5,1)

q(6,1)

q(5,2) q(6,2)

q(1,2)

q(2,2)

q(3,2)

q(4,2)

q(5,3) q(6,3)

q(1,3)

q(2,3)

q(4,3)

q(3,3)

σ1

σ2

σ3

#

#

##

#

σ1

σ2

σ3

#

#

#

σ1

σ2

σ3

#

#

#

(a) (b)

Fig. 1: (a) Generalized Büchi automaton A3. (b) Automaton obtained from
A3 by acceptance condition reduction. States associated with different ac-
ceptance conditions are indicated by numbers in the double circles

be a finite prefix of w such that A reaches the state q after reading u in the
run r. Because q ∈ inf(r), q is reachable from itself in the automaton via a
nontrivial path.

Consider any shortest nontrivial path from q to itself in the automaton,
and let v be the string composed of the successive transition labels occurring
on the path. It is clear that A accepts the string uvω. Because A recognizes
Ln, it follows that uvω ∈ Ln. Hence each σi must occur at least once in v.
In the simplest case, each σi occurs in v exactly once, and v is of the form
#kσρ(1)#

nσρ(2)#
n · · ·σρ(n)#

n−k for some 0 ≤ k ≤ n and some permutation
ρ of {1, . . . , n}. Clearly, v has n2 + n > n2 = nm symbols. Because v was
formed from the transition labels on a shortest path from q to itself, all states
occurring on the path between its endpoints are distinct. It follows that A has
Ω(nm) states as argued. �

In practice, the acceptance condition reduction is traditionally done ei-
ther explicitly using methods similar to the construction presented in [5], or
implicitly with a counter while constructing the on-the-fly synchronous prod-
uct of the specification automaton with the system components. An explicit
reduction is usually further followed by simplification of the nongeneralized
automaton, for which several techniques have been proposed in the litera-
ture (see, for example, [7, 8, 14]). However, as shown by the above example,
the linear blow-up caused by the reduction cannot be always countered by
simplification. Thus, although the major cause of the state explosion admit-
tedly lies in the product of the system components, methods for bypassing the
acceptance condition reduction may still be of practical relevance for min-
imizing the total number of product states that need be explored (and thus
stored in memory) in the worst case: after all, the nested depth-first search al-
gorithm is always forced to perform an exhaustive search in the product space
whenever the product is empty (i.e., when the system satisfies the correctness
specification).

3 EMPTINESS CHECKING ALGORITHM

This section presents a new variant of the nested depth-first search algorithm.
This variant is directly applicable to Büchi automata with multiple accep-
tance conditions.

4 3 EMPTINESS CHECKING ALGORITHM

3.1 Outline

The generalized algorithm is shown in Fig. 2. For simplicity, we assume that
F 6= ∅; otherwise the emptiness check reduces to the problem of finding
a reachable cycle in the automaton, in which case a nested search is not
needed.

As usual, the algorithm scans the (product) automaton using a depth-
first search that drives another interleaved search, which is started from the
states in the automaton in depth-first search post-order. The algorithm uses
a depth-first search stack path , and the processed set stores the states already
visited during the main depth-first search. Additionally, each state of the au-
tomaton has a label, which stores (partial) information on the acceptance
conditions fulfilled on some nontrivial path to that state in the automaton.
The nested search procedure propagates these labels forward in the automa-
ton starting from a given state (and is not necessarily bound to depth-first
search mode). Unlike the classic algorithm, the nested search of the gen-
eralized algorithm is not allowed to enter states not yet visited in the main
search.

The algorithm also uses a function hash: Q → H that maps each state
q ∈ Q to its hash value hash(q) chosen from a set of hash values H . If the
function is one-to-one, we say that the hash function is perfect. Lines 12–
14, 16 and 27–28 of the algorithm make the effect of hashing explicit (in a
practical implementation, the hashing is implicit in the tests for set or hash
table membership, and thus each of these loops reduces to a single hash table
operation).

The states in the path stack are always hashed perfectly such that any
changes made to the label of a state q ∈ path will not carry over to the
label of any state q′ ∈ path \ {q}. This is essential for the soundness of
the algorithm, and can be implemented in practice, for example, by using a
separate perfect hash table for the labels of the states currently in the path

stack. The purpose of lines 12–14 is to ensure a simple upper bound for
the running time of the algorithm by updating any changes made into the
label of the state from which the algorithm is about to backtrack back into
the (imperfect) hash table in an overapproximative way.

3.2 Complexity

We consider only the memory used for storing visited states and their labels,
since this information usually dominates the memory requirements of an
explicit state exploration algorithm. In a basic hash table based implementa-
tion, where each product state descriptor is stored into the table in its entirety,
the label of each state stored in the hash table consumes |F| bits of memory.
A straightforward implementation of the check for path stack membership
requires one additional bit of memory per state. If the states are inserted into
the hash table only as they are first entered during the main search, the pres-
ence of a state in the processed set can be inferred from its presence in the
hash table. The algorithm will thus require (at a minimum) n(s + |F| + 1)
bits of memory for the data in the hash table, where n is the number of states
in the automaton and s is the number of bits in each state descriptor. This

3 EMPTINESS CHECKING ALGORITHM 5

Input: A Büchi automaton A = (Σ, Q,∆, qI ,F) with F 6= ∅.
Output: “TRUE” (if hash is a perfect hash function, if and) only if A has an

accepting run and “FALSE” otherwise.

Initialize: label := [q1 7→ ∅, . . . , q|Q| 7→ ∅]; path := ∅; processed := ∅;

1 emptinessSearch((Σ, Q,∆, qI ,F): Büchi automaton)

2 begin

3 path .push(qI);

4 while (path 6= ∅) do begin

5 q := path .top();

6 while (∃q′ ∈ Q \ (path ∪ processed) : q → q′) do begin

7 path .push(q′); label [q′] := ∅; q := q′;

8 end;

9 if (label [q] 6= ∅) or (∃F ∈ F : q ∈ F) then begin

10 propagate((Σ, Q,∆, qI ,F), {q}, label [q] ∪ {F ∈ F | q ∈ F});

11 if (label [q] = F) then exit “TRUE”;

12 l :=
⋃

q′′∈{q′∈Q | hash(q′)=hash(q)} label [q′′];

13 for all q′ ∈ {q} ∪ {q′′ ∈ Q \ path | hash(q′′) = hash(q)} do

14 label [q′] := l;

15 end;

16 processed := processed ∪ {q′ ∈ Q | hash(q′) = hash(q)};

17 path .pop();

18 end;

19 exit “FALSE”;

20 end;

21 propagate((Σ,Q,∆, qI ,F): Büchi automaton; states ∈ 2Q;

labels_to_propagate ∈ 2F)

22 repeat

23 remove any state q from states ;

24 while (∃q′∈ path ∪ processed :
q → q′, labels_to_propagate 6⊆ label [q′]) do begin

25 states := states ∪ {q′};

26 label [q′] := label [q′] ∪ labels_to_propagate ;

27 for all q′′ ∈ {q̂ ∈ Q \ path | hash(q̂) = hash(q′)} do

28 label [q′′] := label [q′′] ∪ labels_to_propagate ;

29 end

30 until (states = ∅);

Fig. 2: Nested emptiness search algorithm for generalized Büchi automata

6 3 EMPTINESS CHECKING ALGORITHM

lower bound is less than or equal to the |F|n(s + 2) bits of memory required
by an efficient implementation of the basic nested depth-first search algo-
rithm [11] for all |F| ≥ 1, when the worst case blow-up in the size of the
automaton caused by the reduction in the number of acceptance conditions
is taken into account. For example, with 40-bit state descriptors and three
generalized acceptance conditions, there is approximately a 65% reduction
in the minimum worst case memory requirements for the hash table.

Although similar reductions are obviously not to be expected with a more
sophisticated hash table implementation based on various shared storage
techniques [13, 24, 18], also these implementations may still benefit from
the generalized algorithm because of the reduction in the total worst case
number of states.

Clearly, the main depth-first search visits each state of the automaton at
most once, and thus the nested search is started from each state at most once.
Entering a state during the nested search always results in adding at least
one new acceptance condition to the label of the state. It follows that each
state of the automaton can be entered at most |F| times2 over all nested
searches, and thus the algorithm has O(n|F|) running time complexity in
the number of visited states. Therefore, the generalized algorithm shares
its worst case running time complexity with the basic algorithm (taking the
worst case effects of acceptance condition reduction into account), assuming
that all hash table and set manipulation operations can be implemented in
constant time. (For the set manipulation operations, this constant depends
on the number of acceptance conditions |F|. However, its effect on the
running time can be reduced by implementing the operations as bit vector
primitives whenever possible, such as when |F| does not exceed the word
length of the underlying implementation architecture.)

3.3 Correctness

The basic correctness proof of the classic nested depth-first search algorithm
(see, for example, [4]) does not directly generalize into the current algorithm,
mainly due to the restriction concerning the set of states that may be entered
during a nested search. We thus present a full correctness proof of the gener-
alized algorithm here.

Notation. Let A = (Σ, Q, ∆, qI ,F) be a Büchi automaton, and let q ∈ Q
be a state in the automaton. We use the shorthand propagate(q) to denote
the nested depth-first search rooted at the state q (i.e., the call at line 10 of
the algorithm). Additionally, let processed q and pathq denote the contents of
the processed set and the path stack, respectively, at line 9 with q ∈ Q on top
of the path stack.

Lemma 1. Let q ∈ Q be the state on top of the path stack at line 9 of the
algorithm. Then, q′ →∗ q holds for all states q ′ ∈ pathq.

Proof. The algorithm uses path as the depth-first search stack; the states in
the stack always form a path to the state currently on top of the stack.

2Resetting a label at line 7 can occur only if the state has not been entered previously
during a nested search. Clearly, this reset can occur only once per state.

3 EMPTINESS CHECKING ALGORITHM 7

Lemma 2. Let q ∈ Q be a state on top of the path stack at line 9 of the
algorithm, and let F ∈ F be an acceptance condition. If F ∈ label [q]
already holds at this point, then the automaton contains a nontrivial path
from q to itself such that the path fulfills the acceptance condition F .

Proof. Because label [q] was reset when q was first entered (line 7)3, q was still
in the path stack when label [q] was updated. Due to the special treatment of
the labels of the states in the path stack, there exists a state q ′ 6= q such that
F was added to label [q] during a nested search rooted at q ′ from which the
state q is reachable via a nontrivial path in the automaton.

Since q′ was on top of the path stack when propagate(q ′) was entered, it
follows by Lemma 1 that q′ is also reachable from q in the automaton. Thus
the automaton contains a nontrivial path from q to itself through the state q ′.

The result follows immediately if q′ ∈ F . Otherwise, from the fact that
the set labels_to_propagate remains unchanged during the nested search,
we can conclude that F ∈ label [q′] was true at line 9 of the algorithm when
the algorithm was about to enter propagate(q ′). (If this were not the case, F
could not have been added to label [q] during the nested search rooted at q ′,
contrary to our assumption.)

By repeating the above reasoning for q′, we find a nontrivial path from q′

to itself through another state q′′ 6= q′ (and q′′ 6= q) such that F was added to
label [q′] during a nested search rooted at q′′ with q′ in the path stack.

We can thus construct a sequence of unique states in which every two
successive states are reachable from each other until we finally find a state
qF that belongs to the acceptance set F . The existence of this state follows
from the finiteness of the automaton and from the fact that the algorithm will
not include F into the label of any state if F = ∅.

Therefore, the automaton contains a nontrivial path q →+ q′ →∗ q′′ →∗

· · · →∗ qF →∗ · · · →∗ q′′ →∗ q′ →+ q that fulfills the acceptance condition
F .

The proof of Lemma 2 rests on the fact that the labels of the states in the
path stack change only if these states are actually reached during a nested
search. This is the reason why perfect hashing must be applied to the states
in the path stack. The following theorem establishes the soundness of the
algorithm.

Theorem 1. Let A = (Σ, Q, ∆, qI ,F) (F 6= ∅) be a Büchi automaton given
as input for the algorithm. If the algorithm exits with the value “TRUE”,
then the automaton contains a path from the initial state qI to a state q ∈ Q
reachable from itself via a nontrivial path that fulfills all acceptance condi-
tions F ∈ F . Therefore, the infinite path qI →∗ q →+ q →+ q →+ · · · is an
accepting run of the automaton, and thus the automaton is nonempty.

Proof. Assume that the algorithm exits with the value “TRUE”. Clearly, this
can occur only if label [q] = F holds at line 11 of the algorithm (with q ∈ Q
on top of the path stack). Since qI ∈ pathq is certainly true, there exists a
path from qI to q in the automaton by Lemma 1.

3The explicit reset is required for soundness only when using imperfect state hashing.
(With perfect hashing, the label is guaranteed to be empty even without the reset operation.)

8 3 EMPTINESS CHECKING ALGORITHM

Let F ∈ F be an acceptance condition. If F ∈ label [q] was true already at
line 9 of the algorithm (with q on top of the path stack), Lemma 2 proves the
existence of a path from q to itself that fulfills the acceptance condition F .
Otherwise the algorithm added F to label [q] during a nested search rooted at
q itself, which implies that q ∈ F and that there exists a path from q to itself
fulfilling F . By repeating the consideration for all acceptance conditions, we
can construct a path from q to itself that fulfills all acceptance conditions.
This proves the soundness of the algorithm.

We now turn to the completeness of the algorithm. From now on we
therefore assume that the function hash used for state hashing is a perfect
hash function. In this case lines 12–14 and 27–28 of the algorithm (required
for simulating the effects of imperfect state hashing) become redundant and
can be removed without affecting the behavior of the algorithm, and line 16
can be simplified.

We begin by listing several additional basic properties of the algorithm.

Lemma 3. Let q ∈ Q be a state in the automaton. If the algorithm proceeds
to line 9 with q on top of the path stack, then

(a) the algorithm will never start a nested search from any state
q′ ∈ processed q;

(b) if q′ is an immediate successor of q, then q′ ∈ pathq ∪ processed q; and

(c) if there exists a state q′ ∈ pathq ∪ processed q, q →∗ q′, with an imme-
diate successor q′′ /∈ pathq ∪ processed q, then q′ ∈ pathq.

Proof.

(a) The main depth-first search visits each state of the automaton at most
once. Since q′ ∈ processed q, the search has already backtracked from
q′, and thus the algorithm cannot (re)start a nested search from q ′.

(b) Immediate by the loop termination condition at line 6 of the algorithm.

(c) The case q′ = q is impossible by (b). Assume that q′ ∈ processed q, i.e.,
the algorithm had already backtracked from q ′. However, also this is
impossible by (b), since the algorithm would have had to proceed to
line 9 with q′ on top of the path stack at some previous point, which
would imply that q′′ ∈ pathq′ ∪ processed q′ ⊆ pathq ∪ processed q, a
contradiction. Thus, q′ ∈ pathq.

The completeness proof is based on an invariant of the nested search
procedure. The invariant is stated using the following notion of p(q)-
reachability.

Definition. Let q ∈ Q be a state in the Büchi automaton. Assume that
the algorithm calls propagate(q) at line 10. We say that the state q ′ ∈ Q is
p(q)-reachable (from q) if and only if, at the beginning of propagate(q),

• there exists an integer n ≥ 2 and states {q1, q2, . . . , qn} ⊆ pathq ∪
processed q such that q1 = q, qn = q′, qi → qi+1 for all 1 ≤ i < n, and

3 EMPTINESS CHECKING ALGORITHM 9

• {q2, q3, . . . , qn−1} ∩ pathq = ∅.

(Thus, q′ is p(q)-reachable if it is reachable from q via a nontrivial path con-
tained in pathq ∪ processed q such that the path does not intersect pathq be-
tween its endpoints.) �

Lemma 4. Let q be a state in the Büchi automaton, and let F ∈ F be an
acceptance condition such that q ∈ F or F ∈ label [q] holds at line 9 of
the algorithm with q on top of the path stack. Then, the algorithm calls
propagate(q), and F ∈ label [q′] holds for all p(q)-reachable states q′ after
the call returns.

Proof. We proceed by induction on the length of paths starting from the state
q in the automaton. The case for all immediate successors of q (which are
p(q)-reachable by Lemma 3 (b)) is clear from the operation of the nested
search.

Assume that the result holds for all p(q)-reachable states reachable from q
via a shortest path with exactly n (n ≥ 2) states. Let q ′ be a p(q)-reachable
state reachable from q via a shortest path q1(= q) → q2 → · · · → qn → q′

with n+1 states. Clearly, qn is p(q)-reachable via a path with n states. There
are two cases:

1. The algorithm visits qn during the nested search rooted at q. Because q ′

is an immediate successor of qn and p(q)-reachable, the nested search
guarantees that F ∈ label [q′] will hold upon returning from
propagate(q).

2. qn is not visited during the nested search. Since F ∈ label [qn] never-
theless holds after the call to propagate(q) (by the induction hypoth-
esis), F must have been added to label [qn] during a previous nested
search rooted at some state q̂ 6= q. Assume that F was not included
in label [q′] when entering propagate(q̂) and that this search did not
visit q′ (otherwise there is nothing to show). It follows that q̂ 6= qn

and q′ /∈ path q̂ ∪ processed q̂, and thus qn ∈ path q̂ by Lemma 3 (c).
Therefore, the algorithm starts a nested search from qn after backtrack-
ing from q̂. On the other hand, because q′ is p(q)-reachable via the
path q1(= q) → q2 → · · · → qn → q′, it follows that qn ∈ processed q.
By Lemma 3 (a), it now follows that the nested search from qn oc-
curs strictly between the calls to propagate(q̂) and propagate(q). Since
F ∈ label [qn] holds at the beginning of this search and because q ′ is
an immediate successor of qn, F will be added into label [q′] during
propagate(qn) if it is not there already. Thus F ∈ label [q′] will hold
also upon returning from propagate(q). This completes the induc-
tion.

We can now prove the completeness of the algorithm.

Theorem 2. Let A = (Σ, Q, ∆, qI ,F) (F 6= ∅) be a Büchi automaton given
as input for the algorithm. If A has an accepting run, the algorithm exits with
the value “TRUE”.

10 3 EMPTINESS CHECKING ALGORITHM

Proof. Because the automaton has an accepting run, it contains a maximal
nontrivial strongly connected component (i.e., a maximal subset of states, all
of which are reachable from each other in the automaton via a nontrivial
path) reachable from the initial state qI such that the component intersects
all acceptance conditions.

Assume that the algorithm exits with the value “FALSE”. In this case the
main depth-first search will visit all states reachable from qI . Let C ⊆ Q be
the first component satisfying the above condition entered in the main search
with q ∈ C as the first state of C pushed on the path stack. By the choice of
q, the main search will not backtrack from q until all states in C have been
visited. Let F ∈ F be an acceptance condition, and let qF ∈ C ∩ F . The
algorithm will start a nested search from qF before backtracking from q.

If q is p(qF)-reachable, F ∈ label [q] holds after the nested search by
Lemma 4. This applies especially to the case qF = q, since q is certainly
p(q)-reachable from itself. Otherwise qF 6= q, and q is not p(qF)-reachable.
Let x be any nontrivial path from qF to q in which no state occurs twice.
Clearly, any such path is also contained in C. There are two cases:

• x is entirely contained in pathqF
∪processed qF

. Because q is not p(qF)-
reachable, however, x must intersect pathqF

strictly between its end-
points. The first such state occurring along x is p(qF)-reachable.

• x contains a state q′ with an immediate successor q′′ (in x) such that
all states occurring along x up to (and including) the state q ′ belong to
pathqF

∪processed qF
, but q′′ /∈ pathqF

∪processed qF
. By Lemma 3 (c),

it follows that q′ ∈ pathqF
. In addition, q′ 6= qF by Lemma 3 (b),

and q′ 6= q, since q has no successor in x. Thus, x intersects pathqF

strictly between its endpoints, and there exists a p(qF)-reachable state
q̂ ∈ pathqF

, q̂ 6= qF , q̂ 6= q.

Thus, if qF 6= q and q is not p(qF)-reachable, we can find a p(qF)-reachable
state q̂ ∈ pathqF

∩ C (q̂ 6= qF , q̂ 6= q). By Lemma 4 we see that F ∈
label [q̂] will hold after returning from propagate(qF). Because q̂ 6= qF and
q̂ ∈ pathqF

, it follows that the algorithm will start another nested search from
q̂ after returning from propagate(qF). On the other hand, by the choice of q,
this search will start before the main search backtracks from q.

When the algorithm starts a nested search from q̂, there are again two
possibilities: either q is p(q̂)-reachable, in which case F ∈ label [q] will hold
after the search (by Lemma 4), or there exists a p(q̂)-reachable state q̂ ′ ∈
path q̂ ∩ C (q̂′ 6= q̂, q̂′ 6= q) such that F ∈ label [q̂′] holds after the nested
search from q̂, and the algorithm will start a nested search from q̂ ′ before
backtracking from q.

By repeating the above reasoning if necessary, we are bound to find a state
q̄ from which q is p(q̄)-reachable. Therefore, F will be added to label [q] (at
the latest) during the nested search rooted at q̄.

Since F is arbitrary, we can conclude that label [q] = F holds at line 11
when q is on top of the path stack. Hence, the algorithm exits with the
value “TRUE”, contrary to assumption. This proves the completeness of the
algorithm.

3 EMPTINESS CHECKING ALGORITHM 11

4 DISCUSSION

4.1 Disadvantages

Although generalization improves the memory requirements of the nested
depth-first search algorithm, it results also in some easily seen disadvantages.
For example, the generalized algorithm does not support extracting full coun-
terexamples for the given specifications directly from the internal data struc-
tures. Although we can still extract a path to a state belonging to an accepting
cycle when the existence of an accepting run can be confirmed, constructing
the cycle itself requires an additional search in the automaton in the general
case. (This search can be implemented, for example, as a simple variant of
the presented algorithm.) The main benefits of the reduced memory usage
are achieved whenever an exhaustive search of the product space is needed:
the generalized algorithm may therefore be able to complete the successful
verification of some properties with fewer resources than an implementation
based on the classic algorithm. Whether the theoretical memory savings of
the generalized algorithm are in practice significant enough to justify an ad-
ditional search in the automaton in the case of a failed verification run can
be evaluated only with careful testing against previous algorithms.

Additionally, although the worst case running time of the generalized al-
gorithm remains the same as in the basic case, the algorithm may repeat a
nested search several times (with different labels) in the same subgraph of
the product even if it does not contain any accepting runs. Apart from limit-
ing the nested search only to states visited also during the main search, there
are no obvious heuristics that would remedy this problem without any extra
memory overhead while still retaining the completeness of the algorithm. (It
is possible, however, to modify the algorithm to detect the existence of an
accepting run already during the nested search: the search can be aborted
with the answer “TRUE” if the nested search enters a state q ∈ path such
that label [q] ∪ labels_to_propagate = F .)

An unfortunate consequence of restricting the nested search to states vis-
ited only in the main search is that the algorithm becomes incompatible with
state space caching techniques [12], which reduce the memory requirements
of the search at the risk of repeating the search multiple times in parts of the
automaton; the completeness of the algorithm is not preserved (for example,
in the extreme case when only the states in the path stack are kept in the
state space cache). This also makes it impossible to apply any heuristics for
choosing which states to keep in the set of visited states (see, for example, [2]).

4.2 Simple Extensions

The algorithm extends directly to generalized Büchi automata with multiple
initial states. It is straightforward to check that the algorithm still remains
sound and complete (with perfect state hashing) if the search is repeatedly
restarted (without data structure reinitialization) from a previously unvisited
initial state until the algorithm either exits with the value “TRUE” or all
initial states have been explored.

Obviously, the algorithm is not restricted to generalized Büchi automata;

12 4 DISCUSSION

it can be applied (with the above extension) to any directed graph with “mul-
ticolored” vertices (where the colors correspond to generalized Büchi accep-
tance conditions) to decide the existence of a cyclic path covering at least
some fixed subset (or number) of colors.

4.3 Compatibility with Related Work

Correctness of a system is often checked with respect to various fairness as-
sumptions (see, for example, [9]). While it is often possible to embed these
assumptions into the correctness specification, they can alternatively be en-
coded directly into the system model instead (see, for example, [19, 20]) to
reduce the complexity of the specification automaton.

In particular, state-based unconditional or weak fairness assumptions re-
duce to conditions on the infinite occurrence of states satisfying some state
predicate in any computation path of the system. Such conditions corre-
spond directly to generalized Büchi acceptance conditions imposed on the
system components [1]. The generalized algorithm handles these assump-
tions directly due to its ability to decide the emptiness of the product of any
finite number of generalized Büchi automata. Strong fairness, however, can-
not be easily expressed as (generalized) Büchi acceptance and cannot thus
be handled by the algorithm presented here.

Explicit state model checking tools often employ probabilistic model
checking techniques such as bitstate hashing [15] or hash compaction [25,
21] to reduce the state storage memory requirements at the risk of missing
some errors in the system. Apart from the requirement that the states in
the depth-first search stack need to be hashed perfectly, the algorithm is oth-
erwise compatible with all of these techniques by the soundness proof of
Sect. 3.3 (with bitstate hashing, the label bits of each state can be stored into
the hash table using multiple hash functions, which corresponds to the mul-
tihash technique analyzed in [25] and [16]). The number of states in the
depth-first search stack that need to be stored simultaneously in the perfect
hash table depends on the maximum length of any distinct-state path start-
ing from the initial state of the automaton; the costs of perfect hashing may
still be tolerable if this length is small in comparison with the size of the
automaton.

In [6], the maximal strongly connected components of the specification
automaton (with one acceptance condition) are classified according to the
existence of cycles fulfilling the condition in the component. This informa-
tion is then used to detect accepting runs early during the main depth-first
search. In addition, an equivalence relation between states is used to restrict
the set of states to visit during the nested search. These ideas generalize to
the algorithm presented in this paper; however, there may be fewer opportu-
nities to apply the early cycle detection heuristic successfully in the presence
of multiple acceptance conditions.

4 DISCUSSION 13

ACKNOWLEDGMENTS

This work was supported by Helsinki Graduate School in Computer Science
and Engineering (HeCSE), the Academy of Finland (Project 53695) and the
Nokia Foundation.

The author is also grateful to Keijo Heljanko, Tommi A. Junttila, and the
anonymous reviewers of CONCUR 2002 and SPIN 2003 for many helpful
comments and valid criticisms.

References

[1] S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness proper-
ties to coupled finite-state machines. ACM Transactions on Program-
ming Languages and Systems, 12(2):303–339, 1990.

[2] L. Brim, I. Černá, and M. Nečesal. Randomization helps in LTL model
checking. In Proc. Joint Workshop on Process Algebra and Probabilistic
Methods, Performance Modeling and Verification (PAPM-PROBMIV
2001), volume 2165 of Lecture Notes in Computer Science, pages 105–
119. Springer-Verlag, 2001.

[3] Y. Choueka. Theories of automata on ω-tapes: A simplified approach.
Journal of Computer and System Sciences, 8:117–141, 1974.

[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT
Press, 1999.

[5] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1:275–288, 1992.

[6] S. Edelkamp, S. Leue, and A. Lluch Lafuente. Direct explicit-state
model checking in the validation of communication protocols. Techni-
cal Report 161, Computer Science Department, University of Freiburg,
2001.

[7] K. Etessami and G. J. Holzmann. Optimizing Büchi automata. In Proc.
11th Int. Conf. on Concurrency Theory (CONCUR’2000), volume
1877 of Lecture Notes in Computer Science, pages 153–167. Springer-
Verlag, 2000.

[8] K. Etessami, Th. Wilke, and R. Schuller. Fair simulation relations,
parity games, and state space reduction for Büchi automata. In Proc.
28th Int. Colloquium on Automata, Languages and Programming
(ICALP’2001), volume 2076 of Lecture Notes in Computer Science,
pages 694–707. Springer-Verlag, 2001.

[9] N. Francez. Fairness. Texts and Monographs in Computer Science.
Springer-Verlag, 1986.

14 REFERENCES

[10] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly au-
tomatic verification of linear temporal logic. In Proc. IFIP WG6.1
15th Int. Symp. on Protocol Specification, Testing, and Verification
(PSTV’95), pages 3–18. Chapman & Hall, 1995.

[11] P. Godefroid and G. J. Holzmann. On the verification of temporal prop-
erties. In Proc. IFIP TC6/WG6.1 13th Int. Symp. on Protocol Speci-
fication, Testing, and Verification (PSTV’93), pages 109–124. North-
Holland, 1993.

[12] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching
revisited. Formal Methods in System Design, 7(3):227–241, 1995.

[13] J.-Ch. Grégoire. State space compression in SPIN with GETSs. In Proc.
2nd SPIN Workshop, volume 32 of DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science. American Mathematical
Society, 1997.

[14] S. Gurumurthy, R. Bloem, and F. Somenzi. Fair simulation mini-
mization. In Proc. 14th Int. Conf. on Computer Aided Verification
(CAV’02), volume 2404 of Lecture Notes in Computer Science, pages
610–624. Springer-Verlag, 2002.

[15] G. J. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[16] G. J. Holzmann. An analysis of bitstate hashing. Formal Methods in
System Design, 13(3):287–305, 1998.

[17] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first
search. In Proc. 2nd SPIN Workshop, volume 32 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, 1997.

[18] G. J. Holzmann and A. Puri. A minimized automaton representation
of reachable states. International Journal on Software Tools for Tech-
nology Transfer, 2:270–278, 1999.

[19] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of lin-
ear temporal logic specifications. In Proc. 25th Int. Colloquium on
Automata, Languages, and Programming (ICALP’98), volume 1443
of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag,
1998.

[20] T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta
Informaticae, 43(1–4):175–193, 2000.

[21] U. Stern and D. Dill. A new scheme for memory-efficient probabilis-
tic verification. In Proc. IFIP TC6 WG6.1 Joint Int. Conf. on Formal
Description Techniques and Protocol Specification, Testing and Verifi-
cation (FORTE/PSTV’95), pages 333–348. Kluwer, 1996.

REFERENCES 15

[22] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Jour-
nal on Computing, 1(2):146–160, 1972.

[23] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In Proc. Symp. on Logic in Computer Sci-
ence (LICS’86), pages 332–344. IEEE Computer Society Press, 1986.

[24] W. Visser and H. Barringer. Memory efficient state storage in SPIN. In
Proc. 2nd SPIN Workshop, volume 32 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathe-
matical Society, 1997.

[25] P. Wolper and D. Leroy. Reliable hashing without collision detec-
tion. In Proc. 5th Int. Conf. on Computer Aided Verification (CAV’93),
volume 697 of Lecture Notes in Computer Science, pages 59–70.
Springer-Verlag, 1993.

16 REFERENCES

HELSINKI UNIVERSITY OF TECHNOLOGY LABORATORY FOR THEORETICAL COMPUTER SCIENCE

RESEARCH REPORTS

HUT-TCS-A66 Heikki Tauriainen

Automated Testing of Büchi Automata Translators for Linear Temporal Logic.

December 2000.

HUT-TCS-A67 Timo Latvala

Model Checking Linear Temporal Logic Properties of Petri Nets with Fairness Constraints.

January 2001.

HUT-TCS-A68 Javier Esparza, Keijo Heljanko

Implementing LTL Model Checking with Net Unfoldings. March 2001.

HUT-TCS-A69 Marko Mäkelä

A Reachability Analyser for Algebraic System Nets. June 2001.

HUT-TCS-A70 Petteri Kaski

Isomorph-Free Exhaustive Generation of Combinatorial Designs. December 2001.

HUT-TCS-A71 Keijo Heljanko

Combining Symbolic and Partial Order Methods for Model Checking 1-Safe Petri Nets.

February 2002.

HUT-TCS-A72 Tommi Junttila

Symmetry Reduction Algorithms for Data Symmetries. May 2002.

HUT-TCS-A73 Toni Jussila

Bounded Model Checking for Verifying Concurrent Programs. August 2002.

HUT-TCS-A74 Sam Sandqvist

Aspects of Modelling and Simulation of Genetic Algorithms: A Formal Approach.

September 2002.

HUT-TCS-A75 Tommi Junttila

New Canonical Representative Marking Algorithms for Place/Transition-Nets. October 2002.

HUT-TCS-A76 Timo Latvala

On Model Checking Safety Properties. December 2002.

HUT-TCS-A77 Satu Virtanen

Properties of Nonuniform Random Graph Models. May 2003.

HUT-TCS-A78 Petteri Kaski

A Census of Steiner Triple Systems and Some Related Combinatorial Objects. June 2003.

HUT-TCS-A79 Heikki Tauriainen

Nested Emptiness Search for Generalized Büchi Automata. July 2003.

ISBN 951-22-6667-9

ISSN 1457-7615

